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ABSTRACT 

   

A robust, fast and accurate protection system based on pilot protection concept was 

developed previously and a few alterations in that algorithm were made to make it faster 

and more reliable and then was applied to smart distribution grids to verify the results for 

it. The new 10 sample window method was adapted into the pilot protection program and 

its performance for the test bed system operation was tabulated. Following that the system 

comparison between the hardware results for the same algorithm and the simulation results 

were compared. The development of the dual slope percentage differential method, its 

comparison with the 10 sample average window pilot protection system and the effects of 

CT saturation on the pilot protection system are also shown in this thesis. The 

implementation of the 10 sample average window pilot protection system is done to 

multiple distribution grids like Green Hub v4.3, IEEE 34, LSSS loop and modified LSSS 

loop. Case studies of these multi-terminal model are presented, and the results are also 

shown in this thesis. The result obtained shows that the new algorithm for the previously 

proposed protection system successfully identifies fault on the test bed and the results for 

both hardware and software simulations match and the response time is approximately less 

than quarter of a cycle which is fast as compared to the present commercial protection 

system and satisfies the FREEDM system requirement. 
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CHAPTER 1 

INTRODUCTION 

1.1 Brief Introduction 

 In the future, the need for power will increase so will the need to increase power generation.  

Renewable energy is a very interesting and upcoming field. There is a growing interest to 

develop distributed renewable electric generation, distributed control of energy 

management and also energy storage. The graph below shows the US primary energy 

consumption since 1775 [1]. 
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Figure 1.1. Energy Consumption from 1775-2011 (taken directly from [1])  

 Thus the in the future we will have lot of renewable resources contributing to the grid. But 

creating all renewable grids can not only be expensive, but would require new expertise 

and resources for integrating these sources into the grid. It would rather be more efficient 

to connect renewable energy sources to existing distribution grids.  

 But these renewable energy sources have a lot of power electronic devices used in them 

like inverters, rectifiers, dc-dc converters; also these power electronic devices change the 

voltage as well as current profile due to which these devices bring new issues and 

challenges to the protection system.  

 The Fault characteristics of power electronic devices is very different from traditional 

distribution systems like the fault level in a solar PV panel inverter is so less that sometimes 

it cannot be even detected as a fault [2]. 

  Also the fault current level will also be limited due to these devices as well, and also other 

issues like power harmonics can come into play [2].  

 So in the future we are looking at a grid which will be a modernized electrical grid that 

uses information and communications technology to gather and act on information, so as 

to balance the generation of both renewable as well as non-renewable sources of energy. 

There by providing protection concepts for such smart grids will be the next step.  

The FREEDM loop, a National Science Foundation (NSF) enterprise, is an experimental 

power grid which aims to provide a few answers and solution to these question asked. It 

claims to remove the requirement for enhancing the existing power system equipment at 

the distribution level and also talks about the renewable energy generation and distribution 

concerns. The inclusion of many new loads with renewable energy will place an added 

pressure on the electrical infrastructure. The FREEDM system’s plan is to operate 
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distributed generation and energy management through advanced power electronics and 

communications is demonstrated in this research topic [3]. 

1.2 The FREEDM system 

The FREEDM system was formulated as a grid infrastructure with not only renewable 

resources integrated in to the grid, but with capabilities to operate in faulted conditions 

(islanding), and capabilities to react to system depending upon the change in load, demand 

automatically based on the data received through digital communications. This system will 

help assimilation of renewable energy generation into the power system grid. The system 

helps us develop break-through technologies in energy storage, distributed grid intelligence 

and power semiconductor devices. To show the various research developments, a 1 MW 

green energy hub loop supplied by renewable energy resources is under development. The 

FREEDM system is designed at allowing the customers to plug in renewable resources that 

generate power but also use devices that have storage capabilities, such devices are placed 

at residences and commercial / industrial factories, and also has the ability to manage their 

energy consumption through the load management system [3]. A single line diagram of the 

proposed FREEDM system is shown in Figure 1.2. 
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Figure 1.2. FREEDM System (taken directly from [3]) 

The FREEDM system includes advanced power electronic features combined with 

information relaying technology to develop a futuristic distribution grid which will include 

many features. One of the features will be plug and play of DRER (Distributed Renewable 

Energy Resource) and DESD (Distributed Energy Storage Device). While managing such 

DRER’s, DESD’s and loads using DGI (Distributed Grid Intelligence). This system also 

include revolutionary solid devices like FID (Fault Isolation Devices) able to clear faults 

extremely fast. The distribution system has the capability of being totally isolated from the 

main grid and still run perfectly in the islanded mode of operation. [3]. 
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Figure 1.3 Figure of the FREEDM system (taken directly from [4]) 

 

 A figure of the FREEDM system is shown above. In this the loads are connected to 

120 V AC regulated supply feeder. The DRER, DESD can be directly connected to 

the DC link of the SST. The SST is a 3 level/layer device which has AC-DC-AC 

link. So the SST is allowed bidirectional power flow control and controls other 

cases of power administration authority, fault current limitation and voltage ride 

through needed for dynamic plug and play system. An ultra-fast FID is used to 

isolate faults throughout the 12 kV system so as to supply uninterrupted good 

quality power to the consumer. All the FID’s and the SST’s coordination is done 

with the help of DGI or IEM (Intelligent Energy Management) software coded in 

each SST and FID. The DGI/IEM communicate with the SST’s and FID’s through 

the RSC (Reliable and Secured Communication network) [3] 
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 As shown in the figure 4, the system has FCL (Fault Current Limiters) places at 

various points in the loop system. The loads, DRERs and DESDs are joined to the 

loop through the SST’s. The loop is then segregated in to different sections/zones. 

Each zone will contain a fixed number of SST’s. And every zone is protected by 

FID which are the electronics CBs of the system. 

 

The IFM (Intelligent Fault Management system) is used to help protect the FREEDM loop 

system by isolating faults in the 12 KV distribution system. The renewable sources and the 

storage devices are connected through the IEMs to the loop. Both the IEM and the IFM are 

connected through the RSC .In the event of a fault the FREEDM system can operate 

independently in the islanded mode of operation [5]. 

 

1.3 Motivation and Objective 

The standard distribution system is framed in a branched layout and is protected by 

the traditional 3 division overcurrent protection: The primary grid feeder is protected by a 

circuit breaker at the substation terminal. In the middle section of a feeder a recloser is 

placed. Fuses are used to protect the smaller branch feeders in a normal distribution system. 

Using proper settings for coordination timings, each section contributes to the backup 

protection for the lower section. On occurrence of a fault on the main feeder, the entire 

feeder will have to shut down, and this is one of the biggest disadvantages of these types 

of protection schemes [6] On account of outage of fuses, momentary outages are caused 

which damage sensitive electronic component devices [6 ]. Most distribution systems are 
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radial systems. But because of DG, as fault current will be supplied by both the DG and 

the grid, in that case such systems are considered as loop systems. The FREEDM system 

is also such a loop system. Thus traditional over current protection systems cannot work 

and so the un-faulted DG feeder might trip.  

For higher quality power closed loop distribution system are now being used. As a 

result fault in one section cannot cause outage down the line as in case of radial/open loop 

system. Moreover closed loop systems provide more rigid voltage support and has better 

capacity of load rising. Hence loop systems are an ideal choice for future distribution 

system [7] [8]. Conventional over current relays cannot be used because of bidirectional 

power flow in the network because of the presence of DG in the system. Also fault clear 

time will ensure whether DG’s will lose stability or not. Moreover closed loop systems 

have higher short circuit currents and also increase the dips in voltage as well as frequency. 

Thus making these systems more sensitive to power system oscillations and fault expansion 

[7] [8]. 

                                 The FREEDM grid being a smart grid, it will be able to operate for 

both grid connected condition as well as islanded condition. Such modes of operation 

question standard over current protection schemes for distribution systems. Hence it is 

extremely important to develop protection schemes that involve communications [9]. The 

challenges posed by protection systems in micro grids like the FREEDM system are the 

problems that are linked with bidirectional power flow, meshed structure and continuously 

changing level of fault current levels because of discontinuous attributes of the DGs and 

also reduced levels of fault current during islanded mode of operation [10] [11]. 
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                    The other issue with the protection system is the operation time. The 

current distribution protection system can identification and interruption time is around 

more than a second. One of reasons for this could be that classical mechanical circuit 

breaker, are capable to turn off the fault current only at zero crossing current point, and 

hence the require at least a cycle to interrupt/cut off the circuit. The advancements of Solid 

State technology gives a rather unique explanation of interrupting a fault, i.e. the solid state 

circuit breaker (SSCB/FID) Fault isolation devices depend on swift switching solid state 

switches. SSCB/FID is able to interrupt fault current inside a millisecond because of its 

capability to switch thousands of times per second [12]. Based on this approach the 

differential pilot protection system was developed previously at ASU. The concept, theory, 

practical implementation of the pilot differential protection is shown in [12.]. 

The objective of this thesis is to implement the pilot differential protection system 

which complies with the brisk operation and precise fault isolation requirements of the 

multi-source FREEDM loop system, into larger distribution system so as to verify the 

results based on the hardware and the software simulations. Also the algorithms 

performance was evaluated based on a few changes made to the algorithm and test 

conducted on the test bed were compared to the simulated results.  

1.4 Thesis Outline 

The key content of this thesis has been divided into 6 Chapters.  Chapter 1 provides 

an introduction of the key issues faced today and presents the answer in form of the pilot 

differential protection system. The background of the thesis on the FREEDM system is 

also explained in this chapter.  
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In Chapter 2, a complete literary analysis which includes stating problems and its 

mitigation strategies in the form of the pilot differential protection are presented. For a 

comparison of traditional protection scheme, common protection schemes are described. 

A contrast of the advantages and drawbacks of the proposed scheme are made.  

Chapter 3 determines zonal protection, IFM (intelligent fault management) 

concepts as well as differential protection concept developed earlier. After that in Chapter 

3 ,the existing over current protection standards used in distribution systems is tested on an 

existing industrial relay by setting up a scaled model of a protective zone and applying one 

of fastest commercial relay that has been used widely in the industry for over current 

protections i.e. the SEL351 S over current relay on it. The new pilot differential protection 

system (which includes both the counter method and the 10 sample average window 

concept) is shown by altering the original pilot protection algorithm later in the same 

chapter. The simulation results of the new algorithm on the same test bed on PSCAD are 

shown in this section of the chapter. Chapter 3 studies the implementation of the new 

algorithm on hardware system and the results of the hardware and the software simulations 

are then compared with the hardware results.  

In Chapter 4 the new multi slope differential protection scheme formulation, 

testing, simulation and results are explained. Lastly in chapter 4 the effect of current 

saturation is explained and the results of the pilot protection system affected by current 

saturation are shown.  

In Chapter 5, the implementation of the pilot protection system in the GreenHub 

model is explained and the results are discussed. Next the implementation of the pilot 
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protection system in the IEEE34 node system with PQ loads is discussed and the results 

shown. Later implementation of the pilot protection system in the modified IEEE34 node 

system or LSSS system with SST loads is discussed and the results tabulated. And lastly 

the working of the substation and load type SST developed at FSU and the role of the pilot 

protection system in its protection are explained. The results of the pilot protection system 

for the protection of the modified LSSS system utilizing the above mentioned SST models 

are also tabulated. In the end, the conclusions and possible extensions as future work are 

shown in Chapter 6.  

Appendices A-C provides basic information on the studies carried out in this thesis.  

Appendix A is the PSCAD simulation files that are used for chapter 2 and 3 experiments 

for the test bed, dual slope/ point method, and the current saturation experiment. Appendix 

B presents the PSCAD simulation files for the GreenHub, IEEE 34, LSSS system and the 

modified LSSS system experiment. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Solid State Transformer [13] 

The SST is used for active control and management of connected renewable resources and 

loads to its secondary. The primary side is connected to the FREEDM Loop. It is speculated 

that the SST will allow the increment in power delivery and power quality. The SST allows 

the plug in and generation of various DGs and also allows the increment/decrement of loads 

into the grids without having any detrimental effects.  

2.1.1 SST Design [13] 

Utilizing the 15 kV SiC IGBT, higher frequency chopping is possible which is speculated 

to decrease the size, weight, and losses thereby making it a conceivable idea to replace 

traditional transformers. The material cost would also be lesser as the use of copper in such 

SSTs, would be much lesser as compared to traditional transformers.  

2.1.2 SST converter stages and its simulation parameters 

The SST consists of 3 stages i.e.  

1. AC-DC rectifier 

2. DC-DC Dual active H bridge (DAB) 

3. DC-AC inverter 
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Figure 2.1. SST topology [13] 

The model is replaced by an average simulation model by substituting the switching 

variable with continuous values which are averaged for 1 period of a switching cycle. In 

its basic system setup, the SST is a 20 kVA transformer connected to a 12 kV distribution 

system with a single phase output of 120 V. Single phase input voltage: 7.2 kV AC, 3 DC-

DC link that convert 3800 V DC (HV side) to 400 V DC (LV side) and voltage source 

inverters that converts 400 V DC to 120/240 V AC at 60 Hz for 1 phase 3 wires. The 

switching devices that are used for the H bridges in the DAB and inverter are 6.5 kV silicon 

IGBT for the high voltage H bridge (𝑓𝑠 = 1 𝑘𝐻𝑧) and 600 V IGBT for the low voltage H 

bridge (𝑓𝑠 = 10 𝑘𝐻𝑧). 20 kVA model can be considered as a building block and can be 

used to make large 200 kVA models.  
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2.1.3 Rectifier modelling 

The AC/DC rectifier converts the single phase 7.8kV AC voltage to 3 DC output of 3.8 kV 

while maintaining unity power factor at the input side. Utilizing the two current and voltage 

equation 

𝐿.
𝑑𝑖

𝑑𝑡
= 𝑣𝐿(𝑡)                                  (2.1) 

𝐶
𝑑𝑣𝑐

𝑑𝑡
= 𝑖𝐶(𝑡)                                 (2.2) 

Voltage equation for the circuit 

𝐿𝑠

𝑑𝑖𝑎
𝑑𝑡

+ 𝑉𝑝𝑐𝑐𝑎 + 𝑅𝑠. 𝑖𝑎 = 3𝐸𝑑𝑎    (2.3) 

𝑑𝑖𝑎
𝑑𝑡

=
3𝐸

𝐿𝑠
𝑑𝑎 −

𝑉𝑝𝑐𝑐𝑎

𝐿𝑠
−

𝑅𝑠𝑖𝑎
𝐿𝑠

         (2.4) 

Where 𝑖𝑎 = 𝐴𝐶 𝑠𝑖𝑑𝑒 𝑖𝑛𝑝𝑢𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑉𝑝𝑐𝑐𝑎 = 𝐴𝐶 𝑠𝑖𝑑𝑒 𝑖𝑛𝑝𝑢𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒, 𝐿𝑠 =

𝐴𝐶 𝑠𝑖𝑑𝑒 𝑖𝑛𝑝𝑢𝑡 𝑖𝑛𝑑𝑢𝑐𝑡𝑜𝑟, 

𝐸 = 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑐 𝑏𝑢𝑠, 𝑑𝑎 = 𝑟𝑒𝑐𝑡𝑖𝑓𝑖𝑒𝑟 𝑑𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑃𝑊𝑀  

For the next current equation 

𝐶
𝑑𝐸

𝑑𝑡
+

𝐸

𝑅𝐿
+ 𝑑𝑎𝑖𝑎 = 0              (2.5) 

𝑑𝐸

𝑑𝑡
=

−𝐸

𝑅𝐿𝐶
−

𝑑𝑎𝑖𝑎
𝐶

                        (2.6) 

Where 𝐶 = 𝑟𝑒𝑐𝑡𝑖𝑓𝑖𝑒𝑟 𝐷𝐶 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 

Based on these equations the equivalent average model is given 



 

                                                                      14 

 

Figure 2.2. Equivalent average model [13] 

In this case d-q control is used for the rectifier. An imaginary phase is developed which is 

90 degrees lagging to the main phase A is hypothesized. Now the differential equation for 

the voltage and current for the imaginary phase will be  

𝑑𝑖𝑚
𝑑𝑡

=
3𝐸

𝐿𝑠
𝑑𝑚 −

𝑉𝑝𝑐𝑐𝑚

𝐿𝑠
−

𝑅𝑠𝑖𝑚
𝐿𝑠

         (2.7) 

