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ABSTRACT

In recent years, there are increasing numbers of applications that use multi-variate

time series data where multiple uni-variate time series coexist. However, there is a lack

of systematic of multi-variate time series. This thesis focuses on (a) defining a simpli-

fied inter-related multi-variate time series (IMTS) model and (b) developing robust multi-

variate temporal (RMT) feature extraction algorithm that can be used for locating, filtering,

and describing salient features in multi-variate time series data sets. The proposed RMT

feature can also be used for supporting multiple analysis tasks, such as visualization, seg-

mentation, and searching / retrieving based on multi-variate time series similarities. Ex-

periments confirm that the proposed feature extraction algorithm is highly efficient and

effective in identifying robust multi-scale temporal features of multi-variate time series.
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Chapter 1

INTRODUCTION

Various novel applications of time series data, such as motion capture, disease diagno-

sis and energy system control, have emerged in recent years where traditional uni-variate

time series are not sufficient in describing temporal observations. Instead, researchers have

proposed the idea of multi-variate time series to accommodate applications where we si-

multaneously observe multiple aspects of the system. Moreover, these applications often

have the following properties: (1) data is often larger, (2) variates are inter-related, and (3)

observations can be presented in multiple resolutions. However, how to effectively and ef-

ficiently analyze, search and mine multi-variate time series is still an open question. In this

thesis, the main goal is define a multi-variate time series model as well as an algorithm for

extracting local salient features, which are suitable for analysis and retrieval, from multi-

variate time series data. We start by introducing the basic concepts and characteristics of

time series and then present an overview of existing feature extraction algorithms.

1.1 Uni-Variate Time Series

Uni-variate time series data (Figure 1.1), typically captured successively at discrete time

stamps, is presented as a sequence of scalar observations. To support uni-variate time series

indexing [18] and mining (e.g. cluster [32] and classification [46] tasks), various global and
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500

600

700

Figure 1.1: A sample uni-variate time series.
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local feature extraction algorithms have been proposed.

Global uni-variate time series features:

Global uni-variate time series features are used for indexing and searching uni-variate time

series where the characteristics of the series as a whole are needed for search and analysis.

One approach is to use linear transformations, such as discrete Fourier transforms (DFT)

[1] and discrete wavelet transform (DWT) [10], to map the given time series into a new

basis, which highlight important global characteristics, such as dominant frequency com-

ponents that make up the time series.

One of the key aspects in understanding uni-variate time series is to find the dis-

tance between two time series. Many algorithms have been proposed for this task: e.g., Eu-

clidean distance[1], Dynamic Time Warping (DTW)[18], Edit Distance with Real Penalty

(ERP)[11], Longest Common Subsequence (LCSS)[43], Edit Distance on Real Sequence

(EDR)[12], and Dictionary Compression Score (DCS)[34]. Intuitively, these algorithms

search for alignments of time series in order to calculate the matching distance between

them. However, while global features can hint at whether such alignments exists, finding

such alignments through global features is not possible. Instead, local uni-variate time se-

ries features are needed to support this process.

Local uni-variate time series features:

Local uni-variate time series features are widely used in searching for alignments between

uni-variate time series, time series segmentation, visualization, clustering and classification

tasks. Time series shapelets [47], presented as time series subsequences, is considered as a

kind of local feature which maximally represents a given class. Time series snippets [45]

is captured using hidden Markov model (HMM) techniques and correspond to shape con-

tours. Frequently repeating patterns can be extracted by motif [37] extraction algorithms.

While the above algorithms tend to use supervised learning strategies, sDTW [8] relies

on an unsupervised approach for locating local features. Moreover, sDTW [8] aimed at

searching local salient features, which include feature location, scope and descriptor, are

2



 

(a) Berkeley lab data [6]

 

(b) Motion capture data [14]

Figure 1.2: Two multi-variate time series examples. In (a), the spatial positions of the
temperature sensors (and the locations of the space partitions) relate the observations at
different sensors. Similarly, in (b) the structure of the human body relates the positions of
the location markers during the motion capture.

robust against multiple kinds of noises. We discuss sDTW (which we refer to as UNI is

this thesis) in greater detail in Section 2.2.

1.2 Multi-Variate Time Series

Multi-variate time series is essential in various applications, such as Mocap[14] motion

capture and smart building energy time series data sets. In many of these applications (a)

the resulting time series data are multi-variate, (b) relevant processes underlying these time

series are of different scale [42], and (c) the variates (i.e., observation parameters) are de-

pendent on each other in various ways (Figure 1.2).

Analysis of relationships (correlations, transfer functions, and causality) among

time series is a well studied problem. H.Akaike 1977 [3] used canonical correlation con-

cept for analysis of variates relations of time series. Silva et al. 2010 [15] proposed a

component vector based model in discovering the inter relationship between series that im-

prove fit and forecasts. Eichler 2000 [16] proposed multi-variate time series relationship

3



= × ×
va
ri
at
es

time time

va
ri
at
es

time variates

ti
m
e

ti
m
e

Fingerprint

Fingerprint

𝑉𝑇ΣUA = × ×

Figure 1.3: Find multi-variate time series Fingerprint with SVD algorithm.

analysis according to granger-causality graphs.

Global multi-variate time series features:

The most common approach for extracting features from multi-variate time series is to seek

global features, such as correlations, transfer functions, variate clusters, and spectral prop-

erties [15]. A common representation of multi-variate data evolving over time is a tensor

(multi-dimensional array) stream. The order of a tensor is the number of modes (or ways):

a first-order tensor, a vector, is often used to represent uni-variate time series, whereas a

second-order tensor can be used for multi-variate series. A 3- or higher-order tensor can be

used when each variate itself is multi-dimensional. Tensor deposition algorithms such as

CP decomposition [21] and Tucker decomposition [41] can be thus used in seeking global

features. When variates are one dimensional, a multi-variate time series can be represented

in the form of matrix. Multi-variate time series can thus be analyzed for latent variables

and indexed for searching using matrix decomposition methods known as singular value

decomposition (SVD) or principle component analysis (PCA). As shown in Figure 1.3,

given a multi-variate time series, A, it can be factorized as the product of a unitary matrix

U , a diagonal matrix Σ, and another unitary matrix V T . Fingerprint of multi-variate time

series can either be the first few columns in U or be the first few rows in V T in such a

way that the majority of energy are preserved. CLeVer [49], which using Feature subset

selection (FSS) to pre-process the multi-variate time series data, can improve the classifi-

cation accuracy of the PCA based global feature. Besides, Li et al. 2010 [36] argued that
4



Linear Dynamical Systems (LDS) can be used for correlation discovery and forecasting in

multi-variate time series. They also proposed a PLif algorithm for detecting interpretable

features for multi-variate time series.

Local Multi-variate Time Series Features:

TClass [30] was proposed to improve classification accuracy of multi-variate time series,

where sub-events will be learned from training instance. Each sub-event has a starting time

and duration as well as temporal patterns presented by parameters that are learned from

existing propositional machine learning techniques (i.e. HMM). Different with sub-pattern

in TClass, recent temporal pattern [4] presents a list of states (time interval patterns) and

the relation (before, at the same time and after) among states. Motion Stream [35] was pro-

posed to detect motion events from multi-variate motion time series (i.e. mocap motion).

