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ABSTRACT

Mobile robots are used in a broad range of application areas; e.g. search and
rescue, reconnaissance, exploration, etc. Given the increasing need for high perfor-
mance mobile robots, the area has received attention by researchers. In this thesis,
critical control and control-relevant design issues for differential drive mobile robots

is addressed.

Two major themes that have been explored are the use of kinematic models for
control design and the use of decentralized proportional plus integral (PI) control.
While these topics have received much attention, there still remain critical questions
which have not been rigorously addressed. In this thesis, answers to the following
critical questions are provided:

When is
1. a kinematic model sufficient for control design?
2. coupled dynamics essential?
3. a decentralized PI inner loop velocity controller sufficient?

4. centralized multiple-input multiple-output (MIMO) control essential?

and how can one design the robot to relax the requirements implied in 1 and 27

In this thesis, the following is shown:

1. The nonlinear kinematic model will suffice for control design when the inner
velocity (dynamic) loop is much faster (10X) than the slower outer positioning

loop.



2. A dynamic model is essential when the inner velocity (dynamic) loop is less

than two times faster than the slower outer positioning loop.

3. A decentralized inner loop PI velocity controller will be sufficient for accomplish-
ing high performance control when the required velocity bandwidth is small, rel-
ative to the peak dynamic coupling frequency. A rule-of-thumb which depends

on the robot aspect ratio is given.

4. A centralized MIMO velocity controller is needed when the required bandwidth
is large, relative to the peak dynamic coupling frequency. Here, the analysis in
the thesis is sparse making the topic an area for future analytical work. Despite
this, it is clearly shown that a centralized MIMO inner loop controller can offer

increased performance vis-a-vis a decentralized PI controller.

5. Finally, it is shown how the dynamic coupling depends on the robot aspect ratio
and how the coupling can be significantly reduced. As such, this can be used

to ease the requirements imposed by 2 and 4 above.
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Chapter 1

INTRODUCTION

1.1 A Brief History

Contrary to popular belief, Robots are relatively old devices, with Leonardo’s me-
chanical knight dating back to 1495 being the first robot recorded in history [1]. First
major wave of robots started in late 60’s at industrial environments, where manual

labor was gradually being replaced by automated robots in the production lines [2] [3].

The presence of robots in industry have been fortified for many years now; how-
ever, there still remains a huge gap in the market for other types mostly due to
technology limitations and high prices. Recent developments have significantly in-
creased computing capabilities of processors while lowering the costs. This allows
cheap, precise and powerful robots to become a reality in the upcoming years, where

they will only be limited by human imagination.

In 1948 W.Grey Walter designed the first Mobile Robot called Machina Specultrix.
This robot was equipped with a light sensor to explore the environment. Because of
the simple design this machine was extremely unreliable and in need of constant at-

tention [4].

Johns Hopkins University developed the Beast in 1960 utilizing sonar to wander

around the halls until its batteries ran low [5].



In 1969 Mowbot was introduced to market where as the first attempt in auto-
matic lawn mowing [6]. In early 90’s Joseph Engelberger, father of industrial robotic
arm, designed the first commercially available autonomous mobile hospital robot [7]
. Later in 1997 NASA sent the Mars Pathfinder with its rover Sojourner to Mars.
Equipped with a hazard avoidance system, Sojourner was able to autonomously find

its way through unknown martian terrain.

Over the past decade the development of mobile robots has faced a new era with
ever increasing processing power of computers along with accurate sensors. In the
past two decades mobile robots, along with their capabilities and their design aspects
have been a very popular topic between scientist from various fields such as controls,

robotics, computer science, etc.

1.2 Literature Sruvey

In this section relevant research will be explored in order to put a foundation for
our work and justify the objective of this document. Although research in this area

has been going on for many years, the most recent articles will be more emphasized.

1.2.1 Main Problems

There are some major problems concerning Mobile Robots which robotic and con-
trol community try to answer. A Mobile Robot, as the name suggests, has to move
from an initial point and reach a final destination, while satisfying speed and/or po-

sition constraints on its way.



This task has been broken down into different problems and addressed separately

or together. These problems are classified as:
1. Path Tracking (Trajectory Tracking)
2. Point to Point (Cartesian) Stabilization
3. Posture Regulation (Parking Problem)
4. Velocity Control

Path Tracking is the highest level problem which consists of a robot following a
predefined path and reaching a destination. A more general form of path tracking
is the Trajectory Tracking problem which is proposed by defining a timing law on
the desired path; implicitly putting a velocity constraint on the robot at each sample

point.

One of the most common solutions for this class of problems is through Liapunov-
Like stabilization [8] [9] [10]. In this method a linear or non-linear controller is pro-
posed and the stability of the closed loop system is proved through Liapunov function
[11] [12] [13]. In this approach a non-linear geometric model of mobile robot (Kine-
matics) is incorporated for control design and closed loop stability analysis. [14], [15]
and [16] are some examples of using model predictive controller for trajectory tracking

of nonholonomic systens.

Point to Point stabilization in nature is a simpler problem, where the robot only
has to start from an initial point and reach a destination point. In this class of prob-
lems the behavior of the robot between the initial and final point, and also the final

orientation of the robot is not explicitly controlled. Point to Point stabilization can be



addressed as a subclass of Path Tracking or Posture Regulation problems, depending

on the the goal being to follow a path or just reaching a reference point.

Posture regulation is a general form of Point to Point stabilization. The objective
of the robot in this problem is to start from an initial posture and end up at a final
posture. Due to the non-holonomic nature of the system and it limitations, this class

of problems has been recognized as the hardest issues in mobile robotic society.

Liapunov stabilization is the oldest method to solve this problem at kinematic
level [17] [13] [18] [19]. However, recent studies have managed to simplify this prob-
lem by transforming the inputs from posture to displacement and orientation and use
linear controllers to address the problem [20] [21]. This approach not only simplifies
the controller structure, but also allows a more performance based control system

design as well.

Other than [20] and [21], in which the dynamics are included but not explicitly
controlled, all of the previous problems have been addressed in a Kinematic level. This
means that the actuator and robot dynamics are neglected and it is assumed that
velocity commands are realized instantaneously. This negligence is justified provided
that the motor is powerful enough or it is already being controlled using lower level
controllers [18] [22] [19] [11] [23]. This brings out the importance of Velocity Control.

Velocity Control of the mobile robot is a very fundamental problem. This is be-
cause underneath any technique addressing the problems mentioned earlier, there is

a need for seamless velocity tracking.



In order to achieve this goal different approaches have been proposed. One method
is to cancel the dynamics of the system using state feedback based on the exact knowl-
edge of such dynamics [13], [24], [25]. This method is highly sensitive to the parameter

error and is not considered a very practical approach.

Recent studies have put more focus on the dynamic model and its effects on the
system as a whole. Both the robot and a simplified actuator dynamics have been
considered in [20] and [21]. As it was mentioned earlier, two PID controllers are in-
corporated to solve both path and trajectory problems. In this method the velocity
is not sensed or explicitly controlled. Solely depending on position sensing, which is
in general more prone to errors compared to velocity sensing, can make the system

more susceptible to errors.

In [26] a detailed model of mobile robot including the dynamics and toque cou-
pling has been proposed, the dynamic are then controlled using a Model Reference
Adaptive controller at torque level. Although this is a genuine effort in considering

the dynamics, in most systems commanding torques is not a viable option.

1.3 Objective

From literature survey one can observe while there are many control approaches
for each of the proposed problems, there are gaps in the dynamic modeling aspects of
mobile robots. While all of the surveyed works address the proposed problems, they
are heavily based on assumptions of neglecting the dynamics, which from a control

system design point of view may be unjust.



This document explores two major themes : the use of nonlinear kinematic models
for control design and the use of decentralized proportional plus integral (PI) control.
While these topics have received much attention, there still remain critical questions
which have not been rigorously addressed. In this document answers to the following

fundamental questions are provided:

1. When is the Kinematic Model sufficient ?
2. When is the Dynamic Model essential?

3. When is a Decentralized Control scheme sufficient?

4. When is a Centralized Control (MIMO) essential?

The answers to the proposed questions are intended to be used for development of
a Mobile Robotic System (MRS) as a part of Flexible Autonomous Machines operating

in an uncertain Environment (FAME) project at Arizona State University.
1.4 Thesis Organization

The remainder of the thesis is organized as follows:

Chapter 2 provides explanations on the mathematical model of a differential drive
mobile robot. In this chapter dynamic and kinematic model are explained along with
non-holonomic constraints of the robot. Additionally, their differences and limita-
tions are thoroughly explored in this chapter. The detailed dynamic model of the
Mobile robot with torque coupling is then introduced. Performance metrics such as
Coupling Ratio and Bandwidth effects of Power and Mass on such system are then an-
alyzed. Finally the dependency of dynamic coupling on the aspect ratio of the robot

is discussed in details. Coupling analysis shows that for a cuboid shape robot with



aspect ratio of v/5 the coupling goes to zero, allowing for simpler control structures
to be used. At the end by summarizing our analysis we answer how can one design a

system to facilitate a kinematic design, helping with fundamental question 1 and 2.

In Chapter 3, in order to answer the first two previously mentioned fundamental
questions, effects of inner loop system (Dynamics Velocity Loop) on the outer loop
system (Kinematic Position Loop) is compared and a rule of thumb is derived. It’s
concluded that if the Inner loop dynamics is much faster (ten times faster) than the
outer loop kinematics, the error will be small enough, allowing for a kinematic design.
On the other hand if the inner loop dynamics are not fast enough (less than two time
faster than the outer loop) then the error will be large, thus the need for dynamic

model consideration.

Different control schemes for the dynamic model are then analyzed. Decentralized
P and PI controller are designed for such systems and different performance aspects
of such scheme is explored. The limitations of using a decentralized control is then
addressed and a rule of thumb for the third fundamental question is derived. It is
stated that operating in low frequencies, relative to the peak coupling frequency (w.),
would yield high performance closed loop characteristics. The driven rule of thumb
for the third question is dependent on the aspect ratio of the robot and can become

less strict as we reach the zero coupling aspect ratio of v/5.

Finally, it’s shown that if high velocity bandwidth, relative to the peak dynamic
coupling frequency, is desired A Centeralized LQR controller is required. Further
analysis clearly states that the centralized control is able to overcome limitations of

the decentralized scheme, thus allowing us to answer the forth fundamental question.



Here, the analysis in the thesis is sparse making the topic an area for future analyt-

ical work

Chapter 4 discusses the outer loop path generation problem of the mobile robot,
focusing on generating viable speed commands for a desired path, which can be ap-

plied to the controlled dynamics discussed in previous chapters.

Chapter 5 summarizes the results in this thesis and proposes the possibility of

future works that hasn’t been addressed in this document.

1.5 Summary and Conclusion

In section 1.1 a brief history of mobile robots was given. Section 1.2 thoroughly
discussed the research that has been done on mobile robots, addressing main problems
of the field. In section 1.3 the main objective of this thesis, and the reasoning behind
it was proposed. Finally section 1.4 showed how the rest of this thesis is organized

and what is discussed in each chapter.



Chapter 2

MATHEMATICAL MODEL

Deriving a precise mathematical model is a crucial part of designing control sys-
tem for any physical plants such as mobile robots. In this chapter dynamics and
kinematics of a differential drive robot are derived and differences between the two

models and limitations of the kinematic model are explored.

The pure rolling nature of the wheels causes a reduction in the local mobility of
the robot. This limitation is expressed as a non-holonomic constraint which is fur-
ther discussed. In later chapters the importance of the non-holonomic constraint in

trajectory planning is thoroughly discussed.

2.1 Non-Holonomic Constraint

Wheeled vehicles are generally subjected to a constraint. For instance, a car can
reach any final configuration in its plane, but it can never move sideways. Hence, de-
pending on the goal configuration, it requires to perform a series of maneuvers (such

as parallel parking) to reach the desired state.

First, holonomic and non-holonomic systems have to be defined. Let’s consider a
mechanical system with generalized coordinates q € C', where C' is the configuration
space of the proposed system and coincides with R™. For such system, a constraint is

called Kinematic when it only involves generalized coordinates (¢) and velocities (§).



Kinematic Constraints are usually defined in Pfaffian Form
v (q)g=0 i=1,...k<n (2.1)

where v;’s are k linearly independent vectors.

If all of the kinematic constraints defined by Equation 2.10 are integrable to a

form of

where, m; is the integration constant, then they are considered to be holonomic con-
straints and the system subjected to them is called a holonomic system. Joints in a

robotic manipulator are common example of such constraints.

Each holonomic constraint causes a loss of accessibility of the system in its con-
figuration space. Hence, for a system with k& holonomic constraints, the accessible

configurations are reduced to a n — k dimensional subset of C.

A non-holonomic system on the other hand, is subjected to at least one non-
integrable (i.e. non-holonomic) constraint. Although such constraint limits the local
mobility of the system, due to its non-integrable nature, the accessibility to C' is
not affected. Hence, generalized coordinates are not reduced. However, generalized
velocities in a system subjected to k& non-holonomic constraint belongs to a (n — k)

dimensional subspace.

Wheels are typical sources of non-holonomic constraints. Consider the disk in

Figure 2.1 with generalized coordinates ¢ = [z y 6]7, assuming the disk can only

roll on the touching plane without slipping to the sides (i.e. there is no velocity

10



X

Figure 2.1: Pure rolling disk and its generalized coordinates in 2D plane

component for the contact point perpendicular to the plane containing the disk).

This can be defined as:

zsinf —ycosf =0 (2.2)

Rewriting Equation 2.2 in pfaffian form will result in

[sinf —cosf 0]¢g=0 (2.3)

As it can be seen, Equation 2.3 is not integrable causing the nature of the wheel to
be non-holonomic. Also, it should be emphasized that this constraint implies no loss in
accessibility of the wheel configuration space, meaning that wheel can reach any goal

configuration q; = [z; y; 07 starting from any initial state ¢; = [z; vy; 6;]7.

11



Figure 2.2: Mecanum wheel can move sideways and is holonomic

This kinematic constraint applies to all wheel-based systems, making them non-
holonomic. However, it should be noted that not all wheels are non-holonomic. Con-
figuration of caster wheel proposed in mic or Mecanum wheels (as shown in Figure
2.2), which are commonly used in omnidirectional robots, are exempt from this con-

straint and in fact are considered, holonomic.

2.2 Robot Kinematics

Reordering k kinematic constraints in Equation 2.10 into matrix form V7(q)¢ = 0,
shows that the generalized velocities (¢) belongs to null space of VT(q), which is (n—k)

dimensional and agrees with what was stated earlier in this chapter.

Choosing a basis for N(VT(q)) denoted by [b1(q)...b,_1(q)] a kinematic model of

the constrained mechanical system is given by:

12



where u = [u;...u, ;|7 € R"7* is the input vector and ¢ € R" is the state vector.

The basis for nullspace of V7 (q) is not unique and typically, it can be chosen such
that inputs u; represent a physical concept. However, these inputs should not directly

represent forces or torques, hence the name kinematic model.

i

Figure 2.3: Generalized coordinates for a mobile robot
Consider the mobile robot in Figure 2.3. Using generalized coordinate vector
g =[x y 0] the robot’s posture can be defined on its whole configuration space.

The wheels driving the robot make it non-holonomic and imposes the pure rolling

constraint on the system which as discussed before, is expressed as

VT(q)g=[sin@ —cosh 0]g=0 (2.5)

13



a basis for N(VT(q)) is then chosen as

B(q) = [bi(q) ba2(g)] = |sind 0 (2.6)

Using this basis and based on Equation 2.4 the kinematic model will be

T cos 0
'g = |sinf| v+ |0| w (27)
0 0 1

where, the inputs have clear physical interpretation, v and w are the linear velocity

and angular velocity of the robot, respectively, as shown in Figure 2.3.

There exists a one to one relation between formerly mentioned velocities and
actual velocity inputs, which are angular speed of two wheels denoted by w; and wg

for left and right wheels, respectively and is governed by:

_ r(wr+wr) _ r(wg —wr)
e (2.8)

where, r is the radius of the wheels and [ is the distance between the wheels as shown

in Figure 2.4.

2.3 Robot Dynamics

Inputs in a kinamtic model do not directly represent actual inputs (i.e. forces
and/or torques). In another words, we are neglecting dynamics of a system when

dealing just with a kinematic model. Consequently, It is important to derive the

14
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Figure 2.4: Linear and Angular velocity of the robot

dynamic model and explore its characteristics.

There are two methods for dynamic model derivation. Newton-FEuler method de-
scribes the system in terms of all the forces and momentum acting on the system

based of direct interpretations of Newtons Second Law of Motion.

On the other hand, Lagrange method incorporates the concepts of Work and En-
ergy to indirectly derive the equations of motion. Here, Lagrange method is chosen
due to its more systematic nature and automatic elimination of workless and con-

straint forces.

Lagrangian of a system is defined as the difference between its kinetic and poten-

tial energy

15



1

L(q,q) =T (q,4) —U(q) = 54”(61)4 —U(q) (2.9)

where, T (q,q) and U(q) are the kinetic and potential energy, respectively and I(q) is

the inertia matrix of the mechanical system.

Lagrange-Euler equations representing the dynamics are expressed as

JOROR

This general form of Lagrange equation applies to holonomic system. In case of a

non-holonomic system we have to replace Equation 2.10 by
d (oc\" [(oc\T
— = - =] =9 V(g)A 2.11
dt(&g) (&1) (@)7+V(q) (2.11)

where, S(¢) is a (n by m) matrix mapping the (m = n — k) external inputs 7 to
generalized forces, V/(q) is the transpose of V7 (q) in Equation 2.5 governing the non-
holonomic constraint. A € R™ is the vector of the Lagrange multipliers representing
the forces required to impose such constraint in the configuration plane. V(q)A\ is the

reaction forces at generalized coordinate plane.

Based on Equation 2.9 and Equation 2.10, the dynamical model of a non-holonomic

mechanical system is obtained as

I(q)G +n(q,q) = S(q)T + V(g)A (2.12)

VIig)g=0 (2.13)

3<q'Tf<q>q'>)T ¥ (a%—ff)) (2.14)



where n(q, ¢) given in Eq 2.14 represents vector of centripetal and coriolis terms [26]

27].

Let I be the moment of inertia around the central vertical axis and m the mass
of the differential drive mobile robot in 2.3. Using the Lagrange representation in

Equation 2.12 and Equation 2.13, the dynamic model of the robot is then derived.

m 0 0| |z cosf O sin 6
T
0 m Of [¢]| = |sinf 0 + | —cosf| A (2.15)
. Ta
0 0 I |6 0 1 0
{sin@ —cosf 0} g=20 (2.16)

Where, 7, and 7, represent the linear force and angular torque of the mobile robot,
respectively. The robot is in inertial frame coriolis and centripetal term n(q,q) is

non-existence [26].

The relations between linear velocity (v), angular velocity (w) and the generalized

velocities (§) are

v o= i+ (2.17)

w = 6 (2.18)

Using derivatives of Equation 2.17 and Equation 2.18, the dynamic model represented

in matrix form in Equation 2.15 can be rewritten in a more familiar form.

17



& = wcosh (2.19)

y = wvsinf (2.20)
0 = w (2.21)
s o= T

0= — (2.22)
b o= % (2.23)

Where, Equations 2.19 through 2.21 are the kinematic models and Equations 2.21 &

2.22 integrate the dynamics of the robot.

It should be noted that the constraint equation (Equation 2.16) is valid in any
case. Similar to linear and angular velocity of the robot and wheels’ angular velocity,
angular torque 7, and linear torque 7; are related to the torques of each wheel by
Equation 2.24:

TR+ 7L l(Tr — 1)

= .= 2.24
Tl , T ” ( )

where, 7 and 77, respectively represent right and left wheel torques.

