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ABSTRACT 

With the power system being increasingly operated near its limits, there is an 

increasing need for a power-flow (PF) solution devoid of convergence issues. 

Traditional iterative methods are extremely initial-estimate dependent and not 

guaranteed to converge to the required solution. Holomorphic Embedding (HE) is a 

novel non-iterative procedure for solving the PF problem. While the theory behind a 

restricted version of the method is well rooted in complex analysis, holomorphic 

functions and algebraic curves, the practical implementation of the method requires 

going beyond the published details and involves numerical issues related to Taylor’s 

series expansion, Padé approximants, convolution and solving linear matrix equations. 

The HE power flow was developed by a non-electrical engineer with language 

that is foreign to most engineers. One purpose of this document to describe the 

approach using electric-power engineering parlance and provide an understanding 

rooted in electric power concepts. This understanding of the methodology is gained 

by applying the approach to a two-bus dc PF problem and then gradually from 

moving from this simple two-bus dc PF problem to the general ac PF case. 

Software to implement the HE method was developed using MATLAB and 

numerical tests were carried out on small and medium sized systems to validate the 

approach. Implementation of different analytic continuation techniques is included 

and their relevance in applications such as evaluating the voltage solution and 
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estimating the bifurcation point (BP) is discussed. The ability of the HE method to 

trace the PV curve of the system is identified. 
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1 INTRODUCTION 

1.1 POWER-FLOW PROBLEM 

Power-flow (PF) studies are of primal importance in reliable operation of existing 

power system. Solving the PF problem constitutes an integral part of reliability studies 

such as contingency analysis, planning processes such as generation expansion 

planning and transmission expansion planning; also, the PF solution provides the initial 

point for dynamic simulation of power system components. The objective of the 

traditional PF problem is to find the static operating point of a balanced three-phase 

power system [1]. Given the network topology and its parameters, the complex power 

injections at load buses, the real power injection and voltage magnitude at generator 

buses, the primary results obtained from PF studies are bus voltage magnitudes and 

angles for load/PQ buses and bus voltage angles and reactive power for generator/PV 

buses. Secondary results such as flows across transmission lines, transformers, 

generator reactive power output, losses in the network can be calculated from the 

voltage solution. 

Iterative methods such as Gauss-Seidel (GS), Newton-Raphson (NR), Fast 

Decoupled Load Flow (FDLF) and their many variants [2]-[6] are being used 

ubiquitously in the industry for solving the PF problem. While they appear to work well 

under normal loading conditions, as the loading increases, they can and do fail to 

converge [7], [8]. Furthermore, the trajectory that is taken by the iterative methods to 

approach the voltage solution is initial estimate dependent. For the power-flow problem, 
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which has multiple solutions, this means that these methods do not have a guarantee of 

convergence to the desired solution. All these problems have been addressed from time 

to time in the literature by proposing algorithmic enhancements to the existing methods 

[9]-[14]. However, a globally acceptable procedure to solve the convergence issues of 

iterative methods has yet to be developed. 

1.2 VOLTAGE STABILITY PROBLEM 

Voltage stability (VS) is defined as the ability of the power system to maintain 

steady-state voltages at all the buses after being subjected to a disturbance from a given 

initial operating condition [15]. The phenomenon of voltage instability (or voltage 

collapse) is responsible for major blackouts in the history of electric power industry; 

some of the major incidents reported worldwide are catalogued in [16], [17]. For a 

simple two-bus problem that has two solutions (high-voltage and low-voltage solutions) 

voltage collapse is said to occur when both the solutions coalesce. This idea can be 

easily extended to a general N-bus problem. Even an infinitesimal increase in loading 

beyond the voltage collapse point, also known as the bifurcation point (BP), results in 

no voltage solution to the PF problem. Traditional Newton-Raphson type methods fail 

to converge near the maximum loading point since the Jacobian matrix becomes 

ill-conditioned (approaches singularity), causing numerical errors in calculating the 

voltage solution. In the present voltage stability analysis practices, the PV curve 

obtained from some form of continuation power-flow (CPF) [18], [19] is a byproduct of 
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the process used to determine the saddle node bifurcation point of the system. 

Depending on the proportion by which load is incremented at different buses, different 

bifurcation points can be obtained. Knowledge of the loadability limit of the system 

before voltage collapse occurs is essential for system operators. This information 

becomes even more critical with the growing demand in electric power industry and the 

power system components being increasingly operated near their limits. 

1.3 HOLOMORPHICALLY EMBEDDED PF FORMULATION 

Holomorphic Embedding (HE) is a novel non-iterative way of solving the PF 

problem [20]. Unlike its counterpart iterative methods, the one implementation of HE, 

known as the Holomorphic Embedding Load-Flow Method (HELM), is guaranteed to 

find the operational high-voltage (HV) solution when it exists and unequivocally signal 

when such a solution does not exist [20]. The solution methodology involves 

embedding the originally non-holomorphic (or non-analytic) power-balance equations 

(PBE’s) into a larger problem such that the resultant problem is holomorphic (analytic). 

While NR type methods can be viewed as a first order Taylor series approximation as a 

function of voltage, the HE method exploits the property of embedding, problem 

formulation and holomorphicity to express the voltage function as a Taylor series that is 

a function of (in essence) injected real and reactive power. The power series 

coefficients of the aforementioned series are calculated by establishing a recurrence 

relation from the embedded PBE’s. Calculation of Jacobian matrix entries is not 
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involved in this solution procedure. Solving the PF problem using HE for a system of 

PQ buses (and one slack bus) is discussed in [21]. 

1.4 OBJECTIVE 

The objective of this work is to apply the novel HE method to solve the general ac 

PF problem. This report covers the following topic areas. 

1. Introduce the concept of analytic continuation and elucidate its relevance to 

the HE procedure. 

2. Explore several techniques of analytic continuation and their numerical 

implementation. 

3. Introduce the existing load-bus model and analyze the development of the 

two different generator bus models in detail. 

4. Develop a solution procedure for solving the general case PF problem. 

5. Compare the solution procedure of the HE method with NR method. 

6. Develop a HE that can be used in estimating the saddle-node bifurcation 

point of the system with PQ buses. 

1.5 ORGANIZATION 

The report is organized into five additional chapters. The content of each chapter is 

discussed in brief below. 

Chapter 2 is a review of the existing literature of PF methods and present practices 

in evaluating the BP of the system. 

The concept of analytic continuation and its relevance to the solution methodology 

is presented in Chapter 3. Three different techniques of calculating analytic 
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continuation are explored with numerical examples, their merits and demerits in the 

context of solving the PF problem are explained. 

In Chapter 4, the existing literature about the load bus model is introduced. The 

development of two different generator bus models using HE method and its 

incorporation in solving the general PF problem is discussed in detail. Test results from 

the IEEE 118 bus system are presented; the solution is validated against the results from 

commercial PF software. 

Estimating the BP of a system with PQ buses using the HE procedure is discussed 

in Chapter 5. The estimate is compared against the actual value of BP obtained from 

existing CPF method. 

Chapter 6 presents a summary of the reported work and scope for the future work. 
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2 LITERATURE REVIEW 

The literature review will focus on the following: First, the developments in solving 

the PF problem are described. Next, the initial-estimate-dependency of iterative 

methods is illustrated. Finally, the literature on evaluating the BP of the system is 

discussed. 

2.1 SOLUTION METHODOLOGIES TO THE POWER-FLOW PROBLEM 

The power-flow problem involves solving the nonlinear system of PBE’s. The 

numerical techniques employed to solve the PF problem have evolved over the years. 

Nevertheless, the quest for a single “best” method that caters to problems of all sizes 

and types with minimal computing requirements and desired convergence properties is 

still a work in progress. 

The real and reactive power injections at every bus i, for an N-bus system can be 

related to the bus voltages, the system topology and the network parameters as follows: 

 )sin()cos(

0

kiikkiik

N

k

kii BGVVP   


 

 )cos()sin(

0

kiikkiik

N

k

kii BGVVQ   


 

(2.1) 

Equation (2.1) is referred to as the hybrid formulation where the bus admittance 

matrix (Y bus) entries are written in rectangular form and bus voltages are expressed in 

polar form. Equation (2.1) also constitutes the defining equations for a load bus, i, for a 

N-bus system whose complex power injections are known and complex voltages are 

unknown. 
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For a generator bus, the real power injection into the bus is known. The bus voltage 

magnitude is maintained to be constant by varying the quantity of VARS injected into 

the network. The defining equations for a generator bus, i, are: 

 )sin()cos(
0

kiikkiik

N

k

kii BGVVP   


 

sp
ii VV   

(2.2) 

A slack bus is necessary to compensate for the losses in the system. The voltage 

magnitude and angle are fixed for the slack bus. The real and reactive power injections 

are taken as free variables. Hence, for a slack bus, 

sp
ii VV   

sp
ii    

(2.3) 

Mathematically, for an N-bus system with one slack bus, there are up to 2
N-1

 voltage 

solutions. Of the possible solutions, only one solution corresponds to the operable 

solution also referred to as the HV solution. Iterative methods such as NR and FDLF 

with a “reasonable” estimate generally converge to the required HV solution. However, 

several factors such as poor initial estimate, high R/X ratio (typical of distribution 

systems) and operation near the maximum loading point can lead to ill-conditioned 

matrices [7] resulting in convergence issues. 



8 

2.1.1 GAUSS-SEIDEL METHOD 

In the history of solving the ac PF problem, GS method was the first method to be 

implemented in digital computers. The nonlinear PBE for a load bus in (2.1) can be 

alternatively expressed as a “weakly linear” [22] system of equations as: 

*

*

1 i

i

N

k

kiki
V

S
VYI 

  

(2.4) 

Equation (2.4) is still nonlinear because the bus voltages in the denominator and 

hence current injection into the bus are unknown. From (2.4), an iteration scheme is 

established to calculate the bus voltages [1]. 















 







N

ik

kik

i

k

kik

i

ii

ii

i nVYnVY
nV

jQP

Y
nV

1

1

1

*
)()1(

)(

1
)1(  (2.5) 

The coefficient n in equation (2.5) is the iteration index. The Gauss-Seidel method 

is a fixed point form with the bus voltages as variables. Starting with an initial estimate 

of bus voltages, using the complex power specified at each bus and the network 

parameters, a new vector of bus-voltage estimates Vi(n+1) is obtained. The estimate of 

bus voltage for bus i, at iteration n+1, (Vi(n+1)) is expressed as a function of the most 

recently updated value of voltages up to bus i-1. For generator buses, the reactive power 

injection is unknown; it can be calculated from the updated value of bus voltages. The 

iteration process described in (2.5) is repeated until the difference between two 

successive voltage estimates is less than a pre-determined tolerance value. The GS 

method is easier to program; there is no need of factorizing a sparse matrix. The 
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memory requirements for the GS method are minimal; for an N-bus system, it is 

directly proportional to the system size N [23]. The Gauss-Seidel method has linear 

convergence characteristics [1]. 

In equation (2.5), only the buses connected to bus i are required to calculate the 

updated value of Vi(n+1). The calculation of such bus voltages can be carried out 

independent of the remaining network. A larger problem can thus be split into a 

sequence of smaller problems based on the bus adjacency matrix and processed in 

parallel. Reference [24] presents a theoretical upper bound of speed up for different 

implementations of parallelized GS method. The computation time for the traditional 

GS method increases proportional to N
2
[22]. 

2.1.2 NEWTON-RAPHSON METHOD 

The NR method for solving nonlinear power-balance equations (PBE’s) is a 

recursive method that solves a linear system of equations at each iteration; the linear 

equations are derived from a first order Taylor’s series approximation of the function at 

the best estimate of the solution point. Since the PBE’s are non-analytic, they cannot be 

differentiated in the complex form. Hence, the variables are broken down into real 

variables in either polar form or rectangular form. The first order partial derivatives of 

the PBE with respect to the bus voltage magnitude and angle (assuming polar form of 

the variables is used) constitute the entries of the Jacobian matrix. The Jacobian matrix 

evaluated at a particular point is representative of the slope of tangent vector to the PBE 
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at that point. Using this process, a linear system of equations that relates the Jacobian 

matrix and mismatches in the PBE’s is obtained. A simplified version of the above 

mentioned linear relation is: 



































VJJ

JJ

Q

P 

2221

1211  (2.6) 

where J11, J12, J21 and J22 are the entries of the Jacobian matrix defined in [1]. The 

entries ΔP, ΔQ are the mismatch in the PBE’s and Δθ, ΔV denote the update in bus 

voltage angle and magnitude respectively. In solving a N-bus system using the NR 

method, the equation corresponding to the slack bus in (2.6) can be eliminated. For a 

PV bus, the ΔQ equation is absent in (2.6). After, correcting for the slack buses and PV 

buses, the solution to the linear system of equations (2.6) for all buses, yields an update 

vector for system states (Δθ, ΔV); the updates are added to the current estimate of 

voltage angle and magnitude (θ, V). The process is repeated iteratively until the 

maximum mismatch in the PBE’s is less than a pre-determined value of tolerance. The 

NR method has quadratic convergence properties. Stott [22] claims that the full NR 

method converges in 2-5 iterations from a flat start initial estimate to the required 

solution irrespective of the problem size. A practical PF with discrete elements in the 

network such as on-load tap changing transformers (OLTC), phase shifters and FACTS 

devices is much more complicated and requires a few more iterations to converge. 
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2.1.3 ALGORITHMIC IMPROVEMENTS TO NEWTON’S METHOD 

Since the advent of NR method in solving the PF problem, several enhancements 

have been proposed to improve its performance. A very trivial modification used to 

obtain faster convergence is to use a previously calculated voltage solution as the initial 

estimate instead of a flat start. Dishonest Newton methods use the same Jacobian 

matrix for the successive iterations [3], thereby saving the costs of computing the 

Jacobian and triangular matrix factorization for every iteration. Limits are sometimes 

imposed on the maximum permissible change in the estimates to deal with the 

non-smoothness in the function [25]. For a practical power system problem, the 

Jacobian matrix is extremely sparse with very few non-zero elements in every row. 

Hence, sparse matrix storage techniques and optimal ordering schemes to minimize the 

number of fill-ins that occur during the triangular matrix factorization are employed to 

reduce the computation time and storage requirements in NR method. 

2.1.4 FAST DECOUPLED LOAD FLOW (FDLF) METHOD 

Based on the typical characteristics of PF problems and through the experience 

gained via numerical experimentation, a series of approximations were made to the 

traditional NR method to produce what has become an industry standard known as the 

Fast Decoupled Load Flow. For PF problems, under nominal operating conditions, 

there is weak coupling between active power and voltage magnitudes; similarly, there 

is weak coupling between reactive power and voltage angle. Hence, in the FDLF 
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formulation the corresponding entries in the Jacobian matrix are neglected, leading to 

two decoupled system of equations that are solved independently [6]. Other 

assumptions used in deriving the FDLF Jacobian matrix are very small R/X ratio 

branches (typical of transmission systems) and small differences in voltage angle 

between adjacent buses. The Jacobian is thus reduced to constant matrix independent of 

the estimate of the system states, thereby saving the costs of updating and re-factorizing 

the matrix. The speed per iteration is approximately five times that of the full NR 

method [5]. The system of equations to be solved is reduced from (2.6) to: 

VBVQ

BVP





''

' 
 (2.7) 

where B', B'' denote the constant approximations to the Jacobian matrix defined in [5]. 

One variation of the FDLF method is the X/B method. The elements of the B', B'' 

matrices are calculated in the X/B method [27] as: 
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 (2.8) 

The number of iterations required to converge using the FDLF increased over that 

needed with the NR method, but the computation time required per iteration drastically 

decreased [5]. Overall, the time taken to solve the PF problem decreased; as a result, the 

use of FDLF method has become more prevalent in the industry. 
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Reference [26] compares FDLF method with NR and GS methods based on 

memory requirements, CPU time, convergence properties, number of iterations and 

effects of low precision arithmetic on reliability of solution for medium and large sized 

systems. The FDLF method was found to be the fastest among the three methods on all 

the tested scenarios [26]. The convergence rate of FDLF method (assuming it 

converges) is between the NR (quadratic convergence) and GS (linear convergence) 

methods. One disadvantage of the FDLF method is it inherits the initial estimate 

dependency and convergence problems, especially near the BP, from its NR roots. 

2.1.5 SERIES LOAD FLOW 

A non-iterative approach to solve the PF problem has been proposed in [28] and 

tested on an eleven-bus system. Using a series reversion technique, the voltage variable 

is represented as an explicit series. The work is further extended in [30] by using a 

Taylor’s series expansion in the neighbourhood of a feasible operating point. 

Sensitivity of voltages to the bus power injections could be directly determined using 

this technique. However, the existing series power-flow methods use an analytical 

representation of the iteration process rather than the original PBE’s and it is 

impractical to obtain for large systems. In addition, they are initial estimate dependent 

in the sense that the initial operating point has to be obtained using an iterative 

approach. 
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2.2 NEED FOR A NON-ITERATIVE APPROACH  

The PBE’s constitute a nonlinear coupled system of equations with multiple 

solutions. When solving a nonlinear problem using an iterative approach, the 

convergence issues that arise are manifold. First off, there is no guarantee that the 

non-iterative approach will converge to a solution. If a PF case does not converge, there 

is no way to know if a solution does not exist or if the iterative method is to blame for 

the non-convergence. Also, there is little control over the solution to which the iterative 

method converges. 

For a simple two-bus ac PF problem, there exist two solutions for a specified value 

of power injection: the HV solution and the LV solution. Typically, the HV solution is 

desired for practical purposes such as grid operation. However, the LV solution also 

finds some applications viz., in determining the unstable equilibrium points [39]. 

Depending on the initial estimate, NR method may converge to the HV solution or the 

LV solution or may not converge at all. These problems are inherent in all iterative 

methods applied to nonlinear problems and occur irrespective of the problem size. The 

initial estimate dependency of iterative methods can be illustrated with a simple 

two-bus example shown in Figure 2.1. The system has one slack bus and one load bus 

connected by a purely inductive transmission line. The system parameters are shown in 

per unit quantities in Figure 2.1. 
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R=0

          X=j0.2 p.u.