Precision of each motion stream is incrementally improved by comparing and maximizing

the difference with existing motion streams that are detected. Though some approaches

have been done extracting local features for multi-variate time series, most feature extrac-

tion approaches for multi-variate time series focus on learning global relationships among

the variates through factorization and decomposition.In this thesis, we observe that besides

global features, local salient features also exist in multi-variate time series. Figure 1.4 pro-

vides an example where positions and scopes of sample multi-variate features on a multi-

variate time series; note that these features are of different temporal length and contain

different number of variates.

1.3 Challenges and Contributions

Though many studies have been made in multi-variate time series analysis, to the best of

my knowledge, none of the existing fingerprint/feature extraction algorithms focus on non

supervised learning of local salient features. Therefore, in this thesis I track the following

challenges:

Multi-variate time series modeling:

In this thesis, I first introduce a multi-variate time series model that involves the rele-

5
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Fig. 2. Uni-variate feature extraction using the sDTW algorithm [4] – in (b)
and (c), each time series is visualized as a row of pixels, where lighter colors
correspond to larger values

often analyzed for its latent semantics and indexed for search
using a matrix decomposition operation known as the singular
value decomposition (SVD), which identifies a transformation
which takes data, described in terms of an m dimensional
vector space, and maps them into a vector space defined
by k ≤ m orthogonal basis vectors (also known as latent
semantics) each with a score denoting its contributions in the
given data set. SVD and similar eigen-decompositions can be
used for extracting fingerprints of multi-variate time series
data [20]. The analogous analysis operation on a tensor is
known as tensor decomposition [19]. CP decomposes a tensor
into a sum of rank-1 tensors. The factor matrices are the
combination of the vectors from the rank-1 components. When
the decompositions are constrained to be non-negative, the
non-zero elements of the core can be considered as denoting
clusters, where the factor matrices denote the membership
degrees of the elements to the clusters. The Tucker decomposi-
tion on the other hand, decomposes a tensor into a core tensor
multiplied by a matrix along each mode. Both matrix and
tensor decomposition operations, as well as other techniques,
such as co-clustering are expensive; therefore, in streaming
scenarios, incremental matrix and tensor decomposition algo-
rithms need to be employed.

Local Features of Uni-Variate Time Series. The major
deficiency of global features of time series is that they describe
the entire time series. Often, however, search or classification
tasks need to focus on features of the time series that are rather
localized. Noting that uni-variate time series often carry local-
ized temporal features which can be used for efficient search
and analysis, in our earlier work [4] we developed an sDTW
algorithm for extracting positions and robust (against various
types of noise) descriptors of salient local features of uni-
variate time series and showed that these can help align similar
time series more efficiently and effectively than alternative
schemes (Figure 2). Other local features of uni-variate time-
series include landmarks [22], perceptually important points
(PIP) [9], patterns [3], shapelets [24], [27], snippets [26], and
motif-based schemes (which search for frequently repeating
temporal patterns) [6], [8].
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Fig. 3. (a) A multi-variate time series data set, where each variate is plotted
as a row of gray scale pixels and sample multi-variate features identified on
the data set (each feature is marked with a different color). More specifically,
the figure shows 26 time series of length 150 and 5 local multi-variate features
on these time series: note that some of the features correspond to the onset
of a rise in amplitude, whereas other correspond to the drop in the series
amplitude. For each time series involved in a given multi-variate feature, we
plot the corresponding temporal scope (i.e., duration) of that feature. For each
feature, the time series marked with a “*” is the series on which that feature
is centered. Note that the set of the time series involved in a given feature
as well as the position and scope of the feature are automatically detected by
the RMT feature extraction algorithm

Contributions of this Paper: Local Features of Multi-
Variate Time Series. As described above, existing approaches
to local feature extraction are mostly based on uni-variate
series, whereas most work on multi-variate data sets focus
on learning global relationships among the variates through
factorization and decomposition. In contrast, in this paper, we
develop algorithms to detect local, robust multi-variate tem-
poral (RMT) features of multi-variate time series (Figure 3).
As described above, the problem of extracting local features

from uni-variate series has already been solved [4]. Similar lo-
cal features has also been extracted from 2D images to support
indexing and object search (SIFT [21]). These techniques rely
on (a) repeatedly smoothing of the data to generate different
version of the input object corresponding to different scales
and (b) comparing neighboring points both in time (or in x and
y dimensions) and scale to identify regions where the gradients
are large. Once features are located, feature descriptors (in the
form of gradient histograms) are extracted to support indexing
and search.

What makes the problem of extracting local features
from multi-variate series, however, is that the con-
cepts of neighborhood, gradient, and smoothing are
not well-defined in the presence of multiple variates.

In this paper, we argue that
this difficulty can be overcome by leveraging meta-
data (known correlations and dependencies among
the variates in the time series) to define neighbor-
hoods, support data smoothing, and construct scale
spaces in which gradients can be measured.

In other words, the local, robust multi-variate temporal (RMT)
features we describe in this paper are optimized for support-
ing alignments of multi-variate time series leveraging known
correlations and dependencies among the variates (Figure 1).

Figure 1.4: A multi-variate time series data set, where each variate is plotted as a row of
gray scale pixels and sample multi-variate features identified on the data set (each feature is
marked with a different color). More specifically, the figure shows 26 time series of length
150 and 5 local multi-variate features on these time series: note that some of the features
correspond to the onset of a rise in amplitude, whereas other correspond to the drop in the
series amplitude. For each time series involved in a given multi-variate feature, we plot
the corresponding temporal scope (i.e., duration) of that feature. For each feature, the time
series marked with a “*” is the series on which that feature is centered. Note that the set of
the time series involved in a given feature as well as the position and scope of the feature
are automatically detected by the RMT feature extraction algorithm.

vant temporal characteristics while leveraging matadata for variates relationship construc-

tion. Applicability of the proposed multi-variate time series model to different applications

should be maximized while the assumptions about the structure are minimized.

Local feature detection challenge:

Uni-variate time series carry localized temporal features [8] that are scale invariance and

robust against multiple types of noise. In multi-variate time series, local salient features

corresponding to major changes in temporal dynamics or in the relationships among vari-

ates. Thus the second challenge I tackle in this thesis to detect local salient features of

multi-variate time series.

As mentioned above, variates are often inter related or correlated. In this thesis, I argue that

known relationships among variates can promote accuracy and robustness of the extracted

features. Therefore, this thesis aim at extracting features in a way that takes into account

6



any variate relationship knowledge available as a priori.

We propose robust multi-variate temporal (RMT) features and develop algorithms for locat-

ing and extracting thesis multi-variate features. Experiment results, presented in Chapter

7, confirm that the proposed RMT features are highly effective and efficient in identify-

ing robust temporal features for multi-variate time series and can be used for indexing,

visualization, segmentation and clustering/classification.

1.4 Organization of the Thesis

Organization of the thesis is as follows: relevant background (existing scale invariant fea-

ture extraction algorithm for images and uni-variate time series) will be discussed in Chap-

ter 2. In Chapter 3, the proposed algorithms for identifying and describing robust multi-

variate temporal (RMT) features will be presented. In Chapter 4, we will discuss the fea-

ture alignment process for multi-variate data sets using the proposed RMT features. A

visualization system based on the proposed RMT features will be proposed in Chapter 5.

