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ABSTRACT  
   

In this work, we present approximate adders and multipliers to reduce data-path 

complexity of specialized hardware for various image processing systems. These 

approximate circuits have a lower area, latency and power consumption compared to 

their accurate counterparts and produce fairly accurate results. We build upon the work 

on approximate adders and multipliers presented in [23] and [24]. First, we show how 

choice of algorithm and parallel adder design can be used to implement 2D Discrete 

Cosine Transform (DCT) algorithm with good performance but low area. Our 

implementation of the 2D DCT has comparable PSNR performance with respect to the 

algorithm presented in [23] with ~35-50% reduction in area. Next, we use the 

approximate 2x2 multiplier presented in [24] to implement parallel approximate 

multipliers. We demonstrate that if some of the 2x2 multipliers in the design of the 

parallel multiplier are accurate, the accuracy of the multiplier improves significantly, 

especially when two large numbers are multiplied. We choose Gaussian FIR Filter and 

Fast Fourier Transform (FFT) algorithms to illustrate the efficacy of our proposed 

approximate multiplier. We show that application of the proposed approximate multiplier 

improves the PSNR performance of 32x32 FFT implementation by 4.7 dB compared to 

the implementation using the approximate multiplier described in [24]. We also 

implement a state-of-the-art image enlargement algorithm, namely Segment Adaptive 

Gradient Angle (SAGA) [29], in hardware. The algorithm is mapped to pipelined 

hardware blocks and we synthesized the design using 90 nm technology.  We show that a 

64x64 image can be processed in 496.48 µs when clocked at 100 MHz. The average 

PSNR performance of our implementation using accurate parallel adders and multipliers 
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is 31.33 dB and that using approximate parallel adders and multipliers is 30.86 dB, when 

evaluated against the original image.  The PSNR performance of both designs is 

comparable to the performance of the double precision floating point MATLAB 

implementation of the algorithm.
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CHAPTER 1 

INTRODUCTION 

In order to reduce the area, latency and power of Digital Signal Processing 

implementations, several techniques have been adopted. The popular ones are reduction in 

number of computations [1-6], dynamic range adjustment of data-path units or truncation 

[6-10] and voltage scaling [11-18].  Recently approximate circuits have been proposed in 

[19-27] which also reduce area, latency and power.   

The ‘almost correct adder’ in [19] is based on the observation that on average, the 

longest carry propagating sequence is approximately log n, where n is the datapath width.  

Therefore, the sum output is independent of any carry beyond the log n sequence and 

hence the carry need not be propagated.  They also provide a methodology to detect and 

correct errors. The approximate adder in [20] utilizes logic synthesis to design 

approximate versions of a given function.  The algorithm determines the minterms that 

produce an approximate version of a circuit with smallest number of literals for a given 

error rate threshold.  A bio-inspired imprecise adder and multiplier are proposed in [21] 

that provide an estimation of the result instead of its real value.  An approximate adder and 

an approximate Booth multiplier (based on the approximate adder) are proposed in [22] 

and applied to the pipeline stages of a superscalar processor.  A prediction unit predicts the 

error in the early stages of the pipeline and uses the accurate result instead.  In [23], 

several approximations to a full adder circuit are described by applying complexity 

reduction at transistor level.  The DCT implementation results provided in this paper 

demonstrate that this is a very promising approach. An inaccurate 2x2 multiplier based on 

Karnaugh Map simplification is proposed in [24], which acts as the building block for 
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larger multipliers.  In [25], a systematic methodology is presented for automatic logic 

synthesis of approximate circuits, that synthesizes an approximate version of a given RTL 

specification for a given quality constraint.  A statistical error analysis and model is 

presented in [26] and [27].   

A very important consideration in the adoption of these techniques is that they 

cause minimal degradation to the algorithm performance.  Fortunately, image processing 

algorithms are typically error resilient and such techniques are well suited for these 

algorithms.  However indiscriminate use of these techniques affects the accuracy and thus 

the algorithm performance.  This work attempts to judiciously use approximate adders and 

multipliers, such that the algorithm performance is only mildly affected.  It builds on the 

approximate adder and multiplier circuits introduced in [23] and [24] and shows how 

modified versions of these circuits can be successfully used in minimizing the area and 

latency of key image processing systems.  Note that reduced latency can be translated into 

increased throughput or reduced power consumption through voltage scaling. 

First we study approximate full adder (FA) circuits where the approximations are 

achieved by applying logic complexity reduction at transistor level [23].  These are used to 

implement multi-bit parallel adders where the approximate FA are used only for the least 

significant bits.  The approximate FAs help reduce the area and latency of the parallel 

adder but generate accurate results in most cases.  This makes them more effective than 

the popular technique of truncation. 

We use approximate parallel adders to implement the 2D Discrete Cosine 

Transform algorithm which is used in standards such as the Joint Photographic Expert 
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Group (JPEG) standard, lossy image and video compression, digital watermarking, and 

face recognition.  DCT is also widely used in solving partial differential equations and 

Chebyshev approximations.   

Compared to the implementation in [23], we reduce the width of the data-path 

from 20 bits to 16 bits, use a mixture of accurate and approximate adders and re-use 

several computations.  We implement the proposed method and the method presented in 

[23] in hardware.  We compare the results generated by the hardware implementation for 

both methods with those generated by using double precision floating point MATLAB.  

We find that by applying these three techniques, we are able to achieve up-to 50% 

reduction in area and an average improvement of 2-7 dB in PSNR compared to [23] for 

various standard test images. 

For a fairer comparison, we also implement the reference algorithm on a 16 bit 

wide data-path and compare its performance with our implementation.  We observe that, 

our implementation has a 40-45% reduction in area and comparable PSNR performance 

for the various configurations.  We also compare the implementation using a parallel 

adder with the most aggressive approximate FA with an implementation using truncation, 

as they both have comparable area.  We conclude that approximate adders perform much 

better compared to truncation especially for more aggressive scenario where several 

LSBs are truncated.  For instance, in a 16 bit parallel adder implementation, use of 4 

approximate FAs results in an average PSNR of 34.38 dB which is more than 10 dB 

higher compared to 23.46 dB obtained by truncating 4 LSBs.   

Next, we implement the approximate multiplier presented in [24] in hardware.  The 

approximate multiplier is achieved by Karnaugh map simplification and has a lower area 
 3 



and latency compared to the accurate 2x2 multiplier.  This 2x2 multiplier acts as a 

building block in constructing larger multipliers.  We propose three enhancements to this 

multiplier to achieve appreciable improvement in performance.  We synthesize the 

accurate, reference and proposed multipliers in hardware using DC Compiler, and evaluate 

them based on area, latency and power.  For the 2x2 multiplier unit, we achieve nearly 

28% and 63% reduction in area, and 25% and 63% reduction in power compared to the 

reference and accurate multipliers, respectively. 

We study the performance of the approximate multipliers by using them in the 

hardware implementation of the Gaussian FIR Filter and the 2D Fast Fourier Transform 

algorithms. We choose these two algorithms because of their use in large number of DSP 

systems.  FIR filters are used in image processing, digital wireless communication such 

as Global System for Mobile Communications (GSM), hearing aids, and digital video 

broadcast.  Fast Fourier Transform is considered to be one of the top ten most important 

algorithms of the twentieth century and finds applications in but not restricted to, 

communications, astronomy, geology, optics, etc.  Specifically, it can be applied for 

spectral analysis, data compression, solving partial differential equations, polynomial 

multiplication, etc. 

For FFT, we show that our implementation achieves 4.7 dB improvement in 

PSNR performance with ~5% area overhead compared to [24]. 

We also propose a hardware architecture of the interpolation algorithm, Segment 

Adaptive Gradient Angle (SAGA) [29].  We study each of the algorithm blocks and 

evaluate their sensitivity to data-path precision.  We map the algorithm into pipelined 

hardware blocks and synthesize them using 90 nm technology.  We show that a 64x64 
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image can be processed in 496.48 μs when clocked at 100 MHz.  This implementation 

achieves an average PSNR of 31.33 dB compared to the original image.  The floating 

point double precision MATLAB implementation of SAGA achieves an average PSNR 

of 32.14 dB which is comparable to our performance. 

