
Image Processing using Approximate Data-path Units

by

Madhu Vasudevan

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved November 2013 by the
Graduate Supervisory Committee:

Chaitali Chakrabarti, Chair

David Frakes
Sandeep Gupta

ARIZONA STATE UNIVERSITY

December 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ASU Digital Repository

https://core.ac.uk/display/79569137?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

In this work, we present approximate adders and multipliers to reduce data-path

complexity of specialized hardware for various image processing systems. These

approximate circuits have a lower area, latency and power consumption compared to

their accurate counterparts and produce fairly accurate results. We build upon the work

on approximate adders and multipliers presented in [23] and [24]. First, we show how

choice of algorithm and parallel adder design can be used to implement 2D Discrete

Cosine Transform (DCT) algorithm with good performance but low area. Our

implementation of the 2D DCT has comparable PSNR performance with respect to the

algorithm presented in [23] with ~35-50% reduction in area. Next, we use the

approximate 2x2 multiplier presented in [24] to implement parallel approximate

multipliers. We demonstrate that if some of the 2x2 multipliers in the design of the

parallel multiplier are accurate, the accuracy of the multiplier improves significantly,

especially when two large numbers are multiplied. We choose Gaussian FIR Filter and

Fast Fourier Transform (FFT) algorithms to illustrate the efficacy of our proposed

approximate multiplier. We show that application of the proposed approximate multiplier

improves the PSNR performance of 32x32 FFT implementation by 4.7 dB compared to

the implementation using the approximate multiplier described in [24]. We also

implement a state-of-the-art image enlargement algorithm, namely Segment Adaptive

Gradient Angle (SAGA) [29], in hardware. The algorithm is mapped to pipelined

hardware blocks and we synthesized the design using 90 nm technology. We show that a

64x64 image can be processed in 496.48 µs when clocked at 100 MHz. The average

PSNR performance of our implementation using accurate parallel adders and multipliers

 i

is 31.33 dB and that using approximate parallel adders and multipliers is 30.86 dB, when

evaluated against the original image. The PSNR performance of both designs is

comparable to the performance of the double precision floating point MATLAB

implementation of the algorithm.

 ii

To my parents for giving me the strength to pursue my dreams,

my sister and brother-in-law, for being the constant source of inspiration

and my dear friend Kannan Sha for his unquestionable faith in me.

This work is also affectionately dedicated to the six different

computers that were used to complete this work.

 iii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Dr. Chaitali

Chakrabarti, for her excellent guidance, patience and kindness and providing a nurturing

environment to conduct research. I could not have imagined a better mentor than her.

She has been the biggest motivation to me for the last two years and has helped me grow

as a professional as well as a better person. This work could not have been completed

without her vision, insights and guidance. I would also like to thank NSR CSR0910699

for the financial support.

 My sincerest gratitude to my committee members Dr. David Frakes and Dr.

Sandeep Gupta for their kind encouragement.

 I am grateful to my mentors, Amrit Panda, Yunus Emre and Christine Zwart, for

their guidance and encouragement. I am thankful to my colleagues, Anirudh Yellamraju,

Chegen Yang, Hsing-Min Chen, Manqing Mao, Ming Yang and Siyuan Wei, for their

support and patience towards my questions. I also owe them thanks for creating a fun

and relaxed environment in the lab.

 I am thankful to my friends, Ashwin Ramanan, Pavithra Ramamoorthy, Preethi

Natarajan, Priya Shanmugham and Vinodhini Raveendran for their unconditional support

through thick and thin.

 I would like to express my gratitude to Casey Gonzalez and Joseph Wagner, for

their kindness, generosity and encouragement.

Lastly, I would like to thank my faculty members as well as the administrative

staff, at Arizona State University, for providing an environment conducive for learning

and professional development.

 iv

TABLE OF CONTENTS

 Page

LIST OF TABLES .. viii

LIST OF FIGURES ... ix

CHAPTER

1 INTRODUCTION 1

1.1 Thesis Organization .. 5

2 APPROXIMATE ADDERS 6

2.1 Prior Work ... 6

2.2 Approximate Full Adder Circuits ... 7

2.2.1 Approximation 1 .. 7

2.2.2 Approximation 2 .. 8

2.2.3 Approximation 3 .. 9

2.2.4 Approximation 4 .. 9

2.2.5 Approximation 5 .. 10

2.3 Area Complexity ... 10

2.4 Building Parallel Adders ... 11

3 APPROXIMATE MULTIPLIER .. 13

3.1 Reference Approximate Multiplier... 13

3.1.1 2x2 Multiplier .. 13

3.1.2 Building Larger Multipliers ... 14

3.2 Proposed Multiplier .. 14

3.3 Comparison of Hardware Complexity ... 17

 v

4 CASE STUDIES 20

4.1 Discrete Cosine Transform (DCT) ... 21

4.1.1 DCT – Our Implementation ... 22

4.1.2 DCT – Reference Paper Implementation for 16 bits data-path 25

4.1.3 Comparison of Approximation 5 with truncation 27

4.1.4 Area Complexity .. 29

4.1.5 Summary .. 30

4.2 Gaussian FIR Filter ... 31

4.2.1 Results .. 32

4.3 Fast Fourier Transform (FFT) .. 33

4.3.1 Split Radix FFT .. 33

4.3.2 Results .. 34

5 IMPLEMENTATION OF SAGA ALGORITHM .. 36

5.1 SAGA Algorithm .. 36

5.1.1 Determination of Optimal Displacements 37

5.1.2 Computing Displacements ... 38

5.1.3 Constructing Intermediate Images ... 39

5.2 Our Implementation .. 40

5.2.1 Sobel Operator ... 42

5.2.2 Computing the J matrix ... 43

5.2.3 Computing JTJ and JT(-Iy) .. 44

5.2.4 Calculating nodal displacements αL .. 44

5.2.5 Calculating displacements α .. 46

 vi

5.2.5 Calculating nodal displacements αL .. 46

5.2.6 Linear Interpolation to compute output pixel values 46

5.3 Timing Analysis of our hardware architecture................................. 46

5.4 Hardware Synthesis and Performance Results................................. 48

6 CONCLUSION ... 50

6.1 Summary ... 50

6.2 Future Work .. 52

REFERENCES.. 53

 vii

LIST OF TABLES

Table Page

1. Truth Table for accurate and approximate adders for all input combinations [23] ... 18

2. Layout of accurate and approximate FA cells [23] ... 21

3. Layout of accurate and approximate FA cells for our implementation [23] 22

4. Comparison of hardware complexity ... 29

5. Implementation of DCT coefficients ... 31

6. Results for DCT – our implementation compared to implementation in [23] 34

7. Comparing the results for DCT – our vs ref implementation for 16 bit datapath 36

8. Results for DCT – truncation vs Approximation 5 .. 38

9. Area Complexity – comparison of # of Fas used in the three configurations 39

10. Results for Gaussian FIR Filter... 42

11. Results for 32 point 2D FFT ... 45

12. Timing Analysis of our hardware architecture ... 57

13. Synthesis results of all the hardware modules .. 58

14. Results for SAGA.. 59

 viii

LIST OF FIGURES

Figure Page

1. Conventional Mirror Adder circuit [23] ... 17

2. Approximation 1 Adder circuit [23] .. 17

3. Approximation 2 Adder circuit [23] .. 19

4. Approximation 3 Adder circuit [23] .. 19

5. Approximation 4 Adder circuit [23] .. 20

6. 16 bit parallel adder using 10 accurate FA and 6 approximate FA 21

7. Karnaugh Map of the 2x2 approximate multiplier 23

8. Building a 4x4 approximate multiplier from 2x2 multiplier [24] 24

9. Accurate, reference and proposed approximate 2x2 multiplier 25

10. Building proposed 8x8 multiplier using 2x2 multipliers 26

11. Percentage errors of the proposed and reference 8x8 multiplier 27

12. Schematic for accurate, reference and proposed 2x2 multiplier 28

13. Architecture for first stage butterfly computation of DCT coefficients ... 33

14. Comparison - area of our implementation vs 16, 20 bit reference 37

15. Comparison – PSNR and area our implementation, 16, 20 bit reference .. 40

16. Convolution kernel for 5x5 Gaussian FIR Filter 41

17. Butterfly structure used for SRFFT .. 44

18. Isophote curvature – SAGA algorithm.. 47

19. Interpolation of input pixel values along the displacements 49

20. Proposed hardware architecture of SAGA ... 51

21. Block diagram for hardware implementation of Sobel operator 52

 ix

22. Computation of J matrix from diag(Ix) and Θ .. 54

23. Hardware architecture for TDMA1 and TDMA2 55

24. Timing Analysis of our hardware architecture .. 58

 x

CHAPTER 1

INTRODUCTION

In order to reduce the area, latency and power of Digital Signal Processing

implementations, several techniques have been adopted. The popular ones are reduction in

number of computations [1-6], dynamic range adjustment of data-path units or truncation

[6-10] and voltage scaling [11-18]. Recently approximate circuits have been proposed in

[19-27] which also reduce area, latency and power.

The ‘almost correct adder’ in [19] is based on the observation that on average, the

longest carry propagating sequence is approximately log n, where n is the datapath width.