Experimental setup, including data sets and evaluation criteria, will be introduced in Chap-

ter 6 and experimental results will be reported and analyzed in Chapter 7. Conclusion of

the thesis will be presented in Chapter 8.
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Chapter 2

BACKGROUND

As described in the introduction, the problem of extracting local features from uni-variate

series has already been solved [8]. Similar local features have also been extracted from

2D images to support indexing and object search (SIFT [38][39]). These techniques rely

on (a) repeatedly smoothing of the data to generate different versions of the input object

corresponding to different scales and (b) comparing neighboring points both in time (or in x

and y dimensions) and scale to identify regions where the gradients are large. Once features

are located, feature descriptors (in the form of gradient histograms) are extracted to support

indexing and search. In this section, we provide overviews of SIFT [38][39] and sDTW

[8] algorithms to help us highlight the challenges that make the problem of extracting local

features from multi-variate series difficult.

2.1 SIFT Feature for 2D images

The scale-invariant feature transform (SIFT) algorithm [38][39] was proposed to identify

2D image keypoints which are robust against scaling, translation, rotation, and partially

invariant towards illumination differences and noise. SIFT algorithm relies on four major

steps to extract features from 2D image matrix: scale-space extrema detection, keypoint

localization, orientation assignment, and keypoint description.

Scale-space extrema detection:

To identify features of different scales, SIFT algorithm will first conduct a convolution

process of a variable-scale Gaussian: given 2D image, I(i, j), let L(i, j,σ) be the smoothed

image:

L(i, j,σ) = G(i, j,σ)∗ I(i, j),

where,

G(i, j,σ) = (1/2πσ
2)e−(i

2+ j2)/2σ2
.
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In other words, each pixel in the original 2D image matrix is smoothed by its neighbors

by several iterations. Afterwards, the difference of Gaussian of the input image can be

produced by subtract between nearby scale σ and κσ :

D(i, j,σ) = L(i, j,κσ)−L(i, j,σ).

Local extrema are detected by searching through each pixel in DoG and compare with its

26 neighbors in the current scale and its adjacent two scales. A pixel is selected as SIFT

feature candidate when is is larger or smaller than all of its 26 neighbors.

Keypoint localization:

Poorly localized feature candidates that are either with low contrast or large principle cur-

vature are eliminated in this step. More specifically, to prune features that are poorly local-

ized along edge (with large principle curvature), a Hessian matrix [24], H, is constructed

by computing the secondary derivatives. The principle curvature is determined as follows:

Let α is the largest eigenvalue and β is the smallest one, the trace and the determinant of

the Hessian matrix can be used for relating α and β :

Tr(H) = α +β and Det(H) = αβ .

If α = rβ , the ratio r of the two eigenvalues is computed by trace and determinant:

Tr(H)2

Det(H)
=

(rβ +β )2

rββ
=

(r+1)2

r
.

The ratio r should as close to 1 as possible, thus the author claims that given a upper bound

r, poorly localized features can be identified by evaluating if:

Tr(H)2

Det(H)
>

(r+1)2

r
.

Orientation Assignment:

The orientations, O, of the remaining features are computed based on the local gradient

distributions. More specifically, a gradient direction histogram around the keypoint is gen-

erated and the peak of the histogram is selected as the dominant orientation O.
9
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Fig. 2. Uni-variate feature extraction using the sDTW algorithm [6] – in (b)
and (c), each time series is visualized as a row of pixels, where lighter colors
correspond to larger values

Matrix data is often analyzed for its latent semantics and
indexed for search using a matrix decomposition operation
known as the singular value decomposition (SVD), which
identifies a transformation which takes data, described in terms
of an m dimensional vector space, and maps them into a
vector space defined byk ≤ m orthogonal basis vectors (also
known as latent semantics) each with a score denoting its
contributions in the given data set. SVD and similar eigen-
decompositions can be used for extracting fingerprints of
multi-variate time series data [23]. The analogous analysis
operation on a tensor is known as tensor decomposition [22].
CP decomposes a tensor into a sum of rank-1 tensors. The
factor matrices are the combination of the vectors from the
rank-1 components. When the decompositions are constrained
to be non-negative, the non-zero elements of the core can
be considered as denoting clusters, where the factor matrices
denote the membership degrees of the elements to the clusters.
The Tucker decomposition on the other hand, decomposes a
tensor into a core tensor multiplied by a matrix along each
mode. Both matrix and tensor decomposition operations, as
well as other techniques, such as co-clustering are expensive;
therefore, in streaming scenarios, incremental matrix andten-
sor decomposition algorithms need to be employed.

Local Features of Uni-Variate Time Series. The major
deficiency of global features of time series is that they describe
the entire time series. Often, however, search or classification
tasks need to focus on features of the time series that are rather
localized. Noting that uni-variate time series often carrylocal-
ized temporal features which can be used for efficient search
and analysis, in our earlier work [6] we developed an sDTW
algorithm for extracting positions and robust (against various
types of noise) descriptors of salient local features of uni-
variate time series and showed that these can help align similar
time series more efficiently and effectively than alternative
schemes (Figure 2). Other local features of uni-variate time-
series include landmarks [25], perceptually important points
(PIP) [11], patterns [5], shapelets [27], [30], snippets [29], and
motif-based schemes (which search for frequently repeating
temporal patterns) [8], [10].
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Fig. 3. (a) A multi-variate time series data set, where each variate is plotted
as a row of gray scale pixels and sample multi-variate features identified on
the data set (each feature is marked with a different color).More specifically,
the figure shows 26 time series of length 150 and 5 local multi-variate features
on these time series: note that some of the features correspond to the onset
of a rise in amplitude, whereas other correspond to the drop in the series
amplitude. For each time series involved in a given multi-variate feature, we
plot the corresponding temporal scope (i.e., duration) of that feature. For each
feature, the time series marked with a “*” is the series on which that feature
is centered. Note that the set of the time series involved in agiven feature
as well as the position and scope of the feature are automatically detected by
the RMT feature extraction algorithm

Contributions of this Paper: Local Features of Multi-
Variate Time Series.As described above, existing approaches
to local feature extraction are mostly based on uni-variate
series, whereas most work on multi-variate data sets focus
on learning global relationships among the variates through
factorization and decomposition. In contrast, in this paper, we
develop algorithms to detect local,robust multi-variate tem-
poral (RMT) features of multi-variate time series (Figure 3).

As described above, the problem of extracting local features
from uni-variate series has already been solved [6]. Similar lo-
cal features has also been extracted from 2D images to support
indexing and object search (SIFT [24]). These techniques rely
on (a) repeatedly smoothing of the data to generate different
version of the input object corresponding to different scales
and (b) comparing neighboring points both in time (or inx and
y dimensions) and scale to identify regions where the gradients
are large. Once features are located, feature descriptors (in the
form of gradient histograms) are extracted to support indexing
and search.

What makes the problem of extracting local features
from multi-variate series, however, is that the con-
cepts ofneighborhood, gradient, andsmoothingare
not well-defined in the presence of multiple variates.

In this paper, we argue that
this difficulty can be overcome by leveraging meta-
data (known correlations and dependencies among
the variates in the time series) to define neighbor-
hoods, support data smoothing, and construct scale
spaces in which gradients can be measured.

