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ABSTRACT  

   

Transmission expansion planning (TEP) is a complex decision making process 

that requires comprehensive analysis to determine the time, location, and number of 

electric power transmission facilities that are needed in the future power grid. This 

dissertation investigates the topic of solving TEP problems for large power systems.  

The dissertation can be divided into two parts. The first part of this dissertation 

focuses on developing a more accurate network model for TEP study. First, a mixed-

integer linear programming (MILP) based TEP model is proposed for solving multi-stage 

TEP problems. Compared with previous work, the proposed approach reduces the 

number of variables and constraints needed and improves the computational efficiency 

significantly. Second, the AC power flow model is applied to TEP models. Relaxations 

and reformulations are proposed to make the AC model based TEP problem solvable. 

Third, a convexified AC network model is proposed for TEP studies with reactive power 

and off-nominal bus voltage magnitudes included in the model. A MILP-based loss 

model and its relaxations are also investigated. 

The second part of this dissertation investigates the uncertainty modeling issues in 

the TEP problem. A two-stage stochastic TEP model is proposed and decomposition 

algorithms based on the L-shaped method and progressive hedging (PH) are developed to 

solve the stochastic model. Results indicate that the stochastic TEP model can give a 

more accurate estimation of the annual operating cost as compared to the deterministic 

TEP model which focuses only on the peak load. 

  



ii 

ACKNOWLEDGMENTS  

   

First, I would like to express my deepest gratitude to my advisors, Dr. Vijay Vittal 

and Dr. Gerald T. Heydt. It has been a great fortune and pleasure to work with them 

during the past three years. Their guidance, support and encouragement throughout my 

research have significantly influenced my Ph.D. career.  

I am very grateful to Dr. Hans D. Mittelmann and Dr. Kory W. Hedman for 

serving on my Ph.D. Committee. Dr. Mittelmann has generously provided me with many 

of his computational resources, which significantly facilitated my Ph.D. research. Dr. 

Hedman’s insightful comments and constructive criticisms at different stages of my 

research were thought provoking and helped hold a high standard of this dissertation. 

This work is supported in part by the U.S. Department of Energy under a 

subcontract from contract DOE-FOA0000068 assigned to the Western Electricity 

Coordinating Council (WECC). I would like to thank Mr. Bradley Nickell and Mr. 

Keegan Moyer for providing financial support throughout my Ph.D. research and the 

internship opportunities with WECC. It was a great pleasure and wonderful experience to 

work with the transmission planning team at WECC. My special acknowledgment goes 

to Mr. Michael Bailey for his kind guidance and mentoring during my internship. 

In addition, I am also very thankful to Dr. Jaime Quintero and Dr. Yacine 

Chakhchoukh for their valuable comments and suggestions on my research. Finally, I 

would like to thank my friends Fan Miao, Xing Liu, Dexinghui Kong, Xuan Wu, Iknoor 

Singh, Parag Mitra and Nitin Prakash at Arizona State University power engineering 

group for the joyful days we spent together.   



iii 

TABLE OF CONTENTS 

Page 

TABLE OF CONTENTS ................................................................................................. iii 

LIST OF TABLES ........................................................................................................... vii 

LIST OF FIGURES .......................................................................................................... ix 

Chapter 1 RESEARCH BACKGROUND AND LITERATURE REVIEW ...................1 

1.1 Motivation and Research Objectives .................................................................1 

1.2 Transmission Expansion Planning: A Literature Review ..................................2 

TEP Modeling and Solution Techniques .................................................... 3 

Treatment of Uncertainty ............................................................................ 5 

Planning Horizon ........................................................................................ 7 

1.3 Dissertation Outline ...........................................................................................7 

1.4 Main Contributions ............................................................................................8 

Chapter 2 POWER SYSTEMS ESSENTIALS ...............................................................10 

2.1 Chapter Overview ............................................................................................10 

2.2 Modeling of Network Components .................................................................10 

Transmission Lines ................................................................................... 10 

Transformers ............................................................................................. 12 

Loads and Shunts ...................................................................................... 14 

Generators ................................................................................................. 15 

2.3 Steady State Power System Analysis ..............................................................15 

Power Flow ............................................................................................... 15 

The N – 1 Reliability Criterion ................................................................. 17 

2.4 Economic Dispatch ..........................................................................................18 



iv 

Optimal Power Flow ................................................................................. 18 

Locational Marginal Price ......................................................................... 21 

Chapter 3 TRANSMISSION EXPANSION PLANNING USING THE DC MODEL 23 

3.1 Chapter Overview ............................................................................................23 

3.2 TEP Model Based on the Lossless DC Model .................................................24 

3.3 Modeling Network Losses – An LP Model .....................................................28 

3.4 The MILP-Based TEP Model ..........................................................................31 

Linearized Operating Cost ........................................................................ 31 

Modeling the N – 1 Criterion .................................................................... 32 

The TEP Formulation ............................................................................... 34 

3.5 Case Studies .....................................................................................................37 

The IEEE 24-bus System .......................................................................... 37 

The IEEE 118-bus System ........................................................................ 39 

3.6 Summary ..........................................................................................................42 

Chapter 4 TRANSMISION EXPANSION PLANNING USING THE AC MODEL ..43 

4.1 Chapter Overview ............................................................................................43 

4.2 MINLP-Based ACTEP Models .......................................................................44 

4.3 Relaxations of the MINLP-Based ACTEP Model ...........................................46 

The NLP Relaxations ................................................................................ 47 

The RLT-based Relaxation ....................................................................... 49 

4.4 Case Studies .....................................................................................................52 

Garver’s 6-bus System .............................................................................. 52 

The IEEE 24-bus System .......................................................................... 57 

4.5 Summary ..........................................................................................................58 



v 

Chapter 5 A RELAXED ACOPF MODEL BASED ON A TAYLOR SERIES ...........60 

5.1 Chapter Overview ............................................................................................60 

5.2 The Relaxed ACOPF Model ............................................................................61 

5.3 Network Losses Modeling ...............................................................................64 

Piecewise Linearized Relaxation .............................................................. 64 

Quadratic Inequality Relaxation ............................................................... 68 

5.4 Case Studies .....................................................................................................69 

5.5 Summary ..........................................................................................................72 

Chapter 6 TRANSMISSION EXPANSION PLANNING USING THE RELAXED AC 

MODEL 73 

6.1 Chapter Overview ............................................................................................73 

6.2 Mathematical Formulation of the LACTEP Model .........................................73 

Objective Function .................................................................................... 74 

Power Flow Constraints ............................................................................ 75 

Network Losses ......................................................................................... 76 

Generator Capacity Limits ........................................................................ 78 

6.3 The N – 1 Modeling .........................................................................................78 

6.4 Case Studies .....................................................................................................80 

Garver’s 6-bus System .............................................................................. 80 

The IEEE 118-bus System ........................................................................ 86 

6.5 Summary ..........................................................................................................92 

Chapter 7 TRANSMISSION EXPANSION PLANNING UNDER UNCERTAINTIES93 

7.1 Chapter Overview ............................................................................................93 

7.2 TEP under Uncertainty ....................................................................................93 



vi 

7.3 Stochastic Reformulation of the TEP Model ...................................................97 

7.4 Decomposition-based Solution Techniques ..................................................100 

The L-Shaped Method............................................................................. 100 

Progressive Hedging Algorithm ............................................................. 103 

7.5 Scenario Generation and Clustering ..............................................................106 

7.6 Case Studies ...................................................................................................108 

The IEEE 24-bus System ........................................................................ 108 

The IEEE 118-bus System ...................................................................... 119 

The 569-bus Reduced WECC System .................................................... 123 

7.7 Summary ........................................................................................................134 

Chapter 8 CONCLUSIONS AND FUTURE WORK ...................................................135 

8.1 Summary and Main Conclusions ...................................................................135 

8.2 Future Work ...................................................................................................137 

REFERENCES ................................................................................................................138 

APPENDIX A IEEE 24-BUS SYSTEM DATA ..........................................................145 

APPENDIX B IEEE 118-BUS SYSTEM DATA.........................................................148 

APPENDIX C SUBROUTINE OF A MATLAB BASED TEP PROGRAM .............156 



vii 

LIST OF TABLES 

Tables                                         Page  

3.1. Bus data for Garver’s 6-bus system ........................................................................... 27 

3.2. Branch data for Garver’s 6-bus system ...................................................................... 27 

3.3. TEP results comparison for the IEEE 24-bus system ................................................ 38 

3.4. Candidate lines for the IEEE 118-bus system............................................................ 39 

3.5. TEP results for the IEEE 118-bus system .................................................................. 40 

4.1. TEP results for the MINLP-based TEP models ......................................................... 52 

4.2. TEP results for the relaxed ACTEP models .............................................................. 53 

4.3. Validation of the TEP results of Garver’s system ..................................................... 54 

4.4. Comparison of the TEP results .................................................................................. 56 

4.5. Candidate line parameters for IEEE 24-bus system .................................................. 57 

4.6. Comparison of TEP results for the IEEE 24-bus system ........................................... 58 

5.1. Comparison of different loss models ......................................................................... 71 

5.2. Performance comparison of the proposed models ..................................................... 71 

6.1. Candidate line data for Garver’s 6-bus system .......................................................... 81 

6.2. Generator and load data for Garver’s 6-bus system ................................................... 81 

6.3. TEP results comparison of Garver’s system .............................................................. 82 

6.4. The effects of number of linear blocks ...................................................................... 84 

6.5. Comparison of different network losses models ........................................................ 86 

6.6. Zonal data of the IEEE 118-bus system ..................................................................... 87 

6.7. TEP planning criterion for the IEEE 118-bus system ................................................ 87 

6.8. Initial candidate lines for the IEEE 118-bus system .................................................. 89 

6.9. The TEP results for N – 0 .......................................................................................... 89 

6.10. The iterative planning process for N – 1 .................................................................. 91 



viii 

7.1. Comparison of the L-shaped method and PH Algorithm......................................... 106 

7.2. TEP results of IEEE 24-bus system with 365 scenarios .......................................... 109 

7.3. Deterministic TEP results of the IEEE 24-bus system ............................................ 111 

7.4. TEP results from the L-shaped method, DE and PH ............................................... 115 

7.5. Candidate lines parameters for IEEE 118-bus system ............................................. 119 

7.6. TEP results of IEEE 118-bus system with 1000 scenarios ...................................... 120 

7.7. TEP results of IEEE 118-bus system with scenarios grouping ............................... 122 

7.8. Planning summary of the WECC 2032 reference case ............................................ 129 

7.9. Planning summary of the WECC 2032 reference case – all conditions .................. 129 



ix 

LIST OF FIGURES 

Figures              Page 

2.1.  The lumped parameter π-equivalent model of an AC transmission line .................. 10 

2.2.  The in-phase transformer model ............................................................................... 13 

2.3.  The π-equivalent model of the in-phase transformer ................................................ 13 

3.1.  Comparison of OPF and TEP problem ..................................................................... 23 

3.2.  One line diagram of the original Garver’s 6-bus system .......................................... 26 

3.3.  The expanded Garver’s 6-bus system ....................................................................... 28 

3.4.  Piecewise linearization for y = ax
2
, x ≥ 0 .................................................................. 30 

3.5.  Piecewise linearized generator total energy cost ...................................................... 32 

3.6.  Comparison of the LMPs at each bus ....................................................................... 41 

4.1.  Sketch of the penalty function in the NLP2 model ................................................... 49 

4.2.  The expanded Garver’s 6-bus system ....................................................................... 55 

4.3.  Effect of multi-starts on the TEP solution ................................................................ 56 

5.1.  Modeling of network losses as bus fictitious demands ............................................. 62 

5.2.  Piecewise linearization of θk
2
 .................................................................................... 65 

5.3.  (gkγk – bkωk) value of each branch ............................................................................ 70 

5.4.  Active power loss of each branch ............................................................................. 70 

6.1.  Typical transmission planning timeline .................................................................... 75 

6.2.  The iterative approach for the N – 1 contingency modeling ..................................... 79 

6.3.  The TEP results of Garver’s 6-bus system ............................................................... 83 

6.4.  Flowchart of the iterative approach for considering N – 1 contingency ................... 88 

6.5.  Expanded IEEE 118-bus system  under N – 0 .......................................................... 90 

7.1.  Forecast hourly load for WECC for Year 2020 ........................................................ 94 



x 

7.2.  Proposed next generation TEP framework ............................................................... 97 

7.3.  Block structure of the two-stage stochastic formulation......................................... 100 

7.4.  Scenario decomposition in the PH algorithm ......................................................... 104 

7.5.  Illustration of the K-means algorithm ..................................................................... 107 

7.6.  Upper and lower bounds of the L-shaped method in each iteration ....................... 109 

7.7.  One line diagram of the expanded IEEE 24-bus RTS system ................................ 110 

7.8.  Impacts of number of scenarios on the iterations and the execution time .............. 112 

7.9.  Relative optimality gaps at every iteration ............................................................. 114 

7.10.  Impacts of number of clusters on the iterations and the execution time ............... 114 

7.11.  Execution time vs. scenarios comparison of the L-shaped method and DE ......... 116 

7.12.  Number of iteration w/ and w/o prescreening ....................................................... 118 

7.13.  Comparison of iterations and the execution time w/ and w/o prescreening ......... 118 

7.14.  Relative optimality gaps at every iteration (1000 scenarios) ................................ 120 

7.15.  One line diagram of expanded IEEE 118-bus system .......................................... 121 

7.16.  WECC 10-year and 20-year planning horizon...................................................... 123 

7.17.  Transmission expansion plan for WECC 2032 reference case – Light Spring..... 125 

7.18.  Transmission expansion plan for WECC 2032 reference case – Heavy Summer 126 

7.19.  Transmission expansion plan for WECC 2032 reference case – Light Fall ......... 127 

7.20.  Transmission expansion plan for WECC 2032 reference case – Heavy Winter .. 128 

7.21.  WECC 2032 reference case line utilization – Light Spring .................................. 130 

7.22.  WECC 2032 reference case line utilization – Heavy Summer ............................. 131 

7.23.  WECC 2032 reference case line utilization – Light Fall ...................................... 132 

7.24.  WECC 2032 reference case line utilization – Heavy Winter ............................... 133 



xi 

NOMENCLATURE 

Acronyms: 

ACOPF Optimal power flow using the AC model 

ACTEP Transmission expansion planning using the AC model 

AMPL Algebraic mathematical programming language 

BA Balance authority 

DCOPF Optimal power flow using the DC model 

ISOs Independent system operators 

KKT Karush–Kuhn–Tucker 

LACTEP Transmission expansion planning using the linearized AC model 

LMP Locational marginal price 

LP Linear programming 

MILP Mixed-integer linear programming 

MINLP Mixed-integer non-linear programming 

NERC North American Electric Reliability Corporation 

NLP Non-linear programming 

OPF Optimal power flow 

PDF Probability density function 

PPF Probabilistic power flow 

PV Photovoltaic 

QP Quadratic programming 

RPS Renewable portfolio standard 

RLT Reformulation relaxation technique 

SDP Semi-definite programming  

TEP Transmission expansion planning 

WECC Western Electricity Coordinating Council 

  

  



xii 

Symbols: 
 

ag Quadratic cost coefficient of generator g 

bg Linear cost coefficient of generator g 

bk Series admittance of line k, a negative value 

bk0 Charging admittance of line k 

cg Fixed cost coefficient of generator g 

ck Investment cost of the line k  

inv

lossC  Investment cost obtained from the lossy TEP model 

inv

losslessC  Investment cost obtained from the lossless TEP model 

opr

lossC  Operating cost obtained from the lossy TEP model 

opr

losslessC  Operating cost obtained from the lossless TEP model 

CFgt Capacity factor of generator g in year t 

CGgt Hourly energy cost of generator g in year t 

d Discount factor 

ei Real part of the complex bus voltage Vi 

fi Imaginary part of the complex bus voltage Vi 

gk Conductance of line k, a positive value 

k(l) The slope of the l
th

 piecewise linear block  

j   i Element j connect to element i 

M Disjunctive factor, a large positive number 

ng Total number of generators 

nl Total number of lines, including potential lines 

Pk Active power flow on line k  

ΔPk(l) The l
th

 linear block of active power flow on line k 

PDd Active power demand of load d 

PGg Active power generated by generator g  

PGg
max

  Maximum active power output of generator g 

PGg
min

  Minimum active power output of generator g 

PLk Active power loss on line k 



xiii 

Qk Reactive power flow on line k 

QDd Reactive power demand of load d 

QGg Reactive power generated by generator g 

QGg
max

  Maximum reactive power output of generator g 

QGg
min

  Minimum reactive power output of generator g 

QLk Reactive power loss on line k 

rk  Series resistance of line k 

R+ Set of positive real numbers 

Sk
max

 MVA rating of line k 

SDd MVA of load d 

tk In-phase transformer off-nominal turns ratio 

TO Operating horizon 

TP Planning horizon 

Vi Bus voltage magnitude in p.u. at bus i 

ΔVi Voltage magnitude deviation from 1.0 p.u. at bus i 

ΔV
max

 Upper bound on the voltage magnitude deviation 

ΔV
min

 Lower bound on the voltage magnitude deviation 

xL, yL Lower bound of x, y 

xU, yU Upper bound of x, y 

xk  Series reactance of line k 

yk Series admittance of line k 

yk0 Charging admittance of line k 

zk Binary decision variable for a prospective line k  

Zk Series impedance of line k  

uk(l) Binary variable for the l
th

 linear block  

δk Binary variable for modeling |θk| 

θk Phase angle difference across line k  

θ
max

 Maximum angle difference across a line 

θk
+
, θk

–
 Nonnegative slack variables used to replace θk 



xiv 

Δθk(l) The l
th

 linear block of angle difference across line k 

Ωg Set of generators 

Ωk Set of existing lines 

Ωk
+
 Set of prospective lines 

  

  



1 

Chapter 1  

RESEARCH BACKGROUND AND LITERATURE REVIEW 

1.1 Motivation and Research Objectives 

The national push for a smart grid and the increasing penetration of renewable 

energy resources today has significantly influenced the operations and planning of the 

traditional power system. The future power grid is expected to be a smarter network that 

is flexible and robust enough to withstand various uncertainties and disturbances. 

According to the 10-year planning summary [1] prepared by the Western Electricity 

Coordinating Council (WECC), loads are projected to increase 14% from 2009 to 2020, 

which is a 1.2 percent compound annual growth rate. From the generation side, the future 

generation mix is expected to have a significant departure from the past because the 

addition of new generation to replace the retired units is dominated by renewables to 

fulfill state-mandated renewable portfolio standards (RPSs). By the year 2020, a total 

amount of 15 GW in nameplate generation is going to retire and 59 GW of additional 

generation will be added in the U.S. Western Interconnection. Among the cited 59 GW, 

over 50% is composed of wind and solar PV. In addition, the U.S. Western 

Interconnection is projected to generate 17% of its energy from non-hydro renewable 

sources in 2020. 

With these contemporary changes, some problems are expected in the future 

power system. First, the load increase may change the power flow in the existing grid and 

may result in potential overloads and stability issues. These issues may violate reliability 

criteria. Second, the renewable resources are usually located in remote areas and are not 
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readily connected to the main power grid. In order to address these problems, additional 

transmission capacity is needed [1]. 

The objective of this research is to develop new algorithms and tools to facilitate 

the regional transmission expansion planning (TEP) process for the U.S. Western 

Interconnection in the coming decade with the expected load increase and high renewable 

penetration. It is expected that such a TEP process could be extended without loss of 

generality to any system and venue. Based on the existing research, the work presented in 

this dissertation focuses on the following two areas:  

1. Develop new TEP models with a better approximation of the AC power flow 

model. 

2. Develop decomposition algorithms to solve TEP problem with uncertainties 

and evaluate the long-term regional transmission capacity needs under a 

comprehensive set of load and generation scenarios.  

The TEP models and algorithms presented in this dissertation can be used for developing 

interregional level transmission plans for the future U.S. Western Interconnection. The 

planning results can provide guidance for decision-makers and facilitate the development 

of needed transmission infrastructure.  

1.2 Transmission Expansion Planning: A Literature Review 

Transmission expansion planning is an important research area in power systems 

and has been studied extensively during the past several decades. The TEP exercise 

normally focused on improving the reliability and security of the power system when 

economic impacts were not the primary concern. In contemporary power systems 

however, the increasing complexity of the network structure and the deregulated market 
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environment have made the TEP problem a complicated decision-making process that 

requires comprehensive analysis to determine the time, location, and number of 

transmission facilities that are needed in the future power grid. Building the correct set of 

transmission lines will not only relieve congestions in the existing network, but will also 

enhance the overall system reliability and market efficiency. The state-of-the-art of the 

TEP studies is reviewed and summarized in the following.  

1.2.1 TEP Modeling and Solution Techniques  

Various TEP models have been developed during the past several decades. 

Among these models, mathematical programming and heuristic methods are two major 

classes of solution approaches. Mathematical programming methods guarantee the 

optimality of the solution in most cases, but often have stricter requirements on the model 

to be optimized. In order to obtain the global optimal solution efficiently, the problem or 

at least the continuous relaxation of the problem should have a convex formulation. 

Heuristic methods, on the other hand, are usually not sensitive to the model to be 

optimized and can potentially examine a large number of candidate solutions. The main 

criticism of heuristic methods, however, is that most of such methods do not guarantee an 

optimal solution, and provide few clues regarding the quality of the solution. Reference 

[2] presents a comprehensive review and classification of the available TEP models. 

Due to the complexity of the TEP problem, the DC power flow model has been 

extensively used for developing TEP models [3]-[9]. One of the early works, [3] presents 

a linear programming (LP) approach to solve TEP problems. A mixed integer linear 

programming (MILP) based disjunctive model in [4] eliminates the nonlinearity caused 

by the binary decision variables. In [6], the behavior of the demand was modeled through 
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demand side bidding. A bilevel programming model appears in [7] where the solution to 

the problem is the Stackelberg equilibrium between two players. A transmission 

switching coordinated expansion planning model was presented in [8] where the planning 

problem and the transmission switching problem are solved alternately. 

In terms of security constraints, the North American Electric Reliability 

Corporation (NERC) planning criteria state that power systems must survive an N – 1 

contingency [10]. For the linearized model, this criterion simply indicates that there 

should be no thermal limit violation with the outage of a single transmission or 

generation facility. The modeling of security constraints can be found in [11]-[13], where 

an MILP based disjunctive method is proposed for transmission line switching studies.  

The active power losses are usually neglected in the linearized power flow model. 

However, the losses may shift the generation economic dispatch solution and therefore 

influence the optimal transmission plan. Two loss models are presented in [5] and [11] 

respectively, where the proposed models use piecewise linear approximations to 

represent the quadratic loss term. 

Application of the AC power flow model to TEP problems (ACTEP) is rarely 

discussed in the literature. The advantage of formulating TEP problems using the AC 

model is that the AC model represents the electric power network accurately. 

Nevertheless, the nonlinear and non-convex nature of the ACTEP model can make the 

problem very difficult to solve and to obtain a desirable solution. Reference [14] 

presented a mixed-integer nonlinear programming (MINLP) approach for solving TEP 

problems using the AC network model. The interior point method and a constructive 

heuristic algorithm were employed to solve the relaxed nonlinear programming problem 
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and obtain a good solution. It is reported in [15] that by relaxing binary variables, the 

NLP-based ACTEP model can solve a small-scale TEP problem within an acceptable 

time range and obtain a local optimal solution. However, solving a MINLP-based 

ACTEP problem is still extremely challenging at this moment. 

Heuristic approaches are an alternative to mathematical programming for solving 

optimization problems. Heuristic approaches usually refer to the algorithms that mimic 

some behavior found in nature, e.g., the principle of evolution through selection and 

mutation (genetic algorithms). For problems that have significant computational 

complexity in finding an optimal solution, heuristic methods can usually give a solution 

with relatively smaller computational effort, though the obtained solution may not be 

optimal. In recent years, heuristic methods have been introduced to solve TEP problems 

in power systems [16]-[21]. In many of these instances, the heuristic method is not used 

on a stand-alone basis. In order to obtain better computational performance, heuristic 

methods are frequently used in conjunction with mathematical methods when solving 

practical TEP problems. 

1.2.2 Treatment of Uncertainty 

The electric power system is not a deterministic system. Uncertain events such as 

load demand variation and line contingencies can occur at any time. Moreover, some 

renewable generation resources such as wind and solar PV are highly unpredictable. 

These renewable generation sources, if massively integrated, could greatly affect the 

power system operations and undermine the grid reliability. The traditional TEP models 

are based on a deterministic framework where loads are treated as known fixed 

parameters. The deterministic model certainly simplifies the problem, but fails to capture 
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the stochastic nature of the real power system and may generate unrealistic transmission 

plans. In recent years, modeling of uncertainties in the TEP model has drawn increasing 

attention [22]-[29]. Stochastic programming, chance constrained programming and 

scenario-based analysis are three approaches that are frequently used.  

Two-stage stochastic programming is a widely used stochastic formulation that 

optimizes the mathematical expectation of the weighed future scenarios. A two-stage 

stochastic programming-based TEP model is proposed in [22] to coordinate the 

generation and transmission planning. In [23], a scenario-based multi-objective TEP 

model is presented to address the uncertainties and risks in the planning process. Due to 

the computational burden, decomposition methods are usually used to solve the above 

stochastic TEP models [24]. In terms of the resource uncertainties, a probabilistic power 

flow (PPF)-based planning model is proposed in [25]. That reference evaluates a 

statistical range of the possible power flows instead of a single solution. Recently, a 

chance-constrained model is presented in [26] to address the uncertainties of loads and 

wind farms. It should be noticed that the PPF-based planning model and the chance-

constrained planning model are both risk-based games in which the planners need to 

decide the confidence level at a specified risk.  

In terms of reliability assessment, the probabilistic approach can also be applied 

[27]-[28]. The traditional deterministic planning approaches are not able to capture the 

probabilistic characteristics in power system. In reality, this may lead to either 

overinvestment or potential reliability violations [27]. A method for choosing the optimal 

expansion plan considering a probabilistic reliability criterion is proposed in [28]. The 

probabilistic planning concept is applied to liberalized electricity markets in [29]. 
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1.2.3 Planning Horizon 

Compared to the static planning model where lines are planned for a single target 

year, the multi-stage planning model considers the continuing growth in demand and 

determines when to carry out the transmission expansion as well [30]-[33]. The major 

obstacle in the development of multi-stage planning models is still the computational 

burden. Heuristic algorithms are usually used to solve multi-stage planning problems. A 

genetic algorithm is presented in [30] to solve the problem of multistage and coordinated 

TEP problem. A multi-criteria formulation for multiyear dynamic TEP problems is 

presented in [31] and is subsequently solved by a simulated annealing algorithm with the 

objective to find the optimal balance of investment costs, operation costs, as well as the 

expected unsupplied energy. Ordinal optimization is used in [32] for solving a multi-year 

TEP problem. The ordinal optimization algorithm uses crude models and rough estimates 

to derive a small set of optimal plans in each sub-planning period for which simulations 

are necessary and worthwhile to find acceptable solutions. In [33], a multiyear security 

constrained generation-transmission planning model is presented and a constructive 

heuristic algorithm is developed to solve the problem. 

1.3 Dissertation Outline 

The rest of this dissertation is organized as follows. Chapter 2 gives an overview 

of the power systems background that will be used in this dissertation. Some important 

concepts including power flow, optimal power flow (OPF) and N – 1 reliability criteria 

are revisited in this chapter. Chapter 3 presents a multi-stage TEP model based on the DC 

power flow model. Active power losses and the N – 1 reliability criteria are included in 

this model. Chapter 4 explores the possibility to formulate TEP models using the AC 
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power flow model. In Chapter 5, a better approximation of the AC model is derived and a 

convexified ACOPF model is proposed in which reactive power and off-nominal bus 

voltage magnitudes are integrated. A MILP-based loss model and its relaxations are 

investigated. The OPF model developed in Chapter 5 is then extended to formulate a TEP 

model in Chapter 6. TEP under uncertainty environment and algorithms for solving the 

stochastic TEP models are developed in Chapter 7. The conclusions and possible future 

work are in Chapter 8. Several of the test beds used, and a sample MATLAB script used 

in this research are described in three appendices. 

1.4 Main Contributions 

The main contributions of the work are summarized as follows: 

1. In Chapter 3, a new approach for modeling the active power losses in the 

network is presented. Compared with the previous work, the proposed 

approach reduces the number of variables and constraints needed and 

improves the computational efficiency significantly. 