𝑑𝐸𝑚

𝑑𝑡
=

−𝐸𝑚

𝑅𝐿𝐶
−

𝑑𝑚𝑖𝑚
𝐶

                        (2.8) 

Where 𝑖𝑚 is input current for the imaginary phase, combining equation sets 1.4, 1.6, 1.7 

and 1.8 we get 

𝑑𝑖𝑎𝑚

𝑑𝑡

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=

3𝐸

𝐿𝑠
𝑑𝑎𝑚
⃗⃗ ⃗⃗ ⃗⃗  ⃗ −

𝑉𝑝𝑐𝑐𝑎𝑚
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐿𝑠
−

𝑅𝑠𝑖𝑎𝑚⃗⃗ ⃗⃗ ⃗⃗  

𝐿𝑠
         (2.9) 

𝑑𝐸𝑚

𝑑𝑡
=

−𝐸𝑚

𝑅𝐿𝐶
−

𝑑𝑎𝑚
⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑖𝑎𝑚⃗⃗ ⃗⃗ ⃗⃗  

𝐶
                                          (2.10)                     

Where    𝑖𝑎𝑚⃗⃗ ⃗⃗ ⃗⃗  = [
𝑖𝑎
𝑖𝑚

], and 𝑑𝑎𝑚
⃗⃗ ⃗⃗ ⃗⃗  ⃗ = [

𝑑𝑎

𝑑𝑚
] , 𝑉𝑝𝑐𝑐𝑎𝑚

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = [
𝑉𝑝𝑐𝑐𝑎

𝑉𝑝𝑐𝑐𝑚
]                     (2.11) 
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The single phase dq transformation is applied to the equations 1.9 and 1.10, and the 

differential equation is obtained 

[𝑥]𝑑𝑞 = [𝑇]. [𝑥]𝑎𝑚                                             (2.12) 

Where 𝑇 = [
sin (𝜃) − cos 𝜃
cos 𝜃 sin (𝜃)

] , 𝜃 = 2𝜋𝑓𝐿  , 𝑓𝐿 𝑖𝑠 𝑙𝑖𝑛𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦          (2.13) 

                (2.14) 

                         (2.15)  

Using the phase locking loop in figure 2.3 below , the voltage vector is adjusted according 

to the direction of d axis during the steady state. Hence the grid voltage component in the 

q axis will be zero, while for d axis it will be equal to the grid voltage. Hence the d axis is 

the control for the active current, and q axis is for the reactive current component.   
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Figure 2.3. Dq controller for rectifier [13] 

2.1.4 Modelling of the dual active bridge 

 

Figure 2.4. Dual active bridge [13] 

The DAB has 2 parts i.e. the HV Bridge and the LV Bridge. The rectifier regulates the high 

voltage side DC link voltage and the AC current is controlled to be sinusoidal. The low 

voltage DC link is controlled by the DAB converter. The dual active bridge scheme 
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provides zero voltage switching for all the switches, lesser voltage disturbances for the 

switches. The amount of power transferred being controlled by the phase angle difference 

and the magnitudes of the dc voltages at the two sending and receiving ends are given by 

the following equation. 

              (2.16) 

V =input side high voltage DC voltage, H f is switching frequency, L is leakage inductance, 

dc _link V is the secondary side low voltage DC link voltage referred to the primary side 

and 𝑑𝑑𝑐 is ratio of time delay between the two bridges to one half of switching period. 

2.1.5 Modelling of the inverter stage 

The DC/AC inverter changes the 400V DC to 240/120V AC, 1 phase/3 wires. The topology 

is shown in Fig.2.5 below. The inverter consists of six switches with three phase legs. The 

neutral point is joint to the third leg of the phase. The other two phase legs consists of four-

switch inverters that are regulated by Sinusoidal Pulse Width Modulation (SPWM). The 

third leg connected to the phase in the six-switch inverter normally is regulated to give a 

square waveform to deliver as the neutral phase and at same time achieve the maximum 

employment of the DC bus voltage. 
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Figure 2.5. DC/AC inverter topology [13] 

2.2 Relay protection design [6] 

The protective relay system design usually has circuit breakers, current transformers and 

relays which must coordinate together to function properly. Protective relays or systems 

are usually not required to operate during normal operation, but must be able to act swiftly 

during fault incidence so as to avoid serious outages and damages. Usually a relay system’s 

operating life will not be more than a few seconds, even when they might be connected to 

the system for many years. So testing becomes a very important part for these relays where 

they are put through immense conditions for long periods of time.  

In normal day to day use there are four factors that influence protection applications are 

1. Economics-Operation and maintenance cost 

2. Magnitude and level of Fault-Fault levels and positioning of voltage and current 

transformers 

3. Operating Practices-Accepted and practiced standards for efficient and strong 

performance 

4. History of the type of fault that usually occur-Past History on the type of fault occurring 

and the forecast of likely such events 



 

                                                                      19 

2.3 Design criteria for protection applications [6] 

In most cases the power system is divided into several zones of protection, each requiring 

its own set of relays, CT’s and PT’s. The following points are considered for designing a 

protection system 

a. Reliability-The Reliability of the system includes two elements dependability and 

security. Dependability is the correct operation in response to a problem in a 

system. Security is the amount of certainty that the relay will not operate in an 

inappropriate manner. Unfortunately both these aspects oppose one another, 

increasing security decreases dependability and vise a versa.  

b. Speed- As it takes only a couple of seconds to destabilize a system, so speedy 

operation of protection system becomes very important. But by increasing the 

speed, there can also be increase in unwanted or unexplained operations. High 

speed mostly indicates that the trip times are not higher than 50 ms (around 3 cycles 

of a 60 Hz system). 

c. Performance and Economics-Relays usually have set zones of protection provide 

better selectivity but they cost more in such cases [6].  

2.4 Zones of Protection [6] 

In power systems, a more general system configuration is to divide a system into protective 

zones. Now if a fault occurs inside the protective zone, appropriate action will be taken to 

isolate the particular zone from the rest of the system [6].  

 Zones are usually defined for: 

a) Generators, 

b) Transformers, 
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c) Buses, 

d) Transmission and distribution lines, and 

e) Motors. 

 Shown in Fig 6 is the concept of zone protection. Each zone is characterized by a closed, 

dashed line. Zone 1, for instance, has a generator and a transformer leads. Usually a zone 

might have more than one component. For example, zone 3 contains a generator-

transformer unit and a bus connection leads, and zone 10 has a transformer and a line.  

 

Fig 2.6. Protection Zones in a power system [6] 

 

Following are a few characteristics of Zones of protection [6]  

 Zones are always overlapped. 

 Circuit breakers are located in the overlap region. 

 For a fault in a particular zone, all the CB in that zone open up to isolate the fault. 

 Usually one CB to another CB can be used to define a protective zone. 
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 Neighboring zones are overlapped to escape the option of unprotected areas. With 

no overlap the area between two adjacent zones would not be in any zone and hence 

would not be protected. 

 As isolation during faults is done by circuit breakers, they should be placed in 

between devices in a zone and connections to the system i.e. breakers should be 

placed in each of the overlap region [6]. 

2.5 Different types of protection schemes used  

2.5.1 Overcurrent protection [12]: 

Mostly, there are two kinds of overcurrent relays used in the industry: 

1. Instantaneous overcurrent relay:  These relays operate as the name suggest 

instantaneously /immediately. The sensing relay trips when the current reaches the 

threshold limit. They are popularly utilized in bus/feeder protection. The 

instantaneous overcurrent relay is very helpful for protecting electrical units against 

high short circuit fault currents [14] [15].  

2. Time-delayed overcurrent relays: a time-order system is applicable to implement 

the back-up protection system. Time-current curve are applied in such a manner 

that the operation time is inversely proportional to the fault current.  If the fault 

current is lager, the relay will operate even faster. The general equation for the time 

overcurrent relay is:   

𝜏 =
𝐾

[(𝑃𝑆𝑀)𝑛 − 1]
                (2.17) 

              τ = operation time PMS= plug multiplier setting      K, n= preset constants. 
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There two most important settings for the time-delay overcurrent relay are the 

pickup value, and the other is the time delay. Time-delay overcurrent relays operate 

at a faster rate at high current as compared to slow operation at lower levels of fault 

current. Thus the curve follows an inverse time characteristic shown in the figure 

2.7 below. Time overcurrent relays have five different types of curves that are based 

on the slope of the time-overcurrent characteristic.  

 Definite time 

 Moderately inverse  

 Inverse 

 Very inverse 

 Extremely inverse 
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Fig 2.7.  is the graph for a general inverse-time–overcurrent relay characteristics.  

The curves are set for a fault current with time delay of 0.2 sec and fault current  

around 20 times minimum pickup current [6]. 

2.5.2 Differential Relays 

Differential protection scheme is a widely used protection scheme especially for unit 

protection like key component protection in power system like bus, generator, and 

transformers.   

2.5.3 Principle of current differential relay 

The operating principle for a traditional differential protection scheme is that the pickup 

current should be equal to the difference of the currents coming through the operating coil, 

and its working principle is based on Kirchhoff’s current law.  
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Figure 2.8. Currents in the differential system during normal operating condition when 

there is no fault [17] 

 

Figure 2.9. Currents in the differential system during in case of external fault [17] 

 

Figure 2.10.  Currents in the differential system during in case of internal fault [17] 

 

For the normal condition (shown in figure 2.8.), the currents at each side of the CTs are 

exactly equal in magnitude and opposite in phase. Thus, the secondary current that 

circulates in the pilot wire circuit doesn’t produce a trip. On a fault taking place outside the 

zone of protection (shown in figure 2.9.), the differential relay still has no current flowing 

into the relay as the currents in both the CTs rises in magnitude at the same time. Hence no 

trip is produced. When a fault actually happens inside the zone of protection, the current 
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IM (shown in figure 2.10.) will no longer be equal to IN, as hence, the imbalance current 

flow through the operating coil, after which the trip is generated.  

2.5.4 Percentage Differential Relay 

The traditional percentage differential has two coils as shown in figure 2.11 below: One is 

the biased coil that acts as the restraining coil, while the other is the operating coil. The 

bias or percentage differential is defined as the following quantity 

𝐵𝑖𝑎𝑠 =
(𝑖1 − 𝑖2)

(𝑖1 + 𝑖2)/2
                (2.18) 

The operating condition is defined as 

𝐼𝑜𝑝 =
(𝑖1 − 𝑖2)

(𝑖1 + 𝑖2)/2
>  𝑏𝑖𝑎𝑠 𝑐𝑢𝑟𝑟𝑒𝑛𝑡                 (2.19) 

 

Figure 2.11. Percentage differential relay schematic (18) 

 

Differential relays either have fixed or variable restraint that help to operate the relay. 

These restraining coils may have fixed or variable percentages, and general percentage 
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differential slope characteristic s are shown in Figure 2.12. The X axis is the restraining 

current 𝐼𝑅. The Y axis is the operating current 𝐼𝑂𝑃 required to operate the relay. Fixed 

percentage of the relays are usually between 10 % and 50% and they might have tap 

changers to modify the percentage. 

 

Figure 2.12. Common percentage differential protection characteristic [6]. 

2.5.5 Pilot Protection  

Pilot protection utilized for line protection gives high-speed instantaneous detection of 

phase-type and ground-type faults for 100% of the protected section from all terminals. 

This is the optimal primary protection intention. These systems utilize a communication 

path to send signals from the relaying system from one end of the line to the other end. The 

functioning principle is to compare the two relays for their currents at each terminal of the 

transmission line. If the two currents are equal, there is no fault on the transmission line, 

else when the two currents are not equal, there is a fault in the transmission line. 
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Figure 2.13. Topology schematic of pilot protection [19] 

The pilot protection systems can be divided into two categories: 

1. with use of channel: 

a. Channels is not vital for trip operations; also known as blocking systems 

b. Channels is required for trip operations; also known as transfer trip systems 

2. With use of fault detection principle i.e. the comparison at the following quantities at 

several terminals: 

a. Power flow is measure between the terminals, also known as directional comparison 

b. The relative phase position of the currents are measured between the terminals, also 

known as phase comparison  

2.5.6 Directional overcurrent protection 

The directional overcurrent relays depends upon a reference voltage phasor, for estimating 

the direction of the fault. For all functional purposes, the system voltages do not change 

their phase positions much when a fault takes place. In comparison, line currents can 

deviate about 180 degrees (approximately reverse to the direction or flow) for faults that 
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take place on one side of the CT relative to a fault on the other side of the CT. After a fault 

occurs, the fault current has a characteristic phase angle approximately analogous to the 

voltage phasor. Hence the fault direction is decided by analyzing the current phasor with 

respect to the reference voltage phasor measured at the measurement location on the power 

line. This requires measurement of both current and voltage, hence it is costlier.  

 

Figure 2.14. Directional relay operating characteristics [6].  
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  2.6 Use of pilot line differential protection: a comparative study 

 This is a compilation of literary papers to justify the use of differential protection with 

communication link being fast, selective, reliable and robust in smart grid systems like the 

FREEDM system.  

Definitions 

 Micro grid:  The term micro grid is used for a low-voltage (LV) network smart grid with 

island-operation capability. 

Smart grid: A smart grid is a modern electrical grid that utilizes digital information and 

communications technology to collect and operate on that data, in a programmed manner 

to better the efficiency, reliability, robustness, and cost effectiveness of the generation, 

transmission and distribution of electricity 

1. Differential protection of micro grids with central protection unit support 

[20]: 

Traditional fault current detection usually fail in micro grid systems because of a number 

of reasons like loop systems, higher fault current levels in looped system, and other factors 

[7] [8] . It is an extremely important aspect to estimate the fault currents due to inverter 

based DGs. Using differential protection system is advantageous as the system doesn’t 

require prior knowledge of fault currents and value. Hence due to the ever changing fault 

current levels, differential protection is favored as it can easily adapt to such changes. It 

doesn’t require prior knowledge or previous working’s data. The differential protection 

system is also immune to operate without voltage fluctuations. The differential system can 

also easily adapt to the new configurations, new developments and infrastructure. Thus 

differential protection is considered to be one of the main contenders for development of 
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protection systems for micro grids. However long transmission/distribution lines require 

communication setup for employing differential protection. The differential protection can 

be applied to an entire system by using an advanced communication link for data 

processing. 

 

2. Universal pilot wire differential protection for distribution systems [21] 

This paper shows a unique pilot wire differential protection scheme for distribution 

systems. The ideas and principle of the traditional pilot wire differential protection is 

adopted here. After which many varieties of numerical differential protection schemes 

utilizing the pilot wires as communication channels have been shown in the paper. Current 

differential protection has always been accepted in power systems because of high 

robustness, precision, and sensitivity. Current differential based on application can be 

classified as the following types of protection system. 

1. Pilot wire protection 

2. Micro wave communication protection 

3. Optical fiber communication protection 

4. Power line carrier protection 

3.  Communicating line differential protection for urban distribution networks 

[22] 

Increasing reliability of system is of paramount importance, as most systems are changing 

from radial systems are changing from radial systems to closed loop/ meshed systems. 

Using communication links, the paper authors have developed a type of protection using 
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differential current protection principle. The differential protection scheme is adopted 

because for loop systems with continuously varying line conditions the following 

protection methods can be used.  

1. Directional over current protection 

2. Distance relay 

3. Line differential protection 

Selectivity is an extremely important factor i.e. a particular part of the network remains 

unaffected by faults outside its zone of protection. Considering this fact, for the above 

mentioned statements will have the following differences.  

 Distance protection will require a PT/VT for voltage measurement, and is not 

recommended for short lines without communication and back up protection. But 

they can act as good back up protection with over reaching capability. Also a (V/F) 

protection is also required with this unit. 

 Directional over current protection also requires a VT/PT for voltage 

measurements. Mostly it requires communication channel for internal 

communication between several related function making the communication 

channel heavily loaded. Also the specifications are difficult to calculate and also 

the trip times are not extremely fast. 

 As compared to the mentioned lines above, the pilot differential protection system 

has extremely fast trip timings. The relays require communication link between 

them. It cannot be used for large distances without communication link. The 

functionality is well tested and observed. Over current protection is also required 
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as an added protection. Earth fault protection application also can be included into 

the protection system.  

Considering all the factors, the authors concluded that for the modern power system with 

loop/meshed networks line differential protection is a good fit.  