P2=1 p.u.

Q2=1 p.u.

V1 =1Ð 0 o
|V2 |Ðθ2

 

Figure 2.1 Convergence Problems in Iterative Methods: Two-bus Example 

The voltage solutions for the two-bus system calculated in closed form are: 

a) HV solution = 0.6-j0.2=0.6324Ð-18.43
 o

 

b) LV solution = 0.4-j0.2=0.4472Ð-22.56
 o
. 

In order to demonstrate the initial estimate dependency of NR method, a 

numerical experiment is conducted by solving the two-bus PF problem using NR 

method with different initial estimates and categorizing the initial estimate based on 

the solution to which the iterative method converges. The PBE’s for bus 2 for this 

particular problem is derived from (2.1) are: 
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The Jacobian matrix is obtained by taking the partial derivatives of the PBE 

expressed in (2.9) with respect to the bus voltage magnitude and angle. 
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Starting from an initial estimate for the voltage magnitude and angle, the Jacobian 

matrix and the mismatch in the PBE are evaluated from (2.9) and (2.10). By solving 
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the linear system of equations as described in (2.10), an update for bus voltage 

magnitude and angle is found; Bus voltage magnitude and angle are updated and the 

process is repeated until the mismatch in the PBE is less than 1e-04 p.u. The entire 

procedure of solving the PF problem is repeated with different initial estimates for the 

voltage. The initial estimate of the voltage magnitude is varied between 0.0 to 1.0 p.u. 

in steps of 0.005 p.u. and the estimate of voltage angle is varied between –π to + π 

radians in steps of 0.01 radians. 

Depending on the starting point, the NR method can converge to either the HV 

solution or the LV solution or does not converge at all. For this simple problem, the 

NR method is assumed not to converge at all if it fails to reach either the HV solution 

or the LV solution within 15 iterations. Figure 2.2 shows the plot of initial estimates 

classified based on the solution to which they converge. 

 

Figure 2.2 Initial Estimate Dependency of NR Method 
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In Figure 2.2, a red pixel indicates that, with that particular initial estimate of 

voltage, the NR method converges to the LV solution. Similarly, a green pixel and 

black pixel indicates convergence to HV solution and divergence respectively. The 

plot reveals that even for the simplest of problems, the NR method used here does not 

converge to the solution reliably. 

Fast Decouple Power Flow (FDLF) method, being a variant of the NR method, also 

suffers from the problem of initial-estimate dependency. To demonstrate the same, the 

two-bus example shown in Figure 2.1 is solved using the X/B variation of the FDLF 

method. The B', B'' matrices constructed from (2.8) are: 
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The iteration scheme for the two-bus problem (2.7) becomes: 
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 (2.12) 

The decoupled system of equations is solved by adopting a (1θ-1V) iteration. The 

two-bus problem is solved using FDLF with different initial estimates of the voltage (0 

to 1 p.u. for voltage magnitude, –π to + π radians for voltage angle) at bus 2. The 

criterion for convergence is a mismatch of less than 1e-04 in the PBE’s. The initial 

estimates are categorized based on the solution to which FDLF method converges and 

plotted in Figure 2.3. 



18 

 

Figure 2.3 Initial Estimate Dependency of the FDLF Method 

The convergence issues that can arise from iterative methods are evident from the 

above illustration. Also the when the system moves into extremis and the voltages 

move far from nominal, the iterative methods can and do fail to converge due to an 

ill-conditioned Jacobian matrix [29]. 

2.3 EVALUATING THE SADDLE NODE BIFURCATION POINT 

In power system analysis, the BP (also known as the voltage collapse point), is 

representative of the maximum power transfer to a bus in the system. Methods for 

finding BP’s can be broadly classified into three categories: continuation method, 

direct method and optimization method. 
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2.3.1 CONTINUATION METHOD 

Continuation methods form a class of techniques in numerical methods that are 

capable of curve tracing around the critical points (turns or folds). The CPF [18] is one 

such method that can be used to trace the PV curve up to and including the loadability 

limit point of the system. The method of obtaining PV curves is extended from 

balanced positive sequence power systems to an unbalanced three-phase system in 

[32]. 

In the traditional form of CPF [18], the original PBE’s are modified by inserting a 

load parameter λ. The CPF is a two-step process: a predictor step to evaluate the tangent 

vector to the function and a corrector step to correct the solution using a local 

parameterization technique. From a pre-solved HV solution, a series of predictor 

corrector steps are performed to trace the PV curve of the system. The continuation 

parameter is chosen to be the state variable that has the maximum tangent vector 

component [18]. 

For practical purposes, the maximum value up to which loading in a particular bus 

or a select few buses can be increased, before voltage collapse occurs, is required. 

Reference [31] presents an improved CPF that allows the power injections at each bus 

to vary according to multiple load variations and actual generation re-dispatch patterns. 

The BP of the system evaluated by uniformly increasing the power injection and the BP 

obtained by multiple power injection variations described above can differ by more 

than 28% [31]. The CPF gives the capability of increasing the loading at a particular 



20 

bus when the other loads remain constant; this is ensured by including a multiplier that 

designates the rate of change of load/generation, as the loading parameter λ is varied 

[18]. The CPF method finds wide practical applications in present day voltage stability 

assessment. 

2.3.2 DIRECT METHOD FOR EVALUATING BIFURCATION POINT 

As discussed earlier, the Jacobian matrix developed in NR method becomes 

singular at the BP. Reference [33] develops a method where the original PBE’s are 

solved with the singularity of the Jacobian matrix imposed as an additional constraint to 

solve for the system states at the voltage collapse condition. The original system of 

equations is augmented such that for the enlarged system of equations, the modified 

Jacobian matrix at the BP is non-singular. 

While the direct method allows for the direct evaluation of the BP, it is not possible 

to trace the locus of the PV curve. Also, the size of the matrix is doubled, thereby 

making the method computationally more expensive. The direct method is 

implemented to find the BP of a system with ac/dc interconnection, tested on a 2158 

bus system in [19]. The direct method is extended from computing the static BP [33] to 

incorporate dynamic components such as Automatic Voltage Regulator (AVR) and 

Static VAR compensator (SVC) and determine the dynamic instabilities in [34]. 
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2.3.3  OPTIMIZATION TECHNIQUES 

Identifying the BP may be formulated as an optimization problem [35], [36], 

[37].The objective is to maximize loadability of the power system subject to the PBE’s 

as the equality constraints and the generation capacity as inequality constraints. From a 

base case PF solution and a direction vector that dictates the load increment, the point at 

which bifurcation occurs can be determined [35]. This method however cannot be used 

to trace the low-voltage side of the PV curve. Reference [37] presents an optimization 

problem formulation to determine the BP, taking into account the excitation limits of 

generators. Such a bifurcation incorporating the dynamic components can occur before 

or after the static BP of the system. 

An advantage of the optimization method is it allows the calculation of BP when the 

loading at one or a select few buses has to be increased with the other loads remaining 

constant. The primary drawback of optimization methods is that they involve solving a 

nonlinear optimization problem; hence, they are computationally intensive and 

practically infeasible. Also, non-smooth constraints such as tap-changing transformers, 

reactive power limits on generators are handled by solving a number of sub problems 

that are smooth. For medium to large size systems, the number of sub problems to be 

solved increases and the approach becomes unwieldy. 
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3 ANALYTIC CONTINUATION 

3.1 INTRODUCTION 

The PBE’s in their present form (2.1) do not satisfy Cauchy-Riemann equations; 

hence, they are non-holomorphic. In HE method, the voltage function is embedded 

using a complex parameter, s, such that the resultant system of equations is 

holomorphic. This allows the voltage function to be expressed as a Taylor’s series 

whose radius of convergence is unknown. Analytic continuation techniques need to be 

employed to find the converged value of this voltage function (i.e. the voltage solution). 

Analytic continuation, a field of study in complex analysis, is defined as the 

technique of extending the domain of a given analytic function. In the context of 

solving the PF problem using HE, analytic continuation is used to represent the voltage 

function outside the radius of convergence of the voltage power series. The concept of 

analytic continuation can be demonstrated using a simple example involving the 

geometric series [39]. 

Consider the series f1(s) given by 

 32
1 1)( ssssf  (3.1) 

The infinite series expression in (3.1) converges only for values of s that satisfy the 

relation |s|<1. It is straightforward to show that for |s|<1, the series f1(s) can be 

equivalently represented as: 
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Figure 3.1 Radius of Convergence of Power Series f1(s)  

Figure 3.1 shows the region of convergence of the infinite series f1(s) in the 

complex s plane. By exploiting the property of analytic continuation, it is possible to 

construct a different function that 

a) Coincides with the original function within its radius of convergence 

b) Extends the domain of convergence of the original function. 

Consider an integral function f2(s) given by 
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The integral can be explicitly evaluated as: 
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The function f2(s) represents the original geometric series accurately when |s|<1. In 

addition, f2(s) is valid over a larger domain (Real(s) < 1) in the complex plane. Thus, 

f2(s) is an analytic continuation of the original series f1(s). 

Furthermore, consider the function f3(s) defined below: 

s
sf




1

1
)(3  (3.5) 

The function f3(s) represents the functions f1(s), f2(s) accurately in their respective 

domains. Also, f3(s) is valid for all values of s ϵ C, except at s=1. The function f3(s) 

represents what is known as the maximal analytic continuation (more about this below) 

of the original function f1(s). The region of convergence of the functions f1(s), f2(s) and 

f3(s) is shown in Figure 3.2. 

Re(s)

Im(s)

s=1

f1(s):|s|<1

f2(s): Re(s)<1 f3(s): s ε C,s≠ 1

 

Figure 3.2 Domain of Convergence of f1(s), f2(s) and f3(s) 

As shown in the illustration above, there are different approaches for finding a 

function that is the analytic continuation of another function. The problem of interest is 
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to find the analytic continuation that extends the analytic function f to the largest 

domain in the complex plane, i.e. the maximal analytic continuation. Stahl’s Padé 

convergence theory [42], [43] shows that, “For an analytic function f with finite 

singularities, the close to diagonal sequence of diagonal Padé approximants converge 

in minimal logarithmic capacity to the original function in the extremal domain.” In 

other words, Padé approximants can be used to evaluate the maximal analytic 

continuation. 

This chapter examines the calculation of the Padé approximants using three 

different approaches: 

a) Direct method (or matrix method) 

b) Continued fractions (Viskovatov approach) 

c) Epsilon algorithm 

Numerical issues and computational trade-offs associated with evaluating the Padé 

approximants are discussed. The calculation procedures of the different methods are 

demonstrated with numerical examples. 

3.2 DIRECT METHOD (OR MATRIX METHOD) 

The technique of finding a rational interpolant for the power series of interest 

using the direct method was developed by Henri Padé in 1890, hence the name Padé 

approximants [44]. The Padé approximants calculated with increasing number of 

coefficients in the series and differing degrees of numerator and denominator 
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polynomial are listed in a tabular format known as the Padé table [44]. Consider the 

power series representation of an analytic function c(s): 
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The coefficient of the power series of degree n is denoted using the notation c[n] 

or cn. For a power series given by (3.6), the Padé approximant is a rational fraction of 

the following form: 

M
M

L
L

sbsbsbb

sasasaa
ML









2

210

2
210Padé]/[  (3.7) 

In equation (3.7) L is the degree of the numerator polynomial and M is the degree of 

the denominator polynomial. It is convention to refer such approximants as [L/M] Padé 

(approximants.) The procedure to evaluate the [L/M] Padé approximant from the 

truncated power series expression of (3.6) is shown below: 
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where the coefficients c0 through cL+M are known. In (3.8) O(s
L+M+1

) indicates the 

truncation error for the [L/M] Padé. In (3.8), there are L+M+1 known coefficients in the 

power series while there are L+M+2 unknowns in the Padé approximant. Hence, one of 

the coefficients in the Padé approximant can be chosen as a free variable to scale the 

entire equation. The constant term in the denominator polynomial b0 is chosen to be 1 

here. Multiplying (3.8) by b(s) on both sides: 
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Equating the coefficients of s
L+1

 to s
L+M

 on LHS to 0: 
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This is a system of M linear equations; it can be expressed in a matrix form as 

shown in (3.11). Equation (3.11) can be solved using traditional LU factorization 

techniques to obtain the denominator polynomial coefficients. 
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By equating the coefficients of like powers of s on both sides from s
0
 to s

L
 in (3.8), 

the numerator polynomial coefficients can be evaluated. 
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The coefficients of the c series are known; the b series coefficients are evaluated 

from (3.11). Thus from equation (3.12) the numerator polynomial coefficients can be 

evaluated. 

The matrix method described in [44] allows the calculation of rational approximant 

of any arbitrary degree. However, from the discussion of Stahl’s Padé convergence 

theory in section (3.1), the diagonal/near-diagonal Padé approximant is of interest since 

it yields the maximal analytic continuation. A diagonal Padé approximant is a rational 
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approximant whose numerator and denominator polynomial degrees are equal (i.e. 

L=M). If the difference between the degree of the numerator and denominator 

polynomial is 1, (i.e. |L-M|=1), it is said to be a near-diagonal Padé approximant. 

Using the above mentioned calculation procedure, a near-diagonal [0/1] Padé 

approximant is calculated for the geometric series given in (3.1). For constructing a 

[L/M] Padé approximant, L+M+1 terms (or, coefficients up to s
L+M

) are required in the 

series. Hence, the series (3.1) truncated at two terms (truncated up to s
1
) for evaluating 

the [0/1] Padé. The Padé approximant evaluated using (3.6)-(3.12) is found to be
s1

1
. 

The [0/1] Padé coincides with f3(s) shown in (3.5). This example can be used to 

demonstrate fact the Padé approximant is indeed the maximal analytic continuation for 

this series, hence the best possible representation of the power series. 

3.3 VISKOVATOV METHOD 

The Viskovatov method may be thought of as a two step approach. The first step it 

to take the original power series and convert it to a continued fraction. The second step 

is to convert the continued fraction to a rational function. The first step relies on 

recursively inverting partial series (shown below). It requires that all the inverses of the 

partial series that are required exist.  

For the Taylor’s series representation of an analytic function c(s) as shown in (3.6), 

evaluating a continued fraction using the Viskovatov method is discussed in reference 

[44]. The procedure is explained in equations (3.13)-(3.19). 
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The quantity c
(1)

(s) in (3.13) is the reciprocal of another power series given by: 
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The coefficient of c
(1)

(s) is evaluated using the fact that the product of the two 

power series should yield 1.0. In other words, the product of a series and its inverse 

should equal 1.0 for the constant term and zero for the remaining powers of s. 
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Equation (3.15) is a product of two power series on the LHS. Since this product 

must equal 1.0 for the constant term, it must be the case that 
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1
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c
c   (3.16) 

The coefficients of the remaining powers of s in (3.15) should be zero. Hence the 

coefficients, ,3,2,1],[)1( nnc  can be calculated using the relation, 
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Applying the technique described above recursively, equation (3.13) becomes: 
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Depending upon where the continued fraction in (3.19) is truncated, a three-term 

recursion relationship can be used to find a rational function which is equivalent to 

either a diagonal or near-diagonal Padé approximant (i.e., a [1/0], [1/1], [2/1] … Padé 

approximant) depending upon the number of terms in the continued fraction. This is 

proved by the principle of mathematical induction in [44] and the iterative 

re-expansion of the continued fraction in [45]. 

For a power series truncated at finite number of terms, say n, the continued 

fraction can be evaluated directly by replacing s=1 in (3.19) and then calculating from 

the last element c
(n)

[0] progressing upward. It can also be evaluated in a rational form 

An/Bn as a function of s using the three-term recursion relation [44]. 




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The three-term recursion relation is preferred since it gives flexibility in choosing 

the number of terms in the continued fraction. In other words, when using the 

three-term recursion relation, an a posteriori increase in the length of the power series 

involves fewer calculations compared to direct evaluation of the continued fraction. 



31 

3.4 EPSILON ALGORITHM 

In the previous two approaches, the power series is approximated with a rational 

approximant as a function of s. This rational approximant may then be evaluated for 

any value of s. If the interest is only in the value of the approximant, for instance at 

s=1.0, a more economical algorithm, the epsilon algorithm, can be used instead. The 

epsilon algorithm developed in [47] involves the transformation of the sequences into 

a two dimensional array called the epsilon table (ϵ table). Wynn’s identity [48] 

establishes a relationship between the entries of the ϵ table and the Padé table. The 

epsilon algorithm is a faster way of evaluating the Padé approximant for a specified 

value of s. The calculation procedure in constructing the ϵ table is presented in [44]. 

The notation ϵk
(j)

 is used to indicate the entries of the epsilon table. The subscript k 

denotes the column and the superscript j indicates the progression down the column. 

The first column is ϵ-1
(j)

 is defined to be zeros. The second column is defined as the 

series (sum of the sequence terms) which is to be evaluated. The remaining elements 

are calculated from the epsilon algorithm, which connects the elements in a rhombus 

pattern as shown in Table 3.2. 
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Table 3.1 Structure of the ϵ Table 
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Table 3.2 Rhombus Pattern to Evaluate Entries of the ϵ Table 
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The entries of Table 3.1 are calculated using the relation shown in (3.21). 
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1
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  j

k

j

k

j

k

j

k   
(3.21) 

It is assumed that all the entries of the table exist. Since the epsilon algorithm uses 

the reciprocal differences of the power series coefficients, the trailing digits of the 

coefficients are more critical in accurately representing the function. It can be 
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observed that when two successive elements of a column ϵk
(j+1)

,
 
ϵk

(j) 
are equal, from 

(3.21) ϵk+1
(j)

 is not defined. Such cases are said to be degenerate. It is shown in [48] 

that the Padé approximant calculated with a fixed number of terms in the series and 

evaluated at a particular value of s is numerically equivalent to the value obtained 

from the even column of the epsilon table constructed with the same number of terms 

in the series. For the above statement to hold true, the Padé has to exist and the 

epsilon table should be non-degenerate [48]. The epsilon algorithm is computationally 

appealing in calculating Padé approximants since it does not involve solving a matrix 

equation. 