1.1. Thesis Organization 

The layout of the work is organized as follows.  In Chapter 2, we describe the various 

approximate full adders presented in [23] and present their area complexities.  In Chapter 

3, we present the approximate multiplier proposed in [24].  We discuss the enhancements 

proposed to this multiplier and compare the performance of the reference and proposed 

multipliers.  We also compare the hardware complexity of the three multipliers in terms 

of area, latency and power.  In Chapter 4, we apply these approximate adder and 

multiplier circuits to popular image processing algorithms such as Discrete Cosine 

Transform, Gaussian FIR Filter, and Fast Fourier Transform.  We evaluate the 

performance of the various approximate implementations against the double precision 

floating point MATLAB implementation.  In Chapter 5, we describe the SAGA algorithm 

and its hardware implementation in detail.  We conclude the thesis in Chapter 6 and 

provide pointers for further research. 
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CHAPTER 2 

APPROXIMATE ADDERS 

In order to reduce the complexity of the data-path unit, approximations have been 

proposed for the full adder (FA) circuit in [23].  In this chapter, we study these 

approximations and analyze their error characteristics and area complexity.  These 

approximate adders have been used to implement the Discrete Cosine Transform 

algorithm in Chapter 4 and the performance of the corresponding implementation 

evaluated. 

2.1. Prior Work 

In the approximation method outlined in [23], the Conventional Mirror Adder (MA) 

circuit shown in Figure 1 is used as the reference design.  Here A and B are the primary 

inputs, Cin is the carry in from the previous stage.  Sum’ is the complemented Sum signal 

and Cout’ is the complement carry out signal that is sent to the next stage.  The 

approximate circuits are obtained by systematically removing transistors from this 

accurate full adder. The two rules followed in this process are [23]: 

i. No combinations of the inputs A, B and Cin should result in an open or short 

circuit,  

ii. The simplified circuit should result in minimum number of errors in Sum and 

Cout. 
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Figure 1.  Conventional Mirror Adder circuit [23] 

2.2. Approximate Full Adder Circuits 

2.2.1. Approximation 1 

Approximation 1 has 8 fewer transistors than the reference design.  It introduces two 

errors in the Sum and one error in the Cout outputs.  The schematic for this 

approximation is shown in Figure 2. 

 

Figure 2.  Approximation 1 Adder circuit [23] 
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TABLE I.  TRUTH TABLE SHOWING OUTCOMES FOR ACCURATE AND APPROXIMATE ADDERS FOR ALL 

POSSIBLE INPUT COMBINATIONS [23] 

Inputs 
Accurate 

Outputs 
Approximate Outputs 

A B Cin Sum Cout Sum1 Cout1 Sum2 Cout2 Sum3 Cout3 Sum4 Cout4 

0 0 0 0 0 ✔ ✔ ✗ ✔ ✗ ✔ ✔ ✔ 

0 0 1 1 0 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

0 1 0 1 0 ✗ ✗ ✔ ✔ ✗ ✗ ✗ ✔ 

0 1 1 0 1 ✔ ✔ ✔ ✔ ✔ ✔ ✗ ✗ 

1 0 0 1 0 ✗ ✔ ✔ ✔ ✔ ✔ ✗ ✗ 

1 0 1 0 1 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

1 1 0 0 1 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

1 1 1 1 1 ✔ ✔ ✗ ✔ ✗ ✔ ✔ ✔ 

 

2.2.2. Approximation 2 

The truth table for Approximation 1 shows that Sum = !Cout for 6 of the 8 combinations.  

This forms the basis for Approximation 2.  Since direct assignment leads to a greater 

input gate capacitance compared to the original reference adder, a buffer is introduced.  

The resulting circuit is shown in Figure 3. 
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Figure 3.  Approximation 2 Adder circuit [23] 

2.2.3. Approximation 3 

Approximation 3 is obtained by combining approximations 1 and 2.  The resulting circuit 

has 13 fewer transistors compared to the reference adder.  This approximation has three 

errors in Sum and one error in Cout. 

 

Figure 4.  Approximation 3 Adder circuit [23] 

2.2.4. Approximation 4 

From Table I we see that Cout = A for six out of the eight possible combinations.  

Approximation 4 is the result of combining this with the expression for Sum from 
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Approximation 1.  The resulting approximation has 11 transistors.  This results in three 

errors in Sum and two errors in Cout. 

 

Figure 5.  Approximation 4 Adder circuit [23] 

2.2.5. Approximation 5 

The motivation for Approximation 5 is to avoid carry propagation altogether by making 

Sum independent of Cin.  To achieve this, the Sum output is approximated to B and Cout 

is approximated to A.  This approximation is therefore reduced to an assignment of 

outputs to inputs and requires no logic gates.  This is the most aggressive of all the 

approximations and yet results in the best performance. 

2.3. Area Complexity 

All the proposed approximations result in significant reduction in area.  The number of 

transistors and the layout area in IBM 90nm technology for the reference and 

approximate adders is shown in Table II.  
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TABLE II.  LAYOUT OF ACCURATE AND APPROXIMATE FA CELLS [23] 

FA Unit Number of Transistors Area (μm2) 

Reference MA 24 40.66 

Approximation 1 16 29.31 

Approximation 2 14 25.5 

Approximation 3 11 22.56 

Approximation 4 11 23.91 

 

 

2.4. Building Parallel Adders 

For our study, we implement an approximate 16 bit parallel adder using the ripple carry 

adder architecture.  Here the addition of Least Significant Bits (LSB) is implemented 

using approximate FAs and the addition of the Most Significant Bits (MSB) is 

implemented using the reference mirror adder (MA).  An approximate parallel adder is 

shown in Figure 6. Here, the 10 MSB additions are implemented using the reference 

adder which is accurate, and the 6 LSBs are implemented using approximate FAs.  We 

use this configuration as our reference parallel adder in the rest of the document. 

 

Figure 6.  16 bit parallel adder using 10 accurate FA and 6 approximate FA 

For the reference 16 bit parallel adder, the total number of transistors is shown in 

Table III.  The area of the different approximate implementations is also shown in the 

table.  This area is computed based on the layout area for accurate as well as approximate 
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cells given in Table II.  We can see that the area reduction obtained using approximate 

adders is 10-35% compared to the accurate parallel adder. 

TABLE III.  LAYOUT OF ACCURATE AND APPROXIMATE FA CELLS FOR OUR IMPLEMENTATION [23] 

Parallel Adder Unit Number of Transistors Area (μm2) 

Reference MA 384 650.6 

Approximation 1 336 582.5 

Approximation 2 324 559.6 

Approximation 3 306 541.9 

Approximation 4 306 550.1 

Approximation 5 240 406.6 
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CHAPTER 3 

APPROXIMATE MULTIPLIER 

In this chapter we build upon the approximate multiplier presented in [24].  We describe 

the reference multiplier design and propose enhancements to the reference multiplier.  

We compare the performance of the two approximate designs and the accurate multiplier 

with respect to area, latency and power. 

3.1. Reference Approximate Multiplier 

3.1.1. 2x2 Multiplier 

The basic building block of the approximate multiplier is the 2x2 multiplier, which 

multiplies two 2 bit words (a1a0) and (b1b0).  This produces 4 bits of outputs since the 

largest number generated by a 2x2 multiplication is 9 (1001).  In [24], an approximation to 

the 2x2 multiplier is introduced by approximating this multiplication value to 7, which can 

be represented with 3 bits (111).  By restricting the output of the 2x2 multiplier from 4 to 

3 bits greatly reduces the complexity and introduces only a small error – only one in 16 

possible combinations is erroneous.  Figure 7 shows the modified Karnaugh map of the 

approximated logic function.  The erroneous output is highlighted in red. 

           b1b0 

a1a0 
00 01 10 11 

00 000 000 000 000 

01 000 001 011 010 

10 000 011 111 110 

11 000 010 110 100 

Figure 7.  Karnaugh Map of the 2x2 approximate multiplier [24] 
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3.1.2. Building Larger Multipliers 

Larger multipliers are built by using the 2x2 approximate multiplier as the basic building 

block.  The 2x2 module is used to generate the partial products of the larger multiplier.  

The partial products are then added using an adder tree built with accurate adders.  This 

architecture is illustrated in Figure 8. 

 

Figure 8.  Building a 4x4 approximate multiplier from 2x2 multiplier [24] 

3.2. Proposed Multiplier 

We propose three changes to this multiplier.  First, we further approximate the 2x2 

building block by approximating out0 to 0.  Even though the critical path of the resulting 

multiplier remains the same, the area has reduced. Figure 9 shows the logic functions of 

the accurate, reference [24] and proposed 2x2 multiplier. 