4. Protection principles for future micro grids [23] 

Traditional fuse protection systems cannot be used in LV micro grid distribution systems 

because of limited fault current feeding capabilities of converters/limiters limiting the fault 

current [23]. Hence the protection system for a micro grid must include the following 

properties. 

 Adaptive capabilities 

 High speed communication 

 High speed trip detection and operation inside the micro grid 

 Unnecessary tripping of micro grid for fault on network and vise a versa 

Based on the following literary reviews it shows that utilizing a fast differential pilot 

protection scheme could be an answer to the some of the problems faced by protection 

systems in smart grids/micro grids. 
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CHAPTER 3 

UPDATED ALGORITHM AND THE COMPARISON OF THE HARDWARE TEST 

AND SIMULATION RESULTS 

3.1 Intelligent fault management system theory [12] [24] 

The IFM (Intelligent Fault Management system) is an algorithm for the application of 

distributed grid sense for the FREEDM system architecture. The algorithm is a complete 

protection system that is running in the background constantly by the central processing 

unit. The Intelligent Fault Management system detects and isolates fault on the 12.47 kV 

side i.e. the main loop of the FREEDM system. The Intelligent Energy Management (IEM) 

communicates with the IFM through RSC channels. The IEMs record the power flow 

injections in the load distribution system. Both the solar and wind injection are integrated 

through the IEMs. Hence the IEMs can provide consultative process request on real time 

energy basis future market forecasts as well. So when a fault occurs, the IFM detects the 

fault location and the trip signal is sent to the corresponding Fault Isolation Devices (FIDs) 

which isolate the fault. 

Distributed Grid Intelligence (DGI) controls the entire operation of the FREEDM system. 

The DGI is assigned to the IEM and IFM devices. So both the IEM and IFM devices will 

run the DGI software. 
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Figure 3.1. FREEDM model with multiple levels of control put reference [24] 

 

Above shown is the FREEDM control system architecture of the FREEDM control system 

architecture. The levels are explained as following [24]. 

1. Level 1- This is the user level , where in residential loads, batteries and other DESDs 

connected to the grid are shown 

2. Level 2-This level is at the SST (Solid State Transformer) level. In this the IEM regulate , 

manage and control the power flow of different DRERs (solar, wind). 

3. Level 3- This is the level for the FREEDM system control and is present in all the IEM and 

IFM devices through the DGI software. 

3.2 Protection Zone Concept 

Protective zone concept is applied to the FREEDM system in which the system is divided 

into multiple zones, using the FIDs. The FIDs act same as a normal Circuit Breaker, the 

only difference being that the FIDs are capable of extremely fast current interruption in 

matter of micro seconds [Put reference]. The loads, DRERs and the DESDs are maintained 
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through the SST. So if a fault were to occur inside the zone, the FIDs at the end of the zone 

will operate to isolate the fault from the main loop. And also the SST connected to that 

zone will shut down, so that the local distributed generation is not affected by this fault. 

The FREEDM protection strategy is shown in the figure below.   
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ZONE 3

ZONE 2
ZONE 0
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Figure 3.2. IFM zones of protection strategy [4] 
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Figure 3.3. Alternate concept of the IFM zones of protection in FREEDM [5]. 

 

Above shown is the FREEDM zones of protection strategy in which there are 3 zones of 

protection and 1 large protection zone which includes the other 3 zones called Zone 0. The 

Zone 0 protection scheme will be seen as a backup protection scheme for the FREEDM 

system. The Novel fast pilot differential protection developed previously developed will 

be employed in each of the three zones. The Analog Merging Units (AMU) are connected 

to each of the terminals of the FIDs, SST primaries to record and digitize the magnitude of 

the current, and transmit the data back to the IFM. Every Zone has a separate IFM which 

will be running the DGI software with the pilot protection algorithm embedded in it [put 

reference].  

 

The primary protection scheme is based on differential protection employed in each zone 

[5] [12]. The sum of currents in any particular zone should be zero. This demonstrates that 

either there is no fault inside the zone or fault exists outside the zone (also for which the 

protection unit doesn’t trip). Now if the sum of currents in the zone is not zero, in that case, 

the faults exists within the zone, and then the IFM transmits the signals to the terminal end 

FIDS and SST in that particular zone to open up the zone and clear the fault on the main 

loop. All the samples sent from the AMU to the IFM have GPS time stamps to ensure the 

accuracy of the protection system algorithm. Here the SST acts as C.B /switch between the 

main loop and the secondary distribution system, and so the firing angle of the SST is made 
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zero during a fault, so as to disconnect the SST. The switching delay time for the SST is 

very less. 

 

The IFM collects all the samples values from the AMU with identical time stamps and 

sums up all the currents in the zone and is the sum is zero in that case there’s no fault, now 

if the sum is not zero, it holds the samples and analyses the next incoming data. For the 

next 10 samples, if the sum is still not zero, in that case the IFM declares a fault and sends 

a trip signal. If for the next 10 samples, the sum of the currents is zero in that case, there is 

a fault declared and the IFM resets the counter. The protection algorithm is employed 

through microprocessors [12]. 

 

The secondary protection algorithm is an overcurrent protection algorithm. In this scenario 

the IFM analyses all the current samples, and then compares it to a preset value that is 3-5 

times the rated current. If the sample is greater than the prefixed value for the next 15-20 

samples, in that case the IFM issues a trip signal to the FIDS. And if it doesn’t last for 15-

20 samples, then no trip signal is issued by the IFM. Zone 0 will act as backup protection 

of Zones 1, 2, and 3. Usually the measured values of the current in zone1, 2, and 3 are 

compared and the difference of the magnitude and direction of the currents are sent to the 

IFM. The coordination between Zone 0 and Zones 1, 2, and 3 are done in such a way that 

the protection algorithm is exactly the same, but the evaluation time is 5-10 times that of 

other zones/ so it will only operate when the zones 1, 2, and 3 protection algorithms fail to 

operate. So I this case the IFM provides both primary and backup protection. 
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Figure 3.4. IFM system with the in cooperation of the AMUs 

3.3 Sampling data     

The speed, accuracy and precision of the IFM protection algorithm depends on the 

execution, sampling and communication method. The current from the CT is converted 

into a voltage signal by keeping a small resistor on the secondary side of the CT. The AMU 

consists of a microcontroller, which samples the analog voltage signal and gives data in a 

digital form. GPS (time stamps) are also added by the AMU, so that only data with similar 

time stamps are used in the algorithm by the IFM. So the IFM collects the sampled data 

with similar time stamps. It makes a sum of these sampled values from continues 

measurements, to see if the sum is zero or not. A tolerance of 5 % is assumed which defines 

the minimum operation current for the protection algorithm. For a fault, the IFM will hold 

down and count the next incoming samples. It will make a sum of the next 10 samples with 

time stamps, which would be 2 ms for a 100 samples/cycle measurement. If the sum of the 
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samples is not zero for all the 10 time stamps, it means that there is a fault in the zone and 

a trip signal is sent to the FID. If any of the 10 samples yields a sum of zero, the IFM 

declares that “no fault has occurred” and it resets the counter and starts recounting. This is 

supposed to be the primary protection. The AMUs are capable of sampling at a max rate 

of around 3.33 kHz. For this we have used the Ni CRio data acquisition unit, the working 

of whom and its slave measuring units is explained in upcoming sections. The 

communication channel used is Ethernet and it is IEC 61850 compatible (Substation 

automation communication regulations). The Ethernet connects the microcontroller 

(master) to the measuring units (slaves).  

 

Figure 3.5. Schematic of protection system explained above [12]. 
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3.4 Explanation of current differential algorithm 

The novel pilot differential pilot protection algorithm was previously developed at ASU. 

The basis of this algorithm is actually developed from percentage differential protection 

used very widely and commonly in the power industry. It is used for bus protection/ 

transformer protection. So essentially the sum of currents flowing in a particular unit equals 

the sum of currents flowing out during normal operation. 

 

Figure 3.6. Differential current protection circuit diagram put reference [6] 

 

Based on the figure above, the primary current is 𝐼𝑝 and the secondary current is 𝐼𝑝 − 𝐼𝑒, 

hence for the same ratio and type of current transformer 

𝐼𝑜𝑝 = 𝐼𝑒
" − 𝐼𝑒

′ ≅ 0    Under normal operation [6] 

Usually this value not zero, but very small. This is actually the mismatch between the two 

CTs on each end. The current in these inhibit the operation of these currents.  
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 A previously developed novel pilot differential protection algorithm with percentage slope 

characteristic is shown below. The differential protection scheme includes 𝐼𝑜𝑝(operating 

quantity) which is the summation of all the currents from all the recording/measuring 

points, and 𝐼res (restraining quantity) which is the sum of the absolute values of the currents 

from all measuring points. A differential slope is also defined as the ratio of the operating 

quantity to the restraining quantity.  

 

Slope
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Fig 3.7. Slope percentage characteristic [12] 

 

The operating and restraining quantities are initially calculated, and then the differential 

slope characteristic is calculated. If the slope is greater than a prefixed value, it will be in 

the fault region and if the slope is less than the value, it’s in the blocking region of the 

diagram shown above.  The mathematical expression for the percentage slop characteristic 

can be defined as follows [6].  
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𝐼𝑜𝑝 − 𝑆0. 𝐼 𝑟𝑒𝑠 > 0         (3.1) 

𝑎𝑛𝑑     𝐼𝑜𝑝 > 𝐼0                 (3.2) 

Where         𝐼𝑜𝑝 = |∑ 𝐼�̇�
𝑚
𝑖=1 | 

𝐼 𝑟𝑒𝑠 = ∑|𝐼�̇�|

𝑚

𝑖=1

 

𝑚 is equal to the total number of measuring points 

𝐼𝑖 is the current amount at each measuring point 

𝑆0 is the standard slope coefficient 

𝐼0 is the minimum operating current (10 percent of rated current) 

Now in comparison to 𝐼𝑜𝑝 and 𝐼 𝑟𝑒𝑠 , 𝐼0 is small, and hence we can write equation (3.2) as 

𝐼𝑜𝑝 − 𝑆0. 𝐼 𝑟𝑒𝑠 − 𝐼0 > 0         (3.3) 

Now hence in equation 3.3 , both equation 3.1 and 3.2 are satisfied, hence we can write it 

as 

|∑𝐼�̇�

𝑚

𝑖=1

| − 𝑆0.∑|𝐼�̇�|

𝑚

𝑖=1

− 𝐼0 > 0         (3.4) 

Now using the equivalent slope defined as 

𝐿𝑒𝑡 𝑆 𝑏𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 𝑆 = |∑𝐼�̇�

𝑚

𝑖=1

| − 𝐼0 ∑|𝐼�̇�|

𝑚

𝑖=1

⁄       (3.5) 
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Hence the expression can now be written as 

𝑆 > 𝑆0        (3.6) 

This is very convenient for the calculation of the slopes [12]. 

 

So the equation 3.6 can be used for more practical applications like fault detection. The 

slope characteristic prevents mis trips in case of abnormal power system condition like load 

switching, CT saturating during fault, CT erode, transformer inrush current etc. [12]. 

3.5 Traditional over current protection using the SEL-351 S relay 

This section includes the test experimental setup for the over current protection scheme 

with a commercial relay of Schweitzer Engineering Labs. This experiment will show the 

current benchmark for protection in the industry and also show the need for a faster, 

accurate and precise protection scheme. The figure for the single phase test setup is shown 

below.  
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Figure 3.8. Single phase test setup for the SEL 351S relay 
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Figure 3.9. Schematics of the test setup for the SEL 351 S relay 

 

As shown above, the test setup was developed at ASU [12]. The figure shows that it has 

two sources i.e. two basic 120 V, 60 Hz, utility grid sources (supplied at ASU). These 

sources are connected to SW1 and SW2. These are then connected to equal R-L circuits 

which contain a 2 ohm resistor and a 5mH inductor, which indicates a 1 mile distribution 

line which supply the loads. The rating of the load is 10 ohm, 1.2 kW which is arranged by 

setting up (2X2) 300 W 100 ohm resistor bundles. The fault branch is 2.5 ohm 1 kW resistor 

connected through a switch SW3 which is in parallel to the load to create a shunt fault. The 

CTs are rated for a (100:5) ratio and are connected at the two source terminals and the load 

terminals. 

 

The three CTs measure current at each point mentioned above. The CT primaries are 

double wound, so that adequate current is produced in the secondary, thereby making the 

equivalent ratio as 50:5 for each CT.  

For pre fault condition: 

In the initial case, the switches SW1 and SW2 are closed while SW3 is open. The grid 

source feeds the load and this is defined as the normal operating condition/ pre fault 

condition. The currents 𝐼1, 𝐼2 𝑎𝑛𝑑 𝐼3are measured by CT1, CT2 and CT3 respectively. 

During normal operation  

𝐼1 + 𝐼2 = 𝐼3 
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When SW3 closes, the loads are bypassed and no longer the equation 𝐼1 + 𝐼2 = 𝐼3  holds 

true. The fault current is approximately 3 times the rated/nominal current. The table below 

shows the pre fault and fault condition currents.  

 

Table 3.1: pre fault and fault condition currents  

 I1 I2 I3 

Pre-fault 6.4A 6.4A 12.8A 

Fault 16.7 A 16.7A 6.7A 

 

From the table shown in Table 1, utilizing the RMS value and the power flow current 

direction as reference direction.  Based on the CT equivalent ratio, the secondary current 

input from the CT is calculated and listed in table 2.  

 

Table 3.2: CT output current 

 I1  I2 I3   

Pre-fault 0.64A 0.64A 1.08A 

Fault 1.67 A 1.67A 0.67A 
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3.6 SEL 351 S relay 

The SEL 351 S relay has a multitude of protection schemes including over current, 

instantaneous, time varying, inverse, directional and other protection schemes. It is the 

most selling unit for SEL and can be used in a variety of systems/models. It can be used 

for distribution protection, unit protection, line protection etc. The SEL 351 S has Ia, Ib 

and Ic inputs as shown in the figure below. i.e. it has 3 phase current input, along with 

Va,Vb and Vc inputs i.e. 3 phase 1 feeder voltage input. 

 

Figure 3.10. SEL 351 S schematic for front and back panel [25] 

For the test bed setup, we are only going to connect 𝐼1 𝑡𝑜 𝐼𝑎 input of the SEL 351 S relay. 

The relay is configured by using the AcSELerator software. For our purposes we will be 

using the instantaneous over current protection scheme. There are four levels of the 

instantaneous over current elements available in the SEL 351 S. For the instantaneous O.C 
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protection, the setting of the 50P1P bit for the relay is to be set which will be the pickup 

current value.  

Setting range for the 50P1P: 0.25 – 100 A (5A nominal phase input current) [25]. 

Now for our setting we set the bit value as 1.5 times the nominal secondary current, and 

when the switch is opened the following fault event is created which is shown below. 

 

Figure 3.11. Fault inception and detection timing as shown in the AcSELerator software 

 

The event manager records an event in the relay whenever a trip, or any other such 

command is issued. This event graph is stored in the relay and can be viewed any time later 

on. The graphs show that the detection time for the SEL 351 S relay is around 1 cycle. This 
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operation time is one of the fastest as compared to any relay in the power system industry. 

This gives us the set standard for protection time for the instantaneous O.C relay in the 

existing commercial protection system. This is not fast enough to catch up with the 

operation speed of the FID system [12] which can interrupt faults extremely fast in the 

FREEDM system.  

 

Drawbacks of the SEL 351 S: 

 The SEL 351 S is only capable of one 3 phase input for current and voltage, so it’s 

not possible to protect multiple 3 phase feeder lines with this relay [25]. 

 The relays can communicate with each other using the mirror bit communication, 

but the amount of data that can be sent is minimal and industry experts still prefer 

SCADA for communication setup. Hence a need for a better, faster, reliable and 

more data capacity handling communication method is required [26].  

 Also the mirror bits can lose information because of loss of fiber or loss of DC 

power. The delay due to mirror bit communication can be up to 6 cycles.  

 The relay also only accepts analog signals, so it can be used only for unit protection, 

particular section of line but it can’t be used for protecting a large distribution 

system.  

 Based on these questions, ASU developed the previously mentioned pilot 

protection scheme with slope differential characteristic. This method uses digital 

sampling and could communicate with FID’s, SST’s. Using the AMU, the data 

from the CT is transmitted to the IFM with little or no loss of information. The new 
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developments in the previously developed pilot protection scheme and the 

implementation of the new pilot protection scheme for large systems/ large 

distribution systems will be explained in the upcoming sections [12]. 