Therefore, the sum output is independent of any carry beyond the log n sequence and

hence the carry need not be propagated. They also provide a methodology to detect and

correct errors. The approximate adder in [20] utilizes logic synthesis to design

approximate versions of a given function. The algorithm determines the minterms that

produce an approximate version of a circuit with smallest number of literals for a given

error rate threshold. A bio-inspired imprecise adder and multiplier are proposed in [21]

that provide an estimation of the result instead of its real value. An approximate adder and

an approximate Booth multiplier (based on the approximate adder) are proposed in [22]

and applied to the pipeline stages of a superscalar processor. A prediction unit predicts the

error in the early stages of the pipeline and uses the accurate result instead. In [23],

several approximations to a full adder circuit are described by applying complexity

reduction at transistor level. The DCT implementation results provided in this paper

demonstrate that this is a very promising approach. An inaccurate 2x2 multiplier based on

Karnaugh Map simplification is proposed in [24], which acts as the building block for

 1

larger multipliers. In [25], a systematic methodology is presented for automatic logic

synthesis of approximate circuits, that synthesizes an approximate version of a given RTL

specification for a given quality constraint. A statistical error analysis and model is

presented in [26] and [27].

A very important consideration in the adoption of these techniques is that they

cause minimal degradation to the algorithm performance. Fortunately, image processing

algorithms are typically error resilient and such techniques are well suited for these

algorithms. However indiscriminate use of these techniques affects the accuracy and thus

the algorithm performance. This work attempts to judiciously use approximate adders and

multipliers, such that the algorithm performance is only mildly affected. It builds on the

approximate adder and multiplier circuits introduced in [23] and [24] and shows how

modified versions of these circuits can be successfully used in minimizing the area and

latency of key image processing systems. Note that reduced latency can be translated into

increased throughput or reduced power consumption through voltage scaling.

First we study approximate full adder (FA) circuits where the approximations are

achieved by applying logic complexity reduction at transistor level [23]. These are used to

implement multi-bit parallel adders where the approximate FA are used only for the least

significant bits. The approximate FAs help reduce the area and latency of the parallel

adder but generate accurate results in most cases. This makes them more effective than

the popular technique of truncation.

We use approximate parallel adders to implement the 2D Discrete Cosine

Transform algorithm which is used in standards such as the Joint Photographic Expert

 2

Group (JPEG) standard, lossy image and video compression, digital watermarking, and

face recognition. DCT is also widely used in solving partial differential equations and

Chebyshev approximations.

Compared to the implementation in [23], we reduce the width of the data-path

from 20 bits to 16 bits, use a mixture of accurate and approximate adders and re-use

several computations. We implement the proposed method and the method presented in

[23] in hardware. We compare the results generated by the hardware implementation for

both methods with those generated by using double precision floating point MATLAB.

We find that by applying these three techniques, we are able to achieve up-to 50%

reduction in area and an average improvement of 2-7 dB in PSNR compared to [23] for

various standard test images.

For a fairer comparison, we also implement the reference algorithm on a 16 bit

wide data-path and compare its performance with our implementation. We observe that,

our implementation has a 40-45% reduction in area and comparable PSNR performance

for the various configurations. We also compare the implementation using a parallel

adder with the most aggressive approximate FA with an implementation using truncation,

as they both have comparable area. We conclude that approximate adders perform much

better compared to truncation especially for more aggressive scenario where several

LSBs are truncated. For instance, in a 16 bit parallel adder implementation, use of 4

approximate FAs results in an average PSNR of 34.38 dB which is more than 10 dB

higher compared to 23.46 dB obtained by truncating 4 LSBs.

Next, we implement the approximate multiplier presented in [24] in hardware. The

approximate multiplier is achieved by Karnaugh map simplification and has a lower area
 3

and latency compared to the accurate 2x2 multiplier. This 2x2 multiplier acts as a

building block in constructing larger multipliers. We propose three enhancements to this

multiplier to achieve appreciable improvement in performance. We synthesize the

accurate, reference and proposed multipliers in hardware using DC Compiler, and evaluate

them based on area, latency and power. For the 2x2 multiplier unit, we achieve nearly

28% and 63% reduction in area, and 25% and 63% reduction in power compared to the

reference and accurate multipliers, respectively.

We study the performance of the approximate multipliers by using them in the

hardware implementation of the Gaussian FIR Filter and the 2D Fast Fourier Transform

algorithms. We choose these two algorithms because of their use in large number of DSP

systems. FIR filters are used in image processing, digital wireless communication such

as Global System for Mobile Communications (GSM), hearing aids, and digital video

broadcast. Fast Fourier Transform is considered to be one of the top ten most important

algorithms of the twentieth century and finds applications in but not restricted to,

communications, astronomy, geology, optics, etc. Specifically, it can be applied for

spectral analysis, data compression, solving partial differential equations, polynomial

multiplication, etc.

For FFT, we show that our implementation achieves 4.7 dB improvement in

PSNR performance with ~5% area overhead compared to [24].

We also propose a hardware architecture of the interpolation algorithm, Segment

Adaptive Gradient Angle (SAGA) [29]. We study each of the algorithm blocks and

evaluate their sensitivity to data-path precision. We map the algorithm into pipelined

hardware blocks and synthesize them using 90 nm technology. We show that a 64x64

 4

image can be processed in 496.48 μs when clocked at 100 MHz. This implementation

achieves an average PSNR of 31.33 dB compared to the original image. The floating

point double precision MATLAB implementation of SAGA achieves an average PSNR

of 32.14 dB which is comparable to our performance.

1.1. Thesis Organization

The layout of the work is organized as follows. In Chapter 2, we describe the various

approximate full adders presented in [23] and present their area complexities. In Chapter

3, we present the approximate multiplier proposed in [24]. We discuss the enhancements

proposed to this multiplier and compare the performance of the reference and proposed

multipliers. We also compare the hardware complexity of the three multipliers in terms

of area, latency and power. In Chapter 4, we apply these approximate adder and

multiplier circuits to popular image processing algorithms such as Discrete Cosine

Transform, Gaussian FIR Filter, and Fast Fourier Transform. We evaluate the

performance of the various approximate implementations against the double precision

floating point MATLAB implementation. In Chapter 5, we describe the SAGA algorithm

and its hardware implementation in detail. We conclude the thesis in Chapter 6 and

provide pointers for further research.

 5

CHAPTER 2

APPROXIMATE ADDERS

In order to reduce the complexity of the data-path unit, approximations have been

proposed for the full adder (FA) circuit in [23]. In this chapter, we study these

approximations and analyze their error characteristics and area complexity. These

approximate adders have been used to implement the Discrete Cosine Transform

algorithm in Chapter 4 and the performance of the corresponding implementation

evaluated.

2.1. Prior Work

In the approximation method outlined in [23], the Conventional Mirror Adder (MA)

circuit shown in Figure 1 is used as the reference design. Here A and B are the primary

inputs, Cin is the carry in from the previous stage. Sum’ is the complemented Sum signal

and Cout’ is the complement carry out signal that is sent to the next stage. The

approximate circuits are obtained by systematically removing transistors from this

accurate full adder. The two rules followed in this process are [23]:

i. No combinations of the inputs A, B and Cin should result in an open or short

circuit,

ii. The simplified circuit should result in minimum number of errors in Sum and

Cout.

 6

Figure 1. Conventional Mirror Adder circuit [23]

2.2. Approximate Full Adder Circuits

2.2.1. Approximation 1

Approximation 1 has 8 fewer transistors than the reference design. It introduces two

errors in the Sum and one error in the Cout outputs. The schematic for this

approximation is shown in Figure 2.

Figure 2. Approximation 1 Adder circuit [23]

 7

TABLE I. TRUTH TABLE SHOWING OUTCOMES FOR ACCURATE AND APPROXIMATE ADDERS FOR ALL

POSSIBLE INPUT COMBINATIONS [23]

Inputs
Accurate

Outputs
Approximate Outputs

A B Cin Sum Cout Sum1 Cout1 Sum2 Cout2 Sum3 Cout3 Sum4 Cout4

0 0 0 0 0 ✔ ✔ ✗ ✔ ✗ ✔ ✔ ✔

0 0 1 1 0 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

0 1 0 1 0 ✗ ✗ ✔ ✔ ✗ ✗ ✗ ✔

0 1 1 0 1 ✔ ✔ ✔ ✔ ✔ ✔ ✗ ✗

1 0 0 1 0 ✗ ✔ ✔ ✔ ✔ ✔ ✗ ✗

1 0 1 0 1 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

1 1 0 0 1 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

1 1 1 1 1 ✔ ✔ ✗ ✔ ✗ ✔ ✔ ✔

2.2.2. Approximation 2

The truth table for Approximation 1 shows that Sum = !Cout for 6 of the 8 combinations.

This forms the basis for Approximation 2. Since direct assignment leads to a greater

input gate capacitance compared to the original reference adder, a buffer is introduced.

The resulting circuit is shown in Figure 3.

 8

Figure 3. Approximation 2 Adder circuit [23]

2.2.3. Approximation 3

Approximation 3 is obtained by combining approximations 1 and 2. The resulting circuit

has 13 fewer transistors compared to the reference adder. This approximation has three

errors in Sum and one error in Cout.

Figure 4. Approximation 3 Adder circuit [23]

2.2.4. Approximation 4

From Table I we see that Cout = A for six out of the eight possible combinations.

Approximation 4 is the result of combining this with the expression for Sum from

 9

Approximation 1. The resulting approximation has 11 transistors. This results in three

errors in Sum and two errors in Cout.

Figure 5. Approximation 4 Adder circuit [23]

2.2.5. Approximation 5

The motivation for Approximation 5 is to avoid carry propagation altogether by making

Sum independent of Cin. To achieve this, the Sum output is approximated to B and Cout

is approximated to A. This approximation is therefore reduced to an assignment of

outputs to inputs and requires no logic gates. This is the most aggressive of all the

approximations and yet results in the best performance.

2.3. Area Complexity

All the proposed approximations result in significant reduction in area. The number of

transistors and the layout area in IBM 90nm technology for the reference and

approximate adders is shown in Table II.

