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ABSTRACT 

 In investigating mediating processes, researchers usually use randomized 

experiments and linear regression or structural equation modeling to determine if the 

treatment affects the hypothesized mediator and if the mediator affects the targeted 

outcome. However, randomizing the treatment will not yield accurate causal path 

estimates unless certain assumptions are satisfied. Since randomization of the mediator 

may not be plausible for most studies (i.e., the mediator status is not randomly assigned, 

but self-selected by participants), both the direct and indirect effects may be biased by 

confounding variables. The purpose of this dissertation is (1) to investigate the extent to 

which traditional mediation methods are affected by confounding variables and (2) to 

assess the statistical performance of several modern methods to address confounding 

variable effects in mediation analysis.  This dissertation first reviewed the theoretical 

foundations of causal inference in statistical mediation analysis, modern statistical 

analysis for causal inference, and then described different methods to estimate causal 

direct and indirect effects in the presence of two post-treatment confounders.  A large 

simulation study was designed to evaluate the extent to which ordinary regression and 

modern causal inference methods are able to obtain correct estimates of the direct and 

indirect effects when confounding variables that are present in the population are not 

included in the analysis.  Five methods were compared in terms of bias, relative bias, 

mean square error, statistical power, Type I error rates, and confidence interval coverage 

to test how robust the methods are to the violation of the no unmeasured confounders 

assumption and confounder effect sizes. The methods explored were linear regression 

with adjustment, inverse propensity weighting, inverse propensity weighting with 
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truncated weights, sequential g-estimation, and a doubly robust sequential g-estimation. 

Results showed that in estimating the direct and indirect effects, in general, sequential g-

estimation performed the best in terms of bias, Type I error rates, power, and coverage 

across different confounder effect, direct effect, and sample sizes when all confounders 

were included in the estimation.  When one of the two confounders were omitted from 

the estimation process, in general, none of the methods had acceptable relative bias in the 

simulation study. Omitting one of the confounders from estimation corresponded to the 

common case in mediation studies where no measure of a confounder is available but a 

confounder may affect the analysis. Failing to measure potential post-treatment 

confounder variables in a mediation model leads to biased estimates regardless of the 

analysis method used and emphasizes the importance of sensitivity analysis for causal 

mediation analysis.  
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Chapter 1 

INTRODUCTION 

Testing mediating processes is important in social and medical sciences.  

Mediation analysis allows researchers to investigate the underlying mechanisms of a 

treatment and to address competing explanations, whereas a randomized experiment 

focusing on group differences in outcomes is generally not adequate to reveal the causal 

processes underlying how a treatment achieved its effects. In a typical mediation model, 

an independent variable (X) causes a mediator (M), and then the mediator causes an 

outcome (Y) (Judd & Kenny, 1981; Baron & Kenny, 1986; MacKinnon, 2008). Examples 

of mediation from psychological sciences include the following: leader expectations 

influence performance through subordinate self-efficacy (Davidson & Eden, 2000); 

dietary social norms influence healthy eating through intentions (Ranby et al., 2011); 

workload influences job satisfaction through employees’ perceived control over time 

(Claessens, et al., 2004); perceived justice influences health through sleep quality 

(Elovainio et al., 2009); and transformational leadership influences organizational 

citizenship behavior through leader-member exchange (Wang et al., 2005).  

A key goal in scientific research is causal inference. Randomized experiments are 

often seen as the best method to achieve causal inference because they balance possible 

confounding variables in a way that observed differences between treatment groups can 

be attributed to the treatment (that is, randomization ensures the strong ignorability of the 

treatment assignment). Researchers using a mediation approach also typically conduct 

randomized experiments to investigate the mediated (indirect) effect of a randomized 
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treatment on the targeted outcome through the hypothesized mediator. However, work on 

causal inference in mediation shows that only randomizing the treatment does not ensure 

obtaining accurate causal path estimates for the relation of M to Y, so that both the direct 

and indirect effects are still subject to potential confounding variables (Holland, 1988). 

Therefore, it is critical to consider causal estimation issues when testing mediating 

mechanisms.  

I first describe the single mediation model from a linear regression approach and 

then the potential outcomes framework. The assumptions for causal inference in 

mediation are outlined. Next, modern causal inference methods in the presence of a 

mediator are described.  

1.1     Linear Regression Approach to Mediation 

The most common approach to mediation employs OLS regression (Baron & 

Kenny, 1986; MacKinnon, 2008). The basic mediation model can be summarized in three 

equations including three variables: X, the treatment variable, Y, the dependent variable, 

and M, the mediator (MacKinnon & Dwyer, 1993): 

 

(1) E (Y | X = x) = i1 + c X + e1       

 (2)  E (M | X = x) = i2 + a X + e2        

(3) E (Y | X=x, M=m) = i3 + c' X + b M + e3  
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Figure 1. Single mediator model  

 

Equation 1 gives the expected Y given X, where X can take on values x. In other 

words, it estimates the effect of the treatment X on outcome Y (the c regression 

coefficient). Equation 2 predicts the effect of X on the mediator (the a path). Equation 3, 

where X can take on values x and M can take values m, estimates the effect of treatment 

X on the outcome Y adjusting for the effects of the mediating variable M (the c’ path). i1, 

i2, and i3 are intercepts; and e1, e2, and e3 are errors which are assumed to be independent 

across equations. Note that lower case letters, x, m, and y represent values of variables X, 

M, and Y, respectively.  This distinction between the variables and the values of the 

variables defines causal effects at different values, X=x, M=m, and Y=y and allows for 

the possibility that different causal effects may be obtained at different values, x, m, and 

y of variables X, M, and Y, respectively. 

Three approaches to test for mediation are (1) the causal steps approach also 

known as the Baron and Kenny test of mediation (1986; Hyman, 1955; Judd & Kenny, 

M 

X Y 

a b

 

c' 

e3
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1981), (2) difference in coefficients method, and (3) the product of coefficients method 

(MacKinnon et al., 2002). In the Baron and Kenny method, a series of statistical tests are 

conducted to decide if the data are consistent with mediation. Specifically the approach 

requires the following four steps to be conducted:  

i) The effect of X on Y in equation (1) must be significant (i.e., the c path). 

In other words, there must be a significant total effect of independent variable on 

outcome.  

ii)  The effect of X on M in equation (2) must be significant (i.e., the a path). 

In other words, the independent variable should significantly affect the mediator.  

iii) The effect of M on Y adjusted for X must be significant (i.e., the b path). 

In other words, mediator should be significantly related to the outcome variable even 

after controlling the effect of the independent variable.  

iv) The relation between X and Y should be weaker when the mediator is 

added to the model. In other words, c-c’ should be greater than zero.  

Although this approach is the most common method used by researchers, it has 

important limitations. First, the method does not include estimating the magnitude and 

significance of the mediated effect. Also, it requires a significant total effect of X on Y 

(i.e., c path), yet it is possible that the effect of X on Y is nonsignificant but there is a 

mediated effect (MacKinnon, 2008). The causal steps method also requires much larger 

sample sizes compared to other methods to test for mediation (Fritz & Mackinnon, 2007).  

The second approach is the difference in coefficients method. This method 

estimates the mediated effect as the difference between the total and direct effects, c-c’. It 
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is also possible to compute the standard error, confidence intervals, and significance 

testing for the c-c'  measure of the mediated effect.  The difference in coefficients 

approach has an important limitation that it is cumbersome to compute individual 

mediated effects in a multiple mediator model (MacKinnon, 2008; MacKinnon, Kisbu-

Sakarya, Gottschall, 2013).  

The third approach is to calculate the point estimate of the mediated effect as the 

product of coefficients, ab; and then divide ab by its standard error and compare that ratio 

to the normal distribution to test for statistical significance. Whether the relation between 

X and Y is mediated through M is examined by comparing the ratio of the effect to its 

standard error to the normal distribution in the sample. The commonly used standard 

error for ab derived by Sobel (1982) is based on the multivariate delta method:  

 

    (  )   √     ( )      ( )   

   (  )        (  )                  

 

Confidence intervals for the product of coefficients, ab, method can also be 

computed by several other methods such as resampling methods which create an 

empirical sampling distribution of ab.  Another method takes the nonnormality of the 

distribution of the product into account (Meeker, Cornwell, & Aroian, 1981), and 

constructs the confidence intervals based on the distribution of the product of two 

normally distributed variables (MacKinnon, Lockwood, & Williams, 2004; MacKinnon 



 

6 

 

et al., 2002; MacKinnon, Fritz, Williams, & Lockwood, 2007). Furthermore, Bayesian 

methods are available to compute credible intervals for the indirect effect (Yuan & 

MacKinnon, 2009; Pirlott et al., 2012). The product of coefficients approach is used in 

this dissertation.  

 Mediation analysis by linear regression has several assumptions. First, it is 

assumed that the variables in the model are reliable and valid measures of the study 

variables. In other words, it is assumed that there is no measurement error that may cause 

bias in the estimators. It is also assumed that the variables are continuous and normally 

distributed; however, models with non-normally distributed variables may be estimated 

accurately using transformations (Cohen, Cohen, West, & Aiken, 2003; MacKinnon, 

2008).   

There are also assumptions regarding the causal nature of the mediation model to 

identify the mediated effect. It is assumed that the causal paths between X, M, and Y 

have the correct functional form and do not have bidirectional effects. Also, it is assumed 

that there are no omitted variables affecting the causal paths in the mediation model. This 

assumption will be described in more detail in the following section (Holland, 1988; 

Robins & Greenland, 1992; Pearl 2001, 2012).  

1.2     Estimating Causal Effects in the Presence of a Mediator 

 The potential outcomes approach provides a new framework to interpret 

mediation effects.  In the case in which all assumptions are satisfied, the traditional 

estimator of the mediated effect, ab, described above is the causal indirect effect 

estimator.  The strength of the potential outcomes approach to mediation lies in how it 
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clarifies underlying assumptions of traditional mediated effect estimation and how it 

provides a framework to estimate mediated effects in more complex models such as 

nonlinear models and models with confounding. 

The potential outcomes approach to causal effects (Rubin, 1974, 2004, 2005; 

Holland, 1986, 1988; Morgan & Winship, 2007) defines the individual causal effect 

using the potential outcomes of the same individual. Average causal effects are then 

defined  based on averaging effects across individuals.  These average causal effects 

solve several problems with the estimation of causal effects for each individual.  Starting 

with the individual level causal effect, let variable X be a treatment program with level x 

(x=1 for the treatment, x=0 for the control) and variable Y the outcome variable. An 

individual may be assigned to the treatment group (x=1) and obtain the potential outcome 

value Y(1).  The second potential outcome for that individual is the value she would have 

obtained on the outcome variable if she had been assigned to the control condition (x=0), 

that is Y(0) (also referred to as the counterfactual value).  The corresponding individual 

causal effect is then equal to the difference between the potential outcomes, Y(1) – Y(0).  

However, because it is often not possible to observe both outcomes for the same person 

(referred as the “fundamental problem of causal inference” by Holland, 1988), averages 

of individuals are used to  compute the average causal effect, E[Y(1) – Y(0)].  The 

average causal effect, the difference between the means in the treatment and control 

groups,  is a causal effect when units are randomized to conditions and the randomization 

has been successful.  
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 Now suppose a potential mediating variable M with level m mediates the relation 

between X and Y for an individual. Let Y(x, m) denote the potential outcome for an 

individual under the treatment level x and mediator level m. X takes the value x=0 for the 

control group, and x=1 for the treatment group. M is a continuous variable, and if the 

observed value of M is m for an individual, then the counterfactual value of M for that 

individual is denoted as m’.  Including the mediator in the model leads to the formulation 

of the following effects in the potential outcome framework: controlled direct effect, 

natural direct effect and natural indirect effect (Pearl, 2001, 2009; Robins & Greenland, 

1992).  

 1.2.1     Natural and Controlled Effects 

The controlled direct effect is the effect of X on Y at a specific value m of M. 

More formally, the controlled direct effect (CDE) of a treatment on the outcome is the 

difference between the potential outcome scores when the individuals' mediating variable 

score was controlled and set to a specific value (Robins & Greenland, 1992).  

 

  (4) CDE = Y (1, m) – Y (0, m).        

 

As opposed to the controlled direct effects that are measured at a fixed level of the 

mediator, the natural direct effect allows individuals to take varying values of the 

mediator-the value of the mediator that they would have naturally. The average natural 

direct effect (NDE) of X on Y is different from the average controlled direct effect in that 

M is set to the level that would have naturally occurred under one of the conditions of X 
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(i.e., Mx). For instance, in the case of M0, the natural direct effect is the effect of 

treatment X on outcome Y when X did not influence the mediator M (or the individuals 

were assigned the mediator level under the control condition):   

 

 (5) NDE = Y (1, Mx) – Y (0, Mx).  

 

Following the same approach, the average natural indirect effect is the effect of 

the treatment on outcome when changing the level of the mediator but keeping X at the 

same value such as X in the control group:   

 

 (6) NIE = Y (X, M1) – Y (X, M0).  

 

In other words, the above formula indicates the effect of treatment on the outcome when 

the level of M is changed while X is set to a certain value (0 or 1 in this case of two 

conditions).  

The sum of the natural direct effect and natural indirect effect equals the total 

effect. This additivity assumption is also sometimes referred as the no X and M 

interaction assumption. Yet, Pearl (2001) demonstrated that the decomposition of total 

effect into the natural direct and indirect effects holds even in models with interactions 

and importantly also in models with non-linear effects such as logistic regression.  

 The following two assumptions are required for the controlled direct effect to be 

identified (Pearl, 2001; VanderWeele, & Vansteelandt, 2009; VanderWeele, 2010, 2011):  
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(i) No unmeasured confounder for the relation between X and Y.  

(ii) No unmeasured confounder for the relation between M and Y.  

The following two assumptions are required in addition to the two assumptions 

above for the natural direct and indirect effects to be identified:  

(iii) No unmeasured confounder for the relation between X and M  

(iv) No unmeasured M to Y confounder affected by treatment. 

 A confounder is an extraneous variable that correlates with both the independent 

and the dependent variable. Omitting a confounder from a statistical model may lead to 

the misestimation of the statistical model. Assumptions (i) and (iii) refer to the 

ignorability of treatment assignment conditional on the observed pretreatment 

confounders. This assumption is usually satisfied with randomization of X.  Assumption 

(ii) refers to the ignorability of the mediator conditional on the observed treatment and 

pretreatment confounders. In other words, there are no unmeasured confounders 

influencing the b path. This assumption is difficult to meet because randomization of M 

is usually not plausible for many studies (i.e., the mediator status is not randomly 

assigned, but rather self-selected by individuals). Even though we condition on observed 

confounders for the relation between M and Y, there can still be unobserved confounders. 

This assumption (ii) is strong and is usually ignored in studies, even though we cannot 

have a causal interpretation of a mediated effect without its existence (MacKinnon et al., 

2013; MacKinnon, 2008, Chapter 13).  