3.5 NUMERICAL ILLUSTRATION OF ANALYTIC CONTINUATION 

This section demonstrates the numerical implementation of the different analytic 

continuation techniques discussed in Sections 3.2-3.4. The context in which analytic 

continuation is used in this research is to evaluate the maximal analytic continuation of 

the holomorphic voltage function. However, the analytic continuation finds other 

practical applications such as summing a divergent series and the acceleration of 

convergence of slow convergent series. For the illustration of analytic continuation 

techniques, one such application is considered. The irrational constant π is evaluated 

from a slowly converging series. 

Consider the Gregory series for π [49] shown in (3.22). 
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4)1(

k

k

k
  (3.22) 
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It can be observed from (3.22) that as variable k increases, the terms in the sequence 

become small. Also, the sign in the series is alternating because of the (-1)
k
 term. When 

two consecutive terms of the series are taken together, they tend to cancel each other 

leaving a small residual; these residuals add up with increasing number of terms in the 

series resulting in the value of π. Hence, the Gregory’s series is extremely slow to 

converge. 

Equation (3.23) shows the Gregory’s series truncated up to seven terms. 

65432

13

4

11

4

9

4

7

4

5

4

3

4
4)( sssssss   (3.23) 

Evaluating (3.23) at s=1, equation (3.22) with a truncation error of order O(s
7
) can 

be recovered. 

The analytic continuation of this power series is evaluated from the truncated series 

using the matrix method, the Viskovatov method and the epsilon algorithm and the 

results are tabulated below. All calculations were completed with double precision 

using MATLAB. The intermediate results are shown with only four digits of precision 

for brevity. 

3.5.1 PADÉ APPROXIMANTS USING MATRIX METHOD 

Given coefficients up to s
6 
of Gregory’s series in (3.23), the [3/3] diagonal Padé can 

be evaluated. The constant coefficient in the denominator polynomial is chosen to be 

1.0. Using (3.11), the denominator polynomial coefficients b1 through b3 can be 

expressed using a matrix equation. The coefficients of the power series from (3.23) are 
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substituted in the matrix equation and the denominator polynomial coefficients are 

calculated. 
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Calculating the numerator polynomial coefficients from (3.12) 
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The [3/3] Padé approximant evaluated using the matrix method is shown in (3.26). 

32
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0682.05833.11283.54
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sss
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
  

π(1)= 3.141614906832299 

(3.26) 

Evaluating (3.26) at s=1 yields the required numerical value of π. The error in the 

estimated value of π using the [3/3] Padé is 7.0834e-04%. 

3.5.2 CONTINUED FRACTION 

From the power series approximation of π in (3.23), a continued fraction is 

constructed using the Viskovatov approach (equations (3.13)-(3.19)). 



36 

 



432

432

5432

5432

0370.00563.01008.02540.02222.2
75.0

4

0119.00167.00263.00514.04500.07500.0
4

0119.00167.00263.00514.04500.07500.0
4

13

4

11

4

9

4

7

4

5

4

3

4

1
4)(

ssss

s

s

sssss

s

sssss

s

sssss

s
s
















 
(3.27) 

 

Repeating the procedure the continued fraction expansion is obtained in (3.28) 
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(3.28) 

Evaluated at s=1, the value of π evaluated with 16 digits of precision from (3.28) is 

π(1)=3.141614906832298 (3.29) 

The percentage error in the value of π evaluated from the continued fraction with 

seven terms in the original series is 7.0834e-04%. 

3.5.3 EPSILON ALGORITHM 

The epsilon table is constructed as shown in Section 3.4 above. The entries of the 

first column (denoted by ϵ-1 in Table 3.1) are all zeros. The second column (denoted by 

ϵ0) is the sum of the power series coefficients; in other words, the entry of the second 
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column is the series from (3.23) rather than the sequence elements. Evaluating (3.23) 

at s=1, the entries of the second column are calculated as: 
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The remaining entries of the epsilon table are constructed using (3.21) as follows: 
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Table 3.3 shows the entries of the of the epsilon table. The odd columns do not 

carry any meaningful information except that they are required in constructing the 

subsequent columns in the epsilon table. The epsilon algorithm is computationally 

less expensive when the analytic continuation has to be evaluated at one particular 

value. In this case, at s=1 for the Gregory’s series. 
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Table 3.3 Epsilon Table for Gregory’s π Series 
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The approximate value of π evaluated using the epsilon algorithm is the element 

in the furthest even column. With 16 digits of precision, the value of π is evaluated as 

3.141614906832299. The percent error in the value of π is 7.0834e-04%. 

The percentage error in value of π obtained using different analytical continuation 

techniques is found to be the same. Moreover, the value of π calculated using the 

different procedures was numerically verified to be the exact up to 15 decimal places. 

3.5.4 ACCELERATION OF CONVERGENCE OF π SERIES 

The acceleration in the convergence of the series is best shown by comparing the 

value of π obtained by directly summing the series against the value of obtained from 

the Padé approximant (using the matrix method) with the same number of terms in the 
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series. It has been already established that the continued fraction and epsilon 

algorithm are equivalent to the evaluating the Padé approximant. In  

Table 3.4, the first column indicates the number of terms in the series. The 

diagonal Padé approximant is evaluated using the matrix method and listed in the 

second column. Columns 3 and 4 indicate the value of π obtained by evaluating the 

Padé approximants and the power series respectively. The results are tabulated in  

Table 3.4 with eight digits of precision. The numbers showed in bold are the 

correct digits of π. 

Table 3.4 Evaluating π using Padé Approximants with Matrix Method 

Number 

of terms 

in series 

Diagonal Padé 

approximant 

Diagonal Padé 

evaluated at s=1 

Truncated power 

series 

approximation 
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s

s

6.01

07.14




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432
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ssss

ssss




 3.14159331 3.25236593 

Graphically, the acceleration of convergence using the analytic continuation 

techniques is shown in Figure 3.3. The value of π estimated by the power series and 

Padé approximant is plotted against the number of terms in the series and compared 

with the actual value of π. 
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Figure 3.3 Convergence of Power Series vs. Padé Approximant 

From Figure 3.3, it is clearly seen that the convergence of the series can be 

accelerated by the use of Padé approximants. For the same degree of accuracy as a [3/3] 

Padé (calculated with 7 terms in the series), 31831 terms are required in the power 

series approximation. While this example uses an extremely slowly converging power 

series and while most gains are not this dramatic, this example gives a sense of what 

can be achieved using Padé approximants. 

The illustration of evaluating π shows that Padé approximants can be used to 

accelerate slow converging series. It can also be used to evaluate certain ostensibly 

diverging power series. More importantly, it can be used to evaluate the maximal 

analytic continuation of the function as proved in Stahl’s theory [42], [43]. 
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3.6 NUMERICAL ISSUES IN EVALUATING THE ANALYTIC 

CONTINUATION 

Numerical issues in evaluating an analytic function occur in 

a) Calculation of power series coefficients of an analytic function. 

b) Evaluating the analytic continuation of the power series. 

The description of errors belonging to category a) can be subcategorized into the 

following 

i. Round-off errors: The calculation of power series coefficients in the PF problem 

typically involves some form of convolution (as will be discussed in Chapter 4). 

Round-off errors that occur during the calculation of one coefficient compound 

in the calculation of the next coefficient and so on. Reference [20] suggests that 

calculation of 40-60 terms in the series can exhaust the double precision 

arithmetic due to round-off errors. 

ii. Truncation errors: The power series approximation must be truncated to a finite 

number of terms in order to calculate its analytic continuation. If sufficient 

terms are not included in the series, the analytic continuation might not be an 

accurate representation of the original function. The solution to this problem is 

to add more terms in the series with appropriate consideration of the occurrence 

of round-off errors and to the possibility that a solution might not exist to the 

original equations. 
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The errors belonging to category b) are more relevant in this context and will be 

discussed in detail with numerical examples later. The illustration of the numerical 

issues is done using the matrix method of evaluating the Padé approximants. The other 

methods of evaluating analytic continuation are also equally prone to such errors. 

While implementing the different algorithms, their numerical performance should be 

taken into account. 

3.6.1 DEGENERATE POWER SERIES 

The power series representation of an analytic function is said to be degenerate if it 

leads to a singular matrix in calculation of the Padé approximants. Calculating the 

denominator polynomial coefficients of the Padé approximant requires solving a linear 

system of equations (3.11). The elements of the matrix in (3.11) depend on the 

calculated coefficients of the power series. A degenerate series results in a singular 

matrix with no solution. It is critical to be able to determine degenerate cases in the 

numerical implementation of the Padé approximants to obtain reliable results. 

A specific example of degeneracy occurs in the geometric series where the [L/2] 

Padé approximants are degenerate for any value of L. A geometric series can arise out 

of solving a simple scalar equation devoid of any complexities (viz. nonlinearity, 

complex conjugate operation) using the holomorphic embedding procedure. Such 

degeneracy can be illustrated using the following simple scalar linear equation, 

bxa  )1(  (3.32) 
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where a, b are scalars. While the solution to the problem is trivial, solving this problem 

in a manner that will be used for the nonlinear problem will help in understand the 

numerical issues that can occur in the solution procedure. 

To solve this problem, the variable x is expressed as a function of a complex parameter 

s. 

 2]2[]1[]0[)( sxsxxsx  (3.33) 

From (3.32) a fixed-point form is established. 

)()( saxbsx   (3.34) 

The equation is embedded with the complex parameter s such that at s=0 the solution is 

known. 

)()( sasxbsx   (3.35) 

The function x(s) is expanded and coefficients of like powers of s on both sides of the 

equation are equated. 
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In general, the power series coefficients of the series x(s) can be expressed as: 

bx ]0[  

  1,]1[][  nbanaxnx
n

 

(3.38) 

where x[n] denotes the coefficient of s
n 

in the power series. 



44 

The series x(s) to be evaluated for any arbitrary scalar a, b is 

22)( bsaabsbsx   (3.39) 

From the calculated series coefficients, the evaluation of [L/2] Padé approximant 

for an arbitrary value of L follows from (3.11) and (3.12). 
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Substituting (3.38) in the above equation, 
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The determinant of the LHS matrix is zero as shown in (3.42) 
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Equation (3.42) shows that the Padé matrix for an [L/2] approximant turns out to be 

singular for a geometric series resulting in no possible solution for the b coefficients. If 

the coefficients are floating point numbers, the round-off error may prevent the matrix 

from being exactly singular. However, the condition number of the Padé matrix will be 

very high and the results obtained from any such calculation may be erroneous. 

For this specific problem, it can be shown that the [0/1] Padé, 
as

b
sx




1
)( is an 

exact representation of the solution. Evaluating the [L/2] Padé can be associated with 

solving an over determined system of equations. It occurs due to specifying one too 

many coefficients when it is not required. Hence, it becomes essential in the numerical 
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algorithm to recognize the cases where a smaller degree Padé approximant is sufficient 

to accurately represent the power series. 

3.6.2 ILL-CONDITIONED PADÉ MATRIX IN EVALUATING A 

CONVERGENT SERIES 

The power series coefficients of a convergent series, in most practical applications 

do not become exactly zero for higher order terms. Due to floating point arithmetic 

truncation and round-off errors in the calculation, the coefficients decrease 

monotonically until they become small enough to be considered numerical zeros. In 

such scenarios, evaluating a higher degree Padé means adding rows of numerical zeros, 

that are nearly linearly dependent on each other to the Padé matrix (3.11), leading to a 

very high condition number of the Padé matrix. 

The following example of solving a two-bus dc PF problem from [46] results in a 

convergent series and stands to illustrate the numerical issues associated with the Padé 

matrix. Solving the quadratic equation that arises from the two-bus dc PF using HE is 

demonstrated; it is then extended to the general ac PF problem in the next chapter. 

P=0.09 p.u.

R=1 p.u.V1=1 p.u. V2=?

dc +
-

 

Figure 3.4 Solving a dc PF problem using the HE procedure 
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The real power delivered at bus 2, P2, is related to the system voltages V1, V2 and the 

line resistance R as follows: 

0
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)(

12

2

2

2

12

21
2222
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(3.43) 

For the system parameters in Figure 3.4, the expression is 009.02

2

2 VV . The 

solution for this quadratic can be explicitly calculated as V2=0.9, 0.1 which are the HV 

and LV solutions respectively. Now consider solving the simple quadratic using the 

holomorphic embedding procedure. The receiving end voltage V2 is expressed as a 

function of a complex parameter s. One possible embedding to calculate the HV 

solution is: 





2

2222

2

2

]2[]1[]0[)(,

)(

09.0
1)(

sVsVVsVwhere

sV

s
sV

 (3.44) 

From the embedding it can be observed that the solution at s=0, V2(0) =1, is indeed 

an operating solution under no-load conditions. This solution at s=0 is known as the 

germ solution or, in short, germ; the HV solution is an analytic continuation of the germ 

solution. 

In calculating the voltage power-series coefficients from (3.44) a new series W2 (s) 

is defined as the reciprocal of the voltage series. 

  2

222

2

2 ]2[]1[]0[
)(

1
)( sWsWW

sV
sW  (3.45) 
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The coefficients of the reciprocal series can be calculated using the relation that the 

product of the two power series should yield 1.0. Thus, for the constant term, 

]0[

1
]0[

2

2
V

W  . It can be shown that, for a general value of n expanding (3.45) and 

equating the coefficients of s
n
 on LHS to zero yields: 

1,
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(3.46) 

From (3.44), substituting for 1/V2(s) with the reciprocal power series W2(s) yields: 

 





2

222

2

222

]2[]1[]0[09.01

]2[]1[]0[

sWsWWs

sVsVV
 (3.47) 

Equating the coefficients of s on both sides of (3.47) the power series coefficients 

V2[n] can be calculated as: 

1],1[09.0][

1]0[

22

2





nnWnV

V
 (3.48) 

The power series evaluated using (3.46) and (3.48) is a convergent series whose 

coefficients decrease monotonically. 

 32

2 0015.00081.009.1)( ssssV  (3.49) 

When evaluating a diagonal [M/M] Padé, coefficients up to s2M are required in the 

series. As the degree of the Padé approximant needed in evaluating the series (3.49) 

increases, the condition number of the matrix that arises from (3.24) for this particular 

problem becomes larger. Recall that in solving the Ax=b problem, if the condition 

number κ(A)=10k, up to k digits of precision could be lost [50]. While evaluating a 



48 

lower degree approximant may appear to be a potential solution to the problem, it may 

lead to large truncation error in the solution. 

Table 3.5 shows that for this particular convergent series, the condition number of 

the Padé matrix increases up to the order of 10
19

as the degree of the Padé approximant 

increases. Thus, choosing an appropriate degree of the Padé approximant can involve a 

tradeoff between the desired numerical stability properties as indicated by the condition 

number and the allowable error tolerance in the solution. Also, the computational 

complexity that is involved in obtaining a higher degree approximant should be taken 

into consideration for practical applications. 

Table 3.5 Condition Number of the Padé matrix used in Calculating the Padé 

Approximant 

Degree of Padé 

approximant 

Condition number of 

Padé matrix 

[2/2] 1.2548e+02 

[4/4] 2.2891e+06 

[6/6] 4.9530e+10 

[8/8] 1.1808e+15 

[10/10] 2.9682e+19 
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To summarize, this chapter discusses the relevance of analytic continuation in 

solving the PF problem, illustrates different methods of evaluating the analytic 

continuation with numerical examples and highlights the numerical issues that should 

be taken into consideration. 
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4  SOLVING A GENERAL CASE POWER-FLOW PROBLEM WITH 

HOLOMORPHIC EMBEDDING 

4.1 INTRODUCTION TO HOLOMORPHIC EMBEDDING 

Holomorphic functions form a branch of study in complex analysis. A brief 

introduction about holomorphic functions followed by the development of load bus 

model available in existing literature is presented in this section 4.1. 

4.1.1 HOLOMORPHIC FUNCTIONS 

Functions of complex variables that are complex differentiable everywhere in a 

neighborhood around a point are said to be holomorphic about that point. 

Holomorphic functions can be uniquely expressed using a convergent Taylor series in 

the neighborhood of the point. The term ‘analytic’ is often used interchangeably with 

‘holomorphic’. Analytic refers to a broader class of functions (real, complex or more 

generic) that satisfy certain conditions whereas holomorphic refers to only complex 

valued functions. 

In real analysis, differentiability in a neighborhood does not guarantee analyticity; 

however, in complex functions, differentiability in a neighborhood guarantees 

analyticity. Analytic functions can be entire or non-entire. Functions whose Taylor 

series expansion coincides with the actual function in the whole of the complex plane 

are termed as entire. Examples of entire functions include trigonometric functions such 

as sine, cosine and exponential function (e
x
). Entire functions have infinite radii of 
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convergence. For non-entire functions, the function can be expressed with a convergent 

Taylor series only within an open disc of finite radius, centered about the point at which 

the derivatives are calculated [38]. Analytic continuation techniques are employed to 

extend the domain of convergence of such non-entire functions. 

Holomorphic embedding (HE) as it is to be used here is the technique of 

embedding the non-analytic PBE’s within a large problem with complex variables 

ensuring that the resultant problem is holomorphic. For the PBE’s, the non-analyticity 

(non-holomorphicity) is due to the complex conjugate operator. The solution 

procedure for the load bus model using a particular embedding is shown in [21]. 

4.1.2 LOAD BUS MODELING USING HE 

Consider the PBE of a load bus whose complex power injection Si is known. If m 

were the set of PQ buses, the Power Balance Equation (PBE) for bus i, could be 

expressed as, 

mi
V

S
VY

i

i
k

N

k

ik 


,
*

*

1

 (4.1) 

where Yik is the (i, k) element of the bus admittance matrix, Si and Vi are the complex 

power injection and voltage at bus i, respectively. The shunt elements in (4.1) are 

moved to the RHS and the equation is embedded with a complex parameter s as 

follows [21]: 

misVsY
sV

sS
sVY ishunti

i

i

N

k

ktransik 


,)(
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)(
**

*

1

 (4.2) 
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At s=1, the original PBE’s (4.1) are recovered from the embedded system of 

equations, thereby retrieving the HV solution. In (4.2) Yik trans corresponds to the 

“series branch” part of the admittance matrix. Consequently, the entries of each row 

of the Yik trans matrix add up to zero; an exception is the row associated with nodes 

adjacent to the slack bus. (Note that the embedded PBE for the slack bus is to be 

introduced later and not included in (4.2).) The shunt admittance matrix, Yi shunt entries 

model the shunt admittance components of the transmission line, off-nominal 

transformer tap model, shunt capacitors/ reactors in the network. 