 10

TABLE II. LAYOUT OF ACCURATE AND APPROXIMATE FA CELLS [23]

FA Unit Number of Transistors Area (μm2)

Reference MA 24 40.66

Approximation 1 16 29.31

Approximation 2 14 25.5

Approximation 3 11 22.56

Approximation 4 11 23.91

2.4. Building Parallel Adders

For our study, we implement an approximate 16 bit parallel adder using the ripple carry

adder architecture. Here the addition of Least Significant Bits (LSB) is implemented

using approximate FAs and the addition of the Most Significant Bits (MSB) is

implemented using the reference mirror adder (MA). An approximate parallel adder is

shown in Figure 6. Here, the 10 MSB additions are implemented using the reference

adder which is accurate, and the 6 LSBs are implemented using approximate FAs. We

use this configuration as our reference parallel adder in the rest of the document.

Figure 6. 16 bit parallel adder using 10 accurate FA and 6 approximate FA

For the reference 16 bit parallel adder, the total number of transistors is shown in

Table III. The area of the different approximate implementations is also shown in the

table. This area is computed based on the layout area for accurate as well as approximate

 11

cells given in Table II. We can see that the area reduction obtained using approximate

adders is 10-35% compared to the accurate parallel adder.

TABLE III. LAYOUT OF ACCURATE AND APPROXIMATE FA CELLS FOR OUR IMPLEMENTATION [23]

Parallel Adder Unit Number of Transistors Area (μm2)

Reference MA 384 650.6

Approximation 1 336 582.5

Approximation 2 324 559.6

Approximation 3 306 541.9

Approximation 4 306 550.1

Approximation 5 240 406.6

 12

CHAPTER 3

APPROXIMATE MULTIPLIER

In this chapter we build upon the approximate multiplier presented in [24]. We describe

the reference multiplier design and propose enhancements to the reference multiplier.

We compare the performance of the two approximate designs and the accurate multiplier

with respect to area, latency and power.

3.1. Reference Approximate Multiplier

3.1.1. 2x2 Multiplier

The basic building block of the approximate multiplier is the 2x2 multiplier, which

multiplies two 2 bit words (a1a0) and (b1b0). This produces 4 bits of outputs since the

largest number generated by a 2x2 multiplication is 9 (1001). In [24], an approximation to

the 2x2 multiplier is introduced by approximating this multiplication value to 7, which can

be represented with 3 bits (111). By restricting the output of the 2x2 multiplier from 4 to

3 bits greatly reduces the complexity and introduces only a small error – only one in 16

possible combinations is erroneous. Figure 7 shows the modified Karnaugh map of the

approximated logic function. The erroneous output is highlighted in red.

 b1b0

a1a0
00 01 10 11

00 000 000 000 000

01 000 001 011 010

10 000 011 111 110

11 000 010 110 100

Figure 7. Karnaugh Map of the 2x2 approximate multiplier [24]

 13

3.1.2. Building Larger Multipliers

Larger multipliers are built by using the 2x2 approximate multiplier as the basic building

block. The 2x2 module is used to generate the partial products of the larger multiplier.

The partial products are then added using an adder tree built with accurate adders. This

architecture is illustrated in Figure 8.

Figure 8. Building a 4x4 approximate multiplier from 2x2 multiplier [24]

3.2. Proposed Multiplier

We propose three changes to this multiplier. First, we further approximate the 2x2

building block by approximating out0 to 0. Even though the critical path of the resulting

multiplier remains the same, the area has reduced. Figure 9 shows the logic functions of

the accurate, reference [24] and proposed 2x2 multiplier.

The second enhancement that we propose is the way a larger multiplier is built.

The reference multiplier uses the same 2x2 approximate multiplier to compute all partial

products. Instead, we introduce three levels of approximation within the larger multiplier.

We calculate the least significant partial product with maximum degree of approximation,

the middle partial products with medium approximation and the most significant partial

product with no approximation.

 14

(a)

(b)

(c)

Figure 9. (a) Accurate (b) Reference approximate and (c) Proposed approximate 2x2

Multiplier. The critical paths have been highlighted in red in all three cases [24].

 15

Figure 10. Building proposed 8x8 multiplier using the 2x2 multipliers. The figure shows the

varying degree of approximation in the multiplier.

Figure 10 describes the proposed architecture. Compared to the reference

multiplier, only the lower partial products are computed with approximation. This

improves the accuracy of the proposed multiplier compared to the reference multiplier

when two large numbers are multiplied. However, when two small numbers are

multiplied, the accuracy drops since we use aggressive approximations to compute the

LSB partial product. In image processing applications involving filter computations, one

of the inputs to the multiplier is a filter coefficient which is a known constant in many

cases. The other input is typically the image pixel value and is a variable. If we have

prior information about the filter coefficient, we can adjust the level of approximation

within the multiplier. We propose two versions of the approximate multiplier.

1. Version A: Computes the product with medium approximation (using the reference

2x2 multiplier) when the filter coefficient is less than 16.

 16

2. Version B: Computes the product with most aggressive approximation (proposed

multiplier) when the filter coefficient is greater than 15.

By introducing two versions of the multiplier, we are able to achieve good

accuracy when the filter coefficient is small or large. To validate this claim, we evaluate

our 8x8 multiplier against the reference multiplier by sweeping the two inputs A & B

from 0-255 and compute the percentage error for each input bin. Figure 11 illustrates the

error (in percentage) for the reference and proposed 8x8 multipliers for different input

combinations. We see that the proposed multiplier has the same performance as that of

the reference multiplier when either (or both) input is small. However, the proposed

multiplier performs much better than the reference multiplier for large inputs.

Figure 11. Percentage errors of the proposed and reference 8x8 multiplier for various input

combinations

3.3. Comparison of Hardware Complexity

In this section we compare the hardware complexity of the accurate, reference and

proposed multiplier for the 2x2 and 8x8 configurations. The metrics used are area,

latency and power, obtained on DC Compiler using the SAED 90nm Generic Library

 17

(optimized for power). The schematics of the synthesized 2x2 accurate, reference and

approximate multiplier are shown in Figure 12.

(a)

(b)

(c)

Figure 12. Schematic generated after synthesis for (a) Accurate, (b) Reference Approximate and

(c) Proposed 2x2 Multiplier

 18

Table V presents the area, latency and dynamic power for the different

multipliers. We can see that the proposed 2x2 multiplier is 63.16% and 27.58% smaller

in area and 63.21% and 25.86% lower in power compared to the accurate and reference

multiplier designs, respectively. The proposed 8x8 multiplier has a 3% overhead

compared to the 8x8 reference multiplier due to the introduction of accurate 2x2

multipliers and has 10.25% smaller area compared to the 8x8 accurate multiplier. The

area reduction is significantly smaller than the results quoted in [24]. Part of the reason

could be that in [24], the larger multiplier and adder trees are built using the RTL-

Compiler (RC Compiler), which leads to an optimized design.

The power savings for the 8x8 proposed multiplier is ~2% and ~8.2% compared

to the 8x8 reference and accurate multiplier respectively. Thus, while the accuracy of the

proposed multiplier is comparable or better than that of the reference multiplier, the

overhead incurred in terms of area and latency is negligible.

TABLE IV. COMPARISON OF HARDWARE COMPLEXITY

Multiplier Area –

combinational (nm2)

Latency (ns) Dynamic Power

(uW) for V=1.2V

2x2 Accurate Multiplier 52.53 0.69 6.70

2x2 Reference Multiplier 26.72 0.53 3.325

2x2 Proposed Multiplier 19.35 0.53 2.465

8x8 Accurate Multiplier 3712.20 5.25 344.22

8x8 Reference Multiplier 3251.40 5.15 322.33

8x8 Proposed Multiplier 3331.58 5.15 316.27

 19

CHAPTER 4

CASE STUDIES

In this chapter, we implement image processing kernel algorithms such as the Gaussian

FIR Filter, 2D DCT and 2D FFT using approximate adders and multipliers. The

algorithms have been implemented on customized hardware architecture using Verilog

VHDL and synthesized using Design Compiler from Synopsys. The area, latency and

power estimations are obtained using the Design Compiler for the SAED 90nm Generic

Library (optimized for power).

The performance of the algorithms is evaluated using Peak Signal to Noise Ratio

(PSNR). The ground truth corresponds to double precision floating point MATLAB

implementation. For an image of size M×N, if I(i,j) is the value obtained from MATLAB,

at location (i,j), and O(i,j) is the value obtained from the fixed-point hardware

implementation of the algorithm, and MAX is the maximum possible value obtained

from MATLAB implementation, then PSNR is defined as:

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑀𝑀𝑀𝑀

� � [𝐼𝐼(𝑖𝑖, 𝑗𝑗) − 𝑂𝑂(𝑖𝑖, 𝑗𝑗)]2
𝑀𝑀−1

𝑗𝑗=0

𝑁𝑁−1

𝑖𝑖=0

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10𝑙𝑙𝑙𝑙𝑙𝑙10
𝑀𝑀𝑀𝑀𝑀𝑀2

𝑀𝑀𝑀𝑀𝑀𝑀

 Therefore, PSNR represents the noise introduced due to fixed-point

implementation as well as use of approximate circuits. Six test images of size 512x512

were used for evaluating performance of the system. They are Baboon, Barbara, Boat,

House, Lena and Peppers [19].

This chapter is organized as follows. Use of the approximate FA circuits to

 20

implement the Discrete Cosine Transform algorithm is presented in section 4.1. Use of

the reference and proposed approximate multipliers in the implementation of the

Gaussian FIR filter and 2D Fast Fourier Transform is described in section 4.2 and 4.3,

respectively.