 The linear regression approach to mediation assumes sequential ignorability, 

which consists of the ignorability of the treatment assignment and the ignorability of the 



 

11 

 

mediator.  In other words, by successful randomization of the treatment X, we can 

achieve  causal estimation of the c (i.e., the total effect of X on Y) and a paths (Holland, 

1988).  Sequential ignorability also assumes that M is randomly assigned, but this is not 

often possible; research participants self-select their value of the mediator.  Thus further 

assumptions are required for causal interpretation for the b and c’ paths. If individuals are 

randomly assigned to a treatment, there should be no confounders of the X to Y, and X to 

M relations. However, if individuals are not randomly assigned to values of the mediator, 

there can be confounders affecting M and Y, leading to inaccurate estimates of the effect 

of M on Y and the effect of X on Y adjusted for M. Several solutions to improve the 

interpretation of the b  and c’ coefficients as causal effects have been proposed and these 

methods are a focus of this dissertation as described below.  

  1.2.1.1     Inverse propensity weighting method 

 Returning to the case of one X and one Y variable, causal effects of a 

nonrandomized treatment on an outcome can be estimated using propensity scores that 

account for the effects of potential confounders of the X to Y relation. In this section, 

estimation using propensity scores is described first followed by the use of propensity 

scores in causal mediation.  

Propensity scores 

 In the case of an effect of treatment on the outcome, the propensity score is the 

estimated probability of receiving the treatment given measured confounders 

(Rosenbaum & Rubin, 1983). Because the confounders used to estimate the propensity 

score are either variables that do not change such as gender, or variables measured at 
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baseline, the estimated propensity scores are not influenced by the treatment. Therefore, 

assuming all confounders are measured, comparing the treatment and control groups with 

similar estimated propensity scores is a causal estimator of the unconfounded effect of X 

on Y. In other words, propensity scores balance the distribution of confounders in the 

treatment and control groups so that the treatment assignment  effect on  the outcome is 

unconfounded given the propensity scores. An advantage of using propensity scores over 

analysis of covariance as a method to adjust for confounders is that including a large set 

of confounders in an analysis of covariance model is sometimes not practical whereas the 

propensity score is a single number summarizing all of the measured confounders. 

Moreover, the propensity score method estimates of treatment effect are more stable than 

the analysis of covariance estimates when the distributions of confounders in the 

treatment and control groups do not overlap adequately (i.e., number of individuals in 

treatment and control groups with similar confounder scores is low) (Rubin, 1997; King 

& Zeng, 2006). There are several propensity score methods for confounder adjustment; 

among them are matching (Rubin & Thomas, 1992, 1996; Rosenbaum & Rubin, 1985), 

stratification (Rosenbaum and Rubin, 1984), and weighting (Hirano & Imbens, 2001; 

Robins, Rotnitzky, & Zhao, 1995). In this dissertation, I focus on a weighting method 

called inverse propensity weighting to improve causal inference in the case of 

confounders affecting M to Y relation in the single mediator model.  

Creating propensity scores and weighting in mediation context 

  For a nonrandomized treatment effect on an outcome, inverse propensity 

weighting makes the treated and control participants represent the population by 
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weighting each observation.  The weights reflect the probability that each person would 

have received the treatment based on measured confounders. The weights are the inverse 

of the probability of being in the group that an individual actually participated, 

conditional on the confounders (C). In other words, individuals in the treatment group are 

weighted by 1 / P[X=1 | C] and individuals in the control group are weighted by 1 / (1 – 

P[X=1 | C]). In this framework, the causal inference challenge is viewed as a missing 

data problem (Robins, Rotnitzky, & Zhao, 1994), in that Y(1) is only observed for 

individuals under the treatment condition and is missing for the individuals in the control 

group. Inverse weighting allows individuals in the treatment to account for missing 

control participants with similar characteristics on the measured confounders (that is the 

counterfactual outcome scores). Additionally, it should be noted that in a non-randomized 

treatment context, all the confounders used for weighting are measured pre-treatment.  

Even if the treatment is randomized, for the mediation model the M to Y relation 

is still subject to potential confounders. Propensity scores can be used to improve the 

causal interpretation of the indirect effects in a similar way as for the X to Y effect.  If the 

mediator is binary with values of 0 and 1, then individuals with M=1 are given a weight 

of P[M=1 | X] / P[M=1 | X, C]. And individuals with M=0 are given a weight of (1 – 

P[M=1 | X]) / (1 – P[M=1 | X, C]). In mediation context, the confounders used for 

weighting are measured before the mediator. The weights reflect the additional prediction 

of the confounders compared to the prediction by treatment alone.  The purpose of these 

weights is to create a new data set in which confounding by measured variables is 

removed so that the relation of M to Y more closely resembles a randomized relation. For 
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a binary mediator, the denominator model can be computed by a logistic regression of the 

mediator on measured confounders and the treatment condition. The predicted 

probabilities are the propensity score estimates (denoted as  ̂).  If the mediator is 

continuous, then the denominator model can be computed by regressing the mediator on 

measured confounders and the treatment and then inserting the predicted values ( ̂) in a 

normal probability density function (Coffman & Zhong, 2012; Robins, Hernán, & 

Brumback, 2000) as shown below: 

 

(7)   ( |   )   
 

√    
 
 
(   ̂)  

     

 

where σ is the residual standard error from the regression of M on X and C.  

Estimating the mediated effect 

 Using the potential outcomes framework, the mediation equations can be written 

in terms of marginal structural models (MSM) (Coffman & Zhong, 2012; VanderWeele 

& Vansteelandt, 2009). As can be seen in equations 8 and 9, marginal structural models 

are written in terms of potential outcomes rather than observed outcomes because the 

Expectations are written in terms of different potential values X=x and M=m. The MSM 

equations represent possible varying levels of the treatment and mediator which is used to 

define causal effects based on the potential outcomes.  

 

(8)  E [M | X=x] = i0M + a x.        
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(9)  E [Y| M=m, X=x] = i0Y + b m + c’ x.       

 

The causal effect of a one unit increase in the level of a continuous M (from m to m’) on 

Y in the control group can be defined as: 

 

(10)  E [Y(0, m) – Y(0, m’)] = (i0Y + b m) – (i0Y + b m’) = b (m-m’).       

 

If the treatment in the mediation model is randomized, then only equation 9 is 

weighted using the propensity scores. If the treatment is not randomized, then equation 8 

(the effect of X on M) should also be weighted. The null hypothesis stating that the 

product of the a and b paths is equal to zero can be tested to assess mediation (Coffman 

& Zhong, 2012).  

IPW with truncated weights 

 A possible problem in propensity weighting is the presence of extreme weights. 

Extreme variation in the weights can yield high variance and instability in the estimates. 

A solution to reduce the impact of extreme weights is weight truncation (Potter, 1993). 

Weight truncation is generally performed by trimming the weights that are larger or 

smaller than some values (e.g., cutpoints at the 1st or 99th percentile of the weight 

distribution). Yet, simulation studies show that even though weight trimming can 

improve the performance of propensity score weights in some conditions, it can also 

induce bias in other conditions (Lee, Lessler, & Stuart, 2011). Therefore, researchers are 

advised to use weight trimming with caution and focus more on improving the 
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specification of the propensity score model rather than relying on post-hoc methods such 

as trimming (Lee et al., 2011).  

Assumptions 

Two main identifying assumptions for causal effects under the propensity score 

model are (1) Stable Unit Treatment Value Assumption (SUTVA), and (2)  all possible 

confounders for the X to Y, M to Y, and X to M relations are measured. The Stable unit 

treatment value assumption assumes that the potential outcomes for an individual do not 

depend on the treatment assignment or mediator level of other individuals (i.e., no 

interference between individuals). Also, using the propensity score approach, it is 

assumed that a set of confounders are measured such that conditional ignorability holds 

and the propensity score is greater than zero and less than one to support it. It should be 

noted that the no unmeasured confounders assumption is also made under regression 

adjustment methods such as analysis of covariance. Because this assumption is very 

difficult to satisfy, researchers should be careful when interpreting their results because 

the estimates could be affected by confounding. Furthermore, no X and M interaction on 

Y is assumed.  

Augmented inverse propensity weighting estimator 

 Another inverse weighting estimator is the augmented inverse propensity 

weighting method. Similar to the inverse propensity weighting method, augmented 

inverse propensity weighting requires a two-step analysis: first running a regression 

model to create the propensity score, and then running the outcome regression models for 

the treatment and control groups separately. The confounders used in the propensity 
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approach to predict the probability of treatment assignment can also contain information 

about the outcome variable. The augmented inverse propensity weighting method 

incorporates this additional information in its formula by adjusting the inverse propensity 

weighting estimator by a weighted average of the two regression estimators of the 

outcome for treatment and control groups leading to more efficient estimates (Glynn & 

Quinn, 2010).  

Relying on misspecified models can bias the estimated effects of the propensity 

score method.  An advantage of augmented inverse propensity weighting is its double 

robustness, in that it is a consistent estimator of the treatment effect if either (i) the 

propensity score model is correctly specified or (ii) the outcome regression models are 

correctly specified (Schafstein, Rotnitzky, & Robins, 1999; see Glynn & Quinn, 2010 for 

a proof of double robustness). Therefore the augmented inverse propensity weighting 

method may lead to better results when there is uncertainty about either the propensity 

model or the outcome model. A Monte Carlo simulation study comparing the augmented 

inverse propensity weighting estimator to a regression estimator, an inverse propensity 

weighting estimator, and a propensity score matching estimator found that the augmented 

inverse propensity weighting estimator had similar or lower mean square error compared 

to three other estimators in the case of misspecification of one of the propensity score or 

outcome models (Glynn & Quinn, 2010).  Additionally, different standard error estimates 

for the treatment effect estimated with the augmented inverse propensity weighting 

method are available. Many of those standard error estimates such as a sandwich 

estimator (Lunceford & Davidian, 2004) and bootstrap standard error estimates (Imbens, 
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2004) can be implemented in the R package called “Causal GAM” (Glynn & Quinn, 

2009). The augmented inverse propensity weighting estimator is not yet implemented for 

mediator effects, to my knowledge, but may be useful for mediation analysis     

  1.2.1.2     Sequential g-estimation 

 G-computation is a method to identify the controlled direct effect in the presence 

of post-treatment confounders (Robins, 1986). Post-treatment confounders in a mediation 

model are confounders of the M to Y relation that are influenced by the treatment; they 

can bias the direct effect (i.e., c') estimate. An example of post-treatment confounders for 

the M to Y relationship may be the variable socio-economic status (SES) in a mediation 

chain where educational attainment influences unhealthy eating behavior which then 

influences blood pressure. In this example, SES may be influenced by the educational 

attainment and also influence both eating behavior and blood pressure. Another example 

of post-treatment confounders in mediation may be alliance with the therapist in an 

intervention program to treat depression.   

 The g-computation method attempts to estimate all potential values in a research 

design by using the estimated distribution of the measured confounders given values of 

X. The mean outcome is computed for each combination of values of the predictors in the 

outcome model to find the expected outcome values within levels of X, M, and C. 

Estimating the conditional outcome under each possible combination implies a solution 

to the missing data problem in determining causal effects. 

 The g-computation method can be difficult to implement when estimating the 

joint distribution of the confounders as a function of treatment in the case of many 
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confounders, since the method requires estimating all predicted potential outcomes. A 

simpler method is sequential g-estimation that also allows the researchers to directly 

model the effect of treatment on the outcome (Vansteelandt, 2009; Goetgeluk, 

Vanteelandt, & Goetghebeur, 2008; Joffe & Green, 2009). The sequential g-estimator is 

equivalent to g-computation method in the case of linear models.  

 The sequential g-estimator is implemented in two steps in which the first step 

removes the effect of the mediator from the outcome variable and in the second step the 

direct effect is estimated. First, the outcome is regressed on the treatment, mediator, and 

confounders using ordinary least squares regression to find the mediator's effect on the 

outcome (this is referred as the mediator model). Then, the mediator's effect is removed 

from the outcome by using the coefficient reflecting the effect of M on Y, (Y - βm M). 

Next, this residual outcome is regressed on the treatment to find the remaining direct 

effect of X on Y (this is referred as the outcome model): 

 

 (11) E(Y - βm M | X) = α0 + ψ X 

 

 Note that the above equation for the residual outcome can also include the 

baseline confounders, but not post-treatment confounders. The standard error for the 

sequential g-estimator, ψ, may be biased since it does not account for the uncertainty in 

the estimation of the mediator's effect. Therefore, bootstrapping can be used for the 

estimation of the standard error.  
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 Similar to the IPW method, the sequential g-estimation also has the following 

assumptions: (1) Stable Unit Treatment Value Assumption (SUTVA), and (2)  all 

possible confounders for the X to Y, M to Y, and X to M relations are measured. 

Doubly robust sequential g-estimation 

 Since the sequential g-estimation method fits two models in its estimation (by first 

estimating a mediator model and then an outcome model as described above), it may be 

prone to be biased by misspecification in either of these two models.  A doubly robust 

sequential g-estimation method is suggested in the literature in which the estimated direct 

effect is robust to misspecifications in either the mediator or the outcome model. The 

method is expected to produce bias in the direct effect estimates when both parts of its 

estimation process are misspecified (Schafer & Kang, 2008). Doubly robust sequential g-

estimation involves the following steps: in the first step, a propensity model for the 

mediator is fitted as in the IPW method; then, in the second step, the outcome regression 

is fitted using the propensity weights. Even though this method to estimate the controlled 

direct effects has been recommended, its performance has never been tested in simulation 

studies.  
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Chapter 2 

CURRENT STUDY 

 The overall purpose of the proposed study is to evaluate how confounders affect 

estimation of direct and indirect effects and to evaluate several methods that may 

improve estimation of direct and indirect effects when confounders are present.  The 

methods are compared in a simulation study.  

Recent literature suggests various methods to deal with the assumption of no 

unmeasured confounders for the M to Y relation in mediation analysis. The methods 

differ in how adjustment is made for confounders.  The inverse propensity weighting 

(IPW) method uses a propensity model in which mediator group membership is weighted 

conditional on the confounders that are measured before the mediator. In a mediation 

context, the IPW method achieves causal estimation of direct and indirect effects by 

regressing the outcome on the treatment and mediator, after weighting each individual by 

the inverse of his/her probability of the mediator status conditional on the treatment and 

confounders (i.e., mimicking randomization of the mediator using measured 

confounders). Another method, sequential g-estimation uses an outcome model where the 

direct effect is estimated after removing the association between the mediator and 

outcome.  

Simulation studies show that the inverse propensity weighting approach produces 

roughly unbiased estimates of the indirect effects when all confounders are measured and 

included in the propensity model (Coffman & Zhong, 2012). Similarly, sequential g-

estimation produces unbiased estimates of the direct effect in the case of including all 
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post-treatment confounders in the estimation process, whereas linear regression with 

adjustment does not (Loeys et al., 2013). Additionally, sequential-g estimation produces 

roughly unbiased direct effect estimates even as the association between the post-

treatment confounder and the outcome increases. In contrast, the adjusted regression and 

IPW estimators get increasingly biased as the association between the post-treatment 

confounder and the outcome increases (Vansteelandt, 2009).   