3.7 New pilot protection algorithm and its simulation on the test bed 

In the previous sections, the pilot differential protection was designed to operate on the 

main loop of the FREEDM system i.e. the high voltage side of the SST. The system has an 

algorithm to find out the location of fault within a certain zone/section of the loop and to 

send the trip signal to the FIDs located at the two terminal end. This achieved by digitally 

sampling  the current waveform at different measuring points in a given zone and a fault is 

conclude when the differential protection algorithm equation doesn’t hold true for a given 

se t of samples. The figure below represents how a fault is detected in the counter method.  

   

Figure 3.12. Counter method algorithm 

A fault is said to exist in the particular zone when the left side expression evaluates to be 

greater than the set parameters 𝑆0explained in the earlier section for 10 consecutive 

samples. The counter is reset after every 50 samples to prevent transient and other 

disturbances over long periods of time to cause false trips.  

This algorithm is basically an extension of Kirchhoff’s current law , i.e. if the sum of 

currents in a zone no longer equals zero in that case, there must be a current existing in that 
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zone that is unaccounted for and that’s how a fault is concluded. The quantity 𝑆0 is set to a 

prefixed value of 0.3 to make sure that the fault is only concluded when the vector sum is 

at least or greater than 30 % than the magnitude sum of all currents in that zone. The 

quantity 𝐼0 term helps remove zero crossing disturbances and hence is kept around 10 % 

of normal operating line current.  

          (3.7) 

This equation shows that the overall value of that equation should be less than 𝑆0 so that 

there is no trip.               

The delay between the actual fault occurrence and the trip signal generation is affected by 

two components. The communication delay between the main CPU module and the AMU 

units and the delay associated with the physical hardware performing the complex 

computations. The hardware which will be explained in the next section in detail, consists 

of the NI CRio 9022 main CPU module, NI 9144 chassis housing the NI 9215 Analog to 

Digital converter slave measuring modules. These are connected to the CT to measure the 

current. The hardware is connected in a daisy chain network.  

3.8 Pilot protection model simulation is PSCAD 

 The pilot protection system module was constructed, tested and simulated in PSCAD with 

2 control switches for activating the primary differential protection and an O.C backup 

protection. Both the main pilot protection and the backup protection work independently 

of each other, and hence each of them have a separate trip signal designed. The input 

receives the CT outputs. For the simulation testing a similar test bed is developed in 
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PSCAD using the data from the real test bed explained in the previous section. The fault 

currents, and the CT currents all match the values that were used for the SEL 351 S relay 

experiment. This will help us examine closely the results for the simulation and the actual 

testing on the same test bed. The test setup diagram in PSCAD is shown below.  

   

Figure 3.13. Test set up for simulation is PSCAD. 

The figure of the protection block using the ‘counter system’ is shown below 
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Figure 3.14. Pilot differential protection using the counter method 

The above figure shows the internal working of the ‘counter system’ pilot differential 

protection system. On the extreme left, the CT inputs are sampled by multiplying them 

with the impulse train. The impulse train is usually set at a standard frequency at which 

sampling is done. From the sampled values the vector sum of current (𝐼𝑜𝑝𝑒𝑟𝑒𝑎𝑡𝑖𝑜𝑛) and 

magnitude sum of currents (𝐼𝑟𝑒𝑠𝑡𝑟𝑎𝑖𝑛𝑡) are calculated. 𝐼0 is subtracted from 𝐼𝑜𝑝𝑒𝑟𝑒𝑎𝑡𝑖𝑜𝑛  and 

the ratio of this value to 𝐼𝑟𝑒𝑠𝑡𝑟𝑎𝑖𝑛𝑡 is sued to calculate the equivalent slope 𝑆. The value is 

then compared to 𝑆0 = 0.3 . If 𝑆 > 𝑆0  

Then the counter is augmented by 1 for every sample until it reaches 10 and then a trip 

signal is generated. The counter is reset after every 50 clock cycles to ensure that only a 

genuine fault will generate a trip signal. When a trip signal occurs a DC output of 1 is 

generated and held till a reclosing action is not given or commanded. The sampling rates 



 

                                                                      55 

have a varying effect on the fault detection times.  The final trip signal output is then 

delayed by the value calculated by the hardware delay calculation implemented to model 

the delay imposed by the NI cRIO -9022 and its connected slave modules. 

3.8.1 Construction and Testing of Backup Overcurrent Protection Component 

The overcurrent portion of the pilot protection system simply serves as a backup protection 

to the differential system. It compares the instantaneous current received at the CT 

measurement modules to a preset value of 3+ times the normal rated current. Similar to the 

pilot system, it increments a counter for every sample that is above the preset threshold 

value. When the counter reaches 20, a trip signal is generated. An additional counter resets 

the trip signal counter every 200 samples to prevent false trip signal generation. The 

objective of this backup system is to provide system protection in the event that a fault is 

not detected by the differential system.  Consequently, when a fault is on the low voltage 

side of the SST, the backup system will also generate a trip signal since the differential 

system will not consider this a fault. 

 The backup overcurrent system is not selective, and thus cannot properly isolate a 

fault in its respective zone. The system only requires one of the CTs to measure above the 

threshold in order to generate a trip signal. As this is a backup protection system, this is not 

necessarily of any concern. The backup system PSCAD circuit is shown below in figure 

15. 
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Figure 3.15. Backup Overcurrent Protection PSCAD Circuit. 

 

3.8.2 Investigation of Hardware Communication and Processing Delay 

Based upon data and benchmark tests published by NI, the delay associated with the 

hardware utilized in the prototype test bed system manifests in two ways: “slave cycle” 

time and “program update” time. The “slave cycle” time is the amount of time required for 

all of the sampled data from the CTs to arrive back to the primary module after it has been 

requested from the primary module. The “program update” time refers to the time it takes 

for the primary module to process the data. This delay is affected by the number of sample 

points or slave modules, and the length of the communication cable. Both operations occur 

simultaneously in the hardware, so whichever process is slower is the limiting factor. 

Therefore, the maximum sampling clock speed of the CT waveforms is limited by the total 

number of measurement points (from CT waveforms) and the total length of 

communication wiring.  
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 The delay time calculations and model delay implementation is performed by 

utilizing data given by NI, available at [27] and [28]. The NI cRIO-9022 module is the 

primary module currently being used in the prototype test bed. The basic delay computation 

is made using the following data. As shown in the table below, this module will only allow 

up to 10 measurement modules to be utilized while sampling at the desired speed of 

6000Hz, or 100 samples per 60Hz cycle. This indicates that a maximum of 10 SSTs per 

zone could be implemented using this hardware configuration at 6000Hz sampling speed. 

This does not necessarily represent a problem, as 10 SSTs per load is an unlikely scenario. 

Delay data for NI PXI-8106 Module: 

BASE cRIO-9022 Logic Delay: 0.111 ms 

Additional Delay Per I/O:  5.1377μs 

Table 3.3. Maximum Measurement Modules Supported at 1200Hz and 600Hz Sampling 

Speed for cRIO-9022 

Sampling Speed: Maximum Measurement Modules 

1200Hz (20 samples/cycle, 17ms trip response) 140 

6000Hz (100samples/cycle, 1.9ms trip 

response) 

10 

 

While this module is not currently being used in the test bed system, a quick investigation 

into the advantages of using a more advanced piece of hardware was performed. The NI 

PXI-8106 is a considerable more powerful primary module, at an approximate 25% 
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increase in cost over the cRIO-9022. This module offers a 21 times increase in supported 

measurement modules at the desired sampling speed of 6000Hz. This increase performance 

would allow for an even faster sampling speed if desired, as there is no practical need for 

the ability to implement 211 SSTs per zone. 

Delay data for NI PXI-8106 Module: 

BASE PXI-8106 Logic Delay: 0.036 ms 

Additional Delay Per I/O:  .6171μs 

Table 3.4. Maximum Measurement Modules Supported at 1200Hz and 600Hz Sampling 

Speed for PXI-8106 

Sampling Speed: Maximum Measurement Modules 

1200Hz (20 samples/cycle, 17ms trip response) 1,291 

6000Hz (100samples/cycle, 1.9ms trip response) 211 

 

 The slave cycle time is the amount of delay associated with the communication 

between the daisy chained current transformer measurement modules and the primary 

module. This data is for an NI 9144 chassis with NI 9215 module. The total delay is the 

sum of the delay due to Ethernet cable length and the delay due to each measurement 

module. 

Delay data for NI 9144 Chassis with NI 9215 Module: 

Base Delay: 8.096μs 

Delay per measurement module: 3.476 μs 
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Ethernet Cable Length Delay per meter: 5 ns 

Table 3.5. Slave Cycle Limitations for NI 9144 Chassis with NI 9215 Modules 

Max Modules at 0 meters of Ethernet Cable 

Sampling Speed: Maximum Measurement Modules 

1200Hz (20 samples/cycle, 17ms trip response) 2,317 

6000Hz (100samples/cycle, 1.9ms trip response) 462 

Max Ethernet Length at 3 Measurement Modules 

Sampling Speed: Maximum Ethernet Length 

1200Hz (20 samples/cycle, 17ms trip response) ≈ 148,100 meters 

6000Hz (100samples/cycle, 1.9ms trip response) ≈ 26,933 meters 

Max Ethernet Length at Max Supported Number Modules 

Sampling Speed: Maximum Ethernet Length 

1200Hz (20 samples/cycle, 17ms trip response) ≈ 59,500 meters 

6000Hz (100samples/cycle, 1.9ms trip response) ≈ 22,500 meters 

 

 This delay data computation is included in the PSCAD Pilot Protection component 

and adds the computed amount of delay time to the time of the final trip signal generation. 

Also included in the model are two error outputs, which indicate if the amount of delay 
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time for either the program update or slave update is longer than would be allowable by 

the sampling frequency. This delay segment of the PSCAD component is shown below. 

 

Figure 3.16. Hardware/Communication Delay Computation Circuit. 

In order to test the effect of this delay, two test cases are presented. One test case 

investigates the amount of additional delay if 4 SSTs are included in one zone of the 

FREEDM Loop, while the other test case shows the additional amount of delay if 8 SSTs 

are included in one zone. These simulations are running at 6000Hz, with a fault occurring 

at precisely 1 second, a zero-crossover point. The delay data utilized is for the crRIO-9022 

with NI 9144 / NI 9215. For reference, the amount of delay to generate a trip signal with 1 

SST is shown below.  
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 For the 4 SST/Load case, the theoretical hardware processing/communication delay 

time should be 0.111ms base delay + (6)5.1377μs delay for 6 I/Os since there are 6 total 

CT measurements being made. This will result in a total hardware delay time of: 0.1418 

ms. Figure 3.17 below shows the simulation result, which closely matches the calculated 

time delay. 

 

 

Figure 3.17. 4 Load Communication/Processing Delay 

 For the 8 SST/Load case, the theoretical hardware/communication time should be 

0.111ms base delay + (10)5.1377μs delay for 10 I/Os since there are 10 total CT 

measurements being made.  This will result in a total hardware delay time of: 0.1624ms. 

Figure 3.18 below shows the simulation result, which closely matches the calculated time 

delay. 
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Figure 3.18. 8 Load Communication/Processing Delay 

 These results demonstrate the algorithm’s ability to accurately delay the trip signal 

by the calculated results. These delay calculations are based upon test bench data from NI, 

and the parameters can be easily modified to simulate the delay for any other NI hardware 

configurations.  

3.8.3 Rolling Window concept [30]  

A new method of the rolling 10-sample or more average was proposed and implemented 

into the system. This is performed by using the existing formula to calculate the value of 

the slope for each sample, and saving the value. The previous 9 samples are then added to 

the present slope value and averaged. Once this average rises above the 0.30 slope 

threshold value, then a fault is concluded and a trip signal generated. This method 

eliminates the need for a reset counter while protecting the system from transients or other 

non-fault occurrences which have the potential to generate an unwanted trip signal. 

Furthermore, to increase reliability while maintaining fast operation speed, the sampling 

speed and number of averaged sampled can be increased. A pictorial depiction of what is 

being done is shown in figure 19 below, and a snapshot of the actual circuit constructed is 

shown in figure 20. 
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Figure 3.19. Rolling Slope Average  

 

Figure 3.20. 10 Sample Rolling Average Block [29] 

3.8.4 Investigation of Fault Timing on Pilot Protection Algorithm Reliability and 

Consistency for the test bed simulation in PSCAD 

In order to test the consistency and reliability of the pilot protection system and the backup 

overcurrent protection, an investigation into the impact of fault timing and the overall delay 

until trip signal generation needed to be completed. To test the system, faults were 

simulated in standardized increments over several periods in order to test how the system 

reacts when a fault occurs at different points of the 60Hz cycle waveform on the test bed 

setup shown above in figure 13. These tests were carried out at both 1200Hz and 6000Hz 

sampling speeds, and the delay incurred due to the physical hardware communication 

(which is investigated in previous section) was neglected. The following tests were run in 

order to test for system consistency: 



 

                                                                      64 

1. Differential System at 6000Hz sampling speed for 4 cycles. 

 Reset Counter On,  

 Reset Counter Off,  

2. Backup Overcurrent System at 6000Hz sampling speed for 4 cycles 

 Reset Counter On,  

 Reset Counter Off,  

3. Differential System at 1200Hz sampling speed for 4 cycles. 

 Reset Counter On,  

 Reset Counter Off,  

4. Backup Overcurrent System at 1200Hz sampling speed for 4 cycles 

 Reset Counter On,  

 Reset Counter Off,  

5. Differential System at 1200Hz sampling speed for 4 cycles. 

 Reset Counter On,  

 Reset Counter Off,  

6. Differential System with 10-sample Rolling Window Average Slope for 4 cycles 

 6000Hz sampling speed,  

 1200Hz sampling speed,  
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 1000Hz sampling speed,  

7. Backup Overcurrent System with 10-sample Rolling Window Average Slope for 4 

cycles 

 6000Hz sampling speed,  

 1200Hz sampling speed,  

 1000Hz sampling speed,  

 

The 6000Hz differential protection system results show that the differential protection 

portion averaged at a delay of 0.0019911 with a standard deviation of 0.0005295. 

 It is clear from analyzing these results that the action of the reset counter has the 

ability to nearly double the amount of delay that one would anticipate the system to exhibit 

if the timing of the fault occurs just before a counter reset. Because of this, this is perhaps 

not the best method of protecting the system from false fault tripping. Neglecting the timer 

resetting affects, the differential system displays very little change in the amount of time it 

takes for the system to generate a trip signal and the point at which the fault occurs on the 

current waveform period. The overcurrent system does, however, does exhibit some 

change in trip generation time over the course of the current waveform period. This occurs 

because instantaneous current measurements are used to increment the overcurrent fault 

counter. A consequence of this is that the counter does not increment at or around a zero-

crossover while the current is below the overcurrent threshold setting. A possible solution 
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to this issue will be to utilize the RMS current value instead of instantaneous current. And 

hence the 10 sample rolling window average method was developed. 

 The following table displays all of the pertinent results from the tests conducted. 

The results suggest that faster sampling speeds result in smaller standard deviations, 

indicating increased reliability and predictability of system behavior. The bolded results 

show the fastest response times for both the differential system and the backup overcurrent 

system while maintaining very low standard deviations. 

Table 3.6. System Reliability Test Results  

Test Description Avg Trip 

Delay 

Standard 

Dev. 