4.1. Discrete Cosine Transform (DCT)

The 2D 8-point DCT is implemented by applying 1D DCT along the rows and then

applying 1D DCT along the columns. An N point 1D forward DCT can be expressed as

𝑋𝑋(𝑚𝑚) = 𝑢𝑢(𝑚𝑚)�
2
𝑁𝑁
�𝑥𝑥(𝑖𝑖) cos

(2𝑖𝑖 + 1)𝑚𝑚𝑚𝑚
2𝑁𝑁

𝑁𝑁−1

𝑖𝑖=0

,𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚 = 0, 1, … ,𝑁𝑁 − 1,

where 𝑢𝑢(𝑚𝑚) = �1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚 = 0 � 1
√2

 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. �. All the cosine coefficients are scaled by

32. The multiplication with the cosine coefficient is replaced with additions and shifts as

shown in Table V.

TABLE V. IMPLEMENTATION OF DCT COEFFICIENTS

Coefficient Value Implementation

a 16 1 << 4

b 15 (1 << 4) - 1

c 14 (1 << 4) – (1 << 2)

d 11 (1 >> 2) + 1 (1 << 1) + (1 << 3)

e 9 1 + 1 << 3

f 6 (1 << 1) + (1 << 2)

g 3 1 + (1 << 1)

 21

4.1.1. DCT – Our Implementation

The 8-point DCT can be simplified into odd and even coefficients as shown below.

�

𝑊𝑊0
𝑊𝑊2
𝑊𝑊4
𝑊𝑊6

� = �

𝑑𝑑 𝑑𝑑 𝑑𝑑 𝑑𝑑
𝑏𝑏 𝑓𝑓 −𝑓𝑓 −𝑏𝑏
𝑑𝑑 −𝑑𝑑 −𝑑𝑑 𝑑𝑑
𝑓𝑓 −𝑏𝑏 𝑏𝑏 −𝑓𝑓

��

𝑥𝑥0 + 𝑥𝑥7
𝑥𝑥1 + 𝑥𝑥6
𝑥𝑥2 + 𝑥𝑥5
𝑥𝑥3 + 𝑥𝑥4

�

�

𝑊𝑊1
𝑊𝑊3
𝑊𝑊5
𝑊𝑊7

� = �

𝑎𝑎 𝑐𝑐 𝑒𝑒 𝑔𝑔
𝑐𝑐 −𝑔𝑔 −𝑎𝑎 −𝑒𝑒
𝑒𝑒 −𝑎𝑎 𝑔𝑔 𝑐𝑐
𝑔𝑔 −𝑒𝑒 𝑐𝑐 −𝑎𝑎

��

𝑥𝑥0 − 𝑥𝑥7
𝑥𝑥1 − 𝑥𝑥6
𝑥𝑥2 − 𝑥𝑥5
𝑥𝑥3 − 𝑥𝑥4

�

Several computations can be reused as in the butterfly structure shown in Figure 13.

The parallel adders used in the first stage butterfly structure that compute y0, y1, y2, ... y7,

are chosen to be accurate, since these results are used in the rest of the computations. The

figure also elaborates how the coefficients W0, W1, W2 W3, W4, W5, W6, and W7 are

computed. All parallel adders used in the latter stages are approximate. The data-path of

our system is 16 bits. The approximate 16 bit parallel adder uses approximate adders for

the 6 LSBs and uses accurate adders for the 10 MSBs.

 22

Figure 13. Architecture for first stage butterfly and computation of DCT coefficients

The PSNR results are obtained after applying forward-backward 2D DCT on six

standard images and the performance of our DCT is compared with that in [23]. Note that

the DCT implementation in [23] does not use the butterfly structure shown in Figure 13

and implements the algorithm in a straightforward manner using matrix vector

multiplication. It uses a data-path that is 20 bits wide and all the 20 bit parallel adders are

approximate. The PSNR performance results for various configurations with varying
 23

degrees of approximation are presented in [23]. For comparison, we use the configuration

that keeps the PSNR performance of the two implementations comparable. This

corresponds to a 20 bit parallel adder that uses approximate FAs to add 9 LSBs and

accurate FAs to add 11 MSBs. It should be noted that the PSNR performance of both

systems can be improved by increasing the number of MSBs that are added accurately.

The PSNR results for the six standard images are presented in Table VI. Note that

the PSNR results quoted for [23], given in Table VI, correspond to those obtained using

our implementation of the algorithm in [23]. To validate our implementation, we

compared the PSNR results of our implementation of the algorithm in [23] with the values

quoted in [23]. The PSNR values obtained for the Lena image of our implementation are

within ±1dB with the results presented in [23] and so our implementation is representative

of their design.

TABLE VI. RESULTS FOR DCT – OUR IMPLEMENTATION (DATA-PATH = 16 BITS) COMPARED TO

IMPLEMENTATION IN [23] (DATA-PATH = 20 BITS)

Image

PSNR (dB)

Accurate Approximation 1 Approximation 2 Approximation 3 Approximation 4 Approximation 5

Our [23] Our [23] Our [23] Our [23] Our [23] Our [23]

Baboon 34.61 30.71 29.10 24.27 25.15 23.44 25.97 18.49 22.70 15.63 27.78 26.74

Barbara 34.71 31.01 28.95 24.46 25.40 23.04 25.79 18.42 22.59 16.01 27.64 25.54

Boat 34.53 31.53 29.00 24.56 25.44 23.25 25.83 18.19 22.37 16.02 27.67 26.13

House 33.56 30.76 28.89 25.20 25.56 22.80 26.18 18.77 22.44 15.89 27.41 24.57

Lena 34.79 32.08 29.02 24.69 25.56 23.19 25.94 18.45 22.22 15.92 27.77 26.07

Peppers 35.03 32.36 29.13 24.89 25.72 22.84 26.13 18.29 22.59 15.96 27.92 26.37

Average 34.54 31.41 29.01 24.68 25.47 23.09 25.97 18.43 22.48 15.90 27.70 25.90

 24

From Table VII, we see that our implementation performs better than the reference

algorithm even though our data-path width is 16 bits compared to 20 bits in [23]. For

parallel adder implementation using accurate FA, and FA based on approximations 1 and

2, we obtain an average improvement of 3.13 dB, 4.33 dB and 2.38dB. The biggest

improvement is obtained for approximations 3 and 4 with 7.54 dB and 6.58 dB,

respectively, and the smallest improvement is obtained for approximation 5 of 1.8 dB. In

general, our implementation has better performance because we use accurate adders to

compute the first stage of the algorithm. Also, our implementation has lower area since

several computations are reused.

4.1.2. DCT – Reference Paper Implementation for 16 bits data-path

We also implement the DCT algorithm presented in [23] for a 16 bit wide data-path. The

aim is to compare the results of the two implementations by keeping the data-path width

of the system constant. In the 16 bit parallel adder, we use approximate adders for the 6

LSBs and use accurate adders for the 10 MSBs. Table VII compares the results obtained

for our implementation against the 16 bit implementation of the reference algorithm.

 25

TABLE VII. COMPARING THE RESULTS FOR DCT – OUR IMPLEMENTATION VS REFERENCE

IMPLEMENTATION (DATA-PATH = 16 BITS)

Image

PSNR (dB)

Accurate Approximation 1 Approximation 2 Approximation 3 Approximation 4 Approximation 5

Our Ref Our Ref Our Ref Our Ref Our Ref Our Ref

Baboon 34.61 30.67 29.10 29.76 25.15 28.07 25.97 25.54 22.70 22.33 27.78 28.78

Barbara 34.71 30.97 28.95 29.55 25.40 28.06 25.79 24.95 22.59 22.01 27.64 29.08

Boat 34.53 31.48 29.00 30.23 25.44 28.53 25.83 25.39 22.37 22.25 27.67 29.74

House 33.56 30.71 28.89 29.60 25.56 27.59 26.18 23.37 22.44 21.98 27.41 29.58

Lena 34.79 32.02 29.02 30.19 25.56 28.42 25.94 25.08 22.22 22.30 27.77 30.00

Peppers 35.03 32.30 29.13 30.38 25.72 28.29 26.13 25.18 22.59 22.40 27.92 30.21

Average 34.54 31.36 29.01 29.95 25.47 28.16 25.97 24.92 22.48 22.21 27.70 29.56

 From Table VII, we see that while our implementation has better performance for

the accurate case, it has worse performance for approximations 2 and 5 and comparable

performance for approximations 1, 3 and 4. In our implementation, outputs of the first

stage, y4, y5, y6 and y7 are quite small and therefore use of approximate adders in the

LSBs of subsequent stages lead to decrease in quality performance.

Figure 14 shows a comparison of area of our implementation against the 16 bit and

20bit implementations of the reference algorithm, for the different approximations. The

area estimates are computed from the layout area of various FA cells given in Table II.

The area assessment corresponds to an estimate of the area occupied by the FAs and does

not consider the routing overhead. It can be seen that our implementations show

significant improvement in terms of area. For the various approximations, we achieve

~34% to 39% reduction in area, compared to [23] even when both data-paths are 16 bits

 26

wide. For the various approximations, we achieve 39-50% reduction in area compared to

the 20 bit implementation of the reference algorithm.

Figure 14. Comparison of area of our implementation vs 16bit and 20bit reference algorithm

[23] implementations

4.1.3. Comparison of Approximation 5 with truncation

In this section, we incorporate truncation into our implementation of the DCT algorithm

and compare it with the results obtained by using Approximation 5. Note that FAs based

on Approximation 5 are built by re-routing the input signals and require no logic gates. If

the routing overhead is ignored, then the area of an implementation that employs

truncation by L bits and an implementation that approximates addition of L LSBs should

be comparable.