The current dissertation investigates the statistical performance of methods to 

detect direct and indirect effects using a large simulation study. Most of the recent 

literature on causal inference methods for indirect and direct effects in the presence of a 

mediator includes small simulation studies in a limited number of conditions (Lepage et 

al., 2012). The studies generally ignore effect sizes, statistical power, Type I error rates, 

and confidence interval coverage. This study aims to compare five methods in terms of 

bias, relative bias, mean square error, statistical power, Type I error rates, and confidence 

interval coverage. I explore how robust the methods are to violation of the no omitted 

variables assumption in model estimation and to the size of confounder effect in the case 

of various sample size conditions. Another contribution of the study is that it investigates 

a doubly robust g-estimation method that has been briefly suggested in the literature 

(Vansteelandt & Keiding, 2011), but has never been, to my knowledge, described in 

detail nor tested.  

The five methods investigated in this study are: IPW, IPW with truncated weights, 

sequential g-estimation, doubly robust sequential g-estimation, and linear regression with 

adjustment. One of the reasons I chose to focus on these specific methods is that they can 
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accommodate continuous mediators. The methods are used to estimate the total indirect 

and direct effects in a single mediator model with two post-treatment confounders of the  

M to Y relation. 

2.1     Research Questions and Predictions 

 Below are the specific research questions explored followed by predictions:  

1. How robust are the methods to the violation of the no unmeasured confounders 

assumption? Does the doubly robust sequential g-estimation outperform the other 

methods investigated?  

It is predicted that the doubly robust method will outperform all the other methods 

except when  there is violation of the no omitted confounders assumption in the 

estimation of both the mediator and outcome models.  

2. Does the IPW method lead to biased estimates when the effect of the treatment 

and post-treatment confounders on the mediator are extreme (i.e., the a, d, and f 

paths are either small or large in Figure 2 below)?  

In the case of the IPW method, when the effects of the treatment and the post-

treatment confounders on the mediator are small, the weights used for each  

subject become highly influential and may lead to inaccurate results. Conversely, 

if M has strong predictors, then weights may be extremely large or extremely 

small.  Because of their ability to deal with extreme weights for some individuals,  

it is expected that the IPW with truncated weights and the sequential g-estimation 

methods will lead to less biased estimates, higher statistical power, and better 

coverage compared to the IPW method.  
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3. Does the bias in estimates increase as the effect of the treatment on the 

confounders increases (i.e., paths g and h in Figure 2)?  

The relative bias of the direct effect in the presence of a mediator occurs when the 

confounders for the M to Y path are influenced by the treatment. Thus, it is 

expected that the relative bias will increase as the effect of the treatment on the 

post-treatment confounders increases. I predict that sequential g-estimation will 

outperform the IPW method in the case of a large effect of the treatment on the 

confounders, since the sequential g-estimation aims to eliminate the M to Y path 

when estimating the direct effect of the treatment on the outcome.  

4. Does a smaller effect of the mediator on the outcome (i.e., the b path in Figure 2) 

lead to less bias in the direct effect estimates under each method?  

It is expected that the relative bias in the direct effect estimates will decrease as 

the b path decreases.  

5. Does the bias in estimates for the direct effect (i.e., the c' path in Figure 2) 

decrease as the effect size for the direct effect increases?  

It is expected that the relative bias in the direct effect and the total indirect effect 

estimates will decrease as the c' path increases.  

6. Does the bias of the direct and indirect effects decrease as sample size increases? 

Do the predicted effects specified above differ by sample size?  

The bias in the IPW estimator is expected to increase as N decreases due to 

weight instability.  
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2.2     Method 

2.2.1     Simulation overview 

 A Monte Carlo simulation study was conducted to examine the effect of 

confounder effect sizes and violation of assumption of no unmeasured confounders for 

the M to Y relation on the performance of five analysis methods (i.e., regression with 

adjustment, IPW, IPW with truncated weights, sequential g-estimation, and doubly robust 

sequential g-estimation) in a single mediator model with post-treatment confounder 

variables. There are two measured post-treatment confounder variables (C1 and C2) that 

are influenced by the treatment and that influence the mediator directly, and the outcome 

through a spurious relation induced by an unobserved confounder U (see figure 2 below). 

The model was generated for different sample sizes, with different effect sizes for the 

paths X to M, M to Y, X to C1, X to C2, C1 to M, and C2 to M. After the generation of the 

data, the five methods were used to estimate the direct and  indirect effect estimates in the 

single mediator model. To assess the effect of violation of the assumption of no 

unmeasured confounders, two models are estimated using the five methods: (a) a two-

confounders estimation of the model by including both post-treatment confounders (C1 

and C2)  in the estimation; (b) a one-confounder estimation of the model by including 

only the confounder C1 in the estimation and omitting the second confounder C2 from the 

estimation.   The results are then evaluated by examining bias in the parameter estimates, 

confidence interval coverage, statistical power and Type I error rates.  
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 The data were generated in SAS 9.3 with a total of 1000 replications per 

condition. The evaluation criteria measures, including bias, relative bias, and coverage, 

were also computed and analyzed in SAS.  

2.2.2     Data generation and simulation conditions 

 The following regression equations are specified in SAS in order to generate the 

population parameters. Figure 2 shows the simulated model. Exogenous variables are 

generated using the SAS RANNOR function to produce normally distributed random 

variables. The independent variable X is simulated to be binary to represent a treatment 

status (0 = control, 1 = treatment group). All other variables are simulated to be 

continuous with normally distributed error terms. There is an unobserved confounder U 

in the simulated model so that  there is only one path to be traced from X to Y for ease of 

interpretation.  

 

 (3.1)  M = a X + d C1 + f C2 + e1        

 (3.2) Y = c' X + b M + t U + e2 

 (3.3) C1 = gX + k U + e3 

 (3.4) C2 = h X + n U + e4 
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Figure 2. Generated model  

 

 The unstandardized regression parameters for the b and c' paths are varied as 0, 

.14, and .59. The effect of X on M (the a path), and the effects of C1 on M, and C2 on M 

(the paths d and f) are varied as .14, .39 and .59. The effect of X on C1 and C2 (the paths g 

and h) are varied as .14 and .59. The effects of C1 on M and C2 on M are set to be equal 

(i.e., the d and f paths), as wells as the effect of X on C1 and C2 (i.e., the g and h paths). 

The effects of the unobserved confounder U on C1, C2, and Y (i.e., the paths k, n, and t) 

are set equal to 1.0.  Mediation effect sizes were chosen following MacKinnon et al. 

(2002, 2004). Example correlation matrices for the study variables for two simulation 

conditions are given in Appendix A.  

 Sample sizes were simulated to be 250, 500 or 1000 to represent the sample sizes 

commonly found in social sciences, and to explore the case of a larger sample size of 

1000.  
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 To summarize, a 3 (N) × 3 (X → M) × 3 (M → Y) × 3 (X → Y) × 3 (C1 → M and 

C2 → M) × 2 (X → C1 and X → C2) factorial design yielding a total of 486 conditions 

was used in the simulation study. A total of 1,000 replications of each condition were 

conducted so 486,000 data sets were analyzed in the simulation study.  

2.2.3     Model estimation 

 The five methods of interest were applied to the generated data sets using two 

model estimation specifications: (a) The two-confounders estimation model including 

both of the population model confounders C1 and C2 in the estimation, and (b) the one-

confounder estimation model including only the confounder C1 in the estimation (i.e., 

omitting the second confounder C2 from the estimation). The case of one-confounder 

estimation model allows a test the robustness of methods to the violation of no omitted 

confounders assumption. As an exception, the one-confounder model for the doubly 

robust sequential g-estimation had three types of estimation where C2 was included in 

one part of the model but not another as will be described below.  

1) Linear regression with adjustment.  The linear outcome regression equation for 

the two-confounders estimation model includes X, M, and both C1 and C2 as 

predictors; and the one-confounder estimation model only includes X, M, and C1 

as predictors.  

2) Inverse propensity score weighting.  The two-confounders estimation for the 

propensity score model to create the weights for the mediator is specified by 

including X, C1 and C2 in estimating the denominator model. The one-confounder 

estimation was performed by only including X and C1 in estimating the 
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denominator model. In both cases, the weighted outcome model only includes X 

and M as predictors.  

3) Inverse propensity score weighting with truncated weights. The model 

specification is the same as the method (2) described above; yet weights are 

truncated at the 1st and the 99th percentile of the weight distribution as in Cole & 

Hérnan (2008). The truncation is conducted to avoid weighting certain 

observations too little or too much. 

4) Sequential g-estimation. The first step in which the outcome is regressed on the 

treatment, mediator, and confounders using ordinary least squares regression 

(referred to as the Q-model) is specified by including X, M, C1, and C2 as 

predictors in the two-confounders estimation model. Only X, M, and C1 are 

included in the one-confounder estimation model.  

5) Doubly robust sequential g-estimation. In the first step, the propensity model for 

the mediator is fitted as in method (2), the IPW method. Then, in the second step, 

the outcome regression is fitted using the propensity weights. For the doubly 

robust sequential g-estimation method, three one-confounder estimation models 

are fitted: (a) by omitting confounder C2 in only the mediator propensity model, 

(b) by omitting confounder C2 in only the outcome model, (c) by omitting 

confounder C2 in both the mediator propensity and outcome models. This allows 

for testing if the doubly robust method fails when both parts or one part of the 

estimated model omit the confounder C2 (Schafer & Kang, 2008).  
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 2.2.4     Data analysis, outcome measures and evaluation criteria 

 The c' path is the measure of the controlled direct effect of the treatment on the 

outcome. The total indirect effect is computed as subtracting the direct effect from the 

total effect (c-c').   For all methods, the percentile bootstrap with 1000 replications is 

used to calculate the 95% confidence intervals. In order to compute the percentile 

confidence intervals, the 1000 replicated coefficient estimates were saved and sorted in 

descending order to determine values at the 2.5 and 97.5 percentiles.  

 Bias of the c’ path and the indirect effect c-c' are defined as:  

 

    ( ̂ )   
  ∑( ̂     )

 

   

 

 

where R refers to the total number of replications,    refers to the true value of the 

coefficients, and  ̂   refers to the parameter estimate for replications r in condition c.  

Relative bias is defined as the ratio of bias to the true value. An estimator was considered 

as acceptable in terms of bias if the absolute value of relative bias was less than .10 (Flora 

& Curran, 2004).  
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Additionally, the mean square residual is defined as follows. Smaller values of MSE 

indicate higher stability of the parameter estimates. 
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 Type I error rates and statistical power are calculated using 5% level of 

significance, as it is the most common value used in social sciences. Type I error rate 

indicates the error of rejecting the null hypothesis that the direct effect (or indirect effect) 

is equal to zero (i.e., c'=0) in the simulation condition where actually the direct effect is 

equal to zero. In other words, the proportion of replications in which a significant effect 

is incorrectly detected represents Type I error rates when true values are set equal to zero. 

The proportion of replications in which a significant effect is correctly detected 

represents statistical power when true values are not equal to zero. The values were 

evaluated against the nominal .80 criterion for statistical power (Cohen, 1988). The 

liberal criterion of [.025, .075] was used to evaluate Type I error rates (Bradley, 1978). 

The statistical power was interpreted only in the conditions in which the Type I error 

rates were acceptable. Coverage is computed as the proportion of 95% confidence 

intervals that contains the true value. Coverage rates greater than 90% was evaluated as 

satisfactory (Collins, Schafer, & Kam, 2001).  
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Chapter 3 

RESULTS 

 There are two quantities that are examined in this research, the direct effect c’ and 

the indirect effect c-c’.  The first set of tables and figures describes results for the direct 

effect, and the second set of tables and figures describes results for the indirect effect.  

There are two types of estimated models -- a two-confounders estimation model and a 

one-confounder estimation model.  The two-confounders estimation model has all 

information on all variables for the different estimation techniques. The one-confounder 

estimation model has all information on all variables except for one confounding variable 

C2.   There are three types of simulation outcome variables. One group of outcome 

variables investigates the characteristics of estimates in terms of bias, relative bias, and 

mean square error.  The focus of the bias related results was the magnitude of bias rather 

than the sign of the bias, i.e., both larger negative bias and larger positive bias were 

described as increasing magnitude of bias. The second group of simulation outcome 

variables is based on the tests of statistical significance, Type 1 error, and statistical 

power. A third outcome variable is confidence interval coverage for each estimator. The 

results for three sample sizes are presented—N=250, 500, and 1000.  Because the bias 

related results were comparable across sample sizes, complete tabled results for N=500 

are shown and only mean square error results for all sample sizes are shown in Figures.  

 For the two-confounders estimation models, there are five estimation methods: (1) 

Ordinary Least Squares Regression, (2) Inverse probability weighting, (3) Inverse 

probability weighting with truncated weights, (4) Sequential g-estimation, and (5) Doubly 
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Robust Sequential g-estimation.  For one-confounder estimation models that omit 

Confounder 2 from the estimation, seven estimation methods are studied: (1) Ordinary 

Least Squares Regression, (2) Inverse probability weighting, (3) Inverse probability 

weighting with truncated weights, (4) Sequential g-estimation, (5) Robust Sequential g-

estimation that does not include information on Confounder 2 for the prediction of the 

mediator, (6) Robust Sequential g-estimation that does not include information on 

Confounder 2 for the prediction of the outcome variable, and (7) Robust Sequential g-

estimation that does not include information on Confounder 2 for the prediction of both 

the mediator and outcome variables.  

3.1 The direct effect, c' 

 3.1.1 Accuracy of point estimates 

 Tables 1 and 2 provide information about the robustness of methods to the 

violation of unmeasured confounders for the M to Y relation assumption. These tables 

address the research question, “How robust are the methods to violation of the 

assumption of unmeasured confounders of the M to Y relation?” As confounders of the 

M to Y relation are likely in most mediation studies these results are especially relevant. 

In Table 1, bias, relative bias, and mean square error of estimates of effects for two-

confounders estimation models are presented across different effect sizes for the relation 

between post-treatment confounders and the mediator, i.e., paths d and f. Table 2 presents 

the results for one-confounder estimation models where the confounder C2 was omitted 

from the analyses. This model with C2 omitted from the analysis corresponds to the 
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common case in mediation studies in which no measure of a confounder is available but a 

confounder may affect the analysis.   

 For the two-confounders estimation model results in Table 1, bias, relative bias 

and MSE increase as the effect of the post-treatment confounder on the mediator 

increases for all methods except for linear regression and sequential g-estimation. IPW 

had acceptable relative bias when confounder effect size was .14. The truncated IPW 

method results showed that weight trimming did not improve the performance of the IPW 

method in terms of bias. This finding may be due to the trimming rule used. Although 

trimming may be used to optimize propensity score weights, the optimal level of 

trimming may be difficult to determine and may not contribute to or have adverse effects 

in the estimation. Sequential g-estimation was unbiased across different effect sizes of the 

confounder and the direct path c'. The doubly robust sequential g-estimation method had 

unacceptable relative bias as the confounder effect size increased. This finding may be 

expected considering that the doubly robust g-estimation method uses IPW in its 

estimation process, and IPW method did not perform well when confounder effect sizes 

increased. Linear regression had unacceptable relative bias across conditions, and its 

performance was not influenced by the size of the confounder effect size. This finding 

can be explained by the fact that the confounders were post-treatment. As can be seen in 

Table 5, the bias of the linear regression estimates increases drastically as the effect of the 

treatment on the confounders (paths g and h) increases.  