Differential System at 6000Hz sampling speed, Reset Counter 

On 

0.0019911 s 0.0005295 

Differential System at 6000Hz sampling speed, Reset Counter 

Off 

0.0019266 s 0.0002101 

Backup Overcurrent System at 6000Hz sampling speed, Reset 

Counter On 

0.017650 s 0.0060235 

Backup Overcurrent System at 6000Hz sampling speed, Reset 

Counter Off 

0.0075732 s 0.0016938 

Differential System at 1200Hz sampling speed, Reset Counter 

On 

0.011573 s 0.003042 
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Differential System at 1200Hz sampling speed, Reset Counter 

Off 

0.008750 s 0.000259 

Backup Overcurrent System at 1200Hz sampling speed, Reset 

Counter On 

0.0810013 s 0.002291 

Backup Overcurrent System at 1200Hz sampling speed, Reset 

Counter Off 

0.0810013 s 0.002291 

Differential System with 10-Sample Rolling Average at 

6000Hz 

0.001397 s 0.000432 

Differential System with 10-Sample Rolling Average at 1200Hz 0.005521 s 0.000237 

Differential System with 10-Sample Rolling Average at 1000Hz 0.007378 s 0.000485 

Backup Overcurrent System with 10-Sample Rolling 

Average at 6000Hz 

0.011334 s 0.00059 

Backup Overcurrent System with 10-Sample Rolling Average 

at 1200Hz 

0.016824 s 0.001036 

Backup Overcurrent System with 10-Sample Rolling Average 

at 1000Hz 

0.020453 s 0.000982 

 

3.9 Hardware test setup and comparison with PSCAD simulations [30] 

 The hardware model was initially developed at ASU, and the latest addition to the 

algorithms on the hardware setup as explained in [30]. The necessary changes were made 
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to obtain faster and more accurate results. The new algorithm was also applied to the 

hardware to verify the simulation results.  

3.9.1 System Hardware and Description 

The system is built using NI modules, and in the next few paragraphs the NI modules used 

and their workings are described.  

1.NI CRio 9022: The compact reconfigurable input output (CRio) hardware module is the 

master controller and will send out directives to its slave modules/AMU units to sample 

data. The master and the slave units are connected to each other through the Ethernet cable 

and can be programmed using NI Lab view software. The processor speed is around 533 

MHz with 2 GB nonvolatile storage and 256 MB DDR2 memory. With this large amounts 

of data can be stored and processed equally fast.   

2. NI 9144: This is a hardware chassis module which can house up to 8 modules of the NI 

9215 (slave modules). The three NI 9144 modules are connected in a daisy chain network 

with the CRio. These 9144 modules are compatible with EtherCAT, and hence have greater 

speed as compared to other Ethernet connected system. The single programming ability, 

so that the module can be programed for custom timing, in line processing and closed loop 

control are some of its other features. 

3. NI 9215: These are the slave units, which consist of analog input module channels, which 

sample the current measured at the CT. These modules are housed to the NI 9144’s chassis 

module and hence can send sampled data to the CRio through the EtherCAT cable. The 

max rate of sampling is 100,000 samples/sec/channel. The units (NI 9144+NI 9215) 
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together comprise of the Analog Merging Unit (AMU) and act as slave to master controller 

CRio 9022.  

 

Figure 3.21: Picture of the NI hardware as connected on the test-bed [30] 

3.9.2 System Functioning 

Master
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Figure 3.22. Flow of data 

A single message is delivered by the master to the three AMUs. As the message is delivered 

in a daisy chain and back towards the Master, each AMU reads its input and adds its output 

to the message. When the message carries back to the master CRio, by then every AMU 

has received new input data from the Master and returned new output to the Master. And 

because of this the data reaches the master almost instantaneously from all the AMUs and 

thus it applies excellent coordination in data procurement. The figure 3.22 shows the flow 

of data in the system.  

                       Only the data is samples, it is processed through the pilot protection 

algorithm to identify a fault and generate a trip signal. This process can be achieved in two 

ways. 

1. Scan Mode    2. FPGA mode 

3.9.3 Scan Mode: 

 The basic programming of the NI CRio is done through the NI Lab view software using 

the scan engine. It’s an interface in Lab view that allows access to the module with default 

configuration, by using block diagram default algorithm in the program. In this case, the 

slave modules don’t utilize their individual clocks, but only measure or sample data when 

a command is issued by the master controller. 
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Figure 3.23. Example of the differential protection algorithm in Lab View software [30] 

3.9.4 FPGA mode: 

 This mode also called the Field Programmable Gate Array modeling can direct the NI 

9215s to sample current on their own. In this method, the current is sampled autonomously 

without any interference from the master controller. The master controller only accesses 

these samples at a fixed frequency. FPGA allows for higher sampling frequencies and 

hence results in faster trip time detection and generation. The samples once acquired, are 

processed in the micro controller based on the protection algorithm. 

3.9.5 Timer and counter:  

In this case the system has a timer and a counter. The system resets to its default state as 

soon as the timer expires. This prevents the system from tripping when there is no genuine 

fault. The performance of the system also largely depends on the counter in place. 

Whenever the sample values are such that it crosses the threshold of 0.3, the counter value 

is increased by 1. When the counter value exceeds 10, a trip signal is generated. So 

basically when a fault is generated in the system, it takes 10 samples to confirm it and then 

generates a trip. The timer is reset after every 20 cycles and clears the counter.  
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3.9.6 Protection algorithm: 

The NI CRio collects the data from the 3 CTs using the 3 AMUs (NI 9144+NI 9215). These 

samples are then evaluated in the IFM algorithm which applies the following formula: 

𝑎𝑏𝑠(𝑋1 + 𝑋2 + 𝑋3) − .1

𝑎𝑏𝑠(𝑋1) + 𝑎𝑏𝑠(𝑋2) + 𝑎𝑏𝑠(𝑋3)
      (3.8) 

 

Here X1, X2 and X3 are analog output of the modules.  

3.9.7 Over current protection: 

This is the backup protection for the system and acts when the primary protection fails to 

act/operate. The samples are taken into processing and based on a fixed value above which 

if 20 samples are recorded in that case a trip signal is generated.  

Now the time are counter together help prevent unnecessary trips. The timer runs for 20 

loops and resets the program counter and the counter gain counts from 0. Now even if the 

counter is incremented by a transient, the counter will be reset after 20 cycles.  So a trip 

due to transient action is avoided.  

3.9.8 Timed Loop: 

The whole structure is enclosed within a loop called Timed Loop. This is a while loop that 

can be stopped on pressing the stop button. Now the loop period (the time it takes for the 

loop to go from one iteration to next) is synchronized to scan engine. With the default 

FPGA coding, the fastest the scan engine can go is 1KHz. So the timed loop executes the 

code placed inside it ones every 1 milli second. The frequency of sample acquisition can 

be increased to a maximum of 3.3kHz by altering the FPGA bitfile at NI 9144. This 
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maximum is limited by the ‘NI Industrial Communication for EtherCAT’ configuration 

[30]. 

3.9.9 Averaging window concept implementation on the NI CRio: 

The slope is determined after obtaining a sample from the 3 AMUs. Now 10 such readings 

are taken and averaged. If the average is greater than 0.3, the trip signal is generated, if 

there is no trip generated, in that case the first reading out of the 10 is discarded and 

included the lastest sample and then calculates the average. The result from the IFM block 

is then passed to the next loop iteration and finds the average of the 10 samples. Initially it 

takes 10 samples to fill the window, after that window it takes in a new reading for every 

iteration and finds the average of the 10 samples. The result is then compared with 𝑆0 =

0.3, if it is greater than a trip signal is generated and if not the window moves by one 

reading. Similarly for the O.C backup protection 20 sample window is created and 

averaged and then the current sample is compared to a prefixed value and if the average 

value of the window is greater than a trip is initiated, otherwise the rolling window concept 

continues.  

3.9.10 Need for Rolling Window in the real time simulation: 

In the timer and counter algorithm, there might be an event when the timer could reset the 

counter even when there is a fault and the counter is counting. In this case the time taken 

to detect a fault could be longer than usual cases. Because of the reset of the counter after 

fixed intervals, the trip timings are not constant and hence the experiment yielded varying 

results with no apparent reason.   
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                                    Now based on the same test bed mentioned before in the earlier 

section, the NI CRio and its AMU’s are connected to the system as shown in figure 36. 

The following algorithms are implemented on the Ni CRio and test results for these are 

shown in a later section.    

3.10 Results 

The performance of the system is different for the two different algorithms that is scan 

mode and FPGA mode. The rolling window algorithm is clearly faster than the algorithm 

where a counter and a timer are used. 

3.11 Scan Mode [30] 

The system was initially programmed to work in Scan Mode. The two algorithms were 

tested and compared in terms of delay times. The faster algorithm is then implemented 

using the FPGA mode.  

1. With a Timer and Counter [30] 

Numerous readings were taken correctly evaluate the system’s working. Table 7 shows 

these readings with the time it takes for the trip signal to be generated after a fault at a 

particular phase angle is generated. 

Table 3.7. Delay for various positions of fault [30] 

Phase angle at which fault was generated(degrees) Delay (ms) 

19.33  

36.51860744  

38.67947179  

42.14  

53.59  

65.90636255  

9.895 

10.28 

8.645 

10.405 

10.625 

10.665 



 

                                                                      75 

66.99  

72.38895558  

79.51980792  

81.9  

88.6  

91.08043217  

93.35  

95.94237695  

112.36  

126.19  

160.3361345  

162.4969988  

193.8295318  

199.23  

200.2  

202.47  

207.0108043  

208.9555822  

230.46  

237.8  

249.36  

251.5246098  

264.7058824  

274.2136855  

284.66  

292.69  

300.2521008  

301.12  

302.6290516  

313.54  

320.13  

326.94  

327.4789916  

330.5  

335.2581032  

8.635 

14.385 

13.785 

10.175 

9.65 

9.525 

15.98 

11.275 

14.445 

16.405 

9.105 

9.33 

15.69 

9.422 

14.76 

14.275 

10.11 

13.285 

9.14 

14.135 

8.5 

10.7 

16.675 

9.615 

11.01 

13.855 

9.4 

10.025 

9.36 

11.145 

9.75 

9.695 

10.665 

16.215 

19.35 
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340.120048  
 

9.215 
 

 

From the above data, the following results have been calculated. 

Mean=11.65 ms 

Standard Deviation=2.79 

 

Figure 3.24. Delay vs phase angle graphical representation [30] 

From the observations, a comparative graph is plotted as shown. As seen from the graph 

and the observations, there are some random peaks, i.e. there is too much delay at some 

points. A possible reason for this may be the reset algorithm applied in the program. The 

reset might have set in at the same time as the counter reached around 9. So it took almost 

twice the time to generate the trip signal. 
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Figure 3.25 Histogram data for trip delay times for the timer and counter method 

This chart shows the value of the trip timings to lie between 10.31 ms and 12.12 ms are 

extremely high which also match with the standard deviation and mean values suggested 

above 

2. With an averaging window 

Similar to the timer and counter algorithm, numerous readings were also taken for the 

averaging window algorithm.  

Window with 10 samples: Table 8 shows these readings with the time it takes for the trip 

signal to be generated after a fault at a particular phase angle is generated. 
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Table 3.8. Delay for various positions of fault [30] 

Phase angle at which fault was generated(degrees) Delay (ms) 

0 

18.2736739 

10.1520401 

11.9232479 

20.9520831 

26.7409066 

33.0049322 

45.9649836 

57.5858304 

72.6194908 

73.6994948 

92.5347704 

97.4163897 

100.267601 

102.902816 

108.130035 

112.666057 

114.804452 

115.560462 

119.491678 

124.978099 

126.576503 

139.234159 

212.486529 

214.387335 

7.672 

8.004 

5.972 

6.446 

7.648 

6.218 

7.446 

6.74 

6.212 

6.808 

7.134 

7.318 

8.084 

5.592 

6.884 

5.66 

5.812 

5.79 

5.936 

8.148 

7.334 

6.866 

5.92 

7.22 

6.092 
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216.331343 

223.588974 

224.107374 

226.526581 

249.552272 

262.253129 

267.134785 

272.145966 

281.952408 

297.418067 

299.491678 

306.965379 

310.637325 

317.765351 

326.923787 

329.818193 

331.762207 

335.607024 

340.445448 

 

6.556 

6.666 

6.42 

6.288 

6.714 

6.042 

5.572 

5.002 

7.094 

6.256 

5.952 

7.68 

7.032 

7.204 

6.312 

6.144 

6.266 

4.61 

7.234 

 

 

From the above data, the following results have been calculated. 

Mean=6.6 ms 

Standard Deviation=0.80 
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Figure 3.26 Histogram data for trip delay times for the 10 sample rolling window method 

This chart shows the value of the trip timings to lie between 6.38 ms and 6.97 ms are 

extremely high which also match with the standard deviation and mean values suggested 

above. 

3.12 Comparative Study of the two algorithms 

As seen from the results in sections before, the averaging window algorithm is much faster 

than the other one. The average time it takes for a trip signal to generate once a fault is 

there in the system is 6.59 ms, which is 5.05 ms lesser than the timer and counter algorithm. 
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Also the standard deviation of the averaging window algorithm is .80 compared to 2.79 of 

the other algorithm. So we can conclude that the averaging window algorithm is faster and 

more reliable compared to other. 

3.13 FPGA Mode 

Clearly, as the results from the Rolling Window algorithm are much better than the Timer 

and Counter algorithm, it is implemented in the FPGA more. The samples are collected at 

the slave at 10kHz. These samples are accessed by the master microcontroller at 3.33kHz. 

Following are the results obtained for a 10 sample window. 

Window with 10 samples: Table 9 shows the readings for the time it takes for the trip 

signal to be generated after a fault has occurred. The table consists of a series of tests and 

the trip timings for 40 such consecutive test are shown below.  

Table 3.9: Time taken for trip signal generation [30] 

S.No. Delay 

1 3.88 

2 3.376 

3 3.626 

4 3.986 

5 5.54 

6 4.526 

7 3.854 

8 4.694 

9 4.404 

10 3.726 

11 3.002 
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12 3.288 

13 3.442 

14 3.73 

15 3.904 

16 3.304 

17 3.276 

18 4.424 

19 3.912 

20 3.426 

21 3.608 

22 3.954 

23 4.544 

24 3.844 

25 3.574 

26 3.088 

27 3.422 

28 3.006 

29 2.996 

30 3.606 

31 3.248 

32 3.736 

33 3.75 

34 4.462 

35 4.466 

36 3.628 

37 3.346 
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38 4.38 

39 3.29 

40 3.886 

 

From the above data, the following results have been calculated. 

Mean= 3.78 ms 

Standard Deviation= 0.55 

 

Figure 3.27 Histogram data for trip delay times for the 10 sample rolling window method 

is shown for the FPGA method  

This chart shows the value of the trip timings to lie between 3.42 ms and 3.84 ms are 

extremely high which also match with the standard deviation and mean values suggested 

above. 
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3.14 Conclusion:  

Based on the results shown in this section for the hardware and the results shown for the 

software in the previous section, when similar test bed was simulated in PSCAD and 

hardware simulations performed. The results show that both hardware and software 

simulation results match and hence prove that the pilot protection algorithm and the entire 

setup can be used in real world applications.  
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CHAPTER 4 

MULTI SLOPE DIFFERENTIAL PROTECTION AND CT SATURATION EFFECT 

ON THE PILOT PROTECTION SYSTEM 

4.1 Multi slope differential protection or point form differential protection 
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Figure 4.1. Multi slope differential protection characteristic curve 

Percentage restrained differential protection is one of the forbearer in forms of flexible 

protection algorithms. The slope characteristic provides high sensitivity when low currents 

are flowing in the zone of protection but has lesser sensitivity when high amounts of current 

are flowing , when false differential current due to current transformer (CT) saturation is 

more likely [31] [32] [33].Hence this is traditionally used to counter problems like CT 

saturation, inrush current etc.  
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The slope characteristic settings must incorporate transient differential current from CT 

saturation. The percentage restraint characteristic that declares whether the operate-versus-

restraint ratio is in the restraining region or the tripping region influences the settings. Small 

minimal pickup current and minuscule slope ratios are advantageous to distinguish partial 

winding faults in transformers conducive to trip before the fault increases and creates more 

large scale damage and loss. This is based on the paper in [33] 

This section talks about a new algorithm which was developed. In order to determine a trip, 

the actual use of coordinates in the (x, y) graph of  𝐼𝑜𝑝 𝑣𝑠 𝐼𝑟𝑒𝑠 , instead of the slope. This 

new dual slope approach as explained above has its own advantages and the explanation of 

the algorithm is given below. 

In this as shown in figure 4.1 above, the 𝐼𝑜𝑝 𝑣𝑠 𝐼𝑟𝑒𝑠 graph is plotted. The graph is divided 

into 4 regions/zones as shown in the graph. If for that region/zone the (x, y) coordinate is 

registered in the operation field, a trip is generated, and if it’s registered in the restraint 

field then no trip is generated. The description of all the four regions/zones is given below.  