 In our implementation of truncation, the outputs of the first stage computations are

truncated. The computation of the coefficients W0, W1… W7 remains the same as

discussed before. All parallel adders used in this configuration are accurate. We study the

impact of truncating 2, 4 and 6 LSBs on the quality performance. For an L-bit truncation,
 27

the internal precision of the system is 16-L bits. Thus, for 2 bit, 4 bit and 6bit truncation,

the internal precision is 14 bits, 12 bits and 10 bits, respectively.

The PSNR results for DCT computation using 2 bit, 4 bit and 6 bit truncation as

well as 2 bit, 4 bit and 6 bit approximation using Approximation 5 FAs are shown in Table

VIII. We see that the performance of the algorithm drops sharply with increase in degree

of truncation. While 2 bit truncation results in some loss of performance, truncation of 6

bits results in significant loss in performance and is unacceptable. Use of Approximation

5 FAs on the other hand demonstrates very small degradation in PSNR performance for 2

and 4 bit approximation. For instance, use of 4 approximate FAs results in an average

PSNR of 34.38 dB which is more than 10 dB higher compared to 23.46 dB obtained by

truncating 4 LSBS of the 16 bit parallel adder.

TABLE VIII. RESULTS FOR DCT – FOR 2, 4 AND 6 BIT TRUNCATION AND APPROXIMATION USING

APPROXIMATION 5

Image

PSNR (dB)

Accurate
2 bits 4 bits 6 bits

Truncation Approx 5 Truncation Approx 5 Truncation Approx 5

Baboon 34.61 31.3 34.87 23.31 34.40 13.62 27.78

Barbara 34.71 31.50 35.03 23.57 34.51 14.03 27.64

Boat 34.53 31.31 34.86 23.46 34.34 13.10 27.67

House 33.56 30.71 33.87 23.19 33.61 13.47 27.41

Lena 34.79 31.51 35.14 23.51 34.62 13.72 27.77

Peppers 35.03 31.8 35.35 23.70 34.77 13.93 27.92

Average 34.54 31.36 34.85 23.46 34.38 13.65 27.70

 28

4.1.4. Area Complexity

In this section we compare the total area of the three implementations by comparing the

number of FAs used in each case. The algorithm used in the reference paper uses two

hundred and two 20 bit parallel adders to implement 1D forward-reverse DCT while our

implementation uses only one hundred and twenty four 16 bit parallel adders (sixteen are

accurate and hundred and eight are approximate 16 bit parallel adders) to implement the

same. Therefore, the area of our implementation decreases significantly with respect to

the reference algorithm. Table IX lists the number of accurate and approximate FAs used

in each configuration.

TABLE IX. AREA COMPLEXITY – COMPARISON OF # OF FAS USED IN THE THREE CONFIGURATIONS

Reference Implementation
(data-path = 20 bits)
9 approximate LSBs

Reference Implementation
(data-path = 16 bits)
6 approximate LSBs

Our Implementation
(data-path = 16 bits)
6 approximate LSBs

of accurate FA # of approximate FA # of accurate FA # of approximate FA # of accurate FA # of approximate FA

2222 1818 2020 1212 1336 648

 Figure 15 plots the area and PSNR for the competing implementations. We use

the average PSNR of all images obtained for each configuration for this analysis. Our

design goal is to achieve high performance at low area cost and thus a system whose

performance lies in the upper left corner on this plot is most desirable. From Figure 15,

we can see that our implementation achieves this design goal. Our implementation

generates better or comparable PSNR performance at much smaller area for all

approximations. Other than Approximation 5, the area reduction using our algorithm is

significant for all other configurations. For instance, for both 16 bit and 20 bit

 29

implementation of the reference algorithm we achieve ~34% to 50% reduction in area

with minimal or no loss in PSNR performance.

Configurations where the reference paper implementation performs better with

respect to PSNR performance can be compensated by reducing the degree of

approximation in our implementation. For instance, our accurate implementation has

higher PSNR with comparable area compared to 16 bit implementation of [23]. Due to

the efficient re-usage of components in our algorithm, we can afford a lesser level of

approximation to improve PSNR performance.

Figure 15. PSNR vs area for various approximations for Ref [20bit], Ref [16bit] and Our

implementations

4.1.5. Summary

We can see that compared to [23], we have achieved comparable or slightly worse

performance for each approximation as well as the accurate case. We can see that

Approximation 5 performs surprisingly well for all cases, with virtually zero overhead.

 30

This can be attributed to its very low mean error value of 0.5. Overall, use of approximate

adders and the butterfly structure in Figure 1, helped achieve up to 50% reduction in area

compared to [23].

Through this study, we draw the following conclusions:

1. Selective implementation of accurate as well approximate adders can lead to a

more optimized solution in terms of both accuracy and area (therefore power).

2. Keeping the early stages of the algorithm accurate provides scope for aggressive

approximation in later stages.

3. Significant reduction in area as well as power can be obtained by reusing several

computations.

4. Approximation 5 based method has significantly better performance than

truncation and should be used in place of truncation.

4.2. Gaussian FIR Filter

For our study, we implement the 5x5 Gaussian Filter for σ = 1 as shown in Figure 16.

The filter coefficients as well as the inputs are unsigned numbers.

Figure 16. Convolution kernel for 5x5 Gaussian FIR Filter

 31

We use an 8x8 multiplier to implement the Gaussian filter. Since the coefficients

of the Gaussian filter are hardwired, we use Version A (medium aggression) multiplier to

implement the multiplication with coefficients 4 and 7. The Version B (aggressive

approximation) multiplier is used to implement the multiplication with coefficients 16, 26

and 41. The internal precision used for both adders and multipliers is 16 bits. All the

adders used in the system are accurate; the multipliers are either accurate or approximate

based on reference [24] or the proposed method.

4.2.1. Results

The performance of the filter using accurate, reference [24] and the proposed approximate

multiplier are compared with respect to PSNR. The ground truth is obtained by running

MATLAB simulations in double precision floating point. Table X presents the results for

the six standard images – Baboon, Barbara, Boat, House, Lena and Peppers – each of size

512x512.

TABLE X. RESULTS FOR GAUSSIAN FIR FILTER

Image

PSNR (dB)

Accurate

Multiplier

Reference

Multiplier

Proposed

Multiplier

Baboon 51.16 49.39 49.33

Barbara 47.16 47.21 47.16

Boat 51.16 48.82 48.75

House 51.15 44.70 44.65

Lena 51.52 47.29 47.24

Peppers 51.16 47.95 47.89

Average 50.55 47.56 47.50

 32

The performance of the reference multiplier [24] and the proposed multiplier is

almost the same. This is because our multiplier uses almost the same set of

approximations as the reference multiplier [24] for coefficients 4 and 7. There is an

average drop of 3.04 dB drop in accuracy compared to the accurate multiplier. While our

synthesized implementation shows only a 10% reduction in area due to lack of

optimization, a ~40% reduction in area is achieved when we compare the gate count of

the accurate and proposed multipliers. This estimate is closer to the area reduction

reported in [24].

4.3. Fast Fourier Transform

4.3.1. Split Radix FFT

We implement 2D 32-point FFT by first applying 1D FFT along the rows and then 1D

FFT along the columns. The 1D FFT is implemented using the Split Radix FFT (SRFFT)

algorithm as described in [28]. The FFT coefficients given by

𝑋𝑋𝑘𝑘 = ∑ 𝑥𝑥𝑛𝑛 (𝑊𝑊𝑁𝑁)𝑛𝑛𝑛𝑛𝑁𝑁−1
𝑛𝑛=0 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑊𝑊𝑁𝑁 ≜ cos

2𝜋𝜋

𝑁𝑁
− 𝑗𝑗 sin

2𝜋𝜋

𝑁𝑁
,

are decomposed into

𝑋𝑋2𝑘𝑘 = � (𝑥𝑥𝑛𝑛 + 𝑥𝑥𝑛𝑛 + (𝑁𝑁/2))(𝑊𝑊𝑁𝑁)
2𝑛𝑛𝑛𝑛

𝑁𝑁/2−1

𝑛𝑛=0

𝑋𝑋4𝑘𝑘 + 1 = � [(𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛 + (𝑁𝑁/2)) − 𝑗𝑗(𝑥𝑥𝑛𝑛 + (𝑁𝑁/4) − 𝑥𝑥𝑛𝑛 + (3𝑁𝑁/4))]𝑊𝑊𝑛𝑛
𝑁𝑁𝑊𝑊𝑁𝑁

4𝑛𝑛𝑛𝑛

𝑁𝑁/4−1

𝑛𝑛=0

𝑋𝑋4𝑘𝑘 + 3 = � [(𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛 + (𝑁𝑁/2)) + 𝑗𝑗(𝑥𝑥𝑛𝑛 + (𝑁𝑁/4) − 𝑥𝑥𝑛𝑛 + (3𝑁𝑁/4))]𝑊𝑊3𝑛𝑛
𝑁𝑁𝑊𝑊𝑁𝑁

4𝑛𝑛𝑛𝑛

𝑁𝑁/4−1

𝑛𝑛=0

 33

Thus the N point FFT is implemented by one FFT of length N/2 and two FFTs of

length N/4. The motivation for this decomposition is the fact that the radix-2 algorithm is

more efficient for even terms and the radix-4 for odd terms. Because SRFFT combines

radix-2 and radix-4 algorithms as one, it uses a slightly different butterfly structure shown

in Figure 17.