 For one-confounder estimation models in Table 2, bias, relative bias and MSE 

increase as the effect of the post-treatment confounder on the mediator increases for all 
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methods. All methods have unacceptable relative bias rates, except for one condition for 

the sequential g-estimation method. The sequential g-estimation method has satisfactory 

bias performance when the direct effect and confounder effect sizes are .14. The results 

also show that doubly robust sequential g-estimation performs the worst when both the 

mediator and the outcome estimation models violate the no omitted variables assumption. 

As seen in Figures 3 and 4, the pattern of results is similar across different sample sizes.  
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Table 1 

Direct effect c' bias, relative bias, and mean square error by post-treatment confounders 

effect size (N=500) - two-confounders estimation model 

 
  c' effect size 

  0   .14   .59   

  Post treatment confounder effect size (paths d and f) 

Method  .14 .39 .59 .14 .39 .59 .14 .39 .59 

Regression Bias -.242 -.243 -.243 -.243 -.244 -.244 -.244 -.243 -.243 

 Rel.Bias  na na na -

1.736 

-

1.740 

-

1.739 

-.413 -.411 -.412 

 

 

MSE .093 .093 .093 .093 .093 .093 .094 .093 .093 

IPW Bias -.002 -.053 -.118 -.004 -.051 -.114 -.004 -.052 -.120 

 Rel.Bias na na na -.027 -.361 -.815 -.006 -.087 -.203 

 

 

MSE .021 .072 .126 .021 .071 .126 .021 .069 .126 

IPW trunc. Bias -.032 -.125 -.189 -.033 -.125 -.187 -.033 -.124 .189 

 Rel.Bias na na na -.39 -.892 -

1.339 

-.057 -.210 -.321 

 

 

MSE .020 .042 .067 .020 .041 .067 .020 .042 .069 

Seq. g-est. Bias .001 -.001 .000 -.001 -.001 .001 -.001 .002 -.001 

 Rel.Bias na na na -.006 -.007 .004 -.001 .003 -.002 

 

 

MSE .017 .018 .018 .017 .017 .018 .017 .017 .018 

R. seq. g-

est. 

Bias -.002 -.053 -.116 -.004 -.053 -.117 -.004 -.051 -.117 

 Rel.Bias na na na -.025 -.375 -.834 -.006 -.086 -.198 

 MSE .017 .025 .038 .017 .024 .038 .017 .024 .038 

Note: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW trunc.: IPW with truncated weights; Seq. g-est: sequential g-estimation; R. seq. g-est.: 

doubly robust sequential g-estimation.  
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Table 2 

Direct effect c' bias, relative bias, and mean square error by post-treatment confounders 

effect size (N=500) - one-confounder estimation models 

Note: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW trunc.: IPW with truncated weights; Seq. g-est: sequential g-estimation; R. seq. g-est. I: 

doubly robust sequential g-estimation with one-confounder estimation mediator model; R. seq. g-

est. II: doubly robust sequential g-estimation with one-confounder estimation outcome model; R. 

seq. g-est. III: doubly robust sequential g-estimation with one-confounder estimation mediator 

and outcome models.  

 

 

  c' effect size 

  0   .14   .59   

  Post treatment confounder effect size (paths d and f) 

Method  .14 .39 .59 .14 .39 .59 .14 .39 .59 

Regression Bias -.209 -.253 -.275 -.210 -.253 -.276 -.210 -.252 -.276 

 Rel.Bias na na na -1.498 -1.808 -1.970 -.356 -.427 -.467 

 

 

MSE .069 .091 .105 .070 .091 .105 .070 .091 .106 

IPW Bias -.033 -.125 -.187 -.035 -.123 -.186 -.035 -.124 -.191 

 Rel.Bias na na na -.249 -.879 -1.328 -.059 -.210 -.323 

 

 

MSE .021 .057 .094 .020 .056 .095 .021 .056 .095 

IPW trunc. Bias -.054 -.169 -.229 -.056 -.169 -.228 -.056 -.167 -.229 

 Rel.Bias na na na -.399 -.207 -1.627 -.095 -.284 -.389 

 

 

MSE .022 .053 .082 .022 .053 .082 .022 .053 .082 

Seq. g-est. Bias -.031 -.106 -.156 -.033 -.105 -.155 -.033 -.103 -.157 

 Rel.Bias na na na -.236 -.753 -1.110 .056 -.175 -.266 

 

 

MSE .018 .029 .043 .018 .028 .043 .018 .028 .044 

R. seq. g-est. I Bias -.033 -.125 -.188 -.035 -.124 -.188 -.035 -.123 -.189 

 Rel.Bias na na na -.246 -.889 -1.340 -.059 -.208 -.320 

 

 

MSE .018 .036 .059 .018 .035 .059 .018 .036 .059 

R. seq. g-est. II Bias -.184 -.218 -.252 -.185 -.218 -.252 -.186 -.217 -.252 

 Rel.Bias na na na -1.319 -1.557 -1.801 -.315 -.368 -.427 

 

 

MSE .059 .076 .094 .060 .076 .094 .060 .076 .094 

R. seq. g-est. III Bias -.210 -.267 -.295 -.210 -.267 -.295 -.211 -.266 -.295 

 Rel.Bias na na na -1.502 -1.904 -2.104 -.358 -.450 -.501 

 MSE .070 .101 .120 .070 .100 .119 .071 .101 .119 
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Figure 3. Direct effect c' mean square error by post-treatment confounders effect size and 

sample size - two-confounders estimation model  
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Figure 4. Direct effect c' mean square error by post-treatment confounders effect size and 

sample size - one-confounder estimation model 
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 Tables 3 and 4 investigate the research question, “Does the IPW method lead to 

biased estimates when the effect of the treatment (the a path) and post-treatment 

covariates (the d and f paths) on the mediator are extreme?” In the case of the IPW 

method, when the effects of the treatment and the post-treatment confounders on the 

mediator are too small, the weights used for each subject become highly influential and 

may lead to inaccurate results. Conversely, if M has strong predictors, then weights may 

be extremely large or extremely small.  Because of its ability to deal with extreme 

weights for some individuals,  IPW with truncated weights method was expected to lead 

to less biased estimates compared to the IPW method. 

 Tables 3 and 4 show that the bias in both the IPW and IPW with truncated 

weights estimates of the c' path increases as the a, d, and , f  paths increase in both two-

confounders and one-confounder estimation models. For the one-confounder estimation 

models reported in Table 4, relative bias of both IPW and IPW-truncated methods are 

unacceptable in nearly all conditions. For the two-confounders estimation models 

reported in Table 3, IPW has unacceptable relative bias when the a path and confounders 

effect sizes are larger than .14. Additionally, the truncated IPW method does not perform 

better than the conventional IPW method, contrary to my prediction. This can be 

explained by the weight trimming method used in this study (weights were trimmed at the 

1st and 99th percentile of the weight distribution). Other simulation studies showing that 

the truncated IPW method did not perform better than the conventional IPW method in 

many situations suggested that since the optimal trimming is difficult to determine, 

researchers should be focusing on the proper specification of the propensity scores rather 
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than weight trimming as a post-hoc method (Lee, Lessler, & Stuart, 2011). Figures 5 and 

6 show that the pattern of results does not differ substantially across different sample 

sizes. 

Table 3 

Direct effect c' bias, relative bias, and mean square error by a, d, and f  paths effect size 

(N=500) - two-confounders estimation models 

Note: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW trunc.: IPW with truncated weights; Seq. g-est: sequential g-estimation; R. seq. g-est.: 

doubly robust sequential g-estimation.  

 

 

 

  

  c'  effect size 

  0   .14   .59   

  a=d=f  paths effect size 

Method  .14 .39 .59 .14 .39 .59 .14 .39 .59 

Regression Bias -.242 -.242 -.241 -.241 -.246 -.244 -.243 -.241 -.244 

 Rel.Bias na na na -

1.723 

-1.755 -1.744 -.411 -.409 -.413 

 

 

MSE .092 .093 .093 .091 .094 .094 .093 .092 .094 

IPW Bias .000 -.051 -.146 -.000 -.052 -.140 -.001 -.050 -.152 

 Rel.Bias na na na -.002 -.371 -1 -.001 -.085 -.258 

 

 

MSE .020 .074 .137 .020 .069 .138 .020 .068 ..136 

IPW trunc. Bias -.015 -.128 -.236 -.015 -.130 -.237 -.015 -.126 -.242 

 Rel.Bias na na na -.104 -.931 -1.690 -.025 -.213 -.410 

 

 

MSE .018 .042 .086 .018 .041 .087 .018 .041 .091 

Seq. g-est. Bias .002 .000 .004 .002 -.004 .001 .002 .003 -.003 

 Rel.Bias na na na .014 -.028 -.008 .003 .005 -

..005 

 

 

MSE .016 .018 .018 .016 .017 .019 .016 .017 .020 

R. seq. g-

est. 

Bias .000 -.053 -.143 .000 -.056 -.145 .000 -.050 -.150 

 Rel.Bias na na na .003 -.402 -1.036 .001 -.086 -.254 

 MSE .016 .025 .048 .016 .024 .050 .016 .027 .050 
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Table 4 

Direct effect c' bias, relative bias, and mean square error by a, d, and f  paths effect size 

(N=500) - one-confounder estimation models 

  c' effect size 

  0   .14   .59   

  a=d=f paths effect size 

Method  .14 .39 .59 .14 .39 .59 .14 .39 .59 

Regression Bias -.192 -.254 -.315 -.191 -.258 -.318 -.193 -.253 -.319 

 Rel.Bias na na na -

1.366 

-

1.841 

-

2.271 

-.327 -.429 -.540 

 

 

MSE .062 .092 .128 .062 .093 .130 .062 .091 .130 

IPW Bias -.015 -.125 -.239 -.016 -.127 -.234 -.016 -.124 -.243 

 Rel.Bias na na na -.117 -.907 -

1.668 

-.028 -.211 -.411 

 

 

MSE .018 .057 .115 .018 .054 .118 .018 .055 .117 

IPW trunc. Bias -.027 -.172 -.286 -.026 -.174 -.289 -.027 -.170 -.291 

 Rel.Bias na na na -

0.187 

-

1.246 

-

2.064 

-.045 -.289 -.493 

 

 

MSE .018 .052 .109 .018 .052 .112 .018 .051 .113 

Seq. g-est. Bias -.015 -.106 -.195 -.014 -.111 -.197 -.015 -.104 -.200 

 Rel.Bias na na na -.102 -.790 -

1.407 

-.025 -.177 -.340 

 

 

MSE .016 .028 .056 .016 .028 .057 .016 .027 .059 

R. seq. g-est. 

I 

Bias -.016 -.126 -.236 -.015 -.130 -.236 -.015 -.125 -.241 

 Rel.Bias na na na -.109 -.926 -

1.687 

-.026 -.211 -.409 

 

 

MSE .016 .035 .079 .016 .035 .081 .016 .035 .082 

R. seq. g-est. 

II 

Bias -.182 -.218 -.280 -.182 -.221 -.283 -.183 -.217 -.284 

 Rel.Bias na na na -

1.297 

-

1.581 

-

2.019 

-.310 -.368 -.482 

 

 

MSE .058 .076 .111 .058 .076 .113 .059 .075 .113 

R. seq. g-est. 

III 

Bias -.192 -.268 -.344 -.192 -.272 -.345 .193 -.267 -.347 

 Rel.Bias na na na -

1.371 

-

1.940 

-

2.461 

-.327 -.453 -.588 

 MSE .062 .100 .150 .062 .101 .152 .063 .100 .153 

Note: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW trunc.: IPW with truncated weights; Seq. g-est: sequential g-estimation; R. seq. g-est. I: 
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doubly robust sequential g-estimation with one-confounder estimation mediator model; R. seq. g-

est. II: doubly robust sequential g-estimation with one-confounder estimation outcome model; R. 

seq. g-est. III: doubly robust sequential g-estimation with one-confounder estimation mediator 

and outcome models.  

 

 

 

Figure 5. Direct effect c' and mean square error by a, d, and f paths effect size and sample 

size - two-confounders estimation model 
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Figure 6. Direct effect c' mean square error by a, d, and f  paths effect size and sample 

size - one-confounder estimation model 
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 Tables 5 and 6 investigate the research question, “Does the bias in estimates for 

the methods increase as the effect of the treatment on the confounders increases, i.e., as 

paths g and h increase?” For the two-confounders estimation models in Table 5, results 

show that the bias, relative bias and MSE increase as the effect of the treatment on 

confounders increases for all methods except for sequential g-estimation. The sequential 

g-estimation is unbiased across conditions. Linear regression has unacceptable relative 

bias across conditions, and its bias increases drastically as the association between the 

treatment and post-treatment confounders increase. IPW has acceptable relative bias only 

when the direct effect is .59 and the relation between the treatment and confounders is 

.14. This indicates that neither IPW is a good choice of method of analysis in the case of 

post-treatment confounders. Additionally, weight trimming does not improve the 

performance of the IPW method. The doubly robust sequential g-estimation performs 

similar to the IPW method since it is using IPW in its estimation process.  

 In the case of one-confounder estimation model, as can be seen in Table 6, none 

of the methods has acceptable relative bias across conditions. As expected, the doubly 

robust g-estimation method performs the worst when the confounder C2 is omitted from 

both the mediator and outcome models. Figures 7 and 8 show that the pattern of results 

does not differ importantly across different sample sizes. 
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Table 5 

Direct effect c' bias, relative bias, and mean square error by g and h  paths effect size 

(N=500) - two-confounders estimation models 

 

  c' effect size 

  0  .14  .59  

  g=h paths effect size 

Method  .14 .59 .14 .59 .14 .59 

Regression Bias -.093 -.392 -.094 -.393 -.094 -.393 

 Rel.Bias na na -.673 -

2.804 

-.159 -.666 

 

 

MSE .020 .166 .020 .166 .020 .166 

IPW Bias -.041 -.074 -.040 -.072 -.040 -.076 

 Rel.Bias na na -.289 -.513 -.068 -.129 

 

 

MSE .067 .079 .066 .079 .066 .078 

IPW trunc. Bias -.083 -.148 -.083 -.148 -.082 -.150 

 Rel.Bias na na -.590 -

1.057 

-.139 -.254 

 

 

MSE .032 .055 .031 .054 .032 .055 

Seq. g-est. Bias -.001 -.001 -.001 .000 .000 -.000 

 Rel.Bias na na -.009 .003 .000 -.000 

 

 

MSE .017 .018 .017 .018 .017 .018 

R. seq. g-

est. 