Region 1: 

For all the regions certain parameters are assumed like 𝑋2, 𝑋3, 𝑌0, 𝑠𝑙𝑜𝑝𝑒1 𝑎𝑛𝑑 𝑠𝑙𝑜𝑝𝑒2  

where 

𝑋2 = 𝑌0 , 𝑋3 = 2. 𝑋2, 𝑠𝑙𝑜𝑝𝑒1 = 0.25, 𝑠𝑙𝑜𝑝𝑒2 = 0… . (4.1) 

𝑋1 𝑖𝑠 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 

𝑋1 =
𝑌0

𝑠𝑙𝑜𝑝𝑒1⁄                            (4.2)  
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Hence for Region 1 if the following conditions are met, then R1 will go high 

𝐼𝑜𝑝 > 𝑌0 𝑎𝑛𝑑 𝐼𝑟𝑒𝑠 > 𝑋1 ℎ𝑜𝑙𝑑𝑠 𝑡𝑟𝑢𝑒 𝑡ℎ𝑒𝑛 𝑅1 𝑤𝑖𝑙𝑙 𝑏𝑒𝑐𝑜𝑚𝑒 ℎ𝑖𝑔ℎ        (4.3) 

 

Region 2: 

For Region 2 i.e. with slope=0.25, the following parameters are to be calculated. 𝑌1can be 

calculated using 𝑋1. 

𝑌1 = 𝑌0 + 𝑠𝑙𝑜𝑝𝑒1. (𝑋2 − 𝑋1)                           (4.4) 

Hence for Region 2, if the following conditions are met, then R2 will go high 

𝐼𝑟𝑒𝑠 > 𝑋1 𝑎𝑛𝑑 𝐼𝑟𝑒𝑠 > 𝑋2 𝑎𝑛𝑑 𝐼𝑜𝑝 > (𝐼𝑟𝑒𝑠. 𝑠𝑙𝑜𝑝𝑒1 + (𝑌0 − 𝑋1. 𝑠𝑙𝑜𝑝𝑒1)) 

 ℎ𝑜𝑙𝑑𝑠 𝑡𝑟𝑢𝑒 𝑡ℎ𝑒𝑛 𝑅2 𝑤𝑖𝑙𝑙 𝑏𝑒𝑐𝑜𝑚𝑒 ℎ𝑖𝑔ℎ        (4.5) 

Region 3 

For Region 3 i.e. with slope=0.6, the following parameters are to be calculated. 𝑌2can be 

calculated using 𝑋2, 𝑋3, 𝑠𝑙𝑜𝑝𝑒2 𝑎𝑛𝑑 𝑌1. 

𝑌2 = 𝑌1 + 𝑠𝑙𝑜𝑝𝑒2. (𝑋3 − 𝑋2)                           (4.6) 

Hence for Region 3, if the following conditions are met, then R3 will go high 

𝐼𝑟𝑒𝑠 > 𝑋2 𝑎𝑛𝑑 𝐼𝑟𝑒𝑠 > 𝑋3 𝑎𝑛𝑑 𝐼𝑜𝑝 > (𝐼𝑟𝑒𝑠. 𝑠𝑙𝑜𝑝𝑒2 + (𝑌1 − 𝑋2. 𝑠𝑙𝑜𝑝𝑒2)) 

 ℎ𝑜𝑙𝑑𝑠 𝑡𝑟𝑢𝑒 𝑡ℎ𝑒𝑛 𝑅3 𝑤𝑖𝑙𝑙 𝑏𝑒𝑐𝑜𝑚𝑒 ℎ𝑖𝑔ℎ        (4.7) 

Region 4: 

Rest of the operation region is set as region 4. 
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Hence for Region 4, if the following conditions are met, then R4 will go high 

𝐼𝑜𝑝 > 𝑌2                            (4.8) 

The trip signal is an OR output of R1, R2, R3 and R4 signal bits. If any one of them or 

multiple bits go high in that case a trip is detected as shown in the figure below. Here in 

this case both 𝐼𝑜𝑝 and 𝐼𝑟𝑒𝑠 are calculated by using the 10 sample average method i.e. the 10 

sample averages of both 𝐼𝑜𝑝 and 𝐼𝑟𝑒𝑠 are used in the calculation for the (x,y) coordinates 

and also whether the bits of R1, R2, R3 and R4 are high or not. Here also 𝐼𝑜𝑝 is the vector 

sum of currents while  𝐼𝑟𝑒𝑠 is the absolute magnitude sum of currents in that zone. Below 

shown is the PSCAD modelling of the algorithm.  
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Figure 4.2. Algorithm for the multi slope differential characteristic in PSCAD 

 

The following algorithm was tested in same test bed mentioned in the previous sections in 

PSCAD. The test bed details the fault current, trip timing figures, Ioperation, Irestraint graphs, 

and the graphs for the bits R1, R2 , R3 and R4 are shown below. The fault analysis was 

done to determine the trip timings for each fault occurring at intervals of 0.001 sec over 1 

cycle period. The results for both the dual slope method and the previously described 10 

sample average slope differential algorithm results are shown for comparison. 
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Figure 4.3. S1, S2 are the source currents while L1, IF1 are the source and fault current 

respectively. The trip timings for the dual slope pilot differential trip is shown in the 

figure for fault at t=1 sec.  

 

Figure 4.4. S1_RMS, S2_RMS are the source RMS currents while L1_RMS, IF1_RMS 

are the source and fault RMS currents respectively. 

 



 

                                                                      91 

Figure 4.5. Digital bits R1, R2, R3 and R4 are shown going high after fault at t=1sec.  

 

Figure 4.6. This shows the 𝐼𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝐼𝑟𝑒𝑠𝑡𝑟𝑎𝑖𝑛𝑡  calculation on graph and differential trip 

signal at fault at t=1 sec 

4.2 Results for dual slope method: 

Table 4.1. Statistical Summary of the dual slope method based on 17 Runs.  

Tfault represents the fault timing, T_trip represents the trip signal response and the delay 

table is the timing difference between the two.  

  Run # Tfault (sec) T_trip (sec) Delay(ms) 

    1 1.000000000 1.004010000 4.010000000 

    2 1.001000000 1.005010000 4.010000000 

    3 1.002000000 1.005010000 3.010000000 

    4 1.003000000 1.006010000 3.010000000 
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    5 1.004000000 1.007010000 3.010000000 

    6 1.005000000 1.010010000 5.010000000 

    7  1.006000000 1.012010000 6.010000000 

    8 1.007000000 1.012010000 5.010000000 

    9 1.008000000 1.013010000 5.010000000 

   10 1.009000000 1.013010000 4.010000000 

   11 1.010000000 1.013010000 3.010000000 

   12 1.011000000 1.014010000 3.010000000 

   13 1.012000000 1.015010000 3.010000000 

   14  1.013000000 1.017010000 4.010000000 

   15 1.014000000 1.020010000 6.010000000 

   16 1.015000000 1.021010000 6.010000000 

   17 1.016000000 1.021010000 5.010000000 

 

Mean for trip time signal:  4.25 ms 

Standard Dev for each trip time:  1.15 ms 
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Figure 4.7 Histogram for trip timing delay for the dual slope method. 

This chart shows that most of the trip delay timings lie between 0 and 3.01 ms , but as the 

peak is not very high compared to other ranges, the mean and standard deviation in this 

case are different.  

4.3 Results for the same test using the percentage differential slope with 10 sample 

rolling window 

The same test was conducted on the same test bed for the algorithm for the same sampling 

frequency i.e. f=1 kHz mentioned in the previous section. The results for that test are 

displayed in the bottle below.  

Table 4.2. Statistical Summary of the dual slope method based on 17 Runs. Tfault 

represents the fault timing, T_trip represents the trip signal response and the delay table is 

the timing difference between the two.  

Run # Tfault T_trip Delay(ms) 

    1 1.000000000 1.007010000 7.010000000 
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    2 1.001000000 1.008010000 7.010000000 

    3 1.002000000 1.010010000 8.010000000 

    4 1.003000000 1.011010000 8.010000000 

    5 1.004000000 1.012010000 8.010000000 

    6 1.005000000 1.013010000 8.010000000 

    7 1.006000000 1.014010000 8.010000000 

    8 1.007000000 1.014010000 7.010000000 

    9 1.008000000 1.015010000 7.010000000 

   10 1.009000000 1.016010000 7.010000000 

   11 1.010000000 1.017010000 7.010000000 

   12 1.011000000 1.018010000 7.010000000 

   13 1.012000000 1.019010000 7.010000000 

   14 1.013000000 1.020010000 7.010000000 

   15 1.014000000 1.021010000 7.010000000 

   16 1.015000000 1.022010000 7.010000000 

   17 1.016000000 1.024010000 8.010000000 

 

Mean delay time:      7.36 ms    
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Standard Dev for delay time:   0.49 ms 

 

Figure 4.8 Histogram for trip timing delay for previous 10 sample rolling window method 

 This chart shows that most of the trip delay timings lie between 0 and 7.01 ms. This values 

tally with average mean and standard deviation in this case. 

Based on the results shown here the mean delay time for the dual slope method is lesser 

but the standard deviation as double compared to the older method for the same sampling 

frequency. The results show that even though it’s faster, but reliability may still be a 

concern.  

4.4 CT saturation phenomenon and the performance of the percentage slope 

differential protection with 10 sample window average module 

What is CT saturation ? 

CT saturation is described as the phenomenon where in the CT is no longer able emulate 

secondary current proportional to the primary current (according to its own ratio). The CT 

can saturate because of either very high primary current or open circuit in secondary/high 
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burden at secondary. CT saturation ca take place even when the ratings are not properly 

matched. The ratio has to be matched is such a manner that the maximum fault current to 

the rated current should be less than 20 [6]. Also the (X/R) ratio should be known for 

calculating the DC component in the fault current and the time delay. If the time constant 

is small, saturation will take place in the first few moments. Sometimes CT saturation can 

even take place due to the lead wire resistance can add to the CT burden and thereby cause 

CT saturation. The CT saturation is mainly dependent on two component that is the AC 

saturation component and DC offset component [6] [34] 

 

4.4.1 Saturation of CT due to DC offset 

This is usually a function of the power system and very little in the practical sense can be 

done to avoid its effect by CT design [6]. The output of the CT will be shown in the figure 

for different levels of saturation. 
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Figure 4.9. CT output with no saturation [6] 

 

Figure 4.10. CT output with part saturation [6] 

 

Figure 4.11. CT output with severe saturation [6] 

The effect of saturation for differential protection can be extremely critical. In most cases 

DC saturation may not likely be too large, but it should be kept in check. In many cases the 

high speed relay will act before the DC CT saturation will take place. If the saturation does 

take place a delay is given until the CT recovers to permit adequate operation. So in these 

cases, there is a tendency to under reach for a very short period of time. One of the problems 

with differential protection is that for an external fault, the differential trip should not 

operate. But for a large enough fault, the CT gets saturated and the protection system gets 
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affected by it. As compared in over current protection somewhat level of saturation is 

allowed, and results show based on data in [32] that CT saturation will not greatly delay 

overcurrent protection for better settings.  

 

4.4.2 Explanation of the CT saturation  

 

Figure 4.12. CT primary and secondary winding [32] 

Shown in the figure 4.10 above is the secondary side of a current transformer. The current 

transformer saturation takes place due to the voltage drop across the burden and also the 

DC component in the fault. When the 𝑉𝑠𝑒𝑐 voltage reached the saturation voltage of the 

transformer, the high flux will need a high 𝐼𝑒(𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡). This  𝐼𝑒 may very well 

reach 𝐼𝑠 𝑡𝑜𝑡𝑎𝑙 based on the figure below. Hence very little current goes through the 

burden/measuring device.  

𝐼𝑠 𝑡𝑜𝑡𝑎𝑙 = 𝐼𝑒 + 𝐼𝑠                                                              (4.9) 

𝑏𝑢𝑡 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛     𝐼𝑠 𝑡𝑜𝑡𝑎𝑙 ≅ 𝐼𝑒                    (4.10)  

𝐻𝑒𝑛𝑐𝑒 𝐼𝑠 ≅ 0                                                                   (4.11) 
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The DC offset is created due to the inductive-resistive characteristic of the power system 

and will cause the CT current saturation at a lower magnitude as compared to a symmetrical 

waveform [32]. The DC offset causes the poorest performance of the CT. Now as it take 

time for the DC component to decay (depending on the time constant) it can cause a loss 

of coordination between upstream and downstream devices. CT size is also very important, 

now if the fault current is almost 10-1000 times the rated current, in that case for a small 

core, the CT is bound to be saturated. In many cases the CT after some time might not 

come out of saturation, and thereby prevent operation of the protection logic. 

4.4.3 Test results of CT saturation on PSCAD 

The results of different CT ratios for a fixed type of standard CT unit is PSCAD 

 



 

                                                                      100 

Figure 4.13. CT secondary current for ratio 2:20 for the CT, fault current for a 100kV , 

1000 ohm load 1 phase system actual and saturated current reading 

 

Figure 4.14. Actual circuit current for ratio 2:20 for the CT, fault current for a 100kV , 

1000 ohm load 1 phase system actual and saturated current reading 

Based on this, the pilot protection module was applied to the test bed mentioned in Chapter 

3, and in this case we have utilized the CT standard model that is available in PSCAD. The 

simulation was conducted for different trip signal delay times for different fault incident 

angles. Below represented are the currents and trip timing modules. The table below show 

the results of the trip delay times for various CT ratios. The fault occurs at t=1 sec. 
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Figure 4.15. Test bed circuit for the CT saturation test for the pilot protection module 

 

Figure 4.16. S1, S2 and L1 are actual currents on the primary while S1_CT,S2_CT and 

L1_CT are secondary CT currents referred to primary 

 

Figure 4.17. Rms currents through the system before and after fault 
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Figure 4.18. BH curve before fault 
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Figure 4.19. BH curve after fault 

Below are tabulated results for the trip signal delays for different CT ratios 

Table 4.3. The trip signal delay timings for the pilot protection system on the tested 

circuit for CT ratio 20:2  

  Run #             Tfault (sec)            T_trip (sec)         Delay(ms) 

    1           1.000000000       1.000910000      0.9100000000 

    2           1.001000000       1.001510000      0.5100000000 

    3           1.002000000       1.002410000      0.4100000000 

    4           1.003000000       1.003920000      0.9200000000 

    5           1.004000000       1.004820000      0.8200000000 

    6           1.005000000       1.006020000       1.020000000 

    7           1.006000000       1.006620000      0.6200000000 

    8           1.007000000       1.007820000      0.8200000000 

    9           1.008000000       1.008720000      0.7200000000 

   10           1.009000000       1.009620000      0.6200000000 

   11           1.010000000       1.010520000     0.5200000000 

   12           1.011000000       1.011720000      0.7200000000 

   13           1.012000000       1.012620000      0.6200000000 

   14           1.013000000       1.013820000      0.8200000000 

   15           1.014000000       1.014720000      0.7200000000 

   16           1.015000000       1.015620000      0.6200000000 

   17           1.016000000       1.016820000      0.8200000000 

 

Mean Delay: 0.718 ms     

Std Dev in the delay 0.16 ms    
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Figure 4.20 Histogram for trip timings for the pilot protection system on the tested circuit 

for CT ratio 20:2  

 This chart shows that most of the trip delay timings lie between 0.715 ms and 0.8675 ms. 

These values tally with average mean and standard deviation in this case. 

Table 4.4. The trip signal delay timings for the pilot protection system on the tested 

circuit  for CT ratio 200: 20 

  Run #              Tfault (sec)            T_trip (sec)        Delay(ms) 

    1           1.000000000       1.001220000       1.220000000 

    2           1.001000000       1.002120000       1.120000000 

    3           1.002000000       1.003020000       1.020000000 

    4           1.003000000       1.003920000      0.9200000000 

    5           1.004000000       1.005120000       1.120000000 

    6           1.005000000       1.006020000       1.020000000 

    7           1.006000000       1.006920000      0.9200000000 

    8           1.007000000       1.008120000       1.120000000 

    9           1.008000000       1.009020000       1.020000000 

   10           1.009000000       1.009920000      0.9200000000 
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   11           1.010000000       1.011120000       1.120000000 

   12           1.011000000       1.012020000       1.020000000 

   13           1.012000000       1.012920000      0.9200000000 

   14           1.013000000       1.014120000       1.120000000 

   15           1.014000000       1.015020000       1.020000000 

   16         1.015000000       1.015920000      0.9200000000 

   17           1.016000000       1.017120000       1.120000000 

 

Mean for trip delay timings: 1.04 ms    

Std Dev for trip delay timings: 0.095 ms 

 

Figure 4.21 Histogram for trip timings for the pilot protection system on the tested circuit 

for CT ratio 200:20 

This chart shows that most of the trip delay timings lie between 0.715 ms and 0.8675 ms. 