The second enhancement that we propose is the way a larger multiplier is built.  

The reference multiplier uses the same 2x2 approximate multiplier to compute all partial 

products.  Instead, we introduce three levels of approximation within the larger multiplier.  

We calculate the least significant partial product with maximum degree of approximation, 

the middle partial products with medium approximation and the most significant partial 

product with no approximation.   
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(a) 

 

(b) 

 

(c) 

Figure 9.  (a) Accurate (b) Reference approximate and (c) Proposed approximate 2x2 

Multiplier.  The critical paths have been highlighted in red in all three cases [24]. 
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Figure 10.  Building proposed 8x8 multiplier using the 2x2 multipliers.  The figure shows the 

varying degree of approximation in the multiplier. 

Figure 10 describes the proposed architecture.  Compared to the reference 

multiplier, only the lower partial products are computed with approximation.  This 

improves the accuracy of the proposed multiplier compared to the reference multiplier 

when two large numbers are multiplied.  However, when two small numbers are 

multiplied, the accuracy drops since we use aggressive approximations to compute the 

LSB partial product. In image processing applications involving filter computations, one 

of the inputs to the multiplier is a filter coefficient which is a known constant in many 

cases.  The other input is typically the image pixel value and is a variable.  If we have 

prior information about the filter coefficient, we can adjust the level of approximation 

within the multiplier.  We propose two versions of the approximate multiplier. 

1. Version A:  Computes the product with medium approximation (using the reference 

2x2 multiplier) when the filter coefficient is less than 16. 

 16 



2. Version B:  Computes the product with most aggressive approximation (proposed 

multiplier) when the filter coefficient is greater than 15. 

By introducing two versions of the multiplier, we are able to achieve good 

accuracy when the filter coefficient is small or large.  To validate this claim, we evaluate 

our 8x8 multiplier against the reference multiplier by sweeping the two inputs A & B 

from 0-255 and compute the percentage error for each input bin.  Figure 11 illustrates the 

error (in percentage) for the reference and proposed 8x8 multipliers for different input 

combinations.  We see that the proposed multiplier has the same performance as that of 

the reference multiplier when either (or both) input is small.  However, the proposed 

multiplier performs much better than the reference multiplier for large inputs. 

  

Figure 11.  Percentage errors of the proposed and reference 8x8 multiplier for various input 

combinations 

3.3. Comparison of Hardware Complexity 

In this section we compare the hardware complexity of the accurate, reference and 

proposed multiplier for the 2x2 and 8x8 configurations.  The metrics used are area, 

latency and power, obtained on DC Compiler using the SAED 90nm Generic Library 
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(optimized for power).  The schematics of the synthesized 2x2 accurate, reference and 

approximate multiplier are shown in Figure 12. 

 

(a) 

 

(b) 

 

(c) 

Figure 12.  Schematic generated after synthesis for (a) Accurate, (b) Reference Approximate and 

(c) Proposed 2x2 Multiplier 
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Table V presents the area, latency and dynamic power for the different 

multipliers.  We can see that the proposed 2x2 multiplier is 63.16% and 27.58% smaller 

in area and 63.21% and 25.86% lower in power compared to the accurate and reference 

multiplier designs, respectively. The proposed 8x8 multiplier has a 3% overhead 

compared to the 8x8 reference multiplier due to the introduction of accurate 2x2 

multipliers and has 10.25% smaller area compared to the 8x8 accurate multiplier.   The 

area reduction is significantly smaller than the results quoted in [24].  Part of the reason 

could be that in [24], the larger multiplier and adder trees are built using the RTL-

Compiler (RC Compiler), which leads to an optimized design.   

The power savings for the 8x8 proposed multiplier is ~2% and ~8.2% compared 

to the 8x8 reference and accurate multiplier respectively.  Thus, while the accuracy of the 

proposed multiplier is comparable or better than that of the reference multiplier, the 

overhead incurred in terms of area and latency is negligible.   

TABLE IV.  COMPARISON OF HARDWARE COMPLEXITY 

Multiplier Area – 

combinational (nm2) 

Latency (ns) Dynamic Power 

(uW) for V=1.2V 

2x2 Accurate Multiplier 52.53 0.69 6.70 

2x2 Reference Multiplier 26.72 0.53 3.325 

2x2 Proposed Multiplier 19.35 0.53 2.465 

8x8 Accurate Multiplier 3712.20 5.25 344.22 

8x8 Reference Multiplier 3251.40 5.15 322.33 

8x8 Proposed Multiplier 3331.58 5.15 316.27 
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CHAPTER 4 

CASE STUDIES 

In this chapter, we implement image processing kernel algorithms such as the Gaussian 

FIR Filter, 2D DCT and 2D FFT using approximate adders and multipliers.  The 

algorithms have been implemented on customized hardware architecture using Verilog 

VHDL and synthesized using Design Compiler from Synopsys.  The area, latency and 

power estimations are obtained using the Design Compiler for the SAED 90nm Generic 

Library (optimized for power).   

The performance of the algorithms is evaluated using Peak Signal to Noise Ratio 

(PSNR).  The ground truth corresponds to double precision floating point MATLAB 

implementation. For an image of size M×N, if I(i,j) is the value obtained from MATLAB, 

at location (i,j), and O(i,j) is the value obtained from the fixed-point hardware 

implementation of the algorithm, and MAX is the maximum possible value obtained 

from MATLAB implementation, then PSNR is defined as: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑀𝑀𝑀𝑀

� � [𝐼𝐼(𝑖𝑖, 𝑗𝑗) − 𝑂𝑂(𝑖𝑖, 𝑗𝑗)]2
𝑀𝑀−1

𝑗𝑗=0

𝑁𝑁−1

𝑖𝑖=0

 

𝑃𝑃𝑀𝑀𝑀𝑀𝑃𝑃 = 10𝑙𝑙𝑙𝑙𝑙𝑙10
𝑀𝑀𝑀𝑀𝑀𝑀2

𝑀𝑀𝑀𝑀𝑀𝑀
 

 Therefore, PSNR represents the noise introduced due to fixed-point 

implementation as well as use of approximate circuits.  Six test images of size 512x512 

were used for evaluating performance of the system.  They are Baboon, Barbara, Boat, 

House, Lena and Peppers [19]. 

This chapter is organized as follows.  Use of the approximate FA circuits to 
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implement the Discrete Cosine Transform algorithm is presented in section 4.1.  Use of 

the reference and proposed approximate multipliers in the implementation of the 

Gaussian FIR filter and 2D Fast Fourier Transform is described in section 4.2 and 4.3, 

respectively. 

4.1. Discrete Cosine Transform (DCT) 

The 2D 8-point DCT is implemented by applying 1D DCT along the rows and then 

applying 1D DCT along the columns.  An N point 1D forward DCT can be expressed as 

𝑀𝑀(𝑚𝑚) = 𝑢𝑢(𝑚𝑚)�
2
𝑀𝑀
�𝑥𝑥(𝑖𝑖) cos

(2𝑖𝑖 + 1)𝑚𝑚𝑚𝑚
2𝑀𝑀

𝑁𝑁−1

𝑖𝑖=0

,𝑓𝑓𝑙𝑙𝑓𝑓 𝑚𝑚 = 0, 1, … ,𝑀𝑀 − 1, 

where 𝑢𝑢(𝑚𝑚) =  �1 𝑓𝑓𝑙𝑙𝑓𝑓 𝑚𝑚 = 0 � 1
√2

 𝑙𝑙𝑜𝑜ℎ𝑒𝑒𝑓𝑓𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒. �.  All the cosine coefficients are scaled by 

32.  The multiplication with the cosine coefficient is replaced with additions and shifts as 

shown in Table V. 

TABLE V.  IMPLEMENTATION OF DCT COEFFICIENTS 

Coefficient Value Implementation 

a 16 1 << 4 

b 15 (1 << 4) - 1 

c 14 (1 << 4) – (1 << 2) 

d 11 (1 >> 2) + 1 (1 << 1) + (1 << 3) 

e 9 1 + 1 << 3 

f 6 (1 << 1) + (1 << 2) 

g 3 1 + (1 << 1) 
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4.1.1. DCT – Our Implementation  

The 8-point DCT can be simplified into odd and even coefficients as shown below. 