Figure 17. Butterfly structure used for SRFFT [28]

In our implementation, both the inputs and the FFT coefficients are 8 bits wide

and the internal precision of the adders and multipliers is 16 bits. All adders used in the

implementation are accurate. All the FFT coefficients are scaled by a factor of 128

before multiplication. Since all these coefficients are larger than 16, only Version B of

the proposed multiplier is used to implement this algorithm. The output of the first 1D

FFT is 12 bits wide and that of second 1D FFT is 16 bits wide.

4.3.2. Results

Table XI provides a comparison of the results obtained for the forward-reverse 2D FFT

when implemented using accurate, reference and proposed multipliers. The PSNR is

computed by comparing the results obtained from the Verilog HDL implementation with
 34

the ground truth obtained by computing the 2D forward-reverse FFT in MATLAB using

floating point precision.

TABLE XI. RESULTS FOR 32 POINT 2D FFT

Image

PSNR (dB)

Accurate Multiplier Reference Multiplier [24] Proposed Multiplier

Baboon 42.81 37.62 41.46

Barbara 42.71 36.11 41.37

Boat 42.90 38.39 41.84

House 42.29 33.58 40.82

Lena 42.89 36.97 41.59

Peppers 42.79 37.74 41.56

Average 42.73 36.74 41.44

Our implementation has significantly better performance than the one using the

reference multiplier in [24] and comparable performance with the accurate multiplier

implementation. When two large numbers are multiplied, calculating all the partial

products with same level of approximation leads to a steeper drop in accuracy. Varying

the degree of approximation within the large multiplier by introducing accurate multiplier

to compute the MSB partial product and using aggressive approximation for the LSB

partial product leads to better accuracy. This has resulted in our method achieving an

average of 4.7dB improvement in PSNR compared to [24] with a very small area

overhead.

 35

CHAPTER 5

IMPLEMENTATION OF SAGA ALGORITHM

SAGA is an edge-directed interpolation based image enlargement algorithm that has low

complexity and fast execution time compared to state-of-the-art methods [29]. In this

chapter, we describe our attempt at designing a hardware architecture for SAGA. In

section 5.1, we describe the SAGA algorithm and then in section 5.2 we describe our

implementation of pipelined hardware blocks to realize the algorithm. We conclude the

chapter by discussing the PSNR performance, and area, latency and power readings of

the hardware implementation.

5.1. SAGA Algorithm

SAGA is an interpolation algorithm that linearly interpolates along isophotes rather than

along the image lattice. Image isophotes can be described as all points lying on curves of

constant luminous intensity. They play an important role in image reconstruction and any

errors introduced in these curves can degrade the image quality. SAGA asserts that the

tangent lines to the curvature of the isophote provide better approximations on the image

grid. It provides a systematic way to calculate these displacements (α and β) along the

isophotes. Figure 18 illustrates an isophotic curve and the intersection of the tangent line

to the image lattice. The displacements α and β describe the interpolation relationship

between the isophote intersections and the image pixel locations. We describe the

procedure to compute the displacements and the interpolation process next.

 36

a) b)

Figure 18. a) The curve shown indicates the isophote curvature. b) The intersection of the

tangent line with the integer image. [29]

5.1.1. Determination of Optimal Displacements

The optimal displacements that describe the isophotes for a given row of pixels are

determined by minimizing the cumulative squared intensity-matching error, given by E

(α) = || diag (Ix) α + Iy ||2, where Ix and Iy are the partial derivatives for each pixel in the

row obtained using the Sobel operator and diag (Ix) is a diagonal matrix with Ix as the

diagonal entry. This relationship describes the displacement at each node – a node

partitions the row (or column) of pixels into smaller segments, where each segment is

described by a single isophote. The total number of nodes, also called the stiffness

parameter ‘k’, can be fixed or variable. ‘k’ is related to the set of nodes L, as L ≈ M/k,

where M is the number of pixels in a row. The complete set of displacements

corresponding to the row can be obtained by interpolating the nodal displacements, α =

Θ×αL.

 37

Θ is an interpolation band matrix of the form [29]:

Θ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0 ⋯ 0

𝜃𝜃1(1) 𝜃𝜃2(1) 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮

𝜃𝜃1(𝑘𝑘 − 1) 𝜃𝜃2(𝑘𝑘 − 1) 0 ⋯ 0

0 1 0 ⋯ 0

0 𝜃𝜃1(1) 𝜃𝜃2(1) ⋯ 0

⋮ ⋱ ⋮ ⋮ ⋮

0 𝜃𝜃1(𝑘𝑘 − 1) 𝜃𝜃2(𝑘𝑘 − 1) ⋯ 0

0 0 1 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋮

0 0 0 1 0

0 0 0 𝜃𝜃1(1) 𝜃𝜃2(1)

⋮ ⋮ ⋮ ⋮ ⋮

0 0 ⋯ 𝜃𝜃1(𝑘𝑘 − 1) 𝜃𝜃2(𝑘𝑘 − 1)

0 0 ⋯ 0 1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝜃𝜃1 and 𝜃𝜃2 are linear interpolation functions given by 𝜃𝜃1(𝑖𝑖) = 𝑘𝑘−𝑖𝑖
𝑘𝑘

 and 𝜃𝜃2(𝑖𝑖) = 𝑖𝑖
𝑘𝑘
, for 0 <

𝑖𝑖 < 𝑘𝑘, where k is the stiffness parameter.

5.1.2. Computing Displacements

The combined coefficient matrix is described as 𝐽𝐽 = diag(𝐼𝐼𝑥𝑥)Θ.

This can be simplified as

JT JαL = JT (-Iy)

The resulting matrix J has 2M-L nonzero entries, where M is the number of pixels

in a row in the image. The matrix JT J is a tri-diagonal matrix and solving for αL requires

computing the inverse of this tri-diagonal matrix. Computation of JT J takes (2(2M-L)-L)

multiplications and computing JT (-Iy) takes (2M-L) multiplications. Therefore, the order

 38

of complexity for computing the displacements for one row of pixels is O(M), where M is

the number of pixels in the row. The displacements are calculated along the row as well

as along the column in the reference algorithm and therefore the total complexity is

(O(MN)), where N is the number of pixels in a column.

5.1.3. Constructing Intermediate Images

The displacements can be used to describe ‘matched’ locations. For example, for a pixel

location [m, n], the matched locations are (m ± α(m, n), n ± 1) and (m± 1, n ± β(m, n)) as

shown in Figure 19. The intermediate pixel values are obtained by interpolating along

these vectors. The displacements are usually non-integer values and result in interpolated

values that do not fall on the grid. The off-grid displacements are computed from the

neighboring, original data using 1D interpolation. New data is then computed along the

displacements using linear interpolation. By repeating this procedure along the columns,

four intermediate images are obtained. The four images are then combined using a

weighting system.

Figure 19. Interpolation of input pixel values along the displacements [29]

 39

5.2. Our Implementation

Our implementation of the SAGA algorithm is based on the following simplifications:

1. Keep the enlargement factor at 2, which means the algorithm would generate an

output image that is twice the size of the input image.

2. Keep the stiffness parameter ‘k’ constant at a value of 8.

3. Compute the displacements along the rows only and apply uniform weight for

both images. This makes the complexity of the algorithm O(N) and reduces the

execution time of the algorithm.

4. All 1D interpolations are computed using linear interpolation.

Furthermore we use images of size 64x64 to make the simulation time fast.

 40

Figure 20.
Proposed hardw

are architecture of SA
G

A

-

 41

The hardware architecture of SAGA is shown in Figure 20. It is translated into a

streaming architecture, where the output of each block is fed to the input of the next block. The

flow shown in Figure 20 is for a single row and has to be repeated for every row and column in

the image. Next, we describe each hardware block used in the algorithm. All hardware blocks

are synthesized using Design Compiler from Synopsys. The area, latency and power estimations

are obtained using the Design Compiler for the SAED 90nm Generic Library (optimized for

power). The performance of the design is evaluated by comparing the PSNR performance with

respect to the original image.

5.2.1. Sobel Operator

The Sobel operator is a 3x3 kernel used for edge detection. The partial derivatives Ix and Iy are

obtained by applying the Sobel operator along rows as well as columns. These are implemented

using shifts and additions as shown in Figure 21. The input pixel values are scaled down by a

factor of 8 to accommodate the high precision requirements of the following stages. We

evaluated the performance of the system by running this block for 10, 12 and 16 bits internal

precision and achieved PSNR performance of 16.724 dB, 28.85 dB and 28.85 dB, respectively.

This analysis was used to fix the internal precision for this module at 12 bits.

We also use Approximation 5 FAs to build the 12bit parallel adder used in this module;

the 2 LSBs are added using approximate FA and 10 MSBs are added using accurate FAs. The

PSNR performance of the block using approximate parallel adders is 28.041 dB. Since the drop

in PSNR performance is negligible, we use the configuration (10+2) to implement the parallel

adder, in this block. The hardware block diagram of this module is shown in Figure 21. The

synthesis results are presented in Table XII, at the end of this section.

42

Figure 21. Block diagram for hardware implementation of Sobel operator

5.2.2. Computing the J matrix

The matrix J, also defined as the coefficient matrix, is obtained by interpolating the diag(Ix)

using the interpolation matrix Θ. J is a band diagonal matrix of size M × (L+1). Since several

entries in diag(Ix) and Θ are 0, it takes only 2M-L entries to store the entire J matrix. The

choices available for internal precision are 10, 12 and 16 bits. The PSNR obtained for the various

configurations are 23.61, 29.79 and 29.79 dB, respectively. We therefore choose 12 bits as our

internal precision. This module does not use any parallel adders and therefore, approximate

parallel adders are not used in this module.

The stiffness parameter, k, is reported to be 6 to 8 in [29]. Since the interpolation

function 𝜃𝜃, requires a division by k, we keep k to be a power of 2, namely 8. This enables the

interpolation function to be implemented by using a multiplication and right shift operation (to

implement division by 8).