Bias -.040 -.073 -.041 -.074 -.040 -.074 

 Rel.Bias na na -.291 -.532 -.067 -.126 

 MSE .021 .033 .020 .032 .021 .032 
Note: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW trunc.: IPW with truncated weights; Seq. g-est: sequential g-estimation; R. seq. g-est.: 

doubly robust sequential g-estimation.  
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Table 6 

Direct effect c' bias, relative bias, and mean square error by g and h  paths effect size 

(N=500) - one-confounder estimation models 

 
  c' effect size 

  0  .14  .59  

  g=h paths effect size 

Method  .14 .59 .14 .59 .14 .59 

Regression Bias -.127 -.364 -.127 -.365 -.127 -.365 

 Rel.Bias na na -.911 -2.607 -.215 -.619 

 

 

MSE .030 .148 .030 .148 .030 .148 

IPW Bias -.082 -.148 -.083 -.147 -.083 -.150 

 Rel.Bias na na -.590 -1.048 -.140 -.254 

 

 

MSE .044 .070 .045 .069 .045 .069 

IPW trunc. Bias -.109 -.193 -.109 -.192 -.108 -.194 

 Rel.Bias na na -.781 -1.375 -.183 -.328 

 

 

MSE .035 .070 .035 .069 .035 .070 

Seq. g-est. Bias -.070 -.125 -.071 -.125 -.070 -.126 

 Rel.Bias na na -.506 -.893 -.118 -.213 

 

 

MSE .022 .038 .022 .037 .022 .038 

R. seq. g-est. 

I 

Bias -.083 -.148 -.083 -.148 -.082 -.149 

 Rel.Bias na na -.591 -1.059 -.139 -.252 

 

 

MSE .026 .050 .025 .050 .025 .050 

R. seq. g-est. 

II 

Bias -.101 -.334 -.102 -.334 -.102 -.335 

 Rel.Bias na na -.730 -2.388 -.172 -.567 

 

 

MSE .025 .128 .025 .128 .025 .128 

R. seq. g-est. 

III 

Bias -.137 -.378 -.137 -.377 -.137 -.378 

 Rel.Bias na na -.978 -2.695 -.232 -.641 

 MSE .034 .160 .034 .159 .034 .160 

Note: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW trunc.: IPW with truncated weights; Seq. g-est: sequential g-estimation; R. seq. g-est. I: 

doubly robust sequential g-estimation with one-confounder estimation mediator model; R. seq. g-

est. II: doubly robust sequential g-estimation with one-confounder estimation outcome model; R. 

seq. g-est. III: doubly robust sequential g-estimation with one-confounder estimation mediator 

and outcome models.  
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Figure 7. Direct effect c' mean square error by g and h  paths effect size and sample size - 

two-confounders estimation model 
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Figure 8. Direct effect c' mean square error by g and h  paths effect size and sample size - 

one-confounder estimation model 
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 Tables 7 and 8 investigate the research question, “Does a small effect of the 

mediator on the outcome (i.e., the b path) lead to less bias in the controlled direct 

estimates under each method?” Since the b path is biased by the post-treatment 

confounders that influence both the mediator and the outcome, it is possible that the bias 

in mediation parameter estimates may be influenced by the effect size of the b path.  

 Tables 7 and 8 show that for both two-confounders and one-confounder 

estimation models, bias in the c' parameter estimate was not influenced by the effect size 

of the b path. In the case of two-confounders estimation model, linear regression did not 

have acceptable relative bias across conditions and had the highest bias compared to 

other methods. IPW had acceptable relative bias only when the direct effect was .59. IPW 

truncated did not have acceptable relative bias for neither condition. Sequential g-

estimation was unbiased across conditions. Yet, the doubly robust g-estimation was only 

unbiased when c' was equal to .59. This finding again indicates that the doubly robust 

sequential g-estimation followed the pattern of IPW method since its estimation partly 

uses IPW. In the case of one-confounder estimation models, none of the methods had 

acceptable relative bias. Figures 9 and 10 show that results were similar across sample 

size conditions. 
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Table 7 

Direct effect c' bias, relative bias, and mean square error by b path effect size (N=500) - 

two-confounders estimation models 

  c' effect size 

  0   .14   .59   

  b path effect size 

Method  0 .14 .59 0 .14 .59 0 .14 .59 

Regression Bias -.242 -.243 -.244 -.244 -.243 -.243 -.243 -.243 -.244 

 Rel.Bias na na na -

1.743 

-1.738 -1.735 -.412 -.411 -.413 

 

 

MSE .092 .093 .094 .093 .093 .093 .094 .093 .093 

IPW Bias -.053 -.059 -.060 -.057 -.057 -.054 -.060 -.058 -.058 

 Rel.Bias na na na -.410 -.400 -.386 -.101 -.097 -.098 

 

 

MSE .072 .074 .073 .073 .074 .071 .072 .073 .071 

IPW trunc. Bias -.114 -.115 -.118 -.116 -.116 -.114 -.116 -.114 -.116 

 Rel.Bias na na na -.831 -.826 -.813 -.197 -.194 .197 

 

 

MSE .042 .043 .044 .043 .043 .042 .044 .043 .043 

Seq. g-est. Bias .002 .000 -.002 -.002 .000 .000 -.000 .000 -.000 

 Rel.Bias na na  -.012 .000 .003 -.000 .001 -.000 

 

 

MSE .017 .018 .017 .017 .017 .017 .018 .017 .017 

R. seq. g-

est. 

Bias -.055 -.056 -.059 -.059 -.057 -.056 -.057 -.056 -.057 

 Rel.Bias na na na -.424 -.410 -.400 -.097 -.095 -.097 

 MSE .026 .027 .027 .027 .027 .026 .027 .026 .026 

Note: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW trunc.: IPW with truncated weights; Seq. g-est: sequential g-estimation; R. seq. g-est.: 

doubly robust sequential g-estimation.  
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Table 8 

Direct effect c' bias, relative bias, and mean square error by b path effect size (N=500) - 

one-confounder estimation models 

  c' effect size 

  0   .14   .59   

  b path effect size 

Method  0 .14 .59 0 .14 .59 0 .14 .59 

Regression Bias -.244 -.245 -.247 -.247 -.246 -.246 -.246 -.246 -.247 

 Rel.Bias na na na -

1.764 

-

1.758 

-

1.754 

-.417 -.416 -.418 

 

 

MSE .088 .089 .090 .089 .089 .089 .089 .089 .089 

IPW Bias -.114 -.113 -.118 -.117 -.116 -.111 -.116 -.117 -.117 

 Rel.Bias na na na -.838 -.825 -.794 -.196 -.198 -.198 

 

 

MSE .056 .057 .058 .058 .057 .056 .057 .059 .057 

IPW trunc. Bias -.149 -.150 -.153 -.152 -.152 -.149 -.151 -.150 -.151 

 Rel.Bias na na na -

1.087 

-

1.084 

-

1.063 

-.255 -.255 -.257 

 

 

MSE .052 .052 .053 .052 .052 .051 .053 .052 .052 

Seq. g-est. Bias -.096 -.097 -.100 -.099 -.098 -.097 -.097 -.097 -.098 

 Rel.Bias na na na -.709 -.697 -.692 -.165 -.165 -.166 

 

 

MSE .029 .030 .030 .030 .030 .029 .030 .030 .030 

R. seq. g-est. 

I 

Bias -.114 -.114 -.118 -.117 -.115 -.114 -.115 -.115 -.116 

 Rel.Bias na na na -.837 -.824 -.813 -.195 .195 -.197 

 

 

MSE .037 .038 .038 .038 .037 .037 .038 .037 .038 

R. seq. g-est. 

II 

Bias -.217 -.217 -.220 -.220 -.218 -.217 -.219 -.217 -.219 

 Rel.Bias na na na -

1.568 

-

1.559 

-

1.550 

-.370 -.368 -.371 

 

 

MSE .076 .076 .077 .077 .077 .076 .077 .076 .077 

R. seq. g-est. 

III 

Bias -.256 -.257 -.259 -.258 -.257 -.256 -.257 -.257 -.258 

 Rel.Bias na na na -

1.845 

-

1.837 

-

1.828 

-.436 -.435 -.438 

 MSE .096 .096 .098 .097 .097 .096 .097 .097 .097 

Note: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW trunc.: IPW with truncated weights; Seq. g-est: sequential g-estimation; R. seq. g-est. I: 

doubly robust sequential g-estimation with one-confounder estimation mediator model; R. seq. g-

est. II: doubly robust sequential g-estimation with one-confounder estimation outcome model; R. 

seq. g-est. III: doubly robust sequential g-estimation with one-confounder estimation mediator 

and outcome models.   
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Figure 9. Direct effect c' mean square error by b path effect size and sample size - two-

confounders estimation model 
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Figure 10. Direct effect c' mean square error by b path effect size and sample size - one-

confounder estimation model 
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 3.1.2 Statistical power and Type I error rates 

 

 The liberal criterion of [.025, .075] was used to evaluate Type I error rates 

(Bradley, 1978). Statistical power values were evaluated against the nominal .80 criterion 

(Cohen, 1988). The statistical power was interpreted only for the conditions in which the 

Type I error rates were acceptable.  

 In the case of two-confounders estimation models in Figure 11, Type I error rates 

for the linear regression were out of bounds across confounder effect size conditions and 

thus the statistical power results for that method were not interpreted. For the IPW 

methods, as the confounder effect size increased, Type I error rates increased and power 

decreased. Yet, the IPW methods had acceptable Type I error rates only when the 

confounder effect size was .14, and had statistical power greater than .80 for that 

condition only when the direct effect was equal to .59. The sequential g-estimation had 

good Type I error rates across conditions with a nominal value around .05 and good 

statistical power when the direct effect was .59. Yet, the doubly robust sequential g-

estimation only had acceptable Type I error rates when the confounder effect size was .14 

and good statistical power for that condition when the direct effect was equal to .59, 

again following the pattern of the IPW method.  

 In the case of one-confounder estimation models in Figure 12, Type I error rates 

were out of bounds for the linear regression, doubly robust g-estimation with the omitted 

C2 in the outcome model, and doubly robust g-estimation with the omitted C2 in both the 

mediator and outcome models; thus the power results were not interpreted for these 

methods. Type I error rates were acceptable for the IPW methods, and the sequential g-
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estimation, and the doubly robust sequential g-estimation when the confounder effect size 

was .14 and for that condition they reached power greater than .80 only when the direct 

effect was equal to .59.  
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Note1: Values represent Type I error rates when c'=0.  

Note2: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg: robust sequential g-

estimation.  

 

Figure 11. Direct effect c' power and Type I error rates by post-treatment confounders 

effect size and sample size - two-confounders estimation model  
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Note1: Values represent Type I error rates when c'=0.  

Note2: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg_I: doubly robust 

sequential g-estimation with one-confounder estimation mediator model; R-Seqg_II: doubly 

robust sequential g-estimation with one-confounder estimation outcome model; R-Seqg_III: 

doubly robust sequential g-estimation with one-confounder estimation mediator and outcome 

models.  

 

Figure 12. Direct effect c' power and Type I error rates by post-treatment confounders 

effect size and sample size - one-confounder estimation model  
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 Figures 13 and 14 investigate whether  the IPW method performs better when the 

a path and confounder effect sizes are not extreme and if the truncated IPW method has a 

better performance than the conventional IPW method. In the case of both two-

confounders and one-confounder estimation models, the IPW method had acceptable 

Type I error rates when the a path and confounder effect sizes were .14. When the a path 

and confounder effect sizes were equal to .14, IPW had power greater than .80 only when 

the direct effect was equal to .59. Additionally, weight trimming did not contribute to the 

Type I error rate and power performance of the IPW method.  
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Note1: Values represent Type I error rates when c'=0.  

Note2: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg: robust sequential g-

estimation. 

 

 

Figure 13. Direct effect c' power and Type I error rates by a, d, and f  paths effect size 

and sample size - two-confounders estimation model 
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Note1: Values represent Type I error rates when c'=0.  

Note2: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg_I: doubly robust 

sequential g-estimation with one-confounder estimation mediator model; R-Seqg_II: doubly 

robust sequential g-estimation with one-confounder estimation outcome model; R-Seqg_III: 

doubly robust sequential g-estimation with one-confounder estimation mediator and outcome 

models.  

 

 

Figure 14. Direct effect c' power and Type I error rates by a, d, and f  paths effect size 

and sample size - one-confounder estimation model 
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 Figures 15 and 16 investigate the Type I error rate and statistical power 

performance of the direct effect for different values of the treatment and confounder 

relation. Results indicate that linear regression had increasing Type I error rates as the 

effect of the treatment on the confounder increased and its Type I error rates were out of 

bounds across conditions for both the two-confounders and one-confounder estimation 

models. For the two-confounders estimation models in Figure 15, IPW methods had 

acceptable Type I error rates only when the effect of the treatment on the confounder was 

equal to .14; and for that condition, the IPW methods had power greater than .80 when 

the direct effect was .59 for sample sizes of 500 and 1000. The sequential g-estimation 

had Type I error rates around .05 across conditions, and its power was greater than .80 

across all sample sizes when c' was .59.  In the case of one-confounder estimation models 

in Figure 16, none of the methods had acceptable Type I error rates across conditions.  
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Note1: Values represent Type I error rates when c'=0.  

Note2: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg: robust sequential g-

estimation. 

 

 

Figure 15. Direct effect c' power and Type I error rates by g and h  paths effect size and 

sample size - two-confounders estimation model 
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Note1: Values represent Type I error rates when c'=0.  

Note2: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg_I: doubly robust 

sequential g-estimation with one-confounder estimation mediator model; R-Seqg_II: doubly 

robust sequential g-estimation with one-confounder estimation outcome model; R-Seqg_III: 

doubly robust sequential g-estimation with one-confounder estimation mediator and outcome 

models.  

 

Figure 16. Direct effect c' power and Type I error rates by g and h  paths effect size and 

sample size - one-confounder estimation model 
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 Figures 17-18 show that for both two-confounders estimation and one-confounder 

estimation models Type I error rates and statistical power were not influenced by the 

effect size of the b path. For the two-confounders estimation models shown in Figure 17, 

only sequential g-estimation had acceptable Type I error rates across conditions, and its 

statistical power was greater than .80 when c' was equal to .59. In the case of one-

confounder estimation models shown in Figure 18, none of the methods had acceptable 

Type I error rates across conditions; thus power results were not interpreted.  
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Note1: Values represent Type I error rates when c'=0.  

Note2: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg: robust sequential g-

estimation. 
 

Figure 17. Direct effect c' power and Type I error rates by b path effect size and sample 

size - two-confounders estimation model 
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Note1: Values represent Type I error rates when c'=0.  

Note2: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg_I: doubly robust 

sequential g-estimation with one-confounder estimation mediator model; R-Seqg_II: doubly 

robust sequential g-estimation with one-confounder estimation outcome model; R-Seqg_III: 

doubly robust sequential g-estimation with one-confounder estimation mediator and outcome 

models.  

 

Figure 18. Direct effect c' power and Type I error rates by b path effect size and sample 

size - one-confounder estimation model 
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 3.1.3 Confidence interval coverage 

 

 Figures 19-20 show that confidence interval coverage for the direct effect c' 

decreases as the effect of the confounders on the mediator decrease, except for the 

sequential g-estimation and linear regression methods. Sequential g-estimation has good 

coverage across different confounder effect sizes when the models are correctly specified. 