In other words, the local,robust multi-variate temporal(RMT)
features we describe in this paper are optimized for support-
ing alignments of multi-variate time series leveraging known
correlations and dependencies among the variates (Figure 1).
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Matrix data is often analyzed for its latent semantics and
indexed for search using a matrix decomposition operation
known as the singular value decomposition (SVD), which
identifies a transformation which takes data, described in terms
of an m dimensional vector space, and maps them into a
vector space defined byk ≤ m orthogonal basis vectors (also
known as latent semantics) each with a score denoting its
contributions in the given data set. SVD and similar eigen-
decompositions can be used for extracting fingerprints of
multi-variate time series data [23]. The analogous analysis
operation on a tensor is known as tensor decomposition [22].
CP decomposes a tensor into a sum of rank-1 tensors. The
factor matrices are the combination of the vectors from the
rank-1 components. When the decompositions are constrained
to be non-negative, the non-zero elements of the core can
be considered as denoting clusters, where the factor matrices
denote the membership degrees of the elements to the clusters.
The Tucker decomposition on the other hand, decomposes a
tensor into a core tensor multiplied by a matrix along each
mode. Both matrix and tensor decomposition operations, as
well as other techniques, such as co-clustering are expensive;
therefore, in streaming scenarios, incremental matrix andten-
sor decomposition algorithms need to be employed.

Local Features of Uni-Variate Time Series. The major
deficiency of global features of time series is that they describe
the entire time series. Often, however, search or classification
tasks need to focus on features of the time series that are rather
localized. Noting that uni-variate time series often carrylocal-
ized temporal features which can be used for efficient search
and analysis, in our earlier work [6] we developed an sDTW
algorithm for extracting positions and robust (against various
types of noise) descriptors of salient local features of uni-
variate time series and showed that these can help align similar
time series more efficiently and effectively than alternative
schemes (Figure 2). Other local features of uni-variate time-
series include landmarks [25], perceptually important points
(PIP) [11], patterns [5], shapelets [27], [30], snippets [29], and
motif-based schemes (which search for frequently repeating
temporal patterns) [8], [10].
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Fig. 3. (a) A multi-variate time series data set, where each variate is plotted
as a row of gray scale pixels and sample multi-variate features identified on
the data set (each feature is marked with a different color).More specifically,
the figure shows 26 time series of length 150 and 5 local multi-variate features
on these time series: note that some of the features correspond to the onset
of a rise in amplitude, whereas other correspond to the drop in the series
amplitude. For each time series involved in a given multi-variate feature, we
plot the corresponding temporal scope (i.e., duration) of that feature. For each
feature, the time series marked with a “*” is the series on which that feature
is centered. Note that the set of the time series involved in agiven feature
as well as the position and scope of the feature are automatically detected by
the RMT feature extraction algorithm

Contributions of this Paper: Local Features of Multi-
Variate Time Series.As described above, existing approaches
to local feature extraction are mostly based on uni-variate
series, whereas most work on multi-variate data sets focus
on learning global relationships among the variates through
factorization and decomposition. In contrast, in this paper, we
develop algorithms to detect local,robust multi-variate tem-
poral (RMT) features of multi-variate time series (Figure 3).

As described above, the problem of extracting local features
from uni-variate series has already been solved [6]. Similar lo-
cal features has also been extracted from 2D images to support
indexing and object search (SIFT [24]). These techniques rely
on (a) repeatedly smoothing of the data to generate different
version of the input object corresponding to different scales
and (b) comparing neighboring points both in time (or inx and
y dimensions) and scale to identify regions where the gradients
are large. Once features are located, feature descriptors (in the
form of gradient histograms) are extracted to support indexing
and search.

What makes the problem of extracting local features
from multi-variate series, however, is that the con-
cepts ofneighborhood, gradient, andsmoothingare
not well-defined in the presence of multiple variates.

In this paper, we argue that
this difficulty can be overcome by leveraging meta-
data (known correlations and dependencies among
the variates in the time series) to define neighbor-
hoods, support data smoothing, and construct scale
spaces in which gradients can be measured.

In other words, the local,robust multi-variate temporal(RMT)
features we describe in this paper are optimized for support-
ing alignments of multi-variate time series leveraging known
correlations and dependencies among the variates (Figure 1).
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indexed for search using a matrix decomposition operation
known as the singular value decomposition (SVD), which
identifies a transformation which takes data, described in terms
of an m dimensional vector space, and maps them into a
vector space defined byk ≤ m orthogonal basis vectors (also
known as latent semantics) each with a score denoting its
contributions in the given data set. SVD and similar eigen-
decompositions can be used for extracting fingerprints of
multi-variate time series data [23]. The analogous analysis
operation on a tensor is known as tensor decomposition [22].
CP decomposes a tensor into a sum of rank-1 tensors. The
factor matrices are the combination of the vectors from the
rank-1 components. When the decompositions are constrained
to be non-negative, the non-zero elements of the core can
be considered as denoting clusters, where the factor matrices
denote the membership degrees of the elements to the clusters.
The Tucker decomposition on the other hand, decomposes a
tensor into a core tensor multiplied by a matrix along each
mode. Both matrix and tensor decomposition operations, as
well as other techniques, such as co-clustering are expensive;
therefore, in streaming scenarios, incremental matrix andten-
sor decomposition algorithms need to be employed.

Local Features of Uni-Variate Time Series. The major
deficiency of global features of time series is that they describe
the entire time series. Often, however, search or classification
tasks need to focus on features of the time series that are rather
localized. Noting that uni-variate time series often carrylocal-
ized temporal features which can be used for efficient search
and analysis, in our earlier work [6] we developed an sDTW
algorithm for extracting positions and robust (against various
types of noise) descriptors of salient local features of uni-
variate time series and showed that these can help align similar
time series more efficiently and effectively than alternative
schemes (Figure 2). Other local features of uni-variate time-
series include landmarks [25], perceptually important points
(PIP) [11], patterns [5], shapelets [27], [30], snippets [29], and
motif-based schemes (which search for frequently repeating
temporal patterns) [8], [10].
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Fig. 3. (a) A multi-variate time series data set, where each variate is plotted
as a row of gray scale pixels and sample multi-variate features identified on
the data set (each feature is marked with a different color).More specifically,
the figure shows 26 time series of length 150 and 5 local multi-variate features
on these time series: note that some of the features correspond to the onset
of a rise in amplitude, whereas other correspond to the drop in the series
amplitude. For each time series involved in a given multi-variate feature, we
plot the corresponding temporal scope (i.e., duration) of that feature. For each
feature, the time series marked with a “*” is the series on which that feature
is centered. Note that the set of the time series involved in agiven feature
as well as the position and scope of the feature are automatically detected by
the RMT feature extraction algorithm

Contributions of this Paper: Local Features of Multi-
Variate Time Series.As described above, existing approaches
to local feature extraction are mostly based on uni-variate
series, whereas most work on multi-variate data sets focus
on learning global relationships among the variates through
factorization and decomposition. In contrast, in this paper, we
develop algorithms to detect local,robust multi-variate tem-
poral (RMT) features of multi-variate time series (Figure 3).

As described above, the problem of extracting local features
from uni-variate series has already been solved [6]. Similar lo-
cal features has also been extracted from 2D images to support
indexing and object search (SIFT [24]). These techniques rely
on (a) repeatedly smoothing of the data to generate different
version of the input object corresponding to different scales
and (b) comparing neighboring points both in time (or inx and
y dimensions) and scale to identify regions where the gradients
are large. Once features are located, feature descriptors (in the
form of gradient histograms) are extracted to support indexing
and search.

What makes the problem of extracting local features
from multi-variate series, however, is that the con-
cepts ofneighborhood, gradient, andsmoothingare
not well-defined in the presence of multiple variates.

In this paper, we argue that
this difficulty can be overcome by leveraging meta-
data (known correlations and dependencies among
the variates in the time series) to define neighbor-
hoods, support data smoothing, and construct scale
spaces in which gradients can be measured.