�

𝑊𝑊0
𝑊𝑊2
𝑊𝑊4
𝑊𝑊6

� =  �

𝑑𝑑 𝑑𝑑 𝑑𝑑 𝑑𝑑
𝑏𝑏 𝑓𝑓 −𝑓𝑓 −𝑏𝑏
𝑑𝑑 −𝑑𝑑 −𝑑𝑑 𝑑𝑑
𝑓𝑓 −𝑏𝑏 𝑏𝑏 −𝑓𝑓

��

𝑥𝑥0 + 𝑥𝑥7
𝑥𝑥1 + 𝑥𝑥6
𝑥𝑥2 + 𝑥𝑥5
𝑥𝑥3 + 𝑥𝑥4

� 

�

𝑊𝑊1
𝑊𝑊3
𝑊𝑊5
𝑊𝑊7

� =  �

𝑎𝑎 𝑐𝑐 𝑒𝑒 𝑙𝑙
𝑐𝑐 −𝑙𝑙 −𝑎𝑎 −𝑒𝑒
𝑒𝑒 −𝑎𝑎 𝑙𝑙 𝑐𝑐
𝑙𝑙 −𝑒𝑒 𝑐𝑐 −𝑎𝑎

��

𝑥𝑥0 − 𝑥𝑥7
𝑥𝑥1 − 𝑥𝑥6
𝑥𝑥2 − 𝑥𝑥5
𝑥𝑥3 − 𝑥𝑥4

� 

Several computations can be reused as in the butterfly structure shown in Figure 13. 

The parallel adders used in the first stage butterfly structure that compute y0, y1, y2, ... y7, 

are chosen to be accurate, since these results are used in the rest of the computations.  The 

figure also elaborates how the coefficients W0, W1, W2 W3, W4, W5, W6, and W7 are 

computed.  All parallel adders used in the latter stages are approximate.  The data-path of 

our system is 16 bits.  The approximate 16 bit parallel adder uses approximate adders for 

the 6 LSBs and uses accurate adders for the 10 MSBs. 

  

 22 



 

 

 

Figure 13.  Architecture for first stage butterfly and computation of DCT coefficients 

The PSNR results are obtained after applying forward-backward 2D DCT on six 

standard images and the performance of our DCT is compared with that in [23].  Note that 

the DCT implementation in [23] does not use the butterfly structure shown in Figure 13 

and implements the algorithm in a straightforward manner using matrix vector 

multiplication.  It uses a data-path that is 20 bits wide and all the 20 bit parallel adders are 

approximate.  The PSNR performance results for various configurations with varying 
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degrees of approximation are presented in [23].  For comparison, we use the configuration 

that keeps the PSNR performance of the two implementations comparable.  This 

corresponds to a 20 bit parallel adder that uses approximate FAs to add 9 LSBs and 

accurate FAs to add 11 MSBs.  It should be noted that the PSNR performance of both 

systems can be improved by increasing the number of MSBs that are added accurately. 

The PSNR results for the six standard images are presented in Table VI.  Note that 

the PSNR results quoted for [23], given in Table VI, correspond to those obtained using 

our implementation of the algorithm in [23].  To validate our implementation, we 

compared the PSNR results of our implementation of the algorithm in [23] with the values 

quoted in [23].  The PSNR values obtained for the Lena image of our implementation are 

within ±1dB with the results presented in [23] and so our implementation is representative 

of their design. 

TABLE VI.  RESULTS FOR DCT – OUR IMPLEMENTATION (DATA-PATH = 16 BITS) COMPARED TO 

IMPLEMENTATION IN [23] (DATA-PATH = 20 BITS) 

Image 

PSNR (dB) 

Accurate Approximation 1 Approximation 2 Approximation 3 Approximation 4 Approximation 5 

Our [23] Our [23] Our [23] Our [23] Our [23] Our [23] 

Baboon 34.61 30.71 29.10 24.27 25.15 23.44 25.97 18.49 22.70 15.63 27.78 26.74 

Barbara 34.71 31.01 28.95 24.46 25.40 23.04 25.79 18.42 22.59 16.01 27.64 25.54 

Boat 34.53 31.53 29.00 24.56 25.44 23.25 25.83 18.19 22.37 16.02 27.67 26.13 

House 33.56 30.76 28.89 25.20 25.56 22.80 26.18 18.77 22.44 15.89 27.41 24.57 

Lena 34.79 32.08 29.02 24.69 25.56 23.19 25.94 18.45 22.22 15.92 27.77 26.07 

Peppers 35.03 32.36 29.13 24.89 25.72 22.84 26.13 18.29 22.59 15.96 27.92 26.37 

Average 34.54 31.41 29.01 24.68 25.47 23.09 25.97 18.43 22.48 15.90 27.70 25.90 
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From Table VII, we see that our implementation performs better than the reference 

algorithm even though our data-path width is 16 bits compared to 20 bits in [23].  For 

parallel adder implementation using accurate FA, and FA based on approximations 1 and 

2, we obtain an average improvement of 3.13 dB, 4.33 dB and 2.38dB. The biggest 

improvement is obtained for approximations 3 and 4 with 7.54 dB and 6.58 dB, 

respectively, and the smallest improvement is obtained for approximation 5 of 1.8 dB.  In 

general, our implementation has better performance because we use accurate adders to 

compute the first stage of the algorithm.  Also, our implementation has lower area since 

several computations are reused.   

4.1.2. DCT – Reference Paper Implementation for 16 bits data-path 

We also implement the DCT algorithm presented in [23] for a 16 bit wide data-path. The 

aim is to compare the results of the two implementations by keeping the data-path width 

of the system constant.  In the 16 bit parallel adder, we use approximate adders for the 6 

LSBs and use accurate adders for the 10 MSBs.  Table VII compares the results obtained 

for our implementation against the 16 bit implementation of the reference algorithm.  
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TABLE VII.  COMPARING THE RESULTS FOR DCT – OUR IMPLEMENTATION VS REFERENCE 

IMPLEMENTATION (DATA-PATH = 16 BITS) 

Image 

PSNR (dB) 

Accurate Approximation 1 Approximation 2 Approximation 3 Approximation 4 Approximation 5 

Our Ref Our Ref Our Ref Our Ref Our Ref Our Ref 

Baboon 34.61 30.67 29.10 29.76 25.15 28.07 25.97 25.54 22.70 22.33 27.78 28.78 

Barbara 34.71 30.97 28.95 29.55 25.40 28.06 25.79 24.95 22.59 22.01 27.64 29.08 

Boat 34.53 31.48 29.00 30.23 25.44 28.53 25.83 25.39 22.37 22.25 27.67 29.74 

House 33.56 30.71 28.89 29.60 25.56 27.59 26.18 23.37 22.44 21.98 27.41 29.58 

Lena 34.79 32.02 29.02 30.19 25.56 28.42 25.94 25.08 22.22 22.30 27.77 30.00 

Peppers 35.03 32.30 29.13 30.38 25.72 28.29 26.13 25.18 22.59 22.40 27.92 30.21 

Average 34.54 31.36 29.01 29.95 25.47 28.16 25.97 24.92 22.48 22.21 27.70 29.56 

 

 From Table VII, we see that while our implementation has better performance for 

the accurate case, it has worse performance for approximations 2 and 5 and comparable 

performance for approximations 1, 3 and 4.  In our implementation, outputs of the first 

stage, y4, y5, y6 and y7 are quite small and therefore use of approximate adders in the 

LSBs of subsequent stages lead to decrease in quality performance.  

Figure 14 shows a comparison of area of our implementation against the 16 bit and 

20bit implementations of the reference algorithm, for the different approximations.  The 

area estimates are computed from the layout area of various FA cells given in Table II.  

The area assessment corresponds to an estimate of the area occupied by the FAs and does 

not consider the routing overhead. It can be seen that our implementations show 

significant improvement in terms of area.  For the various approximations, we achieve 

~34% to 39% reduction in area, compared to [23] even when both data-paths are 16 bits 
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wide.  For the various approximations, we achieve 39-50% reduction in area compared to 

the 20 bit implementation of the reference algorithm. 

  

Figure 14.  Comparison of area of our implementation vs 16bit and 20bit reference algorithm 

[23] implementations 

4.1.3. Comparison of Approximation 5 with truncation 

In this section, we incorporate truncation into our implementation of the DCT algorithm 

and compare it with the results obtained by using Approximation 5.  Note that FAs based 

on Approximation 5 are built by re-routing the input signals and require no logic gates.  If 

the routing overhead is ignored, then the area of an implementation that employs 

truncation by L bits and an implementation that approximates addition of L LSBs should 

be comparable. 