2. In Chapter 4, the TEP models based on the AC power flow formulation are 

investigated. Two nonlinear programming (NLP)-based TEP models are 

presented. 

3. In Chapter 5, a relaxed OPF model is proposed based on a Taylor series, in 

which the reactive power, off-nominal bus voltage magnitudes as well as 

network losses are retained. A MILP-based loss model is developed to 

eliminate the fictitious losses. Relaxations of the MILP model are 

investigated. The mathematical proofs of the conditions under which the 

relaxations are exact are given. 
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4. In Chapter 6, a novel TEP model is proposed based on the network model 

developed in Chapter 5. An iterative approach to incorporate the N – 1 

contingency criterion efficiently in the TEP model is also presented. 

5. In Chapter 7, decomposition and heuristic methods are developed for solving 

TEP problems with uncertain loads. The proposed algorithm is applied to a 

569-bus reduced WECC system.  
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Chapter 2  

POWER SYSTEMS ESSENTIALS 

2.1 Chapter Overview 

Power system modeling plays an important role in TEP studies. A solid 

understanding of the basic power system concepts will not only facilitate the 

development of a good TEP model, but will also lead to a better decision in the planning 

process. This chapter reviews the essential power systems background that will be used 

later in the dissertation.  

2.2 Modeling of Network Components 

In this section, the mathematical models of the common power system 

components for steady state analysis are reviewed. 

2.2.1 Transmission Lines 

In steady state power system analysis, the lumped parameter π-equivalent model 

as shown in Fig. 2.1 is often used to model an AC transmission line. 

 

Fig. 2.1.  The lumped parameter π-equivalent model of an AC transmission line 

In Fig. 2.1, Zk is the series impedance of the line and can be written as, 

k k kZ r jx                                                        (2.1) 

 

bus i 

Zk = rk + jxk 

bus j line k 

yk0 y
k0
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where rk and xk are referred to as the resistance and reactance of the line, respectively. 

When formulating the network equations, the series admittance is needed. The series 

admittance of the line is defined as the reciprocal of the series impedance and takes the 

following form 

2 2 2 2

1 k
k k k k

k

k k k k

r x
y j

r
z g

r
b

x
j

x

 


 
 

                                (2.2) 

where gk and bk are referred to as the conductance and susceptance of the line, 

respectively. It should be noticed that in the power system, gk is always positive while bk 

is usually negative. In the π equivalent model, the total line charging admittance is 

divided by half and connected at the two terminals of the line denoted by yk0 in Fig. 2.2. 

In the power system, the real part of yk0 is usually zero (gk0 = 0) and only the shunt 

susceptance (bk0) is considered.  

In AC power systems, the complex power flow in a line is denoted by 

kk kP QS j                                                      (2.3) 

where Pk and Qk are the active and reactive power flows respectively. Separating the real 

and imaginary parts in (2.3) and defining i and j as the two terminal buses of the line, the 

active and reactive power flows from bus i to j is calculated by the following equations, 

 ( ) 2 cos sinij

k i k i j k k k kP V g VV g b                                     (2.4) 

   ( ) 2

0 cos sinij

k i k k i j k k k kQ V b b VV b g                               (2.5) 

where θk is the phase angle difference between bus i and bus j, i.e., (θi – θj). The active 

and reactive power flows in the same line but metered from the opposite direction can be 

obtained in a similar way, 
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 ( ) 2 cos sinji

k j k i j k k k kP V g VV g b                                     (2.6) 

   ( ) 2

0 cos sinji

k j k k i j k k k kQ V b b VV b g      .                        (2.7) 

In power systems, the active power loss of a line is the active power consumed by the 

series resistance of the line. Using (2.4) and (2.6), the active power loss of the line is 

obtained as 

 ( ) ( ) 2 2 2 cosij ji

k k k k i i i j kPL P P g V V VV      .                          (2.8) 

Similarly, summing (2.5) and (2.7) gives 

   ( ) ( ) 2 2 2 2

0 2 cosij ji

k k k k i i k i i i j kQL Q Q b V V b V V VV         .             (2.9) 

The definition of reactive power loss on a line can be tricky, because the reactive power 

is both consumed and generated along the line. The first term in (2.9) is the reactive 

power generated by the charging (capacitive) susceptance in the π-equivalent model, 

while the second term represents the reactive power consumed by the line (inductive) 

reactance.  

2.2.2 Transformers 

There are many types of tranformers in contemporary power systems and the 

detailed modeling of these transformers can be very complicated. In this section, only the 

ideal transformer with real number turns ratio is discussed and balanced three-phase 

operation is assumed throughout. For transformers of this kind, the π-equivalent model 

used for modeling transmision lines can be used with some modifications. As shown in 

Fig. 2.2, the impedance of the transformer is at the tap side with the turns ratio equals to a 

real number tk, the π-equivalent model for this transformer is illustrated in Fig. 2.3. 
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Fig. 2.2.  The in-phase transformer model 

 

Fig. 2.3.  The π-equivalent model of the in-phase transformer 

Using two-port network theory, the A, B and C parameters can be identified as 

follows, 

k kA t y                                                         (2.10) 

( 1)k k kB t t y                                                    (2.11) 

(1 )k kC t y  .                                                   (2.12) 

Hence, the real and reactive power flow equations for the transformer with real turns ratio 

tk are obtained as, 

   
2( ) cos sinij

k k i k k i j k k k kP t V g t VV g b                               (2.13) 

     
2( )

0 cos sinij

k k i k k k i j k k k kQ t V b b t VV b g                          (2.14) 

bus i bus j transformer k 

Vie
jθi

 
1 : tk 

 

V
j
e

jθj

 
zk 

 

From bus i 

A 

To bus j Transformer k 

B C 
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Notice that if the turns ratio of a transformer is equal to the ratio of the nominal rated 

voltages of its associated network sections, then tk = 1. In this case, (2.13) and (2.14) have 

the same form as (2.4) and (2.5). 

2.2.3 Loads and Shunts 

Loads are important components in the power system and various sophisticated 

load models have been developed to capture the dynamic behavior of the loads more 

accurately during the transient period. For steady state power flow analysis, the constant 

MVA model is usually used. In the constant MVA model, the load is simply modeled as a 

sink of constant active and reactive power and is independent of the change in bus 

voltage magnitude,  

  d d dSD PD jQD                                                 (2.15) 

where PDd and QDd are the active and reactive part of the load respectively and are both 

constants.  

In power systems, the term “shunts” means “phase to ground” is usually referred 

to the reactive power compensation devices connected at buses. By switching in and out 

the shunt devices, a wider range of control of the bus voltage magnitude can be achieved. 

The modeling of shunts is similar to the modeling of loads. The only difference in 

modeling is that the reactive power a shunt device can provide or consume is voltage 

dependent. In data files, the shunt data are usually denoted in the form of reactive power 

at the nominal voltage. The actual reactive power a shunt device can provide or consume 

is 

2 i iiSD jQ VD .                                                 (2.16) 
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2.2.4 Generators 

In power flow studies, the generator is modeled as the source of active power and 

reactive power. The generator bus is also known as a “P-V” bus, for which the active 

power dispatch is pre-determined based on economic dispatch. The voltage magnitude of 

a generator bus can be regulated freely as long as the reactive power needed for the 

voltage regulation is within the generator reactive power capability and the generator 

maximum voltage is not exceeded. 

2.3 Steady State Power System Analysis 

2.3.1 Power Flow 

The power flow problem is referred to as a problem to obtain the voltage 

magnitude and angle information at each bus for a specific load condition with the active 

power output and voltage level of each generator and real and reactive power at all loads 

specified. With this information, active and reactive power flows in each line as well as 

generator reactive power outputs can be analytically determined. The AC power flow 

model uses the exact expressions of the power flow equations as derived above, while the 

DC power flow model is an approximated model, which aims to provide a fast power 

flow solution based on a good initial condition. 

Mathematically, the AC power flow problem finds a feasible solution to a set of 

nonlinear equations, i.e., nodal balance equations. The polar form of the nodal balance 

equations are as follows, 

 0 cos sini i i j k k k k

j i

PG PD V V g b 


                               (2.17) 

 0 sin cosi i i j k k k k

j i

QG QD V V g b 


    .                          (2.18) 
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For load buses (P-Q bus), both (2.17) and (2.18) are needed. For generator buses 

(P-V bus) that are not on VAr limits, only (2.17) is needed because the generator reactive 

power dispatch is determined after all other variables are solved, including (2.18) will 

introduce additional variables. The generators that are on VAr limits are treated the same 

as the load bus with the reactive power being fixed at the limits. No equations are needed 

for the swing bus (V-θ bus). As the reference of the system, the phase angle of the swing 

bus is generally set to zero. Another form of the nodal balance equations is known as the 

rectangular form. Using Euler’s formula, the complex bus voltage can be decomposed as 

cos sini i i i i i iV jV e jf    V .                                    (2.19) 

where ei = Vicosθi and fi = Visinθi are the real and imaginary part of the complex bus 

voltage Vi. Substituting (2.19) into (2.17) and (2.18), the nodal balance equations in the 

rectangular form are obtained as, 

   0 i i k i j i j k j i i j

j i

PG PD g e e f f b e f e f


      
                       (2.20) 

   0 i i k i j i j k j i i j

j i

QG QD b e e f f g e f e f


      
  .                    (2.21) 

Notice that no matter which form is used, the AC power flow model requires to solve a 

set of nonlinear equations. Iterative methods such as the Newton-Raphson method are 

usually used to solve such problems and find a numerical solution. 

The DC power flow model is a linearized version of the AC power flow model. 

The key assumptions made in the DC power flow model are the following: 

• The series resistance of the line rk is negligible, i.e., Pk
(ij)

 = –Pk
(ji)

. 

• The reactive power flow in the line is negligible, i.e., Qk = 0. 

• The voltage phase angle difference is small so that sinθk ≈ θk. 
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• The bus voltage magnitudes are close to 1.0 p.u.  

Based on the above assumptions, the line active power flow in the DC model can 

be simplified as, 

k k kP b   .                                                     (2.22) 

The nodal balance equation for the DC power flow model is written as 

 0 i i k k

j i

PG PD b 


   .                                         (2.23) 

As observed from (2.23), the DC power flow problem finds the solution to a set of 

linear equations. Therefore, the DC power flow problem can be solved directly without 

using the iterative method. It should be pointed out that the model presented above is the 

most commonly used DC model and is often referred to as the lossless DC model. In 

reality, the DC power flow model has many variations, e.g., the voltage magnitudes in the 

DC model can be fixed to the previous AC power flow solution, rather than 1.0 p.u. and 

the active power losses can be included in the model as well. Some of these variations are 

investigated in the later chapters. 

2.3.2 The N – 1 Reliability Criterion 

In order to maintain the reliability of the transmission system, NERC has 

published a series of standards with which all the balancing authorities within North 

American interconnection are required to comply [10]. The N – 1 reliability criterion 

states that with the loss of a single element, e.g., a transmission line, a transformer or a 

generator, due to a fault, the system must remain stable with the thermal and voltage 

limits within their emergency ratings. There must be no loss of load or curtailed firm 

transfers if the fault is cleared in the normal clearing time. However, for bus faults and 
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other faults with delayed clearing, the loss of demand or curtailed firm transfers is 

acceptable under a planned or controlled manner. In the DC power flow model, the N – 1 

criterion simply indicates that there should be no thermal limit violations with the outage 

of a single transmission or generation element. Notice that the NERC standards only set 

the minimum requirement, power utilities and independent system operators (ISOs) may 

have reliability criteria that are more stringent.     

2.4 Economic Dispatch 

2.4.1 Optimal Power Flow 

In power systems, the term economic dispatch is almost used interchangeably 

with the term optimal power flow (OPF), which has been implemented extensively in 

power system operations and planning since it was first introduced by Carpentier [35]. 

The goal of the OPF problem is generally to minimize the total energy cost in the power 

grid subject to the system and resource constraints. These constraints include line flows, 

bus voltages magnitudes, angles as well as generator capacities. The general 

mathematical formulation of the OPF problem takes the following form: 

min  ( )f x                                                        (2.24) 

subject to 

( ) h x c                                                         (2.25) 

( ) g x b                                                         (2.26) 

min max x x x                                                   (2.27) 

where bold face refers to vectors. In the above general OPF formulation, the total energy 

cost is usually used in (2.24) as the objective function. The equality constraints (2.25) 

represent the power flow equations and the inequality constraints (2.26) represent the line 
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power flow limits. The remaining constraints (2.27) represent the bounds on voltage 

magnitudes, angles as well as the generator capacity limits.  

The AC formulation of the OPF problem (ACOPF) uses the AC power flow 

equations in the constraints, while the DC formulation of the OPF problem (DCOPF) 

uses the linearized power flow equations.  Most of the ACOPF solution techniques are 

based on Karush-Kuhn-Tucker (KKT) conditions [36]. Among these solution techniques, 

Newton’s method, due to its fast convergence near the solution, was widely adopted in 

early literature [36]-[37]. However, Newton’s method has difficulties in handling 

inequality constraints, and the performance of Newton’s method depends largely on the 

initial starting point. As algorithms developed, the interior point algorithms have become 

the mainstream algorithms for solving the ACOPF problem [38]-[40].  

Despite the development of nonlinear algorithms, obtaining a robust solution for 

large-scale ACOPF problems efficiently still remains a challenge. Therefore, for 

problems such as real time economic dispatch where the speed is a primary concern, the 

DCOPF model is often used. The DCOPF model is a linearized version of the ACOPF 

model [41]. The DCOPF assumes fixed bus voltage magnitudes as well as negligible 

reactive power and network losses. Thus, the original nonconvex ACOPF model can be 

reduced to a quadratic programming (QP) model (assuming that generators have 

quadratic cost curves), which is convex and much easier to solve. 

The standard ACOPF formulation is reviewed in this section, the objective 

function is to minimize the total energy cost, 

 2

2 1 0min  
g

g g

g

c PG c PG c


                                         (2.28) 
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g k d

g i k i d i

PG P PD
  

                                               (2.29) 

g k d

g i k i d i

QG Q QD
  

                                              (2.30) 

2 2 max

k k kP Q S                                                    (2.31) 

min max

g g gPG PG PG                                                (2.32) 

min max

g g gQG QG QG                                                (2.33) 

min max

iV V V                                                     (2.34) 

max max

k     .                                                  (2.35) 

where Pk and Qk are given by: 

 2 cos sink i k i j k k k kP V g VV g b     

   2

0 cos sink i k k i j k k k kQ V b b VV b g      . 

 In the above ACOPF model, (2.29) and (2.30) represent the power balance constraints at 

each bus. The apparent power flow in the line is limited by (2.31) and there is no separate 

limit for active and reactive power flows in a line. The active and reactive power 

generation is limited by (2.32) and (2.33) respectively. The unit commitment problem is 

not considered in the ACOPF, which means that the on and off status of the generator 

does not change. The voltage magnitude and angle constraints are shown in (2.34) and 

(2.35), respectively. In the steady state, the phase angle difference across a line is often 

kept small for security purposes.   
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The classic DCOPF model is a linearized version of the ACOPF model, in which 

reactive power and network losses are neglected. The classic DCOPF model is 

formulated as a linear programming problem which takes the following form, 

1min  
g

g

g

c PG


                                                 (2.36) 

g k d

g i k i d i

PG P PD
  

                                             (2.37) 

0k k kP b    

max0 k kP S   

min max

g g gPG PG PG   

max max

k     . 

where Pk is given by: 

 2 cos sink i k i j k k k kP V g VV g b    . 

Notice that in (2.36), the calculation of the energy cost is further simplified by only 

considering the linear term in the original quadratic cost function. Compared with the 

ACOPF model, the DCOPF model is convex and can be solved up to 60 times faster [42]. 

The variations of the DCOPF model and the TEP models that are built based on the 

DCOPF model are investigated in the later chapters. 

2.4.2 Locational Marginal Price 

Locational marginal price (LMP) is a pricing mechanism that is commonly used 

in contemporary electricity markets. LMP is defined as the least marginal cost to serve 

the next increment of demand at a specific location in the electric power grid [44]. In 

reality, LMP can either be used to represent the price at a specific node or a load hub that 
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involves an aggregation of nodes. From a mathematical point of view, LMP can be 

envisioned as the local sensitivity with respect to a perturbation in the right hand side of 

the active power nodal balance constraints. For constrained optimization problems, the 

local sensitivity is given by the Lagrange multiplier associated with the constraint. 

Therefore, in the ACOPF model, the LMP at bus i is simply the Lagrange multiplier 

associated with the active power balance constraint for the bus, while in the DCOPF 

model, the LMP is the dual variable associated with (2.37). 
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Chapter 3  

TRANSMISSION EXPANSION PLANNING USING THE DC MODEL 

3.1 Chapter Overview 

From the modeling perspective, the TEP problem shares some common ground 

with the OPF problem in the sense that they are both constrained optimization problems. 

However, compared with the OPF problem that optimizes the generator dispatch on a 

fixed network topology, the TEP problem can be viewed as an extension of the OPF 

problem because it essentially solves a series of OPF problems with different network 

topologies as illustrated in Fig. 3.1.  

 

Fig. 3.1.  Comparison of OPF and TEP problem 

Due to the complexity of the problem, the DC power flow model is widely used in 

the TEP models. An main assumption in the traditional DC model is that the network 

losses are negligible. However, this assumption can be problematic when applied to TEP 

studies because neglecting losses may shift the cost from line investment to operations 

and influence the efficiency of the transmission expansion plan. In terms of reliability, 

the NERC planning criterion indicates that there should be no thermal limit violations 

? 

? 

? 

? 

OPF problem TEP problem 
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with the outage of a single transmission or generation element. This chapter presents a 

MILP-based TEP model that considers the active power losses and the N – 1 criterion. 

Simulation results show that the proposed TEP model is efficient and has the potential to 

be applied to solve large-scale power system planning problems. 

The remainder of the chapter is organized as follows: Section 3.2 presents a basic 

TEP model using the lossless DC model. Section 3.3 derives a LP-based piecewise linear 

model to include network losses in the DC model. The complete mathematical 

formulation of the TEP model is developed in Section 3.4 and simulation results are 

demonstrated in Section 3.5. The concluding remarks are indicated in Section 3.6. 

3.2 TEP Model Based on the Lossless DC Model 

This section presents a TEP model based on the lossless DC model introduced in 

Section 2.4.2. The model is shown as follows, 

min  k kc z                                                         (3.1)  

   
i i i
k g d

k g d b

k g d

P PG PD i
  

                                       (3.2) 

   k k k kP b k                                                  (3.3) 

     1 1    k k k k k k k kz M P b z M k                                    (3.4) 

max max    k k k kP P P k                                              (3.5) 

max max    k k k k k kz P P z P k                                            (3.6) 

max0    g g gPG PG g    .                                       (3.7) 

In the above TEP model, the objective function (3.1) is to minimize the total investment 

cost. The nodal balance equation is shown in (3.2), where the net power injection at a bus 
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is equal to the total loads connected to the bus. As shown in (3.3) and (3.4) respectively, 

the active power flows for existing lines are determined by the product of the line 

susceptance bk and the voltage phase angle difference θk, while for prospective lines, the 

big-M method needs to be applied to avoid the presence of nonlinear terms. If a 

perspective line is selected, i.e., zk is 1, then (3.4) is forced to be an equality constraint as 

(3.3), otherwise, zk is 0, the positive number Mk guarantees that (3.4) is not binding. 

Constraints (3.5) and (3.6) limit the active power on existing lines and prospective lines 

respectively. If a prospective line is selected, then (3.6) is the same as (3.5), otherwise, 

the power flow is forced to be zero. The generator output limit is enforced by (3.7). 

The difficulty with the Big-M method is the choice of a proper M. In practice, an 

arbitrary large M will result in numerical difficulties in the solution by dominating the 

calculations, however, if M is not large enough, then the true optimal solution will be 

excluded from the feasible region which causes the branch-and-bound process terminates 

at only a suboptimal or even with an infeasible solution. As shown in (3.4), in the TEP 

model, the choice of Mk depends on the parameters of the existing network topology. In 

order to calculate a proper value of Mk, two situations are discussed: the simple situation 

is when a candidate line is in an existing transmission corridor. In this case, if the 

candidate line is not selected, then according to (3.6), Pk = 0. As a result, (3.4) can be 

rewritten as, 

k k k kM b M   .                                                   (3.8) 

Considering there are m existing lines in the transmission corridor, then the value of Mk 

can be calculated as, 

 max

' 'mink k k kM P b b                                               (3.9) 
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where k’ = 1, 2,…, m, represents all the existing lines in the transmission corridor. When 

a candidate line creates a new transmission corridor, the problem becomes difficult. 

According to [4], the shortest path between two terminals of the candidate line needs to 

be calculated and the computation can be burdensome. In fact, it is not practical to 

calculate the exact M value for each candidate line that creates a new transmissions 

corridor, instead, an heuristic upper bound, 2πbk, is used throughout this paper. 

The above TEP model is tested on Garver’s 6-bus system. As shown in Fig. 3.2, 

the system has 6 existing lines, 5 loads and 3 generators [3]. Initially, the generator at bus 

6 is to be connected to the main system. The data of the system are provided in Table 3.1 

and 3.2. It is assumed that at most 3 lines are allowed in each transmission corridor. The 

total number of candidate lines is 39. 
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Fig. 3.2.  One line diagram of the original Garver’s 6-bus system 
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Table 3.1. Bus data for Garver’s 6-bus system 

Bus PG
min

 (MW) PG
max

 (MW) Load (MW) 

1 0 400 80 

2 0 / 240 

3 0 400 40 

4 0 / 160 

5 0 / 240 

6 0 600 / 

 

Table 3.2. Branch data for Garver’s 6-bus system 

Branch 
Resistance 

(p.u.)* 

Reactance 

(p.u.) 

Cost 

(10
6
 $) 

Capacity 

(MW) 

1-2 0.10 0.40 40 100 

1-3 0.09 0.38 38 100 

1-4 0.15 0.60 60 80 

1-5 0.05 0.20 20 100 

1-6 0.17 0.68 68 70 

2-3 0.05 0.20 20 100 

2-4 0.10 0.40 40 100 

2-5 0.08 0.31 31 100 

2-6 0.08 0.30 30 100 

3-4 0.15 0.59 59 82 

3-5 0.05 0.20 20 100 

3-6 0.12 0.48 48 100 

4-5 0.16 0.63 63 75 

4-6 0.08 0.30 30 100 

5-6 0.15 0.61 61 78 

         *100 MWA base 

In Fig. 3.3, the dashed lines represent new lines to be added. In order to connect 

bus 6 to the main system and serve the existing loads, four additional lines need to be 

added. The total investment cost is 110 million dollars (M$).  
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Fig. 3.3.  The expanded Garver’s 6-bus system 

3.3 Modeling Network Losses – An LP Model 

The goal of this section is to obtain a linearized loss model that can be 

incorporated into the TEP model. There are many approaches to include losses in the DC 

model [5] and [11]. In this section, a non-iterative piecewise linear formulation is 

presented. It should be noted that the loss model presented in this section is a LP-based 

approximation, which may be inexact in some cases. A more rigorous MILP-based loss 

model and its exact relaxations are investigated in Chapter 5. As derived in Section 2.3.1, 

in the AC power system, the active power loss on a line can be obtained by summing up 

the power flows metered at the two terminals of the line. Suppose all turns ratios of the 

transformers are set to one and define bus i and bus j to be the “from” bus and the “to” 

bus of line k, then the active power losses on line k can be calculated as, 

 ( ) ( ) 2 2 2 cosij ji

k k k km i j i j kPL P P g V V VV                                (3.10)  

Assuming all bus voltage magnitudes are close to 1.0 p.u. and the voltage phase angle 

across a line is small enough, the following approximations can be applied, 
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1.0iV                                                           (3.11)  

 2 2cos 1 2sin 2 1 2k k k      .                                 (3.12)  

The angles in these expressions are expressed in radians. Substituting (3.11) and (3.12) 

into (3.10), the expression of the active power losses on line k is approximated as, 

2

k k kPL g  .                                                    (3.13)  

Recall that in the DC model, the active power on a line is calculated by, 

k k kP b   .                                                     (3.14) 

Substituting (3.14) into (3.13), the relationship between the line losses and the active 

power flows on the line in the DC model can be set as follows, 

 2 2

k k k kPL g b P .                                               (3.15) 

Notice that the quadratic equality constraint (3.15) is still non-convex and needs to be 

further linearized. As indicated in Fig. 3.4, the value of a quadratic function y = ax
2
, x ≥ 0 

can always be approximated by the summation of a series of linear blocks, 

2

1

( )
L

l

y ax a k l x


                                                (3.16) 

where the variable x is divided into L blocks and each block is denoted by Δx. In the 

summation, the slope k(l) can be calculated as, 

   
2 2

( ) (2 1)
l x l x x

k l l x
x

   
   


.                              (3.17) 
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 Fig. 3.4.  Piecewise linearization for y = ax
2
, x ≥ 0 

Based on (3.16) and (3.17), the following formulation is developed to linearize (3.15), 

k k kP P P                                                       (3.18) 

1

( )
L

k k k

l

P l P P 



                                                  (3.19) 

max0 ( )k kP l P L                                                  (3.20) 

 2

1

( ) ( )
L

k k k k

l

PL g b k l P l


                                          (3.21) 

max( ) (2 1) kk l l P L                                               (3.22) 

, 0k kP P   , l = 1, 2,..., L. 

In (3.18) and (3.19), two non-negative slack variables Pk
+
 and Pk

–
 are used to represent 

the active power Pk flows in the line. The upper and lower bounds for each interval ΔPk(l) 

are defined in (3.20). The losses in the line are approximated by (3.21) and the slope of 

each linear block is given by (3.22). In most cases, the above piecewise linear loss model 

gives the correct line losses, however, when certain conditions are met, this model may 

x 

y = x
2
 

… 

k(L) 

k(1) 
k(2) 

Δx Δx Δx 
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fail to converge to the correct solution and result in a “fictitious loss” that will not be 

observed in the real system [45]-[46]. To address this problem, a loss model with binary 

variables is presented in Chapter 5, in which the fictitious loss is eliminated.  

3.4 The MILP-Based TEP Model 

Based on the DC model, this section presents a MILP-based multi-stage TEP 

model that considers network losses and the N – 1 criterion. The formulation of this TEP 

model is deterministic and the planners are assumed to have perfect information about the 

existing network as well as the parameters of the potential lines. 

3.4.1 Linearized Operating Cost 

The generator operating cost is usually assumed to be a linear function with 

respect to its active power output for simplicity purposes. However, a more realistic 

representation for the generator total energy cost should be a quadratic function with the 

following form, 

2

gt g gt g gt gCG a PG b PG c   .                                       (3.23) 

Similar to the loss model presented in Section 3.3, the quadratic cost function (3.23) is 

also piecewise linearized using a series of linear blocks as shown in Fig. 3.4. The 

mathematical formulation of the piecewise linear cost model is shown as follows, 

1

( )
L

gt gt

l

PG PG l


                                                (3.24) 

max0 ( )gt gPG l PG L                                            (3.25) 

0

1

( ) ( )
L

gt gt

l

CG k l PG l c


                                          (3.26) 

 max

2 1( ) (2 1) gk l l c PG L c   .                                    (3.27) 
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In (3.24), the generator output is modeled as the summation of a series of small intervals. 

The upper and lower bounds for each interval are defined in (3.25). The quadratic cost 

function is approximated by (3.26) and the slope of each linear block is calculated by 

(3.27). As shown in Fig. 3.5, the above piecewise linearized cost model is a better 

representation of the generator total operating cost as compared to a linear cost curve. 

 

Fig. 3.5.  Piecewise linearized generator total energy cost 

3.4.2 Modeling the N – 1 Criterion 

The N – 1 criterion states that the transmission network should be robust enough 

to handle the loss of any single element in the system. For the DC power flow model, this 

simply implies that no thermal limit violation and no load curtailment occurs with the 

outage of a single branch (L – 1) or a generator (G – 1).  