Such toques and velocities are produced by the actuators driving each wheel. It
is important to appreciate the fact that these actuators have their own internal dy-

namics and can not realize speed commands instantaneously.

2.4 Actuator Dynamics

DC motors are widely used in robotic applications and are the main type of actu-
ators used in mobile robots. Consequently, it is important to analyze and integrate

their dynamics into robot’s model. There are two classes of DC motors: Filed-Current

18



Controlled and Armature-Current Controlled. In a Field-Current Controlled motor,
the armature current i, is kept constant while the field-current is controlled using

field voltage V; commands.

On the other hand, in a Armature-Current Controlled motor, the armature volt-
age V, is the command to control the armature current while keeping the field-current
iy constant. Armature-current controlled DC motors are more common choice in mo-
bile robots and are the basis of further discussions in this text. For a more detailed

discussion on DC motor modeling refer to [28], [29] and [30].

Fixed
eld
R, L. fie
VW ——TTT
e
+
+@) la €
CWw

Figure 2.5: Circuit equivalent of a DC motor with a free body attached

In an Armature-Current Controlled structure, the motor torque is linearly depen-

dent on the armature current by

mls) _ g (2.25)

19



where, 7,,(s) is the motor torque in S-domain and K, is called the motor torque

constant.

Based on circuit model provided in Figure 2.5, and considering the back EMF
voltage (vy), induced by the rotation of armature winding, the voltage relation on the
armature will be

Vg = Uy + v + U (2.26)

Back EMF has a linear relation to angular speed through back EMF constant K,

taking Laplace transform of Equation 2.26 the following equation is achieved.

Va(s) = Vo(s) = Vals) = Ky w(s) = (Ra + Las)la(s) (2.27)

Figure 2.6: Torque applied to a free body

For the free body connected to the motor(Figure 2.6) rotational motion is formu-
lated by
Jw+cw — Ty, (2.28)

20



where, w is the angular velocity, ¢ is motor friction constant and J is the moment of

inertia of the rotor.

Taking Laplace transform the transfer function from the input motor torque to

angular velocity is obtained

(2.29)

Using Equations 2.25,2.27 and 2.29 transfer function from armature voltage to

angular velocity is
Ky,
wis) _ (2.30)
Va(s)  (Lg.s+ Ra)(Js+¢) + KKy,

Closed loop block diagram of DC motor model expressed in Equation 2.30 is shown

in Figure 2.7, angular displacement can also be found by integrating w(s).

Va(s) 1 I,(s) Tls) 1 w(s)
> »‘ T »‘ K., »‘ Toie >

Figure 2.7: DC Motor block diagram
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2.5 Kinematics Vs. Dynamics

In previous sections kinematics and dynamics of a differential drive mobile robot
was systematically derived. In robotic society it is very common to use the kine-
matic model as the plant for control design [13] [18] [31] [12] [19]. This is justified

by assuming that the motor is powerful enough to make the dynamic effects negligible.

This section is intended to have a deeper look into this matter by comparing the

kinematic and dynamic model and exploring the limitations of the kinematic model.

Kinematic model (Equation 2.7) considers v and w as the main inputs of the plant,
which means that the linear and angular velocity of the system is realized instanta-
neously. But, how accurate is this assumption? Block diagram of a kinematic model

is shown in Figure 2.8.

Uref — L 7
Mobile Robot Y

Kinematics
Wref — 0

Figure 2.8: Block diagram of a mobile robot’s kinematic

On the other hand complete system’s block diagram so more similar to Figure
2.9, where 7z and 77, represent the effective torque applied to right and left wheel,

respectively. Also, wg,,, and wg, , are respectively right and left angular velocity

ef

commands calculated through:
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=M (2.31)

where M is a transformation matrix defined as:

N3
N3

M = (2.32)

r
l

N||
3

Y

r and [ are the radius of the wheels and the distance between them respectively.

WR

ref TR
Uref —— > > WR > v > — T
-1 2-DC motors Mobile Robot Mobile Robot .
M w Lye ¥ Dynamics TL Dynamics wy, M w Kinematics y
Wref — > > > > —

Figure 2.9: Block diagram of a mobile robot including actuator and body dynamics

In order to inspect the effects of actuator and mobile dynamics, the DC Motor
model derived in section 2.4 along with derived dynamics in Equation 2.22 and Equa-
tion 2.23, are used to derive a precise model of the actuator + mobile robot dynamics.
This model is illustrated in Figure 2.10. In this model, DC motors are considered to

be identical.

Following previous discussions, an ideal system would have a transfer function

matrix as follows.

T, (2.33)

Wref —

this indicates perfect command following and absolutely no coupling in actuator +
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Figure 2.10: Actuator and body dynamics block diagram from wg , & wr, ., to wg

ref

&CUL

robot dynamics.

On the other hand from the proposed block diagram (Figure 2.10), one can clearly
see that not only there exists a torque coupling between left and right channels, but
also it is highly unlikely that Tiog,,jwr =1 and 7, Ly = 1 are inherent characteristic

of such system.

In the following sections the real properties of this system is analyzed and different

methods are proposed to make it behave closer to the ideal model.
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2.6 Robot + Actuator Dynamics

In this section, properties of the actuator + robot dynamics will be discussed in

more details. For a system shown in 2.9 one can derive equations as expressed Eq

2.34 to Eq 2.35:

v
= Jmax2Toxo K naxat — Jm2x2T2x252x2ww
w

i = —LoyoRoxot — LoyxoKoxowy + LoV

where J,,, R, T,K, 3,L and 7 matrices are defines in Eq 2.36 through 2.41.

L0
I =

0 7

R, O
R:

0 R,

1 1
T:TT

o _1
K_KbO

0 K,

5 0
5:

0 8

0 2

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)



i = (2.42)
7;02
Assuming L, =~ 0,one can approximate the transfer function matrix of the system

shown in Fig 2.10 as

Pwv Pwv
Pwv - ! " (243)

Pwv21 Pwv22

where,

Pan = Pan [ f;sl;zszf ~ (2.44)
Ptz = Pout % 1 plc)lis o (2.45)

Gains, poles and zeros are approximately located at
a= f[z (2.46)
d= % (2.47)
. Q(RaﬁRtfme) (2.48)
po n 2Bl Rtfme) (2.49)
| ry P ;a ime) (2.50)
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where, J, J; and Jy are inertial parameters which are used to model mass and inertia

of the robot. These parameters are expressed as

J1J2 2]m7’2
J = - 2.51
Ji+Jo 21+ 1Pm (251)
Jy = mr® (2.52)
2r2[
gy =2 (2.53)

l2

Table 2.1 describes the physical representation of each parameter along with the
nominal value of them. Further numerical calculations and simulations are based

upon the nominal plant.

Figure 2.11 and Figure2.12, respectively depict the Singular value and Bode plot
of P, d-

From Figure 2.12 one can easily conclude that, depending on the application,
neglecting the dynamics can have drastic outcomes. Before proceeding further, per-

formance metrics have to be selected to assist us in in-depth analysis of the plant.

2.6.1 Plant Characteristics

In general, when designing and analyzing a system, one needs to satisfy a perfor-

mance goal or goals. These goals are quantified using performance metrics. Based on
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Table 2.1: Dynamic Model Parameter Description and their Nominal Values

Parameter Description Nominal Value

K, Torque Constant 0.0487 N.m/Amp
L, Armature Inductance 0.64x10% H
R, Armature Resistance 0.27 ohm

r Wheel Raduis 0.1 m

m Mass 30 Kg

I Interia 0.83 Kg.m?

l Distance between the wheels 0.5 m

I5; Friction Constant 0.021 N.m.s
K, Back EMF Constant 0.0487 V/(rad/sec)

SinguiarVaes o th 2 Mot channels, Robors manics ncludes

Figure 2.11: Singular Value plot of Mobile Robot Dynamics

previous discussions, we need this system to look close to I5,5. This means there are

two important factors to consider:

e Bandwidth
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Bode Diagram

From: vl From: v2

Magnitude (dB)

~120 i i i i i i
107 10" 10° 10" 10° 10° 10107 10" 10° 10" 10° 10° 10
Frequency (rad/s)

Figure 2.12: Bode Magnitude Plot of Mobile Robot Dynamics

o Coupling

Bandwidth is a measure of system’s speed, larger bandwidth generally means
less response time. In other words, Bandwidth measures the frequency range at which

the system behaves close to a constant, and is easier to be controlled.

Bandwidth can have different definitions based on the case. In this document,
3dB Bandwidth of plant’s minimum Singular Value will be used as a performance

metric which is defined as:

|Omin(w3aB)| = Mn;o)l (2.54)

NG
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Coupling is the behavior of the off-diagonal elements in the transfer function
matrix, while it is not considered as a metric by itself. However, it is crucial for it to

get quantified.

Based on bode plot of the system (Figure 2.12) it is clear that this system has
small coupling at low and high frequencies with a peak in the middle. As discussed
before, ideally this term has to be small compared to the diagonal term, which justifies

using the following ratio as a measure of coupling.

- [Pa(w)]
Cratw - |P11(C<J)| (255)

In this equation, smaller C,.;, means smaller coupling, thus better plant char-
acteristics. It should be noted that each of these metrics can have slightly different
meaning for different type of systems. A desirable plant, would be a system with high
bandwidth and small coupling. In following sections designing a robot with desirable

characteristics is discussed in details.

2.6.2 Power

It was previously mentioned that it is common for robotic scientists to neglect
robot and actuator dynamics based on the concept that Motors are powerful enough.
In order to have an in depth discussion about this statement, Power should be defined
in terms of motor parameters. Using DC-Motor model derived in Section 2.4, dc power
can be derived as

P(0) = 7(0)w(0) (2.56)



Power (Watts)
I

Figure 2.13: Variation of Power Vs. Km

where,
K5
= 2.
7(0) iR T KL x V, (2.57)
w(0) = Ko xV, (2.58)
B BRa + Kme ¢ ‘

7(0) and w(0) represent the dc torque and speed of the motor, respectively. Ac-
cording to these equations, it is obvious that K, has direct effect on the power. For
further analysis, K, is used as a mean to manipulate power’s value. Figure 2.13

shows the relation between power and K,, for this motor.
2.6.3 Mass

The discussion of power is incomplete without considering mass. While a motor

is considered powerful for a system with mass m;, it may not be powerful, or even
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sufficient to move a system with mass msy >> my. In plant analysis mass is varied

along with power and the effects of it on performance metrics are explained.

2.6.4 Plant Analysis

In this section, performance metrics of the plant are investigated with respect to
power and mass. By analyzing the results of this section we try to show how it is
possible to facilitate a kinematic design by having better plant characteristics. All

simulations are performed based on the plant equations in Eq 2.34 to Eq 2.35.

\ X K, increasing
' \\\

yyyyyyyyyyyyyyy

Figure 2.14: Magnitude of Minimum Singular Value for Variations of K,

Figure 2.14 illustrates the minimum singular value of the plant for variations of
K,,. It can be seen that, as K, increases, dc gain grows larger as well. However, it

is not clear what is happening to the Open Loop Bandwidth.

In order to clarify, Figure 2.15 plots the 3d B bandwidth with respect to K,,. As

expected, bandwidth is increasing as K, grows. To confirm our simulation results,
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Plant Bandwidth Vs. K
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Figure 2.15: Open Loop Bandwidth Vs. K,

the open loop bandwidth has been calculated analytically in Equation 2.59.

Q(Raﬁ + Kme)

BW3dB (Umzn> ~ R Jl

(2.59)

This confirms that open loop bandwidth increases linearly with K,,.

Plotting the Diagonal with respect to Off Diagonal elements of P, as shown Fig-
ure 2.16, provides more insight into how the plant behaves. The off-diagonal peak
moves further into higher frequencies as K, increases. This means a larger frequency

range of small coupling behavior, which is desirable.

The diagonal and off diagonal elements have exactly similar poles, which means

they will have similar behavior in a particular frequency range. This confirms the
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As K, gets bigger, IT, | gets bigger

L ,
- >
‘ As K, gets bigger, o, increases
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ol . \

At low frequencys diagonal/off diagonal gets bigger as Km increases

Magnitude (d8)

Ll
Frequency (fad/s)

Figure 2.16: Magnitude of Diagonal and Off-Diagonal elements for Variations of K,

importance of choosing Coupling Ratio as a metric.

2.6.5 Robot Aspect Ratio

Figure 2.17 plots the coupling ratio with Vs. frequency for the nominal plant. As
it can be seen in this figure, the ratio grows to a constant peak as frequency increases.

The coupling ratio is calculated as

P S+ 2
Cra i0o — = 260
t ’PwUIQ g1 S ( )
Jo+ Jp
— 2.61
ol = |77 (261)

where, the peak happens at w, .
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10
frequency (radisec)

Figure 2.17: Magnitude of Off-Diagonal to Diagonal ratio

The peak value of coupling ratio is defined in Equation 2.61, where it is dependent
on the inertial parameters of the system J; and J,. Substituting inertial parameters

into |g1|, the peak can be derived as

21
Z m
p— 2-62
‘91‘ ?2[ m‘ ( )

It is observed that coupling peak is dependent on mass, inertia and distance
between the wheels. In order to gain more insight let’s consider the simple mobile
robot in Figure 2.18. Assuming an absolute cuboid with length d and width w, Inertia

around the z axis is then calculated by

[= %(uﬂ +d?) (2.63)
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Figure 2.18: Cuboid Shape Mobile Robot

Assuming the distance between the wheels is almost equal to the robot width

(I = w), by substituting I from Equation 2.63 into 2.62, |g;| can be calculated as :

—5w? + d?
Tw? + d?

91| = ‘ (2.64)

which shows the dependency of peak coupling on the structure of the robot, more

specifically the aspect ratio of the robot. The aspect ratio of the robot is defined as :

d
robot aspect ratio (RAR) = o (2.65)

Fig 2.19 depicts how peak coupling changes as we change the aspect ratio. As
the aspect ratio grows, peak coupling reaches 0 at % = /5, and as we deviate from
this point the peak grows to larger values. This means an aspect ratio of v/5 would
ensure zero coupling for the robot, assuming the robot has an absolute cuboid shape

of course.
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Peak of coupling ratio(g1) Vs Length/Width of the Cart
0
T T T

3
Cart's Length/Width

Figure 2.19: Peak coupling ratio behavior Vs. robot’s aspect ratio

Figure 2.20 plots a family of systems with different K,,s. As K,, grows, w. grows

larger, which causes the desirable effect of smaller ratio in wider frequency ranges.

Off-Diagonal to Diagonal atio of T, Variable K,

K Increasi
m

Magnitude (¢8)

Figure 2.20: Magnitude of Off-Diagonal to Diagonal ratio for Variations of K,,
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Similar analysis approach is applied to mass. From Figure 2.21, one can see that
changing mass does not change the dc value of o,,,. However, as Equation 2.59

suggests, its 3dB bandwidth is inversely related to system’s mass (Figure 2.22).

uuuuuuuuuuuuuuuuu

Figure 2.21: Magnitude of Minimum Singular Value for Variations of Mass

Investigating the coupling ratio illustrated in Figure 2.23 confirms that as system
becomes heavier we have to expect larger coupling in lower frequencies, making it

harder to neglect dynamics.

Before answering the questions, it is worth to summarize our analysis:

Peak Coupling is related to the structure of the robot with zero value at g = /5.

Open Loop Bandwidth is directly proportional to K, which mean it’s propor-

tional to Power.

Open Loop Bandwidth is inversely proportional to mass.

As Power increases the coupling becomes less significant in lower frequencies.
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Plant Bandwidth Vs. Mass
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inl

3dB Bandwidth of |o,
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0
Mass (Kg)

Figure 2.22: Open Loop Bandwidth Vs. mass

Off-Diagonal to Diagonal ratio of T, Variable Mass

—

Mass Increasing

Magnitude (d8)

10"
requency (radisec)

Figure 2.23: Magnitude of Diagonal and Off-Diagonal elements for Variations of Mass

e As mass grows couplings becomes more significant in lower frequencies.

From all of the above one can conclude that the robot can be designed to facilitated
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a kinematic control design, more power, smaller mass and an optimum aspect ratio

is all that is needed.

2.7 Conclusion

In this chapter, mathematical modelling of a differential drive mobile robot was
discussed. Furthermore, the differences and limitations of both dynamic and kine-
matic models were explained. The detailed dynamic model of the Mobile robot with
torque coupling is then introduced followed by the effects of power,mass and aspect
ratio of the robot on Bandwidth and coupling characteristics of the plant. Finally,
using all this discussion it’s addressed how can one design a mobile robot system to

facilitate kinematic control design.
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Chapter 3

DYNAMICS CONTROL DESIGN

This chapter is dedicated to address the control of the Mobile Robot Dynamics (Inner
Loop). Decentralized control architecture based on P and PI controllers is proposed
and applied to the Dynamics plant. One mode of the outer loop is briefly discussed,
allowing us to analyze the relation between the inner loop (Dynamics) and outer loop
(Kinematics). Analyzing such relation results in answering the first two fundamental

questions:
1. When is the Kinematic model sufficient?
2. When is the Dynamic model essential?

In section 3.3 the limitation of a decentralized control architecture is exposed, and
a rule of thumb based on the aspect ratio of the robot is derived, hence answering
the third fundamental question : 7 When is the Decentralized control sufficient?”.

Finally a centralized control architecture ( LQR ) is proposed and implemented,
confirming that it’s possible to overcome decentralized control limitations using cen-

tralized scheme. maximum error
3.1 Decentralized Control

In this section different schemes of decentralized controller are implemented in
order to control the dynamic plant of the mobile robot. The block diagram of such

implementation is shown in Figure 3.1.
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The plant (2-DC motors + Mobile Robot Dynamics) is governed by Eq 2.34 to
Eq 2.35 through out the whole chapter, the controller is specifically defined in each

section.

WR

\

2-DC motors +
Mobile Robot
Dynamics wr,

Figure 3.1: Decentralized Controller Architecture for Speed Control

Ideally the motors on the robot are identical, which justifies for C; and C5 to be

equal to each other.

3.1.1 Proportional Controller

Proportional or P Controller is the simplest form of decentralized control, where
C) = Cy = K and K is just a gain. Figure 3.2 plots how the diagonal and off diagonal

elements of T, ., change as the proportional gain changes, as K increases:

e Steady state error decreases .
e Peak of the off-diagonal element moves to higher frequencies.

e Off-diagonal element gets smaller in lower frequencies.

As it can be seen in Figure 3.3, increasing the proportional gain also increases the

dc gain of minimum singular value.
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Figure 3.2: Magnitude of Diagonal and off-Diagonal elements for variations of K
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16,,68)

10t
Frequency (radisec)

Figure 3.3: Minimum singular value for variations of K

Bandwidth of the closed loop system grows linearly with respect to K, as shown

in Figure 3.4.

Off-diagonal to diagonal ratio is plotted in Figure 3.5. As K increases, the peak

of the coupling ratio moves to higher frequencies. This will result in smaller ratios at
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low frequencies, hence better closed loop behavior.

3dB bandwidth V. Proportional gain (K1=K2) W/P Controller
T T T

i i i i i i i
o 05 1 15

2
Proportional Gain (K1=K2)

Figure 3.4: Bandwidth of the system Vs. Proportional gain (K)

Magnitude (¢8)

Figure 3.5:

10l 4

£ ]

Off-Diagonal to Diagonal ratio o T, Variable K

K Increasing

W

Decentralized Controller Architecture for Speed Control
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One can argue that desired performance specifications are achievable if K is ar-
bitrary large. However, in practice we are always limited by non-linearities such as
Saturation and amplification of High frequency Noise. The other downside of using a

P controller is the non-zero steady state error.