In other words, the local,robust multi-variate temporal(RMT)
features we describe in this paper are optimized for support-
ing alignments of multi-variate time series leveraging known
correlations and dependencies among the variates (Figure 1).

(c) Feature alignments of the two uni-variate
time series

Figure 2.1: Uni-variate feature extraction using the sDTW algorithm [8] – in (b) and (c),
each time series is visualized as a row of pixels, where lighter colors correspond to larger
values.

Keypoint description:

In this step, the spatial distributions around each keypoint are sampled into a histogram. To

achieve orientation invariance, the 2D matrix around the keypoint is rotated to be normal-

ized against the dominant orientation and to eliminate impact of noise. A weight will be

assigned to each of the sample points by Gaussian weighting function. The closer a point

on which the gradient is measured to the keypoint, the larger is its weight.

SIFT algorithm for images has been proved highly effective, and can be used in

various applications: such as gesture recognition [44], video tracking [5], match moving

[25] and etc.

2.2 UNI Feature for Uni-Variate Time Series
UNI Feature Extraction Algorithm

Unlike images, which consist of n×m variables, uni-variate time series are represented as

1D vectors. To identify local scale invariance features from uni-variate time series, a UNI

feature extraction algorithm is proposed in sDTW[8]. The UNI algorithm, which forms the

core of the sDTW framework for efficient DTW distance computation [8], follows a similar
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approach to SIFT, but is optimized for 1D time series:

Step 1: Local extrema detection: Difference-of-Gaussian function is first created by iter-

atively smoothing the given time series to create different layers of detail and by taking

difference between the consecutive layers. Candidate keypoints are found by comparing a

given point with its neighbors in the resulting DoG space. Only local maxima and minima

points are treated as candidates and delivered to next step.

Let L(i,σ) be the smoothed time series through convolution with the Gaussian of a given

time series X ,

L(i,σ) = G(i,σ)∗X (i) = G(i,σ)∗ xi,

where,

G(i,σ) = (1/2πσ
2)e−(i

2)/2σ2
.

Through Gaussian smoothing, a given uni-variate time series can be presented with multi-

ple scales where Different of Gaussian (DoG) will be computed for discovering the largest

variation.

D(i,σ) = L(i,κσ)−L(i,σ) .

where D(i,σ) is the difference of Gaussian between nearby scale σ and kσ (k is a con-

stant multiplicative factor). Note that since uni-variate time series is one dimensional, only

8 neighbors are compared in this step. At this stage, non-useful keypoints are pruned by

considering the amount of details each feature captures.

Step 2: Keypoints descriptor: As the final step in SIFT algorithm, a local image descriptor

is computed for each keypoint obtained from previous steps. Unlike 2D image SIFT, UNI

feature descriptor is a vector of length 2a× c, where a is a user defined factor indicating

the size of neighborhood region centered around the time instant and c is the number of di-

rection bins. UNI feature descriptor is extracted by sampling neighborhood gradients into

c bins. Figure 2.1(b) shows an example.
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Figure 2.2: Example of scope boundary conflicts [8].

UNI Feature Alignment

sDTW[8] also proposed a way to leverage the UNI feature for comparing two given uni-

variate time series. In this approach, candidate feature matching pairs are generated by

choosing the best degree of matching (in terms of descriptor distance) feature in series B

for every feature in series A as shown in Figure 2.1(b). As we can see, this matching strat-

egy may identify conflicting matching pairs that need to be cleaned. sDTW[8] defines a

conflicting matching pair as a pair where the order of feature boundaries do not agree (Fig-

ure 2.2) and proposes a greedy algorithm to eliminate these conflicts:

Firstly, the algorithm computes a matching score, µcomb, representing the agree-

ment between two features of all candidate matching pairs. The algorithm then sorts the

matching pairs in descending order of scores and gather non-conflicting pairs of feature by

going down this list and pruning those pairs that conflict with any of the higher scoring

pairs. Figure 2.1(c) shows the maintained matching pairs after the matching pair search

process. As we can see, the most discriminating matching pairs are maintained and no

conflicts exist. Salient features for uni-variate time series can also be used in visualization

tasks. Figure 2.3 shows two local salient temporal feature-based visualization methods for

uni-variate time series [9]. Figure 2.3(a) shows a uni-variate time series data set that in-

cludes 50 series. Each column corresponds to one uni-variate time series, which is divided

into segments by UNI feature boundaries; for a selected feature (shown with a feature cen-

ter ”*” and two boundaries) in one uni-variate time series (highlighted in rectangular box),
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(a)
 

(b)

Figure 2.3: A sample of feature driven visualization for uni-variate time series (Gun data
set).

the best matching features in every other series are highlighted and shown in Figure 2.3(b).
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Chapter 3

RMT FEATURES

3.1 Inter-related Multi-variate Time Series Model

There are various multi-variate temporal data models, such as the multi-variate structural

time series model [22] and its variants, including the vector innovations structural time

series framework [15]. These models describe a multi-variate time series based on various

assumptions about its structure, including cyclicity, hysteresis, and known relationships

among variates. In order to maximize the general applicability of the RMT features de-

tection algorithms, in this section, we present an inter-related multi-variate time series

(IMTS) model which minimizes the assumptions that need to be made about the structure

of the data (Figure 1.2). In Chapter 7, we experimentally establish the effectiveness of this

simplified model in the context of RMT feature extraction.

Definition 1 (IMTS Data Model). An inter-related multi-variate time series (IMTS) data

set, Y = 〈Y (t),R〉, is a pair where Y (t) = 〈Y1(t), . . . ,Ym(t)〉 is a multi-variate time series

and R is a dependency/correlation matrix denoting the relationships among the individual

time series (variates) in the multi-variate data.

Example 1 (Example: Multi-variate Energy Time Series Data Sets). Smart building energy

management systems collect multi-variate temporal data and building models [26]:

• Observation time series: These include observations made at different sensors re-

garding the various energy-related parameters including temperature, heating, ven-

tilation, and air conditioning (HVAC) sensor data.

• Building models: These include the spatial geometry describing how different spaces

in the building relate to each other.

In the rest of the paper, we consider two different types of relationships among the

variates in Y :
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y1 y2 y3 y4 y5 y6 y7 y8

y1 .6 0 0 .4 0 0 0 0
y2 0 1 0 0 0 0 0 0
y3 0 .4 .5 0 0 0 .1 0
y4 0 0 0 1 0 0 0 0
y5 0 0 0 0 .8 .2 0 0
y6 .3 0 0 0 0 .7 0 0
y7 0 0 0 0 0 .1 .9 0
y8 .4 0 0 0 0 0 0 .6


(b) the corresponding relationship
matrix R directed

Figure 3.1: A sample relationship graph and the corresponding relationship matrix.

In this thesis, we consider two different types of relationships: among the variates

in Y :

Definition 2 (Variate Dependency Model). Under the variate dependency model, Y (t) can

be described as

Y (t) = RY (t−1)+E(t).

Here

• R is a (row-normalized) matrix defining how the values of Y at time t−1 impact the

values of Y at time t, and

• E is a time series denoting independent, external inputs on the time series.

More specifically, if ith row, jth column of R is non-zero, then the variate vi (i.e., the ith time

series) is impacted by the value of the variate, v j (i.e., the jth time series) at the previous

time instant.