Similar to the approach proposed in [13] two contingency scanning matrices L 

and G are introduced to model the L – 1 and G – 1 contingency respectively. Assume a 

power system that has nl lines and ng generators, the structure of the contingency 

scanning matrices are shown below, 

PG
g

max
 

PGg 

CGg = agPGg
2
 + bgPGg + cg 

… 

k(L) 

k(1) 
k(2) 

ΔPGg(1) ΔPG
g
(2) ΔPG

g
(L) 
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( 1)

1 0 1

1 1 0
nl nl 

 
 


 
  

L   

0 1

1 0
ng ng

 
 


 
  

G                         (3.28) 

In (3.26), L is an nl by nl + 1 binary matrix and G is an ng by ng binary matrix. A ‘0’ in 

the matrices means the status of the corresponding element is outaged, while a ‘1’ means 

the status is normal. The first column of L has all ones, which represents the base case 

with all lines in service. In the matrices, each column is called a state, which represents 

the different operating modes. Generally, for a system with nl lines and ng generators, the 

total number of states for a complete L – 1 and G – 1 contingency scanning is nl + ng + 1.  

A power system subjected to a G – 1 contingency usually requires generation re-

dispatch. However, in real power systems, only certain generators can be re-dispatched. 

These generators usually have a higher ramp rate and serve non-base load. On the 

contrary, the base load generators, though cheaper in energy cost, usually have a low 

ramp rate. These base load generators are good resources to provide long-term system 

reserve, but are usually excluded as candidates for real time re-dispatch.  

The total number of states for a complete N – 1 analysis is nl + ng + 1. However, 

for large power system planning studies, a complete N – 1 analysis is usually too 

expensive due to the computational burden. In real systems, only a few critical 

contingencies could cause serious overload issues, in this case, if the algorithm still goes 

through all the nl + ng + 1 states, the efficiency of the algorithm will be severely affected. 

In order to reduce the computational burden, the critical contingencies should be pre-

screened and the total number of states should be set equal to the number of the critical 

contingencies plus one rather than nl + ng + 1. This function can be implemented by 
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adding a binary index in the input data indicating whether a line or a generator is a valid 

N – 1 contingency. Before solving the TEP model, the program should count the number 

of contingencies and then form the scanning matrices accordingly.  

3.4.3 The TEP Formulation 

From an economic perspective, operating cost can play a substantial role in the 

total cost, therefore, considering only the investment cost may not accurately reflect the 

true cost of a TEP project. Furthermore, transmission planning will enhance the 

competitiveness of the power market when more players can participate. These market 

players, many of them are profit driven, consider the operating costs of their generation 

units as a major issue. As a result, it is important to coordinate the investment cost and 

the operating cost when formulating the objective function. Theoretically, the objective 

of a TEP problem is to maximize the social welfare, but in reality, the social welfare can 

be difficult to measure. Assuming a perfect inelastic demand curve, an equivalent 

objective to maximizing the social welfare is to minimize the sum of the investment cost 

and the operating cost [47]. The objective function jointly minimizes the total investment 

cost and the operating cost discounted to the present value, 

   
1

1 16
1 1

8760( )
min  

1 10 1

pl op

k g

T T

gtk kt kt

t t
t k t g

CGc z z
C

d d



 
   


 

 
                         (3.29) 

where the first and second terms represent the total investment cost and the total 

generator operating cost respectively. In the investment cost, ck(zkt – zkt-1) guarantees that 

the cost of building a line ck is not double counted. The value of the decision variable zk0 

is set to be zero. Notice that the cost of losses is implicitly modeled in (3.29). This is 

because that the total power generated in the system is equal to the total loads plus the 
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losses, thus, the cost of losses is implicitly modeled in the generator operating cost. 

However, the proposed objective function does not necessarily minimize the losses. If 

one intends to minimize the losses, then the expression for losses should be the only term 

contained in the objective function. It could be argued that it is always good to have 

minimal losses, and they tend to penalize the term related to the losses by a large number 

to get a solution with fewer losses. Without entering into the discussion as to how to 

choose the penalty factor properly, this author believes that the investment cost and the 

operating cost should be treated in a nondiscriminatory manner. Since both costs are 

discounted to the present value, biasing one may identify a different TEP solution that 

reduces the overall economic value of the TEP project. 

The complete constraints set of the proposed TEP formulation is as follows, 

   
i i i i
k g k d

kct gct kt d b

k g k d

P PG PL PD i
   

                              (3.30) 

     1 1    kt k kct k kct kt k kx M P b x M k                             (3.31) 

min max    kt k kct kct kt k kx P P PL x P k                                   (3.32) 

max0 ( , )   gct g gPG PG G g c g                                      (3.33) 

   kct kct kct kP P P k                                               (3.34) 

1

 1,  2,..( )    ,  .,
L

kct kct kct k

l

k LP l P P l 



                               (3.35) 

 max0 ( )    1,  2,... ,  ,kct kt k kP l x P L k l L                           (3.36) 

 2

1

 1,  2,( ...) ( )   ,  ,
L

loss

kct k k kct k

l

P G B k l P l Lk l


                       (3.37) 

max( ) (2 1)    1,  2,..., ,  k kk l l P L l Lk                             (3.38) 
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1

( )    1,  2,..., , 
L

gt gt g

l

PG g l LPG l


                               (3.39) 

max0 ( )     1,  2,., ., .gt g gPG l PG L g l L                           (3.40) 

0

1

 1,  2,...,( ) ( )    ,  
L

gt g gt g

l

CG k l PG l c g l L


                        (3.41) 

 max

2 1( ) (2 1)     1,  2,...,,  g g g lk l l c PG L c Lg                      (3.42) 

1 0     2,3,...kt ktz z t T                                            (3.43) 

( , )     for existing lines

( , )  for perspective lines
kt

kt

L k c
x

z L k c


 


. 

In this formulation, (3.30) is the nodal balance equation which guarantees the power 

balance at every bus. In (3.31) and (3.32), a disjunctive factor Mk is used to eliminate the 

nonlinearities that would otherwise appear. Constraint (3.31) indicates the following: if 

xkt is 1, i.e. the line exists or the line is selected, then the DC power flow equation is 

enforced; otherwise, if xkt is 0, i.e. the line is outaged or the line is not selected, then the 

disjunctive factor Mk ensures that the constraint is not binding. The disjunctive factor Mk 

should be sufficiently large, but a too large Mk will often cause numerical difficulties. 

The minimum sufficient value of Mk can be calculated using the approach in [48]. Similar 

logic also applies to (3.32): if the xkt is 1. Then the power flow is limited by the rating of 

that line; otherwise, the power flow is forced to be 0. In (3.33), the power generated from 

a certain generator is limited in its capacity range if the generator is in service, and is zero 

if the generator is outaged. Constraints (3.34)-(3.42) represent the linearized loss model 

and generator cost model. Notice that in the objective function, only the base case 

operating cost is modeled. Operating under contingencies is not considered as a normal 
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operating mode, the operating cost for operating under contingencies is not included in 

the objective function. Constraints (3.43) ensures that once a line is built in one period, it 

will not be taken off in the next period. 

3.5 Case Studies 

In this section, the proposed TEP model is applied to two test systems. First, the 

performance of the proposed loss modeling approach is tested and analyzed on the IEEE 

24-bus system [5]. A two-stage TEP is then performed on the IEEE 118-bus system [50]. 

All models are programmed in AMPL [51]. The solvers used are Gurobi [52]. The 

computer used for simulations has an Intel E8500 CPU with 3.2 GB of RAM.  

3.5.1 The IEEE 24-bus System 

The IEEE 24-bus system used in this case has 35 existing branches, 32 generators 

connected at 10 buses, and 21 loads. The total load is 2850 MW. All the system 

parameters including the line investment cost data can be found in [5]. The lower bounds 

of all the generators are set to zeros. The total operating horizon is twenty years. 

First, the TEP solution obtained from the lossy DC model and the lossless DC 

model are compared for the cases that consider and do not consider N – 1 criterion, 

respectively. For every existing corridor, one more line can be added. Since there are 35 

existing branches and no parallel branches, the number of binary decision variables is 35. 

A complete N – 1 analysis is performed for all lines (35 existing lines and 35 potential 

lines) and generators. The number of the piecewise linear sections for loss modeling and 

generator cost modeling are set to be 5 and 20 respectively. The comparison results are 

shown in Table 3.3. Define the term cost turnover as, 
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loss lossless

opr opr

loss lossess
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Cost turnover

C C





                                         (3.44) 

where the numerator and the denominator represent the difference of investment cost and 

the operating cost between the lossy and the lossless DC models respectively. For any 

year beyond cost turnover, the expansion plan obtained from the lossy DC model will 

give a lower total cost as compared to the lossless DC model. 

Table 3.3. TEP results comparison for the IEEE 24-bus system 

Corridor 
Not considering N – 1 Considering N – 1 

Lossy Lossless Lossy Lossless 

3 – 9  

No line 

needed 

 1 

3 – 24  1  

7 – 8  1  

14 – 16  1  

15 – 21 1 1  

15 – 24  1  

16 – 17  1 1 

17 – 18   1 

20 – 23  1  

No. of lines needed 1 0 7 3 

CPU time (s) 0.16 0.06 74.19 8.59 

Investment cost (M$) 24.8 0 168.4 80.6 

Losses (MW) 51.70 0 52.98 0 

Annual operating cost 

(M$) 
506.72 508.97 503.20 507.46 

Cost turnover 11.0 years 20.6 years 

 

As observed from the above table, the lossy DC model results in completely 

different network expansion schemes as compared to the lossless DC model. For the case 

that considers the N – 1 criterion, more lines are required to be built, this is because 

modeling network losses tend to shift the cost from operation to line investment, and thus 

influence the optimal transmission plan. The lossless DC model usually requires building 

fewer lines initially and gives a lower estimate of the planning cost, but in the long run, 
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the transmission expansion plan given by the lossless DC model will cost more because 

of the presence of losses in the real system. The annual operating cost in the Table is 

obtained from the ACOPF result with the corresponding expanded network. As observed 

from the table, the annual operating cost of the expanded network obtained from the lossy 

DC model is lower than the one obtained from the lossless model for both cases. For the 

IEEE 24-bus system studied in this section, the cost turnovers are 20.6 years and 11 years 

depending on whether the N – 1 criterion is considered.  

3.5.2 The IEEE 118-bus System 

In this case study, a multi-stage planning study is performed on the modified 

IEEE 118-bus system. The system has 186 existing branches, 54 generators, and 91 

loads. The line ratings have been reduced to create line congestion in the initial network. 

In this case study, seventeen lines have been selected as the candidate lines. The complete 

candidate line set is listed in Table 3.4.  

Table 3.4. Candidate lines for the IEEE 118-bus system 

Number Corridor Cost (M$) Rating (MW) 

1 3 – 5 8.73 120 

2 8 – 5 8.17 200 

3 8 – 9 16.43 200 

4 30 – 17 21.22 200 

5 8 – 30 8.67 120 

6 26 – 30 11.22 200 

7 55 – 56 14.66 120 

8 38 – 65 13.74 200 

9 77 – 78 8.97 120 

10 83 – 85 10.65 120 

11 85 – 86 22.77 200 

12 65 – 68 18.41 200 

13 38 – 37 19.24 200 

14 103 – 110 15.7 120 

15 110 – 112 18.71 120 

16 17 – 113 17.54 120 

17 12 – 117 3.18 120 
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The following simulations show the results for a two-stage security-constrained 

planning study on the IEEE 118-bus system. The time span of this planning problem is 

ten years. The planned lines are to be built at the beginning of Year 1 and Year 6 

respectively. In total, 8 additional lines are required in this ten-year planning horizon, and 

no more than 5 lines should be built in the first stage due to a budget constraint. Starting 

from Year 1, the objective is to minimize the total cost of investment and operation in 

this ten-year horizon. The estimated load growth is 20% in five years, which means at the 

beginning of the sixth year, the total load is 20% higher than the initial load. Furthermore, 

the load is assumed to increase in proportion to each load bus. A complete N – 1 analysis 

except for the single outlet transformer (line 9 – 10, 71 – 73, 86 – 87, 110 – 111 and 68 – 

116) is performed for each stage. The optimal network expansion scheme and the total 

estimated cost obtained by the model is shown in Table 3.5. 

Table 3.5. TEP results for the IEEE 118-bus system 

Lines to build 
Year 1 5 – 8, 8 – 9, 12 – 117, 26 – 30, 85 – 86 

Year 6 3 – 5, 8 – 30, 77 – 78 

Total cost (M$) 4383.09 

Computing time (min) 68.5 

 

As observed from Table 3.5, four new lines are needed for this two-stage security-

constrained planning problem, and all of them need to be built in Year 1 for economic 

purposes. During the ten-tear planning horizon, the total investment and the operating 

cost are about 4.38 billion dollars. The computation time is about 68.5 minutes. Notice 

that the result obtained above only gives a high-level picture of how the system can be 

designed reliably and economically for the long run based on the best estimate at the 

present. The line flow and the generator dispatch obtained in the planning studies, 
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however, may not be economical for real time operation due to unforeseen load levels 

and many uncertainty factors that cannot be forecast.  

For the expanded system, a lower and flatter LMP profile is usually expected, and 

this is observed for most cases. However, notice that the objective of power system 

planning is not to minimize the LMP. Therefore, the planned system does not necessarily 

lower the LMP at every bus. The LMP profile of the initial network without additional 

lines, the expanded network at the end of Year 1, and the final expanded network at the 

end of Year 6 are plotted in Fig. 3.6. One can observe that the LMP profile for the 

expanded system at the end of Year 1 is much flatter than the initial network, because 

with the new lines added, the congestions that were originally present in the system are 

relieved. Due to the significant load growth at the end of Year 6, the ACOPF fails to 

converge for the initial network without any transmission lines additions, while for the 

expanded system, a higher LMP profile is observed. 

 

Fig. 3.6.  Comparison of the LMPs at each bus 
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3.6 Summary  

A MILP-based multi-stage TEP model is proposed in this chapter. In order to 

obtain an accurate TEP model, a piecewise linearization approach is developed to model 

the network losses as well as the quadratic generator cost. The N – 1 criterion is modeled 

using two contingency scanning binary matrices. The first case study shows that the 

modeling of network losses can significantly influence the network expansion plan. The 

cost turnover index shows that the TEP model using the lossy DC model will eventually 

provide savings in the total cost. The multi-stage planning studies on the IEEE 118-bus 

system demonstrate that the proposed TEP model has the potential to be applied to large 

power system planning problems. 

  



43 

Chapter 4  

TRANSMISION EXPANSION PLANNING USING THE AC MODEL 

4.1 Chapter Overview 

The AC modeling of the TEP problem is rarely seen in the literature. This is 

because the formulation of TEP problems using the AC model is generally a MINLP 

problem, which is extremely difficult to solve. A few solvers such as Knitro, Bonmin, 

Couenne and Baron are capable of solving MINLP problems and can obtain a reasonably 

good solution in an acceptable time. Among these solvers, Couenne and BARON are 

designed for solving both convex and non-convex MINLP problems. Knitro and Bonmin 

are designed for solving only convex MINLP problems exactly, while for non-convex 

MINLP problems, heuristic solutions will be given [53]-[55].  

Solving MINLP problems directly is not the only choice. In fact, when the 

original problem is impossible or too expensive to solve, relaxation should be considered. 

By eliminating integer variables, the MINLP problems can be relaxed to an NLP 

problem, which usually has a potential for an easier solution. This chapter explores the 

possibility of applying AC-based models to the TEP problems. The AC-based TEP 

models and their possible relaxations are proposed and discussed in detail.  

The rest of the chapter is organized as follows: Section 4.2 presents two MINLP-

based TEP models. The relaxations of the models are investigated in Section 4.3. 

Simulation results are provided in Section 4.4 to compare the performance of the 

proposed TEP models. Finally, concluding remarks are drawn in Section 4.5.  
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4.2 MINLP-Based ACTEP Models 

In this section, two MINLP-based TEP models are presented. The two models are 

denoted as MIP1 and MIP2 and the mathematical formulations are shown as follows, 

MIP1: 

 2

2 1 0min  
k g

k k g g

k g

c z c PG c PG c
 

                                    (4.1) 
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where the active and reactive line flows are given by, 

   2

0 cos sink k i k k i j k k k kP z V g g VV g b                                (4.2) 

   2

0 cos sink k i k k i j k k k kQ z V b b VV b g        .                        (4.3) 

In the MIP1 model, the objective function (4.1) jointly minimizes the investment 

cost and the operating cost. The line flows are modeled as the products of binary 

variables zk and the AC power flow equations as shown in (4.2) and (4.3). For existing 

lines, zk is fixed to 1, while for perspective lines, zk is a binary variable and can be chosen 
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freely as 0 or 1. It can be observed from (4.2) and (4.3) that if a line is not selected, then 

the power flow on that line is forced to be zero. Disjunctive programming methods can be 

applied to replace the equality constraints (4.2) and (4.3) and gives the following MIP2 

model, 

MIP2: 

 2

2 1 0min  
k g

k k g g

k g

c z c PG c PG c
 

     

0g d k

g i d i k i

PG PD P
  

      

0g d k

g i d i k i

QG QD Q
  

      

min max

g g gPG PG PG   

min max

g g gQG QG QG   

min max

i i iV V V   

max max

k k k      

 
2

2 2 max0 k k k kP Q z S                                               (4.4) 

where the active and reactive line flows are given by, 

   2

0 cos sin (1 )k i k k i j k ij k ij k kP V g g VV g b z M                        (4.5) 

   2

0 cos sin ( 1)k i k k i j k ij k ij k kP V g g VV g b z M                        (4.6) 

   2

0 cos sin (1 )k i k k i j k ij k ij k kQ V b b VV b g z M                        (4.7) 

   2

0 cos sin ( 1)k i k k i j k ij k ij k kQ V b b VV b g z M       .                (4.8) 
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Compared to the MIP1 model, the above MIP2 model splits the two power flow 

equations into four inequality constraints as shown in (4.5) – (4.8). Constraints (4.5) and 

(4.6) indicate that if a line is selected, which means that zk equals to 1, then the two 

constraints act as akin to (4.2) and force the active power flow equation to hold; 

otherwise, the disjunctive factor Mk guarantees that the two constraints are not binding. 

Similar logic applies to (4.7) and (4.8) for reactive power flow on the line. Notice that the 

two TEP models presented in this section are straightforward, but they are both MINLP-

based models and are extremely difficult to solve (refer to simulation results in Section 

4.4). In order to obtain an efficient ACTEP model, relaxations of the above models are 

needed. Possible relaxations of the MINLP-based ACTEP models are investigated in the 

next section. 

4.3 Relaxations of the MINLP-Based ACTEP Model 

Mathematically, the relaxation refers to a modeling strategy that approximates the 

original problem. The relaxed problem typically creates a superset of the feasible region 

of the original problem so that solving the relaxed problem usually requires less effort 

than solving the original problem. The solution of the relaxed problem may not 

necessarily be the exact solution of the original problem but should be reasonably close 

and provides key information about the original problem. For ACTEP models, the main 

purpose of the relaxation is to eliminate the integer variables to reduce the complexity of 

the original problem. This section proposes three possible relaxations of the MINLP-

based ACTEP models. The first two models are based on the NLP relaxations, and the 

third model is based on the RLT relaxation where all the constraints are linearized. 
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4.3.1 The NLP Relaxations 

The two NLP relaxations are developed based on the MIP2 model presented in 

Section 4.2. By slightly changing the formulation, the integer constraints in MIP2 can be 

eliminated and NLP-based TEP model is formulated as follows, 

NLP1: 

 2

2 1 0min  
k g

k k g g

k g

c z c PG c PG c
 

     

0g d k

g i d i k i

PG PD P
  

      

0g d k

g i d i k i

QG QD Q
  

      

min max

g g gPG PG PG   

min max

g g gQG QG QG   

min max

i i iV V V   

max max

k k k      

 
2

2 2 max0 k k k kP Q z S    

 1k kz z                                                        (4.9) 

0 1kz  .                                                     (4.10) 

By adding (4.9) and (4.10) in the NLP1 model, zk is relaxed as a continuous variable 

ranging from 0 to 1. The TEP formulation is therefore reduced to an NLP model. Notice 

that ideally, (4.9) should be written as zk(1 – zk) = 0. To satisfy this equation, zk must 

equal either 0 or 1. In practice, the inequality form as shown in (4.9) is usually used with 

the right hand side equal to a small positive number ε instead of zero to prevent he 
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presence of numerical difficulties. Instead of using the zero product constraint as in (4.9), 

the same goal can be achieved by penalizing the objective function as shown in the 

following NLP2 model, 

NLP2: 

   2

2 1 0min  sin 1
k g

k k g g

k g

c A z c PG c PG c
 

                           (4.11) 

0g d k

g i d i k i

PG PD P
  

      

0g d k

g i d i k i

QG QD Q
  

      

min max

g g gPG PG PG   

min max

g g gQG QG QG   

min max

i i iV V V   

max max

k k k      

 
2

2 2 max0 k k k kP Q z S    

0 1kz  . 

As observed from the above NLP2 model, a penalty term [Asin(πzk) + 1] is imposed on 

the objective function (4.11). When zk is equal to either 1 or 0, the value of Asin(πzk) is 

always zero and the resultant objective function is the same as (4.1). Otherwise, the large 

positive coefficient A of the sine function will impose a penalty on the objective function 

and make it impossible to be the optimal solution. In other words, the optimal solution 

can only be obtained when zk is equal to 0 or 1. The sketch of the penalty function is 

shown in Fig. 4.1. 
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Fig. 4.1.  Sketch of the penalty function in the NLP2 model 

The NLP-based TEP model relaxes the binary decision variables by introducing a 

nonlinear constraint (4.9) or penalty term in the objective function (4.11). Compared with 

the original MINLP problem, the relaxed NLP problem is usually easier to solve. 

However, this relaxation also creates many local optimum. Since the NLP problem is 

solved using KKT condition, the solve may not “see” other solutions (could be better) 

once it reaches one of the local optimum. Therefore, Starting with different combination 

of starting point is important to obtain a solution with high quality. 

4.3.2 The RLT-based Relaxation 

The following example shows the basic concept of the RLT [56]. Considering the 

following minimization problem, 

min  x y                                                        (4.12) 

subject to, 

1x y xy                                                        (4.13) 

( , ) ( , ) ( , )L L U Ux y x y x y  , ,x y R . 

1 

A+1 

Asin(πzk)+1 

zk 

0 1 
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Since there is a bilinear term xy in (4.13), the model (4.12) is non-convex. In order to 

convexify the model, a new variable w is introduced to replace the binary term so that the 

(4.13) can be rewritten as, 

1x y w   .                                                     (4.14) 

In the above model, the upper bound and lower bound of the existing variables x and y 

are given respectively as (xU, yU) and (xL, yL), and there is no additional constraint on w, 

then a tight bound on w, which is also known as the McCormick convex relaxation [56] 

can be calculated by solving the following inequalities: 

L L L L

U U U U

U L U L

L U L U

w x y y x x y

w x y y x x y

w x y y x x y

w x y y x x y

  

  

  

  

                                             (4.15) 

By using the above RLT-based relaxation, the original bilinear problem can be 

relaxed to a linear programming problem, which is convex and much easier to solve. 

However, the main drawback of the RLT-based relaxation is the excessive size of the 

resulting LP relaxation. In addition, by using the RLT-based relaxation, it is difficult to 

control the degree of the relaxation. This means that the problem may easily become too 

relaxed and therefore lose some of the key information that should be maintained. In 

order to apply RLT to the TEP formulation, the rectangular form of the power flow 

equations as shown in Section 2.3.1 is used. By sequentially inserting the dummy 

variables, all the bilinear terms can eventually be rewritten as a linear expression. The 

RLT-based TEP model is shown as follows, 

RLT: 
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 2

2 1 0min
k g

k k g g

k g

c z c PG c PG c
 

     

0g d k

g i d i k i

PG PD P
  

      

0g d k

g i d i k i

QG QD Q
  

      

min max

g g gPG PG PG   

min max

g g gQG QG QG   

min max

i i iV V V   

max max

k k k      

max0 k kP S                                                     (4.16) 

     1 2 3 4 5 6 (1 )k sh k k k k k k k k k kP g X X g X X b X X z M                 (4.17) 

     1 2 3 4 5 6 ( 1)k sh k k k k k k k k k kP g X X g X X b X X z M                 (4.18) 

     1 2 3 4 5 6 (1 )k sh k k k k k k k k k kQ b X X b X X g X X z M                 (4.19) 

     1 2 3 4 5 6 ( 1)k sh k k k k k k k k k kQ b X X b X X g X X z M                 (4.20) 

where gsh = gk + gk0, bsh = bk + bk0, X1 = ei
2
, X2 = ej

2
, X3 = eiej, X4 = fifj, X5 = ejfi and X6 = 

eifj. For power systems in the steady state, it is usually assumed that 0.95 ≤ Vi ≤1.05 and –

π/6 ≤ θk ≤ π/6. Recall that ei = Vicosθi and fi = Visinθi, the bounds on ei, ej, fi and fj can be 

therefore obtained as 0.8227 ≤ (ei, ej) ≤ 1.05 and –0.525 ≤  (fi, fj) ≤ 0.525. Thus, (4.15) 

can be used for deriving the bounds on X1 to X6. Notice that in order to obtain a fully 

linearized model, reactive power term is neglected in (4.16). 
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4.4 Case Studies 

In this section, the proposed TEP models are applies to two test systems and 

simulation results are demonstrated. First, the proposed MINLP-based ACTEP models 

and their relaxations are tested on Garver’s 6-bus system. The performance of each model 

is compared and analyzed. Then, the NLP2 model is applied to solve the TEP problem of 

the IEEE 24-bus system. All the models are programmed in AMPL. The computing 

platform used to perform all the simulations is a Linux workstation that has an Intel i7 

2600 4-core CPU at 3.40 GHz and with 16 GB of RAM. 

4.4.1 Garver’s 6-bus System 

The Garver’s system used in this section is the same as the one used in Section 

3.2. The additional system data are provided in [14]. It is assumed in this section that the 

maximum number of lines allowable in a transmission corridor is 2. Since there are 6 

existing lines, the maximum number of lines that can be built are 24. In order to compare 

with the TEP results in the literature, the objective is only to minimize the investment 

cost. First, three MINLP solvers: Couenne 0.4.0 [53], Bonmin 1.5.1 [54] and Knitro 8.0.0 

[55] are used to solve the two MINLP-based TEP models presented in Section 4.2. The 

results are listed in Table 4.1. 

Table 4.1. TEP results for the MINLP-based TEP models 

Model  KNITRO BONMIN COUENNE 

MIP1 
Objective 1056 1056 Time limit reached 

TEP result Build all lines Build all lines  

MIP2 
Objective 

Iteration limit 

reached 
677 Time limit reached 

TEP result 
 

Build 17 lines  

 



53 

As observed from Table 4.1, for the MIP1 model, the heuristic solutions given by 

Knitro and Bonmin are simply to build all the lines. This is rather a trivial feasible 

solution because the solvers are not really selecting a specific choice. For the MIP2 

model, Knitro gives a solution of 130 M$, while Bonmin gives 667 M$. Notice that 

although Couenne claims that it can solve general MINLP problems exactly, the solution 

time could be extremely long. For both MINLP-based models, Couenne fails to return a 

solution within the 24-hour time limit. The capability of the solvers for handling MINLP-

based TEP models is still quite limited. 

The NLP models and the RLT model are solved only by Knitro and Bonmin. 

Although the first two models are reduced to NLP problems, they are still non-convex 

problems. However, the quality of the solution can be significantly affected by the 

starting points. As a heuristic approach, the multi-start option in Knitro and Bonmin is 

used. For both NLP models, the number of multi-starts is set to 2000. The optimality 

tolerance and the feasibility tolerance of the solvers are set to 10
-9

, respectively. The TEP 

results of the relaxed models are presented in Table 4.2. 

Table 4.2. TEP results for the relaxed ACTEP models 

Model Solver KNITRO BONMIN 

NLP1 

Objective  

(M$) 
406 473 

Lines Build 11 lines Build 12 lines 

NLP2 

Objective 

(M$) 
180 804 

Lines 
(1-5), (2-3), (2-6)×2,  

(3-5), (4-6)×2 
Build 21 lines 

RLT 

Objective 

(M$) 
110 110 

Lines (2-6), (3-5), (4-6)×2 (2-6), (3-5), (4-6)×2 
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As observed from Table 4.2, for NLP1 model, Knitro gives a lower objective 

value (406 M$) and fewer lines to build as compared to the results gives by Bonmin after 

2000 restarts. For the NLP2 model, Knitro again gives a much lower objective value (180 

M$) as compared to the results gives by Bonmin. It should be pointed out that the 

selection of the penalty factor A can significantly influence the results. A penalty factor 

that is not sufficiently large may cause the decision variables zk fail to converge closely 

enough to 0 or 1, but a too large penalty factor could also make the problem difficult to 

converge. Based on the simulation experience, the value of coefficient A used for Knitro 

that gives the best solution is 10
9
, while for Bonmin is 10

3
. For the RLT model, both the 

solvers identify the same objective value and the same set of lines to be built. Among all 

the results in the table, the RLT model gives the lowest objective value. 