With the parameter s as a variable, the notation V(s) is used to emphasize that the 

voltage has become a holomorphic function of the complex parameter s. The complex 

conjugate of the voltage, V
*
 that appears in the PBE is replaced by, V

*
(s

*
) and not 

V
*
(s). The presence of s

*
 rather than s in this term retains the property of 

holomorphism and therefore analyticity. (More about this below.) 

4.1.3 GERM SOLUTION FOR LOAD BUS MODEL 

For solving the PF problem, a slack bus whose voltage magnitude and angle are 

known is required. The defining equation for a slack bus is Vi=Vi
sp
Ð0

o
 (iϵ slack) 

where Vi
sp

 is the specified voltage magnitude at bus i. The complex power injection at 

the slack bus is a free variable. 

In (4.2), since the shunt elements are moved to the RHS and multiplied by s and 

the complex power injections are also multiplied by s, the solution of (4.2) at s=0 
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corresponds to a network with no loads and no shunt element; hence all voltages are 

identical to the slack bus voltage at s=0. It will be shown that it is convenient to use 

the following model for the slack bus so that at s=0 the slack bus voltage is 1.0. 

slackisVsV sp

ii  ,)1(1)(  (4.3) 

In summary, for a system with only PQ buses, at s=0, all the shunt terms (Yi shunt) 

and power injection (Si) in the PF equation (4.2) vanishes. This represents the 

reference case where there is no generation and no load. In this case, (4.2) and (4.3) 

reduce to 

miVY

N

k

ktransik 


,0)0(
1

 

slackiVi  ,1)0(  

(4.4) 

Equation (4.4) is a linear system of equations that could be solved to obtain the 

germ solution. Since the entries of each row of the Yik trans matrix sum up to zero and 

the slack bus voltage is 1.0, equation (4.4) holds good when all the bus voltages are 

equal to 1Ð0
o
, which is called the germ solution. This is analogous to the flat start for 

voltages in NR method. 

In equation (4.4), if the slack bus equation were not included, the resulting Yik trans 

matrix would be singular, leading to no possible solution for the germ. However, in 

order to account for the slack bus, the entire row i, (∀ i=slack bus) in the Yik trans 

matrix is zeroed, except the coefficient corresponding to Vslack. Hence the Yik trans 

matrix is non-singular, resulting in a unique solution for the germ.  
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Since the voltage function as defined above is holomorphic (analytic), one 

possible methodology of solving the problem (and the one used here) is to express 

voltage as a power series, evaluate the coefficients of the power series and then 

generate an analytic continuation of the series. 

4.1.4 POWER SERIES EXPANSION 

Embedding the PF equations such that the resulting equation is holomorphic 

allows the voltage function to be represented by an equivalent power series. The 

voltage function V(s) in (4.2) can be expressed as a Maclaurin series with s as the 

expansion parameter. 







0

)]([)(
n

nsnVsV  (4.5) 

where the coefficients V[n] are complex numbers. 

What follows is a proof of holomorphicity of the chosen embedding in (4.2) when 

V(s) is expressed as a Maclaurin’s series. In particular, this justifies the usage of V
*
(s

*
) 

as opposed to V
*
(s) in the embedding. 

In order to be holomorphic, a function must satisfy the Cauchy-Riemann 

equations. An equivalent condition known as Wirtinger’s derivative requires that 

0*  sV [40]. i.e. The function V(s) should be independent of s
*
 in order to be 

holomorphic. The Maclaurin series expansion of the V
*
(s) (if it were to exist) and 

V
*
(s

*
), truncated at n terms are shown below: 
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In (4.6), the function V
*
(s) upon expansion has s

*
 terms on the RHS and 

Wirtinger’s condition will not be satisfied. However, the expansion of V
*
(s

*
) 

independent of s
*
 such that 0)( ***  ssV . Thus the embedding (4.2) is 

holomorphic only when the denominator in the RHS of (4.2) is chosen to be V
*
(s

*
). 

Assuming that we can represent the bus voltages as a Maclaurin series function of 

s, that is Vi(s) and Vi
*
(s

*
), we can substitute the series, (4.5) and (4.6), into (4.2) to 

yield: 
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 (4.7) 

Our problem now is reduced to finding the series coefficients that satisfy (4.7). As 

the first task it is recognized that in (4.7), the inverse of the voltage power series has 

to be calculated. For every voltage function V(s), let W(s) be the new inverse power 

series defined as  2]2[]1[]0[)( sWsWWsW . Since W(s) is the inverse of the V(s), 

 2]2[]1[]0[
)(

1
)( sWsWW

sV
sW  (4.8) 

In order to calculate the coefficients of the inverse power series, (4.8) is multiplied 

by V(s) on both sides. 

   1]2[]1[]0[]2[]1[]0[

1)()(

22 
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 sVsVVsWsWW

sVsW
 (4.9) 

By equating the coefficients of powers of s on both sides of the equation, 
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In general, it can be written as: 
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It is to be remembered that in solving (4.7), for every series Vi(s), the inverse 

series Wi(s) has to be calculated. Substituting equation (4.8) in (4.7): 
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(4.12) 

Equating the coefficients of s, s
2
, s

3
 … on both sides of (4.12) a recurrence 

relation can be developed to solve for the power series coefficients. The general 

expression for calculating the power series coefficients Vi[n] for n>0 can be obtained 

as: 






N

k

ishuntiiiktransik nVYnWSnVY

1

** ]1[]1[][  (4.13) 

Equation (4.13) can be used to evaluate the coefficients of the voltage series for 

load bus. In order to define a similar equation for slack bus, a special notation δni has 

to be introduced. 
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
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The term δni is associated with parameters that occur only for the powers of s raised 

to i and vanish for the remaining powers of s. Thus, from the slack bus equation defined 

in (4.3), an expression for the power series coefficients can be written as: 

slackiVnV
sp

inni  ),1(][ 10   (4.15) 

Remember that the solution for n=0 is the germ solution, where all bus voltages 

are 1Ð0
o
. By knowing the V and W series up to (n-1) coefficients, the n

th
 coefficient 

of the voltage power series can be calculated from (4.13) and (4.15) by solving a 

linear matrix equation. The coefficients of inverse series Wi up to n coefficients can be 

obtained from the voltage series up to n coefficients from (4.11). Thus by evaluating 

the appropriate germ solution at s=0, the entire voltage power series up to the desired 

number of terms can be constructed from (4.13). The power series obtained thus, 

evaluated at s=1, will give the required voltage solution. If the radius of convergence 

of the any of the voltage series is less than 1.0, the power series will not converge by 

itself to the desired solution. The radius of convergence is generally unknown; hence, 

the property of analytic continuation is employed to represent the powers series within 

and beyond its radius of convergence and evaluate the voltage solution. 

4.2 GENERATOR BUS MODEL I USING HOLOMORPHIC EMBEDDING 

Current literature does not contain a holomorphically embedded equation for 

modeling the generator bus. In PF studies, generator / PV / voltage bus refers to a bus 



58 

in which the voltage is to be held at a constant value. The reactive power capability of 

the generator is a limiting factor in maintaining a constant bus voltage magnitude. 

Therefore, for a generator bus, the voltage magnitude and real power output are 

known quantities while voltage angle and reactive power are unknown. 

The traditional defining equations for a PV bus i, are: 

piVYVP

N

k

kikii  


,)Re(
1

**
 (4.16) 

piVV
sp

ii  ,  
(4.17) 

where Pi denotes the real power injection and Vi
sp

 the voltage magnitude at bus i. 

The reactive power being a variable is a significant difference between the 

generator bus and the load bus models. Two different approaches for handling the 

reactive power term in the PBE’s are studied. In the first approach, the reactive power 

term is made a free variable, represented as a function of the complex s parameter. A 

second approach is to eliminate the reactive power term by summing the complex 

power and it’s conjugate. Both approaches are developed in detail and used in solving 

the general case PF problem. Described in this section is the first PV bus model. 

Generator bus model I involves modeling the unknown reactive power injection as 

a holomorphic function in the s parameter [52]. The voltage magnitude constraint of 

the generator bus is also embedded, with the bus voltage defined as a holomorphic 

function. This section presents the PV bus formulation for a N-bus system and 

demonstrates the calculation of the power series coefficients. The numerical 
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implementation of the formulation requires breaking the equation into real and 

imaginary parts. 

For the N-bus system, let p denote the set of PV buses. The complex PBE’s for a 

generator bus iϵp, with the reactive power, Q, represented as a holomorphic function 

is: 
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(4.18) 

In (4.18), an additional free variable Qi(s) is introduced. It is important to note that 

unlike the voltage power series that can have complex coefficients, the reactive power 

series has only real coefficients. 

Inclusion of a free variable in the generator bus model requires an additional 

constraint. For the generator bus, we have the voltage magnitude constraint (4.17). 

Equation (4.17) can be embedded in the complex parameter s as shown below: 
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2
**

 (4.19) 

Evaluating (4.19) at s=1, the voltage magnitude constraint of the generator bus 

can be retrieved. Equations (4.18) and (4.19) represent the HE formulation for the 

generator bus model. 

For a problem with N buses, the HE system of equations that describe the different 

bus types are shown in equations (4.2), (4.3), (4.18) and (4.19). The original PBE’s 

and their counterpart holomorphically embedded equations for each type of bus are 

summarized from the above listed equations in Table 4.1. 
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Table 4.1 Non Holomorphic PBE’s and the Corresponding HE Formulation 

Bus type 

of bus i 

Original Power 

Balance Equation 
Holomorphically Embedded Equation 
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Solving the embedded equations representing the generator bus, along with the 

HE formulation of the load bus and slack bus (refer Table 4.1) at s=0 gives the germ 

solution. The process for evaluating the germ solution for the generator bus model I is 

shown in section 4.2.1. To calculate the coefficients of the voltage and reactive power 

series from generator bus model I, a recurrence relation has to be established similar 

to the load bus model. The calculation procedure is more involved and is explained in 

detail as follows. 

Expressing voltage and reactive power as a full power series in (4.18) for a PV 

bus iϵp: 
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An inverse function Wi(s) is defined to be reciprocal of the voltage power series 

for bus i. The definition of the inverse series, calculation of its coefficients is identical 

to the load bus model described by the equations (4.8) - (4.11). Thus (4.20) becomes 
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Equating the coefficients of s, s
2
 and so on up to s

n
, 
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In (4.22), the calculation of the voltage series coefficients Vi[n] involves the sum 

of product of two power series coefficients Qi, Wi (the




n

k

ii knWkQ
0

*
][][  term) which 

can be expanded as: 
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Observe from (4.22) and (4.23) that in calculating of the n
th

 order coefficient of the 

voltage power series (i.e. Vi[n]), both the n
th

 order coefficients of the W series and the Q 

series (Wi[n], Qi[n]) are required. Recall, the calculation of Wi[n] requires the Vi[n] term 

from (4.11) whereas calculating Vi[n] was the objective to begin with. This scenario is 
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unlike the load bus model where the n
th

 coefficient of the power series could be 

expressed in terms of coefficients up to the degree n-1. 

From (4.23), a linear recurrence relationship to calculate the power series 

coefficients has to be developed. A two-part solution is devised to achieve this. 

i. The germ solution of the voltage and reactive power series is determined 

and used to simplify (4.22).  

ii. The voltage power series is broken down into real and imaginary 

coefficients when enforcing the voltage magnitude constraint and real 

power constraint of the generator bus model. 

The implementation details of the above-suggestions in determining the germ 

solution and power series coefficients of the generator bus model are shown in the 

following sections. 

4.2.1 GERM SOLUTION FOR THE GENERATOR BUS MODEL I 

To obtain the germ solution of the PV bus model in a general PF problem, the HE 

equations corresponding to load bus (equation (4.2)), generator bus (equations (4.18) 

and (4.19)) and slack bus (equation (4.3)) have to be solved simultaneously at s=0. At 

s=0, the system of equations listed above becomes: 
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In (4.24), the slack bus voltage is known to be 1.0. If the germ solution for the 

remaining bus voltages were chosen to be 1.0, the load bus equation in (4.24) would 

be satisfied (refer discussion in Section 4.1.3); the generator voltage magnitude 

constraint in (4.24) will also be met, since the product Vi(0) Vi
*
(0) would equal 1.0. 

The embedded generator power balance constraint (4.24), however, has a variable 

Qi(0) on the RHS of (4.24). Substituting the assumed germ voltage solution of 1.0 for 

all buses in (4.24), the embedded generator bus PBE becomes: 
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(4.25) 

If the reactive power germ, Qi(0) (∀ iϵp) were chosen to be 0.0 (from (4.25)) and 

all bus voltages were equal to 1.0, the embedded system of equations for all bus types 

at s=0; (equation (4.24)) are satisfied. Hence, Vi(0)=1, Qi(0)=0 is chosen to be the 

germ solution to the embedded system of equations presented in (4.2), (4.3), (4.18) 

and (4.19). It is also the physical solution for the no-load, no-generation case for a 

general PF problem when there are no shunts and the generator bus voltages are 

maintained at 1.0. The calculated germ solution, Vi(0) and Qi(0) also represent the 

constant term (coefficient of s
0
 term) in the power series, Vi[0] and Qi[0], respectively, 

for generator bus model I. 
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4.2.2 EVALUATING POWER SERIES COEFFICIENTS FOR GENERATOR 

BUS MODEL I 

With the particular choice of embedding for the generator bus model as shown in 

(4.18) and (4.19), the calculation of the germ solution was demonstrated in Section 

4.2.1. This subsection shows the procedure of calculating the remaining power series 

coefficients. 

Rewriting (4.22) derived from the power balance constraint of the generator bus 

model, with the new evaluated germ Qi[0]=0, Wi[0]=1/Vi[0]=1 yields. 
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A new quantity Rhs_Known[n-1] is introduced to make the equation succinct in 

the subsequent steps. Rhs_Known[n-1] denotes the quantities in the RHS of (4.26) 

with coefficients up to degree n-1. 
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Substituting(4.27), equation (4.26)becomes, 
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(4.28) 

Equation (4.28), which was derived from the embedded PBE of the generator bus, 

(4.18), defines a recurrence relation that is used in calculating the voltage series 

coefficients and reactive power series coefficients. A similar equation needs to be 
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derived from the voltage magnitude constraint of the generator bus, (4.19). Expressing 

the voltage function Vi(s) as power series in equation (4.19) yields: 
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Equating the coefficients of powers of s on both sides yields, 
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(4.30) 

In (4.30) Vi re[n] represents the real part of the voltage power series nth coefficient 

from the voltage magnitude constraint. The notation δni as defined in (4.14) is used to 

write a generalized expression to evaluate Vi re[n].The calculation of Vi re[n] for an 

arbitrary value of n, can be written from (4.30) as, 
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Equations (4.26) and (4.31) represent a consistent system of equations 

representing the generator bus model that has a unique solution. However, the 

solution of the equations is not trivial in their current form since there are unknowns 

on both sides of (4.26). The objective is to rearrange the equations so that the power 
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series coefficients can be obtained by solving a single linear matrix equation. It is 

achieved by breaking the complex voltage power series coefficients into real and 

imaginary parts. While this is necessary for solving the generator bus power series 

coefficients, it becomes inevitable in the implementation that the load bus power 

series coefficients are also broken down into real and imaginary components since the 

system of equations are mutually coupled. Let the entries of the admittance matrix 

(without shunt elements) be expressed as ikiktransik jBGY  . The voltage series 

coefficients are broken into real and imaginary parts ][][][ njVnVnV imireii  . Thus, 

the LHS of (4.26) is alternatively expressed for every bus i as follows: 

  

   











N

k

imkikrekikimkikrekik

N

k

imkrekikik

N

k

ktransik

nVGnVBjnVBnVG

njVnVjBGnVY

1

11

][][][][

][][][

 

(4.32) 

The holomorphically embedded PV bus equation (4.26) for bus i as broken into 

real and imaginary components is represented as a matrix equation below. The 

quantities that can be evaluated on the RHS (involves coefficients up to s
n-1

) are 

represented using the term Rhs_Known defined in (4.27). 
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In calculating the n
th

 degree voltage power series coefficients, the quantity Vi re[n] 

can be calculated for all voltage buses iϵp, from the voltage magnitude constraint 

(4.31). However, Qi[n] shown in the RHS of (4.33) is still unknown. This is similar to 

solving the Ax=b problem with a few of the x’s known beforehand but the same 

number of b’s as unknowns. Such problems can be solved by bringing all the 

unknowns to the LHS and known quantities to the RHS. 

To do this, the product of the known Vi re[n] coefficient and corresponding column 

vector of the LHS matrix is moved to the RHS. For a PV bus, i, the matrix equation 

(4.33) thus becomes: 
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Equation (4.34) represents the recurrence relation for one generator bus i. When 

the PBE’s for a N bus system are listed, the coefficients of the LHS matrix and RHS 

vector for the remaining buses have to be altered, to account for moving unknown 

variables to LHS and known variables to RHS. To demonstrate this, a sample 

three-bus system with a PV bus is chosen; the recurrence relation with unknowns on 

both sides of the equation is shown first. Subsequently, the alteration in the matrix and 

RHS vector entries is shown. The concept can be generalized for a N-bus system. 

Figure 4.1 shows a sample three-bus problem where bus 1 is the slack bus; bus 2 

is the generator bus and bus 3 is the load bus. 

1

3

2

 

Figure 4.1 Sample Three-bus Test System 

In order to write the recurrence relation, as a matrix equation, (4.13), (4.15), (4.31) 

and (4.33) are to be referred to and combined appropriately. The definition for each 

entry in the matrix equation is available in the nomenclature. The matrix equation for 
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different bus types combined is shown in (4.35); for PV bus 2, unknowns Vi im[n] and 

Qi[n] exist on both sides of the equation.  
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 In (4.35), the value of V2 re[n] can be calculated from the voltage magnitude 

constraint. The vector resulting from the product of column 3 (the column 

corresponding to entry V2 re[n]) and the known value of V2 re[n] is moved to the RHS. 