Example 2 (Example: Multi-variate Motion Time Series Data Sets). The mocap markers

(Figure 3.2) are located on the human body and record the markers’ coordinate data. The
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Figure 3.2: Mocap markers’ locations on human body.

markers are inter-dependent on each other due to the inter-connectedness of muscles and

tendons, i.e. coordinate changes are observed at time t-1 on the right knee marker. There

is a great possibility that coordinate changes on the right foot marker will be observed at

time t. Such inter-dependent relations among markers can be described by a relationship

graph, which can be further represented by a relationship matrix.

Figure 3.1 visualizes the relationship graph of a multi-variate time series (with

8 inter-related variates) and the associated relationship matrix. This graph-based rep-

resentation is a common way of modeling temporal dynamics of multi-variate time se-

ries [17, 20, 22, 15].

Definition 3 (Variate Correlation Model). Under the variate correlation model, there exists

a matrix R such that R[i, j] = Φ(Yi,Yj) ∈ [0,1].

Here, Φ is an application specific similarity or correlation function. The value of

Φ(Yi,Yj) may be computed by comparing (recent) historical data of the time series Yi and Yj

or may reflect available domain knowledge, such as the distance of the sensors recording

the variates or known physical relationships between environmental parameters (such as

the amount of cooling and the temperature of a given building zone).

The algorithms presented in the paper are applicable under both relationship mod-
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els1 and we use the matrix R to denote both relationships. We also assume that R is known

and fixed; though as we discuss in Chapter 8, this requirement can, in practice, be relaxed.

3.2 RMT Feature Extraction Algorithm

In this paper, we propose an algorithm to extract robust multi-variate temporal (RMT)

features from inter-related multi-variate time series (IMTS) data sets. This approach has a

number of advantages: (a) First of all, the identified salient features are robust against noise

and common transformations, such as temporal shifts or dropped / missing uni-variate se-

ries. (b) Scale invariance enables the extracted salient features to be robust against varia-

tions in speed and enables multi-resolution searches. (c) Also, the temporal and relationship

scales at which a multi-variate feature is located give an indication about the scope (both in

terms of duration and the number of variates involved) of the multi-variate feature.

Since the RMT features can be of different lengths and may cover different num-

ber of variates, in order to be able locate features of different sizes, the RMT features are

extracted from a scale-space we construct for the given multi-variate time series through

iterative smoothing2. Intuitively, smoothing of the multi-variate data in time and variates

create different resolution versions of the input data and, thus, help identify features with

different amount of details both in time and in terms of the number of variates involved

(Figure 3.3).

While iterative smoothing techniques are well understood for uni-variate data [8]

[42], this is not the case for multi-variate time series. Therefore, before we describe the

RMT feature identification and extraction processes, we first propose a novel approach

to smoothing a multi-variate time series by leveraging available metadata that describes

known relationships among variates.
1Thus, without loss of generality, we sometimes focus on the dependency model and, other times, use

the correlation model.
2This is different from what is known as “multi-variate exponential smoothing”, a forecasting technique

where the multi-variate models include the so-called “smoothing parameters” and these are learned to obtain
models with a better fit to the data [15].
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(a) multi-variate time series and the associ-
ated metadata (relationship graph)

(b) lower resolution view of the same data

Fig. 5. (a) A multi-variate time series and the associated relationship graph;
(b) lower-resolution view of the same data (in terms of both time and variates)

t-3 t-2 t-1 t t+1 t+2 t+3

Fig. 6. Gaussian smoothing (along time) for time instant, t

features of different sizes, the RMT features are extracted
from a scale-space we construct for the given multi-variate
time series through iterative smoothing2. Intuitively, smoothing
of the multi-variate data in time and variates create different
resolution versions of the input data and, thus, help identify
features with different amount of details both in time and in
terms of the number of variates involved (Figure 5).
While iterative smoothing techniques are well understood

for uni-variate data [4], [25], this is not the case for multi-
variate time series. Therefore, before we describe the RMT
feature identification and extraction processes, we first propose
a novel approach to smoothing a multi-variate time series by
leveraging available metadata that describes known relation-
ships among variates.

A. Metadata Driven Smoothing of a Multi-Variate Time Series

Let Y be a multi-variate time series. The scale-space of
Y is obtained through iterative smoothing across both time
and variate relationships, starting with an initial smoothing pa-
rameter Σ0 = 〈σtime,0, σrel,0〉 and continuing for L iteration
layers obtaining differently smoothed versions of the given
multi-variate time series. The values of Σ0 and L control the
sizes of the smallest and largest features sought in the data (as
described in Section III-E1).
1) Temporal Smoothing: Let Yi(t, σ) = G(t, σ) ∗ Yi(t)

indicate a version of the uni-variate time series, Yi, smoothed

2This is different from what is known as “multi-variate exponential smooth-
ing”, a forecasting technique where the multi-variate models include the so-
called “smoothing parameters” and these are learned to obtain models with a
better fit to the data [10].
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(b) N(−1,R)
Fig. 7. A sample distance function N, with distance j = 1 and −1.
corresponding to the time series and the dependency graph in Figure 5

with parameter σ, where ∗ is the convolution operation in t
and G(t, σ) is the Gaussian function (Figure 6). Given this,
Y(t, σ) = 〈Y1(t, σ), . . . ,Ym(t, σ)〉 is a version of the multi-
variate time series, Y , where each uni-variate time series is
smoothed independently of the rest.
2) Relationship Smoothing: As described above, the tempo-

ral smoothing process relies on a convolution operation that
leverages the temporal ordering of the time instants in the
series. We define the relationship smoothing function relying
on an analogous relationship ordering of the variates, described
through a relationship distance function N:

Definition 4 (Relationship Distance Function, N). Let R be
a matrix describing a given dependency/correlation graph.
The ordering among the variates is described through the
relationship distance function, N, where

• N(j,R), for j ≥ 0, is an m ×m {0, 1}-valued matrix,
where for a given variate vi in the relationship graph,R,
the ith row in the matrix, N(j,R) = 1 only for variates
that have relationship distance j from the variate vi, and

• N(j,R), for j < 0, is an m ×m {0, 1}-valued matrix,
where for a given variate vi, the ith column in the matrix,
N(j,R) = 1 only for variates that have relationship
distance j on the inverted relationship graph, where all
relationship edges are inverted (i.e., R is transposed). �

Intuitively, the cell [v1, v2] of the matrix N(j,R) is true if the
variate v2 is within j hopes from v1. When j is positive the
hope distance is measured following outgoing edges, whereas
when j is negative, incoming edges are followed.
Common applicable definitions of relationship distance in-

clude the hop distance (determined by the shortest distance
between the nodes on the given graph) or hitting distance [7].
The matrix N(j,R) can also be defined as Rj

n, where Rn

is the relationship matrix R where all the diagonal values
are set to 0 and non-zero values are set to 1. N(1,R), and
N(−1,R)for the relationship matrix in Figure 4 is presented
in Figure 7.
Given a relationship distance function, we can introduce the
concept of (non-normalized) relationship smoothing function
as follows:

Definition 5 ( Relationship Smoothing Function). Let

• R be an m×m matrix of relationships,
• σ be a smoothing parameter, and
• X = 〈X1, . . . , Xm〉 be an m-vector.