During the process of the relaxations, it is likely that some key information of the 

original model is not strictly maintained in the relaxed models. Therefore, the “optimal” 

plan obtained by the TEP model may be infeasible in the AC power flow studies. As a 

result, a validation process is necessary to ensure that the TEP plans are AC feasible. In 

this section, the four TEP plans with the lowest objective functions are validated by 

running an ACOPF study and the results are shown in Table 4.3. 

Table 4.3. Validation of the TEP results of Garver’s system  

Model Solver Objective  (M$) ACOPF Results 

RLT KNITRO / BONMIN 110 No convergence 

NLP2 KNITRO 180 Converged 

NLP1 KNITRO 406 Converged 

NLP1 BONMIN 473 Converged 
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As observed from Table 4.3, despite the RLT model giving the lowest objective 

value, the TEP result is, however, infeasible in the ACOPF. The TEP results given by the 

three NLP models are all feasible in the ACOPF, and the one given by the NLP2 model 

(marked in bold) has the lowest objective value. Therefore, one can conclude that among 

all the solutions in Table 4.3, the one given by the NLP2 model is the best expansion plan 

for Garver’s test system. The expanded network is shown in Fig. 4.2. The dashed lines 

are new transmission lines to be added. 
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Fig. 4.2.  The expanded Garver’s 6-bus system 

As a global optimization problem, different starting points should be tried to 

improve quality of the solution. Fig. 4.3 shows the effect of multi-starts on the ACTEP 

solutions using the NLP2 model. It can be observed that the quality of the solution is 

significantly improved with the increased number of multi-starts. However, one should 

be aware that this is at a cost of additional computing time. 
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Fig. 4.3.  Effect of multi-starts on the TEP solution 

The results presented in Table 4.4 compare the TEP solutions of Garver’s 6-bus 

system obtained from different models. One can observe that the AC model gives a 

higher objective value and requires building more lines. Notice that since the TEP models 

based on the lossless DC model and the lossy DC model are MILP models, the global 

optimality of the solution is guaranteed. However, TEP model based on the AC model is 

a non-convex NLP model and there is no guarantee to obtain a global optimal solution in 

polynomial time. The only conclusion that can be drawn is that this solution is the best 

possible TEP solution after 2000 multi-starts.  

Table 4.4. Comparison of the TEP results 

Model DC Lossless [5] DC Lossy [15] AC 

Objective (M$) 110 140 180 

Lines to be added (3-5), (4-6)×3 
(2-6)×2, (3-5), 

(4-6)×2 

(1-5), (2-3), (2-6)×2, 

(3-5), (4-6)×2 

AC Feasible? No No Yes 
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4.4.2 The IEEE 24-bus System 

The IEEE 24-bus system used in this paper has 33 generators connected at 10 

buses, and 21 loads [57]. The line investment cost data and the system parameters are 

provided in Appendix A, respectively. The total load is 2850 MW. The objective function 

in this case is to minimize the sum of line investment cost and the operating cost for 20 

years. The AC model and solver used in this study are NLP2 and Knitro, respectively. 

Similar to the previous case, the penalty factor used in this case is 10
9
, the number of 

multi-starts is set to 2000, and the optimality tolerance and the feasibility tolerance of the 

solvers are set to 10
-9

. In order to perform the ACTEP studies, five lines that are related 

to bus 1, bus 2 and bus 7 are removed (1 – 2, 1 – 4, 1 – 5, 2 – 4 and 7 – 8), which means 

bus 1, bus 2 and bus 7 are isolated from the rest of the system. Instead, a new candidate 

line set is listed in Table 4.5. 

Table 4.5. Candidate line parameters for IEEE 24-bus system 

Number Corridor Cost (M$) Rating (MW) 

1 1 – 2 7.04 175 

2 1 – 4 106.92 175 

3 1 – 5 42.78 175 

4 2 – 4 64.14 175 

5 2 – 6 97.2 175 

6 7 – 2 7.04 175 

7 7 – 4 106.92 175 

8 7 – 5 64.14 175 

9 7 – 8 31.08 175 

 

Two cases are studied for the IEEE 24-bus system. In Case 1, the TEP model is 

run without any additional constraints. In Case 2, an additional security constraint is 

added to make sure that the number of lines connected to a bus should be greater or equal 

to 2. The TEP results are shown in Table 4.6. 
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Table 4.6. Comparison of TEP results for the IEEE 24-bus system 

Corridor 
DC lossless 

model [5] 

DC lossy model 

[11] 

AC model (NLP2) 

Case 1 Case 2 

1 – 2 1 1  1 

1 – 5   1 1 

2 – 4    1 

7 – 2 1 1 1 1 

7 – 8 1 1 1 1 

Investment cost 

(M$) 
45.16 45.16 87.94 152.08 

Losses
1
 (MW) 58.77 58.77 55.72 54.06 

Annual operating 

cost (M$) 
560.3 560.3 558.7 558.0 

CPU time 0.08 s 0.16 s 
2.3 h  

(2000 restarts) 

2.5 h  

(2000 restarts) 
1
The losses and the annual operating cost are obtained from ACOPF 

As observed from Table 4.6, for Case 1, the AC model requires building 3 lines, 

thus bus 1, bus 2, bus 4, bus 5 and bus 7 in the system will be radially connected, while in 

Case 2 where the security requirement is added, two more lines 2 – 4 and 1 – 2 are 

required, and therefore eliminates the radial line. Both the lossless DC model and the 

lossy DC model give the same result of building 3 lines when security requirement is not 

considered. It should be pointed out that if considering the security constraints, then the 

DC-based models give the same results as Case 2 of the AC model.  

4.5 Summary  

Starting with two MINLP models, this chapter explores the possibility of applying 

the AC model to solve TEP problems. Two NLP-based TEP models are proposed by 

relaxing the binary variables in the model. A RLT-based model in which all the 

constraints are linearized is also studied. Based on the simulation results, the following 

general conclusions can be made: 



59 

• The AC model can be applied to model TEP problems, but solving the 

MINLP-based ACTEP models is still challenging.  

• By relaxing the binary variables, it is possible to solve the NLP-based ACTEP 

problem and obtain a local solution. In order to obtain a high quality solution, 

it is necessary to use of the multi-start option. However, despite the 

observation that the multi-start option can improve the quality of the TEP 

solution, it is still difficult to judge the global optimality of the solution due to 

the non-convex nature of the problem. 

• The potential of using the MINLP/NLP models for solving large-scale TEP 

problems requires more research. 
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Chapter 5  

A RELAXED ACOPF MODEL BASED ON A TAYLOR SERIES 

5.1 Chapter Overview 

Due to the approximations made, the accuracy of the DC model may be poor in 

some cases [58]. Endeavors have been made recently to search for better approximations 

to the AC model. The core concepts of the work being done are convexification and 

relaxation. The purpose of formulating a convex model is to obtain the global optimal 

solution. During the convexification process, if certain conditions do not hold, then 

relaxations may be needed. A linear programming approximation to the AC power flow 

equations was presented in [59], where the cosine term in the power flow equations was 

piecewise linearized and other nonlinear terms are approximated by the Taylor series. In 

[60], the ACOPF problem was reformulated using a semi-definite programming (SDP) 

model and solved by the interior point method. A zero-duality SDP model based on the 

Lagrange dual of the ACOPF problem was proposed in [61]. For the zero-duality to hold, 

small modifications to the original systems may be needed. Studies including branch flow 

model [62] and branch-and-bound algorithms [63] have been conducted recently to 

further explore the zero-duality feature. Compared to the DC model, the models 

presented in the above work provide better approximations to the ACOPF model. 

However, these models are still incomplete and require further investigations. For 

example, the zero-duality may not hold when certain constraints, such as line flow or 

lower bounds on reactive power generation, are enforced [64]-[65]. In addition, these 

models are complicated and may not be easily extended to other applications such as 

transmission expansion planning. This chapter develops a relaxed OPF model based on a 
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Taylor series. The proposed model provides a better approximation to the AC network by 

retaining reactive power, off-nominal bus voltage magnitudes as well as network losses.  

The rest of this chapter is organized as follows: Section 5.2 presents the relaxed 

ACOPF model. Section 5.3 investigates the loss model and its relaxations. Simulation 

results are presented in Section 5.4. Conclusions are drawn in Section 5.5.   

5.2 The Relaxed ACOPF Model 

The proposed relaxed ACOPF model is derived in this section. The model is 

based on the following assumptions: 

• All bus voltage magnitudes are close to 1.0 p.u. 

• The angle difference across a branch is small so that sin(θk) ≈ θk and cos(θk) ≈ 

1 can be applied.  

Similar to the standard ACOPF model, the proposed relaxed ACOPF model takes 

the following form: 

min  ( )f x                                                         (5.1) 

subject to 

( ) h x c                                                           (5.2) 

( ) g x b                                                           (5.3) 

min maxx x x                                                       (5.4) 

 , , ,
T

g g i iPG QG V x . 

In the above model, bold-faced variables refer to vectors. The objective function 

(5.1) is the summation of the quadratic cost functions of each generator and has the 

following form: 
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  2

g g g g g g gC PG a PG b PG c   .                                     (5.5) 

The equality constraints (5.2), which are further elaborated in (5.6) and (5.7), 

represent the active and reactive power balance equations at every bus. The variables 

after the colon represent the associated dual variables. The terms corresponding to 

network losses PLk and QLk are explicitly added to the nodal balance equations. Define 

bus i and bus j to be the “from” bus and the “to” bus of branch k. The losses on the 

branch are split in half and attached to the two terminal buses as shown in Fig. 5.1. The 

expressions of PLk and QLk will be elaborated further in Section 5.3, 

 0.5     :g k k d i

g i k i k i d i

PG P PL PD 
   

                                   (5.6) 

 0.5     :g k k d i

g i k i k i d i

QG Q QL QD 
   

                                  (5.7) 

 

Fig. 5.1.  Modeling of network losses as bus fictitious demands 

Inequality constraints (5.3) represent the power flow limit on each branch: 

2 2 max 2( )k k kP Q S  .                                                 (5.8) 

Notice that (5.8) is a set of second order cone constraints.  This type of constraint is still 

convex and can be handled by linear solvers such as Gurobi. Neglecting the effects of 

off-nominal transformer turns ratios and phase shifters yield the full AC power flow 

through branch k as follows,  

rk + jxk 
bus i bus j 

0.5(PLk + jQLk) 

Pk
ij
 

Qk
ij
 

Pk
ji

 

Qk
ji
 

0.5(PLk + jQLk) 
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 2 cos sink i k i j k k k kP V g VV g b                                      (5.9) 

   2

0 cos sink i k k i j k k k kQ V b b VV b g      .                        (5.10) 

Rewriting the bus voltage magnitude as,  

1i iV V  .                                                     (5.11) 

Based on the assumptions, ΔVi is expected to be small. Substituting (5.11) into (5.9) and 

(5.10) and neglecting higher order terms,  

    1 2 1k i k i j k k kP V g V V g b                                  (5.12) 

     01 2 1k i k k i j k k kQ V b b V V b g          .                   (5.13) 

Notice that (5.12) and (5.13) still contain nonlinearities. However, since ΔVi, ΔVj and θk 

are expected to be small, the products ΔViθk and ΔVjθk can be treated as second order 

terms and hence negligible. Therefore, the linearized power flow through branch k 

metered at bus i are obtained as follows, 

 k i j k k kP V V g b                                               (5.14) 

   01 2k i k i j k k kQ V b V V b g         .                           (5.15) 

The bounds on variables (5.4) include upper and lower limits on bus voltage 

magnitudes and angles as well as the generator active and reactive outputs, 

min max

i i iV V V                                                  (5.16) 

max max

k                                                     (5.17) 

min max

g g gPG PG PG                                              (5.18) 

min max

g g gQG QG QG  .                                          (5.19) 

The complete relaxed ACOPF model is described by (5.5)-(5.8) and (5.14)-(5.19). 
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5.3 Network Losses Modeling 

As shown in (5.6) and (5.7), the network losses can be included in the proposed 

model. This section derives the network losses PLk and QLk and investigates the possible 

relaxations. Applying the second order approximation of cosθk and neglecting high order 

terms, the active and reactive network losses can be approximated as, 

2

k k kPL g                                                       (5.20) 

2

k k kQL b   .                                                   (5.21) 

Notice that (5.20) and (5.21) are still nonconvex. The following two approaches are 

developed to render them convex. 

5.3.1 Piecewise Linearized Relaxation 

The piecewise linearized model is to approximate θk
2
 by a series of linear blocks. 

Since (5.20) and (5.21) are nonconvex, certain line losses in the resultant linear model 

may fail to converge to the correct value and cause the “fictitious loss” problem as 

pointed out in [45] and [46]. The following MILP model introduces a series of binary 

variables to prevent the presence of the fictitious losses: 

1

( ) ( )            :
L

k k k k

l

PL g k l l 


                              (5.22) 

1

( ) ( )          :
L

k k k k

l

QL b k l l 


                               (5.23) 

                   :k k k k                                  (5.24) 

1

( )              :
L

k k k k

l

l    



                               (5.25) 

( ) 0,    1,...,            : l

k kl l L                                 (5.26) 
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max( ) ,    1,...,        : l

k kl L l L                                  (5.27) 

0                       :k k                                (5.28) 

max                   :k k k k                                  (5.29) 

0                       :k k                                (5.30) 

max(1 )                :k k k k                                   (5.31) 

( ) ( 1),     2,...,k kl l l L                                           (5.32) 

max max( 1) ( 1) ,   2,...,k kL l u l L l L                              (5.33) 

  max( ) 1 ( 1)    2,...,k kl u l L l L                                    (5.34) 

max( ) (2 1)k l l L  . 

In (5.24), θk is replaced by slack variables θk
+
 and θk

–
. Binary variable δi together 

with (5.28) to (5.31) ensures the right-hand side of (5.25) equals the absolute value of θk, 

i.e., at most one of θk
+
 and θk

–
 can be nonzero. Constraints (5.32)-(5.34) guarantee that 

the linear block on the left will always be filled up first to eliminate fictitious losses. The 

piecewise linearization is illustrated in Fig. 5.2. 

 

Fig. 5.2.  Piecewise linearization of θk
2
 

|θk| 

θk
max

 

θk
2
 

Δθk(1) Δθk(L) 
… 

k(L) 

k(1) 
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The above MILP model eliminates the fictitious losses by adding the binary 

variables. These binary variables, however, could prevent the resultant model from being 

solved efficiently. In fact, the MILP model can be relaxed to the linear programming (LP) 

model that was presented in Section 3.3 by discarding the binary variables δk from (5.29) 

and (5.31) and retaining only (5.22)-(5.31). When certain conditions are met, this 

relaxation is exact. The conditions are investigated in the following. First, let ℒ(x) be the 

Lagrangian function. 

   ( ) ( ) ( ) ( )T Tf    x x φ c h x μ b g x                              (5.35) 

where, φ and μ represent the Lagrange multipliers associated with the equality and 

inequality constraints respectively. Bounds on variables are converted to inequality 

constraints and included in g(x). The dual variables needed are given in (5.22) to (5.31). 

According to Lagrangian duality theory, the dual variables are non-positive for “≤” 

constraints, and are free of sign restriction for equality constraints. All terms are moved 

to the right-hand side of the constraints. The optimality condition requires the following 

constraints hold simultaneously, 

0.5( ) 0k i j kPL                                              (5.36) 

0.5( ) 0k i j kQL                                             (5.37) 

( ) ( ) ( ) 0l l

k k k k k k k kl g b k l                                   (5.38) 

0k k k k k                                                (5.39) 

0k k k k k                                               (5.40) 

Theorem 1: If (gkγk – bkωk) > 0, then the MILP model and the LP model are 

equivalent. 
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Proof: Without loss of generality, consider Δθk(l) to be the l
th

 linear block for θk 

where 1 < l < L. If 0 < Δθk(l) < θ
max

/L, then by complementary slackness (CS), (5.38) 

becomes:  

( ) ( )k k k k kg b k l    .                                             (5.41) 

Let Δθk(l – m) and Δθk(l + n) be any linear block before and after Δθk(l) respectively, 

where 1 ≤ m < l and 1 ≤ n ≤ (L – l), then for these two linear blocks, (5.38) gives: 

( ) ( ) l m l m

k k k k k k kg b k l m                                         (5.42) 

( ) ( ) l n l n

k k k k k k kg b k l n          .                               (5.43) 

Provided the OPF model is feasible, (5.41)-(5.43) must have a solution. Since 

(gkγk – bkωk) > 0 and k(L) > k(l) > 0, by CS, 0l m l n

k k    . This indicates that any linear 

block before Δθk(l) must be at its upper bound, i.e., Δθk(l – m) = θ
max

/L and any linear 

block after Δθk(l) must be at its lower bound, i.e., Δθk(l + n) = 0. Referring to Fig. 5.2, 

the linear blocks will be filled continuously starting with the leftmost one.  

Equation (5.41) shows that βk > 0. By CS, it can be observed from (5.39) and 

(5.40) that if either θk
+
 or θk

–
 is nonzero, then the other must be at its lower bound, i.e., 

zero. This indicates that θk
 
is either equal to θk

+ 
or –θk

– 
depending on the sign of θk. 

Hence, Theorem 1 is proved.                                                                                               ■ 

For the piecewise linearized model, Theorem 1 provides an approach to identify 

the branches where the fictitious losses may be created. Binary variables are needed only 

for these branches instead of all the branches in the system. Additionally, if the model 

only considers active power constraints, the following corollary can be derived:  
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Corollary 1: For an OPF model that only considers active power constraints, if 

the sum of the locational marginal price (LMP) at two terminal buses of a branch is 

positive, then the LP relaxation is exact. 

Proof:  LMPs are the dual variables associated with the active power nodal 

balance constraints, i.e., λi. If reactive power is neglected, then the term –bkωk will drop 

out from (5.38). From (5.36), it is clear that γk is positive. If gk > 0, then gkγk > 0 and 

according to Theorem 1, the LP relaxation is exact. If gk = 0, then the active power loss 

for that branch is always zero. Hence, Corollary 1 is proved.                                            ■    

5.3.2 Quadratic Inequality Relaxation 

If reactive power losses are neglected, i.e., (5.21) is removed, then (5.20) can be 

relaxed using the following inequality constraint, 

2            :k k k kPL g   .                                    (5.44) 

This inequality relaxation is exact when (5.44) is binding. The following condition needs 

to be satisfied.  

Theorem 2: If the sum of the LMPs at the two terminal buses of a branch is 

positive, then (5.44) is binding. 

Proof: Let ℒ be the Lagrangian function and consider (5.44), then (5.36) can be 

rewritten as: 

0.5( ) 0k i j kPL                                              (5.45) 

In (5.45), it is easy to show that if (λi + λj) is greater than zero, then γk must be great than 

zero as well. By CS, (5.44) must be binding.                                                                      ■ 
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5.4 Case Studies 

The proposed model and its relaxations are evaluated in this section. All models 

are programmed in AMPL. The solvers used are Gurobi. The computer used for 

simulation has an Intel E8500 CPU with 3.2 GB of RAM. 

First, a case is presented to illustrate Theorem 1. The test system is constructed 

based on the IEEE 24-bus RTS system [57] with modified generator cost data to create 

fictitious losses. The OPF is solved using the relaxed LP loss model presented in Section 

5.3. The LMP is positive at every bus. The (gkγk – bkωk) value of each branch is plotted in 

Fig. 5.3. As one can observe from the figure, (gkγk – bkωk) values of all the branches are 

positive except for branch 16, which is zero. According to Theorem 1, the LP relaxation 

should be exact and no fictitious losses should be created except for branch 16. The 

active power loss for each branch is plotted in Fig. 5.4 using (5.20) and (5.22) 

respectively. In the figure, fictitious losses are observed at branch 16. This is because 

with (g16γ16 – b16ω16) equals to zero, the piecewise linear model fails to select the correct 

linear blocks for branch 16 and causes excessive losses which will not be observed in 

reality. For other branches, since (gkγk – bkωk) > 0, the LP relaxation is exact and 

therefore no fictitious loss is created.  
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Fig. 5.3.  (gkγk – bkωk) value of each branch 

 

Fig. 5.4.  Active power loss of each branch 
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As shown in the Table 5.1, the LP model creates 8.9 MW fictitious losses at 

branch 16, whereas the full MILP model and the reduced MILP model are free of 

fictitious losses. In terms of simulation time, the LP model is the fastest among the three 

models, which is solved in less than 0.1 s. The full MILP model is solved in 2.3 s and this 

time is reduced by 35% if the reduced MILP model is used. 

Table 5.1. Comparison of different loss models 

Loss model
1
 Problem Type

2
 

Fictitious losses 

(MW) 
Simulation time (s) 

Full MILP MISOCP 0 2.3 

Reduced MILP MISOCP 0 1.5 

LP SOCP 8.9 (at branch 16) < 0.1 

1. Full MILP model: binary variables are added for every branch.  

Reduced MILP model: binary variables are only added to branches with (gkγk – bkωk) = 0 

2. MISOCP: Mixed-integer second order cone programming.  

SCOP: Second order cone programming 

The proposed model and its relaxations are also applied to multiple test cases [66] 

and the results are reported in Table 5.2. The number of linear blocks used is 40. It can be 

observed that for all test cases, the optimal solutions obtained from the proposed model 

provide good approximations to the full ACOPF solutions. The proposed model is also 

computationally efficient compared to solving  the full ACOPF model. 

Table 5.2. Performance comparison of the proposed models 

Test cases 
Piecewise linearized loss model Quadratic inequality loss model 

Objective Gap
†
(%) Time (s) Objective Gap

†
(%) Time (s) 

IEEE 14 8067 0.2 0.06 8094 0.3 0.06 

IEEE 24 63397 0.07 0.11 63352 < 10
–6

 0.09 

IEEE 39 41876 0.03 0.17 41861 < 0.01 0.16 

IEEE 57 41497 0.6 0.27 41448 0.7 0.22 

IEEE 118 129612 0.04 0.55 129471 0.1 0.52 

IEEE 300 718549 0.2 1.74/2.8 (AC) 718227 0.3 2.37 

3120SP 1646320 0.2 70.2/154 (AC) / / / 

† Gap is the percentage mismatch between the objective values given by the proposed models and the full 

ACOPFs solution using MATPOWER [66]. 
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5.5 Summary 

This chapter develops a relaxed OPF model based on a Taylor series. The 

proposed model retains the reactive power, off-nominal bus voltage magnitudes as well 

as network losses. A MILP-based loss model is developed to eliminate the fictitious 

losses. Relaxations of the MILP model are investigated. It is proved that the relaxations 

are exact if the system meets certain specified conditions. Based on the results in this 

paper, the following conclusions are drawn: 

• In the piecewise linear model, the branches that may create fictitious losses 

can be identified. Binary variables are only needed for these branches instead 

of all the branches in the system.  

• In the piecewise linearization model, even if the all the LMPs are positive, the 

fictitious losses may still be present if the reactive power losses are 

considered. 

• If reactive power losses are neglected, then the quadratic inequality relaxation 

is exact for active power losses. 

• Inclusion of reactive power and the off-nominal bus voltage magnitudes 

improves the model accuracy. The proposed model is computationally 

efficient and provides a better approximation to the full ACOPF model. 
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Chapter 6  

TRANSMISSION EXPANSION PLANNING USING THE RELAXED AC MODEL 

6.1 Chapter Overview 

It has been widely acknowledged that there is a “gap” between the solutions 

obtained from the DC model and the AC model [58]. In some cases, the gap could be 

large enough to result in a TEP solution that is problematic in the AC network. On the 

other hand, it is still extremely challenging to solve a TEP problem using the AC model. 

This chapter extends the relaxed ACOPF model developed in Chapter 5 to TEP studies 

and proposes a novel TEP model (LACTEP) that includes a linear representation of 

reactive power, off-nominal bus voltage magnitudes and network losses. An iterative 

approach for considering the N – 1 criterion during the planning process is also developed 

and demonstrated on the test system.  

The remainder of this chapter is organized as follows: Section 6.2 presents the 

mathematical formulation of the LACTEP model. The modeling of N – 1 criterion is 

investigated in Section 6.3. In Section 6.4, the proposed LACTEP model is validated and 

compared with other existing models. Concluding remarks are given in Section 6.5.  

6.2 Mathematical Formulation of the LACTEP Model 

Based on the linearized network model presented in Chapter 5, the mathematical 

formulation of the LACTEP model is presented in this section. It is assumed that the 

planners have perfect information about the existing network as well as the parameters of 

the potential lines. The planning work is carried out at the peak loading hour for a single 

future scenario. In real world applications, however, multiple scenarios can be developed 
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to account for uncertainties and a two-stage stochastic programming planning model can 

be readily formulated using the LACTEP model proposed in this paper.  

6.2.1 Objective Function 

The objective function used in this paper jointly minimizes the investment cost 

and the total operating cost,  

   
1 16

8760
min  

1 10 1gk

TP TO
gt gtk k

TP t
t TP gk

CF CGc z
C

d d



 
 

 
 

   .                         (6.1) 

In (6.1), the first term represents the line investment cost and the second term 

corresponds to the total operating cost over a time horizon scaled by the generator 

capacity factor, both in M$ and are discounted to the present value. Notice that the scaled 

operating cost provides only an estimate of the true operating cost, and can be replaced 

by a more accurate production cost model if the yearly load profile is available. As 

implied by the planning timeline in Fig. 6.1, all the selected lines are committed in the 

targeted planning year, and the operating costs are evaluated over multiple years 

thereafter. In reality, it is difficult to control the choice of the line to be built in a 

particular year over the planning horizon. Issues such as project review process, 

construction and the load forecast accuracy could bring too many uncertainties and make 

the dynamic planning process intractable. This TEP model presented in this chapter is 

based on a static planning framework and focuses only on the large economic impact of 

the TEP project. Thus, the incremental economic benefit is lumped into the single 

targeted planning year. 
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Fig. 6.1.  Typical transmission planning timeline 

6.2.2 Power Flow Constraints 

In order to build the TEP model, the linearized power flow equations derived in 

Chapter 5 need to be reformulated. The constraints set related to the power flow 

equations in the LACTEP model are shown as follows, 

    k i j k k k kP V V g b k                                          (6.2) 

   01 2   k i k i j k k k kQ V b V V b g k                                (6.3) 

     1 1   k k i j k k k k kz M P V V g b z M k                            (6.4) 

       01 1 2 1   k k i k i j k k k k kz M Q V b V V b g z M k                  (6.5) 

  k k k k k kz S P z S k                                                    (6.6) 

  k k k k k kz S Q z S k                                                    (6.7) 

2 2 max 2( )   k k k k kP Q S k                                           (6.8) 

max max   k kk                                                    (6.9) 

   max max1 1   k k k kz z k             .                        (6.10) 

Constraints (6.2)-(6.5) represent the linearized power flow equations for existing 

lines and prospective lines. For existing lines, the power flow equations are given by 

Targeted plan-

ning year 

Planning horizon Operating horizon 

Operating cost 

Present 
t (year) 

Investment 

cost 
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(6.2) and (6.3). For prospective lines, the disjunctive constraints (6.4)-(6.5) are used to 

avoid the nonlinearity that would otherwise appear. The power flow on the potential lines 

is forced to be zero by (6.6) and (6.7) if the line is not selected. The line MVA flow is 

limited by (6.8). Constraints (6.9) and (6.10) put a limit on the phase angle difference 

across existing lines and prospective lines respectively. If the two buses are directly 

connected, then θk is limited by θ
max

 and –θ
max

; otherwise, (6.10) is not binding. 