In order to eliminate the steady state error a PI architecture is implemented in

the next section.

3.1.2 PI Controller

A PI controller is essential to eliminate the steady state error and follows this

general structure :
K.

qz@:m+f (3.1)

where, K, and K; are the proportional and integral gain respectively.

Same analysis approach is followed for both parameter. Figure 3.6 illustrate how
Omin changes as K, and K; change. It is worth to mention that increasing each one

of them increases the bandwidth.

Proportional gain has a more dominant effect compared to the integral gain as
shown in Figure 3.7. It should be noted that increasing K; causes bigger transients
as well, which may not be desirable. Closed loop dc gain of the system is 0 dB,

indicating zero steady state error to input commands as expected.

Similar to P controller, increasing K, and K; moves the coupling peak to higher
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Figure 3.6: Magnitude of Diagonal and off-Diagonal elements for variations of (a)

variations of K, and (b) variations of K;

frequencies, as illustrated in Figure 3.8. However, there are two important facts to

consider:

309 i ve Proporors gan P oot 308 banowen vs. oyl g, P concer

Prpats) G ) e i ()

Figure 3.7: (a) Bandwidth Vs. K, (b) Bandwidth Vs. K;

e Increasing K, does not have a considerable effect on coupling ratio at very low

frequencies.

e Increasing K; causes a transient at the coupling peak frequency, resulting in

bigger coupling in that frequency.
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Figure 3.8: (a) Bandwidth Vs. K, (b) Bandwidth Vs. K;

3.2 Inner Loop (Dynamics) Vs. Outer Loop (Kinematics)

Now that decentralized control schemes are analyzed for such system it’s time to
answer the fundamental question of when is the kinematic-only design is sufficient,

in order to do so first there should be discussion about outer loop plant.

3.2.1 Cartesian Stabilization

Displacement control is one the modes of operation we discussed in chapter 1,
in this mode the objective of the robot is to start form an initial point ([zy]?) and
move to a desired point ([#,es yres]”), without specifying the path between the points.
In order to facilitate linear thinking one can define a system with inputs [s,.y Qref]T

and outputs [s0]7, where s is the linear displacement along saggital axis and 6 is the

orientation of the robot [20], given by :



block diagram of such system is shown in Fig 3.9. The outer loop controller can
be designed based on any classical controller which makes addressing the problem
much easier. In practice however measuring s is impossible and commanding s, is

meaningless. However these problems can be addressed using the right calculations.

w TR vV |1 S
Sref €s Outer Uref Rres | Inner Vr o 2-DC Mobile YR —>
Loop M-t Loop _| motors Robot - M
0'rcf o Controller u,-,_“f' WluJ Controller v Dynamics | 71, | Dynamics | [wr/ "

,
€
=17]
)

Figure 3.9: Displacement Control Block Diagram from S,.¢ and 0,.¢ to s and 6

As stated s is immeasurable but ey can be calculated, consider the robot in Fig

3.10, the robot positioning problem will be solved if Al — 0.

(Tref, Yret)

Figure 3.10: Mobile Robot in Cartesian Stabilization mode

In order for the robot to goes to the desired position s,.; and 6,5 should be

generated such that A\ and A¢ go to zero, meaning e, = AX and eg = Ag, thus if
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the controller converges s and 6 error to zero the displacement problem of the system

is solved. One can generate 0,.; and e, using the following equations

Ay
Orey = tan™" (—f (3.4)
Lref
— ALcos(A8) = \/(Dares)? + (Dneg)-cosftan= [ 2Vt ) _ g 3.5
es = Al.cos(AQ) = \/ (Ayres)? + (Azyer)?.cosltan Ay — 0 (3.5)
ref
Tref €5 0,0 Cs Outer || ﬁ‘;h“mmo | Ve | 2 l Mobile | @n v 4/’17 >
calculation Loop — M e Contmllef S motors Robot k M S Kinematics —_yﬁ:
Yref L 0 -

Controller [ w,,; WL, y, | Dynamics [ 7" | Dynamics w;,{ w

Figure 3.11: Positioning System (Displacement Control) Block Diagram

The complete diagram of a positioning system using this method is shown in
Fig 3.11, it should be noted that although using linear controller is simpler but the
effects of moving the non-linearities outside the loop may be undesirable, which is
not discussed here.

Using decentralized proportional controller for both inner loop and outer loop
system one can analyze how changing the bandwidth of the inner loop affects the
whole system. As inner loop system gets faster with respect to the outer loop, the
actual system becomes more similar to the ideal Kinematic model, meaning it is easier

to neglect the dynamic and design based on kinematic thinking.
3.2.2 Kinematic Design Limitations

Fig 3.12 shows the maximum error of 0,,;, between the actual system (Kinematic

+ Dynamics) and an Ideal system (Kinematics Only), using nominal value parameters
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Error = max|0 , 1., = O sinacual| V. Inner/Outer BW Ratio
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....... —39dBline
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Figure 3.12: Error between ideal (Kinematic) and actual (Kinematic + Dynamics)

system Vs. BW ratio

given in chapter 2. It is observed that as the bandwidth of the inner loop grows the
error becomes smaller, allowing us to answer the first two fundamental questions:
1. When is the kinematic model sufficient?

If the faster inner loop is much faster than the slower outer loop the kinematic

model is sufficient
As a rule of thumb : BWipnerroop > 10BWouternoop ( green line ) will yield an
error less than —39dB

2. When is the dynamic model essential?

If the faster inner loop is not fast enough compared to the slower outer loop

then considering dynamic model is essential
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As arule of thumb: BWipnerLoop < 2BWouterLoop ( red line ) can yield and error

up to 10dB
3.3 Decentralized Control Limitation

From previous discussions we know that making the inner loop fast is desirable,
but of course operating at higher frequencies comes with a price, in our system this

price is the sensitivity function. Defining the sensitivity as

Su S
S=(I+PK)t=|"" "" (3.6)
521 522

It is critical for us that the peak of the elements of S are small in our frequency of
operation and also the off-diagonal element is much smaller that the diagonal element

so that the cross coupling is minimum.

11 peakin BW

peakinBW
T —_—
e il RAR changing
g
e 1951 s
A 4 e
/ et P
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™ e
_ — =
g 1
g <o g Pl
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H 8 205 >
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3 8 // /
& /’ 7
21 /
40 // 0,
// — % RaR=1sf=20
// 0
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I / / —_— -2dBline
sl -215f /
| ——  RAR=1
8 10 12 20 -22 - - L - ° - -
Bandwidth (rad/sec) 0 2 4 6 8 10 12 14 16 18 20
Bandwidth (rad/sec)
(a) (b)

Figure 3.13: (a) maz|Si2| Vs. BW (b) max|Sy;| Vs. BW

Fig 3.13 plots the peak magnitude of these elements for systems with different

bandwidths, as bandwidth increases the peak becomes bigger which is undesirable.
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BW (0,,.) Inceras ing

Figure 3.14: |32

Fig 3.14 shows the off-diagonal to diagonal ratio of S, as the bandwidth is increas-
ing we see the ratio getting bigger, and reaches a constant peak. The peak of this ratio
in the operating bandwidth is of great importance. Fig 3.15 plots this peak, which
also grows with bandwidth increasing, reaching a maximum of p,, as was expected.
It is safe to say that increasing bandwidth arbitrarily can result in worse sensitivity
characteristic.

Now that we have enough information we have to answer our third question:

3. When is the decentralized controller sufficient?

If the inner loop dynamics plant operates far enough from the maximum cou-
pling frequency (w.) then a decentralized controller can address our control

problem and deliver desired closed loop characteristics

As arule of thumb: BW < ¢ will yield | S11[and]| S12| < —20dB,

22 < —20dB

the rule of thumb for a system with aspect ratio of 1 (blue line) along with —20dB

lines are shown in Fig 3.13 and 3.15.
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Figure 3.15: Peak |g—ﬁ| within BW Vs BW

An important fact is that ps depends on robot’s structure, meaning as aspect ratio
changes this peak will moves higher or lower, and may call for a different rule of
thumb, hence the need for factor f.

Fig 3.16 shows the behavior of py versus the aspect ratio of the robot, similar to ¢;
in plant, p, gets smaller as we reach length/width = v/5, meaning around that point
one can use a more tolerant rule of thumb. The rule of thumb proposed was based
on an aspect ratio of 1, which by looking at Fig 3.16 we see for systems with smaller
aspect ratio (width > length) there may be a need for a stricter rule of thumb.

Fig 3.17 plots how the rule of thumb changes as the aspect ratio change, the rule
of thumb is designed to deliver a magnitude ratio less than —20dB, meaning for a
set of systems this is already satisfied by the plant. This means we can operate up
to any desired frequency for such systems and have good closed loop specification, of

course it is important to note there are many high frequency parameters such as high
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frequency noise, sensor noise, saturation and non-linearties that are being neglected

here.
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For boundary systems the rule of thumb is BW < w,./4, this means operating
at any frequency above this point will not deliver desired specification unless we are

meeting the ideal aspect ratio range. This bring us to our last question:

4. When is the centralized controller essential?

If we operate close to the maximum coupling frequency (w.) then a centralized

controller is essential

As an intuitive rule of thumb: BW > w,
3.4  Centralized Control (Linear Quadratic Regulator)

This section is dedicated to design and analysis of a centralized controller for
mobile robot dynamics. Controller of choice is a Linear Quadratic Regulator with
full state feedback.

The plant is defined in Eq to Eq. In order to achieve zero steady state error to step
reference command two integrator have to be augmented to the plant output. The

augmented plant, denoted by P, has the state equation:

&= Ax + Bu (3.7)
where
U= u, (3.8)
X
xrr
Lp
T,

x; = [0 05]7 are the integrator states and z, is the rest of the plant’s states other
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than plant outputs y,. Now by minimizing the quadratic cost function one can reach

a optimal control law for such plant:

1

J(u) = 3 /Ooo(sctQa: + pulu)dt (3.10)

where p = 0.01 and Q = diag[l1,1,1,1,q1,,,91.,,2,2]. q1,, and gq;,, penalize the
armature currents allowing for different coupling characteristics as discussed further
in the following section. Selecting u = —Gz where G = [G,, G, G| will result in an

LQR architecture shown in Fig 3.18.

WRye s
Whref

WR
U 2-DC motors + L

Mobile Robot >
Dynamics

Figure 3.18: Dynamics Plant with a Linear Quadratic Regulator

T"‘"“’ref 12

As stated in section 3.3, the closed loop coupling ratio ( T

) has a constant
r'efll
peak at high frequencies, which is dependent on the aspect ratio of the robot. Using
a decentralized controller, one can increase the closed loop peak frequency (w¢) by
increasing the bandwidth of the system ( Fig 3.19 ). While increasing the bandwidth
results in some desirable closed loop characteristics, as discussed in section 3.3 can
cause undesirable properties as well. On the other hand, using a centralized LQR

controller and a proper selection of Q, it is possible to shape the closed loop coupling

ratio.
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Figure 3.19: Closed loop coupling ratio with decentralized control

Figure 3.20 depicts the closed coupling ratio for family of LQR controllers. It can
be observed that by manipulating (), one can not only reduce the peak magnitude,
but change the behavior of the coupling ratio in the frequencies higher than the peak

as well, overcoming the limitations of decentralized control architecture.

3.5 Summary and Conclusion

In this chapter, different control schemes for the dynamic model were analyzed.
The relation between the inner loop dynamics and outer loop kinematics was dis-
cussed, leading to answers for the first fundamental questions : 7 When is the kine-
matic model sufficient? 7 and 7 When is the dynamic model essential? ”

Different performance aspects of decentralized P and PI controllers, along with
their differences, were studied. Additionally, the limitations of using a decentralized

control were explained. Consequently, last two fundamental questions were answered:
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Figure 3.20: Closed loop coupling ratio with centralized control

” When is the decentralized control sufficient? ” and ” When is the centralized control

essential?”
Finally, by implementing a centralized control architecture ( LQR ) and perform-

ing further analysis, it was possible to show that the centralized control is able to

overcome limitations of the decentralized scheme.
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Chapter 4

TRAJECTORY PLANNING

4.1 Planning

In an industrial setting or in the field a mobile robot needs a trajectory to follow
and complete a goal. Planning this trajectory can be done in many different ways to
satisfy conditions such as minimum distance, minimum travel time, etc. However, in
general, this task can be broken down into finding a path and define a required timing

law on such path.

Trajectory planning is a considerably challenging topic. What can make this topic
even more challenging topic in non-holonomic systems is the fact that not only it has
to meet the boundary conditions. However, the non-holonomic constraint has to sat-

isfied at all points.

In this chapter path planning for a non-holonomic mobile robot and timing law
is discussed. A flat output system and its characteristics is then defined. Finally

admissible trajectory planning is thoroughly discussed.

4.2 Trajectory:Path and Timing law

Consider a trajectory ¢(t), t € [t;,ts] that guides a mobile robot from initial
configuration ¢(t;) = ¢; to final configuration ¢(t;) = ¢; in time 7" = ¢; — ty. This

trajectory can be broken down into a geometric path ¢(g), where d‘;—;g) # 0 and a
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timing law ¢ = ¢(¢) where g(¢) is monotonically increasing function of time onlt;, t¢],

i.e. g(t) > 0. Generalized velocity vector can then be obtained as

_dg _dgdg _

oy 29 _aqdg . 4.1
q(t) gt " dgar 9 (4.1)

where ¢’ is the tangent vector to the path.

4.3 Effects of Kinematic Constraint

A kinematic constraint such as 2.5 can be re expressed as
Vi (q)g=V"(9)dg=0 (4.2)
If g(t) is strictly increasing, i.e. ¢(t) > 0, then it is trivial that
Vi(g)g =0 (4.3)

has to hold.

Essentially it means that in a mechanical system subject to non-holonomic con-
straint a geometric path is admissible if and only if it satisfies 4.3. Similar to 2.4, a

set of all admissible paths can be derived as a solution to

n—k
q = Z bi(¢)t; = B(g)u (4.4)
i=1
where, 1 is the vector of geometric inputs related to kinematic input vector u by

u(t) = u(g)g(t).

In order to acquire a unique admissible path, selecting the geometric inputs for

g € [9i, 9] would suffice. In the case of non-holonomic robot, admissible paths must
satisfy

[sinf —cosf 0]¢ =0 (4.5)
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Therefore, all the admissible paths can be formulated as

] Jeoso o] [
y| = |sino 0o ? (4.6)
o o | U
where, - _
u(t) = o(g)g(t) (4.7)
w(t) = w(g)g(t) (4.8)

The kinematic constraint in Equation 4.5 states that an admissible path for a
non-holonomic robot should have a tangent aligned with the robot’s sagittal axis. In

another words, no edges or sharp points are allowed on the path.

4.4 Differential Flatness

Consider a non-linear system defined by
&= f(z) + g(@)u (4.9)
y = h(z)+d(z)u (4.10)

Such system is differentially flat if there exists a set of outputs y, where states z

and control inputs u can be expressed as unique functions of y and its derivatives:
T = fcnl(y>'g>?ja“'>y(n)) (411)
u= fena(y. g, . ... y"™) (4.12)

Outputs y are called flat outputs. Cartesian coordinates [x,y] in mobile robots
are considered flat outputs, consider geometric model in Equation 4.6, by defining an

output Cartesian path [z(g), y(g)] one can calculate the orientation from
0(g) = atan2(y'(g),2'(g9)) + k= k=0,1 (4.13)

61



0) or backward (kK = 1) and

where, k defines if the robot is moving forward (k
atan2 is a variation of arctangent ' that calculates the angle between the z axis and

the line passing through point (z,y) from origin.
The states are then obtained as ¢(g9) = [2(g9) wy(g9) 60(g)]" and the geometric

velocity inputs are uniquely defined by Equation 4.14 and 4.15.

i(g) = V(92 +v(9)° (4.14)
. — y'(9)2'(g) — 2"(9)y'(9)
w(g) = FIEESTIOE (4.15)

This means that a unique path along with unique velocities can be defined for the

robot.

4.5 Conclusion

In this chapter the outer loop path generation problem of the mobile robot was

discussed. For this purpose, generating viable speed commands for a desired path

had more focus on.

At first, path planning for non-holonomic mobile robots were presented. After

defining a flat output system and the features incorporated with it, trajectory plan-

ning was fully explained.

1Using tangent half formula an expression can be derived : atan2 = 2arctan(y/(y/22? + y2 + x))
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Chapter 5

SUMMARY AND FUTURE WORK

In this thesis, a thorough discussion on mobile robot control & design, and the
problems and limitations incorporated with it, was provided. Additionally, commonly
neglected aspects of mobile robot design in the literature were explained. Four funda-
mental questions were proposed, were answers to them would clarify such neglected

aspects.

A thorough study of mobile robot kinematics and dynamics were performed, and
the design aspects of a differential drive mobile robot was discussed. The dependency
between shape, power and mass of the robot on dynamics and coupling was clearly
addressed. Based on such dependencies, facilitating a kinematic-only design through

desirable plant characteristics was studied.