The unknown Q2[n] is moved to the LHS unknown vector, in place of V2 re[n]; the 

LHS matrix entries are altered by zeroing the coefficients corresponding to Q2[n] in 

all equations, except equation 4 (equation (4.34)). The equations from (4.35) are 

altered as: 
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(4.36) 

The matrix on the LHS of (4.36) is constructed by breaking the Yik trans matrix into 

real and imaginary components and correcting the coefficients corresponding to slack 

bus and PV buses; from here on, the matrix will be referred as iteration matrix. From 
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(4.36), it can be observed that the iteration matrix is not incident symmetric; also it 

loses the property of diagonal dominance. Hence, a LU factorization technique with 

pivoting has been used to solve the linear matrix problem and obtain the power series 

coefficients; however, no attempt has been made to determine whether there is an 

ordering to the equations where pivoting is not needed. 

These equations from (3.46), for different RHS n indices are solved repeatedly until 

the desired number of terms in the power series is calculated. The analytic continuation 

of the voltage power series from the calculated coefficients is evaluated using Padé 

approximants. A numerical example demonstrating the implementation of generator 

bus model I is presented in Section 4.5. 

4.3 GENERATOR BUS MODEL II USING HE 

In the above PV bus formulation, the reactive power term was expressed as a 

holomorphic function in the s parameter. Another way of representing the generator 

bus model is eliminating the reactive power term by summing the complex power and 

its conjugate as shown in [51]. 

The traditional defining equations for a PV bus, i, are shown in (4.16) and (4.17). 

Unlike the PQ bus where complex equality constraints are used, for the PV bus 

equality constraints needed are only on the real part of the complex power injection. 

Real power injection, Pi, from (4.16) can be expressed in terms of complex power, Si 

and subsequently in terms of bus voltages, Vi and bus admittance matrix, Yik, as 

follows: 
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The bus admittance matrix can be separated into its series branch part and shunt 

admittance component as follows: 
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(4.38) 

The network shunt elements from the shunt admittance of transmission lines, 

transformer taps, shunt reactors and shunt capacitors, which contribute to the diagonal 

values of the bus admittance matrix, do not affect the real power injection. This is due 

to the cancellation of the imaginary component in the Yi shunt+ Yi shunt
*
 term. However, 

real power is affected by the real component of the Yi shunt term; for example by shunt 

conductance modeling the corona losses. In developing the generator bus model II 

using HE, for simplicity, the shunt conductance is not accommodated; hence, the 

2Re(Yi shunt)ViVi
*
 term in (4.38) is not modeled. The resulting expression from (4.38) is 

embedded in the complex parameter s yielding:  
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The voltage magnitude constraint is holomorphically embedded as: 
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Solving (4.39) and (4.40) at s=0 while expressing the voltage function as a power 

series (refer to (4.5)), the system of equations for the PV bus, i, reduces to 
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To obtain the germ solution when using this PV bus model, the s=0 equations 

representing the load bus and slack bus have to be solved with (4.41) simultaneously. 

From equation (4.24) the equations representing the load bus and slack bus at s=0 are: 
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If the germ solution for all bus voltages, (i.e. Vi[0]) is 1Ð0
o
, the terms




N

k

ktransik VY
1

**
]0[ , 
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N

k

ktransik VY
1

]0[ in equation (4.41) evaluate to be zero; the reason 

being the diagonal element in Yik trans matrix is the negative sum of the off-diagonal 

elements. Also, the voltage magnitude constraint is satisfied at s=0. It has been 

established from Section 4.2.1 that the germ solution of bus voltages equal to 1Ð0
o
 

satisfies (4.42). Thus, the unique germ solution for the voltage function for this 

holomorphic embedding with generator bus model II must be 1Ð0
o
 for all buses. 
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4.3.1 EVALUATING THE VOLTAGE SERIES COEFFICIENTS FOR 

GENERATOR BUS MODEL II 

A recurrence relation that expresses the n
th

 degree coefficients of the voltage series 

as a function of (n-1) coefficients is next established for this PV bus model, along with 

the PQ bus model describe earlier. First, the voltage function is represented with a 

power series truncated up to s
n

 terms. Next, the voltage series and admittance bus 

entries are broken into real and imaginary components. The entries of the admittance 

matrix (without shunt elements) are expressed as . The voltage 

series coefficients are broken into real and imaginary parts . 

The equations resulting from the expansion of the terms ))()((

1

***


N

k

ktransiki sVYsV  and 




N

k

ktransiki sVYsV
1

**
))()(( are shown in equations (4.43)-(4.52). For a PV bus i, the latter 

term is expanded as: 
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(4.43) 

Since there is a product of two power series in (4.43), the coefficient of s
n
 is the 

sum of the products of the coefficients whose powers of s add up to n. To illustrate the 

ikiktransik jBGY 

][][][ njVnVnV imireii 
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above statement, consider two series a(s), b(s) and their product c(s) defined as 

follows: 
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The coefficient of the series c[n] is related to the coefficients a[n], b[n] as: 
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The equation (4.43) involves the product of two power series. Applying the same 

principle discussed above, the s
n th

 term of the series in (4.43) is: 
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The coefficient of s
n

 is then expressed in terms of real variables by carefully 

performing the complex arithmetic from (4.46). The real and imaginary part of the 

complex equation derived from (4.46) is: 
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Equations (4.43)-(4.47) represent the expansion of the 


N

k

ktransiki sVYsV
1

**
)()(  

term in (4.39). The ))()((
1

***


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ktransiki sVYsV  term can be expanded similarly resulting 

in the following term. 
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(4.48) 

Equations (4.47) and (4.48) are expanded forms of the individual terms present in 

LHS of equation (4.39). From equations (4.47) and (4.48) it can be observed that the 

coefficients on the real components are the same; the coefficients of the imaginary 

components are opposite in sign and add up to zero. The original equation to begin with 

was the real power constraint; hence, imaginary coefficients adding up to zero is 

expected. Upon adding the coefficients of (4.47) and (4.48), the sum becomes: 
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The objective now is to express the calculation of power series coefficients of order 

n (Vi re[n] and Vi im[n]), using a linear matrix equation. Hence, the unknown quantities 

(Vi re[n] and Vi im[n]) will be retained on the LHS; the known quantities (coefficients 

up to degree n-1) will be moved to the RHS. (More about this below in the discussion 

regarding calculating the RHS term). Calculating the coefficients of s
n

, n≥0 from (4.49), 

the unknown coefficients, Vk re[n] and Vk im[n], occur only when x=0, y=n and x=n, 
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y=0; In other words, the unknown coefficients occur in only two of the n+1 terms that 

meet the relation x+y=n, x, y >0. These are: 
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(4.50) 

As a part of expressing the calculation process as a linear matrix equation, (4.50) 

is to be expressed as a product of a known row vector (which will become part of a 

larger iteration matrix) and an unknown column vector of voltage series terms, Vk re[n] 

and Vk im[n] ∀ values of k. For succinct representation of the iteration matrix entries, 

the coefficients of the elements Vk re[n] and Vk im[n] are denoted by γik and βik 

respectively where i is the index of the generator bus whose real power balance 

constraint is being modeled. The coefficients γik and βik for k≠i can be derived from 

(4.50) as: 
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The coefficients of Vi re[n], Vi im[n] for a PV bus, i, aggregated from (4.50) are, 
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Equations (4.51) and (4.52) represent the coefficients of the unknown power 

series terms Vi re[n] and Vi im[n]; they are derived from the real power constraint of 
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generator bus i; they constitute the entries of the iteration matrix used to determine the 

power series coefficients. 

The RHS of the real power constraint in the voltage bus model, from (4.39) occurs 

only for power of s raised to one. Hence, the term δn1 (as defined in (4.14)) is 

multiplied with the real power injection term 2Pi. Also, recall from (4.48) that only the 

coefficients of s
n

 (occurring for xnynxx  &,0 ) are retained on the LHS. The 

remaining coefficients ( xnynx  &1,2,1  ) are known and can be moved to 

the RHS of the equation corresponding to the real power constraint. Thus, the RHS 

element corresponding to the real power constraint for a PV bus, i, denoted by the 

term ζi[n], can be expressed for a general value of n as: 
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The voltage magnitude constraint for a generator bus remains the same as shown 

in Section 4.2.2 from equations (4.29)-(4.31). The expression for a real coefficient in 

the voltage series Vi re[n] is derived from the embedded voltage magnitude constraint. 
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When (4.54) is to be represented in the matrix equation, the entry corresponding 

to Vi re[n] is made one; the remaining elements of the particular row in the LHS matrix 

are zeroed. 
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To summarize, for every PV bus. i, equations (4.51), (4.52) represent the LHS 

coefficients that correspond to the real power constraint; equation (4.53) is the RHS 

term corresponding to the real power constraint; and equation (4.54) corresponds to 

the voltage magnitude constraint for the PV bus, i. The unknowns are the real and 

imaginary n
th

 series coefficients of the voltage series. Thus, the HE generator bus 

model obtained by eliminating the reactive power term, can be represented with a 

linear system of equations that has a unique solution. The primary difference from the 

previously described model is the equations used to represent the real power 

constraint of generator buses. Another difference is that the reactive power generated 

by PV bus i, QGi has to be evaluated from the calculated voltage solution, the network 

parameters and reactive power loading data. 

To compare the difference in the structure of the equations that result from 

implementing generator bus model I against model II, the three-bus example shown in 

Figure 4.1 is considered. The slack bus and load bus are represented by HE defined in 

equations (4.2) and (4.3). The generator bus is represented by the HE presented in 

equations (4.39) and (4.40). The calculation of the voltage series coefficients for the 

three-bus problem can be expressed using a linear matrix equation shown below 

 







































































































])1[]1[Im(

])1[]1[Re(

][][
2

1

][

0

1

][

][

][

][

][

][

1

1

1

33
*

3
*
3

33
*

3
*
3

1

1

*
222

1

2

2
10

2

10

3

3

2

2

1

1

333332323131

333332323131

232322222121

nVYnWS

nVYnWS

knVkV
V

n

V

nV

nV

nV

nV

nV

nV

GBGBGB

BGBGBG

shunt

shunt

n

k

sp

nn

Slacknn

im

re

im

re

im

re








 (4.55) 



79 

In (4.55), the equations representing the slack bus (rows 1 and 2) and the load bus 

(rows 5 and 6) remain unaltered from (4.36). Equations representing generator bus 

model (rows 3 and 4) are modified based on equations (4.51)-(4.54). The voltage 

power series coefficients can be obtained by repeatedly solving (4.55). The remaining 

procedure involved in calculating the bus voltages such as usage of analytic 

continuation, convergence criteria described in Section 4.2 is still applicable. 

4.4 POWER-FLOW SOLUTION USING HE 

The above described generator bus models do not incorporate the reactive power 

limit of generators. A physical limit on equipment introduces discontinuities in the 

problem. This section describes the handling of reactive power limits on generators, 

discusses the convergence criteria and presents a flow chart for solving the PF 

problem using the HE procedure. 

4.4.1 HANDLING REACTIVE POWER LIMITS OF GENERATOR 

Currently, the reactive power limits of generator are handled in the power flow 

program as follows. Let QGi MIN, QGi MAX represent the minimum and maximum 

reactive power limits on generator at bus i respectively. The germ solution followed 

by a fixed number of terms (say 5) of the power series coefficients are calculated 

using the HE procedure. For PV bus model I, the analytic continuation of the reactive 

power series Qi(s) gives the reactive power injection required to maintain the voltage 

to the specified value at bus i. Any reactive power load at bus i is added to obtain the 
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total reactive power generated, QGi. For the PV bus model II, the QGi value is 

evaluated from the calculated bus voltages. 

If the reactive power limits of the limits are violated (QGi > QGi MAX or QGi < 

QGiMIN), the bus type is changed from PV bus to PQ bus. Depending on the maximum 

or minimum limit that is violated, the reactive power generation at the buses is chosen 

to be QGi MAX or QGi MIN. Now, the reactive power injection at the buses is known and 

the voltage magnitude becomes a free variable. Hence, the buses are represented using 

the load bus equations described in Section 4.1. The PF problem is re-solved with the 

altered bus types. This involves recalculating the iteration matrix and establishing a 

recurrence relation to evaluate the power series coefficients using the altered bus 

types. The power series coefficients are calculated up to any desired order. From the 

analytic continuation of the series thus obtained, i.e., the candidate solution, the 

violation of generator capability is checked. Any additional violation of the reactive 

power limits or regaining control of PV buses requires resolving the problem again. 

Table 4.2 Listing of Bus Types in the PF Problem 

Bus type  

index 

Bus type  

description 

Known 

variables 

Unknown 

variables 

0 PQ P,Q |V|,θ 

2 PV P,|V| Q, θ 

3 Slack |V|,θ P,Q 

4 PV on minimum Q limit P,Q |V|,θ 

5 PV bus on maximum Q limit P,Q |V|,θ 
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Based on whether the maximum or minimum reactive power limit is violated a 

different bus type is assigned. The list of bus type, the indices used to identify the bus 

types and the corresponding known and unknown variables are listed in Table 4.2. 

4.4.2 CONVERGENCE CRITERIA 

In the implementation of the HE method, only a finite number of terms in the 

voltage series are calculated. The number of terms required in the voltage series to find 

a converged solution varies from problem to problem. Either of the following 

conditions can be used to determine convergence and end the calculation of the power 

series. 

1. The change in the voltage solution is less than a specified tolerance. 

2. The mismatch in the original PBE’s is less than a tolerance value 

 In our implementation of the HE method, the convergence criteria was chosen to be 

the mismatch in the original defining equations of each bus type, i.e. complex power 

injection for load buses (4.1), real power injection and voltage magnitude for generator 

buses (equations(4.16) and (4.17)). The maximum allowable tolerance for the 

mismatch (ΔP, ΔQ for PQ buses and ΔP, Δ|V| for PV buses) was taken as 1e-04 p.u. 

4.4.3 FLOWCHART 

The procedure for solving the PF problem with reactive power limits on generators 

using the HE procedure is shown in Figure 4.2. 
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Read data

Construct modified Y bus matrix

Holomorphically embed the voltage 
function in the power balance 

equations

Calculate the no load solution/ germ 
solution at s=0

Evaluate the inverse voltage function 
using convolution relation

Calculate the  rhs vector; solve a linear 
system of equations to obtain all power 

series coefficients

Create output file 

Bus type switching
Qgmin<Qg<Qgmax

Convergence check
Mismatch<ε 

Stop

Start

YES

NO

NO

YES

Update bus type

Evaluate the analytic continuation of the power 
series; Determine all bus voltages and reactive 

power generated at PV buses

 

Figure 4.2 Solution Procedure using Holomorphic Embedding 
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4.5 NUMERICAL ILLUSTRATION 

The numerical steps involved in solving the PF problem for a simple four-bus 

system are presented in detail in this section. The results obtained from tests on IEEE 

118 bus test system are also shown. 

4.5.1 FOUR BUS EXAMPLE 

1

3

2

4

 

Figure 4.3 One Line Diagram of Sample Four- bus System 

Figure 4.3 shows the single line diagram of a four-bus system shown in [53]. The 

bus and branch data are listed in Table 4.3-Table 4.4. The branch data is listed in p.u. on 

100 MVA, 230 kV base. The first step is to construct the admittance bus matrix. Table 

4.5 shows the bus admittance matrix calculated in per unit. Bus 1 is taken as slack bus. 
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Table 4.3 Transmission Line Data for Four- bus Problem 

From bus 

- To bus 

Resistance, 

R (p.u.) 

Reactance, 

X (p.u.) 

Shunt admittance, 

Y/2 (p.u.) 

1-2 0.01008 0.05040 0.05125 

1-3 0.00744 0.03720 0.03875 

2-4 0.00744 0.03720 0.03875 

3-4 0.01272 0.06360 0.06375 

Table 4.4 Bus Data for Four-bus Problem 

Bus 
Generation Load Vsp 

(p.u.) 
Bus type 

PG, MW QG, MVAR PL, MW QL, MVAR 

1 - - 50 30.99 1.00 Slack 

2 0 0 170 105.35 - Load bus 

3 0 0 200 123.94 - Load bus 

4 318 - 80 49.58 1.02 
Generator 

bus 

 

Table 4.5 Bus Admittance Matrix for Four-bus Problem 

Bus. 

no 
1 2 3 4 

1 
 8.9852- 

j44.8359 

-3.8156+ 

j19.0781 

-5.1696+ 

j25.8478 
0 

2 
-3.8156+ 

j19.0781 

 8.9852- 

j44.8359 
0 

-5.1696+ 

j25.8478 

3 
-5.1696+ 

j25.8478 
0 

 8.1933- 

j40.8638 

-3.0237+ 

j15.1185 

4 0 
-5.1696+ 

j25.8478 

-3.0237+ 

j15.1185 

 8.1933- 

j40.8638 
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The holomorphically embedded system of equations that is to be solved for each 

bus depends on the bus type. With the generator bus represented using model I 

presented in Section 4.2, the equations for the 4-bus system under consideration are: 
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(4.56) 

The Y matrix corresponding to the series elements remains on the LHS. The shunt 

components are moved to the RHS. Solving (4.56) at s=0 gives the germ solution. The 

germ solution has all bus voltages being equal to 1Ð0
o
. The next step is to calculate the 

remaining power series coefficients. The LHS matrix is split into real and imaginary 

coefficients (4.33). The size of the matrix becomes 8 x 8 for a 4-bus system. The matrix 

is then modified to correct for the slack bus and generator bus models according the 

chosen formulation (4.56). The modified matrix constructed from the admittance 

matrix is shown in Figure 4.4. 