These values tally with average mean and standard deviation in this case. 

 The results show that the pilot protection module is successfully able to detect the fault 

even during saturation for a sampling frequency of 3333 Hz 
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CHAPTER 5 

IMPLEMENTATION OF THE PILOT PROTECTION SYSTEM FOR LARGE 

DISTRIBUTION SYSTEMS 

5.1 Green Hub Model III (modified to get v4.3) [35] [36] 

The Green hub model is one of the first models that is primarily used to check the 

functioning of the pilot protection system. It was developed at NCSU. Here the explanation 

of the Green hub model function and working of the solid state transformer and the PV 

system utilized in the model is given 

The Green hub is defined as a residential distribution system, in which the household has 

roof top PV. It is assumed that each PV can produce up to the maximum load of the 

residential unit. In this case we shall be explaining the Green hub III model in which all 

the substation and distribution transformers are SSTs and also the system is looped. 
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Figure 5.1. Green Hub 3 system diagram [35] 

 

Figure 5.2. Green hub model v4.3 in PSCAD [36] 

5.1.1 PV system. 

The PV system is developed with a MPPT algorithm and other power electronics to convert 

the DC power generator the AC power for the grid. This model for the PV has been 

developed and adopted for the PV model simulated, at Colorado boulder [35]. The main 

components in this are shown on the figure. 
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Figure 5.3. Topology of the PV system [35] 

The Inverter for the PV has its own d-q control and it can limit the fault current up to two 

times the rated current. The PV shut down after 0.1 sec is due to the internal under voltage 

protection scheme. 

The V-I characteristics of the PV is also shown below in figure 5.4. For low levels of V, 

the I is limited to 2pu, as the inverter is operating under the constant current mode, while 

for higher V the inverter operates under constant power mode. 

 

Figure 5.4. VI characteristic curve of the PV [35] 

5.1.2 Solid State Transformers 

For the involvement of DERs i.e. (Distributed Energy resources) in the distribution system, 

the FREEDM system center developed a SST. An average model of the SST has been 

developed for this test case [35]. The SST has its own internal protection which utilizes the 

DC bus voltage at its input. Hence in case of a fall on the primary/high voltage side of the 
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SST, it will stay on line, so as to provide active power support to the load. If it cannot 

provide the active power, voltage on the DC bus drops and the protection system trips and 

switches off the SST. The main system schematics are shown below. 

 

Figure 5.5. Topology of the SST [35] 

Here in this case the power stage rectifier controller, inverter controller, the P-Q 

measurement blocks and the protection block are show in figure 5.5 above. 

5.1.3 Results 

For the testing of the pilot protection differential scheme we have switched off the internal 

protection system of the SST. Now as shown in the figure 5.6 we have divided the Green 

hub model into three zones of protection. 
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Zone 1

Zone 2

Zone 3

Figure 5.6. Zones of protection in the green hub model for the pilot differential protection 

system 

 

And for the each zone we have developed a pilot protection model for each phase, as is 

shown in the figure 5.7. 
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Figure 5.7. Pilot protection module in PSCAD 

An investigation into the systems behavior when additional SSTs/Loads were added was 

conducted following the system reliability testing. The following tests were completed at 

1000Hz with a maximum of 10 CTs. This series of tests began with 2 SSTs located in zone 

2, while adding 1 SST in zone 2 with each test run until a maximum of 8 SSTs in zone 2 

was achieved. Each test run consisted of incrementally timed faults occurring in zone 2 

over an entire 60 Hz cycle (or a period of 0.016 seconds). This was achieved by 

incrementing the fault timing by 0.001 seconds each loop until a total of 16 loops was 

completed per test run. 

The final schematic of the FREEDM Green Hub v4.3 with 8 SSTs in zone 2 is shown 

below in Figure 5.8. 
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Figure 5.8. Modified Green Hub v4.3 with 8 SSTs in Zone 2 

These initial test results are shown in Figure 5.9 below. The sine wave is simply shown as 

a reference figure for where the fault was initiated during the 60 Hz cycle. These results 

show very little impact on system performance with the addition of each successive SST. 

The results seem to suggest that the relative speed of the system increases slightly with the 

addition of SSTs, but the standard deviation also increases. 
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Figure 5.9. 1000Hz Differential Trip Signal Timing Results With Increasing Number of 

SST/Loads in Zone 2 

Table 5.1. Trip signal timing results for faults in various locations with 8 loads in zone 2 

Fault Location Trip Signal Time/Location 

Zone 1 Zone 2 Zone 3 

Zone 1 4.0 ms - - 

Zone 1 & 2 Overlap 4.0 ms 4.2 ms - 

Zone 2 - 4.2 ms 4.0 ms 

Zone 2 & 3 Overlap - 4.2 ms 4.0 ms 

Zone 3 -  4.0 ms 

5.2 IEEE34 test system 

The implementation of the pilot protection system was needed to be done on a larger 

system. The IEEE34 test system was thus selected for this purpose.  

5.2.1 Background on IEEE34 Test system 

The IEEE34 test feeder is a distribution test feeder that integrates all imaginable rational 

structures and load characteristic, such as symmetry for both single and three phase 
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distributed loads. The mentioned IEEE34 model also has a local wind generation module 

in it [37].  

The IEEE34 is a widely accepted system model for distribution system in the multiple 

nodes for three phase balanced main feeder with fixed or spot load at these nodes. The 

IEEE distribution system analysis subcommittee had developed this test system for use for 

software engineers and field engineers for validation and testing for current/voltage/power 

studies. The IEEE34 test system represents an actual feeder in Arizona and it has the 

following real world features   

1. All the sections of the distribution line have been modeled by actual real world 

phase impedance values. 

2. The system contents both single and two phase laterals. 

3. Loads on each phase and sections have real and reactive power specifications. 

4. The load modes that are used, reproduce load on feeders with intimately distributed 

load tops. 

5. This system include voltage regulation and captive VAR compensation. 

6. The system has a long distribution line and is comparatively light loaded. 

7. There are a few transformers that convert the voltage to 4.16 kV for a very small 

section of the feeder. 
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Figure 5.10. IEEE34 node test feeder schematic [37] 

 

Figure 5.11. Three phase main feeder for the IEEE34 test system after simplification [37] 

The IEEE34 system has under gone certain simplification to produce figure 5.11 (from 

figure 5.10). Hence the reduced section has 25 section as compared to the 33 before. The 

rules of the reduction/simplification are given in the following reference paper [37]. The 

two local wind generator which are simulated as large induction machines. They produce 

660 kW at 480 V rated voltage.  
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Figure 5.12. Zones of protection for the pilot protection system for the IEEE34 model 

[29] 

For the implementing system the pilot protection system, the IEEE34 has been divided into 

six protection zones shown in figure 5.12. Now in this case for the division of zones, we 

have utilized ideal circuit breakers. As explained in the section above the current 

measurement module measures current at each of the circuit breakers and loads. Each phase 

of the system is protected independently in the pilot protection system, hence for 6 zones 

of protections we will be requiring 18 pilot protection system modules in total to be placed 

in the large system. 

5.2.2 Results 

Now in order to test the reliability every type of fault (including three phase, two phase 

faults) was simulated in all the zones over two 60 Hz cycle, such that  fault would occur in 

1ms time steps so as to investigates every possible fault angle. These test results are shown 
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in the next few below. The sine wave is simply shown as a reference figure for where the 

fault was initiated during the 60 Hz cycle. 

 

Figure 5.13. Zone 6 Trip delay times for single line to ground, double line to ground and 

3 phase fault. 
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Figure 5.14. Zone 6 Trip delay times for line to line faults. 

 

Figure 5.15. Zone 5 Trip delay times for single line to ground, double line to ground and 

3 phase fault. 
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Figure 5.16. Zone 6 Trip delay times for line to line faults. 

A collective tabular result for all the trip delay timings for various faults in zone 1,5 and 6 

is shown in the table below. 

Table 5.2. Trip signal delay times for the IEEE34 model for zones 1, 5 and 6 [29] 

Protection 

Zone 
Fault Type 

Average Delay 

(ms) 
Standard Deviation 

1 A to GND 4.2818 0.3917 

1 B to GND 4.2818 0.3917 

1 C to GND 4.2515 0.3641 

1 A&B to GND 4.5242 0.5019 

1 A&C to GND 4.5242 0.5019 

1 B&C to GND 4.3727 0.4523 

1 A&B&C to GND 4.4939 0.4962 

1 A to B 4.2515 0.3641 

1 A to C 4.2818 0.3917 

1 B to C 4.5242 0.6623 

1 A to B to C 4.3727 0.4523 

5 A to GND 4.2515 0.3641 

5 B to GND 4.2212 0.3314 

5 C to GND 4.1303 0.1740 

5 A&B to GND 4.2515 0.3641 

5 A&C to GND 4.1303 0.1741 

5 B&C to GND 4.1303 0.1741 

5 A&B&C to GND 4.1909 0.2919 

5 A to B 4.1909 0.2919 

5 A to C 4.2212 0.3314 

5 B to C 4.1303 0.1741 

6 A to B to C 4.2212 0.3314 

6 A to GND 4.3424 0.4352 

6 B to GND 4.3424 0.4352 

6 C to GND 4.3424 0.4352 

6 A&B to GND 4.5242 0.5019 

6 A&C to GND 4.5242 0.5019 

6 B&C to GND 4.5545 0.5056 

6 A&B&C to GND 4.4939 0.4962 

6 A to B 4.4333 0.4787 

6 A to C 4.4030 0.4667 

6 B to C 4.5242 0.6629 

6 A to B to C 4.5848 0.5075 
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The fault current simulated for this system are about 10 times the rated current, here in this 

case , the sampling rate is kept as 1000Hz. Zones 1,5 and 6 are primarily chosen as they 

are the nearest and furthest from the generation and zone 5 is selected because it has the 

wind generator model, providing power to that particular zone. In all of the test one thing 

is certainly proved that there is no trip detection for zones, other than the one having the 

fault. 

The result shows that the pilot protection system was able to study the effect of fault 

incidence angle and fault type on the trip signal response of the protection scheme. The 

result shows the trip response timings are fairly consistent between 4.13 to 4.5848 ms and 

Standard deviation is around 0.17 to 0.66ms, and no anomalies are experienced in this 

system. 

5.3 Reclosing algorithm in PSCAD [29] 

In the pilot protection system, we have also enclosed reclosing module, which does up to 

3 reclosing (reclosing timings are user defined) which is then pursued by a system lockout. 

This reclosing unit have been developed as per the IEEE Standard P 37.60 reclosing [29]. 
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Figure 5.17. Reclosing logic included with the trip logic [29] 
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Figure 5.18. Logic to determine reclosing timings 1, 2 and 3 

So as shown in the logic diagram, the trip signal is sampled and the trip signal is held till 

the reclose reset (for lockout) bit is low. Once it is low, then in that case the signal is first 

compared with inverse Reclose 1. If Reclose 1 is high, in that case, the trip is reduced to 

zero immediately, after a small delay Reclose 2 is compared with the trip signal and 

Reclose 2 is high in that case trip is reduced to zero.  In third Reclose 3 after a certain delay 

after Reclose 2 the trip signal and Reclose 3 are compared, if Reclose 3 is high, trip is 

reduced to zero or in that case there is permanent lock out. 

5.4 Implementation of the Pilot Protection Scheme for the large scale system 

simulation loop or modified IEEE 34 system [38][39] 

After establishing the results of the pilot protection system for the traditional large scale 

distribution system. It was necessary to implement it for larger system with a variable solid 

state transformer load, capable of producing distributed renewable energy. For this purpose 

LSSS loop (Large scale system simulation) is implemented with the pilot differential 

protection system. 

Even though the Pilot projection system was developed for the FREEDM Green hub 

distribution project, the LSSS Loop presents a new challenge, with new SST model, 

developed at MS&T. The new results for the LSSS loop will help develop a primary 

protection scheme, which will also be used by the team at MS&T for the LSSS Loop. 

5.4.1 Development of the modified IEEE 34 Loop (LSS Loop) from 24.9KU to 

12.47KL line to line voltage [38] 

The LSSS Loop has been created by modifying the original IEEE 34 distribution system. 

While the IEEE 34 distribution system is originally a 24.9 kV system, the LSSS or the 

modified IEEE34 is made to be a 12.47KV system. Here in this case the 12.47KV rating is 
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obtained by dividing the original impedance value by four in order to keep the per unit for 

impedance constant for both the 24.9KV and 12.47KV system. But the capacitance is 

multiplied by 4 due to reduction in voltage between and the loads remain the same. 

Now as the length of the lines is divided by four, over all capacitance of each line hence 

remains constant. 

 

Figure 5.19.  IEEE 34 (original model) schematics [37] 

In this modified version of the IEEE 34, the voltage regulator located between node 814 

and 850 and voltage regulator situated between nodes 854 and 832 are removed. Also the 

capacitor banks between 844 and 848 have also been removed.  

Load information for the newly developed 12.47 kV system is given below  

Table 5.3. Load information for the 12.47 kV system [38] 

Node 

A 

Node 

B 

Load 

Model 

Load 

Type 

Ph-A 

kW 

Ph-A 

kVAr 

Ph-B 

kW 

Ph-B 

kVAr 

Ph-C 

kW 

Ph-C 

kVAr 

SST 

Connected 

Number of 

SSTs 

802 806 Y-PQ Distributed 0 0 30 15 25 14 Yes 2 

808 810 Y-PQ Distributed 0 0 16 8 0 0 Yes 1 

818 820 Y-PQ Distributed 34 17 0 0 0 0 Yes 1 

820 822 Y-PQ Distributed 135 70 0 0 0 0 Yes 1 

800

806 808 812 814

810

802 850

818

824 826

816

820

822

828 830 854 856

852

832

888 890

838

862

840
836860834

842

844

846

848

864

858
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816 824 Y-PQ Distributed 0 0 5 2 0 0 Yes 1 

824 826 Y-PQ Distributed 0 0 40 20 0 0 Yes 1 

824 828 Y-PQ Distributed 0 0 0 0 4 2 Yes 1 

828 830 Y-PQ Both 17 8 10 5 25 10 Yes 3 

854 856 Y-PQ Distributed 0 0 4 2 0 0 Yes 1 

832 858 Y-PQ Distributed 7 3 2 1 6 3 Yes 3 

858 864 Y-PQ Distributed 2 1 0 0 0 0 Yes 1 

858 834 Y-PQ Distributed 4 2 15 8 13 7 Yes 3 

834 860 Y-PQ Both 36 24 40 26 130 71 Yes 3 

860 836 Y-PQ Distributed 30 15 10 6 42 22 Yes 3 

836 840 Y-PQ Both 27 16 31 18 9 7 Yes 3 

862 838 Y-PQ Distributed 0 0 28 14 0 0 Yes 1 

842 844 Y-PQ Both 144 110 135 105 135 105 Yes 3 

844 846 Y-PQ Distributed 0 0 25 12 20 11 Yes 2 

846 848 Y-PQ Both 20 16 43 27 20 16 No 3 

890 890 Y-PQ Spot 150 75 150 75 150 75 No 3 

 

From Table 5.3, it is seen that there are in total 40 solid state transformers 

connected/brought online together after l sec of the simulation time. “Load type – both 

“refers to the fact that spot and distributed load have been added to the system in order to 

restrict the number of load type SSTS. This module does not contain PV and energy storage 

schematic modules 

 

5.4.2 Solid State Transformer Module Development 

As has been explained before the SST has multiple stages which include the 20 kVA 

AC/DC rectifier (converting 7.2 kV AC to 4800 volt DC) then a DC-DC convertor HF 

transformer with DAB to 3800 volts DC covert to 400 volt DC and in the end an inverter 

is used to obtain a 420/240 volts AC output.  
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Active rectifier in the SST [38] 

The active rectifier in the SST is a numerous leveled rectifier which converts the AC into 

DC power, also giving reactive power control on the primary/high voltage side of the SST. 

Based on the hardware developed at NCSU [p.r.], the SST is rated for 20 kVA for this case 

and 10 parallel such SST’s have been connected to total a rating of 200 kVA. So the 

reactive power control of all the 200 kVA is done together. Here below shown in figure 

5.20 is the control source circuit diagram connected in series with RL filter DQ control is 

used for rectification.  