Since several entries of matrices diag (Ix) and Θ are zero, we do not require a complete

matrix multiplication. Figure 22 illustrates the computation of matrix J by multiplying only the

non-zero entries of diag (Ix) and Θ. The module takes in k Ix values as input and computes the

2k-1 interpolated J matrix values. In our implementation, we store these values in a buffer of

size 2M-L.

43

Figure 22. Computation of matrix J from diag(Ix) and Θ

5.2.3. Computing JTJ and JT(-Iy)

Computations in the JTJ and JT(-Iy) are implemented using an accurate 8×8 multiplier. The

internal precision of the JTJ module is 16 bits and that of JT(-Iy) module is 20 bits. We arrive at

this precision, by comparing the PSNR performance for different values of internal precision for

JTJ and JT(-Iy) modules. Our choice of precision gives a PSNR of 27.97 dB, which is acceptable.

By using the approximate parallel adder, the PSNR of the block drops to 23.79 dB, which is very

low. We therefore do not use approximate FAs in this module.

JTJ is a tri-diagonal matrix; therefore only 3(L+1) elements are required to define this

matrix. The three entries of this matrix are represented using a, b and c in Figure 20. The JT(-Iy)

matrix can be defined by using L+1 entries. This is the fourth input, d, to the tri-diagonal matrix

solver, TDMA1, in the block diagram, shown in Figure 20. Since computation of d is more

sensitive, it is kept at a higher precision of 20 bits compared to inputs a, b and c.

5.2.4. Calculating nodal displacements αL

As seen from equation (4), solving for αL requires computing the inverse of the tri-diagonal

matrix JTJ. We use Thomas Tri-diagonal Matrix Inversion algorithm [30] to compute the

inverse. The Thomas algorithm is based on LU decomposition where the tri-diagonal matrix is

44

decomposed into lower and upper triangular matrices. The algorithm is executed in two steps,

the first step iterates through the entire matrix downwards (TDMA1) and the next step iterates

through the matrix upwards (TDMA2). This means all computations in the first step must be

completed before the second step is executed. This is accomplished by introducing a buffer of

size 2(L+1), between the two stages TDMA1 and TDMA 2 as shown in Figure 20.

The internal precision of both TDMA1 and TDMA2 is 32 bits. We implement the

parallel adder by adding the 2 LSBs using approximate FAs and adding the MSBs using accurate

FAs. Computation of αL is integral to the algorithm as α is obtained by interpolating these

values. By keeping the accuracy of αL high at 32 bits, we ensure that the accuracy of the system

is maintained. The hardware architecture for TDMA1 and TDMA2 are shown in Figure 23.

Figure 23. Hardware architecture for TDMA1 and TDMA2

TDMA1 requires a divider circuit to compute the id as shown in Figure 23. We

implement the divider circuit using the Newton-Raphson iterative method. To compute N/D,

this algorithm computes the reciprocal 1/D iteratively and multiplies it by N. Both N and D are

32 bits wide. The Newton-Raphson method requires D to be scaled to a value between 1 and 2.

This drops the precision of scaled D to 16 bits. The algorithm begins with an initial

approximation of D-1. It then improves the estimate of D-1, Xi, iteratively as

45

Xi+1 = Xi × (2 – D× Xi).

The divider circuit is implemented in hardware based on the implementation in [31]. By

using multiplexers and load signals, the above logic can be implemented using only one 16×16

multiplier. We use the approximate multiplier described in Chapter 3 to implement this

multiplier. The 16 bits least significant partial product is computed using the most aggressive

approximation; the middle partial product is using medium approximation and the most

significant partial product using accurate multipliers.

D-1 corresponds to id in the architectural block diagram presented earlier. After the

computation of id, x(i), y(i) and αL are computed using accurate multipliers. αL is obtained by

solving αL(i) = y(i) – x(i) αL(i+1). The first αL(i) = y(i).

5.2.5. Calculating displacements α

The set of displacements α is calculated by interpolating αL along the interpolation matrix Θ. We

implement this using an accurate multiplier. The precision of this module is 32 bits. All parallel

adders used in this module are implemented by adding the 2 LSBs using approximate FAs and

adding the MSBs using accurate FAs.

5.2.6. Linear Interpolation to compute output pixel values

The output pixels are obtained by interpolating the original data using 1D interpolation and along

the displacements, as shown in Figure 20. The linear interpolation module also uses the same

divider module described above.

5.3. Timing Analysis of our hardware architecture

In this section, we describe the timing flow for our hardware implementation. For this analysis,

we make certain assumptions regarding the calculation of number of cycles. The number of

46

cycles for an L bit parallel adder is assumed to take L cycles, an L×L multiplication takes 4L

cycles, and all hardwired shifts, comparison and assignment operators take 1 cycle. Table XII

provides the computation of the number of clock cycles required for each module. This is

calculated from the various operations used to implement each module. Figure 24 illustrates the

timing diagram for the pipelined implementation of the algorithm.

TABLE XII. TIMING ANALYSIS OF OUR HARDWARE ARCHITECTURE

Module # of computations required # of clock cycles required

Sobel Operator k × (1 shift + 5 12 bit additions) 488

J
k × 8×8 multiplications + 16

hardwired shifts
272

JTJ
2k × 8×8 multiplications + 15

16bit additions
752

JT(-Iy)
2k × 8×8 multiplications + 15 16

bit additions
752

TDMA1
Computation of denom, inverse

and normalization
2072

TDMA2
1 32×32 multiplication, 1 32 bit

addition and 1 assignment
161

α = αL × Θ
8 32×32 multiplications, 13

shifts and 7 32 bit additions
1261

Interpolate along α
Interpolation using inverse and

multiplication
1926

1D interpolation
2 16×16 multiplications, 1 16 bit

addition and 1 shift
113

47

Figure 24. Timing Analysis of our hardware architecture (image not drawn to scale)

We can see that most of the computations are pipelined with the exception of TDMA2,

which cannot be started before TDMA1 is completed.

5.4. Hardware Synthesis and Performance Results

We present the synthesis results – area, latency and power, obtained for the various hardware

modules in Table XII.

TABLE XIII. SYNTHESIS RESULTS OF ALL THE HARDWARE MODULES

Module Area –

combinational (nm2)

Latency (ns) Dynamic Power

(mW) for V=1.2V

Sobel Operator 3819.1 2.52 0.18

J 20934.1 4.05 1.29

JTJ 89664.3 12.97 7.59

JT(-Iy) 101869.1 10.03 0.96

TDMA1 293305.6 115.28 24.11

TDMA2 55766.0 38.78 6.46

α 34632.8 7.62 3.25

1D Interpolation 33249.5 6.20 3.43

Interpolation along α 147983.3 79.75 11.35

48

The total time to process one row is 7.76 μs, when the clock period is 10 ns. The latency

to execute the algorithm for the entire image would therefore be 7.76 μs multiplied by the

number of rows plus the number of columns. For our system, the total latency of the design is

496.48 μs.

We now present the PSNR results obtained by implementing SAGA algorithm using

double precision floating point MATLAB implementation as well as our hardware

implementation. We also present the results of our implementation using accurate as well as

approximate parallel adders and multipliers. Approximate parallel adders were used in the Sobel

operator, TDMA1 and TDMA2 modules; approximate multiplier was used in the divider circuit.

The ground truth is the original image of size 127x127. We can see that our hardware

implementation achieves comparable PSNR with respect to the MATLAB implementation for all

the images. The use of approximate parallel adders and multipliers leads to a very small drop in

PSNR performance for all the images.

TABLE XIV. RESULTS FOR SAGA

Image

PSNR (dB)

MATLAB

Implementation

[29]

Hardware Implementation

Using accurate

parallel adders

Using approximate parallel

adders and multipliers

Baboon 32.21 31.83 31.31

Barbara 32.69 31.91 31.45

Boat 31.57 30.64 30.07

House 30.84 30.36 29.83

Lena 33.02 31.74 31.88

Peppers 32.54 31.52 30.59

Average 32.14 31.33 30.86

49

CHAPTER 6

CONCLUSION

This thesis studied the use of approximate adders and multipliers in reducing the area and latency

of image processing kernels with only a small loss in performance. We also develop a hardware

architecture for the state-of-the-art image enlargement algorithm, Segment Adaptive Gradient

Angle (SAGA), and implement it using pipelined hardware blocks.

6.1. Summary

We use several approximate versions of the mirror adder presented in [23] to implement

approximate parallel adders. A combination of accurate and approximate parallel adders was

used to implement 2D Discrete Cosine Transform algorithm and our implementation was

compared against several configurations of the reference algorithm [23]. Our data-path was 16

bits wide and the 16 bit approximate parallel adders were implemented using approximate FAs to

add 6 LSBs and accurate FAs to add 10 LSBs. We synthesized the competing implementations

using Synopsys in 90nm technology and computed the PSNR with respect to the double

precision floating point MATLAB implementation. We tested the implementations for test

images Barbara, Baboon, Boat, House, Lena and Peppers, of size 512x512. By using a mixture

of accurate and approximate adders, we were able to achieve a reduction of ~34% to 38% in area

with comparable PSNR performance compared to the implementation presented in [23].

We also compared the performance of the 2D DCT system built with parallel adders

against truncation. We used Approximation 5 FA to build the approximate parallel adder since it

uses the same number of logic gates as a truncated adder. We show that using approximate

parallel adders is far more effective than brute force truncation. We achieve negligible reduction

in PSNR performance for an implementation where 4 LSBs were added using Approximation 5

50

adders. In contrast, 4 bit truncation of the 16 bit parallel adder results in more than 10 dB drop in

PSNR performance and is clearly not acceptable.