6.2.3 Network Losses 

The following constraint set extends the concept of linearized loss modeling to the 

proposed TEP model, 

  k k k k kk                                                  (6.11) 

1

( )   
L

k k k k k

l

l k    



                                         (6.12) 

max0   k k kk                                                 (6.13) 

max0 (1 )   k k kk                                              (6.14) 

 max0 1   k k k kz k                                            (6.15) 

 max0 (1 ) 1   k k k kz k                                        (6.16) 

max0 ( )   k kl L k                                             (6.17) 

 max0 ( ) 1   k k kl L z L k                                     (6.18) 

1

( ) ( )   
L

k k k k

l

PL g k l l k


                                        (6.19) 

1

( ) ( )   
L

k k k k

l

QL b k l l k


                                        (6.20) 
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max 20 ( )   k k k kPL z g k                                          (6.21) 

 
1

0 ( ) ( ) 1   
L

k k k k k

l

PL g k l l z M k 



                              (6.22) 

max 20 ( )   k k k kQL z b k                                          (6.23) 

 
1

0 ( ) ( ) 1   
L

k k k k k

l

QL b k l l z M k 



                              (6.24) 

( ) ( 1)  k k k kl l k                                            (6.25) 

max max( 1) ( 1)   k k kL l u l L k                                (6.26) 

max max( 1) ( 1)   k k k kz L l u l L k                               (6.27) 

  max( ) 1 ( 1)   k k k kl u l L k                                  (6.28)  

max( ) (2 1)   k kk l l L k      . 

Constraints (6.13)-(6.16) ensure that the right hand side of (6.12) equals |θk| for 

existing lines and the selected prospective lines respectively. Constraints (6.17) and 

(6.18) determine the upper and lower bound of a linear block Δθk(l) for existing lines and 

prospective lines respectively. For existing lines and the selected prospective lines, Δθk(l) 

is bounded by zero and θ
max

/L, otherwise, (6.18) is not binding. The active and reactive 

power losses for existing lines are given by (6.19) and (6.20) respectively. For 

prospective lines, the active and reactive power losses are determined by (6.21)-(6.22) 

and (6.23)-(6.24) respectively. Constraints (6.25)-(6.28) guarantee that the linear blocks 

on the left will be filled up first. Constraints (6.12)-(6.28) present a full MILP 

formulation that linearizes the network losses rigorously without generating fictitious 

losses. Relaxed models can be formed by removing (6.25)-(6.28) or even (6.13)-(6.16). 
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The linearized line losses are then split in half and attached to the two terminal buses as 

“virtual demands”. The terms corresponding to the network losses are added to the nodal 

balance equations as follows, 

  0.5g k k d

g i k i k i d i

PG P PL PD
   

                                    (6.29) 

 0.5g k k d

g i k i k i d i

QG Q QL QD
   

      .                            (6.30) 

6.2.4 Generator Capacity Limits 

In the planning study, all the generators in the system are assumed to be on-line. 

The generator outputs are limited by their minimum and maximum generating capacities 

as shown in (6.31) and (6.32). Unit commitment is regarded as an operational problem 

and is therefore not considered in this model. The generator limits are, 

min max   g g g gPG PG PG g                                        (6.31) 

min max   g g g gQG QG QG g    .                                   (6.32) 

The complete LACTEP model is described by (6.1)-(6.32).  

6.3 The N – 1 Modeling 

The computational burden is a major concern in MIP problems. Typically, 

increasing the number of binary variables could potentially slow the solution process. 

Therefore, the candidate line set should be carefully selected and only the applicable 

transmission corridors should be included. With a large-scale MIP problem, the solver 

may have trouble finding an initial feasible solution. In this case, providing a feasible 

starting point will help reduce the overall simulation time. 
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The N – 1 contingency modeling is another major source of the computational 

burden. In fact, a complete N – 1 analysis in the TEP model for a well-designed power 

system is generally unnecessary because the number of contingencies that will cause 

serious overloads is generally limited. The N – 1 modeling approach used in [11] was to 

explicitly invoke the set of network constraints for all possible operating conditions and 

satisfy all the constraints when solving the optimization problem. However, the model 

presented in this paper is more complicated. If the approach in [11] were used, the size of 

the problem could easily become too large to be solvable. Moreover, the TEP problem 

uses only a relaxed network model, which means that the solution that satisfies the N – 1 

criterion in the TEP model may not represent the actual case in the AC network. In order 

to make the planned system comply with the N – 1 criterion without imposing too much 

computational burden, an iterative approach is proposed in Fig. 6.2.  

 

Fig. 6.2.  The iterative approach for the N – 1 contingency modeling 

Using the approach in Fig. 6.2, the original problem is decomposed into a master 

problem, which solves the optimization model and a sub-problem, which verifies the 

network security. The master problem passes the TEP solution and the generator dispatch 

to the sub-problem, while the sub-problem passes the network violations back to the 

  Master problem: 

TEP 

Sub-problem:   

Security check 

 

TEP solution and 

generation dis-

patch 

Updated candi-

date line set 

• Solve the LAC-

TEP model 

• Determine the 

lines to be built 

• Obtain the invest-

ment cost 

• Solve the full AC 

power flow 

• Perform the AC N 

– 1 analysis 

• Identify critical 

contingencies 
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master problem. The approach solves the two problems iteratively until there is no 

violation or all the violations identified in the sub-problem are within preset limits. 

6.4 Case Studies 

In this section, Garver’s 6-bus system and the IEEE 118-bus system are studied 

and the simulation results are demonstrated. The work presented in this dissertation is 

programmed using AMPL. The DC lossless, DC lossy and the LACTEP models are 

solved by Gurobi. The ACTEP models are solved by Knitro. PowerWorld [66] is used for 

AC power flow and the N – 1 contingency analysis. All simulations are done on a Linux 

workstation with an Intel i7-2600, 4-core CPU @ 3.40 GHz with 16 GB of RAM. 

6.4.1 Garver’s 6-bus System 

Garver’s 6-bus system has 6 existing lines, 5 loads and 3 generators Initially, the 

generator connected at bus 6 is isolated from the main system. The system parameters are 

listed in Tables 6.1 and 6.2. It is assumed that at most 3 lines are allowed in each 

transmission corridor. The total number of candidate lines is 39. The objective function is 

to minimize the line investment cost only. The bus voltage magnitude range is 1 – 1.05 

p.u. The following two cases are analyzed: 

• Case 1: Compare the TEP solutions given by the LACTEP model and other 

existing models. 

• Case 2: Network losses sensitivity analysis. 
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Table 6.1. Candidate line data for Garver’s 6-bus system 

Corridor rk (p.u.) xk (p.u.)* Capacity (MW) Cost (M$) 

1 – 2 0.04 0.4 100 40 

1 – 3 0.038 0.38 100 38 

1 – 4 0.06 0.6 80 60 

1 – 5 0.02 0.2 100 20 

1 – 6 0.068 0.68 70 68 

2 – 3 0.02 0.2 100 20 

2 – 4 0.04 0.4 100 40 

2 – 5 0.031 0.31 100 31 

2 – 6 0.03 0.3 100 30 

3 – 4 0.059 0.59 82 59 

3 – 5 0.02 0.2 100 20 

3 – 6 0.048 0.48 100 48 

4 – 5 0.063 0.63 75 63 

4 – 6 0.03 0.3 100 30 

5 – 6 0.061 0.61 78 61 

*100 MVA base 

 

Table 6.2. Generator and load data for Garver’s 6-bus system 

Bus 

No. 

Load parameters Generator parameters 

PD 

(MW) 
QD (MVAr) 

PG
min

 

(MW) 

PG
max

 

(MW) 

QG
min

 

(MVAr) 

QG
max

 

(MVAr) 

1 80 16 0 160 -10 65 

2 240 48 
 

3 40 8 0 360 -10 150 

4 160 32 

 5 240 48 

6 
 

0 610 -10 200 

 

Case 1: In this case, the TEP solution obtained from the LACTEP model is 

compared with the solutions obtained from other available TEP models. The full MILP 

approach is used for modeling the network losses. The number of linear blocks is 7. The 

comparison results are shown in Table 6.3. 
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Table 6.3. TEP results comparison of Garver’s system 

TEP  

model 
Expansion plan 

Investment cost 

(M$) 
Comments 

DC  

lossless 
(3-5), (4-6)×3 110 

Need additional reactive 

power to make the AC pow-

er flow converge. Overloads 

and undervoltage issues are 

detected. 
DC lossy (2-6)×3, (3-5)×2 130 

LACTEP 
(2-3), (2-6)×2, 

(3-5)×2, (4-6)×3 
210 

No additional reactive power 

needed. All indices are with-

in limits. 
ACTEP  

(2-6)×3, (2-3), (3-5)×2, 

(4-6)×3, (2-5)×2 
302

1
 

1
The ACTEP is a non-convex global optimization problem. The result shown in the table is the best 

solution after five thousand restarts. 

 

The two DC-based TEP models in Table 6.3 seem to be superior in the sense that 

the investment costs are less. However, the reactive power needed for these two models 

in the AC network actually exceeds the amount that the three generators can supply. In 

order to make the AC power flow converge, an additional 189 MVAr and 129 MVAr are 

needed for the lossless and the lossy DC model respectively. Meanwhile, overloads and 

under voltage issues are observed in the system, which require additional investment for 

network reinforcement. The solution obtained from the LACTEP model requires building 

more lines than the DC-based models do, but needs no additional reactive power and 

there are no overloads and undervoltage problems in the AC power flow. The expanded 

Garver’s system with all indices within the preset limits is plotted in Fig. 6.3.  
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 Fig. 6.3.  The TEP results of Garver’s 6-bus system  

As a non-convex global optimization problem, multiple starting points are tried to 

obtain a good solution for the ACTEP model. As shown in Table 6.3, the best objective 

value for the ACTEP model after five thousand restarts is still much higher than the 

objective function given by the LACTEP model. It will also be computationally too 

expensive to apply the ACTEP model to larger power system planning problems. This 

comparison reveals that the solutions given by the DC-based TEP models may not 

represent the actual case in the AC network and additional network reinforcement is 

likely to be needed. The LACTEP model better approximates the AC network and 

therefore provides a more realistic TEP solution.  

For small systems such as the 6-bus example, reactive power can be a critical 

issue to make the AC power flow converge. As indicated by Table 6.3, the LACTEP 

model chooses to build more lines to provide reactive power support. In reality, 

increasing generator reactive power capacity and installing VAr support devices can 

certainly be considered as alternative solutions if a DC-based TEP solution is adopted, 
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but one should be aware that it may not be easy to increase reactive power capacity of 

existing generators, and can be costly to install VAr support devices at high voltage 

buses. For real world applications, different solution options can be compared to find the 

most cost effective TEP plan. For larger systems with more meshed topology, the value 

of the LACTEP model is that it dispatches the generators more accurately, gives a better 

estimation of the line flows, and provides a realistic TEP solution which the DC-based 

models usually fail to do. 

Case 2: As discussed in Section 6.2, the linearized network losses can be 

rigorously modeled using the MILP formulation. However, addition of the binary 

variables also increases the complexity of the TEP model. The number of linear blocks 

can significantly affect the solution time as well as the model accuracy. Table 6.4 shows 

how the number of linear blocks changes the size of the problem and the TEP solution. 

The full MILP formulation is used for the results shown in Table 6.4. 

Table 6.4. The effects of number of linear blocks 

Linear 

blocks 

Variable types Objective 

(M$) 

Total P 

losses (MW) 

Time 

(s) Continuous Binary 

1 281 84 Infeasible / / 

2 323 126 378 16.3 > 413 

3 407 171 259 11.8 69 

4 449 213 230 8.8 97 

5 489 253 230 8.7 33 

6 579 298 230 8.2 89 

7 621 340 210 8.2 34 

8 666 385 210 8.2 43 

9 708 427 210 8.2 116 

10 748 467 210 8.2 97 
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The variable types in Table 6.4 show that the size of the problem increases as the 

number of linear blocks increases. This behavior coincides with the intuition that more 

variables are needed to model the additional linear blocks. It should be noted that the 

linearization intrinsically overestimates the losses in the system. If too few linear blocks 

are used, e.g., 1, then the overestimation can be significant and the problem will be 

infeasible with the given set of candidate line set. This is reflected from both the trends of 

losses and the objective values listed in Table 6.4. It is worth noticing that due to the 

mixed-integer nature of the problem, the change in solution time does not follow a linear 

pattern. When too few linear blocks are used, the TEP results may contain unnecessary 

lines due to the significant overestimation of the network losses. It may also take a long 

time to branch out an initial feasible solution. On the other hand, too many linear blocks 

will impose unnecessary computational burden and slow the solution time. The key idea 

of the study is to find the number of linear blocks that gives the best balance between the 

model accuracy and the solution time. In this case, 7 is an appropriate number.  

The results contained in Table 6.5 compare the accuracy of the relaxed losses 

models and the solution time. The number of linear blocks used for this study is 7. 

Among all the loss modeling approaches listed in Table 6.5, the full MILP formulation is 

the most accurate and serves as a basis of the study. The R1 approach relaxes the 

constraints for prioritizing the lower linear blocks. This approach reduces the solution 

time by approximately 41%, but the drawback is that it creates 2.4 MW fictitious active 

power losses. The R2 approach relaxes the constraints for modeling the absolute value. It 

reduces the solution time by approximately 35%, and creates only 0.2 MW fictitious 

losses. The R3 approach relaxes both the constraints that were relaxed in R1 and R2. It 
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reduces the solution time by approximately 38%, but creates 2.5 MW fictitious losses. 

Additionally, if losses are ignored, the solution time will be significantly reduced by 

91%, but the TEP solution no longer satisfies preset the voltage requirement. Except for 

the no loss case, the TEP solutions remain the same for all other loss modeling 

approaches. One explanation is that the impact of fictitious losses is not significant 

enough to change the TEP results in this case. The study results show that the R2 

approach is considered as the best trade-off between model accuracy and solution time. 

Table 6.5. Comparison of different network losses models 

Losses modeling  

approach
1
 

Total P 

losses (MW) 
Objective (M$) Time (s)/Δ (%) 

Full MILP  8.2 210 34/(0%) 

Relaxation 1 (R1) 10.6 210 20/(-41%) 

Relaxation 2 (R2) 8.4 210 22/(-35%) 

Relaxation 3 (R3) 10.7 210 21/(-38%) 

Do not model losses
2
 0 150 3/(-91%) 

1
Full MILP:        Use (6.1)-(6.32) to model the linearized network losses 

 Relaxation 1:     Remove (6.25)-(6.28) 

 Relaxation 2:     Remove (6.13)-(6.16) 

 Relaxation 3:     Remove (6.13)-(6.16) and (6.25)-(6.28) 
2
Losses are not modeled, but rk, Q and V are retained 

 

6.4.2 The IEEE 118-bus System 

The IEEE 118-bus system [50] is used to demonstrate the potential of applying 

the proposed LACTEP model to large power systems. The system has 186 existing 

branches, 54 generators and 91 loads. The line ratings are reduced to create congestions. 

The system is divided into three zones with the zonal data listed in Table 6.6. The load 

assumed is the peak loading level. The discount rate is assumed to be 10%, and the 

number of linear blocks used for loss modeling is 10. The planning horizon is ten years.  
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The objective function used in this case jointly minimizes the line investment cost 

and the scaled ten-year total operating cost. The average capacity factors published in 

[67] are used in this paper. The capital costs of transmission lines are assumed 

proportional to the length of the lines. Due to the absence of real data, all prospective 

lines are assumed to share the same corridor and have the same parameters as the existing 

lines. The planning criteria are given in Table 6.7. The detailed planning procedure is 

described in the following steps. 

Table 6.6. Zonal data of the IEEE 118-bus system 

 
Bus Branch Generation (MW) Load (MW) 

Zone 1 42 62 2280 1865 

Zone 2 48 81 4160 3125 

Zone 3 28 43 2544 1271 

Total 118 186 8884 6261 

 

 

Table 6.7. TEP planning criterion for the IEEE 118-bus system 

 
Normal (N – 0) Contingency (N – 1) 

Voltage (p.u.) 0.96 ≤ V ≤ 1.06 0.92 ≤ V ≤ 1.06 

Power flow Pk
2
 + Qk

2
 ≤ (Sk

max
)

2
 Pk

2
 + Qk

2
 ≤ (1.1Sk

max
)

2
 

 

• Step 1: Run a regular AC power flow on the system to be planned, and 

identify the lines that are overloaded or heavily loaded. These lines will form 

the initial candidate line set.  

• Step 2: Use the candidate line set and run the LACTEP model. Obtain the 

TEP solution and update the system. 

• Step 3: Rerun a regular AC power flow on the expanded system and identify 

any overloaded lines/transformers. Notice that it is still possible to observe 
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violations in this step because the network model used in the TEP problem is 

essentially a relaxation of the AC network model. If this happens, one should 

slightly reduce the line ratings used in the TEP problem and redo Step 2 to 

Step 3. If no violation is identified in this step, then proceed to Step 4. 

• Step 4: Perform a complete N – 1 analysis on the expanded system. Identify 

the worst contingency and take the line out of service. Form a new candidate 

line set and return to Step 2. Do this iteratively until all violations are within 

the preset threshold (as specified in Table 6.7). It is assumed that the generator 

dispatch do not change during this process.  

The flowchart of the iterative approach is plotted in Fig. 6.4. 

Start

Solve the AC

power flow (N – 0)

Violation?

N – 1 analysis

Violation?

Final plan

Solve LACTEP

Form/update 

candidate line set

Master problem Sub-problem

Yes

No

No

Yes

Update the system with 

new lines and new 

generator dispatch* 

*The updated generator dispatch is only calculated for N – 0. For N – 1 analysis, it is 

assumed that the generator dispatch is fixed.

Feasible?
No

Yes

 

Fig. 6.4.  Flowchart of the iterative approach for considering N – 1 contingency 

Table 6.8 shows the 15 initial candidate lines and their cost data. The candidate 

lines for the N – 1 contingency analysis are not included in the table.  
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Table 6.8. Initial candidate lines for the IEEE 118-bus system 

No. Lines Cost (M$) No. Lines Cost (M$) 

1 (3 – 5) 16.2 9 (38 – 37) 6.8 

2 (5 – 6) 9.7 10 (69 – 67) 15.2 

3 (8 – 9) 5.5 11 (77 – 78) 2.8 

4 (8 – 5) 6.0 12 (80 – 99) 30.9 

5 (9 – 10) 5.8 13 (82 – 83) 6.6 

6 (17 – 113) 5.4 14 (94 – 100) 10.4 

7 (23 – 32) 17.3 15 (99 – 100) 14.6 

8 (26 – 30) 15.5  

 

The cost of building a transmission line can be roughly estimated by its length, 

cost per mile and the cost multipliers [68]. Assuming all lines are 230 kV double circuit 

lines, then the capital cost of a transmission line is calculated as, 

Cline = 1.5β(Line length)                                           (6.33) 

where 1.5 is the per mile cost multiplier in $/mile for 230 kV double circuit lines and β is 

the transmission length cost multiplier. For lines longer than 10 miles, 3 – 10 miles and 

shorter than 3 miles, the β values are 1.0, 1.2 and 1.5 respectively. Notice that (6.33) only 

gives a rough estimate of the line capital cost, more factors need be included in order to 

obtain a better estimate. The TEP results are demonstrated in Table 6.9 and 6.10 for N – 0 

and the N – 1 contingency case respectively. The expanded system for N – 0 condition is 

illustrated in Fig. 6.5. 

Table 6.9. The TEP results for N – 0  

Lines to be built (3 – 5), (8 – 9), (9 – 10), (26 – 30) 

Investment cost  (M$) 43 

Total operating cost (M$) 1567.4 (10-year)  

Solution time (s) 4 



 

 

9
0

 

 

Fig. 6.5.  Expanded IEEE 118-bus system  under N – 0

Zone 1 

Zone 2 

Zone 3 
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It is observed from Table 6.9 that four lines need to be added in order to relieve 

the overloads in the original system with all lines in service (N – 0). The investment cost 

is 43 M$, and the estimated 10-year total operating cost is 1567.4 M$, which is 

approximately 156.7 M$ per year. The original system is then expanded using the TEP 

solution in Table 6.9 and solved using the AC power flow with all indices within the 

limits. Therefore, with the four lines being added, the system is N – 0 secure. Meanwhile, 

it is worth mentioning that the TEP solution given by the DC lossless model requires 

building no line for this case. However, significant overloads and undervoltage issues are 

observed in the AC power flow. In order for the system to comply with the N – 1 

criterion, the planning process needs to proceed to Step 4. In this case, only line (do not 

include transformers) contingencies are considered. During the contingency, the 

monitored violations monitored are overloads, loss of loads as well as undervoltages. The 

iterative planning process is elaborated in Table 6.10. 

Table 6.10. The iterative planning process for N – 1  

Iterations Contingency line Violation type Lines added 

1 (77 – 78) 

Line  

overloading 

(77 – 78) circuit 2 

2 (80 – 99) (80 – 99) circuit 2 

3 (25 – 27) (23 – 32) 

4 (38 – 65) (30 – 38) 

5 (1 – 3) (1 – 3) circuit 2 

6 (86 – 87) (86 – 87) circuit 2 

7 (64 – 65) (64 – 65) circuit 2 

8 (60 – 61) (60 – 61) circuit 2 

9 (15 – 17) (15 – 17) circuit 2 

10 (12 – 117) 
Loss of loads 

(12 – 117) circuit 2 

11 (110 – 117) (110 – 117) circuit 2 

 

In Table 6.10, the second column lists the lines that are manually outaged in each 

iteration. The contingencies in the table are ranked in the order of the severity of overload 
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caused in the system. The line that causes severe overloads and results in a large number 

of associated overloaded lines will be addressed first. The third column shows the type of 

the violations and the last column provides the solution to mitigate the potential 

overloads or loss of loads. After 11 iterations, all indices are within the limits set in Table 

6.7 and the system complies with the N – 1 contingency criterion. Mathematically, this 

iterative approach does not guarantee an optimal solution, but in terms of the 

computational burden, this approach attains the same goal more efficiently. 

6.5 Summary 

This chapter presents a new approach to linearize the full AC network model, 

based on which a TEP model is developed. The proposed LACTEP model retains a linear 

representation of reactive power, off-nominal bus voltage magnitudes and network losses. 

A MILP formulation for network losses modeling is developed to eliminate fictitious 

losses. An iterative approach is also presented to incorporate the N – 1 contingency 

criterion in TEP problems. The simulation results of Garver’s 6-bus system show that 

additional network reinforcements may be needed if a DC-based TEP model is adopted. 

The proposed LACTEP model, approximates the AC network more accurately, and 

therefore provides more realistic TEP solutions. The loss modeling sensitivity study 

shows that the R2 approach tends to give the best trade-off between accuracy and solution 

time. The fictitious losses are not significant enough to change the TEP results in the 6-

bus example studied in this paper. However, this conclusion can be case dependent. The 

simulation results on the IEEE 118-bus system show that the proposed LACTEP model 

can be applied to solve large power system planning problems and the iterative approach 

is a computationally effective way to include the N – 1 criterion in the TEP study.   
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Chapter 7  

TRANSMISSION EXPANSION PLANNING UNDER UNCERTAINTIES 

7.1 Chapter Overview 

The planning horizon of a long term TEP study usually spans from ten to twenty 

years. Developing a practical system expansion plan for such a long time frame will 

inevitably involve extensive uncertainties including resources, budgets as well as 

policies. Modern TEP exercise focuses on improving the overall market efficiency and 

simultaneously enhancing the system reliability. In order for a practical transmission 

expansion plan to balance these two criteria, it is necessary to consider the uncertainties 

in the system and properly include them in the TEP model. The value of each 

transmission project must be evaluated accurately so that the correct set of lines can be 

chosen. This chapter addresses the important issue of modeling uncertainties in the TEP 

model. A two-stage stochastic TEP model is proposed and several decomposition 

methods are developed for solving the model. 

The remainder of this chapter is organized as follows: Section 7.2 classifies the 

uncertainties in the system and highlights the necessity of the transition to a stochastic 

TEP model. A two-stage stochastic TEP model is presented in Section 7.3 and two 

decomposition-based solution algorithms are developed in Section 7.4. The concept of 

scenario generation and clustering are discussed in Section 7.5. Three cases studies are 

demonstrated in Section 7.6 and concluding remarks are given in Section 7.7.  

7.2 TEP under Uncertainty  

In power systems, load is the primary sources of uncertainties. From a long-term 

perspective, the annual load growth is dependent on some of the key variables such as 
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economics and fuel price that are inherently uncertain in the future. A promising 

economy will stimulate the customers’ demands and will eventually lead to an increase in 

electricity consumption. While a bad economy, on the other hand, is likely to shrink the 

customers’ demands and eventually reduce the electricity consumption. For short term, 

e.g., a daily basis, loads can be sensitive to factors such as weather and temperature that 

are uncertain by nature. Fig. 7.1 shows the WECC hourly forecasted loads for 2020. 

From the figure, one can observe that the load varies substantially during a year.  

 

Fig. 7.1.  Forecast hourly load for WECC for Year 2020 [69] 

In recent years, with the increasing penetration of the renewable resources in the 

power system, the uncertainties at the generation side, especially the impact of uncertain 

renewable resources such as wind and solar on bulk power systems, should be 

appropriately addressed. From the planning perspective, it is important to select the mix 

of generators to satisfy the RPS requirement and at the same time, meet the future energy 

balance as well as the system reliability criteria. 

0

20

40

60

80

100

120

140

160

180

1
3
0
4

6
0
7

9
1
0

1
2
1
3

1
5
1
6

1
8
1
9

2
1
2
2

2
4
2
5

2
7
2
8

3
0
3
1

3
3
3
4

3
6
3
7

3
9
4
0

4
2
4
3

4
5
4
6

4
8
4
9

5
1
5
2

5
4
5
5

5
7
5
8

6
0
6
1

6
3
6
4

6
6
6
7

6
9
7
0

7
2
7
3

7
5
7
6

7
8
7
9

8
1
8
2

8
4
8
5

P
o
w

er
 (

G
W

) 

Hour 



 

95 

 

The traditional TEP approach focused on protecting the system from the “worst 

case” scenario. In other words, the system expansions were largely determined by the 

most severe N – 1 contingency at the peak load level. This approach was based on the 

assumption that if a system survives the worst case contingency, then it would be robust 

enough to survive any contingency. While this assumption could be valid in some cases, 

the worst case-based TEP approach is not suited for contemporary power systems. The 

reasons are twofold: First, most severe contingencies are very unlikely to occur, so that 

protecting against these contingencies through transmission expansion could be 

excessively expensive. In fact, special protection schemes (SPSs) are usually developed 

to mitigate the impact of the most critical contingencies. In addition, the deregulated 

market environment and high penetration of renewable resources could cause the 

generation pattern to vary significantly during different hours of a year, for which the real 

“worst case” is usually difficult to define / identify (may not be at peak load).  

The proposed framework for the next generation TEP exercise is demonstrated in 

Fig. 7.2. The proposed TEP framework is classified into four stages with each stage as 

specified in the dotted box. In the first stage, in order to develop a planning base case, 

one can take the operational case of the current year, adjust the load level according to 

the forecast of the load growth, remove the generators to be retired and add the generators 

that are likely to be in service in the targeted planning year. Federal policy requirements, 

e.g., RPS, and stakeholders’ inputs will also be addressed at this stage. The reference 

planning base case will be developed to represent the “standard” future. It should be 

noted that due to the potential load increase, it is normal to observe some overloads in 

this reference case. These overloads will serve as an incentive for the later transmission 
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expansions. The base case development is crucial in the TEP process because it serves as 

a basis for the entire planning framework. After the base case has been developed, 

different scenarios can be derived in stage two based on stakeholders’ specific inquiries 

with the parameters in the base case adjusted to different levels. Typical alternative 

scenarios include a combination of variations in loads, energy costs, as well as the 

generation mixes. The candidate lines together with the scenarios are will serve as inputs 

to the next stage for network optimization.  

The network optimization is the core of the entire TEP framework. Traditionally, 

due to the lack of efficient algorithms, this step was primarily done by using a trial and 

error approach, which is, the value of the expansion projects were evaluated by running 

multiple production cost analysis with different set of new lines inserted. However, this 

approach is by nature a heuristic and is only doable when the candidate line pool is small 

because as the number of candidate lines increases, the computational burden can easily 

become intractable. With the development of computing facilities and optimization 

solvers, the next generation TEP is expected to combine the production cost analysis 

together with the network expansion using a unified MIP formulation, which 

simultaneously optimizes the network expansions and generator dispatch. As for now, it 

is still computationally challenging to perform a study of this kind for a system with 

practical size. Various decomposition methods and heuristics are developed later in this 

chapter to tackle this problem. Alternatively, after an expansion plan is obtained for each 

scenario, lines or corridors that are selected in most scenarios can be viewed as the 

transmission projects with high value and therefore should be considered to build. Last, 

the resource adequacy and the system security, e.g., static and dynamic stability of the 
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expanded system should be evaluated in the final stage where possible sub-regional 

reinforcement projects are identified. The AC power flow model should be used to verify 

the transmission expansion plan obtained from the network optimization model, in which 

the DC model is usually used. 