Next the relation between the inner loop dynamics and the outer loop kinematics
was discussed, leading to answers to the first two fundamental questions proposed
earlier:

1. When is the kinematic model sufficient?

When ( Faster Inner ) Velocity Loop is much faster than ( Slower Outer )

Position Loop

2. When is the dynamic model essential?
When ( Faster Inner ) Velocity Loop is not fast enough compared to ( Slower

Outer ) Position Loop
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The performance of decentralized control was then studied and the limitation of
such control structure was exposed in terms of the closed loop characteristics. Based

on such analysis answers were provided to the last two fundamental questions:

3. When is the decentralized control sufficient?

When system operates at low enough frequencies with respect to coupling peak

4. When is the centralized control essential?

When system operates at frequencies close to coupling peak or higher frequencies

Finally a centralized control architecture ( LQR Servo ) was implemented con-
firming the possibility of overcoming limitation arising from the centralized control.
In this thesis, many details concerning design and control of mobile robots were
discussed and addressed, however mobile robotic is a very vast and complicated field
of science, and one can always go into more details about every aspect of it. The

following topics are proposed as a guideline for possible future work for this article:

e More complicated inner loop dynamics
As discussed before there are parameters such as surface friction] and saturation
that yet to be considered in the dynamic plant, allowing further analysis for more
aggressive specification ( higher bandwidth, less cross coupling ) of such plant.
Additionally further analysis on the structured and unstructured uncertainties
( parametric/dynamic ) of the plant, and robustness of different control scheme

to such uncertainties is suggested.

e Outer loop kinematics issues
Position control aspect of mobile robot, such as outer loop control design and
performance analysis has yet to be discussed in greater details. A systematic
comparison of distinct combination of outer loop and inner loop strategies is

highly suggested.
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e Hardware Implementation
The proposed material in this document has provided a guide to design and
control differential drive mobile robots, while minimizing undesirable charac-
teristics of such system. The next step is to design and implement a robot
based on results driven in this thesis. Of course an important discussion which
would be complementary to our results is the trade off analysis between desired

performance and cost for an actual system.
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APPENDIX A

MATLAB CODES
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10
11
12
13
14
15
16
17
18
19
20
21
22
23

24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42

%% MOBILE ROBOT PLANT SETUP AND CONTROLLER DESIGN

%o

% In this Document and specific MR is modeled as a 2x2 plant ,
the plant is

% then analyzed and 2 controllers(LQR and PID) are desigend
and compared

%% Plant Setup

% A 2x2 plant modeling two channels of DC motors connected to
the wheels of

% a mobile robot, Inputs are voltages and outputs are angular
velocity of

% each wheel

clear all;
close all;

%Motor Specification
Km=0.0487;

kb=Km,;
La=0.64%(10"—3);
Ra=0.27:

%Robot Specification

r=; %wheel diameter in Meters

m=; %Mass in Kg

L=; %Axis length in Meters

I=mx*(L"2) /6; %moment of inertia for a cube with width =
length = L

beta=; %Surface friction

hl=tf (Km, [La Ral) ;
hl.u="el "; hl.y="tauml’;

h2=tf (1 ,[(r"2)*m 0]);
h2 . uv="x1"; h2.y="vhatl’;

h3=tf (L 2,[2*%(r"2)*I 0]);
h3.u="x2"; h3.y="omegahatl’;

h7=tf (beta,1) ;
h7.u= "omegal "; h7.y="taufl ";

h8=tf (kb,1) ;

h8.u= "omegal ; h8.y="vbl";

suml= sumblk ( "el=omegarl — vbl");
sum2= sumblk ( "taul=tauml—taufl ");
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43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

69

70
71
72
73
74
75
76
7
78

79
80
81
82
83
84
85

86

sum3= sumblk ( 'xl=taul+tau2’);
sumd= sumblk ( "x2=taul—tau2’);
sumb= sumblk ( "omegal = vhatl + omegahatl’);

h4=tf (Km, [La Ra]) ;
h4.u="e¢2"; h4d.y="taum2’;

h6=tf (1,[(r"2)*m 0]);
h6.u="x4"; h6.y="vhat2’;

ho=tf (L 2,[2%(r"2)«1 0]);
h5.u="x3"; h5.y="omegahat2’;

h9=tf (beta 1) ;
h9.u= ‘omega2’; h9.y="tauf2’;

h10=tf (kb,1) ;
h10.u= "omega2’; h10.y="vb2";

sum6= sumblk ( "e2=omegar2 — vb2');

sum7= sumblk ( "tau2=taum2—tauf2 ") ;

sum8= sumblk ( 'x3=taul — tau2’);

sum9= sumblk ( "xd=tau2 + taul );

suml0= sumblk ( "omega2 = vhat2 — omegahat2’);

Ml=connect (ss (hl) ,h2 ,h3, ss(h4) h5,h6,h7,h8 1h9 hl10,suml,sum2,

sum3, sum4 , sumb , sum6 , sum?7 ,sum8 , sum9 , suml10,{ "omegarl "’
omegar2’} { ’omegal ’, ’omega2’});
ML. statename={"ial ", 'x2" 'x3","ia2 [ 'x57, 'x6" };

%Plant Plots

%StepPlot

fl=figure;

fl=stepplot (ML) ;

grid on;

title (’Step response of the 2 Motor channels , Robot’’s
dynamics included 7);

%Singular Value plot

f2=figure;

f2=sigmaplot (ML, {10~ —2,1074});
setoptions (f2, "FreqUnits ", "Hz ") ;

grid;

title (’Singular Values of the plant’);
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87
88
89
90
91
92
93
94

95

96
97
98
99
100
101

102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

119

120
121
122
123
124
125

126

127

128

MLmin=minreal (ML, [] ,0) ;
MLmin.u={"omegarln ', "omegar2n ' };
MLmin. y={ omegaln ', "omega2n ' };

% StepPlot

f3=figure;

f3=stepplot (MLmin) ;

grid on;

title (’Step response of the 2 Motor channels, Robot’’s
dynamics included 7);

% * Singular Value plot

fa=tfigure;

f4=sigmaplot (MLmin) ;

setoptions (f4,  FreqUnits | "Hz");

grid;

title (’Singular Values of the 2 Motor channels, Robot’’s
dynamics included 7);

[Aol,Bol, Col,Dol]=ssdata (MLmin) ;

kffl1=1/dcgain (MLmin(1,1));
kff2=1/dcgain (MLmin(2,2));

FFrob=MLminx*[ kffl ,0;0, kff2];

FFrob.u={ omegarlin’ 6 'omegar2n’};
FFrob.y={ omegaln’, 'omega2n’};

% %StepPlot

ffl=figure;
ffl1=stepplot (FFrob) ;
grid on;

title (’Step response of the 2 Motor channels Feed Forward
Open Loop, Robot’’s dynamics included ’);

% %Singular Value plot

ff2=figure;

ff2=sigmaplot (FFrob) ;

setoptions (ff2 | "FreqUnits ', "Hz");

grid ;

title (’Singular Values of the 2 Motor channels Feed Forward
Open Loop, Robot’’s dynamics included ’);

%% LQR Design
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129

130

131
132
133
134
135
136
137
138
139
140
141
142
143

144

145
146
147
148

149

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

171

% In this section an LQR controller is designed for the plant
and the

% closed loop responses are then compared to the open loop
propertise

close all;

clear MLaug P P1 Z Q1 R1 Klqr P2 K OL CL roblqr

%augment each chanel with 1/s

hll=tf(1,[1 0]);
h1l.u="omegaln’; hll.y="omegal /s’

hi2=tf(1,[1 0]);
h12.u="omega2n’; hl2.y="omega2/s’;

%design plant with omega/s outputs

MLaug= connect (MLmin, h11 ,h12 { "omegarin’, "omegar2n '} { "omegal
/s, omega2/s’});

%Klqr design

P=augstate (MLaug) ; %Augment states with output

P1=P(3:8,1:2); %2 state are the same as the output which can
be eliminited

7/=P1l.c;

QI=Z"%7;

R1=0.001xeye (2);

Klqr=lqr (P1,Q1,R1);

%Prepearing the non—augmented system for simulation
P2=augstate (MLmin) ;

H=append (1,1,1,1,¢f(1,[1 0]),tf(1,[1 0]));
K=Klqr+H; %putting integrator on the last two channels
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172
173
174
175
176
177
178
179

180

181
182
183
184
185
186
187
188
189
190
191
192
193

194

195
196
197
198
199
200
201
202
203
204
205
206
207

208

209
210
211
212

213

214

OL=FB*P2xK;
Cl=feedback (OL,eye (6) ,1:6 ,1:6) ;

roblqr=CL([5 6].,[5 6]);
roblqr .u={ Omegarl ', "Omegar2’}; roblqr.y={ Omegal’, "Omega2’};

fh=figure;

f5=stepplot (roblqr);

title (" Closed Loop Step response of a 2 channel motor/Robot
with LQR controller ’);

grid on;

w=logspace(—2,4,5000);

a=bode(roblqr (1,1) ,w);
b=bode(roblqr (1,2) ,w);

rat=b ./ a;

ratio=zeros (length (rat(1,1,:)),1);
ratio (:)=rat(1,1,:);

figure;

semilogx (w,20%logl0(ratio));

hold on;

title (’Off—Diagonal to Diagonal ratio of T_{\omega v}, LQR
Controller ) ;

xlabel ("frequency (rad/sec)’);

ylabel ("Magnitude (dB)7);

grid on;

%

% figure;

% bodemag(roblqr ) ;

[ Alqr , Blqr , Clqr , Dlqr|=ssdata(roblqr);
VA

close all;

t=0:0.1:15;

Td=-0.5 *(t>b & t<10); % 0.5 disturbance between 5s to 10s

u=[ones(size (t));Td]; % augmenting step of size one and Td
to u as input

fé=figure;

f6=lsimplot (FFrob(1,[1 2]),roblqr (1,[1 2]),— ,u,t);

grid on;

title ("Motor 1 Step response, and reaction to a input
disturbance caused by coupling of motor 27);
legend ( ’OpenLoop’ ,'LQR Controller ") ;
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215

216 ul=[Td;ones(size(t))];

217 f7T=figure;

2s f7=lsimplot (FFrob(2,[1 2]),roblqr (2,[1 2]), — ,ul,t);

219 grid on;

220 title (’Motor 2 Step response, and reaction to a input
disturbance caused by coupling of motor 17);

221 legend ( 'OpenLoop’, 'LQR Controller 7);

222 oML_aug= connect (ML, h11 ,h12,{ omegarl’ 6 omegar2’}  { omegal’,’
omegal /s’ omega2’, ’omega2/s’});

223

221 f8=figure;

25 f8=stepplot (FFrob,roblqr , — ") ;

226 grid onj

227 title (’step response of the Openloop VS Closed Loop’);

28 legend ( "Open Loop’, 'LQR Controller ’);

229

230 f9=figure;

231 f9=sigmaplot (FFrob) ;

232 hold onj

23 sigmaplot (roblqr , '— ) ;

231 grid on;

235 legend ( "Open Loop’ , 'LQR Controller ’);

236

237 f10=figure;

ass f10=Isimplot (roblqr ,u,t);

239 grid on;

20 title (’Motor 1 Step response, and reaction to a input
disturbance caused by coupling of motor 27);

2 legend ('LQR Controller 7);

242

243

aa fll=figure;

25 fl1=Isimplot (roblqr ,ul,t);

26 grid on;

27 title ("Motor 2 Step response, and reaction to a input
disturbance caused by coupling of motor 17);

as legend ('LQR Controller 7);

249

20 %0 PI Controller

251 % In this section a PI controller is desigend for each
channel

252

253 Cl=pidtune (MLmin(1,1), pi’);

251 C2=pidtune (MLmin(2,2) ;

255 % Cl 1{1:17

256 % C2 1{1:17
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257 Cl.kp=10;

a8 C2.kp=10;

259 KPID=append (C1,C2) ;

260

261 FF=MLminxKPID ;

262

263 robpid=feedback (FF,eye (2));
264

265 w=logspace(—2,4,100);

266

27 a=bode(robpid (
26s b=bode(robpid (
20 Tat=b ./ a;

o0 ratio=zeros (length (rat (1,1,:)),1);
o ratio (:)=rat(1,1,:);

7)7W

1.1),w);
1,2) ,w);

o3 semilogx (w,20xlogl0(ratio), 'k—");

a5 % stepplot (robpid) ;

a6 /00 PID vs. LQR

a7 % The following plots provide a comparison between PI and LQR
controllers

as % for the same plant

279

280 close all;

281

282 t2020.1215;

23 Td=—0.5 *(t>5 & t<10); % 0.5 disturbance between 5s to 10s

s u=[ones(size (t));Td]; % augmenting step of size one and Td
to u as input

285

256 f6=figure;

257 f6=lsimplot (robpid (1,[1 2]),roblqr(1,[1 2]), — ,u,t);

285 grid on;

220 title ("Motor 1 Step response, and reaction to a input
disturbance caused by coupling of motor 27);

200 legend ('PID Controller ’, 'LQR Controller ’);

291

202 ul=[Td;ones(size(t))];

203 f7=figure;

204 f7=lsimplot (robpid (2,[1 2]),roblqr(2,[1 2]),— ,ul,t);

295 grid on

206 title ("Motor 2 Step response, and reaction to a input
disturbance caused by coupling of motor 17);

207 legend ('PID Controller ’,'LQR Controller ’);

208 OML_aug= connect (ML, h11 ;h12 { omegarl’, ~omegar2’} { omegal’,’
omegal /s’ "omega2’ , ’omega2/s’});
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299

300 f8=figure;

s f8=stepplot (robpid ,roblqr, — ") ;

302 grid on;

s3 title (’'step response of the Openloop VS Closed Loop’);

sa legend ("PID Controller’,'LQR Controller ’);

305

306 f9=figure;

sor f9=sigmaplot (robpid);

308 hold onl ;

s0 sigmaplot (roblqr, —");

si0 grid on;

su legend ('PID Controller ', 'LQR Controller ’);

312

sz fl0=figure;

sie f10=lsimplot (roblqr ,u,t);

si5 grid on;

sic title ("Motor 1 Step response, and reaction to a input
disturbance caused by coupling of motor 27);

sir legend ( 'LOQR Controller ) ;

318

319

320 fll=figure;

s fll1=Isimplot (roblqr ,ul t);

a2 grid on;

a3 title ('Motor 2 Step response, and reaction to a input
disturbance caused by coupling of motor 17);

s legend ('LQR Controller ") ;

325

a6 fl0=figure;

a7 f10=Isimplot (robpid ,u,t);

328 grid on

a0 title (’Motor 1 Step response, and reaction to a input
disturbance caused by coupling of motor 27);

a0 legend ('PID Controller ") ;

331

332

sz fll=figure;

s fl1=lsimplot (robpid ,ul, t);

335 grid on;

a6 title ("Motor 2 Step response, and reaction to a input
disturbance caused by coupling of motor 17);

sar legend ('PID Controller ") ;

338

339

s.0 %% Sensitivity analysis
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341

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

386

% This section Sensetivity and Complement sensitivity

formerly designed
% controllers are plotted and compared

close all;

Plant=FB*P2;
Controller=ss (K) ;
Loopslqr=loopsens(Plant , Controller);

Loopspid=loopsens (MLmin, KPID) ;

figure;

bodemag ( Loopslqr . Si, Loopspid. Si);

title (’Sensitivity Bode Magnitude’);
legend ( 'LQR Controller ’,’PID Controllers ’);
grid on;

figure;

f19=bodeplot (Loopslqr .Si, Loopspid . Si);
title (’Sensitivity Bode Phase’);

legend ( 'LQR Controller ’,’PID Controllers ’);
grid on;

setoptions (f19, "MagVisible ", "off ")

figure;

bodemag( Loopslqr . Ti, Loopspid.Ti);

title ("Complement Sensitivity Bode Magnitude’);
legend ( 'LQR Controller ’,’PID Controller ’);

grid on;

figure;

f20=bodeplot (Loopslqr . Ti, Loopspid.Ti);

title ("Complement Sensitivity Bode Phase’);
legend ( 'LQR Controller’ ,’PID Controllers ) ;
grid on;

setoptions (f20, "MagVisible ", "off ") ;

figure;

f22=bodeplot (Loopslqr . Si, Loopspid. Si);
title (’Sensitivity Bode’);

legend ( 'LQR Controller’ ,’PID Controllers ) ;
grid on;

figure;
f21=bodeplot ( Loopslqr . Ti, Loopspid.Ti);
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a7 title ('Complement Sensitivity Bode’);
ass legend ( 'LQR Controller ’,"PID Controllers ”);
389 grid onj

1

2 clear all;

3 close all;

. fl=figure;

5

s tmc= %motor torque constant;
7

s for i=1:length (tmc)

9

10 %motor specs

n Km=tme (1)

12 kb:;

13 La:;

14 Ra:;

15 beta:;

16 J:;

17

18

v hl= tf(Km,[La,Ra]);

20 hl.u="e¢’; hl.y="tau’;

21

22 h2= tf(l,[J,beta]);

23 h2.u="tau’; h2.y="omega’;
24

ss h3= tf(kb,1);

26 h3.u="omega’'; h3.y="vb’;
27

s suml=sumblk ( "e=v—vb ") ;

29

30 dem=connect (ss(hl) ,h2,h3 suml, 'v' { tau’, omega’});
31

32 %

33 t=0:1:24;

34 u=t;

s [y,t]= lsim (dem,u,t);

36 %

37 Power (i ):y(24 1) y(24,2);
ss Power2(i)=(24 )*beta*((Km/(beta*Ra—l—Km*kb))A2) ; %Power in

watts
s Power (i)=Power2(i)=(1.341%x10" —3); %Power in hp
w0 deKm/(betaxRaHmxkb) ;
41
12 end

43
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44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

81
82
83
84
85
86
87
88

89

plot (tmc, Power) ;
hold on;

plot (tmc,Power, 'r ) ;

clear all;
close all;
fl=figure;

R=armature resistance;
for i=1:length (R)

Km=;
kb=;
La=;
Ra=R(1);
beta=;
J=;

hl= tf (Km,[La,Ra]) ;
hl.u="e¢’; hl.y="tau’;

h2= tf(1,[J,beta]);
h2.u="tau’; h2.y="omega’;

h3= tf(kb,1);

h3.u="omega’; h3.y="vb’;

suml=sumblk ( "e=v—vb ") ;

dem=connect (ss (hl) ,h2,h3 suml, 'v' { tau’, omega’});

Power2(i)=(24"2)xbetax((Km/(betaxRatm«kb) ) "2)

watts

Power (1 )=Power2 (i)*(1.341%x10" —=3); %Power in hp

end

%

% plot (tmc, Power) ;
% hold on;

plot (R, Power, 'r ") ;
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90
91
92
93
94
95
96
97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

135

%% DC motor bandwidth req

clear all;

close all;

fl=figure;

lineorder={'b", g,
r—." " '

' o .
)y O Y

tme=[0.01 0.05 0.08

f2=figure;
f3=figure;
fa=tfigure;
fh=figure;

for i=1:length (tmc)

Km=tme (1) ;
kb=0.0847;
La=0.64%(10"-3);
Ra=0.27:
beta=0.021;
J=0.00057892;

hl= tf (Km,[La,Ra]) ;

hl.u="e’; hl.y="tau’

h2= tf(1,[J,beta]);

71,7’767’71117’

'k—.7,’b—",'r—",

0.1 0.3 0.4 0.6 0.7 0.9 2 3 4]

h2 . u="tau’; h2.y="omega’;

h3= tf(kb,1);

h3.u="omega’; h3.y="vb’;

dem=connect (ss (hl) ,h2,h3 suml, 'v' { tau’, omega’})

figure (f1);

)

suml=sumblk ( "e=v—vb’

stepplot (dem, lineorder {i});

hold on;

figure (f2);

bodemag(dem, lineorder {i});

hold on;
grid on;
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136

137 bw(i)=bandwidth (dem(2,1));

138

1390 Power2(1i)=(24"2)xbetax*((Km/(betaxRatlmtkb)) "2) ; %Power in
watts

1o Power (1)=Power2(i)*(1.341%x10" —=3); %Power in hp

1 % deKm/ (betaxRaHmxkb) ;

142

143 figure(f4);

s pzmap (dem, lineorder {i});

s hold onl ;

146

ur S=stepinfo (dem) ;

s settime (1)=S(2).SettlingTime;

149

150

151 end

152 %

153 % plot (tmce, Power) ;

15 % hold on;

156 % plot (tme, Power, 'r7);
157 figure(f3);

155 plot (Power ,bw) ;

159 grid on

wo xlabel ("Power ") ;

61 ylabel ("Bandwidth ") ;
162

163 figure(f5);

e plot (tme, settime) ;

165

166 /00 DC motor + variable inertia plots
167

e clear all;

o close all;

170 flzfigure;

171

2 lineorder={'b’', g’ ,’v", "¢’ 'm’, ' k—" "b—" 'r—",k—" "b—.",
71__.7’7g_7};

173

1i7a tme=[0.01 0.02 0.04 0.06 0.0847 0.1 0.3 0.5 0.7 0.9 1 2 3 45
6];

s inertia=(10"—5)%[10 40 60 70 80 90];

176

177 f2:figure ;
178 f3:figure ;
179 f4:figure ;
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180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

212

213
214
215
216
217
218
219
220
221
222
223
224

225

for j=1:length (inertia)
for i=1:length (tmc)
Km=tme (i) ;
kb=0.0847;
La=0.64%(10"—3);
Ra=0.27;
beta=0.021;
J=inertia(j);
hl= tf(Km,[La,Ra]) ;
hl.u="¢’; hl.y="tau’;
h2= tf(1,[J,beta]);
h2.u="tau’; h2.y="omega’;
h3= tf(kb,1);
h3.u="omega’; h3.y="vb’;
suml=sumblk ( "e=v—vb ") ;
dem=connect (ss(hl) h2 h3 suml, v’ { tau’, omega’});
%o figure (f2);
% bodemag(dem, lineorder{i});
% hold on;
% grid on;
%
bw(j,i)=bandwidth (dem(2,1));
Power2(j,i)=(24"2)xbetax((Km/(beta*RatKm«kb))" 2) ; %
Power in watts
Power (j,i)=Power2(i)=*(1.341x10" —3); %Power in hp
end
figure (f2);
plot (Power2(j,:) ,bw(j,:) ,lineorder{j});
hold on;
grid on;
end
% plot (tmc, Power) ;
% hold on;
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226