The linear regression method has the lowest coverage compared to other methods for 

both two-confounders estimation and one-confounder estimation models. Also, for the 

one-confounder estimation case, the coverage of the doubly robust sequential g-

estimation with the one-confounder estimation outcome model and doubly robust 

sequential g-estimation with the one-confounder estimation outcome and mediator 

models is as low as the coverage of the adjusted linear regression method. The pattern of 

results is similar across different sample sizes.  
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Note: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg: robust sequential g-

estimation. 

 

Figure 19. Direct effect c' confidence interval coverage by post-treatment confounders 

effect size and sample size - two-confounders estimation model 
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Note: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg_I: doubly robust 

sequential g-estimation with one-confounder estimation mediator model; R-Seqg_II: doubly 

robust sequential g-estimation with one-confounder estimation outcome model; R-Seqg_III: 

doubly robust sequential g-estimation with one-confounder estimation mediator and outcome 

models.  

 

Figure 20. Direct effect c' confidence interval coverage by post-treatment confounders 

effect size and sample size - one-confounder estimation model   
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 Figures 21-22 show that confidence interval coverage decreases as the effect of 

the treatment and confounders on the mediator decrease, except for the sequential g-

estimation and linear regression methods. Sequential g-estimation has good coverage 

across different confounder effect sizes when the models are correctly specified. For the 

two-confounders estimation models, the coverage of the IPW-truncated method gets 

much lower as sample size increases compared to the conventional IPW method.  

 The linear regression method has the lowest coverage compared to other methods 

for both two-confounders estimation and one-confounder estimation models. Also, for the 

one-confounder estimation case, the coverage of the doubly robust sequential g-

estimation with the one-confounder estimation outcome model and doubly robust 

sequential g-estimation with the one-confounder estimation outcome and mediator 

models is as low as the coverage of the adjusted linear regression method. The pattern of 

results is similar across different sample sizes.  

 

 

  



 

72 

 

 

 
 
Note: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg: robust sequential g-

estimation. 

 

Figure 21. Direct effect c' confidence interval coverage by a, d, and f paths effect size 

and sample size - two-confounders estimation model 
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Note: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg_I: doubly robust 

sequential g-estimation with one-confounder estimation mediator model; R-Seqg_II: doubly 

robust sequential g-estimation with one-confounder estimation outcome model; R-Seqg_III: 

doubly robust sequential g-estimation with one-confounder estimation mediator and outcome 

models.  

 

Figure 22. Direct effect c' confidence interval coverage by a, d, and f  paths effect size 

and sample size - one-confounder estimation model 
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 Figure 23 show that for the two-confounders estimation models, the coverage of 

the linear regression method decreases as the effect of the treatment on the confounders 

increases. For the one-confounder estimation model as depicted in Figure 24, the 

coverage of the linear regression, doubly robust sequential g-estimation with the one-

confounder estimation outcome model and doubly robust sequential g-estimation with the 

one-confounder estimation outcome and mediator models decreases steeply as the effect 

of the treatment on the confounders increases.  
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Note: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg: robust sequential g-

estimation. 

 

Figure 23. Direct effect c' confidence interval coverage by g and h  paths effect size and 

sample size - two-confounders estimation model 
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Note: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg_I: doubly robust 

sequential g-estimation with one-confounder estimation mediator model; R-Seqg_II: doubly 

robust sequential g-estimation with one-confounder estimation outcome model; R-Seqg_III: 

doubly robust sequential g-estimation with one-confounder estimation mediator and outcome 

models.  

 

Figure 24. Direct effect c' confidence interval coverage by g and h  paths effect size and 

sample size - one-confounder estimation model 
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 Figures 25-26 show that the confidence interval coverage of the direct effect is 

not influenced by the size of the b path for any of the methods.  

 

Note: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg: robust sequential g-

estimation. 

 

Figure 25. Direct effect c' confidence interval coverage by b path effect size and sample 

size - two-confounders estimation model 
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Note2: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg_I: doubly robust 

sequential g-estimation with one-confounder estimation mediator model; R-Seqg_II: doubly 

robust sequential g-estimation with one-confounder estimation outcome model; R-Seqg_III: 

doubly robust sequential g-estimation with one-confounder estimation mediator and outcome 

models.  

 

Figure 26. Direct effect c' confidence interval coverage by b path effect size and sample 

size - one-confounder estimation model 
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3.2 The indirect effect, c-c' 

 3.2.1 Accuracy of point estimates 

 Tables 9 and 10 address the research question, “How robust are the methods to 

the violation of the assumption of unmeasured confounders of the M to Y relation?” for 

the indirect effect. In Table 9, bias, relative bias, and mean square error of estimates of 

effects for two-confounders estimation models are presented across different effect sizes 

for the relation between post-treatment confounders and the mediator, i.e., paths d and f. 

Table 10 presents the results for one-confounder estimation models where the confounder 

C2 was omitted from the analyses.  

 For the two-confounders estimation model results in Table 9, bias, relative bias 

and MSE for the indirect effect increase as the effect of the post-treatment confounder on 

the mediator increases for all methods except for linear regression and sequential g-

estimation. IPW had acceptable relative bias when only confounder effect size was .14. 

The truncated IPW method did not have acceptable relative bias in any of the simulation 

conditions. Again, this finding may be due to the trimming rule used. Determining which 

level of trimming to be used may be difficult and so weight trimming may have adverse 

effects in the estimation. Sequential g-estimation was unbiased across different effect 

sizes of the confounder and the indirect effect. The doubly robust sequential g-estimation 

had unacceptable relative bias as the confounder effect size increased. This finding may 

be consistent with the fact that the doubly robust g-estimation method uses IPW in its 

estimation process and so follow the bias pattern of the IPW method. Linear regression 

had unacceptable relative bias across conditions and its performance was not influenced 
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by the size of the confounder effect size. This finding again can be explained by the fact 

that the confounders were post-treatment.  

 In the case of one-confounder estimation models in Table 10, all methods have 

unacceptable relative bias rates. Bias, relative bias and MSE for the indirect effect 

estimates increase as the effect of the post-treatment confounder on the mediator 

increases for all methods.. The results again also show that doubly robust sequential g-

estimation performs the worst when both the mediator and the outcome estimation 

models violate the no omitted variables assumption. Figures 27 and 28 show that the 

pattern of results is similar across different sample sizes. 
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Table 9 

Indirect effect c-c' bias, relative bias, and mean square error by post-treatment 

confounders effect size (N=500) - two-confounders estimation models  

 
  c-c' effect size 

  0   0 < … <.39     

>.39 

  

  Post treatment confounder effect size (paths d and f) 

Method  .14 .39 .59 .14 .39 .59 .14 .39 .59 

Regression Bias .243 .242 .244 .229 .227 .206 .391 .293 .319 

 Rel.Bias na na na 2.649 1.963 1.655 .878 .547 .536 

 

 

MSE .088 .087 .088 .084 .085 .077 .166 .125 .145 

IPW Bias .003 .051 .117 .003 .047 .107 .006 .066 .140 

 Rel.Bias na na na .033 .419 .880 .013 .130 .236 

 

 

MSE .005 .056 .111 .006 .056 .115 .009 .065 .134 

IPW trunc. Bias .032 .125 .189 .031 .111 .167 .053 .163 .234 

 Rel.Bias na na na .322 .997 1.369 .120 .319 .398 

 

 

MSE .004 .028 .056 .006 .028 .054 .011 .047 .088 

Seq. g-est. Bias -.000 -.000 .000 .000 .000 .000 .000 -.001 -.001 

 Rel.Bias na na na .000 -.002 .004 .000 -.001 .002 

 

 

MSE .001 .001 .002 .002 .003 .004 .005 .007 .012 

R. seq. g-

est. 

Bias .003 .052 .118 .003 .046 .103 .003 .068 .144 

 Rel.Bias na na na .028 .414 .843 .008 .133 .245 

 MSE .001 .009 .025 .003 .010 .025 .006 .021 .047 

Note: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW trunc.: IPW with truncated weights; Seq. g-est: sequential g-estimation; R. seq. g-est.: 

doubly robust sequential g-estimation.  
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Table 10 

Indirect effect c-c' bias, relative bias, and mean square error by post-treatment 

confounders effect size (N=500) - one-confounder estimation models 

Note: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW trunc.: IPW with truncated weights; Seq. g-est: sequential g-estimation; R. seq. g-est. I: 

doubly robust sequential g-estimation with one-confounder estimation mediator model; R. seq. g-

est. II: doubly robust sequential g-estimation with one-confounder estimation outcome model; R. 

seq. g-est. III: doubly robust sequential g-estimation with one-confounder estimation mediator 

and outcome models.  

  c-c' effect size 

  0   0 < … <.39  >.39   

  Post treatment confounder effect size (paths d and f) 

Method  .14 .39 .59 .14 .39 .59 .14 .39 .59 

Regression Bias .209 .252 .276 .198 .231 .239 .336 .316 .350 

 Rel.Bias na na na 2.252 2.041 1.937 .755 .602 .594 

 

 

MSE .062 .084 .098 .060 .079 .087 .125 .129 .157 

IPW Bias .034 .124 .190 .032 .112 .166 .055 .160 .231 

 Rel.Bias na na na .335 1.012 1.353 .124 .313 .394 

 

 

MSE .005 .042 .083 .006 .042 .080 .011 .061 .115 

IPW trunc. Bias .055 .169 .229 .052 .150 .203 .088 .221 .282 

 Rel.Bias na na na .542 1.359 1.658 .198 .432 .481 

 

 

MSE .006 .040 .071 .008 .038 .066 .016 .068 .111 

Seq. g-est. Bias .032 .104 .156 .031 .094 .138 .052 .138 .194 

 Rel.Bias na na na .317 .845 1.125 .116 .269 .331 

 

 

MSE .002 .014 .031 .004 .015 .030 .008 .030 .057 

R. seq. g-est. 

I 

Bias .034 .124 .189 .032 .111 .166 .053 .162 .233 

 Rel.Bias na na na .332 1.000 1.358 .120 .380 .399 

 

 

MSE .002 .022 .048 .004 .022 .044 .009 .042 .080 

R. seq. g-est. 

II 

Bias .185 .217 .253 .174 .201 .217 .297 .268 .321 

 Rel.Bias na na na 2.004 1.754 1.763 .666 .507 .544 

 

 

MSE .052 .068 .087 .051 .065 .077 .099 .104 .141 

R. seq. g-est. 

III 

Bias .211 .266 .296 .198 .244 .257 .338 .334 .373 

 Rel.Bias na na na 2.251 2.150 2.084 .759 .609 .633 

 MSE .063 .093 .112 .060 .086 .099 .126 .144 .177 
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Figure 27. Indirect effect c-c' mean square error by post-treatment confounders effect 

size and sample size - two-confounders estimation model  
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Figure 28. Indirect effect c-c' mean square error by post-treatment confounders effect 

size and sample size - one-confounder estimation model  
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 Tables 11 and 12 especially investigate the performance of the IPW indirect effect 

estimates depending on the effect of the treatment (the a path) and post-treatment 

covariates (the d and f paths). Results show that the bias in both the IPW and IPW-

truncated estimates of the c-c' estimate get larger as the a, d, and, f paths increase in both 

two-confounders estimation and one-confounder estimation models. The IPW method 

had only acceptable relative bias less than .10 in one condition where the confounder 

effect size was .14 and the indirect effect was between 0 and .39 for the two-confounders 

estimation model in Table 11. For the one-confounder estimation model, neither the IPW 

nor the IPW-truncated had acceptable relative bias in any of the simulation conditions. 

Figures 29 and 30 showing the MSE results for the indirect effect indicate that the pattern 

of the results were similar across sample sizes.  

 Please note that some tables and figures for the indirect effect results have empty 

cells for some conditions (e.g., tables 11 and 12 have the empty cells for the case of c-c' ≥ 

.39 and a=d=f=.14). These are the conditions that were not available in the simulation. 

The study was designed to simulate specific effect sizes for the direct effect c', and not 

for the indirect effect c-c'. Thus, the true indirect effect estimates were realized as a result 

of the simulated values for the direct effect which led to some of these missing 

conditions.  
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Table 11 

Indirect effect c-c' bias, relative bias, and mean square error by a, d, and f  paths effect 

size (N=500) - two-confounders estimation models 

Note1: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW trunc.: IPW with truncated weights; Seq. g-est: sequential g-estimation; R. seq. g-est.: 

doubly robust sequential g-estimation.  

Note2: na: not applicable.   

                                               c-c' effect size 

  0   0 < … <.39  >.39 

  a=d=f paths effect size 

Method  .14 .39 .59 .14 .39 .59 .14 .39 .59 

Regression Bias .245 .241 .24

4 

.243 .193 .247 na .391 .243 

 Rel.Bias na na na 3.980 1.638 1.559 na .780 .362 

 

 

MSE .088 .087 .08

8 

.090 .069 .093 na .173 .109 

IPW Bias .002 .052 .14

6 

.001 .047 .157 na .059 .140 

 Rel.Bias na na na .041 .396 1.106 na .118 .228 

 

 

MSE .004 .056 .12

3 

.006 .056 .129 na .064 .135 

IPW trunc. Bias .018 .128 .23

9 

.016 .116 .243 na .160 .237 

 Rel.Bias na na na .302 1.003 1.709 na .318 .390 

 

 

MSE .002 .027 .07

6 

.004 .028 .080 na .045 .092 

Seq. g-est. Bias .000 -

.001 

.00

0 

-.000 -.000 .002 na -.001 -.000 

 Rel.Bias na na na -.003 -.005 .014 na -.003 -.001 

 

 

MSE .000 .001 .00

3 

.002 .003 .004 na .007 .012 

R. seq. g-

est. 