 In our implementation of truncation, the outputs of the first stage computations are 

truncated.  The computation of the coefficients W0, W1… W7 remains the same as 

discussed before.  All parallel adders used in this configuration are accurate.  We study the 

impact of truncating 2, 4 and 6 LSBs on the quality performance.  For an L-bit truncation, 
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the internal precision of the system is 16-L bits.  Thus, for 2 bit, 4 bit and 6bit truncation, 

the internal precision is 14 bits, 12 bits and 10 bits, respectively. 

The PSNR results for DCT computation using 2 bit, 4 bit and 6 bit truncation as 

well as 2 bit, 4 bit and 6 bit approximation using Approximation 5 FAs are shown in Table 

VIII.  We see that the performance of the algorithm drops sharply with increase in degree 

of truncation.  While 2 bit truncation results in some loss of performance, truncation of 6 

bits results in significant loss in performance and is unacceptable.  Use of Approximation 

5 FAs on the other hand demonstrates very small degradation in PSNR performance for 2 

and 4 bit approximation.  For instance, use of 4 approximate FAs results in an average 

PSNR of 34.38 dB which is more than 10 dB higher compared to 23.46 dB obtained by 

truncating 4 LSBS of the 16 bit parallel adder. 

TABLE VIII.  RESULTS FOR DCT – FOR 2, 4 AND 6 BIT TRUNCATION AND APPROXIMATION USING 

APPROXIMATION 5 

Image 

PSNR (dB) 

Accurate 
2 bits 4 bits 6 bits 

Truncation Approx 5 Truncation Approx 5 Truncation Approx 5 

Baboon 34.61 31.3 34.87 23.31 34.40 13.62 27.78 

Barbara 34.71 31.50 35.03 23.57 34.51 14.03 27.64 

Boat 34.53 31.31 34.86 23.46 34.34 13.10 27.67 

House 33.56 30.71 33.87 23.19 33.61 13.47 27.41 

Lena 34.79 31.51 35.14 23.51 34.62 13.72 27.77 

Peppers 35.03 31.8 35.35 23.70 34.77 13.93 27.92 

Average 34.54 31.36 34.85 23.46 34.38 13.65 27.70 
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4.1.4. Area Complexity 

In this section we compare the total area of the three implementations by comparing the 

number of FAs used in each case.  The algorithm used in the reference paper uses two 

hundred and two 20 bit parallel adders to implement 1D forward-reverse DCT while our 

implementation uses only one hundred and twenty four 16 bit parallel adders (sixteen are 

accurate and hundred and eight are approximate 16 bit parallel adders) to implement the 

same.  Therefore, the area of our implementation decreases significantly with respect to 

the reference algorithm.  Table IX lists the number of accurate and approximate FAs used 

in each configuration. 

TABLE IX.  AREA COMPLEXITY – COMPARISON OF # OF FAS USED IN THE THREE CONFIGURATIONS 

Reference Implementation  
(data-path = 20 bits) 
9 approximate LSBs 

Reference Implementation  
(data-path = 16 bits) 
6 approximate LSBs 

Our Implementation 
(data-path = 16 bits) 
6 approximate LSBs 

# of accurate FA # of approximate FA # of accurate FA # of approximate FA # of accurate FA # of approximate FA 

2222 1818 2020 1212 1336 648 

 

 Figure 15 plots the area and PSNR for the competing implementations.  We use 

the average PSNR of all images obtained for each configuration for this analysis.  Our 

design goal is to achieve high performance at low area cost and thus a system whose 

performance lies in the upper left corner on this plot is most desirable.  From Figure 15, 

we can see that our implementation achieves this design goal.  Our implementation 

generates better or comparable PSNR performance at much smaller area for all 

approximations.  Other than Approximation 5, the area reduction using our algorithm is 

significant for all other configurations.  For instance, for both 16 bit and 20 bit 
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implementation of the reference algorithm we achieve ~34% to 50% reduction in area 

with minimal or no loss in PSNR performance.   

Configurations where the reference paper implementation performs better with 

respect to PSNR performance can be compensated by reducing the degree of 

approximation in our implementation.  For instance, our accurate implementation has 

higher PSNR with comparable area compared to 16 bit implementation of [23].  Due to 

the efficient re-usage of components in our algorithm, we can afford a lesser level of 

approximation to improve PSNR performance. 

 

Figure 15.  PSNR vs area for various approximations for Ref [20bit], Ref [16bit] and Our 

implementations 

4.1.5. Summary  

We can see that compared to [23], we have achieved comparable or slightly worse 

performance for each approximation as well as the accurate case. We can see that 

Approximation 5 performs surprisingly well for all cases, with virtually zero overhead. 
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This can be attributed to its very low mean error value of 0.5.  Overall, use of approximate 

adders and the butterfly structure in Figure 1, helped achieve up to 50% reduction in area 

compared to [23].  

Through this study, we draw the following conclusions: 

1. Selective implementation of accurate as well approximate adders can lead to a 

more optimized solution in terms of both accuracy and area (therefore power). 

2. Keeping the early stages of the algorithm accurate provides scope for aggressive 

approximation in later stages.  

3. Significant reduction in area as well as power can be obtained by reusing several 

computations. 

4. Approximation 5 based method has significantly better performance than 

truncation and should be used in place of truncation. 

 

4.2. Gaussian FIR Filter 

For our study, we implement the 5x5 Gaussian Filter for σ = 1 as shown in Figure 16.  

The filter coefficients as well as the inputs are unsigned numbers. 

 

Figure 16.  Convolution kernel for 5x5 Gaussian FIR Filter 
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We use an 8x8 multiplier to implement the Gaussian filter.  Since the coefficients 

of the Gaussian filter are hardwired, we use Version A (medium aggression) multiplier to 

implement the multiplication with coefficients 4 and 7.  The Version B (aggressive 

approximation) multiplier is used to implement the multiplication with coefficients 16, 26 

and 41.  The internal precision used for both adders and multipliers is 16 bits.  All the 

adders used in the system are accurate; the multipliers are either accurate or approximate 

based on reference [24] or the proposed method. 

4.2.1. Results  

The performance of the filter using accurate, reference [24] and the proposed approximate 

multiplier are compared with respect to PSNR.  The ground truth is obtained by running 

MATLAB simulations in double precision floating point. Table X presents the results for 

the six standard images – Baboon, Barbara, Boat, House, Lena and Peppers – each of size 

512x512. 

TABLE X.  RESULTS FOR GAUSSIAN FIR FILTER 

Image 

PSNR (dB) 

Accurate 

Multiplier 

Reference 

Multiplier 

Proposed 

Multiplier 

Baboon 51.16 49.39 49.33 

Barbara 47.16 47.21 47.16 

Boat 51.16 48.82 48.75 

House 51.15 44.70 44.65 

Lena 51.52 47.29 47.24 

Peppers 51.16 47.95 47.89 

Average 50.55 47.56 47.50 
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The performance of the reference multiplier [24] and the proposed multiplier is 

almost the same.  This is because our multiplier uses almost the same set of 

approximations as the reference multiplier [24] for coefficients 4 and 7. There is an 

average drop of 3.04 dB drop in accuracy compared to the accurate multiplier.  While our 

synthesized implementation shows only a 10% reduction in area due to lack of 

optimization, a ~40% reduction in area is achieved when we compare the gate count of 

the accurate and proposed multipliers.  This estimate is closer to the area reduction 

reported in [24]. 