227 % plot (tme, Power, 1) ;

228 % figure(f3);

220 % plot (Power bw) ;

230 0 grid on;

231 0 xlabel(’Power ) ;

22 % ylabel ("Bandwidth ) ;

233 /00 PURE TF analysis of the motor

234 %

235 clear all;

236 close all;

237 fl=figure;

238

239 % for k=1:40

240

211 tmce=;

22 for i=1:length (tmc)

243

2aa Ki=tme (1) ;

245

246 kb:;

247 La:;

248 Ra:;

249 beta:;

250 J:;

251

252 dem=tf (Km, [ JxLa J*RatbetaxLa betaxRatKmskb]) ;

253

50 figure (fl);

255 pzmap (dem) ;

256 hold on ;

257

258 deg(i)=dcgain (dem) ;

250 end

260

21 /% PURE TF analysis of the motor

262 %

263 clear all;

264 close all;

265

26 lineorder={"b’ g’ v’ ¢’ 'm’  k—." "b—""
r— , 7gv7 }’

267 tme=Vimotor torque constant;

268

260 fl=figure;

a0 f2=figure;

on f3=figure;
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272 f4:figure ;

273 f5:figure ;

274

a5 % for k=1:40

276

277

ars for i=1:length (tmc)

279

250 Km=tme (1) ;

281 kb:008477

282 La:O.64*(1OA —3);

283 Ra:O.27;

281 beta=0.021;

285 J=0.00057892;

286

257 dem=tf (Km, [ JxLa J*RatbetaxLa betaxRatKmskb]) ;
288 %

289 figure(fl
290 pzmap (dem
201 hold onj
292 C/B

293 figure(fQ);

201 bodemag (dem, lineorder{i});

205 hold on ;

296 C/B

27 figure (£3);

208 step (dem, lineorder{i});

200 hold onl ;

300 %

51 S=stepinfo (dem) ;

300 settime (i)=S.SettlingTime;

303

304 % bw(i)=bandwidth (dem) ;

305

s vin=; %input voltage

sor Ts=(Km/Ra)*vin; %Stall Torque
sos omegal=vin /kb; %No load speed
s00 powermax(i)=(Tsxomegal) /4;

s10 end

311

312 figure(f4);

si3 plot (tme, powermax) ;

314

ais figure (f5);

sis plot (tme, settime) ;

317

);
) ;

318
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a9 hold on

320

s21 Y00 2 dc motors comparison
322 close all;

323 clear all;

324

325

326 lineorder={'b’" g’ v’ "¢’ m  k— " "bh—" "r—" "k—" "bh—.",
-7 e

227 tme=[1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
12000];

328

329 flzfigure ;

330 f2:figure ;

331 f3:figure ;

332 f4:figure ;

333 f5:figure ;

334

335 0 for k=1:40

336

337

ss for i=1:length (tmc)

339

30 Km2=tme (i) ;

au kb2=;

342 La2:;

343 Ra2:;

314 beta?2 =,

345 JQI;

346

347

sas dem=tf (Km2, [ J2xLa2 J2xRa2+beta2xLa2 beta2xRa2+Km2xkb2]) ;
349 %

350 figure(fl);

351 pzmap (dem ) ;

352 hold on ;

353 C/B

354 figure(f2);

355 bodemag (dem, lineorder{i});
356 hold onl ;

357 %

358 figure(f3);

350 step (dem, lineorder{i});
ss0 hold on ;

361 %

sz S=stepinfo (dem) ;

33 settime(1)=S. SettlingTime;
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364

asss % bw(i)=bandwidth (dem) ;

366

ser vin=24; %input voltage

ss Ts=(Km2/Ra2)*(vin"2); %Stall Torque

50 omegal=vin /kb2; %No load speed

s0 powermax (1 )=(Ts*xomegal) /4;

sn Power2(i)=(24"2)xbeta2x((Km2/(beta2xRa2+Km2+kb2))"2) ; Y%Power
in watts

sz end

373

374 figure(f4);

a5 plot (tme, powermax) ;

a7 hold on ;

srr plot (tme, Power2 , ") ;

378

379 figure(f5);

ss0 plot (tme, settime) ;

381

ss2 Y00 2 dc motors comparison

3 close all;

ssa clear all;

385

sss lineorder={"b’",'g’ ", v’ ¢, 'm", k-~
e T

ssr tme=[0.01 0.05 0.1 0.2 0.3 0.5 1];

388

389 flzfigure ;

390 f2:figure ;

391 f3:figure ;

392 f4:figure ;

393 f5:figure 3

394

s05 % for k=1:40

396

sor for i=1:length (tmc)

398

399 KIIQZth( i ) ;

400 kb2:;

401 La2:;

402 Ra2:;

103 beta2=;

w01 J2=;

405

406
wr dem=tf (Km2, [ J2xLa2 J2xRa2+beta2xLa2 beta2*xRa2+Km2xkb2]) ;

408 %
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figure (f1);

pzmap (dem ) ;

hold on;

%

figure (f2);

bodemag(dem, lineorder {i});
hold on;

figure (£3);

step (dem, lineorder {i});
hold on;

%

S=stepinfo (dem) ;

settime (1)=S.SettlingTime;

% bw(i)=bandwidth (dem) ;

vin=24; %input voltage

Ts=(Km2/Ra2)x(vin"2); %Stall Torque

omegal=vin /kb2; %No load speed
powermax (i )=(Tsxomegal) /4;

Power2 (i)=(24"2)xbeta2 x((Km2/(beta2«Ra2Hm2xkb2)) "2)

in watts
end

figure (f4);

plot (tmc, powermax) ;
hold on;

plot (tmc,Power2 , 'v ) ;

figure (f5);
plot (tmc, settime) ;

%% ROVER
% Properties of the plant
clear all;
close all;

%Motor Specification
Km=)itorque constant ;
kb=Km;

La=lvarmature inductance
Ra=Yarmature resistance;

%Robot Specification

r=; %wheel diameter in Meters
m=; %Mass in Kg

L=; %Axis length in Meters
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16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61

[=m*(L"2) /6; %moment of inertia for a cube with width =
length = L
beta=; %Surface friction

hl= tf (Km,[La,Ra]) ;
hl.u="e¢’; hl.y="tau’;

h2= tf(1,[J,beta]);
h2 . u="tau’; h2.y="omega’;

h3= tf(kb,1);
h3.u="omega’; h3.y="vb’;

suml=sumblk ( "e=v—vb ") ;
dem=connect (ss (hl) ,h2 ,h3 suml, 'v' { tau’, omega’});

Power2=(24"2)xbeta x((Km/(beta*RaHmkb))"2) ; %Power in watts
powerrov=Power2%(1.341%x10" —3); %Power in hp

ppmrov=powerrov /m;

hl=tf (Km,[La Ral) ;
hl.u="el ; hl.y="taul ';

h2=tf (1,[(r"2)*m 0]);
h2 . u="x1"; h2.y="vhatl’;

h3=tf (L 2,[2%(r"2)«1 0]);
h3.u="x2"; h3.y="omegahatl’;

h7=tf (beta 1) ;
h7.u= ‘omegal "; h7.y="taufl ;

h8=tf (kb,1) ;
h8 . u= "omegal "; h8.y="vbl;

%sumblocks in channel 1

suml= sumblk ( "el=omegarl — vbl’);
sum2= sumblk ( "cl=taul—taufl ")
sum3= sumblk ( "xI=cl+tau2’);

sumd= sumblk ( "x2=cl—tau2 ") ;

(

sumb= sumblk ( "omegal = vhatl + omegahatl’);

%Transfer functions and their input output names in channel 2
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63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

83

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

106

h4=tf (Km, [La Ra]) ;
h4.u="e2"; hd.y="tau2’;

h6=tf (1,[(r"2)*m 0]);
h6.u="x4"; h6.y="vhat2’;

ho=tf (L"2,[2x(r"2)«1 0]);
h5.u="x3"; h5.y="omegahat2’;

ho=tf (beta ,1) ;
h9.u= ‘omega?2’; h9.y="tauf2’;

h10=tf (kb,1) ;
h10.u= "omega2’; h10.y="vb2";

e2=omegar2 — vb2’);
c2=tau2—tauf2’);

sum8= sumblk ( "x3=taul — ¢27);

sum9= sumblk ( "x4=c2 + taul ) ;

suml10= sumblk ( "omega2 = vhat2 — omegahat2’);

sumb6= sumblk
sum7= sumblk

(’
(
(
(/

Ml=connect (ss (hl) ,h2 h3, ss(h4) h5,h6,h7,h8 1h9 h10,suml,sum2,
sum3 , sum4 , sum5 , sum6 , sum7 ,sum8 , sum9 , suml10,{ "omegarl "’
omegar2’} { omegal ', "omega2’ });

ML. statename={"ial ', 'x2" 'x3" 'ia2’ ‘x5’ 'x6"};

MLminrover=minreal (ML, [] ,0) ;
MLminrover.u={ omegarln ', omegar2n’ };
MLminrover.y={ omegaln ' omega2n ’ };

BWrovol=bandwidth (MLminrover(1,1)); % Motor Bandwidth

%evaluating the response at 0 rad/sec
magOrov=bode (MLminrover ,0) ;
magratOrovol=magOrov (1,1)/magOrov (1,2);

%evaluating the response at OmegaBW
%

magbw=bode (MLmin, reqbw ) ;

magratbw (k)=magbw (1,1) /magbw(1,2);

S=stepinfo (MLminrover(1,1));
tsrovol=S.SettlingTime;

rob=feedback (MLminrover ,eye (2) ) ;

BWrovcl=bandwidth (rob (1,1)); % Motor Bandwidth
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107

ws %evaluating the response at 0 rad/sec

w9 magOrov=bode(rob ,0) ;

o magratOrovel=magOrov (1,1)/magOrov(1,2);

111

12 %evaluating the response at OmegaBW

113 %

s magbw=bode (MLmin, reqbw ) ;

s magratbw (k)=magbw (1 ,1) /magbw(1,2);

116

ur S=stepinfo (rob(1,1));

us tsrovel=S.SettlingTime;

119

120 %% Open Loop , POWER/MASS Plots

121 % Properties of the plant

122 clearvars —EXCEPT tsrovcl tsrovol magratOrovel magratOrovol
BWrovel BWrovol powerrov ppmrov MLminrover rob;

122 close all;

124

125 mc=/motor torque constant;

126 Mmass=/system Mass;

127 regbw=; %Required BW in rad/sec

128

120 lineorder={'b’, g’ ,'r’, ¢’ 'm’", k-~
T

130

131 YoPower

12 for i=1:length (mc)

133

134 szmc( i ) s

s kb=0.084T7;

136 La:O.64>|<(10A —3);

137 Ra:O.27;

138 beta:0.021;

1w J=0.00057892;

140

i1 dem=tf (Km, [ JxLa J+Rat+betaxLa betaxRaHmtkb]) ;

142

s Power2 (1) =(24"2)xbetax*((Km/(betaxRatHdmtkb)) "2) ; %Power in
watts

s Power (1)=Power2(i)*(1.341%x10" —=3); %Power in hp

s end

146

ur fh=figure;

us plot (mc, Power2) ;

o title (’Motor Power Vs. Torque Constant’);

10 xlabel ('Km (N.m/Amp) ") ;
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51 ylabel ( "Power (Watts) ') ;

152 grid minor;

153

e f6=figure;

155 f7=figure;

e f8=figure;

7 f9=figure;

158 fl():figure;

1o fll=figure;

wo fl2=figure;

w1 fl3=figure;

162 fld=figure;

163 f15:figure;

164

s % rover bode

166 % bodemag(MLminrover , "k—");
167 % h=findobj (gcf, type’, line ’);
s % set (h,’linewidth ' 1.1);
6o % hold on;

170

171

172 kzl;

173

174

15 for i=1:length (mass)

176

177 for j=1:length (mc)

178

179 KIIl:mC(J ) ;

180 kb:0.0847;

181 La:0.64>|<(10A—3);

182 Ra:O.27;

183 I':O.l;

184 m=mass (1) ;

185 L:O.5;

186 [=mx(L"2) /6; %moment of inertia for a cube with width
= length =L

187 beta=0.021;

188

189 pmr(k)=Power (j)/mass(i); %Computing Power to Mass
ratio

190 pmrl (i, j)=Power2(j)/mass(i);

191

192 %Transfer functions and their input output names in
chanel 1

193

194 hthf(KIIl, [La Ra]) X
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195 hl.u="el’; hl.y="taul ’;

196

197 h2=tf (1 ,[(r"2)xm 0]);

198 h2.u="x1"; h2.y="vhatl’;

199

200 h3:tf(LA2,[2*(I‘A2)*I O]),

201 h3.u="x2"; h3.y="omegahatl’;

202

203 h7=tf (beta 1) ;

204 h7.u= ‘omegal "; h7.y="taufl ’;

205

206 h8:tf(kb,1) 3

207 h8 .u= "omegal "; h8.y="vbl";

208

209 %sumblocks in channel 1

210 suml= sumblk ( "el=omegarl — vbl");

211 sum2= sumblk ( "cl=taul—taufl ");

212 sum3= sumblk ( "xl=cl+tau2’);

213 sumd= sumblk ( 'x2=cl—tau2’);

214 sumb= sumblk ( "omegal = vhatl + omegahatl’);

215

216

217 %Transfer functions and their input output names in
channel 2

218

219 h4=tf (KIIl, [La Ra]) X

220 h4.u="e2"; hd.y="tau2’;

221

222 h6:tf(1,[(1”2)*m O]),

223 h6.u="x4"; h6.y="vhat2’;

224

225 h5:tf(LA2,[2>l<(rA2)*I O])7

226 h5.u="x3"; hb.y="omegahat2’;

227

228 h9:tf(beta ,1) X

229 h9.u= ‘omega2’; h9.y="tauf2 ;

230

231 hl():tf(kb,l) ;

232 h10.u= "omega2 ' ; hl1l0.y="vb2’;

233

234

235 %sumblocks in channel 1

236 sumb= sumblk ( "e2=omegar2 — vb2');

237 sum7= sumblk ( "c2=tau2—tauf2 ’);

238 sum8= sumblk ( "x3=taul — c¢27);

239 sum9= sumblk ( "x4=c2 + taul’);

240 suml10= sumblk ( "omega2 = vhat2 — omegahat2’);
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242

243

244
245
246
247
248
249
250
251
252
253
254
255

256

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

274

276
277
278
279
280
281
282
283
284

285

end

%connect models

Ml=connect (ss (hl) ,h2 h3, ss(h4) h5,h6,h7 h8 h9 hl0,
suml ,sum?2 , sum3 ,sum4 , sumb ,sum6 , sum?7 , sum8 , sum9 , sum10
,{ "omegarl’  ’omegar2’} { omegal’, ’omega2’});

ML. statename={"ial ', 'x2" 'x3" "ia2 ' 'x57 'x06"};

Y%Minimum realization Plant

MLmin=minreal (ML, [] ,0) ;
MLmin.u={ omegarln ’, "omegar2n ’ };
) =) )
MLmin.y={ omegaln ', "omega2n ' }:
) =) )

%3dB bandwidth

BW(k)=bandwidth (MLmin(1,1))
L,

BWI1 (i, j)=bandwidth (MLmin(1,1))

Y%Max Transient frequency
[mag, phase ,w]=bode (MLmin(1,2));
Y, T]=max(mag) ;

maxoffdiagmag (i,j)=Y;
maxoffdiagfreq(i,j)=w(I);

%Transient Mag / DC gain

TMDC(1i , j)=abs(Y/dcgain (MLmin(1,2)));
%evaluating the response at 0 rad/sec
magO=bode (MLmin,0) ;

magrat0 (k)=mag0(1,1)/mag0(1,2);

%evaluating the response at OmegaBW

magbw=bode (MLmin, reqbw ) ;
magratbw (k)=magbw (1,1) /magbw(1,2);

S=stepinfo (MLmin(1,1));
ts(k)=S.SettlingTime;

k=k+1;

figure (6);
plot (mc,BWI(i,:) ,lineorder{i});
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286 hold on

287

288 figure(f?);

289 plot (mc, maxoffdiagmag (i ,:) ,lineorder{i});
290 hold onl ;

291

292 figure(f8);

293 plot (mc, TMDC(1i ,:) ,lineorder{i});

294 hold on ;

295

296 figure(f9);

207 plot (mc, maxoffdiagfreq(i,:) ,lineorder{i});
298 hold on

299

300 figure(fl());

301 plot (Power2 BWI(i,:) ,lineorder{i});

302 hold onl ;

303

304 figure(fll);

305 plot (Power2 /TMDC(i ,:) ,lineorder{i});
306 hold on ;

307

308 figure(f12);

309 plot (Power2 ,maxoffdiagfreq(i,:) ,lineorder{i});
310 hold on ;

311

312 figure(fl?));

513 plot (pmrl(i,:) BWI(i,:) ,lineorder{i});
314 hold onl ;

315

316 figure(f15);

317 plot (BWIL(i,:) ,pmrl(i,:),lineorder{i});
318 hold onl ;

319

320 figure(f14);

521 plot (pmrl(i,:) ,IMDC(i,:) ,lineorder{i});
322 hold on ;

323

324

325

326 end

327

328

320 leg=strcat (tmc, testr);

330
331 thQI{’ s BW= ,}§
32 testr2=num?2str (BW) ;
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333
334
335
336
337
338
339
340
341
342
343
344
345
346

347

348

349

350

351

352
353
354
355
356
357
358
359
360

361

362
363
364
365
366
367

368

369
370
371
372
373

374

leg2=strcat (tmc2, tcstr2);

tme3={", Ts= "};

tcstr3=num2str(ts ') ;
leg3=strcat (tme3, tcstr3 ) ;

legen=strcat (leg ,leg2);

lege=strtrim (cellstr (legen));

figure (f5);
legend ( "Rover ' ,lege{:});

massstr={"Mass(Kg)= ’}; %adding Mass= to begining of each

torque constant legend
masslstr=num2str (mass’) ;
mass2str=strcat (massstr , masslstr);
line ([0 max(pmr) ] ,[reqbw reqbw]|, color’
% Required Bandwidth Line

figure (16) ;
ylabel (’3dB Bandwidth(rad/second)’);
xlabel ('Km (N.m/Amp) ") ;

title ( '3dB Bandwidth vs torque constant’);

legend (num2str (mass’) ) ;
grid minor;

figure (f7);

, v’ LineStyle’

7777)
9

title (7Off Diagonal Peak bode magnitude vs torque constant’)

grié minor ;
xlabel ('Km (N.m/Amp) ) ;

ylabel ( 'Maximum Off diagonal transient value’);

legend (num2str (mass’) ) ;

figure (£8);

title ("Off Diagonal Transient Peak Magnitude / DC gain Vs.