Bias .002 .052 .14

8 

.001 .048 .149 na .066 .145 

 Rel.Bias na na na .023 .409 1.042 na .131 .241 

 MSE .000 .009 .03

6 

.002 .010 .038 na .020 .049 
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Table 12 

Indirect effect c-c' bias, relative bias, and mean square error by a, d, and f  paths effect 

size (N=500) - one-confounder estimation models 

                                                     c-c' effect size 

  0   0 < … <.39  >.39   

  a=d=f paths effect size 

Method  .14 .39 .59 .14 .39 .59 .14 .39 .59 

Regression Bias .194 .254 .318 .193 .215 .321 na .373 .317 

 Rel.Bias na na na 3.206 1.838 2.164 na .743 .506 

 

 

MSE .055 .084 .122 .058 .069 .127 na .157 .143 

IPW Bias .018 .125 .238 .017 .116 .243 na .152 .238 

 Rel.Bias na na na .325 1.001 1.706 na .302 .393 

 

 

MSE .003 .042 .106 .005 .042 .109 na .058 .120 

IPW trunc. Bias .029 .172 .289 .028 .156 .293 na .215 .288 

 Rel.Bias na na na .513 1.349 2.058 na .428 .475 

 

 

MSE .003 .039 .101 .005 .037 .105 na .065 .118 

Seq. g-est. Bias .017 .106 .199 .016 .097 .200 na .134 .198 

 Rel.Bias na na na .296 .836 1.402 na .267 .328 

 

 

MSE .001 .014 .045 .003 .015 .048 na .028 .060 

R. seq. g-est. 

I 

Bias .017 .126 .239 .017 .115 .241 na .159 .238 

 Rel.Bias na na na .311 .988 1.692 na .316 .393 

 

 

MSE .001 .021 .070 .003 .021 .072 na .040 .085 

R. seq. g-est. 

II 

Bias .186 .217 .284 .183 .180 .285 na .334 .282 

 Rel.Bias na na na 2.994 1.531 1.906 na .666 .445 

 

 

MSE .052 .068 .105 .053 .056 .109 na .132 .125 

R. seq. g-est. 

III 

Bias .196 .268 .346 .193 .228 .349 na .389 .345 

 Rel.Bias na na na 3.196 1.952 2.372 na .775 .553 

 MSE .056 .093 .144 .058 .077 .149 na .172 .165 

Note: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW trunc.: IPW with truncated weights; Seq. g-est: sequential g-estimation; R. seq. g-est. I: 

doubly robust sequential g-estimation with one-confounder estimation mediator model; R. seq. g-

est. II: doubly robust sequential g-estimation with one-confounder estimation outcome model; R. 

seq. g-est. III: doubly robust sequential g-estimation with one-confounder estimation mediator 

and outcome models.  
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Figure 29. Indirect effect c-c' mean square error by a, d, and f  paths effect size and 

sample size - two-confounders estimation model  
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Figure 30. Indirect effect c-c' mean square error by a, d, and f  paths effect size and 

sample size - one-confounder estimation model  
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 Tables 13 and 14 investigate whether the bias in the indirect effect estimates 

increases as the effect of the treatment on the confounders increases, i.e., as paths g and h 

increase. For the two-confounders estimation models in Table 13, the bias for the linear 

regression estimate of the indirect effect significantly increases as the relation between 

the treatment and confounders increases. Linear regression had no acceptable relative 

bias in any of the conditions. Similar to the direct effect results, the indirect effect results 

also indicate that linear regression produces biased effect estimates when confounders are 

post-treatment. Sequential g-estimation had unbiased estimates across conditions. The 

IPW methods and the robust g-estimation had unacceptable relative bias across 

conditions. In the case of one-confounder estimation model, none of the methods had 

acceptable relative bias in any of the conditions. Figures 31 and 32 indicate that results 

were similar across sample size conditions.  
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Table 13 

Indirect effect c-c' bias, relative bias, and mean square error by g and h  paths effect size 

(N=500) - two-confounders estimation models 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW trunc.: IPW with truncated weights; Seq. g-est: sequential g-estimation; R. seq. g-est.: 

doubly robust sequential g-estimation.  

  

                                    c-c' effect size 

  0  0 < … <.39 >.39  

         g=h paths effect size 

Method  .14 .59 .14 .59 .14 .59 

Regression Bias .093 .393 .093 .393 .092 .394 

 Rel.Bias na na 1.173 3.440 .214 .706 

 

 

MSE .015 .161 .021 .165 .031 .177 

IPW Bias .040 .074 .036 .061 .076 .102 

 Rel.Bias na na .377 .428 .175 .166 

 

 

MSE .051 .064 .052 .055 .089 .094 

IPW trunc. Bias .082 .149 .073 .126 .150 .196 

 Rel.Bias na na .773 .925 .348 .329 

 

 

MSE .018 .041 .020 .035 .047 .068 

Seq. g-est. Bias .000 .000 .000 -.000 -.001 .001 

 Rel.Bias na na .001 -.000 -.002 .001 

 

 

MSE .001 .002 .003 .003 .008 .009 

R. seq. g-

est. 

Bias .040 .075 .034 .060 .081 .103 

 Rel.Bias na na .357 .422 .188 .169 

 MSE .006 .018 .008 .016 .024 .034 
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Table 14 

Indirect effect c-c' bias, relative bias, and mean square error by g and h  paths effect size 

(N=500) - one-confounder estimation models 

  c-c' effect size 

  0  0 < … <.39 >.39  

  g=h paths effect size 

Method  .14 .59 .14 .59 .14 .59 

Regression Bias .127 .365 .120 .354 .178 .388 

 Rel.Bias na na 1.400 3.020 .415 .684 

 

 

MSE .022 .140 .026 .136 .053 .173 

IPW Bias .082 .149 .073 .126 .151 .193 

 Rel.Bias na na .778 .932 .351 .323 

 

 

MSE .031 .056 .032 .048 .066 .087 

IPW trunc. Bias .108 .193 .097 .166 .193 .249 

 Rel.Bias na na 1.036 1.241 .449 .420 

 

 

MSE .022 .056 .023 .048 .060 .091 

Seq. g-est. Bias .070 .125 .063 .107 .128 .164 

 Rel.Bias na na .663 .791 .296 .275 

 

 

MSE .008 .024 .011 .021 .030 .044 

R. seq. g-est. 

I 

Bias .082 .149 .073 .126 .152 .195 

 Rel.Bias na na .775 .926 .352 .327 

 

 

MSE .012 .036 .014 .031 .040 .063 

R. seq. g-est. 

II 

Bias .102 .335 .096 .327 .139 .351 

 Rel.Bias na na 1.145 2.801 .324 .619 

 

 

MSE .017 .121 .022 .118 .044 .147 

R. seq. g-est. 

III 

Bias .137 .378 .128 .365 .200 .405 

 Rel.Bias na na 1.480 3.093 .466 .713 

 MSE .026 .153 .030 .146 .064 .190 
Note: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW trunc.: IPW with truncated weights; Seq. g-est: sequential g-estimation; R. seq. g-est. I: 

doubly robust sequential g-estimation with one-confounder estimation mediator model; R. seq. g-
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est. II: doubly robust sequential g-estimation with one-confounder estimation outcome model; R. 

seq. g-est. III: doubly robust sequential g-estimation with one-confounder estimation mediator 

and outcome models.  

 

 

 

Figure 31. Indirect effect c-c' mean square error by g and h  paths effect size and sample 

size - two-confounders estimation model  
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Figure 32. Indirect effect c-c' mean square error by g and h  paths effect size and sample 

size - one-confounder estimation model  
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  3.2.2 Statistical power and Type I error rates 

 

 The liberal criterion of [.025, .075] was used to evaluate Type I error rates for the 

indirect effect (Bradley, 1978). Statistical power values were evaluated against the 

nominal .80 criterion (Cohen, 1988). Again, the statistical power was interpreted only for 

the conditions in which the Type I error rates were acceptable.  

 Figures 33 and 34 investigate the relation between confounder effect size and the 

statistical power and Type I error rates. In the case of two-confounders estimation 

models, Type I error rates for the linear regression were out of bounds across confounder 

effect size conditions and thus the statistical power results for that method were not 

interpreted. Sequential g-estimation had good Type I error rates around the nominal value 

.05 and good statistical power across conditions. Both IPW methods had acceptable Type 

I error rates only when the confounder effect size was .14. When the confounder effect 

size was .14, IPW methods had power greater than .80 when the indirect effect estimate 

was greater than .39. The doubly robust g-estimation again followed the same pattern as 

the IPW method and had good Type I error rates only when the confounder effect size 

was .14 and good statistical power for that condition when the indirect effect was greater 

than .39.  

 In the case of one-confounder estimation models in Figure 34, Type I error rates 

for the indirect effect were greater than .075 for all methods across conditions; thus the 

power results were not interpreted.  
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Note1: Values represent Type I error rates when c-c' =0.  

Note2: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg: robust sequential g-

estimation. 

 

Figure 33. Indirect effect c-c' power and Type I error rates by post-treatment confounders 

effect size and sample size - two-confounders estimation model  
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Note1: Values represent Type I error rates when c-c' =0.  

Note2: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg_I: doubly robust 

sequential g-estimation with one-confounder estimation mediator model; R-Seqg_II: doubly 

robust sequential g-estimation with one-confounder estimation outcome model; R-Seqg_III: 

doubly robust sequential g-estimation with one-confounder estimation mediator and outcome 

models.  

 

Figure 34. Indirect effect c-c' power and Type I error rates by post-treatment confounders 

effect size and sample size - one-confounder estimation model  
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 Figures 35 and 36 investigate if the IPW method performs better when the a path 

and confounder effect sizes are not extreme and if the truncated IPW method has a better 

performance than the conventional IPW method. In the case of both two-confounders and 

one-confounder estimation models, both IPW and IPW-truncated methods had acceptable 

Type I error rates when the a path and confounder effect sizes were equal to .14. It would 

have been expected that when the a path and confounder effect sizes were .14, both IPW 

methods would have power greater than .80 when the indirect effect was greater than .39; 

however I did not have that simulation condition available to interpret.  
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Note1: Values represent Type I error rates when c-c' =0.  

Note2: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg: robust sequential g-

estimation. 

 

Figure 35. Indirect effect c-c' power and Type I error rates by a, d, and f  paths effect size 

and sample size - two-confounders estimation model   
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Note1: Values represent Type I error rates when c-c' =0.  

Note2: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg_I: doubly robust 

sequential g-estimation with one-confounder estimation mediator model; R-Seqg_II: doubly 

robust sequential g-estimation with one-confounder estimation outcome model; R-Seqg_III: 

doubly robust sequential g-estimation with one-confounder estimation mediator and outcome 

models.  

 

Figure 36. Indirect effect c-c' power and Type I error rates by a, d, and f  paths effect size 

and sample size - one-confounder estimation model  
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 Figures 37-38 explore whether the Type I error rates and statistical power of the 

indirect effect are influenced by the effect of the treatment on confounder (g and h paths). 

In the case of two-confounders estimation models, Type I error rates of linear regression 

increased as the effect size of the g and h paths increased; for all other methods, Type I 

error rates were not influenced by the size of the g and h paths. Linear regression had 

unacceptable Type I error rates and thus its statistical power was not interpreted. IPW 

methods had acceptable Type I error rates when the confounder effect size was equal to 

.14 for the sample sizes 250 and 500. Yet, only the truncated-IPW method had power 

greater than .80 for those conditions. In the case of one-confounder model shown in 

Figure 38, none of the methods had acceptable Type I error rates across conditions.  
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Note1: Values represent Type I error rates when c-c' =0.  

Note2: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg: robust sequential g-

estimation. 

 

Figure 37. Indirect effect c-c' power and Type I error rates by g and h  paths effect size 

and sample size - two-confounders estimation model  
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Note1: Values represent Type I error rates when c-c' =0.  

Note2: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg_I: doubly robust 

sequential g-estimation with one-confounder estimation mediator model; R-Seqg_II: doubly 

robust sequential g-estimation with one-confounder estimation outcome model; R-Seqg_III: 

doubly robust sequential g-estimation with one-confounder estimation mediator and outcome 

models.  

 

Figure 38. Indirect effect c-c' power and Type I error rates by g and h  paths effect size 

and sample size - one-confounder estimation model  
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 3.2.3 Confidence interval coverage 

 

 Figures 39-40 investigate if the confidence interval coverage of the indirect effect 

estimates is influenced by the size of the confounder effect (the d and f  paths). For the 

two-confounders estimation models, linear regression did not have coverage greater .90 

in any of the simulation conditions. For all other methods except for sequential g-

estimation, coverage decreases as the size of the d and f  paths increase. For the IPW, 

IPW-truncated, and the doubly robust g-estimation methods, coverage was greater than 

.90 only when the confounder effect size was equal to .14. Coverage of the sequential g-

estimation was robust to the size of the confounder effect and greater than .90 across 

conditions.  

 For the one-confounder estimation models in Figure 40, linear regression again 

did not have coverage greater than .90 in any of the conditions. IPW methods, sequential 

g-estimation and doubly robust sequential g-estimation with one-confounder estimation 

mediator model had coverage greater than .90 only when the confounder effect size was 

equal to .14 for the sample sizes 250 and 500. The doubly robust sequential g-estimation 

methods with one-confounder estimation outcome model and one-confounder estimation 

mediator and outcome model did not reach coverage greater than .90 in any conditions.  
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Note: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg: robust sequential g-

estimation. 

 

Figure 39. Indirect effect c-c' confidence interval coverage by post-treatment 

confounders effect size and sample size - two-confounders estimation model  
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Note: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg_I: doubly robust 

sequential g-estimation with one-confounder estimation mediator model; R-Seqg_II: doubly 

robust sequential g-estimation with one-confounder estimation outcome model; R-Seqg_III: 

doubly robust sequential g-estimation with one-confounder estimation mediator and outcome 

models.  

 

Figure 40. Indirect effect c-c' confidence interval coverage by post-treatment 

confounders effect size and sample size - one-confounder estimation model  
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 Figures 41 and 42 investigate whether the confidence interval coverage is 

influenced by the confounder effect size and the a path effect size. For the two-

confounders estimation models, linear regression did not have coverage greater .90 in any 

of the simulation conditions. For all other methods except for sequential g-estimation, 

coverage decreased as the size of the d and f  paths increased. For the IPW, IPW-

truncated, and the doubly robust g-estimation methods, coverage was greater than .90 

only when the confounder effect size was equal to .14. The truncated IPW method did not 

perform better than the conventional IPW method in terms of coverage. Coverage of the 

sequential g-estimation was robust to the size of the confounder effect and greater than 

.90 across conditions.  

 For the one-confounder estimation models in Figure 42, linear regression did not 

have coverage greater than .90 in any of the conditions. IPW methods, sequential g-

estimation and doubly robust sequential g-estimation with one-confounder estimation 

mediator model had coverage greater than .90 only when the confounder effect size was 

equal to .14 for the sample sizes 250 and 500. The coverage results for the truncated IPW 

method were similar to the conventional IPW methods. The doubly robust sequential g-

estimation methods with one-confounder estimation outcome model and one-confounder 

estimation mediator and outcome model did not reach coverage greater than .90 in any 

conditions.  
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Note: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg: robust sequential g-

estimation. 

 

Figure 41. Indirect effect c-c' confidence interval coverage by a, d, and f paths effect size 

and sample size - two-confounders estimation model  
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Note: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg_I: doubly robust 

sequential g-estimation with one-confounder estimation mediator model; R-Seqg_II: doubly 

robust sequential g-estimation with one-confounder estimation outcome model; R-Seqg_III: 

doubly robust sequential g-estimation with one-confounder estimation mediator and outcome 

models.  

 

Figure 42. Indirect effect c-c' confidence interval coverage by a, d, and f  paths effect 

size and sample size - one-confounder estimation model  
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 Figures 43-44 investigate if the confidence interval coverage of the indirect effect 

estimates is influenced by how much the confounder is influenced by the treatment (the g 

and h  paths). For the two-confounders estimation models, the coverage of the linear 

regression method decreases sharply when the size of the g and h  paths increase. The 

coverage of the linear regression method reaches .90 for the sample sizes 250 and 500 

when the indirect effect is greater than .39 and the effect size for relation between the 

treatment and confounder is equal to .14. The coverage of the IPW, truncated-IPW, and 

robust g-estimation methods is greater than .90 for the sample sizes 250 and 500 when 

the effect of the treatment on confounders is .14. Coverage of the sequential g-estimation 

was robust to the size of the confounder effect and greater than .90 across conditions.  