  



86 

 

Figure 4.4 Recurrence Relation to Calculate Power Series Coefficients for Four-bus 

Problem (Generator Bus Model I) 

In Figure 4.4, rows 1, 2 of the LHS matrix correspond to real and imaginary 

components of the slack bus equations. Since the slack bus voltage is assumed fixed, 

independent of the network, the coefficients corresponding to other bus voltages are 

zero. Another peculiar point of Figure 4.4 is column 7 of the LHS matrix, where all 

elements are zero except the last row. This is in accordance with the discussion in 

Section 4.2.2 regarding the manipulation of the matrix entries to account for the 

generator bus model. The reactive power series term Q4[n] occurs only for the reactive 

power injection equation corresponding to bus 4. Hence, the remaining entries of the 

column must be zero. The other elements of the matrix are a result of the breaking the 

admittance matrix into real and imaginary components as shown in (4.32). The 

calculation of RHS vector in Figure 4.4 for slack bus (rows 1 and 2) and load buses 

(row 3 to row 6) follows directly from equations (4.13) and (4.15). The calculation of 

generator bus RHS quantities is shown in (4.34). 
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To solve for the subsequent power series coefficients, the RHS vector has to be 

evaluated. For load buses, the RHS vector is a function of the complex power and the 

inverse voltage series as shown in (4.13). For generator buses, the reactive power series 

(4.26) and voltage magnitude constraint (4.34) are also involved in the calculation 

procedure. After evaluating the RHS vector, a linear system of equations is solved to 

obtain the power series coefficients. The process is repeated and the coefficients 

evaluated up to five terms are listed in Table 4.6. 

Table 4.6 Voltage and Reactive Power Series Coefficients 

Degree  

of s 
V1 V2 V3 V4 Q4 

0 1 
1 

+ j7.636e-18 

1 

- j4.928e-17 

1 

- j2.056e-17 
-9.297e-15 

1 0 
-1.628e-02 

- j1.597e-02 

-2.862e-02 

- j3.116e-02 

2.021e-02 

+ j2.832e-02 
1.169e+00 

2 0 
-1.38e-03 

- j7.595e-04 

-2.69e-03 

- j4.834e-04 

-6.049e-04 

- j1.203e-03 
1.449e-01 

3 0 
-5.854e-05 

- j5.103e-06 

-1.805e-04 

- j1.575e-05 

4.63e-05 

+ j3.439e-06 
3.193e-03 

4 0 
-5.981e-06 

- j3.152e-06 

-2.114e-05 

- j2.256e-06 

-1.94e-06 

- j5.84e-06 
6.384e-04 

If the generator bus were to be represented using model II shown in Section 4.3, the 

real power constraint in (4.56) would need to be modified to: 

4,2))()(())()((

4

1

**

4

1

***
 



isPsVYsVsVYsV
k

iktransiki

k

ktransiki  (4.57) 

The real coefficient of the PV bus V4 re[n] is retained on the LHS of the recurrence 

relation. The reactive power term Q4[n] is eliminated from the calculation procedure. 
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The iteration matrix is constructed by breaking Yik trans matrix into real and imaginary 

parts and including the appropriate coefficients to describe the slack bus and voltage 

bus formulation; it is shown in Figure 4.5. 

 

Figure 4.5 Recurrence Relation to Calculate Power Series Coefficients for Four-bus 

Problem (Generator Bus Model II) 

The following are the differences that arise in the linear system of equations when 

the generator at bus 4, is represented by model II rather than model I (compare Figure 

4.4 and Figure 4.5): 

1. The unknowns for the PV bus 4 in model II are V4 re[n], V4 im[n]as opposed to 

Q4[n] and V4 im[n] in model I. Hence, the entries corresponding to V4 re[n] in 

column 7 are non-zero. 

2. The equation from row 7 of the matrix equation corresponds to the real power 

constraint of the PV bus. The coefficients of the matrix equation corresponding 

to row 7 are calculated from equations (4.51) and (4.52). 

3. Row 8 corresponds to the equation derived from the voltage magnitude 

constraint of the PV bus shown in (4.53). 

4. Calculating the RHS vector follows equations (4.52) and (4.53); it does not 

involve moving the Vi re[n] term to the RHS like model I. 

The power series coefficients thus obtained using generator bus model II were 

numerically verified to be the same as the results presented in Table 4.6 (obtained from 
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using generator bus model I) up to 16 decimal places. The reasoning behind the two 

different methods yielding numerically equal results is as follows: Although the 

generator bus models I and II differ significantly in their implementation details, both 

models represent accurate holomorphic embedding of the original equations that define 

the generator bus. The recurrence relation to calculate the power series coefficients, for 

both models, is derived from the embedded system of equations that are equivalent. The 

two models essentially represent two different ways of expressing the same equation, in 

this case the defining equations for the PV bus. Hence, the power series coefficients are 

evaluated to be the same for this particular problem. 

Since the power series coefficients are numerically equal, the subsequent steps 

involved in calculating the bus voltages remain unaltered irrespective of which 

generator bus model is chosen. After the calculating the voltage power series 

coefficients, the next step was to evaluate the actual voltage solution from its series 

approximation. Using the analytic continuation techniques described in Chapter 3, the 

maximal analytic continuation of the voltage and reactive power series were evaluated.  

The calculation of Padé approximants of the V2 series using the matrix method 

described in Section 3.2 is shown below. Other voltages can be calculated similarly. 

The voltage series V2(s) described by the entries from Table 4.6 is: 

   

   

  4

32

2

06-j3.152e- 06-5.981e-

06-j5.103e-05-5.854e-04-j7.595e- 03-1.38e-

02-j1.597e-02-1.628e-18-j7.636e+1)(

s

ss

ssV







 (4.58)  
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Using equation (3.11), the denominator polynomial coefficients are found to be: 























0008.00073.0

0552.00650.0

1

2

j

j

b

b
 (4.59)  

The numerator polynomial coefficients from (3.12) 

0035.00089.0

0393.00487.0

01

2

1

0

ja

ja

ja







 (4.60)  

The [2/2] Padé approximant evaluated using the matrix method is shown in (4.61).  

   
    2

2

2
0008.00073.00552.00650.01

0035.00089.00393.00487.01
)(

sjsj

sjsj
sV




  

Ð 0.97- 0.98240167.09823.0)1(2 jV  

(4.61)  

Evaluating (4.60) at s=1 yields the required numerical value of V2. Bus voltages can 

be evaluated using any other analytic continuation technique presented in Chapter 3. 

The other bus voltages are calculated similarly and the results are tabulated in Table 

4.7. Table 4.7 also lists the mismatch in the original PBE’s. The mismatches are used to 

check for convergence. 

Table 4.7 Voltage Solution and Mismatches for the Four-bus System 

Bus 

no 
Voltage solution P mismatch 

Q mismatch (PQ bus)/  

V mismatch (PV bus) 

1 1Ð0
o
 0 0 

2 0.9824Ð-0.97
o

 -0.1463*10
-10

 -0.1259*10
-10

 

3 0.9690Ð-1.87
o

 -0.1499*10
-10

 -0.4717*10
-10

 

4 1.0200Ð1.52
o
 0.0264*10

-10
 0.0011*10

-10
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The voltage solution was validated with the solution from [53] and the solution 

obtained from PowerWorld.  

4.5.2 SOLVING IEEE 118 BUS SYSTEM USING HE 

The IEEE 118 bus test system in is a portion of the American Electric Power 

system. The test data available in the IEEE common data format (.cdf) in [54] is used. 

The power system is robust with many PV buses providing voltage support and 

converges in five iterations using the Fast Decoupled Load Flow (FDLF) method. 

Branch data pertaining to parallel transmission lines, fixed transformer taps only alter 

the bus admittance matrix and not the solution procedure. 

Using the PF-solution algorithm described in Figure 4.2 and with a tolerance for 

the mismatches in the PBE’s chosen as 1e-04 p.u., eight terms were required in the 

voltage power series to find the converged voltage solution for the IEEE 118 bus 

system. Figure 4.6 is a plot of the maximum value of the absolute error in the real and 

reactive PBE’s against the number of terms in the power series. 

 

Figure 4.6 Convergence Properties of HE procedure 
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From Figure 4.6, it can be observed that the mismatch decreases continually as the 

number of terms increases; with eight terms in the series, the mismatch is less than the 

specified tolerance. In addition, none of the generator reactive power limits is violated. 

The solution from the program’s text-file output is presented in APPENDIX A. This 

text file contains the bus voltages, bus type, real and reactive power injection of 

generators for the 118-bus system. Also, flow on transmission lines and transformers 

along with transformer taps are listed. 

The voltage solution obtained from HE was compared with the solution traditional 

iterative methods. The IEEE 118 bus test system was solved using the traditional NR 

method with sparsity programming techniques in [55]. The solution was also 

calculated using PowerWorld, a commercial power systems analysis software. The 

HE voltage solution was found to agree with pre-established voltage solutions up to 

five digits of precision. 

Currently, the discontinuities due to var limits are handled by re-solving the 

problem as described in Figure 4.2. When the HE method was used to solve the 

118-bus test system, discontinuities due to bus type switching occurred once. With 

five terms in the series, the violation in generator limits was checked. The generators 

that had violated the reactive power limits were made PQ buses and the problem was 

resolved. With eight terms in the series using the new bus-type assignment, the 

mismatches in the PBE’s were verified to be less than 1e-4 p.u. Generators that had 

violated the reactive power limits previously did not regain control over voltage. No 
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additional generators underwent bus type switching. In fact, the list of generators that 

underwent PV-PQ bus type switching using HE was found to be the same as the list 

obtained by solving the problem using NR method with PowerWorld. 

Table 4.8 Generators Violating Reactive Power Limits- IEEE 118 bus system 

Bus no Bus name Type 
Generation 

MVAR 

Limit  

(Max/ Min) 

19 Lincoln 4 -8.0 Minimum 

32 Delaware 4 -14.0 Minimum 

34 Rockhill 4 -8.0 Minimum 

92 Saltvlle 4 -3.0 Minimum 

105 Roanoke 4 -8.0 Minimum 

103 Claytor 5 +40.0 Maximum 

The HE method was also tested on IEEE 14 bus, 30 bus, 57 bus test systems. The 

results obtained for other test systems were similar to those reported for the 118 bus 

system. 

4.6 COMPARING THE SOLUTION PROCEDURE OF HE AND NR METHOD 

A direct comparison of run times with the NR method was not performed since 

the HE method was implemented with dense matrix operations in MATLAB. This 

section compares and contrasts the differences involved in numerical implementation 

of the two methods and some scope for improvement in computation time for the HE 

method is presented. 

i. SIZE OF MATRIX EQUATION 

In implementing the generator bus model using HE, the matrix equation is broken 

down into real and imaginary components. Hence, the size of the matrix equations to 

be solved for a N bus system is 2N. For solving the problem using the NR method, 
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since the equations are not complex differentiable (non-holomorphic), they are broken 

down into real equations; this leads to a matrix equation of size 2N even in NR 

method. 

ii. COST OF UPDATING AND RE-FACTORIZING MATRIX 

The traditional NR method requires updating and re-factorizing of the Jacobian 

matrix in each iteration. Thus in the NR method, calculation of a new voltage estimate 

involves calculating the mismatch vector, updating the Jacobian matrix, LU 

factorization of the Jacobian matrix, forward and backward substitution. For the HE 

method, the modified bus admittance matrix needs to be factorized only once. As with 

the NR method, the RHS vector has to be evaluated, forward and backward 

substitution must be performed in every step to calculate the power series coefficients. 

This results in savings in CPU time in the LU factorization routine. However, if bus 

type switching from PV-PQ buses occurs, the admittance bus matrix is updated and 

has to be re-factorized. 

iii. CALCULATION OF MISMATCH 

Calculation of mismatches in the PBE’s is a necessary step in the solution 

procedure using NR method. With the HE method, a Gauss-Seidel type check, i.e. 

difference in the voltage solution with one additional term in the power series can be 

used to determine convergence. While the mismatch tolerance in PBE was used in our 

PF implementation, the use of voltage change tolerance as the convergence criteria is 

computationally less expensive. It must be kept in mind that the slow oscillations that 
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can occur with a load just beyond the BP might fool a voltage-change tolerance test. 

In the future, exploring whether a voltage-change tolerance works as well is a worthy 

pursuit.  

iv. COMPUTATIONAL EFFORT PER ITERATION 

In the NR method, the computational effort involved per iteration is almost 

identical. However in the HE method, the number of floating point operations 

increases as the coefficients of the power series increases. This can be attributed to the 

convolutions involved in the calculation procedure. For instance, in the load bus 

model, the calculation of the inverse of the voltage series is essential. As the degree of 

the s increases, the number of floating point operations in calculating this inverse 

series increases. Similarly, for the voltage bus models, the number of convolutions 

increases with increasing number of terms in the series. 

v. ANALYTIC CONTINUATION 

The traditional NR method does not involve the analytic continuation process, 

which saves CPU time and memory requirements. However, the procedure of analytic 

continuation, which is unique to the HE procedure, is easily parallelizable since the 

voltage power series for each bus voltage are independent. 

  



96 

5 ESTIMATING THE BIFURCATION POINT USING HOLOMORPHIC 

EMBEDDING 

Voltage stability analysis based on the results of PF is crucial information for the 

system operator. Based on existing iterative methods, various methods have been 

published for obtaining voltage sensitivity indices and calculating the BP. To perform 

similar studies using HE, the embedding described in Chapter 4 needs to be modified. 

With the modified HE, two different methods of estimating the BP of a system with 

only PQ buses, are developed in this chapter. The theory behind the development of the 

method along with numerical examples is shown. 

5.1 MODIFIED HE FORMULATION 

Using the HE procedure, the voltage solution at every bus i can be obtained as 

rational function of the complex embedding parameter s as follows: 










2

2

]2[]1[]0[

]2[]1[]0[

)(

)(
)(

sbsbb

sasaa

sb

sa
sV

iii

iii

i

i

i  (5.1) 

The rational function on the RHS of (5.1) is the Padé approximant, the functions 

ai(s), bi(s) represent the numerator and the denominator polynomials respectively. To 

obtain the voltage solution, (5.1) is evaluated for one particular value of s, s=1. 

However, the parameter s can also be used to scale the complex power injection at each 

bus in the original PBE’s (4.2). Thus by varying the value of s in (5.1), the voltage 

solution for different loading conditions can be evaluated. By continually incrementing 

the s value, the PV, QV curves of the bus can be traced. 
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In order to trace the PV, QV curves using the HE procedure, the embedding 

described in Chapter 4 must be modified for the following reason. As claimed 

previously, the original PBE’s can be retrieved from the holomorphically embedded 

system of equations at s=1 from (4.2). However, for values of s≠1, the embedded 

system of equations do not have any meaningful solution since the Yi shunt term is 

scaled by the value s. 

The HE model representing the load bus and slack bus from [20], as described in 

Section 4.1.2 is: 

slackisVsV
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(5.2) 

In order to find the accurate voltage solution at no load (s=0) conditions, the slack 

bus and load bus embeddings from (5.2) are written as: 
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(5.3) 

 

In comparing the embeddings of (5.2) and (5.3), the voltage function is 

holomorphic in both the embeddings. Also, the original PBE’s are retrieved from the 

embeddings at s=1. The difference between (5.2) and (5.3) is the germ solution, i.e. 

solution at s=0. Equation (5.2) yields a germ solution of all bus voltages equal to 

1Ð0
o
. However, solving (5.3) at s=0, the RHS vector goes to zero; hence the 

following system of linear equations must be solved to obtain the correct germ 

solution. 
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(5.4) 

A practical application of the embedding (5.3) is that the bus voltages obtained as 

a function of the parameter of s can be reused to evaluate the voltages when the 

complex power injections in the system are scaled by the quantity s. In other words, 

the embedding (5.3) can be used to trace what is known as the PV curve of the 

network by scaling the s parameter. For a system of PQ buses with no shunt 

components and slack bus voltage equal to 1, the embeddings described in (5.2) and 

(5.3) are essentially the same. 

5.2 ESTIMATING THE BIFURCATION POINT BY EXTRAPOLATING ‘s’ 

PARAMETER 

Consider a system of PQ buses and one slack bus represented by the embedding 

shown in (5.3). By solving the PF problem using the HE procedure, coefficients ai[n], 

bi[n] in (5.1) for every bus voltage i can be found. The value of s in (5.1) is increased 

continually from zero, thereby scaling the complex power injection at every bus. The 

voltage solution corresponding to the different values of complex power injection can 

be evaluated varying the value of s parameter in (5.1). The mismatch in the PBE’s is 

found and the process is repeated until the mismatch exceeds a specified tolerance 

(0.01 p.u.). Since the Padé approximant is the maximal analytic continuation it is 
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guaranteed to converge to the solution if it exists. The value of s at which, a voltage 

solution does not exist is taken to be an estimate of the BP. 

5.2.1 MERITS AND DEMERITS 

The primary advantage of the method is it does not require resolving the PF 

problem at every point on the PV curve. The PF problem is solved once to obtain the 

rational approximants. The cost associated with calculating the voltages for a different 

loading condition is merely reevaluating a polynomial expression as opposed to 

re-solving the entire PF problem. 

For practical purposes, the BP for incrementing the real and reactive load 

independently at a one or a small set of buses is of interest. A major drawback with 

the method in its current form is that it does not allow scaling the loads differently at 

every bus. 

5.3 DECIPHERING SINGULARITIES FROM PADÉ APPROXIMANTS 

The power series expansion of an analytic function about a point contains all the 

information about the function. For instance, specific quantitative information about 

the singularities of the function can be deduced from the rational Padé approximants 

[44]. 

For a function with a simple pole, the denominator polynomial of the Padé 

approximant would have a zero that occurs close to the original pole. This was verified 

to be true for a simple geometric series described in Section 3.2. For the series, 
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 2

1 1)( sssf , the Padé approximant, 
s1

1
, indicates the occurrence of a pole 

at s=1, which is indeed the pole of the original function. For a function with multiple 

poles, a higher degree Padé approximant’s denominator polynomial will have a cluster 

of zeros that approximate the poles of the original function. It is expected that as the 

degree of the Padé approximant increases, the poles coalesce together; the original 

poles are represented with an increasing degree of accuracy [44]. 

The function of interest in this case happens to be the PBE’s and the point at which 

the HE equations become non-holomorphic (or the Jacobian matrix in NR method 

becomes singular) is the bifurcation point The PBE’s express the complex power 

injection as a function of the bus voltage. 