torque constant’);
grid minor;
xlabel ("Km (N.m/Amp) ") ;

ylabel (*Transient Peak Magnitude / DC gain’);

legend (num2str (mass’) ) ;

figure (f9);
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375

376
377
378
379
380
381
382
383
384
385
386
387
388

389

390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

419

title (7Off Diagonal Peak Transient Frequency vs Torque
constant ’);

grid minor ;

xlabel ('Km (N.m/Amp) ") ;

ylabel (’Peak Transient Frequency (rad/sec)’);

legend (num2str (mass’) ) ;

figure (f10);

ylabel (’3dB Bandwidth(rad/second)’);
xlabel ("Power (Watts) ') ;

title (’3dB Bandwidth vs Power’);
legend (num2str (mass’) ) ;

grid minor

figure (f11);

title (7 (Off Diagonal Transient Peak Magnitude / DC gain) Vs.
Power ) ;

grid minor;

xlabel ("Power (Watts) ") ;

ylabel (*Transient Peak Magnitude / DC gain’);

legend (num2str (mass’) ) ;

figure (f12);

title (7Off Diagonal Peak Transient Frequency vs Power’);
grid minor

xlabel ("Power (Watts) ") ;

ylabel (’Peak Transient Frequency (rad/sec)’);

legend (num2str (mass’) ) ;

figure (f13);

grid minor ;

ylabel (’3dB Bandwidth(rad/second)’);
xlabel ( "Power /Mass (Watts /Kg) ") ;

title (’3dB Bandwidth vs Power/Mass’);
legend (num2str (mass’) ) ;

figure (f13);

ylabel (’3dB Bandwidth(rad/second)’);
xlabel ( "Power /Mass(Watts /Kg) ") ;

title (’3dB Bandwidth vs Power/Mass’);
legend (num2str (mass’) ) ;

grid minor ;

figure (f15);

xlabel (’3dB Bandwidth(rad/second) ”);
ylabel ( "Power /Mass( Watts /Kg) ") ;

title ( "Power /Mass Vs. 3dB Bandwidth’);
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422

423
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426
427
428

429

430
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432
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435

436
437
438
439
440
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443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

461

legend (num2str (mass’) ) ;

grid minor ;

xlim ([0 15]);

line ([0 max(Pmrl(1,:))],[reqbw reqbw], color ' 'r’ 'LineStyle
", '—7) % Required Bandwidth Line

figure (f14);

ylabel (7Off Diagonal Transient Peak Magnitude / DC gain’);

xlabel ( "Power /Mass( Watts /Kg) ") ;

title (7 (Off Diagonal Transient Peak Magnitude / DC gain) Vs.
Power /Mass ) ;

legend (num2str (mass’) ) ;

grid minor

%% CL(P), Variable Controller gain, Variable Power, OL VS CL

% Properties of the plant

clearvars —EXCEPT tsrovcl tsrovol magratOrovel magratOrovol
BWrovel BWrovol powerrov ppmrov MLminrover rob;

close all;

mc=/imotor torque constant;
mass=/system Mass;
reqgbw=; %Required BW in rad/sec

lineorder={"'b", g’ , v’ ¢’ 'm", k=", "b—", r—" "k—","b—."
7r_-7’7g_7};

gain=proportional gains;

for i=1:length (mc)

Km=me (i) ;

kb=0.0847;

La=0.64%(10"—3);

Ra=0.27;

beta=0.021;

J=0.00057892;

dem=tf (Km, [ JxLa JxRatbetaxLa betaxRatKmxkb]) :

Power2(i)=(24"2)xbeta*((Km/(beta*RatHm«kb))"2) ; %Power in

watts
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462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

487

488
489
490
491

492

493
494
495
496
497
498
499
500
501
502
503
504
505

506

Power (i)=Power2(i)=*(1.341%x10" —=3); %Power in hp
end

fo=figure;
fr=figure;
f8=figure;

for i=1:length (gain)

Cl=tf(gain (i) ,1);
Cc2=C1;

for j=1:length (mc)

Kneme () ;

kb=0.0847;

La=0.64%(10"—3);

Ra=0.27:

r=0.1;

m=mass ;

L=0.5;

[=mx(L"2) /6; %moment of inertia for a cube with
width = length = L

beta=0.021;

pmr (j)=Power2(j) /m;

%Transfer functions and their input output names
in chanel 1

hl=tf (Km, [La Ra]) ;
hl.u="el ’; hl.y="taul ';

h2=tf (1 ,[(r"2)+m 0]);
h2 . u="x1"; h2.y="vhatl’;

h3=tf (L 2,[2%(r"2)x1 0]);
h3.u="x2"; h3.y="omegahatl’;

h7=tf (beta 1) ;
h7.u= ‘omegal ; h7.y="taufl ;

h8=tf (kb,1) ;
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508
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533
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536
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540
541
542

543

544
545
546
547
548

549

h8 .u= ‘omegal "; h8.y="vbl";

%sumblocks in channel 1

suml= sumblk ( "el=omegarl — vbl’);

sum2= sumblk ( "cl=taul—taufl ")

sum3= sumblk ( "xI=cl+tau2’);

sumd= sumblk ( "x2=cl—tau2’);

sumb= sumblk ( "omegal = vhatl + omegahatl’);

%Transfer functions and their input output names
in channel 2

h4=tf (Km, [La Ra]);
h4.u="e2"; hd.y="tau2’;

h6=tf (1,[(r"2)+m 0]);
h6.u="x4"; h6.y="vhat2’;

ho=tf (L2 ,[2x(r"2)x1 0]);
h5.u="x3"; h5.y="omegahat2’;

h9=tf (beta,1) ;
h9.u= ‘omega2’; h9.y="tauf2 ;

h10=tf (kb,1) ;
h10.u= "omega2’'; hl10.y="vb2’;

%sumblocks in channel 1

sumb= sumblk ( "e2=omegar2 — vbh2’);

sum7= sumblk ( "c2=tau2—tauf2 );

sum8= sumblk ( 'x3=taul — c¢27);

sum9= sumblk ( "x4=c2 + taul ’);

sum10= sumblk ( "omega2 = vhat2 — omegahat2’);

%connect models

Ml=connect (ss(hl) ,h2 h3,ss(h4) h5 h6,h7,h8 h9 h10
;suml , sum2 , sum3 , sum4 , sumb , sum6 , sum7 , sum8 , sum9 ,
suml0,{ "omegarl’  'omegar2’} { 'omegal ', ’omega2’
1)

ML. statename={"ial ', 'x2" 'x3", "ia2 [ 'x57 "x6"};
MLmin=minreal (ML, [] ,0) ;

MLmin.u={"omegarln’, "omegar2n’ };
MLmin. y={"omegaln’, ’omega2n ’ };
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588
589
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591

592
593

594

Kp=append (C1,C2) ;
FF=MLminxKp;
robcl=feedback (FF,eye (2));

%3dB bandwidth
BWOL( j )=bandwidth (MLmin(1,1));
BWCL(1i ,j )=bandwidth (robcl (1,1));

end

figure (6);
plot (mc,BWCL(i ,:) ,lineorder{i});
hold on;

figure (f7);
plot (Power2 ,BWCL(i ,:) ,lineorder{i});
hold on;

figure (£8);
plot (BWCL(i ,:) ,pmr, lineorder{i});
hold on;

end

figure (6);

plot (mc,BWOL(:) ,'b");

ylabel ( '3dB Bandwidth(rad/second) ’);

xlabel ( 'Km’);

title (’3dB Bandwidth vs Torque constant , Variable
Proportional Controller’);

grid minor;

tme={ 'CL, kp= "};

leg=strcat (tmc,num2str (gain ') ) ;

legend (leg{:}, "Open Loop’);

figure (f7);

plot (Power2 BWOL(:) ,'b");

ylabel (’3dB Bandwidth(rad/second) ’);

xlabel ("Power (watts) 7);

title (’3dB Bandwidth vs Power, Variable Proportional
Controller ) ;

grid minor;

tme={ 'CL, kp= "};

leg=strcat (tmc,num2str (gain ') ) ;
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611
612
613
614
615
616

617

618
619
620
621
622
623
624
625
626
627
628
629

630

631
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637

legend (leg{:}, Open Loop’);

figure (£8);

plot (BWOL(:) ,pmr, 'b");

xlabel (’3dB Bandwidth(rad/second) ’);

ylabel ( "Power /Mass(watts /Kg) ") ;

title (’3dB Bandwidth vs Power/Mass Ratio, Variable
Proportional Controller ’);

grid minor;

tme={ 'CL, kp= "};

leg=strcat (tmc,num2str (gain ') ) ;

legend (leg{:}, "Open Loop’);

%% CL(PI), Variable Controller gain, Variable Power, OL VS CL

% Properties of the plant

clearvars —EXCEPT tsrovcl tsrovol magratOrovel magratOrovol
BWrovel BWrovol powerrov ppmrov MLminrover rob;

close all;

mc=omotor torque constant;

mass=/system Mass;

reqgbw=; %Required BW in rad/sec

lineorder={"'b", g’ ,'r’ ¢’ 'm", k-~
71“7. ) , 7gv7};

pgain=proportional gain;

igain=ftintegral gain;

for i=1:length (mc)
Km=me (1) ;
kb=0.0847;
La=0.64%(10"-3);
Ra=0.27:
beta=0.021;
J=0.00057892;

dem=tf (Km, [ JxLa JxRatbetaxLa betaxRatKmxkb]) :

Power2(i)=(24"2)xbeta*((Km/(beta*RatHm«kb))"2) ; %Power in
watts

Power (1 )=Power2 (i)*(1.341%x10" —=3); %Power in hp

end

fd=figure;
fh=figure;
fo=figure;
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676
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678
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680
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682

fr=tigure;
f8=figure;
fo9=figure;

for i=1:length (pgain)

Cl=pid (pgain(i) ,0.1);

C2=C1;

for j=1:length (mc)

Kme=me () ;
kb=0.0847;

La=0.64%(10"—3);

Ra=0.27;
r=0.1;
m=mass ;
L=0.5;

[=mx(L"2) /6; %moment of inertia for a cube with
width = length = L

beta=0.021;

pmr( j )=Power2(j)/mass;

%Transfer functions and their input output names
in chanel 1

hl=tf (Km, [La Ra]) ;
hl.u="el ’; hl.y="taul ';

h2=tf (1 ,[(r"2)+m 0]);
h2 . u="x1"; h2.y="vhatl’;

h3=tf (L 2,[2%(r"2)x1 0]);
h3.u="x2"; h3.y="omegahatl’;

h7=tf (beta ,1)

I

h7.u= ‘omegal ; h7.y="taufl ;

h8=tf (kb 1) ;

h8 .u= ‘omegal "; h8.y="vbl

%sumblocks in
suml= sumblk (
sum2= sumblk (
sum3= sumblk (

N

N

N

channel 1
el=omegarl — vbl’);
cl=taul—taufl ) ;
xl=cl+tau2’);
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720
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722
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724

725

sumd= sumblk ( 'x2=cl—tau2’);
sumb= sumblk ( "omegal = vhatl + omegahatl’);

%Transfer functions and their input output names
in channel 2

h4=tf (Km, [La Ra]);
h4.u="e2"; hd.y="tau2’;

h6=tf (1,[(r"2)+m 0]);
h6.u="x4"; h6.y="vhat2’;

ho=tf (L"2,[2x(r"2)x1 0]);
h5.u="x3"; h5.y="omegahat2’;

h9=tf (beta,1) ;
h9.u= ‘omega?2’; h9.y="tauf2’;

h10=tf (kb,1) ;
h10.u= "omega2’; h10.y="vb2;

%sumblocks in channel 1

sumb= sumblk ( "e2=omegar2 — vb2');

sum7= sumblk ( "c2=tau2—tauf2 ’);

sum8= sumblk ( 'x3=taul — c¢27);

sum9= sumblk ( 'x4=c2 + taul ’);

suml10= sumblk ( "omega2 = vhat2 — omegahat2’);

%connect models

Ml=connect (ss(hl) ,h2 h3,ss(h4) h5 h6,h7,h8 h9 h10
;suml , sum?2 , sum3 , sum4 , sumb , sum6 , sum7 , sum8 , sum9 ,
suml0,{ "omegarl’  'omegar2’} { 'omegal ', ’omega2’
1)

ML. statename={"ial ", 'x2" 'x3", "ia2 [ 'x57 "x6};

YMinimum realization Plant

MLmin=minreal (ML, [] ,0) ;

MLmin.u={"omegarln’, "omegar2n’};

MLmin. y={ "omegaln ', "omega2n ' };

YMinimum Realization Plots

%StepPlot

% figure (f3);
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%

%

end

% f3=stepplot (MLmin) ;

% grid on;

% title (’Step response of the 2 Motor channels
Robot’’s dynamics included ") ;

%Singular Value plot

%o figure (f4);

% sigmaplot (MLmin, sopt , lineorder {k});

% setoptions (f4,’FreqUnits’, Hz") ;

% grid ;

% title (’Singular Values of the 2 Motor

channels ;, Robot’’s dynamics included ’) ;
% hold all;
%
% [Aol,Bol, Col,Dol]=ssdata (MLmin) ;

% figure (f5);

% bodemag (MLmin, lineorder {k});

% grid on;

% title (’Frequency Response of the Open
Loop System’) ;

% hold all;

Kp=append (C1,C2) ;
FF=MLminxKp;
robcl=feedback (FF, eye (2));

%3dB bandwidth
BWOL( j )=bandwidth (MLmin(1,1));
BWCL(i ,j)=bandwidth(robcl (1,1));

figure (f4);
plot (Power2 . BWCL(i ,:) ,lineorder{i});
hold on;

figure (f5);
plot (BWCL(i ,:) ,pmr, lineorder{i});
hold on;

figure (f6);
plot (mc,BWCL(i ,:) ,lineorder{i});
hold on;
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end

figure (f4);

plot (Power2 BWOL(:) ,'b");

ylabel (’3dB Bandwidth(rad/second) ") ;

xlabel ("Power (watts) ") ;

title (’3dB Bandwidth vs Power, PI controller W/ Variable
Proportional Gain’);

grid minor;

tme={ 'CL, kp= "};

leg=strcat (tmc, num2str (pgain’) ) ;

legend (leg{:}, "Open Loop’);

figure (f5);

plot (BWOL(:) ,pmr, 'b");

xlabel (’3dB Bandwidth(rad/second)’);

ylabel ( "Power /Mass(watts /Kg) ") ;

title (’3dB Bandwidth vs Power/Mass Ratio,PI controller W/
Variable Proportional Gain’);

grid minor;

tme={ 'CL, kp= "};

leg=strcat (tmc,num2str (pgain’) ) ;

legend (leg{:}, Open Loop’);

figure (6);

plot (mc,BWOL(:) ,'b");

ylabel (’3dB Bandwidth(rad/second) ’);

xlabel ( 'Km’);

title (’3dB Bandwidth vs Torque constant ,PI controller W/
Variable Proportional Gain’);

grid minor;

tme={ 'CL, kp= "};

leg=strcat (tmc, num2str (pgain’) ) ;

legend (leg{:}, "Open Loop’);

for i=1:length(igain)
Cl=pid (0.1 ,igain(i));

C2=C1;

for j=1:length (mc)

Km=me () ;
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814
815
816
817
818
819

820

821
822
823

824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848

849

850
851
852
853
854
855
856

857

kb=0.0847;
La=0.64%(10"—3);
Ra=0.27;

r=0.1;

m=mass ;

L=0.5;

[=mx(L"2) /6; %moment of inertia for a cube with

width = length = L
beta=0.021;

%Transfer functions and their
in chanel 1

hl=tf (Km, [ La Ra]);
hl.u="el’; hl.y="taul ’;

h2=tf (1 ,[(r"2)*«m 0]);
h2 . u="x1"; h2.y="vhatl’;

h3=tf (L 2,[2x(r"2)x1 0]);
h3.u="x2"; h3.y="omegahatl’;

h7=tf (beta 1) ;
h7.u= ‘omegal "; h7.y="taufl ';

h8=tf (kb,1) ;
h8.u= "omegal ; h8.y="vbl ;

%sumblocks in channel 1
suml= sumblk (’

sum2= sumblk ( "cl=taul—taufl ");
sum3= sumblk ( 'xl=cl+tau2’);
sumd= sumblk ( "x2=cl—tau2’);
sumb= sumblk ("’

%Transfer functions and their
in channel 2

h4=tf (Km, [La Ra]) ;
h4.u="e2"; hd.y="tau2’;

h6=tf (1,[(r"2)+m 0]);
h6.u="x4"; h6.y="vhat2’;

ho=tf (L"2,[2%(r"2)x1 0]);

107

input output names

el=omegarl — vbl’);

omegal = vhatl 4+ omegahatl’);

input output names



858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

875

876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900

901

%

h5.u="x3"; h5.y="omegahat2’;

h9=tf (beta ,1) ;
h9.u= ‘omega2’; h9.y="tauf2

h10=tf (kb,1) ;
h10.u= "omega2’; h10.y="vb2;

%sumblocks in channel 1

sum6b= sumblk ( "e2=omegar2 — vbh2’);

sum7= sumblk ( "c2=tau2—tauf2 ")

sum8= sumblk ( "x3=taul — c27);

sum9= sumblk ( "x4=c2 + taul );

sum10= sumblk ( "omega2 = vhat2 — omegahat2’);

%connect models

MI=connect (ss(hl) ,h2,h3,ss(h4) ,h5,h6,h7, h8, h9, h10
;suml , sum?2 , sum3 , sum4 , sumb , sum6 , sum7 ,sum8 , sum9 ,
suml0,{ ’omegarl’, omegar2’} { omegal ', ’omega2’
1)

ML. statename={"ial ', 'x27 'x3" "ia2’ x5’ 'x06};

MLmin=minreal (ML, [] ,0) ;
MLmin.u={"omegarln’, "omegar2n ' };
MLmin. y={"omegaln’, "omega2n ’ };

Kp=append (C1,C2) ;
FF=MLmin«Kp
robcl=feedback (FF, eye (2));

%3dB bandwidth
BWOL( j )=bandwidth (MLmin(1,1));
BWCL(1i , j)=bandwidth (robecl(1,1));

end

figure (f7);
plot (mc,BWCL(i ,:) ,lineorder{i});
hold on;

figure (£8);

plot (Power2 . BWCL(i ,:) ,lineorder{i});
hold on;

figure (f9);

plot (BWCL(i ,:) ,pmr, lineorder{i});
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902 hOld on ;

903

904

905 end

906

907 figure (f7);

908 plot (mc,BWOL(:) ,'b");

909 ylabel (’3dB Bandwidth(rad/second) ’);

910 xlabel ( 'Km’);

911 title (’3dB Bandwidth vs Torque constant ,PI controller W/
Variable Integral Gain’);

912 grid minor;

913 tme={ 'CL, ki= "};

914 leg=strcat (tmc,num2str(igain ’) ) ;

915 legend (leg{:}, "Open Loop’);

916

017 figure (£8);

018 plot (Power2 BWOL(:) ,'b");

919 ylabel (’3dB Bandwidth(rad/second) ’);

920 xlabel ("Power (watts) ) ;

921 title (’3dB Bandwidth vs Power, PI controller W/ Variable
Integral Gain’);

922 grid minor;

923 tme={ 'CL, ki= "};

924 leg=strcat (tmc,num2str(pgain’) ) ;

925 legend (leg{:}, "Open Loop’);

926

927 figure (f9);

928 plot (BWOL(:) ,pmr, 'b");

929 xlabel (’3dB Bandwidth(rad/second) ’);

930 ylabel ( "Power /Mass(watts /Kg) ") ;

931 title (’3dB Bandwidth vs Power/Mass Ratio,PI controller W/

Variable Integral Gain’);

932 grid minor;

933 ’CIIIC:{’CL7 ki= 7};

034 leg=strcat (tmc,num2str (pgain’) ) ;

935 legend (leg{:}, "Open Loop’);

936

937

938

o0 /00 CL, Sensitivity (P)

o0 % Properties of the plant

941

o2 clearvars —EXCEPT tsrovcl tsrovol magratOrovel magratOrovol
BWrovel BWrovol powerrov ppmrov MLminrover rob;

az close all;