 For the one-confounder estimation models in Figure 44, coverage of the linear 

regression, the doubly robust sequential g-estimation methods with one-confounder 

estimation outcome model and one-confounder estimation mediator and outcome models 

decreased sharply as the effect of the treatment on the confounders increased and the 

methods did not have coverage greater than .90 in any of the conditions. The IPW 

methods had coverage greater than .90 only for the sample size of 250. Similarly, 

sequential g-estimation reached coverage greater than .90 only for the sample size of 250 

in the case of an indirect effect greater than zero.  
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Note: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg: robust sequential g-

estimation. 

 

Figure 43. Indirect effect c-c' confidence interval coverage by g and h  paths effect size 

and sample size - two-confounders estimation model  
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Note: Regression: linear regression adjusting for covariates; IPW: inverse propensity weighting; 

IPW-t.: IPW with truncated weights; Seq-g: sequential g-estimation; R-Seqg_I: doubly robust 

sequential g-estimation with one-confounder estimation mediator model; R-Seqg_II: doubly 

robust sequential g-estimation with one-confounder estimation outcome model; R-Seqg_III: 

doubly robust sequential g-estimation with one-confounder estimation mediator and outcome 

models.  

 

Figure 44. Indirect effect c-c' confidence interval coverage by g and h  paths effect size 

and sample size - one-confounder estimation model  
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Chapter 4 

DISCUSSION 

Mediation analysis is widely used in social and medical sciences for its key 

benefits to test and develop theory. The goal of mediation analysis is to investigate the 

causal mechanisms of a phenomenon. The purpose of this dissertation was to describe the 

causal inference challenge that mediation analysis confronts and describe solutions to 

overcome it. Randomized studies are accepted as the best approach to infer causality for 

X to Y relation. Yet, randomized X is not sufficient in the presence of a post-

randomization variable such as a mediator for causal inference about mediation because 

potential confounders may exist for the M to Y relation. Recent research in mediation has 

led to many advanced methods for estimating causal mediator effects, among those are 

inverse propensity weighting and g-estimation that have been reviewed in this 

dissertation.  The purpose of this dissertation was (1) to investigate how much traditional 

mediation methods are affected by confounding variables and (2) to assess the statistical 

performance of modern methods to address confounding variable effects in mediation 

analysis.  A large simulation study was designed to evaluate how robust the OLS and 

causal inference methods estimators of direct and indirect effects are to different 

confounder effect sizes and to the violation of no omitted variables assumption in terms 

of bias, statistical power and confidence interval coverage.  

4.1 Summary and discussion of results 

  To test the research question of how robust the methods are to different 

confounder effect sizes, models including the two post-treatment confounders were 
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estimated for each simulation condition across different mediation path effect sizes, 

confounder effect sizes and sample sizes (i.e., two-confounders estimation models). 

Results for the direct and indirect effects indicated that bias increased as the effect of the 

post-treatment confounder on the mediator increased for all methods except for linear 

regression and sequential g-estimation.  

In general sequential g-estimation was the best method compared to other 

methods in terms of bias, power and coverage. This finding was expected in this 

simulation study because the sequential g-estimation method is specifically designed to 

handle models with post-treatment confounders whereas linear regression and IPW 

methods are not. This study shows that that sequential g-estimation performs well in 

general with relative bias less than .10, Type I error rates around the .05 nominal value, 

power greater than .80 and coverage greater than .90 across different confounder effect 

size, direct effect size, and sample size conditions.  

The linear regression performance was poor in general, as the method had high 

bias, Type I error rates that were out of bounds, low statistical power and coverage. The 

main factor that influenced the performance of the linear regression method was the size 

of the relation between the treatment and the confounders. The bias of the linear 

regression estimates increased drastically as the effect of the treatment on the 

confounders increased showing that linear regression was failing when the confounders 

were post-treatment. This study did not have the condition in which the effect of the 

treatment on confounders was equal to zero, but I would expect linear regression to 

perform much better if the confounders of the M to Y relation were not post-treatment. 
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As a side note, I ran one condition where all confounder effects were equal to zero in 

order to check the simulation code, and in that situation all methods including linear 

regression were unbiased across conditions.  

The IPW method’s performance was mainly influenced by the confounder effect 

size. In general, it had acceptable bias, power, and coverage when the confounder effect 

size was small. In this study, I used a weighting strategy for the propensity score 

approach to causal mediation analysis; however other strategies such as matching or 

stratification may have performed better (Rubin & Thomas, 1992; Rosenbaum & Rubin, 

1984). Even though there is no study showing how matching would perform in the case 

of mediation analysis, propensity score studies addressing the X to Y relation indicate 

that matching works better than weighting to achieve unbiased causal estimates (Frolich, 

2004). Weighting estimates can be problematic since the estimates can be highly 

influenced by the assigned weights of individuals with propensity scores that are close to 

values 0 or 1 (Kang & Schafer, 2007; Schafer & Kang, 2008). In order to avoid extreme 

weights, the IPW method with truncated weights was also included in this dissertation. 

However, results showed that in general, the IPW-truncated method did not perform 

better than the conventional IPW method. This finding may be due to the trimming rule 

used in this study (weights were trimmed at the 1
st
 and 99

th
 percentile of the weight 

distribution) and some other trimming strategies may yield better results. Simulation 

studies point out that trimming may optimize propensity score weights by decreasing 

variability in the weights, the optimal level of trimming may be difficult to determine and 

may have adverse effects in estimation (Lee et al., 2011; Freedman & Berk 2008).  
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The pattern of results for the doubly robust sequential g-estimation method’s 

performance was in general similar to the IPW method rather than sequential g-

estimation. The doubly robust g-estimation method employed in this dissertation used 

IPW estimation, and results suggest that the performance of the doubly robust method 

was influenced heavily by the IPW part of the estimation. Doubly robust g-estimation 

method has been suggested in the literature as a superior method to g-estimation but has 

never been tested in simulation studies, making this finding important for researchers.  

To test the research question of how robust the methods are to the omission of 

potential confounders, the OLS regression and causal inference methods were applied to 

the generated data by omitting one of the confounders from the estimation (i.e., the one-

confounder estimation model). In general, none of the methods had acceptable relative 

bias in the simulation study. Omitting one of the confounders from estimation 

corresponded to the common case in mediation studies where no measure of a 

confounder is available but a confounder may affect the analysis. Failing to measure 

potential post-treatment confounder variables in a mediation model leads to biased 

estimates regardless of the analysis method used and emphasize the importance of 

sensitivity analysis for causal mediation analysis.  

For the doubly robust sequential g-estimation method, three one-confounder 

estimation models were obtained: (a) by omitting confounder C2 in only the mediator 

propensity model, (b) by omitting confounder C2 in only the outcome model, (c) by 

omitting confounder C2 in both the mediator propensity and outcome models. This 

allowed for testing if the doubly robust method fails when both parts or one part of the 
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estimated model omits the confounder C2. None of the three misspecifications for the 

doubly robust method had in general acceptable relative bias or Type I error rates, and the 

doubly robust method had the highest bias when both parts of its estimation process 

omitted the confounder C2. This finding was consistent with the warnings from the 

literature on the use of doubly robust methods (Schafer & Kang, 2008).  

4.2 Recommendations  

 Based on the current study, the following recommendations for applied 

researchers can be offered.  

 1. Researchers should carefully consider the potential confounder variables for 

their mediation model when designing the study and make an effort to measure the 

confounder variables. Failing to accommodate confounder variables in a mediation model 

leads to biased estimates of the direct and indirect effects.  

 2. It is important to identify the types of confounders to choose the analysis 

method to be implemented. In a mediation analysis, there may exist M to Y confounders. 

The simulation study in this dissertation shows that when these confounders are 

influenced by the treatment, sequential g-estimation produces unbiased estimates.  

3. Each method has a distinct specification of the direct and indirect effects that 

may not directly translate to the linear regression approach to mediation because the 

methods differ on how they control for confounders and assumptions. Researchers should 

pay attention to which effects they are interested in estimating and the assumptions made 

by the analysis method they choose.  For instance, the IPW method has assumptions such 
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as no XM interaction on Y that is not tested in the current simulation study, but its 

presence can bias estimates (Coffman & Zhong, 2012).   

 4. When using IPW methods, researchers need to be careful about extreme 

weights. In the case of applying weight trimming to avoid variability in the weight 

distribution, they should evaluate which trimming option best suits their data using 

evaluation criteria such as least mean square error (Potter, 1993).  However literature 

suggests that researchers rather focus on correct specifications of their propensity score 

model rather than relying on trimming methods (Lee et al., 2011).  

 5. Sensitivity analysis methods are highly recommended to evaluate how robust 

the mediated effect is to unmeasured third variables because researchers usually fail to 

assess all potential confounders. Sensitivity analysis has been an important area of 

research to improve causality in treatment effects when randomization has not been 

possible (Rosenbaum & Rubin, 1983). For example, Cornfield et al. (1959) found that the 

relationship between smoking and lung cancer can be significantly weakened if a 

confounder variable for that relationship would be nine times more frequent in heavy 

smokers compared to nonsmokers. Consequently, one can even argue that a statistical 

analysis is not complete without sensitivity analysis (Imai et al., 2010). Current literature 

suggests several sensitivity analysis methods for mediation analysis (Cox, Kisbu-

Sakarya, Miocevic, & MacKinnon, 2013). For example, an approach described by 

VanderWeele (2010) is based on the relation of the confounder to Y and the difference in 

proportion of persons with the confounder prevalence between treatment groups at the 

same level of the mediator. Another method presents confounder bias as correlated error 
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terms between the error in the mediator model and the error in the outcome model (Imai, 

Keele, & Yamamoto, 2010). The Imai et al. and VanderWeele methods both use potential 

outcomes definitions of mediated effects as described by Robins & Greenland (1992) and 

Pearl (2001; 2012). A third method by Mauro (1990) is based on the correlations of a 

potential confounder with study variables.  

6. In addition to the quantitative methods to deal with the sequential ignorability 

assumption, researchers can also improve their results by using several research designs 

that attempt to manipulate the mediator when it is both practically and ethically possible. 

Examples of these experimental designs are the enhancement design where exposure to 

the mediator is manipulated by enhancing the dose of the mediator, and the blockage 

design in which the mediator is blocked in one condition but not in another condition to 

investigate if the effect of the treatment depends on the mediator (Robins & Greenland, 

1992; Imai, Tingley, & Yamamoto, 2013; MacKinnon & Pirlott, 2013; Spencer, Zanna, 

& Fong, 2005; Bullock, Green, & Ha, 2010). These experimental designs can be 

combined with quantitative methods and sensitivity analysis to improve causal estimation 

of direct and indirect effects.  

4.3 Limitations 

The present research has a number of limitations. A first limitation was that I did 

not have a simulation condition where the effect of the treatment on the confounders was 

equal to zero (i.e., the confounders in the simulation were all post-treatment). This 

condition was not included because I needed to limit the number of conditions because of 

time considerations (e.g., the simulation was using bootstrapping technique that took a 
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considerable amount of time to run). The study was also focused on the performance of 

the methods in the case of post-treatment confounders. The results of the study showed a 

big effect of the size of the relation between the treatment and confounders on linear 

regression estimates. Therefore, it would be important to see how methods would 

perform when confounders were not influenced by the treatment.  

A second limitation of the simulation is that the results are limited to linear 

models.  All effects in the model were simulated to be linear, although situations such as 

nonlinear confounder effects may happen with real data.  Another limitation was that 

parameter values to generate the data were not based on Cohen’s small, medium, and 

large effect values. The parameter values for mediation paths were selected based on 

published papers for single mediator models without confounders, and the parameter 

values for confounder paths were then selected to be consistent with the values of the 

mediation paths. Attempts have been made to determine small, medium and large effect 

size values for the parameters by using covariance algebra; yet the large number of 

variables in the model made it difficult to choose the best combination of values.  

4.4 Conclusions and future directions 

The current study has shown that in the case of post-treatment confounders 

sequential g-estimation performs the best and other methods are heavily influenced by 

confounder effect size and how much the confounders are influenced by the treatment. 

Moreover, this dissertation demonstrated that failing to measure pot-treatment 

confounders of the M to Y relation may lead to bias in estimates.   
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Causal inference in the presence of mediating variables is an important area of 

research with recent advancements, yet there is need for future work on the investigation 

of the methods. The current study as well as recent studies in causal mediation analysis 

focuses on single mediator models. Future research should extent this framework to more 

complex situations such as multiple mediator, longitudinal and multilevel mediation 

models. For instance, it is assumed that there is no interference between study 

participants; thus the violation of this independence assumption should be investigated by 

studying multilevel models of causal mediation analysis. Even though applications in 

multilevel causal modeling exist, there is considerable need for analytical work and 

simulation studies (VanderWeele, 2010b; Hong & Raudenbush, 2006; Hong, 2010).  

Also, as stated in the study limitations, investigating nonlinear relations is an important 

area of research for causal mediation analysis. Future work should also focus more on 

sensitivity analysis methods. For instance, research shows that for the propensity score 

weighting approach, bias in the indirect effect increases as the number of confounders 

included in the model decreases (Coffman, 2011). Yet, a sensitivity analysis for the 

propensity score weighting method to assess the robustness of results to the number of 

confounders included in the propensity model is lacking.  

In this dissertation, I focused on the quantitative methods to analyze mediation 

models. However, another important area of work for causal mediation is the 

development of alternative experimental designs in which researchers manipulates the 

mediator as described above. There has been limited literature on new experimental 

designs for mediation. Future work is crucial on evaluating the advantages and 
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disadvantages of the proposed designs, clarifying the assumptions, and developing and 

illustrating the analysis of such designs. Such work in both experimental and quantitative 

approaches to mediation would encourage substantive researchers to apply causal 

mediation methods to real data. This dissertation has explored quantitative methods to 

improve causal inference in mediation analysis and has shown that causal analysis is 

critical in the presence of post-treatment confounders.  
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Table below presents the correlations between study variables for the simulation 

condition with the following parameter values: a=.14, b=.59, c’=.59, d=.14, f=.14, g=.14, 

h=.14, k=1, n=1, t=1.  

 

 

 

 

 

 

 

 

Table below presents the correlations between study variables for the simulation 

condition with the following parameter values: a=.14, b=.59, c’=.59, d=.39, f=.39, g=.14, 

h=.14, k=1, n=1, t=1.  

 

 

 X M Y C1 C2 U 

X 1 .17 .39 .10 .10 0 

M  1 .23 .20 .20 .26 

Y   1 .50 .50 .65 

C1    1 .50 .70 

C2     1 .70 

U      1 

 X M Y C1 C2 U 

X 1 .18 .36 .10 .10 0 

M  1 .46 .41 .41 .56 

Y   1 .54 .54 .72 

C1    1 .50 .70 

C2     1 .70 

U      1 