Next we propose several enhancements to the approximate multiplier proposed in [24].

The reference multiplier is built with 2x2 multiplier building blocks that produce 3 bit outputs

(instead of 4 bits). We propose judiciously replacing some of the approximate 2x2 multiplier

blocks with accurate 2x2 multipliers. This results in significant improvement in accuracy of the

proposed multiplier for the case when both inputs are large.

 We study the effect on the PSNR performance of image processing kernels such as

Gaussian FIR Filter and Fast Fourier Transform when implemented using approximate

multipliers. We calculate the PSNR by comparing the results obtained by hardware

implementation of the algorithm with MATLAB implementation in double precision floating

point. For the Gaussian FIR Filter, we show that use of proposed 8x8 multiplier results in an

average drop of 3 dB PSNR performance compared to the accurate baseline case, with an

estimated 33% reduction in area, in terms of number of logical gates required for the

implementation. For the 2D 32x32 point Fast Fourier Transform, we show that use of proposed

8x8 multiplier results in reduction of 1.3 dB in PSNR performance compared to the accurate case

and 4.7 dB improvement in PSNR performance compared to the implementation using [24].

We also describe our hardware implementation of the state-of-the-art image enlargement

algorithm Segment Adaptive Gradient Angle (SAGA). We map this algorithm into pipelined

hardware blocks and present synthesized results of each block. We perform timing analysis of

each hardware block and show that each row can be completed in 496.48 μs when the system is

clocked at 100 MHz. We achieve an average PSNR performance of 31.33 dB using accurate

parallel adders and multipliers, compared to the real 127x127 image. The average PSNR

51

performance of the system using approximate parallel adders and multipliers is 30.86 dB. We

can see that the drop in performance is negligible for the approximate case. The performance of

both accurate as well as approximate implementation is very close to the PSNR of 32.14 dB that

is obtained by the floating point double precision MATLAB implementation of SAGA.

6.2. Future Work

The approximate adders and multipliers reduce area and latency. The reduced latency can be

translated into increased throughput or reduced power consumption through voltage scaling.

Thus approximate circuits can be used to reduce power with minimal loss in performance.

Our current implementation of the SAGA algorithm includes only the data-path. The

next step would be to implement the buffers between the hardware blocks and build the memory

interfaces for a more complete design.

SAGA also provides additional opportunities to apply the approximate circuits. While

we used approximate circuits to implement some of the hardware blocks, a more thorough

investigation on application of even more aggressive approximations and compensating them

using correction terms, can be done.

52

REFERENCES

[1] C. Chen and et al., “Analysis and architecture design for variable block-size motion
estimation for H.264/AVC,” IEEE Trans. on Circuit and System-I, vol. 53, no. 2, pp. 578-
593, Feb. 2006.

[2] A. Sinha, A. Wang and A. Chandrasekaran, “Energy scalable system design,” IEEE
Trans. on VLSI Systems, vol 10, pp. 135-145, April 2002.

[3] K. J. Lin, S. Natarajan and J. W. S. Liu, “Imprecise results: utilizing partial computations
in real-time systems,” Real-Time System Symposium, pp. 210-217, Dec 1987

[4] S. H. Nawab, A. V. Oppenheim, A. Chandrakasan, J. M Winograd, and J. T. Ludwig,
“Approximate signmal processing,” Journal of VLSI Signal Processing, vol. 15, pp. 177-200,
1997

[5] Y. Andreopoulos and M. van der Schaar, “Incremental refinement of computation for the
discrete wavelet transform,” IEEE Trans. on Signal Processing, vol. 56, pp. 140-157, Jan.
2008

[6] Y. Emre and C. Chakrabarti, “Low energy motion estimation via selective
approximation,” IEEE Int. Conf. on Application-Specific Systems, Architectures and
Processors, pp. 176-183, Sept. 2011.

[7] J. Y. F. Tong, D. Nagle and R. A. Rutenbar, “Reducing power by optimizing the
necessary precision/range of floating point arithmetic,” IEEE Trans. on VLSI Systems, vol.
8, pp. 273-286 June 2000.

[8] Z. He, C. Tsui, K. Chan, and M. L. Liou, “Low-power VLSI design for motion
estimation using adaptive pixel truncation,” IEEE Trans. on Circuits and Systems for Video
Technology, vol. 10, no 5, pp. 669-678, August 2000.

[9] S. H. Kim, S. Mukohopadhyay and M. Wolf, “System level energy optimization for error
tolerant image compression,” IEEE Embedded System Letters, vol. 2, pp. 81-84, Sept. 2010.

[10] J. Park, J. H. Choi and K. Roy, “Dynamic bit-width adaptation in DCT: an approach to
trade-off image quality and computation energy,” IEEE Trans. on VLSI Systems, vol. 18, pp.
787-793, May 2010.

[11] A. Chandrasekaran and R. Brodersen, “Minimizing power consumption in digital CMOS
circuits,” Proc. of the IEEE, pp. 498-523, April 1995.

[12] B. Shim, S. R. Sridhara and N. R. Shanbag, “Reliable low-power digital signal processing
via reduced precision redundancy,” IEEE Trans. on VLSI Systems, vol. 12, pp. 497-510,
May 2004.

53

[13] R. Hegde and N. R. Shanbhag, “Soft digital signal processing,” IEEE Transactions on
VLSI Systems, vol. 9, no. 12, pp. 813-823, Dec 2001.

[14] N. R. Shanbag, R. A. Abdallah, R. Kumar and D. L. Jones, “Stochastic computation,”
Design Automation Conference, pp. 1589-1592, May 2011.

[15] J. Sartori and R. Kumar, “Architecting processors to allow voltage/reliability tradeoffs,”
International Conference on Compiler Architectures and Synthesis for Embedded Systems,
pp. 115-124, Oct. 2011.

[16] I. J. Chang, D. Mohapatra and K. Roy, “A voltage-scalable & process variation resilient
hybrid SRAM architecture for MPEG-4 video processors,” Design and Automation
Conference, pp. 670-675, 2009.

[17] M. Cho, J. Schlessman, W. Wolf and S. Mukhopadhyay, “Accuracy-aware SRAM: a
reconfigurable low power SRAM architecture for MPEG-4 video processors,” Design and
Automation Conference, pp. 823-828, 2009.

[18] B. Shim, S. R. Shridhara and N. R. Shanbhag, “Reliable Low-Power Digital Signal
Processing via Reduced Precision Redundancy, ” IEEE Transactions On Vlsi Systems, vol.
12, no. 5, May 2004.

[19] A. K. Verma, P. Brisk, and P. Ienne, “Variable latenct specualtive addition: A new
paradigm for arithmetic circuit design,” in Proc. Design, Automat. Test Eur., 2008, pp. 1250-
1255.

[20] D. Shin and S. K. Gupta, “Approximate logic synthesis for error tolerant applications,” in
Proc. Design, Automat. Test Eur., 2010, pp. 957–960.

[21] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-inspired imprecise
computational blocks for efficient VLSI implementation of soft-computing applications,”
IEEE Trans. Circuits Syst. Part I, vol. 57, no. 4, pp. 850–862, Apr. 2010.

[22] S.-L. Lu, “Speeding up processing with approximation circuits,” Com- puter, vol. 37, no.
3, pp. 67–73, Mar. 2004.

[23] V. Gupta, D. Mohapatra, A. Raghunathan, K. Roy, “Low-
Power Digital Signal Processing Using Approximate Adders,” IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, vol. 32, no. 1, January 2013.

[24] P. Kulkarni, P. Gupta, and M. D. Ercegovac, “Trading accuracy for power in a multiplier
architecture,” J. Low Power Electron., vol. 7, no. 4, pp. 490-501, 2011.

[25] Venkataramani, S. ; Sabne, A. ; Kozhikkottu, V. ; Roy, K. ;Raghunathan, A., “SALSA:
Systematic Logic Synthesis of Approximate Circuits, Design Automation Conference
(DAC),” 2012 49th ACM/EDAC/IEEE

54

[26] R. Venkatesan, A. Agarwal, K. Roy and A. Raghunathan, “MACACO: Modeling and
Analysis of Circuits for Approximate Computing,”
Computer-Aided Design (ICCAD), 2011 IEEE/ACM International Conference

[27] Chan, Wei-Ting J. ; Kahng, Andrew B. ; Kang, Seokhyeong ;Kumar, Rakesh ; Sartori,
John, “Statistical Analysis and Modeling for Error Composition in Approximate
Computation Circuits,”

[28] P. Duhamel, “Implementation of Split-Radix FFT Algorithms for Complex, Real and
Real-Symmetric Data,” IEEE Trans. on Accountics, Speec, and Signal Proc., vol. ASSP-34,
no. 2, April 1986.

[29] C. M. Zwart, and D. H. Frakes, “Segment Adaptive Gradient Angle Interpolation,” IEEE
Transactions On Image Processing, Vol. 22, No. 8, August 2013

[30] Tridiagonal Matrix Inversion algorithm: http://www3.ul.ie/wlee/ms6021_thomas.pdf

[31] Newton Raphson method for Reciprocal Approximation: Digital Computer Arithmetic
Data-path Design Using Verilog HD by James E. Stine

[32] Y. Emre and C. Chakrabarti, “Quality-Aware Techniques for Reducing Power of JPEG
Codecs,” J Sign Process Syst (2012) 69:227–237

[33] University of Southern California – Signal and Image Processing Institute Image
Database: http://sipi.usc.edu/database/

55

http://www3.ul.ie/wlee/ms6021_thomas.pdf
http://sipi.usc.edu/database/

	TABLE XIV. Results for SAGA