944
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945
946
947
948

949

950

951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972

973
974
975

976

977
978
979
980
981
982
983
984
985
986

987

mc=/motor torque constant;
mass=/system Mass;
reqgbw=; %Required BW in rad/sec

llneorder {b gl r7 e, m’ ) k=7 b—7 ) 'r—7 ) 'k—" ) "h—
'r—. },

lineorder:{’b gl r7 e, m’ ) Tk—7 ' b—7  'r—7 ) 'k—" ) "b—
7r7.7,7gv7};

f2=figure;

f3=figure;

fa=tfigure;

fh=figure;

for g=1:length (gain)

Cl=tf(gain(g),1);
C2=tf(gain(g) ,1);

Km=mc;
kb=0.0847;
La=0.64%(10"—3);
Ra=0.27;

r=0.1;

m=mass ;

L=0.5;

[=mx(L"2) /6; %moment of inertia for a cube with

width = length = L
beta=0.021;

%Transfer functions and their
in chanel 1

hl=tf (Km, [ La Ra]);
hl.u="el’; hl.y="taul ’;

h2=tf (1,[(r"2)sm 0]);
h2.u= Xl ; h2.y="vhatl’;

h3=tf (L 2,[2x(r"2)x1 0]);
h3.u="x2"; h3.y="omegahatl’;

h7=tf (beta,1);
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input output names



988
989
990
991
992
993
994
995
996
997
998
999
1000

1001

1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026

1027

1028
1029

1030

h7.u= ‘omegal "; h7.y="taufl ';

h8=tf (kb,1) ;
h8.u= ‘omegal "; h8.y="vbl ";

%sumblocks in channel 1

suml= sumblk ( "el=omegarl — vbl");

sum2= sumblk ( "cl=taul—taufl ");

sum3= sumblk ( "xl=cl+tau2 ") ;

sumd= sumblk ( "x2=cl—tau2’);

sumb= sumblk ( "omegal = vhatl + omegahatl’);

%Transfer functions and their input output names
in channel 2

h4=tf (Km, [La Ra]) ;
h4.u="e2"; h4d.y="tau2’;

h6=tf (1 ,[(r"2)+m 0]);
h6.u="x4"; h6.y="vhat2’;

ho=tf (L"2,[2%(r"2)x1 0]);
h5.u="x3"; h5.y="omegahat2’;

h9=tf (beta ,1) ;
h9.u= ‘omega2’; h9.y="tauf2

h10=tf (kb,1) ;
h10.u= "omega2’; h10.y="vb2;

%sumblocks in channel 1

sum6b= sumblk ( "e2=omegar2 — vbh2’);

sum7= sumblk ( "c2=tau2—tauf2 "),

sum8= sumblk ( "x3=taul — c27);

sum9= sumblk ( "x4=c2 + taul );

sum10= sumblk ( "omega2 = vhat2 — omegahat2’);

%connect models

Ml=connect (ss (hl) ,h2 ,h3,ss(h4) ,h5,h6,h7 h8,h9, h10
;suml , sum?2, sum3 , sum4 , sumb , sum6 , sum7 ,sum8 , sum9 ,
suml0,{ "omegarl’, 'omegar2’} { 'omegal ', 'omega2’

P

ML. statename={"ial ', 'x27 'x3" "ia2’ x5’ 'x06};

MLmin=minreal (ML, [] ,0) ;
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1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041

1042

1043
1044
1045
1046
1047

1048

1049
1050
1051
1052
1053

1054

1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073

1074

end

MLmin. u={ "omegarln ', "omegar2n ' };
MLmin. y={ "omegaln ', "omega2n ' };

Kp=append (C1,C2) ;
FF=MLminxKp
robcl=feedback (FF, eye (2));

Loopspid=loopsens (FF,eye (2));

figure (f2);

bodemag ( Loopspid . Si, lineorder{g});

title (' Sensitivity Bode Magnitude with P
controller , variable K1, fixed K27);

grid minor ;

hold all;

figure (£3);

bodemag( Loopspid.Ti, lineorder{g});

title ("Complement Sensitivity Bode Magnitude with
P controller ; variable K1, fixed K27);

grid minor ;

hold all;

figure (f5)
bodemag(robcl | lineorder{g});
title ('Bode magnitude of the close loops system’)

grié minor ;
hold all;

%3dB bandwidth
BWCL( g)=bandwidth (robcl (1,1));

tme={ Kp= "};
leg=strcat (tmc,num2str (gain ') ) ;
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1075
1076
1077
1078
1079
1080
1081
1082
1083

1084

1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096

1097

1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118

1119

figure (f4);
plot (gain ,BWCL) ;
title (’3dB Bandwidth Vs.

ylabel ( ’3dB Bandwidth ) ;

Controller gain’);
xlabel ("Controller Gain’);

%% CL, Sensitivity (P VS PI)
% Properties of the plant

clearvars —EXCEPT tsrovcl tsrovol magratOrovel magratOrovol
BWrovel BWrovol powerrov ppmrov MLminrover rob;

close all;

mc=;
mass=;

gain=;

Km=mc;

kb=;

La=;

Ra=;

r=;

m=mass ;

L=;

I=m+(L"2) /6; Y%moment of

length = L
beta=;
%Transfer functions and

hl=tf (Km,[La Ra]) ;
hl.u="el ; hl.y="taul ';

h2=tf (1,[(r"2)*m 0]);
h2 . u="x1"; h2.y="vhatl’;

h3=tf(L"2,[2x(r"2)«I 0])

inertia for

their

I

h3.u="x2"; h3.y="omegahatl’;

h7=tf (beta 1) ;

h7.u= ‘omegal "; h7.y="taufl ;

h8=tf (kb,1) ;

h8 . u= ‘omegal "; h8.y="vbl

Y%sumblocks in channel 1
suml= sumblk ("~

sum3= sumblk ( "xl=cl+tau2 ) ;

input output names

el=omegarl — vbl’);
sum2= sumblk ( "cl=taul—taufl ")

113

in

a cube with width =

chanel 1



n20 sumd= sumblk ( 'x2=cl—tau2’);

n2i sumb= sumblk ( "omegal = vhatl + omegahatl’);
1122

1123

124 %Transfer functions and their input output names in channel 2
1125

nz2s hd=tf (KIIl, [La Ra] ) 3

2z hd.u="e2"; hd.y="tau2’;

1128

1129 h6:tf(1,[(1“2)*m 0]),

uso h6.u="x4"; h6.y="vhat2’;

1131

1132 h5:tf(LA2,[2>l<(1"A2)*I O]),

uss hb.u="x3"; hH.y="omegahat2’;

1134

uss h9=tf (beta ,1) X

uze h9.u= ‘omega2’'; h9.y="tauf2’;

1137

1138 hl():tf(kb,l) ;

s h10.u= "omega2’; h10.y="vb2";

1140

1141

a2 %sumblocks in channel 1

s sumb= sumblk ( "e2=omegar2 — vbh2');
nas sum7= sumblk ( "c¢2=tau2—tauf2 ’);

s sum8= sumblk ( 'x3=taul — c¢27);

s sum9= sumblk ( "x4=c2 + taul ');

sz suml10= sumblk ( 'omega2 = vhat2 — omegahat2’);
1148

a9 %connect models

nso Ml=connect (ss(hl) ,h2 h3,ss(h4) h5, h6,h7, h8 h9 hl0,suml,sum?2,
sum3, sum4 , sumb , sum6 , sum?7 , sum8 , sum9,suml0,{ "omegarl "’
omegar2’} { omegal ’, "omega2’});

ust ML. statename={"ial ' 'x2’ 'x3' 'ia2’ ‘x5, 'x6"};

1152

uss Minimum realization Plant

1154

nss MLmin=minreal (ML, [] ,0) ;

s MLmin.u={"omegarln’ ~omegar2n’};

s MLmin. y={"omegaln’ | "omega2n ' };

1158

1159

neo lineorder={"b’ g’ v, ¢’ ,'m" |, 'k}

ner lineorder2={"b—",'¢g¢—" ", 'r— ", c— " ‘m— ", k—"};

1162

1163

1164 f2:figure ;
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1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193

1194

1195
1196
1197
1198
1199
1200
1201

1202

1203
1204
1205
1206
1207
1208

1209

f3=figure;
fa=tfigure;
fh=figure;

for g=1:length (gain)

Cl=tf(gain(g),1);
C2=C1;

CPIl=tf (gain(g) ,[1 0]);
CPI2=CPI1 ;

Kp=append (C1,C2) ;
FF=MLmin«Kp;
robcl=feedback (FF, eye (2));

Loopspid=loopsens (FF,eye (2));

Kpi=append (CPI1,CPI2) ;
FFpi=MLminx Kpi;
robclpi=feedback (FFpi,eye(2));

Loopspi=loopsens (FFpi,eye(2));

figure (f2);

bodemag( Loopspid.Si, lineorder{g});

hold all;

bodemag( Loopspi.Si,lineorder2{g});

title (’Sensitivity Bode Magnitude with P
controller , variable K1, fixed K27);

grid minor ;

hold all;

figure (£3);

bodemag ( Loopspid.Ti, lineorder{g});

hold all;

bodemag ( Loopspi.Ti, lineorder2{g});

title ( "Complement Sensitivity Bode Magnitude with
P controller , variable K1, fixed K27);

grid minor;

hold all;

figure (£5)

bodemag(robecl | lineorder{g});
hold all;

bodemag(robclpi , lineorder2{g});
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1210 title ('Bode magnitude of the close loops system’)

Y

1211 grid minor ;

1212 hold all )

1213

1214 %3dB bandwidth

1215 BWCL(g):bandwidth(robcl(l ,1) ) ;

1216 BWCLPi(g)=bandwidth (robclpi(1,1));
1217

1218 end

1219

1220 th:{ TKF ' };
1221 leg=strcat (tmc, num2str(gain ’) ) ;
1222

1223 figure(fQ);

122¢ legend (leg {:});
1225

1226 figure(f3);

1227 legend(leg{:})

1228

1229 figure(f5);

120 legend (leg {:})

1231

1232 figure(f4);

1233 plot (gain ,BWCL) ;

1232 hold onj

1235 plot (gain ,BWCLPi, "1 ") ;

1236 title (’3dB Bandwidth Vs. Controller gain’);

127 xlabel ("Controller Gain’);

1238 ylabel (73dB Bandwidth ”) ;

1230 %0 OPEN LOOP POWER + MASS PLOTS

1200 % Properties of the plant

1ea clearvars —EXCEPT tsrovcl tsrovol magratOrovel magratOrovol
BWrovel BWrovol powerrov ppmrov MLminrover rob;

122 close all;

1243

1244 MC=/motor torque constant;

1245 Mass=/system Mass;

126 regbw=; %Required BW in rad/sec

1247

1228 lineorder={"b" g’ v’ ¢’ 'm’ k—." "b—" Tr—" "k—" "bh—.",
71“7. ) , '/‘gv?};

1209 Teqts=reqbw /5;

10 reqrat=10; %Required diagonal/offdiagonal ratio

1251

1252 %gray area calculation

1253
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125 tenpoffbw =0.9*xreqbw ;

1255 tenpoffrat=0.9xreqrat ;

1256 tenpoffts=1.1xreqts;

1257

1258

125 for i=1:length (mc)

1260

1261 szmc(i);

1262 kb:0.0847;

1263 La:O.64*(10A—3);

1264 Ra:O.27;

1265 beta:0.021;

1266 J=0.00057892;

1267

1268

1260 hl= tf(KIIl, [La,Ra]) X

120 hl.u="e’; hl.y="tau’;

1271

1272 h2= tf(l,[J,beta]);

1273 h2 . u="tau’; h2.y="omega’;

1274

1275 h3= tf(kb,l);

1276 h3.u="omega’; h3.y="vb’;

1277

127s suml=sumblk ( "e=v—vb ") ;

1279

1280 dem=connect (ss (hl) ,h2 h3,suml, 'v' { tau’, omega });

1281

1282 Power2 (1) =(24"2)«betax*((Km/(betaxRatHdm«kb)) "2) ; %Power in
watts

1283 Power (1)=Power2(i)*(1.341%x10" —=3); %Power in hp

1284

1285 end

1286

wsr % f3=figure;

s N fd=figure;

1289 f5:figure;

1290 f6:figure;

w2 % f7=figure;

1202 % f8=figure;

1203 %0 f9=figure;

1294

1295

1296 k:]_’

1297

1298

1200 for i=1:length (mass)

117



1300
1301
1302
1303
1304
1305
1306
1307
1308
1309

1310

1311
1312

1313

1314
1315

1316

1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340

1341

1342

for j=1:length (mc)

Km=me () ;

kb=0.0847;

La=0.64%(10"—-3);

Ra=0.27;

r=0.1;

m=mass (1) ;

L=0.5;

[=mx(L"2) /6; %moment of inertia for a cube with width
= length = L

beta=0.021;

pmr (k)=Power (j)/mass(i); %Computing Power to Mass
ratio

%Transfer functions and their input output names in
chanel 1

hl=tf (Km,|[La Ra]) ;
hl.u="el ; hl.y="taul ’;

h2=tf (1 ,[(r"2)+m 0]);
h2 .u="x1"; h2.y="vhatl’;

h3=tf (L 2,[2x(r"2)x1 0]);
h3.u="x2"; h3.y="omegahatl’;

h7=tf (beta 1) ;
h7.u= "omegal "; h7.y="taufl ';

h8=tf (kb,1) ;
h8.u= "omegal "; h8.y="vbl";

%sumblocks in channel 1
suml= sumblk ( "el=omegarl — vbl');
sum2= sumblk ( "cl=taul—taufl ");
sum3= sumblk ( "xl=cl+tau2’);
sumd= sumblk ( "x2=cl—tau2’);

(

sumb= sumblk ( "omegal = vhatl + omegahatl’);

%Transfer functions and their input output names in
channel 2
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1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366

1367

1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386

1387

end

h4=tf (Km, [La Ra]) ;
h4.u="e2"; hd.y="tau2’;

h6=tf (1,[(r"2)+m 0]);
h6.u="x4"; h6.y="vhat2’;

ho=tf (L"2,[2x(r"2)«x1 0]);
h5.u="x3"; h5.y="omegahat2’;

ho=tf (beta ,1) ;
h9.u= ‘omega?2’; h9.y="tauf2’;

h10=tf (kb,1) ;
h10.u= "omega2’; h10.y="vb2 " ;

%sumblocks in channel 1

sum6b6= sumblk ( "e2=omegar2 — vbh2’);

sum7= sumblk ( "c2=tau2—tauf2 ’);

sum8= sumblk ( "x3=taul — c¢27);

sum9= sumblk ( "x4=c2 + taul );

sum10= sumblk ( "omega2 = vhat2 — omegahat2’);

%connect models

Ml=connect (ss (hl) ,h2 h3, ss(h4) h5,h6,h7 h8 h9 hl0,
suml ,sum?2 ,sum3,sum4 ,sumb ,sum6 ,sum?7 , sum8 , sum9 , sum10
,{ "omegarl’  ’omegar2’} { omegal ', ’omega2’});

ML. statename={"ial ', 'x2" 'x3" "ia2’ x5’ 'x06"};

YMinimum realization Plant
MLmin=minreal (ML, [] ,0) ;
MLmin.u={"omegarlin’, "omegar2n ’};
MLmin.y={ omegaln’, ’omega2n ’ };

BW(i,j)=bandwidth (MLmin(1,1)); % Motor Bandwidth

S=stepinfo (MLmin(1,1));
ts(i,j)=S.SettlingTime;

k=k+1;

figure (f5);
plot (Power,ts(i,:) ,lineorder{i});
hold on;
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1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402

1403

1404

1405

1406

1407

1408

1409
1410

1411

1412
1413
1414
1415
1416

1417

1418

1419

1420

1421

1422

1423

1424

figure (f6);
plot (Power BW(i ,:) ,lineorder{i});
hold on;

end

tme={ "Mass (Kg)= "};

tcstr=num2str (mass’) ;

leg=strcat (tmc, testr ) ;

lege=strtrim (cellstr (leg));

figure (f5);

ylabel (’Settling Time (seconds)’);

xlabel ( "Power (hp)’);

title (’Settling time Vs. Power for Open Loop systems with
different Masses’);

grid on;

line ([0 max(Power) | ,[reqts reqts], color’, v’ "LineStyle’, —
") % Required Bandwidth Line

line ([0 max(Power) | ,[tenpoffts tenpoffts], color’  [0.5 0.5
0.5], LineStyle’,’—") %10% off Bandwidth Line

plot (powerrov , tsrovol , 'tO " "MarkerFaceColor’,'r ") % Rover
Specification

legend (lege {:}, 'Minimum Design Goal’,’10% Off Design Goal’,’
Rover’);

figure (f6);

ylabel ( ’Bandwidth (radian/seconds)’);

xlabel ( "Power (hp)’);

title ('Sysem Bandwidth Vs. Power for Open Loop systems with
different Masses’);

grid on;

line ([0 max(Power) |, [reqbw reqbw], color’,'r’ 'LineStyle’ —
") % Required Bandwidth Line

line ([0 max(Power) | ,[tenpoffbw tenpoffbw], color’ [0.5 0.5
0.5], LineStyle’,’—") %10% off Bandwidth Line

plot (powerrov ,BWrovol, 'tO " | "MarkerFaceColor’ ;v ") % Rover
Specification
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1425

1426
1427
1428
1429

1430

1431
1432
1433
1434
1435
1436

1437

1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467

1468

legend (lege {:}, 'Minimum Design Goal’,’10% Off Design Goal’,’
Rover ) ;

%% Closed Loop , POWER/MASS Plots

% Properties of the plant

clearvars —EXCEPT tsrovcl tsrovol magratOrovcl magratOrovol
BWrovel BWrovol powerrov ppmrov MLminrover rob;

close all;

mc=/imotor torque constant;
mass=/system Mass;
reqgbw=; %Required BW in rad/sec

lineorder={"'b",’g’, v’ ¢’ ,'m", k=", "b—"r—" "k—""b—."
r—. g ,};
% Power Calculation

for i=1:length (mc)

Km=me (i) ;
kb=0.0487;
La=0.64%(10"—3);
Ra=0.27;
beta=0.021;
J=0.00057892;

hl= tf (Km,|[La,Ra]);
hl.u="e¢’; hl.y="tau’;

h2= tf (1,[J,beta]);
h2.u="tau’; h2.y="omega’;

h3= tf(kb,1);
h3.u="omega’; h3.y="vb’;

suml=sumblk ( "e=v—vb ") ;

dem=connect (ss (hl) ,h2 ,h3 suml, 'v' { tau’, omega’});

t=0:1:24;
u=t ;
[y,t]= lsim (dem,u,t);
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1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514

1515

Power (i )=y (24 ,1)x*y(24,2)/746;

end
fh=figure;

%rover bode

bodemag (rob , 'k—");

h=findobj (gcf, "type’ , line );
set (h, "linewidth ™ ,1.2);

hold on;

loops=loopsens (MLminrover ,eye (2)) ;
f3=figure;

bodemag(loops.Si, 'k—");
h=findobj (gcf, "type’, "line ");
set (h, "linewidth ™ ,1.2);

hold on;

fd=figure;

bodemag (loops.Ti, 'k—");
h=findobj (gcf, "type’ , line );
set (h, "linewidth ™ ,1.2);

hold on;

% fé=figure;
% t7=figure;
% t8=figure;
% t9=figure;

k=1;

for i=1:length (mc)
for j=1:length (mass)

Km=me (1) ;
kb=0.0487;
La=0.64%(10"—3);
Ra=0.27:

r=0.1;

m=mass ( j ) ;
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1516

1517

1518
1519

1520

1521
1522

1523

1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547

1548

1549
1550
1551
1552
1553
1554
1555
1556
1557

1558

L=0.5:

[=mx(L"2) /6; %moment of inertia for a cube with width
= length =L

beta=0.021;

pmr(k)=Power (i) /mass(j); %Computing Power to Mass
ratio

%Transfer functions and their input output names in
chanel 1

hl=tf (Km, [ La Ra]) ;
hl.u="el ; hl.y="taul ';

h2=tf (1 ,[(r"2)*«m 0]);
h2 . u="x1"; h2.y="vhatl’;

h3=tf (L 2,[2x(r"2)x1 0]);
h3.u="x2"; h3.y="omegahatl’;

h7=tf (beta,1) ;
h7.u= ‘omegal "; h7.y="taufl ;

h8=tf (kb,1) ;
h8 .u= "omegal "; h8.y="vbl’;

%sumblocks in channel 1

suml= sumblk ( "el=omegarl — vbl");

sum2= sumblk ( "cl=taul—taufl ");

sum3= sumblk ( 'xl=cl+tau2’);

sumd= sumblk ( 'x2=cl—tau2’);

sumb= sumblk ( "omegal = vhatl + omegahatl’);

%Transfer functions and their input output names in

channel 2

h4=tf (Km, [La Ra]) ;
h4.u="e2"; hd.y="tau2’;

h6=tf (1,[(r"2)+m 0]);
h6.u="x4"; h6.y="vhat2’;

ho=tf (L"2,[2%(r"2)x1 0]);
h5.u="x3"; hb.y="omegahat2’;
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1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573

1574

1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588

1589

1590
1591
1592
1593
1594
1595

1596

1597
1598
1599
1600

1601

%0
%0

%
%

%

h9=tf (beta ,1) ;
h9.u= ‘omega2’; h9.y="tauf2 ;

h10=tf (kb,1) ;
h10.u= "omega2 ' ; hl1l0.y="vb2’;

%sumblocks in channel 1

sumb= sumblk ( "e2=omegar2 — vb2');

sum7= sumblk ( 'c2=tau2—tauf2 "),

sum8= sumblk ( 'x3=taul — c¢27);

sum9= sumblk ( 'x4=c2 + taul ’);

suml0= sumblk ( "omega2 = vhat2 — omegahat2’);

%connect models

Ml=connect (ss (hl),h2,h3,ss(h4) ,h5,h6,h7 h8 h9 hl0,
suml ,;sum2 ,sum3 , sum4 , sumd , sum6 ,sum?7 ,sum8 , sum9 , sum10
,{ "omegarl’, ’omegar2’} { omegal ', omega2’});

ML. statename={"ial ', 'x2" 'x3", "ia2 [ 'x57, 'x6" };

Y%Minimum realization Plant

MLmin=minreal (ML, [] ,0) ;
MLmin.u={"omegarln’, "omegar2n ' };
MLmin. y={ "omegaln ', "omega2n ' };

Y%Minimum Realization Plots

%StepPlot

% figure (£3);

% f3=stepplot (MLmin) ;

% grid on;

% title (’Step response of the 2 Motor channels , Robot
"7s dynamics included ) ;

%Singular Value plot
figure(f4);
sigmaplot (MLmin, sopt ,lineorder {k});
% setoptions (4, FreqUnits ', "Hz’) ;
grid ;
title (’Singular Values of the 2 Motor channels ,

Robot’’s dynamics included ") ;

hold all;
robcl=feedback (MLmin, eye (2));

figure (f5);
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1602
1603

1604

1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625

1626

1627
1628
1629
1630
1631

1632

1633
1634
1635
1636
1637
1638
1639
1640
1641

1642

1643

1644

end

bodemag(robcl | lineorder{k});
grid on;
title (’Frequency Response of the Closed Loop System )

hold all:
BW(k)=bandwidth (robel(1,1)); % Motor Bandwidth

%evaluating the response at 0 rad/sec
magO=bode (robcl ,0) ;
magrat0 (k)=mag0(1,1)/mag0(1.,2);

%evaluating the response at OmegaBW

magbw=bode (robcl ,reqbw) ;
magratbw (k)=magbw (1,1) /magbw(1,2);

S=stepinfo (robecl(1,1));
ts(k)=S.SettlingTime;

%Sensetivity plots
loops=loopsens (MLmin, eye (2));

figure (£3);

bodemag(loops.Si,lineorder{k});

title (’Sensetivity Magnitude Closed loop System with
K=I, Variable Power/Mass’);

grid on;

hold all;

figure (f4);

bodemag(loops.Ti,lineorder{k});

title ("Complement Magnitude Closed loop System with
no K=I, Variable Power/Mass’);

grid on;

hold all;

k=k+1;

tme={ Power /Mass (hp/Kg) = '}; %adding Mass= to begining of
each torque constant legend
testr=num2str (pmr’) ;
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s leg=strcat (tmc, testr);

1646

war tme2={", BW= "}

1618 testr2=num2str (BW’) ;

619 leg2=strcat (tme2, testr2);

1650

1651 /0 tmcS:{’, Ts= ’};

52 /0 testr3=num2str(ts’) ;

w3 /0 leg3=strcat (tme3, testr3d);

1654

65 legen=strcat (leg ,leg2);

1656

1657

s lege=strtrim (cellstr (legen));

1659

1660

1661 figure

1662 legend

1663

1664 figure

1665 legend

1666

1667 figure

1668 legend

1669

1670 figure(fG);

w61 plot (pmr, ts);

62 ylabel (’Settling Time (Seconds)’);

6z xlabel ( "Power per Kg (hp/Kg)');

wre title (’Settling time vs Power to Mass ratio plot’);

1675

1676 figure(f?);

w677 plot (pmr ,BW) ;

67z ylabel ('System Bandwidth (rad/sec)’);

679 xlabel ( "Power per Kg (hp/Kg)');

o title (’Badnwidth vs Power to Mass ratio plot’);

1681

1682 figure(fS);

63 plot (pmr, magrat0) ;

sa ylabel (’diagonal DC gain / off diagonal DC gain’);

65 xlabel ("Power per Kg (hp/Kg)');

wss title (’diagonal to off diagonal dc gain ratio vs Power to
Mass ratio plot’);

3
"Rover ' ,lege{:});
Rover’,lege {:});

Rover’,lege{:});

1687

1688 figure(f9);

16s9 plot (pmr, magratbw) ;

oo ylabel(’diagonal amplitude / off diagonal amplitude’);
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1691

1692

1693
1694
1695

1696

1697
1698
1699
1700
1701
1702

1703

1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714

1715

1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732

1733

xlabel ( "Power per Kg (hp/Kg)’);

title (’diagonal to off diagonal amplitude

frequency vs

%% OL VS CL
% Properties of

Power to Mass

the plant

ratio plot’);

ratio @ bandwidth

clearvars —EXCEPT tsrovcl tsrovol magratOrovcl magratOrovol

BWrovel BWrovol powerrov ppmrov;

close all;

mc=/imotor torque constant;
Vlsyster Mass :

mass=/system Mass;

reqgbw=; %Required BW in rad/sec

llneorder—{ b,
B L
reqts= reqbw/5

g’,l”,C’,Hl’,’k*.7

reqrat =10; %Required diagonal/offdiagonal ratio

Y%gray area calculation

tenpoffbw =0.9%xreqbw ;
tenpoffrat=0.9%xreqrat ;
tenpoffts=1.1xreqts;

lineorder { b’

g’,’I”,’C’,’IIl’

/71‘_ g_}

Kminit=0.0487;

% Power Calculation @ 24 V

for i=1:length (mc)

Km=me (1) ;
kb=0.0847;

La=0.64%(10"—=3);

Ra=0.27;
beta=0.021;
J=0.00057892;

dem=tf (Km, [ JxLa JxRatbetaxLa betaxRatKmxkb]) :

vin=24; %input voltage

Ts=(Km/Ra)*vin ;

%Stall Torque
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isa omegal=vin /kb; %No load speed

135 Power2 (1) =(Tsxomegal) /4;

136 Power (1)=Power2 (i)*(1.341%x10" —=3); %Power in hp
1737

138 end

1739

1740

1741 f6:figure
1742 f7:figure
1743 f8:figure
1744 f9:figure

1745

1746

7 k=1;

1748

1749

o for i=1:length (mc)

1751

1752 for j=1:length (mass)

1753

1754 Km:mc(i);

1755 kb200847,

1756 La:O.64*(1OA—3);

1757 Ra:O.27;

1758 r=0.1;

1759 m=mass (j ) ;

1760 L:O.5;

1761 [=mx(L"2) /6; %moment of inertia for a cube with width
= length = L

1762 beta=0.021;

1763

1764 pmr(k)=Power (i) /mass(j); “Computing Power to Mass
ratio

1765

1766

1767 %Transfer functions and their input output names in
chanel 1

1768

1769 hlItf(KIIl, [La Ra]) X

1770 hl.u="el’; hl.y="taul ’;

1771

1772 h2:tf(1,[(rA2)>km O])7

1773 h2 . uv="x1"; h2.y="vhatl’;

1774

1775 hgztf(LA2,[2*(I‘A2)*I O])7

1776 h3.u="x2"; h3.y="omegahatl’;

1777

128



1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791

1792

1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817

1818

1819
1820

1821

h7=tf (beta 1) ;
h7.u= "omegal "; h7.y="taufl ';

h8=tf (kb,1) ;
h8.u= "omegal "; h8.y="vbl";

%sumblocks in channel 1

suml= sumblk ( "el=omegarl — vbl");

sum2= sumblk ( "cl=taul—taufl ");

sum3= sumblk ( "xI=cl+tau2’);

sumd= sumblk ( "x2=cl—tau2’);

sumb= sumblk ( "omegal = vhatl + omegahatl’);

%Transfer functions and their input output names in
channel 2

h4=tf (Km, [La Ra]) ;
h4.u="e2"; hd.y="tau2’;

h6=tf (1,[(r"2)+m 0]);
h6.u="x4"; h6.y="vhat2’;

ho=tf (L"2,[2x(r"2)«x1 0]);
h5.u="x3"; h5.y="omegahat2’;

h9=tf (beta ,1) ;
h9.u= ‘omega2’; h9.y="tauf2’;

h10=tf (kb,1) ;
h10.u= "omega2’; h10.y="vb2;

%sumblocks in channel 1

sum6b6= sumblk ( "e2=omegar2 — vbh2’);

sum7= sumblk ( "c2=tau2—tauf2 ’);

sum8= sumblk ( "x3=taul — c¢27);

sum9= sumblk ( "x4=c2 + taul );

sum10= sumblk ( "omega2 = vhat2 — omegahat2’);

%connect models

Ml=connect (ss (hl) ,h2 h3, ss(h4) h5,h6,h7 h8 h9 hl0,
suml ,sum?2 ,sum3,sum4 ,sumb ,sum6 ,sum?7 , sum8 , sum9 , sum10
,{ "omegarl’  ’omegar2’} { omegal’, omega2’});

ML. statename={"ial ', 'x2" 'x3" "ia2’ x5’ 'x06"};

YMinimum realization Plant
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1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867

1868

MLmin=minreal (ML, [] ,0) ;
MLmin.u={"omegarln’, "omegar2n ' };
MLmin.y={ omegaln’, ’omega2n ’ };

robcl=feedback (MLmin, eye (2));
BWol(k)=bandwidth (MLmin(1,1)); % System Bandwidth
BWecl(k)=bandwidth (robecl(1,1)); % System Bandwidth

%evaluating the response at 0 rad/sec
magOol=bode (MLmin,0) ;
magratOol (k)=mag0Ool(1,1)/mag0ol(1,2);

mag0Ocl=bode(robcl ,0) ;
magratOcl (k)=mag0Ocl(1,1)/mag0cl(1,2);

%evaluating the response at OmegaBW
magbwol=bode (MLmin, reqbw ) ;
magratbwol (k)=magbwol(1,1)/magbwol(1,2);

)
magbwcl=bode (robcl ,reqbw) ;
magratbwel (k)=magbwcl (1,1) /magbwcl(1,2);

Sol=stepinfo (MLmin(1,1));
tsol (k)=Sol.SettlingTime;

Scl=stepinfo (robcl(1,1));
tscl(k)=Scl.SettlingTime;

k=k+1;

end
end

figure (6);

plot (pmr, tsol);

ylabel (’Settling Time (Seconds)’);

xlabel ( "Power per Kg (hp/Kg)’);

title (’Settling time vs Power to Mass ratio plot’);
hold on;

plot (pmr, tscl |, "g’);
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1869

1870 grid onj

1871

182 %Settling Time

w3 pmtscl=interpl (tscl ,pmr,reqts);

w7a pmtsol=interpl (tsol ,pmr,reqts);

1875

w6 pmtscl2=interpl (tscl ,pmr, tenpoffts);
w7 pmtsol2=interpl (tsol ,pmr, tenpoffts);

1878

1879 line ([0 max(pmr) ]| ,[reqts reqts], color ™, 'r’ "LineStyle  —")
% Required Bandwidth Line

1880

ss1 line ([0 max(pmr) ]| ,[tenpoffts tenpoffts], color’ [[0.5 0.5
0.5], "LineStyle’,—") %10% off Bandwidth Line

1882

153 plot (ppmrov, tsrovel , 'tO’"MarkerFaceColor’,'r’) % Rover
Specification

1884

1885 plot (ppmrov, tsrovol ; 'tO 7, "MarkerFaceColor’, 'r’) % Rover
Specification

1886

1887

sss 1f Tisnan (pmtsol)

1ss9 line ([pmtsol pmtsol],[0 reqts], color’, v’ "LineStyle’ '—7);
1890 end

1891

w2 1f Tisnman (pmtscl)

o3 line ([pmtscl pmtscl] [0 reqts], color’ 'r’ "LineStyle’  '—7);
1804 end

1895

o6 1f Tisnan (pmtsol2)

o7 line ([ pmtsol2 pmtsol2] ,[0 tenpoffts], color’ [[0.5 0.5 0.5],°
LineStyle’  '—7);

1808 end

1899

woo 1f Tisnman(pmtscl2)

wor line ([pmtscl2 pmtscl2] [0 tenpoffts], color’ [0.5 0.5 0.5],"°
LineStyle’  '—7);

w02 end

1903

woe legend ( "Open Loop System ’,’Closed Loop System ', Minimum
Design Goal’,’10% Off Design Goal’, Rover’);

1905

1906

1907 figure(f?);

1wos  plot (pmr, BWol) ;
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oo ylabel ("System Bandwidth (rad/sec)’);

w0 xlabel ("Power per Kg (hp/Kg)');

wn title (’Badnwidth vs Power to Mass ratio plot’);

1012 hold onl ;

w3 plot (pmr,BWel, "¢ ) ;

1914 gl‘id onj

1915

1016 ZBandwidth

w17 pmcl=interpl (BWel, pmr, reqbw) ;

1ms pmol=interpl (BWol,pmr, reqbw) ;

1919

1920 pmel2=interpl (BWecl,pmr, tenpoffbw ) ;

w21 pmol2=interpl (BWol,pmr, tenpoffbw ) ;

1922

923 line ([0 max(pmr) ]| ,[reqbw reqbw]|, color ™, 'r’ "LineStyle , —")
% Required Bandwidth Line

1924 line ([0 max(pmr) | ,[tenpoffbw tenpoffbw |, color’ [0.5 0.5
0.5], LineStyle’,’—") %10% off Bandwidth Line

1925

1926

w2r plot (ppmrov, BWrovel, 'tO 7, "MarkerFaceColor”, 'r’) % Rover
Specification

1w2s plot (ppmrov, BWrovol, 'rO ", "MarkerFaceColor”, 'r’) % Rover
Specification

1929

w30 1f Tisnan (pmol)

w1 line ([pmol pmol] [0 reqbw], color ', v’ "LineStyle’  '—7);

132 end

1933

w3« 1f Tisnan (pmecl)

935 line ([pmel pmel] [0 regqbw], color’, v’ "LineStyle’ | '—7);
1936 end

1937

wes  1f Tisnan (pmol2)

1939 line ([pmol2 pmol2],[0 tenpoffbw ]|, color’ [0.5 0.5 0.5],"
LineStyle’,'—"7);

1040 end

1941

1wz 1f Tisnan (pmecl2)

iz line ([pmel2 pmel2] [0 tenpoffbw ]|, color’ [0.5 0.5 0.5],"
LineStyle’  '—7);

1040 end

1945

w6 legend ( "Open Loop System ’,’Closed Loop System ', Minimum
Design Goal’,’10% Off Design Goal’,’Rover’);

1947

wis %Diagonal /Off Diagonal
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1949
1950
1951
1952
1953

1954

1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975
1976
1977

1978

1979
1980
1981

1982

1983
1984
1985

1986

figure (£8);

plot (pmr, magratQol) ;

ylabel ("diagonal DC gain / off diagonal DC gain’);

xlabel ( "Power per Kg (hp/Kg)’);

title (’diagonal to off diagonal dc gain ratio vs Power to
Mass ratio plot’);

hold on;

plot (pmr, magratOcl , g’ );
grid on;

%interpolate data

pmratcl=interpl (magratOcl ,pmr,reqrat ) ;
pmratol=interpl (magratOol ,pmr, reqrat ) ;

pmratcl2=interpl (magratOcl ,pmr, tenpoffrat);
pmratol2=interpl (magratOol ,pmr, tenpoffrat);

line ([0 max(pmr)],[reqrat reqrat], color’, v’ 'LineStyle’, —
") % Required Bandwidth Line
line ([0 max(pmr)],[tenpoffrat tenpoffrat], color’  [0.5 0.5

0.5], LineStyle’,’—") % 10% off Bandwidth Line

plot (ppmrov, magratOrovol , 'tO " "MarkerFaceColor”, 'r ") % Rover
Specification

plot (ppmrov, magratOrovel , 'rO " "MarkerFaceColor’, "r”) % Rover
Specification

if “isnan(pmratol)
line ([pmratol pmratol],[0 reqrat], color’, v’ 'LineStyle’, —

) ;

end

if Tisnan(pmratcl)

line ([pmratcl pmratcl],[0 reqrat], color’, v’ "LineStyle’, —
end
if Tisnan(pmratol2)

line ([pmratol2 pmratol2],[0 tenpoffrat], color’ [[0.5 0.5
0.5], LineStyle’, —");
end

if Tisnan(pmratcl2)

line ([pmratcl2 pmratcl2],[0 tenpoffrat], color’ [[0.5 0.5
05] , ’Linestyle ) 7 :__,) :
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187 end

wss legend ( "Open Loop System ’,’Closed Loop System ', Minimum
Design Goal’,’10% Off Design Goal’, Rover’);

1989

1990

1991 figure(f9);

o2 plot (pmr, magratbwol) ;

wes ylabel (’diagonal amplitude / off diagonal amplitude’);

e xlabel ("Power per Kg (hp/Kg)');

ws title (’diagonal to off diagonal amplitude ratio @ bandwidth
frequency vs Power to Mass ratio plot’);

1996 hold onl ;

wor  plot (pmr, magratbwel | 'g ) ;

w98 legend ( "Open Loop System ’,’Closed Loop System ’);

1999

2000 %interpolate data

2001 pmratbwel=interpl (magratbwel ,pmr, reqrat , "pchip ') ;

2000 pmratbwol=interpl (magratbwol ,pmr, reqrat , "pchip ') ;

2003

2000 line ([0 max(pmr)],[reqrat reqrat], color’, v’ 'LineStyle’, —
") % Required Bandwidth Line

2005 line ([pmratbwol pmratbwol]|,[0 reqrat], color’ v’ "LineStyle’

N

2006 line ([pmratbwel pmratbwel|,[0 reqrat], color ', 'r’,  "LineStyle’

Y I
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