 

Figure 5.20. The figure above represents active rectification i.e. nonlinear rectified with 

power electronic switches [38].  

But the performance of the rectifier is actually successfully achieved through power 

balance. The multi meter shown in figure gives the angle between the voltage and the 

current. Filter impedance at the input side set at 30% at the rated impedance.  
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Figure 5.21. SST topology used for the average model simulation [13] 

Based on the NCSU SST model paper shown in figure 5.21. , the 20 kVA SST has 3 

cascaded H bridge rectifiers and each of them is connected to a dual active bridge converter. 

High voltage DC rating is 3800V DC and as they are connected in series, hence the total 

high voltage rating in DC is 11400V. The rectifiers are mainly responsible to maintain this 

DC link voltage. Hence for a 200 KVA rating, there are in total 30 DAB converters. 
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Figure 5.22. Power balance equation block for the rectifier [38] 

The figure 5.22 above shows the power balance equation from the DC link voltage (High 

voltage side 3800V DC) denoted by 𝑉𝐻𝐷𝐶. The product of the primary side of the voltage 

and primary side current divided by 3 times the high voltage DC gives the total DC current 

for the 200 KVA system. i.e. 

𝑉𝑝𝑟𝑖𝐼𝑝𝑟𝑖 = 3𝑉𝐻𝐷𝐶𝐼𝐻𝐷𝐶                    (5.1) 

Each 3800 V DC link capacitor is connected to 10 parallel DAB convertor. Power of the 

output stage of the rectifier is calculated for 1 DAB, and for 10 DABs, the value is 

multiplied by 10, so that the Kirchhoff’s current law can be validated at that node where 

the DC link capacitor is linked, the DAB power is then divided by 𝑉𝐻𝐷𝐶 and subtracted 

from the total DC current. 

The residual value is then divided by the equivalent capacitor value of the DC link 

capacitor. The input capacitor magnitude for each DAB is 30 micro farad (uF) so for 10 it 

will be 300 uF. Final result is integrated to give DC voltage value. . Power balance equation 

is now followed by control stage which is shown in Fig. 5.23. 
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Figure 5.23. Control Stage in rectifier [38] 

‘Vdd’ and ‘Vqq’ calculations are based on the control stage given in small signal space 

models of active rectifiers [38]. For proper tuning of controller, procedures given in [38] 

were followed. Using [2], equivalent resistive load was first connected instead of DAB and 

inverter in order to make calculations for state transition matrix simple. For example, an 

operating point of 200 kW was considered. Since there are three cascaded rectifiers, output 

of each DC link is 66.66 kW at a voltage of 3800 volts and so resistance is 216.6021 ohms. 

This value is used for DC load modeling. While calculating elements of state transition 

matrix, the only change made is the multiplication factor ‘3’ multiplied to ‘Vdc’. Also filter 

for SST rectifier is simple R-L filter. For stable operation, eigen values of this matrix 

should be on the left half plane.  

Given the amount of reactive power to be absorbed or injected, corresponding ‘Iq’ is send 

to the control stage. Fig. 5.24 shows ‘wt’ calculation using grid voltage angle. Fig. 5.25 

shows ‘Id’ and ‘Iq’ calculations which are required for control stage in Fig. 5.26.  
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Figure 5.24. Calculating 𝜔𝑡 angle using grid voltage angle [38] 

 

Figure 5.25. 𝐼𝑑,𝐼𝑞 Calculations [38] 

 

Fig. 5.26 (below) shows equivalent AC voltage calculation using the values of ‘Vdd’ and 

‘Vqq’. 
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Figure 5.26. 𝑉𝑑𝑑 𝑎𝑛𝑑 𝑉𝑞𝑞 Calculation [38] 

 

5.4.3 Implementation of the Pilot Protection System for the LSSS System or the 

modified IEEE 34 System. 

The modified IEEE 34 or the LSSS system has been divided into five zones of protection 

as shown in the figure 5.27. 
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Figure 5.27. Zones of protection for implementing the pilot protection system for the 

LSSS system [39]. 

The division of zones is done by using conventional breaker on border of adjacent zones. 

The sampling frequency for the pilot protection module is kept as 1000 Hz. As the pilot 

protection modules protect individual phase for each zone and hence in total for 5 zones, 

we will have 15 pilot protection modules. Below shown are the schematic in PSCAD 

software used for simulation for this model and seven type of faults including 3 phase 

(single phase to ground and double line to line have been investigated all the for zones 

1,2,3,4,5 and the graph for the trip times are shown below. Results shows that the trip 

timings are consistent and for all the faults, there are no mis trips from any other zone, 

except for the one which has it. No reclosing has been deployed here in this case and hence 

this result does not include reclosing of the load type SSTS after clearing the fault. 
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Figure 5.28. Schematic of LSSS loop on PSCAD 
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Figure 5.29. Three phase fault in Zone 1 for IEEE 34 with SST at time 3 sec 

 

Figure 5.30. Phase B to ground fault in Zone 2 for IEEE 34 with SST at time 3 sec 
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Figure 5.31. Phase C to ground fault in Zone 2 for IEEE 34 with SST at time 3 sec 

 

Figure 5.32. Phase A to B fault in Zone 2 for IEEE 34 with SST at time 3 sec 
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Figure 5.33. Zoom in on the trip signal activation for a fault at t=3 sec in zone 2. 

 

Figure 5.34. Phase B to C fault in Zone 2 for IEEE 34 with SST for fault at time 3 sec 
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Figure 5.35. Phase C to A fault in Zone 2 for IEEE 34 with SST for fault at time 3 sec 

 

Figure 5.36. 3 phase fault in Zone 3 for IEEE 34 with SST for fault at time 3 sec 

Based on the results above, the pilot protection algorithm is successfully able to detect the 

fault for the LSSS loop utilizing the SST models developed at MS&T. 

5.5 Implementation of the pilot protection system for the solid state transformer 

model developed at FSU at both substation type and load type SST [40]. 

A PSCAD model of substation SST and load SST model was developed at FSU so that the 

model could be used for PSCAD Green Hub simulations.  

The main characteristics of this SST models are. 

1. Both the substation and load type SST have current sourcing capabilities, and they 

can stop sourcing current within a specified time period. 
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2. The source type SST will source current base on the system and grid voltage at 

rated conditions. 

3. The load type SST will lock/latch into the phase grid voltage and inject voltage at 

a constant power. (Based on the current for the user defined load). 

4. During the fault/on occurrence of fault, both types of SST will source a limited fault 

current i.e 2 pu and then shut off after certain designated period. (Long enough for 

the protection system to detect the fault.) 

5. On clearing the fault and restoration of fault, both types of SST’s must be brought 

back on line (Reclosing). Reclosing is SST’s has not been discussed before 

sections. 

Based on these characteristics the substation SST and load type SST’s are defined 

below. 

1. Substation SST model 

The substation SST model on PSCAD is an average model which is basically a current 

source model. To source the required current the substation SST relies on the error between 

the pu voltage magnitude and pu voltage reference. A PI controller is used to inject current 

into the system. The substation SST continues to source the rated/nominal current as long 

as the current is 2pu. 
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Figure 5.37. Test circuit for the SST model [40] 

Here in the figure 5.37 the test circuit for the substation type SST is shown. When the 

substation SST is connected to R fault. Once the SST model starts sourcing current (up to 

its limit 2pu) now on occurrence of a fault/or as the impedance/resistance starts falling, the 

SST will source a current up to the limit of 2pu, also the output voltage falls. The internal 

logic of the SST has a certain delay logic, in which after the grid voltage falls below 0.8pu, 

the SST will stop sourcing current. Now for the restarting the SST, the integrator on the PI 

controller for the SST, must be reinstated or set to the initial value and also the logic with 

which the current sourcing, must be reset. So when the reset tag is high the under voltage 

and over voltage systems are neglected by the control logic and it allows for the voltage to 

return based on injected current under nominal condition i.e. all the faults are cleared. 
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Figure 5.38. Substation SST behavior for faulted condition to check upon injected current 

I, grid voltage V, PI clear (clearsubtime) and substation SST reset signal (resetsubtime) 

[40]  

Based on the figure 5.38, here you can see that when the fault occurs, the S-SST reset signal 

is sent so as to restore the SST. Now based on this theory, the pilot protection system 

successfully can be used to detect a fault and send a signal to the SST for shutting down 

the sourcing and a reclose signal can be sent by pilot protection module based on the 

Reclosing algorithm explained earlier. Hence the pilot protection can successfully detect a 

fault, isolate and restart a substation SST. 
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Figure 5.39. Circuit diagram for applying pilot protection to the substation SST 

 

Figure 5.40. Signals required by the substation SST for fault clearing and reclosing 

The substation SST has three major signal. 

Initsubsynch:  

Initial signal given to the start the simulation by sourcing current to the load. 

Clearsubtime: 

The signal given to the P1 controller to reset and setback to its initial condition 

Resetsubtime. 

The signal given to the SST to know when to restart  

Now for out stimulation instead of the tripping taking place for the SST, when the voltage 

falls to 0.8 Pu, the trip signal from the pilot protection module is replaced. 



 

                                                                      142 

 

Figure 5.41. Trip signal from pilot protection being utilized for clearing the fault for the 

substation SST 

So instead the SST will stop sourcing current, when the trip is initiated from the pilot 

protection system. Now for the Reclosing, the Reclosing signal from the pilot protection 

module is used where in the Reset sub signal is replaced by the Reclosing signal from the 

pilot protection module i.e. when the Reclosing signal is sent from the pilot protection 

module, the SST will start up once again. The results for the pilot protection module 

implementation for substation type SST is shown below. 
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Figure 5.42. The fault is successfully detected at 0.18 second and cleared 0.37 second 

(successfully) for substation type SST. 

2. Load type SST 

During normal voltage conditions and system operations, the Load type SST is locked in 

phase with the grid voltage, Fig. 5.43 below shows that, and sources a current that is 

dependent on the grid voltage, Fig. 5.44, obtained from a constant power source. As shown 

in Fig. 5.44, when the grid voltage starts decreasing, the injected current increases based 

on the load type SST functioning, based on the constant power loading condition, up to its 

current limits of 2 pu. Once the under-voltage condition barrier is breached, the Load type 

SST will stop injecting current after a fixed delay. After the voltage comes back up again, 

a resetting signal is applied. 
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Figure 5.43. Load type SST test circuit [40] 
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Figure 5.44. Characteristic of the load type SST during faulted condition. User defined 

grid voltage profile, grid voltage, injected current and the reset signals are shown here 

[40].  

5.6 Modified LSSS model [41] 

 Utilizing the substation SST and load SST model discussed above the modified LSSS 

model was made at FSU. Based on the results before the pilot protection system could be 

implemented for this system.  

5.6.1 Modified LSSS Model design [41] 

A modified Large Scale System Simulation (LSSS) test bed in here is developed to 

examine the effect of adding multiple SSTs (both and their interaction in the system is 

studied. The original IEEE 34 bus system (explained in earlier section) was scaled down 

from 24.9 kV to 11.9 kVL-L to match the FREEDM loop voltage level, 12 kV L-L, shown 

in Figure 5.45. Instead of the traditional loads, all the loads are connected to the main bus 

through D-SSTs (load type SSTs). The main source giving power to the model is connected 

through the S-SST (substation SST). In the LSSS model obtained from modifying the 

voltage regulator 1 between nodes 7 and 25 and voltage regulator 2 between nodes 26 and 

16 are eliminated in the original IEEE 34 model. The data in Table 5.4. Shows the nodes 

at which the distributed SSTs are connected. The rating of the load type SSTs is 200 kVA. 
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Figure 5.45. Schematic of the modification made to the original IEEE 34 and the 

placement of D-SSTs is also shown here [41]. 

Table 5.4. Distribution SST placement on various nodes of the modifies LSSS system 

[41] 

 

Node  SST connected  Number of SSTs 

connected  

3  Yes  1  

5  Yes  1  

12  Yes  1  

13  Yes  1  

15  Yes  1  

17  Yes  1  

19  Yes  1  

23  Yes  1  
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24  Yes  1  

28  Yes  1  

29  Yes  1  

 

System Substation rating: 1MVA/7.2kV  

200kVA load SST ratings: only three connected in the system, each should be drawing 

1PU load current so that the system voltage can be kept between 0.95 and 1.05PU during 

normal operation. The voltage will be decreasing from the substation to the end of the 

feeder. 

 

5.6.2 Results 

Zone 1

Zone 2

Zone 3

Zone 4
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Figure 5.46. Zones of protection for the implementation of the pilot protection system for 

the modified LSSS loop system [41]. The tests were conducted for all 4 zones. Sampling 

frequency for the system is kept at 1000 Hz. The results for the various types of faults and 

the response of the pilot protection system are shown below.  

 

Figure 5.47. Fault Analysis for three phase bolted fault in zone 1 
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Figure 5.48. Fault Analysis for AB type fault in zone 1 

 

Figure 5.49. Fault Analysis for BC type fault in zone 1 
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Figure 5.50. Fault Analysis for CA type fault in zone 1 

 

Figure 5.51. Zone 2 faults for A-B, B-C, and C-A Faults 
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Figure 5.52. Zone 2 faults for A-G, B-G, and C-G Faults 

The results show that the pilot protection system is successfully able to detect the fault, 

clear it and perform reclosing action. The trip detection signal average delay is 5.8 ms, 

standard deviation is 0.388 ms for a sampling frequency of 1000 Hz for the 3 phase fault 

in zone 1.  
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Main Conclusions 

The goal of this research work is to modify the previously developed pilot protection 

system and to implement the pilot protection system with large scale distribution network 

which include other power electronics components like Solid State Transformer, Fault 

Isolation Devices just like the FREEDM system which is a smart distribution power 

network. A new adaptation is done to the existing protection strategy that enables faster, 

reliable trip times. A very fast protection response time is achieved. For the research works 

done in this particular project, conclusions can be drawn as follows.  

 The new 10 sample rolling window sampler is developed which helps not only in faster 

trip times but also gives more secured and reliable results with very little standard 

deviation 

 A hardware system based on micro-controller with Ethernet communication is 

implemented utilizing the new algorithm. The results of this hardware model is 

compared with software simulation with the same test bed with the exact same data in 

PSCAD. The results show similar results for both experiments. The details of which 

are mentioned in [29] 

 A new dual slope pilot protection algorithm was also developed and its simulation 

results on the test bed were compared to the older pilot protection algorithm. The results 

show that for the same data trip delay time reduces but the reliability increases. The 
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pilot protection algorithm was also tested for CT saturation and results show that it is 

able to operate under heavy CT saturation 

 The pilot protection was successfully implemented to large distribution system like the 

Green hub v4.3, IEEE 34 model, LSSS model and the modified LSSS model. The 

results prove that protection is effective, fast and reliable. Reclosing was also 

implemented in several of these models. The details of which are in [39]. 

 6.2 Future Work 

The future work for this project consists of the following aspects: 

 The reclosing model is still not developed for certain distribution networks, this can 

be implemented once the issue of resynchronizing of the SSTs with the grid on 

reconnection is solved 

 To develop an Ether CAT based system for 8 or more units, which will be sufficient 

for a protective zone. 

 To develop an Ether CAT based system for wireless communication, which will 

help save expenses on long lengths of Ethernet cable. 

 To implement substation communication and protection protocols for the current 

system like IEC 61850. 

List of publications: 

 G. G. Karady, Fellow, IEEE, Andrew Rogers, Varun Iyengar,’ Feasibility of Fast Pilot 

Protection for Multi-Load Distribution Systems, IEEE PES GM 2013. 

 V. Iyengar, G. Karady, D. Crow, D. shah ‘Implementation of pilot protection system for 

IEEE 34 load system with SST Loads’, FREEDM Industry meeting conference 2014. 
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APPENDIX A 

                         PSCAD SIMULATION FILES FOR CHP 2,3,4 
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Below shown are the PSCAD simulation files for the test bed system for the rolling 

window test setup. Also shown are the PSCAD files for the point form and the CT 

saturation experimental files. 
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APPENDIX B  

                           PSCAD SIMULATION FILES FOR CHP 5 
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Below shown are the PSCAD simulation files for the GreenHub test bed system, IEEE34 , LSSS 

loop and the modified LSSS for the rolling window algorithm.  
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