If R corresponds to a directed graph, then the (non-
normalized) relationship smoothing function, Snn(R, σ,X),

(a) multi-variate time series and the as-
sociated metadata (relationship graph)
(a) multi-variate time series and the associ-
ated metadata (relationship graph)

(b) lower resolution view of the same data

Fig. 5. (a) A multi-variate time series and the associated relationship graph;
(b) lower-resolution view of the same data (in terms of both time and variates)

t-3 t-2 t-1 t t+1 t+2 t+3

Fig. 6. Gaussian smoothing (along time) for time instant, t

features of different sizes, the RMT features are extracted
from a scale-space we construct for the given multi-variate
time series through iterative smoothing2. Intuitively, smoothing
of the multi-variate data in time and variates create different
resolution versions of the input data and, thus, help identify
features with different amount of details both in time and in
terms of the number of variates involved (Figure 5).
While iterative smoothing techniques are well understood

for uni-variate data [4], [25], this is not the case for multi-
variate time series. Therefore, before we describe the RMT
feature identification and extraction processes, we first propose
a novel approach to smoothing a multi-variate time series by
leveraging available metadata that describes known relation-
ships among variates.

A. Metadata Driven Smoothing of a Multi-Variate Time Series

Let Y be a multi-variate time series. The scale-space of
Y is obtained through iterative smoothing across both time
and variate relationships, starting with an initial smoothing pa-
rameter Σ0 = 〈σtime,0, σrel,0〉 and continuing for L iteration
layers obtaining differently smoothed versions of the given
multi-variate time series. The values of Σ0 and L control the
sizes of the smallest and largest features sought in the data (as
described in Section III-E1).
1) Temporal Smoothing: Let Yi(t, σ) = G(t, σ) ∗ Yi(t)

indicate a version of the uni-variate time series, Yi, smoothed

2This is different from what is known as “multi-variate exponential smooth-
ing”, a forecasting technique where the multi-variate models include the so-
called “smoothing parameters” and these are learned to obtain models with a
better fit to the data [10].
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Fig. 7. A sample distance function N, with distance j = 1 and −1.
corresponding to the time series and the dependency graph in Figure 5

with parameter σ, where ∗ is the convolution operation in t
and G(t, σ) is the Gaussian function (Figure 6). Given this,
Y(t, σ) = 〈Y1(t, σ), . . . ,Ym(t, σ)〉 is a version of the multi-
variate time series, Y , where each uni-variate time series is
smoothed independently of the rest.
2) Relationship Smoothing: As described above, the tempo-

ral smoothing process relies on a convolution operation that
leverages the temporal ordering of the time instants in the
series. We define the relationship smoothing function relying
on an analogous relationship ordering of the variates, described
through a relationship distance function N:

Definition 4 (Relationship Distance Function, N). Let R be
a matrix describing a given dependency/correlation graph.
The ordering among the variates is described through the
relationship distance function, N, where

• N(j,R), for j ≥ 0, is an m ×m {0, 1}-valued matrix,
where for a given variate vi in the relationship graph,R,
the ith row in the matrix, N(j,R) = 1 only for variates
that have relationship distance j from the variate vi, and

• N(j,R), for j < 0, is an m ×m {0, 1}-valued matrix,
where for a given variate vi, the ith column in the matrix,
N(j,R) = 1 only for variates that have relationship
distance j on the inverted relationship graph, where all
relationship edges are inverted (i.e., R is transposed). �

Intuitively, the cell [v1, v2] of the matrix N(j,R) is true if the
variate v2 is within j hopes from v1. When j is positive the
hope distance is measured following outgoing edges, whereas
when j is negative, incoming edges are followed.
Common applicable definitions of relationship distance in-

clude the hop distance (determined by the shortest distance
between the nodes on the given graph) or hitting distance [7].
The matrix N(j,R) can also be defined as Rj

n, where Rn

is the relationship matrix R where all the diagonal values
are set to 0 and non-zero values are set to 1. N(1,R), and
N(−1,R)for the relationship matrix in Figure 4 is presented
in Figure 7.
Given a relationship distance function, we can introduce the
concept of (non-normalized) relationship smoothing function
as follows:

Definition 5 ( Relationship Smoothing Function). Let

• R be an m×m matrix of relationships,
• σ be a smoothing parameter, and
• X = 〈X1, . . . , Xm〉 be an m-vector.

If R corresponds to a directed graph, then the (non-
normalized) relationship smoothing function, Snn(R, σ,X),

(b) lower resolution view of the same data

Figure 3.3: (a) A multi-variate time series and the associated relationship graph; (b) lower-
resolution view of the same data (in terms of both time and variates).

Metadata Driven Smoothing of a Multi-Variate Time Series

Let Y be a multi-variate time series. The scale-space of Y is obtained through iterative

smoothing across both time and variate relationships, starting with an initial smoothing

parameter Σ0 = 〈σtime,0,σrel,0〉 and continuing for L iteration layers obtaining differently

smoothed versions of the given multi-variate time series. The values of Σ0 and L control

the sizes of the smallest and largest features sought in the data (as described in Section 3.2).

Temporal Smoothing

Let Yi(t,σ) indicate a version of the uni-variate time series, Yi, smoothed with parameter

σ :

Yi(t,σ) = G(t,σ)∗Yi(t),

where ∗ is the convolution operation in t and G(t,σtime) is the Gaussian function:

G(t,σ) =
1√

2πσ
e
−t2

2σ2 .
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Figure 3.4: Gaussian smoothing in temporal of uni-variate time series yi at time instant, t.

As visualized in (Figure 3.4). Each element in the multi-variate time series is

smoothed in temporal by its neighbors in the same variate. We denote

Y(t,σ) = 〈Y1(t,σ), . . . ,Ym(t,σ)〉 is a version of the multi-variate time series, where each

uni-variate time series is smoothed independently of the rest..

Relationship Smoothing

As described above, the temporal smoothing process relies on a convolution operation that

leverages the temporal ordering of the time instants in the series. We define the relationship

smoothing function relying on an analogous relationship ordering of the variates, described

through a relationship distance function N:

Definition 4 (Relationship Distance Function, N). Let R be a matrix describing a given

dependency/correlation graph. The relationship ordering between the variates is described

through the relationship distance function, N, where

• N( j,R), for j ≥ 0, is an

m×m {0,1}-valued matrix, where for a given variate vi in the relationship graph,

R, the ith row in the matrix, N( j,R) = 1

only for variates that have relationship distance j from the variate vi, and

• N( j,R), for j < 0, is an m×m {0,1}-valued matrix, where for a given variate vi, the

ith column in the matrix, N( j,R) = 1 only for variates that have relationship distance

j on the inverted relationship graph, where all relationship edges are inverted (i.e.,

R is transposed).
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(b) N(−1,R)

Figure 3.5: A sample distance function N, with distance j = 1 and −1. corresponding to
the time series and the dependency graph in Figure 3.1 (a).

Intuitively, the cell [v1,v2] of the matrix N( j,R) is true if the variate v2 is within j hopes

from v1. When j is positive the hope distance is measured following outgoing edges,

whereas when j is negative, incoming edges are followed.

Common applicable definitions of relationship distance include the hop distance

(determined by the shortest distance between the nodes on the given graph) or hitting dis-

tance [13]. The matrix N( j,R) can also be defined as R j
n, where Rn is the relationship ma-

trix R where all the diagonal values are set to 0 and non-zero values are set to 1. N(1,R),

and N(−1,R)for the relationship matrix in Figure 3.1 (b) is presented in Figure 3.5.

Given a relationship distance function, we can introduce the concept of (non-normalized)

relationship smoothing function as follows:

Definition 5 ( Relationship Smoothing Function). Let

• R be an m×m matrix of relationships,

• σ be a smoothing parameter, and

• X = 〈X1, . . . ,Xm〉 be an m-vector.