Base case

Resources 

forecast

Stakeholders’ 

input

Scenarios

analysis

Network 

Optimization

Plan 

verification

Final Plan

Candidate 

lines

Base case 

development

Scenario 

analysis

Network 

optimization 

Plan 

Verification

Candidate 

generators

 

Fig. 7.2.  Proposed next generation TEP framework 

7.3 Stochastic Reformulation of the TEP Model 

In this section, a two-stage stochastic TEP model that considers the load uncer-

tainties is introduced. The decision variables in this stochastic model can be categorized 

into two sets. The decision that needs to be made immediately with limited information 

about future environments is called the first-stage decision (also known as the here and 

now decision), while given the first stage decisions made, the second stage decisions (al-

so known as the wait and see decisions) can be made based on the realization of a series 

of random scenarios [69]. A general two-stage stochastic (mixed) linear programming 

problem with recourse can be formulated as follows, 
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 min ( , )

s.t.  

       0
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s
x

c x E Q x s
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                                               (7.1) 

where 

 

( , ) min  ( ) ( )

s.t.  ( ) ( ) ( ) ( )

       0
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y
Q x s q s y s

T s x W s y s h s

y



 



                                         (7.2) 

In (7.1), x is the first-stage variables that need to be determined immediately. Es repre-

sents the mathematical expectation of an uncertain set, and s  denotes as a set of random 

events. Among the set of second-stage random events, each given realization s is corre-

sponding to a scenario sub-problem as defined in (7.2). For computational viability, the 

second-stage has a finite number of realizations with associated weight p
s
. Combining the 

two stages together, the compressed deterministic equivalent (DE) form of the stochastic 

programming problem defined by (7.1) and (7.2) can be written as, 

,
min

s.t.  

                 

      ,  0 , 1     

s

s

T s s s

x y
s

s s s s

s

s s

s

s

c x p q y

Ax b

T x W y h s

x y p s









   

   





                                     (7.3) 

In order to apply the above formulation to TEP problems, let the first-stage be the 

line investment decision problem and the second-stage be the operating sub-problems, the 

stochastic version of the TEP model (3.1)-(3.7) are formulated as follows,  

 
,

min
g

T s s s

k k g g
x y

s S g

c z p c PG
 

                                             (7.4) 

   
i i i
k g d

s s s

k g s b

k g d

P PG PD i
  

                                         (7.5) 
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          s s

k k k kP b k                                                    (7.6) 

     1 1    s s

k k k k k k k kz M P b z M k                                  (7.7) 

max max    s

k k k kP P P k                                               (7.8) 

max max    s

k k k k k kz P P z P k                                             (7.9) 

min max    s

g g g gPG PG PG g    .                                   (7.10) 

Considering the complexity of the problem, the DC model is used in the above 

formulation and loads are considered as the only uncertain parameter in the model, which 

means the T and W matrices in (7.3) are fixed and not scenario dependent. The objective 

function (7.4) is to minimize the total investment cost and the expectation of a series of 

different operating scenarios with each weighted by a weight p
s
. Compared with the 

deterministic TEP model in which the operating cost is calculated at a single load level, 

the stochastic version gives a more realistic estimate of the expected operating cost. The 

superscript s denotes variables and parameters that are scenario dependent. The network 

constraints for each scenario in the second-stage are in (7.5)-(7.10). As one can easily 

observe, the size of the above problem expands almost proportionally to the number of 

scenarios. If there are many scenarios in the second-stage, then solving a problem with 

this kind will be extremely difficult. However, by expanding the compact DE form in 

(7.3) and examining the A matrix of the constraints, it is not difficult to observe that the 

extensive form of the problem has a block angular structure as illustrated in Fig. 7.3. This 

special structure can be readily utilized by various decomposition algorithms such as the 

L-shaped method and progressive hedging (PH) method. The derivation of these 

algorithms will be presented in Section 7.4. 
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Fig. 7.3.  Block structure of the two-stage stochastic formulation 

7.4 Decomposition-based Solution Techniques 

Considering the size and the number of scenarios a problem has, intensive 

computations are usually expected when solving stochastic programming problems. For 

decades, various decomposition methods have been developed for solving problem of this 

kind efficiently, among which, the L-shaped method [71] and progressive hedging (PH) 

[72] are the two approaches that have been widely adopted. This section briefly 

introduces these two approaches.  

7.4.1 The L-Shaped Method  

The L-shaped method is a stage decomposition method, which is in essence the 

application of Benders’ decomposition (BD) in stochastic programming, designed to 

solve large-scale stochastic problems that cannot be solved directly using the DE form 

[71]. The classic L-shaped method requires second-stage variables to be continuous, 

while having no assumption on the first-stage variables. The stochastic TEP formulation 

developed in Section 7.3 contains purely binary variables in the first-stage (investment 

problem) and purely continuous variables in the second-stage (scenario-based operating 

problems). Therefore, the classic L-shaped method can be easily applied. Take problem 

(7.3) for example, the procedure of the single-cut L-shaped method is outlined as follows: 
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Step 0: Set v = r = k = 0, where v, r and k are number of iterations, feasibility sets 

and optimality sets respectively. 

Step 1: Set v = v + 1. Solve the first-stage master problem: 

min T

x
c x                                                         (7.11) 

s.t.  Ax b                                                                (7.12) 

         1,...,l lD x d l r                                       (7.13) 

    1,...,l lE x e l k                                        (7.14) 

0x   

where in (7.11), η can be viewed as an estimation (lower bound) of the second-stage ob-

jective. Constraint (7.12) represents those constraints that are only related to the first-

stage variables, i.e., line investment decision in the TEP problem. Constraints (7.13) and 

(7.14) are called the feasibility cut and the optimality cut respectively, and may not both 

appear in the first several iterations. In (7.11), η is initially set to –∞ or whatever the prac-

tical lower bound is. Notice that η is included in (7.11) only if (7.14) is present. Let x
v
 

and η
v
 be the optimal solution of (7.11) and then proceed to Step 2. 

Step 2: For each sub-problem ss , solve: 

     min  

s.t. 

      0

s s

y

s s s s v

s

q y

W y h T x

y

 



                                               (7.15) 

where x
v
 is the first-stage decision variable determined in Step 1. If for any s (7.15) is 

infeasible, then let σs be the dual extreme ray. Define 

1 ( )v T s

rD T                                                      (7.16) 

and 

1 ( )v T s

rd h                                                       (7.17) 
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to generate a feasibility cut Dr+1x ≥ dr+1 and add it to (7.13). If (7.15) is feasible for all 

sub-problems, then let 
v

s  be the dual multipliers of each sub-problem. Define 

1 ( )
s

s v T s

k s

s

E p T



                                                 (7.18) 

and 

1 ( )
s

s v T s

k s

s

e p h



  .                                               (7.19) 

Check if η
v
 ≥ ek+1 – Ek+1x

v
 holds. If yes, the algorithm stops and x

v
 is the optimal solution, 

otherwise, add the optimality cut Ek+1x
v
 + η

v
 ≥ ek+1 to (7.14), return to Step 1 and resolve 

the restricted master problem. In every iteration, the distance between (ek+1 – Ek+1x
v
) and 

η
v
 is known as the optimality gap. In practice, instead of requiring η

v
 ≥ ek+1 – Ek+1x

v
 holds 

strictly, a tolerance can be set. Once the gap is within the tolerance, the algorithm can be 

terminated and the optimality can be declared. 

The single-cut version L-shaped method as described above aggregates the dual 

multipliers of all sub-problems to generate a single optimality cut at a time. This may 

cause information loss and potentially results in a large number of iterations. A multi-cut 

version of the L-shaped method was proposed with an optimality cut is generated for each 

sub-problem if necessary. The multi-cut version utilizes all the information in the second-

stage, which is therefore expected to generate cuts that are more effective. However, 

cases do exist in which the single-cut version outperforms the multi-cut version.  In 

addition, the master problem could become huge in a few iterations since the multi-cut 

version adds a large number of cuts to it in an iteration. To improve the performance of 

the multi-cut version L-shaped method, methods have been developed by partially 

aggregating the dual multipliers in the second-stage. These extensions of the L-shaped 
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method are programmed in AMPL for solving the stochastic TEP model developed in 

this chapter. The detailed descriptions of these extensions are provided in [73]. It should 

be noted that if the scale of the stochastic programming problem is not large enough, then 

the L-shaped method may not be superior to solving the DE form of the problem directly 

in terms of execution time. The value of the L-shaped method, however, is that it breaks 

down a very large-scale (mixed-integer) stochastic programming problem that cannot be 

solved directly into many smaller problems. And then approaches the optimal solution in 

an iterative manner. 

7.4.2 Progressive Hedging Algorithm 

Progressive hedging (PH) is a heuristic algorithm that was originally proposed in 

[72] for solving uncertain problems in financial investment. PH has been widely used in 

solving stochastic programming problems and has served as an alternative for other 

Benders’ decomposition-based methods such as the L-shaped method. Different from the 

L-shaped method that decomposed stages, the PH algorithm decomposes scenarios. Take 

the TEP problem for example, in each iteration, the L-shaped method solves the master 

problem using the same set of decision variables but different number of constraints. That 

is, the planning decisions in the first-stage are scenario independent (there is only one 

transmission plan). The PH algorithm, as illustrated in Fig. 7.4, temporarily relaxes the 

scenario independent constraint and develops a sub-plan for each scenario. During each 

iteration, penalties will be added to eliminate the dissimilarity among sub-plans until all 

sub-plans yield the same result. Compared to the L-shaped method in which the size of 

the master problem (MILP) keeps increasing while the size of the sub-problems (LPs) 

remain the same, one advantage of PH is that it evenly distributes the workloads to each 
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sub-problem (MILPs). This feature makes it not only easily parallelizable, but also 

computationally beneficial when each MILP problem is not too difficult to solve. The 

steps for applying the PH algorithm to TEP problems are derived followed by a heuristic 

strategy to accelerate the convergence of the algorithm in what follows.  

 

Fig. 7.4.  Scenario decomposition in the PH algorithm  

Applying scenario decomposition to (7.3) assuming the first-stage variables x are 

all binary, the decomposed DE form can be rewritten as follows,      
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where (7.20) is known as the non-anticipative constraint and x
M

 denotes the master plan 

that all sub-plans should be equal to. By copying the decision variables x to each 

scenario, now the problem becomes completely scenario separable. To solve the problem, 
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(7.20) is first relaxed by the augmented Lagrangian formulation. The augmented 

objective function can be obtained as, 

   
2

,
min 0.5

s

s T s s s s s M s M

x y
s

p c x q y x x x x 


     
                           (7.21) 

where λ
s
 is the Lagrangian multiplier of the relaxed constraint (7.20) and ρ is the penalty 

factor. Since x is binary, the quadratic term in (7.21) can be further simplified as: 

   
2

0.5 0.5 2s M s s M Mx x x x x x                                       (7.22) 

Substitute (7.22) into (7.21) and rearrange the order of the terms, the augmented objective 

function can be expressed as follows, 

 
,

min 0.5 0.5
s

s T s M s s s s M

x y
s

p c x x q y x x    

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  .                  (7.23) 

For a given master plan x , λ
s
, p

s
, and ρ are all fixed. Thus, the full scenario decomposable 

problem with the modified cost can be written as follows, 
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min 0.5 0.5
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                   (7.24) 

where in the objective function, the term ( 0.5s Mx    ) can be viewed as the penalty 

factor that adds to the original investment cost c at each iteration. The classic PH 

algorithm proceeds as follows, 

Step 0: Initialization: Set λ
s
 = ρ = k = 0. 

Step 1: k = k + 1. For each scenario s, solve (7.24) and obtain x
s
. Calculate the 

master plan x
M

 and let λ
s
 = λ

s
 + ρ(x – x

M
). 
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Step 2: For each scenario s, solve (7.24) and obtain x0s. If xk+1 = xk and λ
s
 = λ

s 
– 1 

then the algorithm stops and x is the optimal solution. 

Table 7.1. Comparison of the L-shaped method and PH Algorithm  

Method Pros Cons Fix Applications 

L-shaped 
Guarantees global 

optimum if convex 

Master problem size 

keep increasing 

Partial 

aggregation 

Scenarios not 

too many 

PH 
Evenly distributes 

workload, parallelism  

Very slow convergence, 

optimum not guaranteed   
Heuristics  

MILPs easy to 

solve 

 

7.5 Scenario Generation and Clustering 

As described in previous sections, the second-stage of the stochastic TEP problem 

needs the solution of a series of sub-problems. These sub-problems, differentiated by 

their load levels, represent different power system operating conditions over a time 

horizon. Typically, scenarios can be generated using two approaches. The first approach 

is through load forecast. Based on historical analysis and future load projection, forecast 

data can be obtained and used to generate weekly, daily and even hourly scenario set. The 

scenarios generated by this approach usually provide a reasonably good representation of 

the targeted planning year. However, for many test cases, usually a single load level is 

given and the forecast data are not available. If this is true, then a load growth rate can be 

assumed and a statistical distribution can be assigned to the load at every bus. A random 

sampling can then be performed to obtain the scenarios.  

No matter which approach is taken, a large number of scenarios is usually 

expected. Before sending a problem with all these scenarios to the solver, one important 

step is scenario clustering, that is, to cluster similar scenarios into groups. The reasons 

why this step is important are twofold: First, even with the decomposition methods, the 
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two-stage stochastic TEP formulation is still computationally very intensive. A problem 

with too many scenarios usually takes too long a time to solve. This is unacceptable from 

the CPU time budget point of view. Second, with a large number of scenarios, only a 

limited number is unique in the sense that there are significant differences between each 

of them, the differences between the rest of the scenarios are insignificant and therefore 

can be views as redundant scenarios. Solving these redundant scenarios will not result in 

a new transmission expansion plan but will substantially slow down the execution time. 

Therefore, scenarios with high similarity need to be grouped and only the representative 

scenario should be retained in the final problem. To achieve this goal, the K-means 

clustering algorithm is used. The K-means algorithm is a model free method for data 

clustering by partitioning n sets of multivariate data observations into k clusters with their 

closest mean [74]. The basic idea of the K-means algorithm is illustrated in Fig. 7.5. 

 

Fig. 7.5.  Illustration of the K-means algorithm 

The steps of the K-means algorithm are as follows, 

Step 1: Determine k sets of initial centroids in the n sets of data point. 
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Step 2: Assign each of the n data points to its closest centroid. 

Step 3: Recalculate the means of the clusters determined in Step 2 as the new 

centroids. Repeat until the centroids do not move between two iterations. 

The choice of initial centroids could greatly affect the performance of the K-

means algorithm. An initialization strategy, known as the “K-means++ initializer”, is 

proposed in [75]. Instead of selecting all initial centroids at once, this initialization 

strategy selects the initial centroids one at a time based on the “D
2
-weighting” approach, 

where D is the shortest distance from a data point to the closest centroid that have been 

chosen. It has been proved that K-means++ generally gives better clustering results than 

the classic K-means method [75]. 

7.6 Case Studies 

This section investigates the performance of the decomposition TEP algorithms 

developed in this chapter on the IEEE 24-bus RTS system and the IEEE 118-bus system. 

The TEP models and the decomposition algorithms are programmed using AMPL. In the 

following studies of this chapter, the relative optimality gap is set to be 10
-5

 (0.01%) if 

not otherwise specified. All simulations are done on a Linux workstation with an Intel i7-

2600, 4-core CPU @ 3.40 GHz with 16 GB of RAM. 

7.6.1 The IEEE 24-bus System 

The 1996 IEEE 24-bus RTS system [57] has 39 existing lines, 17 loads and 33 

generators. It is assumed that for each existing transmission corridor, a new line can be 

considered as a transmission line candidate. Therefore, the total number of candidate 

lines is 39. All the system parameters used in this study can be found in Appendix A.  
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First, the performance of the L-shaped method is evaluated by the following 

simulation. Based on the data in Appendix B, each daily peak load is selected and 365 

scenarios are constructed for the second-stage operating problem. Multi-cut L-shaped 

method is used to solve this case. The TEP results are shown in Table 7.2. 

Table 7.2. TEP results of IEEE 24-bus system with 365 scenarios  

Problem size 
Execution 

time (s) 
Iterations 

Investment 

cost (M$) 

Annual operating 

cost (M$) 

Selected  

lines 

Rows: 184690 

Columns: 48218 

None zeros: 465010 

308.6 24 40.1 355.55 

14 – 16 

16 – 17 

17 – 18 

 

 

Fig. 7.6.  Upper and lower bounds of the L-shaped method in each iteration 

As one can observed from Table 7.2, the TEP problem with 365 scenarios is 

solved in approximately five minutes after 24 iterations using the multi-cut version L-

shaped method. Three candidate lines are selected with an investment cost of 40.1 M$. 

The estimated annual operating cost is 355.55 M$. Fig. 7.6 shows the upper and lower 
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bounds of the L-shaped method at each iteration. The difference between the upper bound 

and the lower bound in the figure is known as the “optimality gap” or “gap” for short. It 

can be observed that the gap reduces very fast in the first a few iterations, and then 

converge slowly to the optimum. The reason is that in this case, the optimality cuts 

generated in the first a few iterations are effective cut planes that substantially reduce the 

feasible solution set and help the branch-and-bound search. As iterations proceed, the 

optimality cut generated may not be as effective in reducing the feasibility set, hence the 

convergence rate becomes slow. The expanded IEEE 24-bus system is shown in Fig. 7.7, 

where the dashed lines are the new lines to be added.  

  

Fig. 7.7.  One line diagram of the expanded IEEE 24-bus RTS system 
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In order to elaborate the value of the stochastic TEP model, the deterministic TEP 

model that considers only the annual peak load level is also studied and the results are 

provided in Table 7.3 for comparison. 

Table 7.3. Deterministic TEP results of the IEEE 24-bus system 

Problem size 
Investment cost 

(M$) 

Annual operating 

cost (M$) 
Selected lines 

Rows: 506 

Columns: 170 

None zeros: 1274 

66.4 570.81 

14 – 16 

15 – 24 

16 – 17 

17 – 18 

 

Comparing the results in Table 7.2 with 7.3, it is not difficult to observe that both 

the investment cost and the operating cost given by the deterministic TEP model are 

higher than those were obtained from the stochastic TEP model. The operating cost is 

higher in the deterministic TEP model because it assumes the peak load level for every 

single day of a year. This assumption in the real world, however, tends to be very 

conservative and may generate unrealistic results. In the deterministic TEP model, four 

lines are selected, which is one line more than the TEP result in Table 7.2. The additional 

line is italicized in Table 7.3. The reason why the investment cost for the deterministic 

TEP model is also higher is because that if it were to be calculated lower, e.g., the 

investment cost in Table 7.2, then the resultant operating cost in the deterministic TEP 

model would be even higher than 570.81 M$. The value of stochastic TEP model is that 

the annual operating cost can be more accurately estimated as compared to the 

deterministic model, which only focuses on the peak load level. The deterministic TEP 
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model tends to overestimate the annual operating cost and therefore potentially results in 

an uneconomical transmission expansion plan.  

For the stochastic TEP model, the number of scenarios in the second-stage could 

affect the number of iterations and execution time significantly. In order to investigate 

this effect, three cases are created with 1 scenario (annual peak), 52 scenarios (weekly 

peak) and 365 scenarios (daily peak) in the second-stage operating problem, respectively. 

The relationship between iterations and execution time versus the number of scenarios 

are illustrated in Fig. 7.8. 

 

Fig. 7.8.  Impacts of number of scenarios on the iterations and the execution time 

From Fig. 7.8, one can observe that as the number of scenarios increases, the 

number of iterations for solving the problem drops drastically from 1596 to only 24. This 

is again because that with more scenarios in the second-stage, there will usually be a high 

possibility to generate efficient cut planes. In terms of execution time, it is interesting to 
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from 1 to 52, while it increases marginally when the number of scenarios further 

increases from 52 to 365. To explain this, recall that the L-shaped method adds a number 

of optimality cuts (constraints) to the master problem in each iteration if the optimality 

has not been reached. For the multi-cut version, the number of constraints added to the 

master problem in each iteration can be as many as the number of scenarios in the 

second-stage. Hence, if the number of scenarios is large, then the size of the master 

problem will increase fast after each iteration. Since the master problem is a MILP 

problem, it could take a longer time to solve a large MILP master problem with fewer 

iterations as compared to a smaller MILP problem with slightly more iterations.  

Similarly, the performance of the L-shaped method can be greatly affected by the 

number of clusters used in the algorithm. Taking the case with 365 scenarios for example, 

the 365 scenarios are aggregated into 1 cluster (single-cut), 5 clusters (73 scenarios per 

cluster), 73 clusters (5 scenarios per cluster) and 365 clusters (1 scenario per cluster, 

multi-cut), respectively. Fig 7.9 illustrates the relative gaps of these four clustering 

strategies in each iteration while Fig. 7.10 shows how the number of clusters influences 

the number of iterations and execution time. By observing the two figures, similar 

conclusions as for Fig. 7.8 can be drawn. The single-cut L-shaped method adds only one 

optimality cut into the master problem after each iteration, in this case, the size of the 

master problem increases slowly but the cutting planes generated in each iteration are 

inefficient in reducing the number of branching nodes needed to reach optimality. This 

explains why the single-cut version of the L-shaped method fails to yield a solution with 

3600 seconds and still leave a gap of about 31%. On the other hand, in spite of the fact 

that the multi-cut version needs the least number of iterations to solve the problem, the 
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massive number of constraints that needs to be added to the master problem after each 

iteration slows down the overall computing performance. Among these four clustering 

strategies, the clustering strategy with 5 scenarios per cluster yields the most efficient 

solution.  

 

Fig. 7.9.  Relative optimality gaps at every iteration 

 

Fig. 7.10.  Impacts of number of clusters on the iterations and the execution time 
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The performance of the L-shaped method algorithm is evaluated above. The 

following study compares the performance of the L-shaped method, PH and DE. Again, 

the same three cases with 1 scenario (annual peak), 52 scenarios (weekly peak) and 365 

scenarios (daily peak) are used in this study, and there is an execution time limit of 3600 

s. The TEP results from the three methods are summarized in Table 7.4. 

Table 7.4. TEP results from the L-shaped method, DE and PH 

Case L-shaped DE PH 

1 scenario 

14 – 16 

15 – 24 

16 – 17 

17 – 18 

14 – 16 

15 – 24 

16 – 17 

17 – 18 

14 – 16 

15 – 24 

16 – 17 

17 – 18 

52 scenarios 

14 – 16 

16 – 17 

17 – 18 

14 – 16 

16 – 17 

17 – 18 
Time limit reached 

365 scenarios 

14 – 16 

16 – 17 

17 – 18 

14 – 16 

16 – 17 

17 – 18 

 

From Table 7.4, it can be observed that for all cases, the L-shaped method and DE 

always give the same TEP result. This verifies the accuracy of the L-shaped method 

based TEP algorithm. The PH gives the same TEP result for the 1 scenario case, but fails 

to generate a integer solution within the time limit for the other two cases. This indicates 

that PH tends to take a long time to converge, especially when the decision variables are 

integer. In order to accelerate the convergence rate of PH, some heuristic methods for 

lines selection need to be developed. 

As mentioned in Section 7.4.1, the idea of the L-shaped method is to break down 

a big problem that cannot be solved directly into a master problem and many small sub-

problems and then solve them iteratively. Due to this reason, even for a problem with 
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only a few scenarios, it could still take a long time for the L-shaped method to converge 

because the sub-problems do not “see” and “coordinate” with each other when they are 

being solved. DE, on the other hand, treats the problem as a whole and therefore can 

outperform the L-shaped method when the problem scale is not large. This fact is 

illustrated in Fig. 7.11, where the execution time of the L-shaped method and DE is 

compared for the three cases developed in Table 7.4. 

 

Fig. 7.11.  Execution time vs. scenarios comparison of the L-shaped method and DE 

From Fig. 7.11, it can be easily observed that when the problem scale is small, 

e.g., 1 scenario, the DE outperforms the L-shaped method dominantly. As the problem 
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small, e.g., 52 scenarios. The computing advantage of the L-shaped method only shows 
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Various heuristics can be developed to accelerate the L-shaped method; one of 

them is to prescreen the candidate lines and reduce the solution set. The prescreening 

strategy should be carefully selected so that it should reduce the number of branching 

nodes effectively while leave the set where the optimal solution lies intact. A scenario 

decomposition based prescreening approach that enlightened by the PH algorithm is 

introduced in the following: 

Step 1: For each scenario s   Ωs, solve (7.24) and obtain the set of decision 

variable z
s
 for each scenario. 

Step 2: Calculate the master plan  
s

M s s

s
z z


 , where ρ

s
 = 1/S, S is the 

number of scenarios. 

Step 3: Fix any element in z
M

 that is 0, remove them from the candidate line set 

and form the reduced candidate line set z
R
.  

Step 4: Proceed to solve the problem with the reduced candidate line set.   

Notice that one assumption of this heuristic is that * Mz z must hold, where z
*
 is 

the optimal solution. Otherwise, this prescreening process will result in only the sub-

optimal solution being found or even make the problem infeasible. In this case, more 

candidate lines need to be included by unfixing some of the variables. Considering the 

problem with 365 scenarios, after running the prescreening algorithm, 24 out of the 39 

decision variables are fixed to zero. Fig. 7.12 illustrates the change in the number of 

iterations with and without the prescreening. It can be observed that after the 

prescreening, the number of iterations reduces from 24 to 17.  The number of iterations 

and the execution time with and without prescreening are compared in Fig. 7.13. Notice 

that the single-cut version without the prescreening fails to give a solution within the time 
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limit; therefore, it is not plotted out in the figure. It can be observed that with 

prescreening, both the number of scenarios and the execution time drop significantly, 

which proves the effectiveness of the heuristic prescreening approach. 

 

Fig. 7.12.  Number of iteration w/ and w/o prescreening 

 

Fig. 7.13.  Comparison of iterations and the execution time w/ and w/o prescreening 
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7.6.2 The IEEE 118-bus System 

The IEEE 118-bus system [50] has 186 existing branches, 54 generators and 91 

loads. The line ratings are reduced to create congestions. Detailed system parameters are 

provided in Appendix B. The system is divided into three zones as shown in Fig. 6.4 with 

the zonal data listed in Table 6.6. Unlike the 24-bus system, the IEEE 118-bus system 

does not have a load profile data for a year. Therefore, random loads are generated to 

construct different operating scenarios. The random loads are generated based on the 

assumptions that all the loads in the system independently follow the Gaussian 

distribution N(μ, 0.15 μ), where the given load level is used as the mean value μ. Based 

on the power flow result and the use the heuristics approach discussed previously, the 

following 20 lines selected as the candidate lines. 

Table 7.5. Candidate lines parameters for IEEE 118-bus system 

Number From bus To bus 
Reactance 

(p.u.) 

Rating 

(MW) 

Cost 

(M$) 

1 4 5 0.00798 400 1.8 

2 5 6 0.054 120 9.7 

3 30 17 0.0388 400 7 

4 64 65 0.0302 400 5.4 

5 94 95 0.0434 120 7.8 

6 8 9 0.0305 400 5.5 

7 8 5 0.0267 400 6 

8 9 10 0.0322 400 5.8 

9 23 32 0.1153 120 17.3 

10 69 77 0.101 120 15.2 

11 77 78 0.0124 120 2.8 

12 99 100 0.0813 120 14.6 

13 17 113 0.0301 120 5.4 

14 3 5 0.108 120 16.2 

15 5 6 0.054 120 9.7 

16 82 83 0.03665 120 6.6 

17 26 30 0.086 400 15.5 

18 38 37 0.0375 400 6.8 

19 80 99 0.206 120 30.9 

20 94 100 0.058 120 10.4 
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First, 1000 random load scenarios are generated in the operating stage. The TEP 

problem is solved using the L-shaped method with 500 clusters (2 scenarios per cluster). 

The results are shown in Table 7.6, the relative gap in each iteration is shown in Fig. 7.14 

and the expanded system one-line diagram is illustrated in Fig. 7.15. 