 

4.3. Fast Fourier Transform 

4.3.1. Split Radix FFT 

We implement 2D 32-point FFT by first applying 1D FFT along the rows and then 1D 

FFT along the columns.  The 1D FFT is implemented using the Split Radix FFT (SRFFT) 

algorithm as described in [28].  The FFT coefficients given by 

𝑀𝑀𝑘𝑘 = ∑ 𝑥𝑥𝑛𝑛 (𝑊𝑊𝑀𝑀)𝑛𝑛𝑘𝑘𝑀𝑀−1
𝑛𝑛=0 ,𝑒𝑒ℎ𝑒𝑒𝑓𝑓𝑒𝑒 𝑊𝑊𝑀𝑀 ≜ cos

2𝑚𝑚

𝑀𝑀
− 𝑗𝑗 sin

2𝑚𝑚

𝑀𝑀
, 

are decomposed into 

𝑀𝑀2𝑘𝑘 = � (𝑥𝑥𝑛𝑛 +  𝑥𝑥𝑛𝑛 + (𝑀𝑀/2))(𝑊𝑊𝑀𝑀)
2𝑛𝑛𝑘𝑘

𝑀𝑀/2−1

𝑛𝑛=0

 

𝑀𝑀4𝑘𝑘 + 1 = � [(𝑥𝑥𝑛𝑛 −  𝑥𝑥𝑛𝑛 + (𝑀𝑀/2)) − 𝑗𝑗(𝑥𝑥𝑛𝑛 + (𝑀𝑀/4) −  𝑥𝑥𝑛𝑛 + (3𝑀𝑀/4))]𝑊𝑊𝑛𝑛
𝑀𝑀𝑊𝑊𝑀𝑀

4𝑛𝑛𝑘𝑘

𝑀𝑀/4−1

𝑛𝑛=0

 

𝑀𝑀4𝑘𝑘 + 3 = � [(𝑥𝑥𝑛𝑛 −  𝑥𝑥𝑛𝑛 + (𝑀𝑀/2)) + 𝑗𝑗(𝑥𝑥𝑛𝑛 + (𝑀𝑀/4) −  𝑥𝑥𝑛𝑛 + (3𝑀𝑀/4))]𝑊𝑊3𝑛𝑛
𝑀𝑀𝑊𝑊𝑀𝑀

4𝑛𝑛𝑘𝑘

𝑀𝑀/4−1

𝑛𝑛=0
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Thus the N point FFT is implemented by one FFT of length N/2 and two FFTs of 

length N/4.  The motivation for this decomposition is the fact that the radix-2 algorithm is 

more efficient for even terms and the radix-4 for odd terms.  Because SRFFT combines 

radix-2 and radix-4 algorithms as one, it uses a slightly different butterfly structure shown 

in Figure 17. 

 

Figure 17.  Butterfly structure used for SRFFT [28] 

In our implementation, both the inputs and the FFT coefficients are 8 bits wide 

and the internal precision of the adders and multipliers is 16 bits.  All adders used in the 

implementation are accurate.  All the FFT coefficients are scaled by a factor of 128 

before multiplication.  Since all these coefficients are larger than 16, only Version B of 

the proposed multiplier is used to implement this algorithm.  The output of the first 1D 

FFT is 12 bits wide and that of second 1D FFT is 16 bits wide.  

4.3.2. Results 

Table XI provides a comparison of the results obtained for the forward-reverse 2D FFT 

when implemented using accurate, reference and proposed multipliers. The PSNR is 

computed by comparing the results obtained from the Verilog HDL implementation with 
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the ground truth obtained by computing the 2D forward-reverse FFT in MATLAB using 

floating point precision. 

TABLE XI.  RESULTS FOR 32 POINT 2D FFT 

Image 

PSNR (dB) 

Accurate Multiplier Reference Multiplier [24] Proposed Multiplier 

Baboon 42.81 37.62 41.46 

Barbara 42.71 36.11 41.37 

Boat 42.90 38.39 41.84 

House 42.29 33.58 40.82 

Lena 42.89 36.97 41.59 

Peppers 42.79 37.74 41.56 

Average 42.73 36.74 41.44 

 

Our implementation has significantly better performance than the one using the 

reference multiplier in [24] and comparable performance with the accurate multiplier 

implementation. When two large numbers are multiplied, calculating all the partial 

products with same level of approximation leads to a steeper drop in accuracy.  Varying 

the degree of approximation within the large multiplier by introducing accurate multiplier 

to compute the MSB partial product and using aggressive approximation for the LSB 

partial product leads to better accuracy. This has resulted in our method achieving an 

average of 4.7dB improvement in PSNR compared to [24] with a very small area 

overhead. 
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CHAPTER 5 

IMPLEMENTATION OF SAGA ALGORITHM 

SAGA is an edge-directed interpolation based image enlargement algorithm that has low 

complexity and fast execution time compared to state-of-the-art methods [29].  In this 

chapter, we describe our attempt at designing a hardware architecture for SAGA.  In 

section 5.1, we describe the SAGA algorithm and then in section 5.2 we describe our 

implementation of pipelined hardware blocks to realize the algorithm.  We conclude the 

chapter by discussing the PSNR performance, and area, latency and power readings of 

the hardware implementation. 

5.1. SAGA Algorithm 

SAGA is an interpolation algorithm that linearly interpolates along isophotes rather than 

along the image lattice.  Image isophotes can be described as all points lying on curves of 

constant luminous intensity.  They play an important role in image reconstruction and any 

errors introduced in these curves can degrade the image quality.  SAGA asserts that the 

tangent lines to the curvature of the isophote provide better approximations on the image 

grid.  It provides a systematic way to calculate these displacements (α and β) along the 

isophotes.  Figure 18 illustrates an isophotic curve and the intersection of the tangent line 

to the image lattice.  The displacements α and β describe the interpolation relationship 

between the isophote intersections and the image pixel locations.  We describe the 

procedure to compute the displacements and the interpolation process next. 
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a)     b) 

Figure 18.  a) The curve shown indicates the isophote curvature.  b) The intersection of the 

tangent line with the integer image. [29] 

5.1.1. Determination of Optimal Displacements 

The optimal displacements that describe the isophotes for a given row of pixels are 

determined by minimizing the cumulative squared intensity-matching error, given by E 

(α) = || diag (Ix) α + Iy ||2, where Ix and Iy are the partial derivatives for each pixel in the 

row obtained using the Sobel operator and diag (Ix) is a diagonal matrix with Ix as the 

diagonal entry.  This relationship describes the displacement at each node – a node 

partitions the row (or column) of pixels into smaller segments, where each segment is 

described by a single isophote.  The total number of nodes, also called the stiffness 

parameter ‘k’, can be fixed or variable.  ‘k’ is related to the set of nodes L, as L ≈ M/k, 

where M is the number of pixels in a row.  The complete set of displacements 

corresponding to the row can be obtained by interpolating the nodal displacements, α = 

Θ×αL. 
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Θ is an interpolation band matrix of the form [29]: 

Θ =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0 ⋯ 0

𝜃𝜃1(1) 𝜃𝜃2(1) 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮

𝜃𝜃1(𝑘𝑘 − 1) 𝜃𝜃2(𝑘𝑘 − 1) 0 ⋯ 0

0 1 0 ⋯ 0

0 𝜃𝜃1(1) 𝜃𝜃2(1) ⋯ 0

⋮ ⋱ ⋮ ⋮ ⋮

0 𝜃𝜃1(𝑘𝑘 − 1) 𝜃𝜃2(𝑘𝑘 − 1) ⋯ 0

0 0 1 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋮

0 0 0 1 0

0 0 0 𝜃𝜃1(1) 𝜃𝜃2(1)

⋮ ⋮ ⋮ ⋮ ⋮

0 0 ⋯ 𝜃𝜃1(𝑘𝑘 − 1) 𝜃𝜃2(𝑘𝑘 − 1)

0 0 ⋯ 0 1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝜃𝜃1 and 𝜃𝜃2 are linear interpolation functions given by 𝜃𝜃1(𝑖𝑖) = 𝑘𝑘−𝑖𝑖
𝑘𝑘

 and 𝜃𝜃2(𝑖𝑖) = 𝑖𝑖
𝑘𝑘
, for 0 <

𝑖𝑖 < 𝑘𝑘, where k is the stiffness parameter. 

5.1.2. Computing Displacements  

The combined coefficient matrix is described as 𝐽𝐽 = diag(𝐼𝐼𝑥𝑥)Θ. 

This can be simplified as 

JT JαL = JT (-Iy) 

The resulting matrix J has 2M-L nonzero entries, where M is the number of pixels 

in a row in the image.  The matrix JT J is a tri-diagonal matrix and solving for αL requires 

computing the inverse of this tri-diagonal matrix.  Computation of JT J takes (2(2M-L)-L) 

multiplications and computing JT (-Iy) takes (2M-L) multiplications.  Therefore, the order 
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of complexity for computing the displacements for one row of pixels is O(M), where M is 

the number of pixels in the row.  The displacements are calculated along the row as well 

as along the column in the reference algorithm and therefore the total complexity is 

(O(MN)), where N is the number of pixels in a column.   