),(1 VfjQP   (5.5) 

where f1 represents the PBE’s broken into real and imaginary parts, as shown in (2.1). 

However, in the HE solution, the voltage is expressed as a function of the power 

injection. In other words, the inverse function is evaluated. 

)(2 jQPfV Ð  (5.6) 

where f2 represents the holomorphically embedded system of equations in chapter 4. 

While the HE equations express voltage as a function of the complex parameter s, bus 

voltages are in essence, expressed as a function of the complex power injection. The 

voltage function thus calculated from HE is represented by a rational Padé approximant. 

The roots of the numerator and denominator polynomial of the rational approximant 

align on what is known as a branch cut of an analytic function [52]. The branch cut is 
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the region in the complex plane where the function becomes non-holomorphic; Recall, 

the bifurcation point is the point at which the PBE’s become non-holomorphic. As the 

degree of the Padé approximant increases, the BP is represented with an increasing 

degree of accuracy [52]. The bifurcation point is taken to be the nearest occurring zero 

of the numerator polynomial that occurs along the real s axis. 

5.3.1 CALCULATION PROCEDURE, MERITS AND DEMERITS 

The steps involved in the numerical evaluation of the bifurcation point using Padé 

approximants are as follows: 

1. Obtain the rational approximants to the voltage function by solving the PF 

problem using the HE procedure using the embedding of (5.3). 

2. From the Padé approximant of any one bus voltage, calculate all the roots of 

the numerator polynomial. 

3. The root occurring closest to the origin on or near the real s axis is an 

estimate of the BP. 

4. Compare with estimates of BP obtained from other bus voltages and 

estimates obtained for a higher degree Padé approximant for reliability. 

Instead of re-solving the entire PF problem for different loading conditions, the 

rational approximant of one bus voltage is sufficient to estimate the BP. Unlike the 

method of extrapolating s and recalculating the voltages, this method does not require 

calculating the mismatch in the PBE’s. There is a trade-off between choosing a higher 

degree Padé approximant for accuracy and accumulating round-off errors in the 

calculation process. 
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5.4 NUMERICAL EXAMPLE 

The numerical implementation of the methods discussed above is shown for a 

four-bus system. 

5.4.1 PROBLEM STATEMENT 

Consider the modified four-bus system from Figure 4.3 with the generator at bus 4 

removed. The Power Systems Analysis Toolbox (PSAT) [56] software is used to trace 

the PV curve using the CPF and find the exact value of the BP. If the loading at all buses 

were incremented uniformly, the value of BP as calculated using PSAT would be 

2.4095 times the original loading at all the buses. 

5.4.2 RATIONAL APPROXIMANTS TO VOLTAGE USING HE 

The original PBE’s for the four-bus system is embedded as shown in (5.3) and 

solved using the HE procedure. A rational approximant of the voltage solution is 

obtained by constructing an analytic continuation using the matrix method (described 

in section 3.2). Table 5.1 shows [3/3] Padé approximants for the voltage solution 

obtained from seven terms in the power series. 
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Table 5.1 Padé Approximants of Voltage for Four-bus System 

Bus 

no. 
Rational approximant 

1 1 

2 
       

      32

32

0012.00014.00305.00273.00902.04240.01

0000.00003.00002.00565.00004.05127.00014.00072.1

sjsjsj

sjsjsjj




 

3 
       

      32

32

0011.00013.00287.00261.00865.04152.01

0001.00003.00025.00513.00084.04918.00012.00058.1

sjsjsj

sjsjsjj




 

4 
       

      32

32

0012.00014.00306.00273.00910.04239.01

0002.00001.00039.00604.00105.05247.00018.00091.1

sjsjsj

sjsjsjj




 

The voltage solution obtained by evaluating the rational approximant at s=1 is  

V1= 1Ð0
o
;  

V2= 0.9070Ð-5.85
o

;  

V3= 0.9196Ð-5.00
o

;  

V4= 0.8964Ð-6.71
o
.  

The mismatches in the PBE’s at the calculated solution are less than 1e-4 p.u. for 

the specified loading conditions. 

5.4.3 ESTIMATION OF BIFURCATION POINT BY EXTRAPOLATING s 

PARAMETER 

In order to trace the PV curve the value of s is incremented from 0 in steps of 0.01. 

The voltage solution is calculated by reevaluating the rational approximant; this 

represents the actual solution for the four-bus problem whose complex injections are 

scaled by the parameter s. If the mismatch in the PBE’s is greater than 1e-02 p.u., the 
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process is terminated; the value of s at the termination point is taken as an estimated of 

the BP. The estimate of the BP obtained from a [3/3] approximant for the four-bus 

system studied is 2.01 p.u. 

The actual value of BP obtained from PSAT is 2.4095 times the original loading. 

The percentage error in the BP estimate is calculated as 16.58%.  

%58.16100*
4095.2

01.24095.2

100*%
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

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BPAcutalBPAcutal
estimateinerror

 (5.7) 

For the voltage solution calculated using a [3/3] Padé approximant, the error in BP 

is calculated to be 16.58%. While the mismatch of the PBE’s at s=1 is less than 1e-04, 

it does not faithfully reproduce the PV curve as the value of s increases toward the BP. 

Hence, a higher degree approximant (degree of the Padé approximant is taken as the 

degree of the numerator or denominator polynomial, whichever is highest) was 

calculated and the procedure was repeated. Figure 5.1 shows the plot of the percentage 

error in estimating the BP against the degree of the Padé approximant. 

 

Figure 5.1 Accuracy of Bifurcation Point obtained by Extrapolating s 
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It can be observed that as the degree of Padé approximant increases, the error in the 

estimate of the BP decreases. A [9/9] approximant calculated with 19 terms in the series 

gives the estimate of the BP to be 2.41 times the original loading (compare with actual 

BP of 2.4095). A portion of this error of 0.02% is due to the 0.01 discrete step size in the 

loading parameter, s. The number of terms required in the power series to obtain a 

better estimate of the BP, for a general problem is unknown and presents scope for 

future work. 

The variation of the bus voltages with the increase in the complex s parameter, in 

this case the loading parameter, is shown in Figure 5.2. 

 

Figure 5.2 Bus Voltages vs. Loading Parameter for Four-bus System 

The voltages for Figure 5.2 are calculated using the [9/9] approximant. The voltage 

solution that corresponds to the lower portion of the PV curve cannot be calculated 

using the current formulation. 
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5.4.4 ESTIMATING BIFURCATION POINT USING PADÉ APPROXIMANTS 

From the [3/3] Padé approximants of the voltage in Table 5.1, the zeros of the 

numerator polynomial of the bus voltages are calculated. For bus 2, the roots of the 

numerator polynomial are calculated as: 

   

   
35.2775.219,0016.08895.5,0013.09095.2

00000.00003.00002.00565.0

0004.05127.00014.00072.1
32

jjjs

sjsj

sjj







 (5.8)  

From the previous discussion, it was established that the root of the numerator 

polynomial that occurs closest to the origin on or near the real s axis is representative of 

the BP. The roots of the numerator polynomial from (5.8) are complex. However, the 

value of s by which the loading at each bus has to be scaled before voltage collapse 

occurs has to be real. Hence, the estimate of the BP is taken to be the real portion of the 

smallest root of the polynomial along the positive s axis i.e. 2.9095 (20.74% error). The 

BP estimates can also be obtained from the rational approximants of the other bus 

voltages. The error in estimate of the voltage collapse point decreases with an increase 

in the number of terms in the series. For instance, the BP estimates for a [10/10] and 

[20/20] approximant from V2 are 2.4709 and 2.4308, with error percentages of 2.54% 

and 0.88% respectively.  

Figure 5.3 and Figure 5.4 show the estimates of the voltage collapse point and the 

percentage error in the estimate, respectively, as a function of the degree of the Padé 

approximant. 
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Figure 5.3 Estimate of Bifurcation Point Obtained from Padé Approximant 

 

Figure 5.4 Error in Bifurcation Point Obtained from Padé Approximant 
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approach calculated the zeros of the numerator polynomial of the Padé approximant. A 

comparison of the two methods in calculating the bifurcation point is as follows. 

To compare the accuracy of the solution, the BP estimates for the four-bus problem 

described above, are obtained from the two methods with the same number of terms in 

the series. With 19 terms in the series, the estimate of BP obtained by extrapolating ‘s’ 

had a percentage error of 0.02%. With the same number of terms in the series, the 

estimate of BP from the zeros of the Padé approximant had an error of 3.07%. With 41 

terms in the series, the former method of extrapolating ‘s’ yields the same estimate of 

BP. The BP estimate and the error percentage remain unaltered due to the step size 

chosen (0.01) to increment the s value. With the same 41 terms, using the zeros of the 

Padé approximant’s numerator polynomial, the BP estimate found had an error of 

0.88%. 

In terms of computational complexity, estimating the BP from the zeros of the Padé 

approximant requires the calculation of all the roots of a higher degree polynomial. The 

method of extrapolating s, on the other hand only requires reevaluating the polynomial 

Padé approximant, but multiple times. In the current implementation, this is not quite a 

distinguishing feature since calculation of roots of polynomial using software such as 

MATLAB is fast. 
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6 CONCLUSION AND FUTURE WORK 

6.1 CONCLUSION 

The research presented in this document is directed towards implementing a 

non-iterative solution procedure for solving the ac power-flow problem, by embedding 

the PBE’s as a holomorphic function. 

Different techniques for analytic continuation, along with numerical examples were 

presented in chapter 3. The numerical issues that should to be taken into consideration 

while evaluating the maximal analytic continuation of an analytic function were 

demonstrated. 

Current literature has an HE model for the load bus. In chapter 4, two different 

holomorphically embedded models for the generator bus were developed by: 

1. Representing the reactive power injection Qi as a holomorphic function. 

2. Eliminating the reactive power term by summing the complex power and its 

conjugate. 

The details of implementing the HE method to solve the ac PF problem for a small 

to medium sized system were presented. The solution procedure was demonstrated in 

detail for a sample four-bus system. The HE method was tested on several IEEE test 

cases; results from the 118-bus system were presented. The implementation was done 

with dense matrix operations in MATLAB. The time taken to solve the 118 bus system 

was approximately 0.7 sec. However, the run times and storage requirements would be 
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significantly improved if it were to be programmed in a third generation language (C++, 

Java, etc.) with sparsity programming techniques. 

A modified HE that allows tracing the PV curve and calculating the bifurcation 

point was developed in chapter 5 above. Using the Padé approximants to the voltage 

function obtained from HE, it is shown that accurate estimates of the BP can be 

obtained, at least for the four-bus problem examined. The solution procedure along 

with the theory involved was discussed in detail with numerical examples. 

6.2 FUTURE WORK 

The HE approach of solving a PF problem should be quantified, compared with the 

existing methods on speed of computation, memory requirements and ability to handle 

ill-conditioned problems among several other factors. Currently, discontinuities 

occurring due to reactive power limits on generators are handled by performing bus 

type switching and re-solving the PF problem; a procedure to handle discontinuities 

without re-solving the problem could be developed. Numerical testing on a larger scale 

model warrants the inclusion of HVDC lines, phase shifting transformers, remote 

regulation of buses; in that case, development of a holomorphically embedded model 

representative of each component’s original equation becomes necessary. In order to 

evaluate the BP using the HE method for a general problem, the generator bus model 

ought to be modified and included. Also, a formulation that allows varying the loads 

independently at different buses presents scope for future work. 
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APPENDIX A 

VOLTAGE SOLUTION FOR IEEE-118 BUS SYSTEM 
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-------------------------------------------------------------------- 

                Converged Bus Voltages 

-------------------------------------------------------------------- 

|   Bus |Bus        |Type   |V      |Angle          |Generation     | 

|   No  |name       |       |pu     |Degree         |MW     |Mvar   | 

 -------------------------------------------------------------------- 

      1   Riversde      2     0.9550    -19.0177    0.00        -3.10        

      2    Pokagon      0     0.9714    -18.4777    0.00        0.00         

      3   HickryCk      0     0.9677    -18.1344    0.00        0.00         

      4   NwCarlsl      2     0.9980    -14.4169    -9.00      -15.01       

      5      Olive      0     1.0020    -13.9719    0.00        0.00         

      6   Kankakee      2     0.9900    -16.6987    0.00        15.93        

      7   JacksnRd      0     0.9893    -17.1431    0.00        0.00         

      8      Olive      2     1.0150     -8.9514    -28.00      62.76        

      9    Bequine      0     1.0429     -1.6973    0.00        0.00         

     10      Breed      2     1.0500      5.8837    450.00     -51.04       

     11   SouthBnd      0     0.9851    -16.9845    0.00        0.00         

     12   TwinBrch      2     0.9900    -17.5012    85.00       91.27        

     13    Concord      0     0.9683    -18.3594    0.00        0.00         

     14   GoshenJt      0     0.9836    -18.2174    0.00        0.00         

     15    FtWayne      2     0.9700    -18.5111    0.00        3.06         

     16       N.E.      0     0.9839    -17.8028    0.00        0.00         

     17   Sorenson      0     0.9951    -15.9949    0.00        0.00         

     18   McKinley      2     0.9730    -18.2086    0.00        25.53        

     19    Lincoln      4     0.9634    -18.6932    0.00        -8.00        

     20      Adams      0     0.9581    -17.8133    0.00        0.00         

     21        Jay      0     0.9586    -16.2254    0.00        0.00         

     22   Randolph      0     0.9696    -13.6709    0.00        0.00         

     23   CollCrnr      0     0.9997     -8.7502    0.00        0.00         

     24    Trenton      2     0.9920     -8.8825    -13.00     -15.28       

     25   TannrsCk      2     1.0500     -1.8161    220.00      49.80        

     26   TannrsCk      2     1.0150     -0.0356    314.00      9.90         

     27    Madison      2     0.9680    -14.3879    -9.00       2.83         

     28     Mullin      0     0.9616    -16.1125    0.00        0.00         

     29      Grant      0     0.9632    -17.1049    0.00        0.00         

     30   Sorenson      0     0.9855    -10.9604    0.00        0.00         

     31    DeerCrk      2     0.9670    -16.9880    7.00        31.98        

     32   Delaware      4     0.9636    -14.9405    0.00       -14.00       

     33   Haviland      0     0.9716    -19.1361    0.00        0.00         

     34   Rockhill      4     0.9859    -18.4941    0.00        -8.00        

     35   WestLima      0     0.9807    -18.9213    0.00        0.00         

     36   Sterling      2     0.9800    -18.9168    0.00        -1.25 
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-------------------------------------------------------------------- 

                Converged Bus Voltages 

-------------------------------------------------------------------- 

|   Bus |Bus        |Type   |V      |Angle          |Generation     | 

|   No  |name       |       |pu     |Degree         |MW     |Mvar   | 

 -------------------------------------------------------------------- 

  37   EastLima      0     0.9920    -18.0303    0.00        0.00         

     38   EastLima      0     0.9620    -12.8934    0.00        0.00         

     39   NwLibrty      0     0.9705    -21.4028    0.00        0.00         

     40    WestEnd      2     0.9700    -22.4766    -46.00      26.89        

     41   S.Tiffin      0     0.9668    -22.9227    0.00        0.00         

     42     Howard      2     0.9850    -21.3271    -59.00      41.00        

     43   S.Kenton      0     0.9785    -18.5401    0.00        0.00         

     44   WMVernon      0     0.9850    -16.0545    0.00        0.00         

     45   N.Newark      0     0.9867    -14.2238    0.00        0.00         

     46   W.Lancst      2     1.0050    -11.4178    19.00       -5.23        

     47   Crooksvl      0     1.0171     -9.1954    0.00        0.00         

     48   Zanesvll      0     1.0206     -9.9752    0.00        0.00         

     49      Philo      2     1.0250     -8.9721    204.00     115.65       

     50   WCambrdg      0     1.0011    -11.0112    0.00        0.00         

     51   Newcmrst      0     0.9669    -13.6302    0.00        0.00         

     52   SCoshoct      0     0.9568    -14.5837    0.00        0.00         

     53    Wooster      0     0.9460    -15.5586    0.00        0.00         

     54     Torrey      2     0.9550    -14.6469    48.00       3.90         

     55   Wagenhls      2     0.9520    -14.9369    0.00        4.66         

     56   Sunnysde      2     0.9540    -14.7502    0.00        -2.29        

     57   WNwPhil1      0     0.9706    -13.5454    0.00        0.00         

     58   WNwPhil2      0     0.9590    -14.4022    0.00        0.00         

     59       Tidd      2     0.9850    -10.5476    155.00      76.83        

     60   SWKammer      0     0.9932     -6.7663    0.00        0.00         

     61   W.Kammer      2     0.9950     -5.8750    160.00     -40.39       

     62    Natrium      2     0.9980     -6.4915    0.00        1.26         

     63       Tidd      0     0.9687     -7.1691    0.00        0.00         

     64     Kammer      0     0.9837     -5.4034    0.00        0.00         

     65   Muskngum      2     1.0050     -2.2783    391.00      80.81        

     66   Muskngum      2     1.0500     -2.4372    392.00      -1.95        

     67   Summerfl      0     1.0197     -5.0771    0.00        0.00         

     68      Sporn      0     1.0032     -2.3994    0.00        0.00         

     69      Sporn      3     1.0350      0.0000    516.40      0.00         

     70   Portsmth      2     0.9840     -7.3800    0.00        9.66         

     71   NPortsmt      0     0.9868     -7.7909    0.00        0.00         

     72   Hillsbro      2     0.9800     -8.8885    -12.00     -11.13       
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-------------------------------------------------------------------- 