Table 7.6. TEP results of IEEE 118-bus system with 1000 scenarios  

Execution 

time (s) 
Iterations 

Investment cost 

(M$) 

Expected annual 

operating cost (M$) 
Selected lines 

1336 25 80.4 807.85 

3 – 5, 8 – 5, 8 – 9,  

9 – 10, 64 – 65,  

77 – 78, 80 – 99, 

94 – 95 

 

 

Fig. 7.14.  Relative optimality gaps at every iteration (1000 scenarios) 
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Fig. 7.15.  One line diagram of expanded IEEE 118-bus system [50]
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 c cw N C S                                                        (7.25) 

where w
c
 is the weight of cluster c, S, C and N

c
 are number of total scenarios, number of 

total clusters, and number of scenarios falls in cluster c respectively. Taking the 500 clus-

ters problem for example, if 10 out of the 1000 scenarios appear in the first cluster, then 

this cluster is assigned a weight of 5. The planning results are summarized in Table 7.7. 

Table 7.7. TEP results of IEEE 118-bus system with scenarios grouping  

Case 
Investment 

cost (M$) 

Annual operating 

cost (M$) 
Selected lines 

Execution 

time (s) 

500 

clusters 
50 812.26 

5 – 6, 8 – 5, 8 – 9, 9 – 10, 30 – 17, 

64 – 65, 77 – 78, 94 – 95 
466.3 

100 

clusters 
52.9 816.17 

8 – 5, 64 – 65, 77 – 78, 80 – 99, 

94 – 95 
38.1 

 

The results shown in Table 7.7 indicate that the K-means clustering algorithm ef-

fectively reduces the number of scenarios and computing time; however, the quality of 

the solution after clustering needs to be closely examined. The essence of the K-mean 

based algorithms is to find the centroids that can best classify the original set of scenari-

os. The grouping process will modify the original problem by discarding some extreme 

cases. Therefore, the TEP result after the scenario grouping is expected to be different 

from what it would have been for the original problem. Clearly, this is observed from the 

results shown in Table 7.7. In fact, extreme cases can play an important role in the origi-

nal problem solution. By discarding these extreme cases, the TEP result obtained from 

the clustered problem may cause an infeasible issue in the original problem. To rectify 

this problem, after solving the clustered problem, the original problem must also be 

solved with lines that are selected in the clustered problem fixed. Since the number of the 
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binary variables reduces, it is easier to solve the original problem with more scenarios 

and obtain at least a sub-optimal solution.  

7.6.3 The 569-bus Reduced WECC System 

The 569-bus reduced WECC system is created from the 2022 WECC full power 

flow case in .epc format. Since this is an interregional planning study for the entire 

WECC system, only the 500 kV and 230 kV backbone transmission lines in the full pow-

er flow case are retained in this reduced system. The reduced system has 805 existing 

transmission lines and an additional 689 candidate lines to be selected. There are a total 

number of 3751 generators. In order to study the impact of increase penetration of renew-

able resources on the entire WECC transmission system, potential renewable plants that 

are likely to be in service by 2022 are included in the reduced system. This planning 

study focus on the transmission paths among Balancing Authorities (BA), therefore, the 

system loads are aggregated to 39 load hubs, each corresponds to an individual BA in the 

Western Interconnection. There are 8 HVDC lines in the system, each is modeled as a 

power source or sink connected at an AC bus. The WECC 10-year and 20-year planning 

horizon are illustrated in Fig. 7.16. 

 
Fig. 7.16.  WECC 10-year and 20-year planning horizon [1] 

As indicated in Fig. 7.16, the planning framework that WECC is following can be 

divided into the operating planning cycle and the long term planning cycle with the em-

Cycles: 

Time: Year 2013 – Year 2022 Year 2023 – Year 2032 

Operational planning Long term planning 

Studies: 
Scenario-based network expansion 

and generation resource planning 

Scenario-based production cost 

analysis. Network is fixed 
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phasis on different time horizons. From present to 10-year ahead is known as the operat-

ing planning cycle. In this cycle, the transmission projects that were selected in the last 

long term planning cycle are included in the base case and the network topology is as-

sumed fixed throughout this cycle. Scenario-base production cost analyses are performed 

in this cycle to evaluate the reliability of the system by monitoring the power flow on im-

portant transmission path. Sensitivity analyses are also performed to examine how certain 

parameters change, e.g., gas price, carbon price or renewable penetration, could affect the 

transmission utilizations as well as the cost of economic dispatch. Beyond the operating 

planning cycle, the following 10-years are known as the long term planning cycle. In this 

cycle, generation resources are planned based on the state RPS requirements to meet the 

forecasted load. All costs including generation and transmission expansions are financed 

in this cycle to obtain the present dollar value of the costs. Transmission corridors and 

candidate lines are selected to perform the network expansion studies. Similar sensitivity 

analyses are performed to examine how changes in gas price, carbon price or renewable 

penetration could affect the transmission expansion plans. 

The 2032 reference case represents the “standard future”. In order to study the 

seasonal impact, four scenarios are created for light spring (LSP), heavy summer (HS), 

light fall (LF) and heavy winter (HW) conditions, respectively. The generation dispatch is 

fixed for each season, which is calculated based on the state RPS goal and the annual ca-

pacity factor of each generator type. The objective function is to minimize the investment 

cost only. Fig. 7.17 to 7.20 visualizes the transmission expansion plan for each seasonal 

condition with the power flow direction marked by arrows. The visualizations are done 

using a Microsoft Excel tool originally developed by Mr. Ben Brownlee at WECC.  
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Fig. 7.17.  Transmission expansion plan for WECC 2032 reference case – Light Spring 
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Fig. 7.18.  Transmission expansion plan for WECC 2032 reference case – Heavy Summer 
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Fig. 7.19.  Transmission expansion plan for WECC 2032 reference case – Light Fall 
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Fig. 7.20.  Transmission expansion plan for WECC 2032 reference case – Heavy Winter 

It is indicated from Fig. 7.17 to 7.20 that additional lines are usually selected to 

connect areas with generation surplus to areas have generation deficiency. It can be ob-
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served that Wyoming and Montana, due to massive wind generation installation in the 

planning horizon, become power sources that serve other areas that do not have enough 

generations. Note that even though no new line is selected between some areas, it does 

not mean that there is no power transfer. Power can be transferred through the existing 

lines that are not plotted on the map or through the common case transmission assump-

tions (CCTA) lines that are built between 2013 and 2022. The summary of the planning 

result of these four seasons are provided in Table 7.8. 

Table 7.8. Planning summary of the WECC 2032 reference case 

Condition Total load (MW) Investment cost (M$) Number of Selected lines 

LSP 133969 9882.4 28 

HS 194935 10333 30 

LF 106658 12731.3 33 

HW 170094 10719.4 24 

 

There are only 5 lines that are in common within the above four expansion plans. 

This means that with different generation dispatches, the optimal network topologies 

could vary substantially. In order to find the overall optimal expansion plan, the original 

problem is reformulated as a stochastic programming problem with four operating condi-

tions in the sub-problem. To solve the problem within an acceptable time, the number of 

candidate lines is reduced by starting fixing lines that are not selected by any of the four 

conditions to zero. With this heuristic, a good solution is obtained with 50 lines selected. 

The planning summary is shown in Table 7.9; the expansion plan and line utilizations for 

each condition are visualized in Fig. 7.21 – 7.24 respectively. 

Table 7.9. Planning summary of the WECC 2032 reference case – all conditions 

Condition Total load (MW) Investment cost (M$) Number of Selected lines 

All 605656 22461 50 
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Fig. 7.21.  WECC 2032 reference case line utilization – Light Spring 
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Fig. 7.22.  WECC 2032 reference case line utilization – Heavy Summer 
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Fig. 7.23.  WECC 2032 reference case line utilization – Light Fall 
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Fig. 7.24.  WECC 2032 reference case line utilization – Heavy Winter 

By examining Fig. 7.21 – 7.24, one can observe that in the north, lines are select-

ed to connect British Columbia (BC), Washington, Oregon, Idaho and Montana. This is 
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to utilize the ample hydro resources in BC as well as the wind in Montana. In the south, 

lines are built to connect Nevada, Arizona, New Mexico, Utah, Colorado and Wyoming 

to utilize the solar in the desert areas and the wind in Wyoming. Notice that only a few 

in-state transmission lines are selected in California. The rest of the power will be im-

ported from Arizona and the COI through the existing transmission facilities. 

7.7 Summary 

This chapter addresses the uncertainty modeling techniques in the TEP model. A 

two-stage stochastic TEP model is proposed. Algorithms using the L-shaped method and 

the PH are developed for solving the TEP model. The K-means algorithm is used to 

cluster the large number of scenarios in the second-stage. 

The performance of the L-shaped method is compared with and PH and form in 

the case studies. The results show that the L-shaped method is superior to DE when the 

problem scale is large, while PH is very slow to converge if no heuristics are imbedded in 

the algorithm. The results also show that by partially aggregating scenarios in the second 

stage, the performance of the L-shaped method can be improved significantly. The 118-

bus example show that the K-means clustering algorithm is effective in reducing the 

number of scenario but the solution quality of the clustered problem should be closely 

examined to avoid potential infeasible issues. The reduced WECC case shows how the 

TEP algorithm developed in this chapter can be used to solve real world planning 

problem. The simulation results have indicated that with the increasing penetration of 

renewable resource, additional transmission facilities are needed in the future U.S. 

Western Interconnection. 

   



 

135 

 

Chapter 8  

CONCLUSIONS AND FUTURE WORK  

8.1 Summary and Main Conclusions 

The TEP problem for large power systems has been investigated in this 

dissertation and several new TEP models are presented to facilitate the regional TEP 

process. The main conclusions of this dissertation can be drawn as follows: 

The loads are projected to increase 14% from 2009 to 2020 and the future 

generation mix is expected to have a significant departure from the past due to the 

massive integration of renewables to fulfill state-mandated RPS requirement. In order to 

connect remote renewable resources to the main power grid and prevent the potential 

overloads and violations of the reliability criteria, additional transmission capacity is 

essential in the future power system. 

In Chapter 3, a MILP-based TEP model that considers the active power losses in 

the system and the N – 1 criterion is proposed. Simulation results show the necessity and 

benefit of considering losses in TEP models. Inclusion of network losses may shift the 

cost from operations to investment, but will eventually provide a saving in total costs. 

Chapter 4 explores the possibility of applying AC-based models to the TEP 

problem. The results suggest that it is possible to apply the AC model to develop TEP 

models, however, solving MINLP-based ACTEP models is still challenging. By relaxing 

the binary variables, the NLP-based ACTEP model can be solved for small systems 

within an acceptable time range and a local optimal solution can be obtained. Using the 

AC model for solving large-scale TEP problems still requires more research, especially 

breakthroughs in the global optimization theories. 
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A relaxed OPF model is developed in Chapter 5 based on a Taylor series. The 

proposed OPF model retains the reactive power, off-nominal bus voltage magnitudes as 

well as network losses. A MILP-based loss model is developed to eliminate the fictitious 

losses and relaxations of the MILP model are investigated. It is shown that inclusion of 

reactive power and the off-nominal bus voltage magnitudes makes the proposed OPF 

model a better approximation to the full ACOPF model. In terms of loss modeling, it is 

proved that by including reactive power in the model, the fictitious losses can still be 

present even if the all the LMPs are positive. A condition is given to identify the branches 

in which fictitious losses may be created. Binary variables are only needed for these 

branches instead of all the branches in the system. 

Chapter 6 extends the relaxed ACOPF model developed in Chapter 5 to TEP 

studies and proposes the LACTEP model. An iterative approach for considering the N – 1 

criterion during the planning process is also developed and demonstrated on the test 

system. The advantage of the LACTEP model is that it dispatches the generators more 

accurately, gives a better estimation of the line flows, and provides a realistic TEP 

solution that the DC-based models usually fail to do. The iterative approach to 

incorporate the N – 1 reliability criterion provides a way to make the expanded system 

comply with the N – 1 contingency criterion. Mathematically, this iterative approach may 

not yield the optimal solution, but in terms of the computational burden, this approach 

attains the same goal more efficiently. 

Chapter 7 addresses this uncertainty modeling techniques in the TEP model. The 

results in this chapter clearly show that the value of using stochastic TEP model is that it 
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can give a more accurate estimated to the annual operating cost as compared to the 

deterministic model, which is usually known for giving too conservative results. 

8.2 Future Work 

The following are possible areas for future research: 

1. Use geospatial data to select the least cost transmission corridors.  

Straight lines are usually assumed in the TEP studies; however, it not realistic to 

have straight line in practice and it may also result in inaccurate line cost data. 

Algorithms for calculating the least cost transmission corridors, e.g. Dijkstra's algorithm 

and Google Maps algorithm should be investigated.  

2. More sophisticated HVDC line modeling in the TEP model. 

Right now, HVDC lines are modeled by using a fixed power source or sink. More 

sophisticated HVDC modeling can be investigated to consider the multilevel power flows 

on the lines. 

3. Coordinating TEP with generation expansion planning (GEP) by properly 

allocation transmission investment cost. 

The selection of different generation resources can greatly affect the TEP result. 

On the other hand, if the transmission investment costs are allocated to the newly 

connected generator, then it may affect the decision of the generator resource selection as 

well. The mutual relationship between TEP and GEP can be investigated in the future to 

better coordinate the two processes.  
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Generator Data 

No. Bus Q
max

 Q
min

 P
max

 P
min

 cg bg ag 

1 1 10 0 20 16.0 400.7 130.0 0.00 

2 1 10 0 20 16.0 400.7 130.0 0.00 

3 1 30 -25 76 15.2 212.3 16.1 0.01 

4 1 30 -25 76 15.2 212.3 16.1 0.01 

5 2 10 0 20 16.0 400.7 130.0 0.00 

6 2 10 0 20 16.0 400.7 130.0 0.00 

7 2 30 -25 76 15.2 212.3 16.1 0.01 

8 2 30 -25 76 15.2 212.3 16.1 0.01 

9 7 60 0 100 25.0 781.5 43.7 0.05 

10 7 60 0 100 25.0 781.5 43.7 0.05 

11 7 60 0 100 25.0 781.5 43.7 0.05 

12 13 80 0 197 69.0 832.8 48.6 0.01 

13 13 80 0 197 69.0 832.8 48.6 0.01 

14 13 80 0 197 69.0 832.8 48.6 0.01 

15 14 200 -50 0 0.0 0.0 0.0 0.00 

16 15 6 0 12 2.4 86.4 56.6 0.33 

17 15 6 0 12 2.4 86.4 56.6 0.33 

18 15 6 0 12 2.4 86.4 56.6 0.33 

19 15 6 0 12 2.4 86.4 56.6 0.33 

20 15 6 0 12 2.4 86.4 56.6 0.33 

21 15 80 -50 155 54.3 382.2 12.4 0.01 

22 16 80 -50 155 54.3 382.2 12.4 0.01 

23 18 200 -50 400 100.0 395.4 4.4 0.00 

24 21 200 -50 400 100.0 395.4 4.4 0.00 

25 22 16 -10 50 10.0 0.0 0.0 0.00 

26 22 16 -10 50 10.0 0.0 0.0 0.00 

27 22 16 -10 50 10.0 0.0 0.0 0.00 

28 22 16 -10 50 10.0 0.0 0.0 0.00 

29 22 16 -10 50 10.0 0.0 0.0 0.00 

30 22 16 -10 50 10.0 0.0 0.0 0.00 

31 23 80 -50 155 54.3 382.2 12.4 0.01 

32 23 80 -50 155 54.3 382.2 12.4 0.01 

33 23 150 -25 350 140.0 665.1 11.8 0.00 

 

Branch Data (100 MW base) 

No. From To rk xk bk tk  S
max

(MW) ck 

1 1 2 0.0026 0.0139 0.4611 0 175 3 

2 1 3 0.0546 0.2112 0.0572 0 175 55 

3 1 5 0.0218 0.0845 0.0229 0 175 22 

4 2 4 0.0328 0.1267 0.0343 0 175 33 

5 2 6 0.0497 0.192 0.052 0 175 50 

6 3 9 0.0308 0.119 0.0322 0 175 31 

7 3 24 0.0023 0.0839 0 1.03 400 20 

8 4 9 0.0268 0.1037 0.0281 0 175 27 

9 5 10 0.0228 0.0883 0.0239 0 175 23 

10 6 10 0.0139 0.0605 2.459 0 175 16 

11 7 8 0.0159 0.0614 0.0166 0 175 16 

12 8 9 0.0427 0.1651 0.0447 0 175 43 
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13 8 10 0.0427 0.1651 0.0447 0 175 43 

14 9 11 0.0023 0.0839 0 1.03 400 20 

15 9 12 0.0023 0.0839 0 1.03 400 20 

16 10 11 0.0023 0.0839 0 1.02 400 20 

17 10 12 0.0023 0.0839 0 1.02 400 20 

18 11 13 0.0061 0.0476 0.0999 0 500 33 

19 11 14 0.0054 0.0418 0.0879 0 500 29 

20 12 13 0.0061 0.0476 0.0999 0 500 33 

21 12 23 0.0124 0.0966 0.203 0 500 67 

22 13 23 0.0111 0.0865 0.1818 0 500 60 

23 14 16 0.005 0.0389 0.0818 0 500 27 

24 15 16 0.0022 0.0173 0.0364 0 500 12 

25 15 21 0.0063 0.049 0.103 0 500 34 

26 15 21 0.0063 0.049 0.103 0 500 34 

27 15 24 0.0067 0.0519 0.1091 0 500 36 

28 16 17 0.0033 0.0259 0.0545 0 500 18 

29 16 19 0.003 0.0231 0.0485 0 500 16 

30 17 18 0.0018 0.0144 0.0303 0 500 10 

31 17 22 0.0135 0.1053 0.2212 0 500 73 

32 18 21 0.0033 0.0259 0.0545 0 500 18 

33 18 21 0.0033 0.0259 0.0545 0 500 18 

34 19 20 0.0051 0.0396 0.0833 0 500 27.5 

35 19 20 0.0051 0.0396 0.0833 0 500 27.5 

36 20 23 0.0028 0.0216 0.0455 0 500 15 

37 20 23 0.0028 0.0216 0.0455 0 500 15 

38 21 22 0.0087 0.0678 0.1424 0 500 47 

 

Load Data 

No. Bus PDd (MW) QDd (MVAr) 

1 1 108 22 

2 2 97 20 

3 3 180 37 

4 4 74 15 

5 5 71 14 

6 6 136 28 

7 7 125 25 

8 8 171 35 

9 9 175 36 

10 10 195 40 

11 13 265 54 

12 14 194 39 

13 15 317 64 

14 16 100 20 

15 18 333 68 

16 19 181 37 

17 20 128 26 
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APPENDIX B 

IEEE 118-BUS SYSTEM DATA 
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Generator Data 

No. Bus P
max

 P
gen

 P
min

 Q
max

 Q
gen

 Q
min

 cg bg ag 

1 4 30 5 5 300 161.91 -300 32 26 0.07 

2 6 30 5 5 50 50 -13 32 26 0.07 

3 8 30 5 5 300 -69.88 -300 32 26 0.07 

4 10 500 330.54 150 200 -146.88 -147 7 13 0.01 

5 12 300 300 100 120 120 -35 7 13 0.01 

6 15 30 10 10 30 30 -10 32 26 0.07 

7 18 100 100 25 50 50 -16 10 18 0.01 

8 19 30 5 5 24 24 -8 32 26 0.07 

9 24 30 5 5 300 26.05 -300 32 26 0.07 

10 25 300 288.45 100 140 -22.76 -47 7 13 0.01 

11 26 350 350 100 1000 -33.48 -1000 33 11 0 

12 27 30 8 8 300 74.72 -300 32 26 0.07 

13 31 30 8 8 300 69.25 -300 32 26 0.07 

14 32 100 100 25 42 42 -14 10 18 0.01 

15 34 30 8 8 24 24 -8 32 26 0.07 

16 36 100 10 25 24 24 -8 10 18 0.01 

17 40 30 8 8 300 99.93 -300 32 26 0.07 

18 42 30 8 8 300 54.16 -300 32 26 0.07 

19 46 100 93.63 25 100 37.99 -100 10 18 0.01 

20 49 250 250 50 210 133.11 -85 28 12 0 

21 54 250 250 50 300 109.27 -300 28 12 0 

22 55 100 94 25 23 23 -8 10 18 0.01 

23 56 100 94.63 25 15 15 -8 10 18 0.01 

24 59 200 200 50 180 180 -60 39 13 0 

25 61 200 200 50 300 0.14 -100 39 13 0 

26 62 100 71.68 25 20 20 -20 10 18 0.01 

27 65 420 420 100 200 -33.12 -67 64 8 0.01 

28 66 420 420 100 200 -12.02 -67 64 8 0.01 

29 69 300 664.93 80 9999 12.63 -9999 7 13 0.01 

30 70 80 53.1 30 32 32 -10 74 15 0.05 

31 72 30 10 10 100 0.17 -100 32 26 0.07 

32 73 30 5 5 100 22.47 -100 32 26 0.07 

33 74 20 5 5 9 9 -6 18 38 0.03 

34 76 100 100 25 23 23 -8 10 18 0.01 

35 77 100 75.8 25 70 70 -20 10 18 0.01 

36 80 500 294.65 150 280 172.15 -165 7 13 0.01 

37 82 100 59.22 25 9900 133.14 -9900 10 18 0.01 

38 85 30 10 10 23 23 -8 32 26 0.07 

39 87 650 229.36 100 1000 61.69 -100 33 11 0 

40 89 500 217.61 50 300 53.89 -210 7 13 0.01 

41 90 20 8 8 300 70.65 -300 18 38 0.03 

42 91 50 20 20 100 6.14 -100 59 23 0.01 

43 92 300 226.87 100 9 9 -3 7 13 0.01 

44 99 300 217.81 100 100 -35.13 -100 7 13 0.01 

45 100 300 248.3 100 155 118.27 -50 7 13 0.01 

46 103 20 8 8 40 40 -15 18 38 0.03 

47 104 100 45.05 25 23 23 -8 10 18 0.01 

48 105 100 50.78 25 23 23 -8 10 18 0.01 

49 107 20 8 8 200 26.42 -200 18 38 0.03 
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50 110 50 25 25 23 23 -8 59 23 0.01 

51 111 100 34.34 25 1000 8.64 -100 10 18 0.01 

52 112 100 43.33 25 1000 28.26 -100 10 18 0.01 

53 113 100 99.72 25 200 42.57 -100 10 18 0.01 

54 116 50 25 25 1000 -190.63 -1000 59 23 0.01 

 

Line Data (100 MW base) 

No. From To rk xk bk S
max

(MW) tk ck 

1 1 2 0.0303 0.0999 0.0254 115 0 18 

2 1 3 0.0129 0.0424 0.01082 115 0 7.6 

3 4 5 0.00176 0.00798 0.0021 400 0 1.8 

4 3 5 0.0241 0.108 0.0284 115 0 16.2 

5 5 6 0.0119 0.054 0.01426 115 0 9.7 

6 6 7 0.00459 0.0208 0.0055 115 0 4.7 

7 8 9 0.00244 0.0305 1.162 400 0 5.5 

8 8 5 0 0.0267 0 400 0.985 6 

9 9 10 0.00258 0.0322 1.23 400 0 5.8 

10 4 11 0.0209 0.0688 0.01748 115 0 12.4 

11 5 11 0.0203 0.0682 0.01738 115 0 12.3 

12 11 12 0.00595 0.0196 0.00502 115 0 4.4 

13 2 12 0.0187 0.0616 0.01572 115 0 11.1 

14 3 12 0.0484 0.16 0.0406 115 0 24 

15 7 12 0.00862 0.034 0.00874 115 0 6.1 

16 11 13 0.02225 0.0731 0.01876 115 0 13.2 

17 12 14 0.0215 0.0707 0.01816 115 0 12.7 

18 13 15 0.0744 0.2444 0.06268 115 0 36.7 

19 14 15 0.0595 0.195 0.0502 115 0 29.3 

20 12 16 0.0212 0.0834 0.0214 115 0 15 

21 15 17 0.0132 0.0437 0.0444 400 0 7.9 

22 16 17 0.0454 0.1801 0.0466 115 0 27 

23 17 18 0.0123 0.0505 0.01298 115 0 9.1 

24 18 19 0.01119 0.0493 0.01142 115 0 8.9 

25 19 20 0.0252 0.117 0.0298 115 0 17.6 

26 15 19 0.012 0.0394 0.0101 115 0 7.1 

27 20 21 0.0183 0.0849 0.0216 115 0 15.3 

28 21 22 0.0209 0.097 0.0246 115 0 17.5 

29 22 23 0.0342 0.159 0.0404 115 0 23.9 

30 23 24 0.0135 0.0492 0.0498 115 0 8.9 

31 23 25 0.0156 0.08 0.0864 400 0 14.4 

32 26 25 0 0.0382 0 400 0.96 6.9 

33 25 27 0.0318 0.163 0.1764 400 0 24.5 

34 27 28 0.01913 0.0855 0.0216 115 0 15.4 

35 28 29 0.0237 0.0943 0.0238 115 0 17 

36 30 17 0 0.0388 0 400 0.96 7 

37 8 30 0.00431 0.0504 0.514 115 0 9.1 

38 26 30 0.00799 0.086 0.908 400 0 15.5 

39 17 31 0.0474 0.1563 0.0399 115 0 23.4 

40 29 31 0.0108 0.0331 0.0083 115 0 6 

41 23 32 0.0317 0.1153 0.1173 115 0 17.3 

42 31 32 0.0298 0.0985 0.0251 115 0 17.7 
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43 27 32 0.0229 0.0755 0.01926 115 0 13.6 

44 15 33 0.038 0.1244 0.03194 115 0 18.7 

45 19 34 0.0752 0.247 0.0632 115 0 37.1 

46 35 36 0.00224 0.0102 0.00268 115 0 2.3 

47 35 37 0.011 0.0497 0.01318 115 0 8.9 

48 33 37 0.0415 0.142 0.0366 115 0 21.3 

49 34 36 0.00871 0.0268 0.00568 115 0 6 

50 34 37 0.00256 0.0094 0.00984 400 0 2.1 

51 38 37 0 0.0375 0 400 0.935 6.8 

52 37 39 0.0321 0.106 0.027 115 0 15.9 

53 37 40 0.0593 0.168 0.042 115 0 25.2 

54 30 38 0.00464 0.054 0.422 115 0 9.7 

55 39 40 0.0184 0.0605 0.01552 115 0 10.9 

56 40 41 0.0145 0.0487 0.01222 115 0 8.8 

57 40 42 0.0555 0.183 0.0466 115 0 27.5 

58 41 42 0.041 0.135 0.0344 115 0 20.3 

59 43 44 0.0608 0.2454 0.06068 115 0 36.8 

60 34 43 0.0413 0.1681 0.04226 115 0 25.2 

61 44 45 0.0224 0.0901 0.0224 115 0 16.2 

62 45 46 0.04 0.1356 0.0332 115 0 20.3 

63 46 47 0.038 0.127 0.0316 115 0 19.1 

64 46 48 0.0601 0.189 0.0472 115 0 28.4 

65 47 49 0.0191 0.0625 0.01604 115 0 11.3 

66 42 49 0.0715 0.323 0.086 115 0 48.5 

67 42 49 0.0715 0.323 0.086 115 0 48.5 

68 45 49 0.0684 0.186 0.0444 115 0 27.9 

69 48 49 0.0179 0.0505 0.01258 115 0 9.1 

70 49 50 0.0267 0.0752 0.01874 115 0 13.5 

71 49 51 0.0486 0.137 0.0342 115 0 20.6 

72 51 52 0.0203 0.0588 0.01396 115 0 10.6 

73 52 53 0.0405 0.1635 0.04058 115 0 24.5 

74 53 54 0.0263 0.122 0.031 115 0 18.3 

75 49 54 0.073 0.289 0.0738 115 0 43.4 

76 49 54 0.0869 0.291 0.073 115 0 43.7 

77 54 55 0.0169 0.0707 0.0202 115 0 12.7 

78 54 56 0.00275 0.00955 0.00732 115 0 2.1 

79 55 56 0.00488 0.0151 0.00374 115 0 3.4 

80 56 57 0.0343 0.0966 0.0242 115 0 17.4 

81 50 57 0.0474 0.134 0.0332 115 0 20.1 

82 56 58 0.0343 0.0966 0.0242 115 0 17.4 

83 51 58 0.0255 0.0719 0.01788 115 0 12.9 

84 54 59 0.0503 0.2293 0.0598 115 0 34.4 

85 56 59 0.0825 0.251 0.0569 115 0 37.7 

86 56 59 0.0803 0.239 0.0536 115 0 35.9 

87 55 59 0.04739 0.2158 0.05646 115 0 32.4 

88 59 60 0.0317 0.145 0.0376 115 0 21.8 

89 59 61 0.0328 0.15 0.0388 115 0 22.5 

90 60 61 0.00264 0.0135 0.01456 400 0 3 

91 60 62 0.0123 0.0561 0.01468 115 0 10.1 

92 61 62 0.00824 0.0376 0.0098 115 0 6.8 

93 63 59 0 0.0386 0 400 0.96 6.9 
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94 63 64 0.00172 0.02 0.216 400 0 4.5 