5.1.3. Constructing Intermediate Images 

The displacements can be used to describe ‘matched’ locations.  For example, for a pixel 

location [m, n], the matched locations are (m ± α(m, n), n ± 1) and (m± 1, n ± β(m, n)) as 

shown in Figure 19.  The intermediate pixel values are obtained by interpolating along 

these vectors.  The displacements are usually non-integer values and result in interpolated 

values that do not fall on the grid.  The off-grid displacements are computed from the 

neighboring, original data using 1D interpolation.  New data is then computed along the 

displacements using linear interpolation.  By repeating this procedure along the columns, 

four intermediate images are obtained.  The four images are then combined using a 

weighting system.   

 

Figure 19.  Interpolation of input pixel values along the displacements [29] 
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5.2. Our Implementation 

Our implementation of the SAGA algorithm is based on the following simplifications: 

1. Keep the enlargement factor at 2, which means the algorithm would generate an 

output image that is twice the size of the input image. 

2. Keep the stiffness parameter ‘k’ constant at a value of 8. 

3. Compute the displacements along the rows only and apply uniform weight for 

both images.  This makes the complexity of the algorithm O(N) and reduces the 

execution time of the algorithm. 

4. All 1D interpolations are computed using linear interpolation. 

Furthermore we use images of size 64x64 to make the simulation time fast. 
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The hardware architecture of SAGA is shown in Figure 20.  It is translated into a 

streaming architecture, where the output of each block is fed to the input of the next block.  The 

flow shown in Figure 20 is for a single row and has to be repeated for every row and column in 

the image.  Next, we describe each hardware block used in the algorithm.  All hardware blocks 

are synthesized using Design Compiler from Synopsys.  The area, latency and power estimations 

are obtained using the Design Compiler for the SAED 90nm Generic Library (optimized for 

power).  The performance of the design is evaluated by comparing the PSNR performance with 

respect to the original image.  

5.2.1. Sobel Operator 

The Sobel operator is a 3x3 kernel used for edge detection.  The partial derivatives Ix and Iy are 

obtained by applying the Sobel operator along rows as well as columns.  These are implemented 

using shifts and additions as shown in Figure 21.  The input pixel values are scaled down by a 

factor of 8 to accommodate the high precision requirements of the following stages.  We 

evaluated the performance of the system by running this block for 10, 12 and 16 bits internal 

precision and achieved PSNR performance of 16.724 dB, 28.85 dB and 28.85 dB, respectively. 

This analysis was used to fix the internal precision for this module at 12 bits.   

We also use Approximation 5 FAs to build the 12bit parallel adder used in this module; 

the 2 LSBs are added using approximate FA and 10 MSBs are added using accurate FAs. The 

PSNR performance of the block using approximate parallel adders is 28.041 dB.  Since the drop 

in PSNR performance is negligible, we use the configuration (10+2) to implement the parallel 

adder, in this block.  The hardware block diagram of this module is shown in Figure 21.  The 

synthesis results are presented in Table XII, at the end of this section. 
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Figure 21.  Block diagram for hardware implementation of Sobel operator 

5.2.2. Computing the J matrix 

The matrix J, also defined as the coefficient matrix, is obtained by interpolating the diag(Ix) 

using the interpolation matrix Θ.  J is a band diagonal matrix of size M × (L+1).  Since several 

entries in diag(Ix) and Θ are 0, it takes only 2M-L entries to store the entire J matrix.  The 

choices available for internal precision are 10, 12 and 16 bits. The PSNR obtained for the various 

configurations are 23.61, 29.79 and 29.79 dB, respectively. We therefore choose 12 bits as our 

internal precision.  This module does not use any parallel adders and therefore, approximate 

parallel adders are not used in this module. 

The stiffness parameter, k, is reported to be 6 to 8 in [29].  Since the interpolation 

function 𝜃𝜃, requires a division by k, we keep k to be a power of 2, namely 8.  This enables the 

interpolation function to be implemented by using a multiplication and right shift operation (to 

implement division by 8). 

Since several entries of matrices diag (Ix) and Θ are zero, we do not require a complete 

matrix multiplication.  Figure 22 illustrates the computation of matrix J by multiplying only the 

non-zero entries of diag (Ix) and Θ.  The module takes in k Ix values as input and computes the 

2k-1 interpolated J matrix values.  In our implementation, we store these values in a buffer of 

size 2M-L. 
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Figure 22.  Computation of matrix J from diag(Ix) and Θ 

5.2.3. Computing JTJ and JT(-Iy) 

Computations in the JTJ and JT(-Iy) are implemented using an accurate 8×8 multiplier.  The 

internal precision of the JTJ module is 16 bits and that of JT(-Iy) module is 20 bits.  We arrive at 

this precision, by comparing the PSNR performance for different values of internal precision for 

JTJ and JT(-Iy) modules.  Our choice of precision gives a PSNR of 27.97 dB, which is acceptable.  

By using the approximate parallel adder, the PSNR of the block drops to 23.79 dB, which is very 

low.  We therefore do not use approximate FAs in this module. 

JTJ is a tri-diagonal matrix; therefore only 3(L+1) elements are required to define this 

matrix. The three entries of this matrix are represented using a, b and c in Figure 20.  The JT(-Iy) 

matrix can be defined by using L+1 entries.  This is the fourth input, d, to the tri-diagonal matrix 

solver, TDMA1, in the block diagram, shown in Figure 20.  Since computation of d is more 

sensitive, it is kept at a higher precision of 20 bits compared to inputs a, b and c. 

5.2.4. Calculating nodal displacements αL 

As seen from equation (4), solving for αL requires computing the inverse of the tri-diagonal 

matrix JTJ.  We use Thomas Tri-diagonal Matrix Inversion algorithm [30] to compute the 

inverse.  The Thomas algorithm is based on LU decomposition where the tri-diagonal matrix is 
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decomposed into lower and upper triangular matrices.  The algorithm is executed in two steps, 

the first step iterates through the entire matrix downwards (TDMA1) and the next step iterates 

through the matrix upwards (TDMA2).  This means all computations in the first step must be 

completed before the second step is executed.  This is accomplished by introducing a buffer of 

size 2(L+1), between the two stages TDMA1 and TDMA 2 as shown in Figure 20. 

The internal precision of both TDMA1 and TDMA2 is 32 bits.  We implement the 

parallel adder by adding the 2 LSBs using approximate FAs and adding the MSBs using accurate 

FAs.  Computation of αL is integral to the algorithm as α is obtained by interpolating these 

values. By keeping the accuracy of αL high at 32 bits, we ensure that the accuracy of the system 

is maintained. The hardware architecture for TDMA1 and TDMA2 are shown in Figure 23. 

 

Figure 23.  Hardware architecture for TDMA1 and TDMA2 

TDMA1 requires a divider circuit to compute the id as shown in Figure 23.  We 

implement the divider circuit using the Newton-Raphson iterative method.  To compute N/D, 

this algorithm computes the reciprocal 1/D iteratively and multiplies it by N.  Both N and D are 

32 bits wide.  The Newton-Raphson method requires D to be scaled to a value between 1 and 2.  

This drops the precision of scaled D to 16 bits.  The algorithm begins with an initial 

approximation of D-1.  It then improves the estimate of D-1, Xi, iteratively as  
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Xi+1 = Xi × (2 – D× Xi). 

The divider circuit is implemented in hardware based on the implementation in [31].  By 

using multiplexers and load signals, the above logic can be implemented using only one 16×16 

multiplier. We use the approximate multiplier described in Chapter 3 to implement this 

multiplier.  The 16 bits least significant partial product is computed using the most aggressive 

approximation; the middle partial product is using medium approximation and the most 

significant partial product using accurate multipliers. 

D-1 corresponds to id in the architectural block diagram presented earlier.  After the 

computation of id, x(i), y(i) and αL are computed using accurate multipliers. αL is obtained by 

solving αL(i) = y(i) – x(i) αL(i+1).  The first αL(i) = y(i). 

5.2.5. Calculating displacements α 

The set of displacements α is calculated by interpolating αL along the interpolation matrix Θ.  We 

implement this using an accurate multiplier.  The precision of this module is 32 bits.  All parallel 

adders used in this module are implemented by adding the 2 LSBs using approximate FAs and 

adding the MSBs using accurate FAs. 