                Converged Bus Voltages 

-------------------------------------------------------------------- 

|   Bus |Bus        |Type   |V      |Angle          |Generation     | 

|   No  |name       |       |pu     |Degree         |MW     |Mvar   | 

 -------------------------------------------------------------------- 

     73   Sargents      2     0.9910     -8.0024    -6.00       9.65         

 74   Bellefnt      2     0.9580     -8.3288    0.00        -5.63        

     75   SthPoint      0     0.9673     -7.0670    0.00        0.00         

     76     Darrah      2     0.9430     -8.1970    0.00        5.27         

     77     Turner      2     1.0060     -3.2431    0.00        11.94        

     78   Chemical      0     1.0034     -3.5470    0.00        0.00         

     79   CapitlHl      0     1.0092     -3.2478    0.00        0.00         

     80   CabinCrk      2     1.0400     -1.0023    477.00     105.04       

     81    Kanawha      0     0.9968     -1.8505    0.00        0.00         

     82      Logan      0     0.9887     -2.7227    0.00        0.00         

     83     Sprigg      0     0.9845     -1.5326    0.00        0.00         

     84   BetsyLne      0     0.9798      1.0008    0.00        0.00         

     85   BeaverCk      2     0.9850      2.5549    0.00        -5.77        

     86     Hazard      0     0.9867      1.1854    0.00        0.00         

     87   Pinevlle      2     1.0150      1.4447    4.00        11.02        

     88    Fremont      0     0.9875      5.6859    0.00        0.00         

     89   ClinchRv      2     1.0050      9.7414    607.00     -11.79       

     90    Holston      2     0.9850      3.3365    -85.00      59.30        

     91   HolstonT      2     0.9800      3.3555    -10.00     -14.85       

     92   Saltvlle      4     0.9923      3.8545    0.00        -3.00        

     93   Tazewell      0     0.9869      0.8434    0.00        0.00         

     94   Switchbk      0     0.9906     -1.3105    0.00        0.00         

     95   Caldwell      0     0.9809     -2.2823    0.00        0.00         

     96   Baileysv      0     0.9927     -2.4496    0.00        0.00         

     97    Sundial      0     1.0114     -2.0764    0.00        0.00         

     98    Bradley      0     1.0235     -2.5539    0.00        0.00         

     99     Hinton      2     1.0100     -2.9157    -42.00     -17.54       

    100    GlenLyn      2     1.0170     -1.9196    252.00     110.08       

    101      Wythe      0     0.9924     -0.3468    0.00        0.00         

    102     Smythe      0     0.9910      2.3511    0.00        0.00         

    103    Claytor      5     1.0007     -5.5146    40.00       40.00        

    104    Hancock      2     0.9710     -8.2595    0.00        5.65         

    105    Roanoke      4     0.9660     -9.3816    0.00        -8.00        

    106   Cloverdl      0     0.9618     -9.6295    0.00        0.00         

    107    Reusens      2     0.9520    -12.4196    -22.00      5.70         

    108     Blaine      0     0.9668    -10.5725    0.00        0.00         
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-------------------------------------------------------------------- 

                Converged Bus Voltages 

-------------------------------------------------------------------- 

|   Bus |Bus        |Type   |V      |Angle          |Generation     | 

|   No  |name       |       |pu     |Degree         |MW     |Mvar   | 

 -------------------------------------------------------------------- 

    109   Franklin      0     0.9675    -11.0218    0.00        0.00         

    110   Fieldale      2     0.9730    -11.8606    0.00        4.86         

111   DanRiver      2     0.9800    -10.2155    36.00       -1.84        

    112   Danville      2     0.9750    -14.9598    -43.00      41.51        

    113    DeerCrk      2     0.9930    -15.9969    -6.00       6.32         

    114   WMedford      0     0.9604    -15.2708    0.00        0.00         

    115    Medford      0     0.9603    -15.2784    0.00        0.00         

    116   KygerCrk      2     1.0050     -2.8344    -184.00     51.32        

    117      Corey      0     0.9738    -19.0422    0.00        0.00         

    118   WHuntngd      0     0.9494     -8.0547    0.00        0.00 
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-------------------------------------------------------------------- 

                Line flows in branches and Tap ratios 

-------------------------------------------------------------------- 

Branch  |Tap    |Z      |Tap    |From bus injection|To bus injection    | 

        |Bus    |Bus    |Ratio  |P(M.W.)    |Q(MVar)|P(M.W.)    |Q(MVar)| 

 -------------------------------------------------------------------- 

1       1       2       0.000   -12.36      -13.04  12.45       11.01    

2       1       3       0.000   -38.64      -17.06  38.89       16.89    

3       4       5       0.000   -103.21     -26.79  103.41      27.49    

4       3       5       0.000   -68.10      -14.49  69.34       17.28    

5       5       6       0.000   88.46       4.11    -87.53      -1.30    

6       6       7       0.000   35.53       -4.77   -35.47      4.50     

7       8       9       0.000   -440.64     -89.73  445.25      24.43    

8       8       5       0.985   338.42      124.72  -338.42     -92.01   

9       9       10      0.000   -445.25     -24.43  450.00      -51.04   

10      4       11      0.000   64.21       -0.21   -63.35      1.34     

11      5       11      0.000   77.21       2.97    -76.00      -0.63    

12      11      12      0.000   34.28       -35.13  -34.14      35.13    

13      2       12      0.000   -32.45      -20.01  32.74       19.42    

14      3       12      0.000   -9.79       -12.39  9.90        8.86     

15      7       12      0.000   16.47       -6.50   -16.44      5.75     

16      11      13      0.000   35.06       11.41   -34.74      -12.16   

17      12      14      0.000   18.29       2.63    -18.21      -4.15    

18      13      15      0.000   0.74        -3.84   -0.74       -2.05    

19      14      15      0.000   4.21        3.15    -4.18       -7.84    

20      12      16      0.000   7.50        4.29    -7.49       -6.30    

21      15      17      0.000   -103.72     -24.41  105.30      25.36    

22      16      17      0.000   -17.51      -3.70   17.66       -0.29    

23      17      18      0.000   80.27       24.85   -79.39      -22.49   

24      18      19      0.000   19.39       14.02   -19.32      -14.79   

25      19      20      0.000   -10.65      5.42    10.69       -7.97    

26      15      19      0.000   11.41       12.25   -11.37      -13.07   

27      20      21      0.000   -28.69      4.97    28.86       -6.16    

28      21      22      0.000   -42.86      -1.84   43.28       1.49     

29      22      23      0.000   -53.28      -6.49   54.32       7.41     

30      23      24      0.000   8.30        10.80   -8.26       -15.61   

31      23      25      0.000   -162.61     -25.92  166.81      38.38    

32      26      25      0.960   90.30       21.58   -90.30      -18.64   

33      25      27      0.000   143.49      30.06   -137.09     -15.27   

34      27      28      0.000   32.86       -0.59   -32.64      -0.44    

35      28      29      0.000   15.64       -6.56   -15.57      4.64     

36      30      17      0.960   231.06      93.37   -231.06     -70.51   
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-------------------------------------------------------------------- 

                Line flows in branches and Tap ratios 

-------------------------------------------------------------------- 

Branch  |Tap    |Z      |Tap    |From bus injection|To bus injection    | 

        |Bus    |Bus    |Ratio  |P(M.W.)    |Q(MVar)|P(M.W.)    |Q(MVar)| 

 -------------------------------------------------------------------- 

37      8       30      0.000   74.22       27.77   -73.87      -75.07   

38      26      30      0.000   223.70      -11.68  -219.72     -36.38   

39      17      31      0.000   14.77       11.55   -14.58      -14.76   

40      29      31      0.000   -8.43       -8.64   8.45        7.92     

41      23      32      0.000   92.99       4.71    -90.21      -5.91    

42      31      32      0.000   -29.87      11.82   30.21       -13.04   

43      27      32      0.000   12.50       1.02    -12.46      -2.69    

44      15      33      0.000   7.23        -4.88   -7.20       1.96     

45      19      34      0.000   -3.66       -10.57  3.72        4.75     

46      35      36      0.000   0.67        6.25    -0.67       -6.50    

47      35      37      0.000   -33.67      -15.25  33.82       14.66    

48      33      37      0.000   -15.80      -10.96  15.94       7.93     

49      34      36      0.000   30.43       11.50   -30.33      -11.75   

50      34      37      0.000   -94.58      -38.57  94.86       38.61    

51      38      37      0.935   243.68      112.11  -243.68     -86.62   

52      37      39      0.000   54.96       3.75    -53.97      -3.07    

53      37      40      0.000   44.10       -2.93   -42.93      2.21     

54      30      38      0.000   62.53       18.08   -62.28      -55.10   

55      39      40      0.000   26.97       -7.93   -26.82      6.97     

56      40      41      0.000   15.51       1.17    -15.48      -2.19    

57      40      42      0.000   -11.77      -6.47   11.86       2.32     

58      41      42      0.000   -21.52      -7.81   21.74       5.26     

59      43      44      0.000   -16.57      -1.03   16.75       -4.10    

60      34      43      0.000   1.44        1.92    -1.43       -5.97    

61      44      45      0.000   -32.75      5.81    33.00       -6.94    

62      45      46      0.000   -36.32      -3.38   36.86       1.92     

63      46      47      0.000   -31.10      -1.22   31.46       -0.79    

64      46      48      0.000   -14.76      -5.83   14.90       1.42     

65      47      49      0.000   -9.55       -10.83  9.59        9.27     

66      42      49      0.000   -64.80      5.21    67.96       0.37     

67      42      49      0.000   -64.80      5.21    67.96       0.37     

68      45      49      0.000   -49.69      -1.95   51.42       2.17     

69      48      49      0.000   -34.90      3.21    35.11       -3.92    

70      49      50      0.000   53.67       13.43   -52.88      -13.14   

71      49      51      0.000   66.64       20.44   -64.35      -17.40   

72      51      52      0.000   28.56       6.24    -28.37      -6.99    
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-------------------------------------------------------------------- 

                Line flows in branches and Tap ratios 

-------------------------------------------------------------------- 

Branch  |Tap    |Z      |Tap    |From bus injection|To bus injection    | 

        |Bus    |Bus    |Ratio  |P(M.W.)    |Q(MVar)|P(M.W.)    |Q(MVar)| 

 -------------------------------------------------------------------- 

73      52      53      0.000   10.37       1.99    -10.32      -5.45    

74      53      54      0.000   -12.68      -5.55   12.73       2.99     

75      49      54      0.000   37.77       13.07   -36.58      -15.60   

76      49      54      0.000   37.75       11.20   -36.39      -13.79   

77      54      55      0.000   7.08        1.46    -7.07       -3.25    

78      54      56      0.000   18.53       4.34    -18.52      -4.97    

79      55      56      0.000   -21.43      -5.82   21.45       5.56     

80      56      57      0.000   -22.99      -9.10   23.22       7.49     

81      50      57      0.000   35.88       9.14    -35.22      -10.49   

82      56      58      0.000   -6.67       -3.69   6.69        1.53     

83      51      58      0.000   18.79       3.16    -18.69      -4.53    

84      54      59      0.000   -30.38      -7.51   30.90       4.26     

85      56      59      0.000   -27.96      -4.18   28.67       0.99     

86      56      59      0.000   -29.31      -3.91   30.07       1.13     

87      55      59      0.000   -34.51      -8.26   35.15       5.88     

88      59      60      0.000   -43.31      3.57    43.94       -4.40    

89      59      61      0.000   -51.71      5.03    52.63       -4.63    

90      60      61      0.000   -112.06     8.52    112.40      -8.23    

91      60      62      0.000   -9.87       -7.11   9.89        5.74     

92      61      62      0.000   25.49       -13.86  -25.42      13.20    

93      63      59      0.960   151.75      67.48   -151.75     -57.03   

94      63      64      0.000   -151.75     -67.48  152.23      52.51    

95      64      61      0.985   30.52       13.99   -30.52      -13.69   

96      38      65      0.000   -181.41     -57.01  184.62      -9.07    

97      64      65      0.000   -182.76     -66.49  183.75      40.06    

98      49      66      0.000   -132.18     4.31    135.18      8.33     

99      49      66      0.000   -132.18     4.31    135.18      8.33     

100     62      66      0.000   -37.17      -17.26  37.93       14.68    

101     62      67      0.000   -24.31      -14.41  24.50       12.15    

102     65      66      0.935   8.46        72.25   -8.46       -70.55   

103     66      67      0.000   53.16       19.27   -52.50      -19.15   

104     65      68      0.000   14.17       -22.43  -14.16      -41.85   

105     47      69      0.000   -55.91      11.62   58.65       -10.06   

106     49      69      0.000   -46.51      10.63   48.75       -12.05   

107     68      69      0.935   -125.66     112.81  125.66      -103.65  

108     69      70      0.000   108.35      16.08   -104.92     -13.99   
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-------------------------------------------------------------------- 

                Line flows in branches and Tap ratios 

-------------------------------------------------------------------- 

Branch  |Tap    |Z      |Tap    |From bus injection|To bus injection    | 

        |Bus    |Bus    |Ratio  |P(M.W.)    |Q(MVar)|P(M.W.)    |Q(MVar)| 

 -------------------------------------------------------------------- 

109     24      70      0.000   -6.21       -2.97   6.21        -6.80    

110     70      71      0.000   16.65       -12.38  -16.61      11.68    

111     24      72      0.000   1.47        3.31    -1.46       -7.98    

112     71      72      0.000   10.60       -0.94   -10.54      -3.15    

113     71      73      0.000   6.01        -10.74  -6.00       9.65     

114     70      74      0.000   16.20       12.89   -16.01      -15.42   

115     70      75      0.000   -0.14       9.94    0.20        -13.17   

116     69      75      0.000   109.97      20.49   -105.12     -18.32   

117     74      75      0.000   -51.99      -6.19   52.36       6.44     

118     76      77      0.000   -61.17      -21.03  63.23       24.39    

119     69      77      0.000   62.10       6.81    -60.95      -13.84   

120     75      77      0.000   -34.63      -9.54   35.44       7.37     

121     77      78      0.000   45.37       6.62    -45.29      -7.63    

122     78      79      0.000   -25.71      -18.37  25.76       17.95    

123     77      80      0.000   -96.62      -37.40  98.39       37.52    

124     77      80      0.000   -44.39      -20.54  45.07       20.59    

125     79      80      0.000   -64.76      -29.58  65.53       31.08    

126     68      81      0.000   -44.30      -4.61   44.36       -75.55   

127     81      80      0.935   -44.36      75.55   44.36       -73.05   

128     77      82      0.000   -3.09       17.34   3.23        -25.08   

129     82      83      0.000   -47.11      24.51   47.44       -27.11   

130     83      84      0.000   -24.73      14.73   25.29       -16.04   

131     83      85      0.000   -42.71      12.07   43.60       -12.37   

132     84      85      0.000   -36.29      9.04    36.74       -9.29    

133     85      86      0.000   17.17       -7.35   -17.05      5.09     

134     86      87      0.000   -3.95       -15.09  4.00        11.02    

135     85      88      0.000   -50.33      7.58    50.87       -7.52    

136     85      89      0.000   -71.18      0.66    72.43       3.73     

137     88      89      0.000   -98.87      -2.48   100.27      7.70     

138     89      90      0.000   58.17       -4.72   -56.44      5.80     

139     89      90      0.000   110.74      -5.43   -107.85     7.04     

140     90      91      0.000   1.29        4.46    -1.28       -6.50    

141     89      92      0.000   201.79      -6.59   -197.80     21.49    

142     89      92      0.000   63.60       -6.49   -62.02      8.72     

143     91      92      0.000   -8.72       -8.35   8.77        5.33     

144     92      93      0.000   57.71       -10.75  -56.82      11.57    
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145     92      94      0.000   52.26       -14.31  -50.85      14.95    

146     93      94      0.000   44.82       -18.57  -44.29      18.48    

147     94      95      0.000   40.98       9.34    -40.74      -9.63    

148     80      96      0.000   18.93       20.85   -18.63      -24.42   

149     82      96      0.000   -10.12      -6.87   10.14       1.60     

150     94      96      0.000   19.91       -9.46   -19.79      7.61     

151     80      97      0.000   26.38       25.54   -26.14      -26.98   

152     80      98      0.000   28.86       8.33    -28.66      -10.45   

153     80      99      0.000   19.48       8.18    -19.27      -12.96   

154     92      100     0.000   31.45       -15.81  -30.68      14.56    

155     94      100     0.000   4.24        -49.30  -3.85       44.49    

156     95      96      0.000   -1.26       -21.37  1.34        20.18    

157     96      97      0.000   -11.06      -19.97  11.14       17.98    

158     98      100     0.000   -5.34       2.45    5.36        -7.31    

159     99      100     0.000   -22.73      -4.57   22.83       2.78     

160     100     101     0.000   -16.73      22.07   16.96       -24.35   

161     92      102     0.000   44.62       -7.67   -44.37      7.39     

162     101     102     0.000   -38.96      9.35    39.37       -10.39   

163     100     103     0.000   121.08      -4.30   -118.82     6.29     

164     100     104     0.000   56.42       10.62   -54.95      -9.34    

165     103     104     0.000   32.31       7.93    -31.78      -10.08   

166     103     105     0.000   42.95       6.55    -41.92      -7.39    

167     100     106     0.000   60.57       9.17    -58.34      -6.78    

168     104     105     0.000   48.73       0.07    -48.48      -0.04    

169     105     106     0.000   8.68        4.55    -8.67       -5.82    

170     105     107     0.000   26.73       -1.85   -26.33      -1.09    

171     105     108     0.000   23.99       -10.61  -23.80      9.39     

172     106     107     0.000   24.00       -3.40   -23.67      0.22     

173     108     109     0.000   21.80       -10.39  -21.74      9.86     

174     103     110     0.000   60.56       3.23    -59.11      -1.03    

175     109     110     0.000   13.74       -12.86  -13.64      11.23    

176     110     111     0.000   -35.70      0.96    36.00       -1.84    

177     110     112     0.000   69.46       -30.61  -68.00      28.51    

178     17      113     0.000   2.06        6.04    -2.06       -6.79    

179     32      113     0.000   4.11        -17.53  -3.94       13.11    

180     32      114     0.000   9.36        2.17    -9.35       -3.61    

181     27      115     0.000   20.73       4.67    -20.65      -6.13    

182     114     115     0.000   1.35        0.61    -1.35       -0.87    

183     68      116     0.000   184.13      -66.36  -184.00     51.32    

184     12      117     0.000   20.15       5.20    -20.00      -8.00    

185     75      118     0.000   40.19       23.59   -39.85      -23.56   

186     76      118     0.000   -6.83       -9.70   6.85        8.56     