95 64 61 0 0.0268 0 400 0.985 6 

96 38 65 0.00901 0.0986 1.046 400 0 17.7 

97 64 65 0.00269 0.0302 0.38 400 0 5.4 

98 49 66 0.018 0.0919 0.0248 400 0 16.5 

99 49 66 0.018 0.0919 0.0248 400 0 16.5 

100 62 66 0.0482 0.218 0.0578 115 0 32.7 

101 62 67 0.0258 0.117 0.031 115 0 17.6 

102 65 66 0 0.037 0 400 0.935 6.7 

103 66 67 0.0224 0.1015 0.02682 115 0 15.2 

104 65 68 0.00138 0.016 0.638 400 0 3.6 

105 47 69 0.0844 0.2778 0.07092 115 0 41.7 

106 49 69 0.0985 0.324 0.0828 115 0 48.6 

107 68 69 0 0.037 0 400 0.935 6.7 

108 69 70 0.03 0.127 0.122 400 0 19.1 

109 24 70 0.00221 0.4115 0.10198 115 0 61.7 

110 70 71 0.00882 0.0355 0.00878 115 0 6.4 

111 24 72 0.0488 0.196 0.0488 115 0 29.4 

112 71 72 0.0446 0.18 0.04444 115 0 27 

113 71 73 0.00866 0.0454 0.01178 115 0 8.2 

114 70 74 0.0401 0.1323 0.03368 115 0 19.8 

115 70 75 0.0428 0.141 0.036 115 0 21.2 

116 69 75 0.0405 0.122 0.124 400 0 18.3 

117 74 75 0.0123 0.0406 0.01034 115 0 7.3 

118 76 77 0.0444 0.148 0.0368 115 0 22.2 

119 69 77 0.0309 0.101 0.1038 115 0 15.2 

120 75 77 0.0601 0.1999 0.04978 115 0 30 

121 77 78 0.00376 0.0124 0.01264 115 0 2.8 

122 78 79 0.00546 0.0244 0.00648 115 0 5.5 

123 77 80 0.017 0.0485 0.0472 400 0 8.7 

124 77 80 0.0294 0.105 0.0228 400 0 15.8 

125 79 80 0.0156 0.0704 0.0187 115 0 12.7 

126 68 81 0.00175 0.0202 0.808 400 0 4.5 

127 81 80 0 0.037 0 400 0.935 6.7 

128 77 82 0.0298 0.0853 0.08174 115 0 15.4 

129 82 83 0.0112 0.03665 0.03796 115 0 6.6 

130 83 84 0.0625 0.132 0.0258 115 0 19.8 

131 83 85 0.043 0.148 0.0348 115 0 22.2 

132 84 85 0.0302 0.0641 0.01234 115 0 11.5 

133 85 86 0.035 0.123 0.0276 400 0 18.5 

134 86 87 0.02828 0.2074 0.0445 400 0 31.1 

135 85 88 0.02 0.102 0.0276 115 0 15.3 

136 85 89 0.0239 0.173 0.047 115 0 26 

137 88 89 0.0139 0.0712 0.01934 400 0 12.8 

138 89 90 0.0518 0.188 0.0528 400 0 28.2 

139 89 90 0.0238 0.0997 0.106 400 0 17.9 

140 90 91 0.0254 0.0836 0.0214 115 0 15 

141 89 92 0.0099 0.0505 0.0548 400 0 9.1 

142 89 92 0.0393 0.1581 0.0414 400 0 23.7 

143 91 92 0.0387 0.1272 0.03268 115 0 19.1 

144 92 93 0.0258 0.0848 0.0218 115 0 15.3 
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145 92 94 0.0481 0.158 0.0406 115 0 23.7 

146 93 94 0.0223 0.0732 0.01876 115 0 13.2 

147 94 95 0.0132 0.0434 0.0111 115 0 7.8 

148 80 96 0.0356 0.182 0.0494 115 0 27.3 

149 82 96 0.0162 0.053 0.0544 115 0 9.5 

150 94 96 0.0269 0.0869 0.023 115 0 15.6 

151 80 97 0.0183 0.0934 0.0254 115 0 16.8 

152 80 98 0.0238 0.108 0.0286 115 0 16.2 

153 80 99 0.0454 0.206 0.0546 115 0 30.9 

154 92 100 0.0648 0.295 0.0472 115 0 44.3 

155 94 100 0.0178 0.058 0.0604 115 0 10.4 

156 95 96 0.0171 0.0547 0.01474 115 0 9.8 

157 96 97 0.0173 0.0885 0.024 115 0 15.9 

158 98 100 0.0397 0.179 0.0476 115 0 26.9 

159 99 100 0.018 0.0813 0.0216 115 0 14.6 

160 100 101 0.0277 0.1262 0.0328 115 0 18.9 

161 92 102 0.0123 0.0559 0.01464 115 0 10.1 

162 101 102 0.0246 0.112 0.0294 115 0 16.8 

163 100 103 0.016 0.0525 0.0536 400 0 9.5 

164 100 104 0.0451 0.204 0.0541 115 0 30.6 

165 103 104 0.0466 0.1584 0.0407 115 0 23.8 

166 103 105 0.0535 0.1625 0.0408 115 0 24.4 

167 100 106 0.0605 0.229 0.062 115 0 34.4 

168 104 105 0.00994 0.0378 0.00986 115 0 6.8 

169 105 106 0.014 0.0547 0.01434 115 0 9.8 

170 105 107 0.053 0.183 0.0472 115 0 27.5 

171 105 108 0.0261 0.0703 0.01844 115 0 12.7 

172 106 107 0.053 0.183 0.0472 115 0 27.5 

173 108 109 0.0105 0.0288 0.0076 115 0 6.5 

174 103 110 0.03906 0.1813 0.0461 115 0 27.2 

175 109 110 0.0278 0.0762 0.0202 115 0 13.7 

176 110 111 0.022 0.0755 0.02 115 0 13.6 

177 110 112 0.0247 0.064 0.062 115 0 11.5 

178 17 113 0.00913 0.0301 0.00768 115 0 5.4 

179 32 113 0.0615 0.203 0.0518 400 0 30.5 

180 32 114 0.0135 0.0612 0.01628 115 0 11 

181 27 115 0.0164 0.0741 0.01972 115 0 13.3 

182 114 115 0.0023 0.0104 0.00276 115 0 2.3 

183 68 116 0.00034 0.00405 0.164 400 0 0.9 

184 12 117 0.0329 0.14 0.0358 115 0 21 

185 75 118 0.0145 0.0481 0.01198 115 0 8.7 

186 76 118 0.0164 0.0544 0.01356 115 0 9.8 
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Load Data 

No. Bus PDd (MW) QDd (MVAr) 

1 1 87 46 

2 2 34 15 

3 3 67 17 

4 4 51 20 

5 6 89 38 

6 7 32 3 

7 11 119 39 

8 12 80 17 

9 13 58 27 

10 14 24 2 

11 15 154 51 

12 16 43 17 

13 17 19 5 

14 18 102 58 

15 19 77 43 

16 20 31 5 

17 21 24 14 

18 22 17 9 

19 23 12 5 

20 27 106 22 

21 28 29 12 

22 29 41 7 

23 31 73 46 

24 32 101 39 

25 33 39 15 

26 34 101 44 

27 35 56 15 

28 36 53 29 

29 39 46 19 

30 40 34 39 

31 41 63 17 

32 42 63 39 

33 43 31 12 

34 44 27 14 

35 45 90 38 

36 46 48 17 

37 47 58 0 

38 48 34 19 

39 49 148 51 

40 50 29 7 

41 51 29 14 

42 52 31 9 

43 53 39 19 

44 54 193 55 

45 55 107 38 

46 56 143 31 

47 57 20 5 

48 58 20 5 

49 59 473 193 
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50 60 133 5 

51 62 131 24 

52 66 67 31 

53 67 48 12 

54 70 113 34 

55 74 116 46 

56 75 80 19 

57 76 116 61 

58 77 104 48 

59 78 121 44 

60 79 67 55 

61 80 222 44 

62 82 92 46 

63 83 34 17 

64 84 19 12 

65 85 41 26 

66 86 36 17 

67 88 82 17 

68 90 133 72 

69 92 111 17 

70 93 20 12 

71 94 51 27 

72 95 72 53 

73 96 65 26 

74 97 26 15 

75 98 58 14 

76 100 63 31 

77 101 38 26 

78 102 9 5 

79 103 39 27 

80 104 65 43 

81 105 53 44 

82 106 73 27 

83 107 48 20 

84 108 3 2 

85 109 14 5 

86 110 67 51 

87 112 43 22 

88 114 14 5 

89 115 38 12 

90 117 34 14 

91 118 56 26 
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APPENDIX C 

SUBROUTINE OF A MATLAB BASED TEP PROGRAM 
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%% number of buses 
nb = length(bus(:,1)); 
%% number of branches & candidate lines 
nl = length(branch(:,1)); 
nlz = sum(branch(:,12)==0); 
%% number of generators 
ng = length(gen(:,1)); 
%% number of loads 
nd = length(load(:,1)); 
%% system swing bus 
swbus = find(bus(:,2)==0); 
%% suseptance 
gl =  zeros(nl,1); 
bl = -1./branch(:,5); 
%% variable initialization 
nvar = nb+nl+ng+nlz; 
nc = nl+3*nlz; 
dimNodBal = zeros(nb,nvar); 
dimDCFlow = zeros(nl+nlz,nvar);  % number of bus angle contraints 
dimLnCap  = zeros(2*nlz,nvar);  % number of line capacity limit 
dimPLoad  = zeros(nb,1); 
M = 5; 
tic 
for b = 1 : nb 

     
    indg = find(b == gen(:,2)); 
    if isempty(indg) == 0 
        for i = 1:length(indg) 
            dimNodBal(b,nb+nl+indg(i)) = 1; 
        end 
    end    

     
    indd = find(b == load(:,2)); 
    if isempty(indd) == 0 
        for i = 1:length(indd) 
            dimPLoad(b) = dimPLoad(b) + load(indd(i),3); 
        end 
    end      
end 

  
for k = 1 : (nl+nlz) 
    if k <= (nl-nlz) 
        dimDCFlow(k,branch(k,2)) = +1; 
        dimDCFlow(k,branch(k,3)) = -1; 
        dimDCFlow(k,nb+k) = 1./(bl(k)*Sbase); 

     
        dimNodBal(branch(k,2),nb+k) = -1; 
        dimNodBal(branch(k,3),nb+k) = +1; 

     
    elseif (k > (nl-nlz))&&(k <= nl) 
        dimDCFlow(k,branch(k,2)) = +1; 
        dimDCFlow(k,branch(k,3)) = -1; 
        dimDCFlow(k,nb+k) = 1./(bl(k)*Sbase); 
        dimDCFlow(k,nb+ng+nlz+k) = M; 



 

158 

 

         
        dimNodBal(branch(k,2),nb+k) = -1; 
        dimNodBal(branch(k,3),nb+k) = +1; 

         
        dimLnCap(k-(nl-nlz),nb+k) = 1; 
        dimLnCap(k-(nl-nlz),nb+ng+nlz+k) = -branch(k,9); 
    else 
        dimDCFlow(k,branch(k-nlz,2)) = -1; 
        dimDCFlow(k,branch(k-nlz,3)) = +1; 
        dimDCFlow(k,nb-nlz+k) = -1./(bl(k-nlz)*Sbase); 
        dimDCFlow(k,nb+ng+k) = M; 

         
        dimLnCap(k-(nl-nlz),nb-nlz+k) = -1; 
        dimLnCap(k-(nl-nlz),nb+ng+k) = -branch(k-nlz,9); 
    end 
end 

  
toc 
dimNodBal = sparse(dimNodBal); 
dimDCFlow = sparse(dimDCFlow); 
dimLnCap  = sparse(dimLnCap); 

  
clear model; 
%model.Q      = sparse(1:nvar, 1:nvar, [zeros(nb+nl,1); gen(:,14)]); 
model.A      = [dimNodBal; dimDCFlow; dimLnCap]; 
%model.obj    = [zeros(nb+nl,1); gen(:,13);branch(nl-nlz+1:nl,11)]; 
model.obj    = [zeros(nb+nl+ng,1); branch(nl-nlz+1:nl,11)]; 
%model.objcon = sum(gen(:,12)); 
model.rhs    = [dimPLoad; zeros(nl-nlz,1); M*ones(2*nlz,1); ze-

ros(2*nlz,1)]; 
model.lb     = [-inf(swbus-1,1);0;-inf(nb-swbus,1);-branch(:,9); 

gen(:,6); -inf(nlz,1)]; 
model.ub     = [ inf(swbus-1,1);0; inf(nb-swbus,1); branch(:,9); 

gen(:,5);  inf(nlz,1)]; 
model.sense  = [repmat('=',nb+nl-nlz,1); repmat('<', 4*nlz,1)]; 
model.vtype  = [repmat('C',nb+nl+ng,1); repmat('B',nlz,1)]; 
model.modelsense = 'min'; 

  
result = gurobi(model); 
result.x(1:nb) = result.x(1:nb)/pi*180; 
if strcmp(result.status, 'OPTIMAL') 
  fprintf('Optimal objective: %e\n', result.objval); 
  adl = find(result.x(nb+nl+ng+1:nvar) == 1); 
  fprintf('The following %2d lines need to be built:\n', length(adl)); 
  fprintf('FromBus   ToBus\n'); 
  for i = 1: length(adl) 
      fprintf('%5d%8d\n', branch(nl-nlz+adl(i),2),branch(nl-

nlz+adl(i),3)); 
  end 

  
  fprintf('Elapsed time: %e\n', result.runtime); 
else 
  fprintf('Optimization returned status: %s\n', result.status); 
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Sample data file: IEEE 24-bus system 

%% system MVA base 
Sbase = 100; 

 
%% bus data 
%   bus_i   type    Gs  Bs  area    zone    Vm  Va  baseKV  Vmax    

Vmin 
bus = [ 
1   2   0   0   1   1   0   138 1   1.05    0.95; 
2   2   0   0   1   1   0   138 1   1.05    0.95; 
3   1   0   0   1   1   0   138 1   1.05    0.95; 
4   1   0   0   1   1   0   138 1   1.05    0.95; 
5   1   0   0   1   1   0   138 1   1.05    0.95; 
6   1   0   -100    2   1   0   138 1   1.05    0.95; 
7   2   0   0   2   1   0   138 1   1.05    0.95; 
8   1   0   0   2   1   0   138 1   1.05    0.95; 
9   1   0   0   1   1   0   138 1   1.05    0.95; 
10  1   0   0   2   1   0   138 1   1.05    0.95; 
11  1   0   0   3   1   0   230 1   1.05    0.95; 
12  1   0   0   3   1   0   230 1   1.05    0.95; 
13  0   0   0   3   1   0   230 1   1.05    0.95; 
14  2   0   0   3   1   0   230 1   1.05    0.95; 
15  2   0   0   4   1   0   230 1   1.05    0.95; 
16  2   0   0   4   1   0   230 1   1.05    0.95; 
17  1   0   0   4   1   0   230 1   1.05    0.95; 
18  2   0   0   4   1   0   230 1   1.05    0.95; 
19  1   0   0   3   1   0   230 1   1.05    0.95; 
20  1   0   0   3   1   0   230 1   1.05    0.95; 
21  2   0   0   4   1   0   230 1   1.05    0.95; 
22  2   0   0   4   1   0   230 1   1.05    0.95; 
23  2   0   0   3   1   0   230 1   1.05    0.95; 
24  1   0   0   4   1   0   230 1   1.05    0.95; 
]; 

  
%% branch data 
%   i_branch    fbus    tbus    rl  xl  gc  bc  tap rateA   rateB   

cost    status  no_cont 
branch = [ 
1   1   2   0.0026  0.0139  0   0.4611  0   175 175 0   1   1; 
2   1   3   0.0546  0.2112  0   0.0572  0   175 175 0   1   1; 
3   1   5   0.0218  0.0845  0   0.0229  0   175 175 0   1   1; 
4   2   4   0.0328  0.1267  0   0.0343  0   175 175 0   1   1; 
5   2   6   0.0497  0.192   0   0.052   0   175 175 0   1   1; 
6   3   9   0.0308  0.119   0   0.0322  0   175 175 0   1   1; 
7   3   24  0.0023  0.0839  0   0   1.03    100 400 0   1   1; 
8   4   9   0.0268  0.1037  0   0.0281  0   175 175 0   1   1; 
9   5   10  0.0228  0.0883  0   0.0239  0   175 175 0   1   1; 
10  6   10  0.0139  0.0605  0   2.459   0   175 175 0   1   1; 
11  7   8   0.0159  0.0614  0   0.0166  0   175 175 0   1   1; 
12  8   9   0.0427  0.1651  0   0.0447  0   175 175 0   1   1; 
13  8   10  0.0427  0.1651  0   0.0447  0   175 175 0   1   1; 
14  9   11  0.0023  0.0839  0   0   1.03    100 400 0   1   1; 
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15  9   12  0.0023  0.0839  0   0   1.03    100 400 0   1   1; 
16  10  11  0.0023  0.0839  0   0   1.02    100 400 0   1   1; 
17  10  12  0.0023  0.0839  0   0   1.02    100 400 0   1   1; 
18  11  13  0.0061  0.0476  0   0.0999  0   100 500 0   1   1; 
19  11  14  0.0054  0.0418  0   0.0879  0   100 500 0   1   1; 
20  12  13  0.0061  0.0476  0   0.0999  0   100 500 0   1   1; 
21  12  23  0.0124  0.0966  0   0.203   0   100 500 0   1   1; 
22  13  23  0.0111  0.0865  0   0.1818  0   100 500 0   1   1; 
23  14  16  0.005   0.0389  0   0.0818  0   100 500 0   1   1; 
24  15  16  0.0022  0.0173  0   0.0364  0   100 500 0   1   1; 
25  15  21  0.0063  0.049   0   0.103   0   100 500 0   1   1; 
26  15  21  0.0063  0.049   0   0.103   0   100 500 0   1   1; 
27  15  24  0.0067  0.0519  0   0.1091  0   100 500 0   1   1; 
28  16  17  0.0033  0.0259  0   0.0545  0   100 500 0   1   1; 
29  16  19  0.003   0.0231  0   0.0485  0   100 500 0   1   1; 
30  17  18  0.0018  0.0144  0   0.0303  0   100 500 0   1   1; 
31  17  22  0.0135  0.1053  0   0.2212  0   100 500 0   1   1; 
32  18  21  0.0033  0.0259  0   0.0545  0   100 500 0   1   1; 
33  18  21  0.0033  0.0259  0   0.0545  0   100 500 0   1   1; 
34  19  20  0.0051  0.0396  0   0.0833  0   100 500 0   1   1; 
35  19  20  0.0051  0.0396  0   0.0833  0   100 500 0   1   1; 
36  20  23  0.0028  0.0216  0   0.0455  0   100 500 0   1   1; 
37  20  23  0.0028  0.0216  0   0.0455  0   100 500 0   1   1; 
38  21  22  0.0087  0.0678  0   0.1424  0   100 500 0   1   1; 
39  1   2   0.0026  0.0139  0   0.4611  0   175 175 3   0   1; 
40  1   3   0.0546  0.2112  0   0.0572  0   175 175 55  0   1; 
41  1   5   0.0218  0.0845  0   0.0229  0   176 176 22  0   1; 
42  1   8   0.0348  0.1344  0   0   0   500 500 35  0   1; 
43  2   4   0.0328  0.1267  0   0.0343  0   175 175 33  0   1; 
44  2   6   0.0497  0.192   0   0.052   0   175 175 50  0   1; 
45  2   8   0.0328  0.1267  0   0   0   500 500 33  0   1; 
46  3   9   0.0308  0.119   0   0.0322  0   175 175 31  0   1; 
47  3   24  0.0023  0.0839  0   0   1.03    400 400 50  0   1; 
48  4   9   0.0268  0.1037  0   0.0281  0   175 175 27  0   1; 
49  5   10  0.0228  0.0883  0   0.0239  0   175 175 23  0   1; 
50  6   7   0.0497  0.192   0   0   0   175 175 50  0   1; 
51  6   10  0.0139  0.0605  0   2.459   0   175 175 16  0   1; 
52  7   8   0.0159  0.0614  0   0.0166  0   175 175 16  0   1; 
53  8   9   0.0427  0.1651  0   0.0447  0   175 175 43  0   1; 
54  8   10  0.0427  0.1651  0   0.0447  0   175 175 43  0   1; 
55  9   11  0.0023  0.0839  0   0   1.03    400 400 50  0   1; 
56  9   12  0.0023  0.0839  0   0   1.03    400 400 50  0   1; 
57  10  11  0.0023  0.0839  0   0   1.02    400 400 50  0   1; 
58  10  12  0.0023  0.0839  0   0   1.02    400 400 50  0   1; 
59  11  13  0.0061  0.0476  0   0.0999  0   500 500 66  0   1; 
60  11  14  0.0054  0.0418  0   0.0879  0   500 500 58  0   1; 
61  12  13  0.0061  0.0476  0   0.0999  0   500 500 66  0   1; 
62  12  23  0.0124  0.0966  0   0.203   0   500 500 134 0   1; 
63  13  14  0.0057  0.0447  0   0.1818  0   500 500 62  0   1; 
64  13  23  0.0111  0.0865  0   0.0818  0   500 500 120 0   1; 
65  14  16  0.005   0.0389  0   0.0364  0   500 500 54  0   1; 
66  14  23  0.008   0.062   0   0.103   0   500 500 86  0   1; 
67  15  16  0.0022  0.0173  0   0.103   0   500 500 24  0   1; 
68  15  21  0.0063  0.049   0   0.1091  0   500 500 68  0   1; 
69  15  24  0.0067  0.0519  0   0.0545  0   500 500 72  0   1; 
70  16  17  0.0033  0.0259  0   0.0485  0   500 500 36  0   1; 
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71  16  19  0.003   0.0231  0   0.0303  0   500 500 32  0   1; 
72  16  23  0.0105  0.0822  0   0.2212  0   500 500 114 0   1; 
73  17  18  0.0018  0.0144  0   0.0545  0   500 500 20  0   1; 
74  17  22  0.0135  0.1053  0   0.0545  0   500 500 146 0   1; 
75  18  21  0.0033  0.0259  0   0.0833  0   500 500 36  0   1; 
76  19  20  0.0051  0.0396  0   0.0833  0   500 500 55  0   1; 
77  19  23  0.0078  0.0606  0   0.0455  0   500 500 84  0   1; 
78  20  23  0.0028  0.0216  0   0.0455  0   500 500 30  0   1; 
79  21  22  0.0087  0.0678  0   0.1424  0   500 500 94  0   1;   
]; 

  
%% Generator data 
%   i_gen   bus Pg  Qg  Pmax    Pmin    Qmax    Qmin    Vg  mBase   

Gtype   gma gmb gmc ramp_10 ramp_30 status  no_cont 
gen = [ 
1   1   10  0   20  16  10  0   1.035   100 1   400.6849    130 0   

9999    9999    1   1;  %   U20 
2   1   10  0   20  16  10  0   1.035   100 1   400.6849    130 0   

9999    9999    1   1;  %   U20 
3   1   76  0   76  15.2    30  -25 1.035   100 1   212.3076    16.0811 

0.014142    9999    9999    1   1;  %   U76 
4   1   76  0   76  15.2    30  -25 1.035   100 1   212.3076    16.0811 

0.014142    9999    9999    1   1;  %   U76 
5   2   10  0   20  16  10  0   1.035   100 1   400.6849    130 0   

9999    9999    1   1;  %   U20 
6   2   10  0   20  16  10  0   1.035   100 1   400.6849    130 0   

9999    9999    1   1;  %   U20 
7   2   76  0   76  15.2    30  -25 1.035   100 1   212.3076    16.0811 

0.014142    9999    9999    1   1;  %   U76 
8   2   76  0   76  15.2    30  -25 1.035   100 1   212.3076    16.0811 

0.014142    9999    9999    1   1;  %   U76 
9   7   80  0   100 25  60  0   1.025   100 1   781.521 43.6615 

0.052672    9999    9999    1   1;  %   U100 
10  7   80  0   100 25  60  0   1.025   100 1   781.521 43.6615 

0.052672    9999    9999    1   1;  %   U100 
11  7   80  0   100 25  60  0   1.025   100 1   781.521 43.6615 

0.052672    9999    9999    1   1;  %   U100 
12  13  95.1    0   197 69  80  0   1.02    100 1   832.7575    48.5804 

0.00717 9999    9999    1   1;  %   U197 
13  13  95.1    0   197 69  80  0   1.02    100 1   832.7575    48.5804 

0.00717 9999    9999    1   1;  %   U197 
14  13  95.1    0   197 69  80  0   1.02    100 1   832.7575    48.5804 

0.00717 9999    9999    1   1;  %   U197 
15  14  0   35.3    0   0   200 -50 0.98    100 1   0   0   0   9999    

9999    1   1;  %   SynCond 
16  15  12  0   12  2.4 6   0   1.014   100 1   86.3852 56.564  

0.328412    9999    9999    1   1;  %   U12 
17  15  12  0   12  2.4 6   0   1.014   100 1   86.3852 56.564  

0.328412    9999    9999    1   1;  %   U12 
18  15  12  0   12  2.4 6   0   1.014   100 1   86.3852 56.564  

0.328412    9999    9999    1   1;  %   U12 
19  15  12  0   12  2.4 6   0   1.014   100 1   86.3852 56.564  

0.328412    9999    9999    1   1;  %   U12 
20  15  12  0   12  2.4 6   0   1.014   100 1   86.3852 56.564  

0.328412    9999    9999    1   1;  %   U12 
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21  15  155 0   155 54.3    80  -50 1.014   100 1   382.2391    12.3883 

0.008342    9999    9999    1   1;  %   U155 
22  16  155 0   155 54.3    80  -50 1.017   100 1   382.2391    12.3883 

0.008342    9999    9999    1   1;  %   U155 
23  18  400 0   400 100 200 -50 1.05    100 1   395.3749    4.4231  

0.000213    9999    9999    1   1;  %   U400 
24  21  400 0   400 100 200 -50 1.05    100 1   395.3749    4.4231  

0.000213    9999    9999    1   1;  %   U400 
25  22  50  0   50  10  16  -10 1.05    100 1   0.001   0.001   0   

9999    9999    1   1;  %   U50 
26  22  50  0   50  10  16  -10 1.05    100 1   0.001   0.001   0   

9999    9999    1   1;  %   U50 
27  22  50  0   50  10  16  -10 1.05    100 1   0.001   0.001   0   

9999    9999    1   1;  %   U50 
28  22  50  0   50  10  16  -10 1.05    100 1   0.001   0.001   0   

9999    9999    1   1;  %   U50 
29  22  50  0   50  10  16  -10 1.05    100 1   0.001   0.001   0   

9999    9999    1   1;  %   U50 
30  22  50  0   50  10  16  -10 1.05    100 1   0.001   0.001   0   

9999    9999    1   1;  %   U50 
31  23  155 0   155 54.3    80  -50 1.05    100 1   382.2391    12.3883 

0.008342    9999    9999    1   1;  %   U155 
32  23  155 0   155 54.3    80  -50 1.05    100 1   382.2391    12.3883 

0.008342    9999    9999    1   1;  %   U155 
33  23  350 0   350 140 150 -25 1.05    100 1   665.1094    11.8495 

0.004895    9999    9999    1   1;  %   U350         
]; 

  
%% load data 
%   i_load  bus pload   qload 
load = [ 
  1       1       108   22; 
  2       2       97    20; 
  3       3       180   37; 
  4       4       74    15; 
  5       5       71    14; 
  6       6       136   28; 
  7       7       125   25; 
  8       8       171   35; 
  9       9       175   36; 
 10      10       195   40; 
 11      13       265   54; 
 12      14       194   39; 
 13      15       317   64; 
 14      16       100   20; 
 15      18       333   68; 
 16      19       181   37; 
 17      20       128   26; 
]; 
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