5.2.6. Linear Interpolation to compute output pixel values 

The output pixels are obtained by interpolating the original data using 1D interpolation and along 

the displacements, as shown in Figure 20.  The linear interpolation module also uses the same 

divider module described above. 

5.3. Timing Analysis of our hardware architecture 

In this section, we describe the timing flow for our hardware implementation.  For this analysis, 

we make certain assumptions regarding the calculation of number of cycles.  The number of 
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cycles for an L bit parallel adder is assumed to take L cycles, an L×L multiplication takes 4L 

cycles, and all hardwired shifts, comparison and assignment operators take 1 cycle. Table XII 

provides the computation of the number of clock cycles required for each module.  This is 

calculated from the various operations used to implement each module.  Figure 24 illustrates the 

timing diagram for the pipelined implementation of the algorithm.   

TABLE XII.  TIMING ANALYSIS OF OUR HARDWARE ARCHITECTURE 

Module # of computations required # of clock cycles required 

Sobel Operator k × (1 shift + 5 12 bit additions) 488 

J 
k × 8×8 multiplications + 16 

hardwired shifts 
272 

JTJ 
2k × 8×8 multiplications + 15 

16bit additions 
752 

JT(-Iy) 
2k × 8×8 multiplications + 15 16 

bit additions 
752 

TDMA1 
Computation of denom, inverse 

and normalization 
2072 

TDMA2 
1 32×32 multiplication, 1 32 bit 

addition and 1 assignment 
161 

α = αL × Θ 
8 32×32 multiplications, 13 

shifts and 7 32 bit additions 
1261 

Interpolate along α 
Interpolation using inverse and 

multiplication 
1926 

1D interpolation 
2 16×16 multiplications, 1 16 bit 

addition and 1 shift 
113 
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Figure 24.  Timing Analysis of our hardware architecture (image not drawn to scale) 

We can see that most of the computations are pipelined with the exception of TDMA2, 

which cannot be started before TDMA1 is completed. 

5.4. Hardware Synthesis and Performance Results  

We present the synthesis results – area, latency and power, obtained for the various hardware 

modules in Table XII.  

TABLE XIII.  SYNTHESIS RESULTS OF ALL THE HARDWARE MODULES 

Module Area – 

combinational (nm2) 

Latency (ns) Dynamic Power 

(mW) for V=1.2V 

Sobel Operator 3819.1 2.52 0.18 

J 20934.1 4.05 1.29  

JTJ 89664.3 12.97 7.59 

JT(-Iy) 101869.1 10.03 0.96 

TDMA1 293305.6 115.28 24.11 

TDMA2 55766.0 38.78 6.46 

α 34632.8 7.62 3.25 

1D Interpolation 33249.5 6.20 3.43 

Interpolation along α 147983.3 79.75 11.35 

48 



The total time to process one row is 7.76 μs, when the clock period is 10 ns.  The latency 

to execute the algorithm for the entire image would therefore be 7.76 μs multiplied by the 

number of rows plus the number of columns.  For our system, the total latency of the design is 

496.48 μs.   

We now present the PSNR results obtained by implementing SAGA algorithm using 

double precision floating point MATLAB implementation as well as our hardware 

implementation. We also present the results of our implementation using accurate as well as 

approximate parallel adders and multipliers. Approximate parallel adders were used in the Sobel 

operator, TDMA1 and TDMA2 modules; approximate multiplier was used in the divider circuit. 

The ground truth is the original image of size 127x127.  We can see that our hardware 

implementation achieves comparable PSNR with respect to the MATLAB implementation for all 

the images.  The use of approximate parallel adders and multipliers leads to a very small drop in 

PSNR performance for all the images. 

TABLE XIV.   RESULTS FOR SAGA 

Image 

PSNR (dB) 

MATLAB 

Implementation 

[29] 

Hardware Implementation 

Using accurate 

parallel adders 

Using approximate parallel 

adders and multipliers 

Baboon 32.21 31.83 31.31 

Barbara 32.69 31.91 31.45 

Boat 31.57 30.64 30.07 

House 30.84 30.36 29.83 

Lena 33.02 31.74 31.88 

Peppers 32.54 31.52 30.59 

Average 32.14 31.33 30.86 
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CHAPTER 6 

CONCLUSION 

This thesis studied the use of approximate adders and multipliers in reducing the area and latency 

of image processing kernels with only a small loss in performance.  We also develop a hardware 

architecture for the state-of-the-art image enlargement algorithm, Segment Adaptive Gradient 

Angle (SAGA), and implement it using pipelined hardware blocks. 

6.1. Summary 

We use several approximate versions of the mirror adder presented in [23] to implement 

approximate parallel adders.  A combination of accurate and approximate parallel adders was 

used to implement 2D Discrete Cosine Transform algorithm and our implementation was 

compared against several configurations of the reference algorithm [23].  Our data-path was 16 

bits wide and the 16 bit approximate parallel adders were implemented using approximate FAs to 

add 6 LSBs and accurate FAs to add 10 LSBs. We synthesized the competing implementations 

using Synopsys in 90nm technology and computed the PSNR with respect to the double 

precision floating point MATLAB implementation.  We tested the implementations for test 

images Barbara, Baboon, Boat, House, Lena and Peppers, of size 512x512.  By using a mixture 

of accurate and approximate adders, we were able to achieve a reduction of ~34% to 38% in area 

with comparable PSNR performance compared to the implementation presented in [23].  

We also compared the performance of the 2D DCT system built with parallel adders 

against truncation.  We used Approximation 5 FA to build the approximate parallel adder since it 

uses the same number of logic gates as a truncated adder.  We show that using approximate 

parallel adders is far more effective than brute force truncation.  We achieve negligible reduction 

in PSNR performance for an implementation where 4 LSBs were added using Approximation 5 
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adders.  In contrast, 4 bit truncation of the 16 bit parallel adder results in more than 10 dB drop in 

PSNR performance and is clearly not acceptable. 

Next we propose several enhancements to the approximate multiplier proposed in [24].  

The reference multiplier is built with 2x2 multiplier building blocks that produce 3 bit outputs 

(instead of 4 bits).  We propose judiciously replacing some of the approximate 2x2 multiplier 

blocks with accurate 2x2 multipliers.  This results in significant improvement in accuracy of the 

proposed multiplier for the case when both inputs are large. 

 We study the effect on the PSNR performance of image processing kernels such as 

Gaussian FIR Filter and Fast Fourier Transform when implemented using approximate 

multipliers.   We calculate the PSNR by comparing the results obtained by hardware 

implementation of the algorithm with MATLAB implementation in double precision floating 

point.  For the Gaussian FIR Filter, we show that use of proposed 8x8 multiplier results in an 

average drop of 3 dB PSNR performance compared to the accurate baseline case, with an 

estimated 33% reduction in area, in terms of number of logical gates required for the 

implementation.  For the 2D 32x32 point Fast Fourier Transform, we show that use of proposed 

8x8 multiplier results in reduction of 1.3 dB in PSNR performance compared to the accurate case 

and 4.7 dB improvement in PSNR performance compared to the implementation using [24]. 

We also describe our hardware implementation of the state-of-the-art image enlargement 

algorithm Segment Adaptive Gradient Angle (SAGA).  We map this algorithm into pipelined 

hardware blocks and present synthesized results of each block.  We perform timing analysis of 

each hardware block and show that each row can be completed in 496.48 μs when the system is 

clocked at 100 MHz.  We achieve an average PSNR performance of 31.33 dB using accurate 

parallel adders and multipliers, compared to the real 127x127 image.  The average PSNR 
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performance of the system using approximate parallel adders and multipliers is 30.86 dB.  We 

can see that the drop in performance is negligible for the approximate case.  The performance of 

both accurate as well as approximate implementation is very close to the PSNR of 32.14 dB that 

is obtained by the floating point double precision MATLAB implementation of SAGA. 

6.2. Future Work 

The approximate adders and multipliers reduce area and latency.  The reduced latency can be 

translated into increased throughput or reduced power consumption through voltage scaling.  

Thus approximate circuits can be used to reduce power with minimal loss in performance. 

Our current implementation of the SAGA algorithm includes only the data-path.  The 

next step would be to implement the buffers between the hardware blocks and build the memory 

interfaces for a more complete design.   

SAGA also provides additional opportunities to apply the approximate circuits.  While 

we used approximate circuits to implement some of the hardware blocks,  a more thorough 

investigation on application of even more aggressive approximations and compensating them 

using correction terms, can be done. 
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