If R corresponds to a directed graph, then the (non-normalized) relationship smoothing
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function, Snn(R,σ ,X), is defined as

Snn(R,σrel,X) = G(0,σrel)IX +
∞

∑
j=1

G( j,σrel)N( j,R)X

+
∞

∑
j=1

G( j,σrel)N(− j,R)X .

If R corresponds to an un-directed graph, on the other hand, the forward and backward

neighborhoods are symmetric:

Snn(R,σ ,X) = G(0,σ)IX +
∞

∑
j=1

2G( j,σ)N( j,R)X .

The following example visualizes relationship smoothing:

Example 3. Figure 3.6 shows how we apply Gaussian smoothing over a relationship graph

in Figure 3.1. The lower half of the figure shows a node a and its forward and backward

k-hop neighbors in the relationship graph. As shown in the upper half of the figure, when

identifying the contributions of the nodes on a, Gaussian smoothing is applied along the

hop distance. Since at a given hop distance there may be more than one node, all the nodes

at the same distance have the same degree of contribution and the degree of contribution

gets progressively smaller as we get further away from the node for which the smoothing is

performed.

Note that the non-normalized smoothing function (for the directional relationship

graph) can be equivalently formulated as

Snn(R,σ ,X) = Snn(R,σ)X ,

where the term Snn(R,σ) can be computed in advance to speed-up the computation of

Snn(R,σ ,X) for different time series vectors, X . Moreover, since G( j,σ) approaches to 0

quickly as j increases, the term Snn(R,σ) can be approximated efficiently by performing

the infinite summations only a finite number, r, of times based on σ (see Section 3.2 for

the relationship of r and σ ).
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Figure 3.6: Gaussian smoothing along relationship of directed graph in Figure 3.1, for node
y6.

Remember from Figure 3.6, however, that, unlike basic Gaussian smoothing, during

(non-normalized) relationship smoothing, there may be more than one node at the same

distance and all such nodes have the same degree of contribution. As a consequence, the

sum of all contributions may exceed 1.0, which means that the smoothing process may

undesirably scale the time series. To avoid this, we need a smoothing function, S(R,σ),

where the total contribution of all the nodes is normalized back down to 1.0:

Definition 6 ((Normalized) Relationship Smoothing Function). Let R, σ , and X be defined

as before. The (normalized) relationship smoothing function, S(R,σ ,X), is defined as

S(R,σrel,X) =
(

Snn(R,σrel)X
)
÷
(

Snn(R,σrel)1(m)

)
,

where

• Snn(R,σrel) is the non-normalized relationship smoothing function corresponding to

R and σ ,

• 1(m) is an m-vector where all values are 1, and

• “÷” is a binary vector operation which applies a pairwise division operation across

the elements of two vectors; i.e., if C = A÷B, then ∀i C[i] = A[i]/B[i].
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Intuitively, division scales down the contributions for each row in such a way that

the total contributions, at most, add up to 1.0.

Combined TR-Smoothing

We can define time/relationship smoothing (TR-smoothing) of multi-variate time series

based on the previous concept of temporal/relationship smoothing functions:

Definition 7 (TR-Smoothing of a Multi-Variate Time Series). Let Y (t) = 〈Y1(t), . . . ,Ym(t)〉

be a multi-variate time series and R be the corresponding dependency/correlation matrix.

Let also S(R,σrel) be the relationship smoothing function corresponding to the matrix R.

For a given smoothing parameter, Σ = 〈σtime,σrel〉, the TR-smoothed version, Y(t,Σ), of

the multi-variate time series Y (t) is defined as

Y(t,Σ) = S(R,σrel)∗Y(t,σtime),

where, as described earlier, Y(t,σtime) is a version of the multi-variate time series, Y ,

where each uni-variate time series is smoothed independently of the rest. More specif-

ically, let Yt(z,Σ) denote the version of Y, where at each time instance, t, the values

〈Y1(t,σtime), . . . ,Ym(t,σtime)〉 are further smoothed across the relationship space defined

by R using parameter σrel:

Yt(z,Σ) = S(R,σrel,Yz(t,σtime)).

Then Y(t,Σ) = {Y1(t,Σ), . . . ,Ym(t,Σ)} is the multi-variate time series, where the uni-

variate time series, Yi(t,Σ), corresponding to the ith variate is a length n smoothed se-

quence,

Y1(i,Σ); . . . ;Yn(i,Σ),

where the value, Yt(i,Σ) at time instant t ∈ {1, . . . ,n}, is smoothed both in time (in the tem-

poral neighborhood of time instant t) and across relationships (in the relationship neigh-

borhood of the ith variate).
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Multi-Variate Scale Space Construction

The first step in identifying multi-variate features is to generate a scale-space representing

versions of the given multi-variate series with different amounts of details. In particular,

building on the observation that robust localized features are often located where the dif-

ferences between neighboring regions (also in different scales [39] [8]) are large, we seek

RMT features of the given multi-variate time series at the extrema of the scale space de-

fined by the difference-of-the-Gaussian (DoG) series.

More specifically, given a multi-variate time series, Y = 〈Y1(t), . . . ,Ym(t)〉, and the

dependency/correlation matrix, R, we compute the difference-of-the-Gaussian (DoG) se-

ries, D, from the differences of two nearby scales separated by a multiplicative factor,

κ = 〈ktime,krel〉:

Di(t,σ) = Yi(t,κΣ)−Yi(t,Σ),

where, for a given Σ = 〈σtime,σrel〉,

κΣ = 〈ktimeσtime,krelσrel〉.

This repeated smoothing processes for generating the scale-space also produces

data needed for obtaining descriptors for features identified at different scales (see Sec-

tion 3.2).

Computation of DoG

Let Σ0 = 〈σtime,0,σrel,0〉 be the user provided initial (combined) smoothing parameter and

let s = 〈stime,srel〉 be a user provided parameter regulating the speed with which time and

variate relationships are smoothed. The multi-variate time series is incrementally smoothed

(both in time and relationships) starting from the given smoothing parameter Σ0, multi-

plied at each iteration with κ = 〈ktime,krel〉, where ktime = 21/stime and krel = 21/srel . As

a result, each sequence of stime smoothed-time series corresponds to a doubling of σtime,

also referred to as an “octave” (Figure 3.7); or equivalently to halving of temporal details.
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Figure 3.7: Creation of the scale-space and DoG.

Similarly, each sequence of srel smoothed-time series corresponds to a doubling of σrel and

halving of the details across the variates and relationships. The process continues l steps

resulting in l layers in the underlying DoG scale-space. Adjacent multi-variate time series

are, then, subtracted to obtain the final difference-of-Gaussian (DoG) series.

Optimizations

Note that, as the multi-variate time series are smoothed, details are lost. As a result, main-

taining and using the original length of the time series may be wasteful: instead, it may

be more efficient to reduce the length of the time series in a way that matches the amount

of details lost during the smoothing process. Thus, as in [39] for images and [8] for uni-

variate time series, we reduce the data resolution to match the loss in details. But, unlike

prior work, we leverage the relationship graph to improve the effectiveness of the reduction

process for the multi-variate time series.

Temporal Reduction.
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Figure 3.8: Reductions in temporal and relationship resolutions to match the detail losses
due to smoothing.

As we can see in Figure 3.7, to produce an octave of DoG series, (not counting the very

first time series smoothed with parameter σ0), we need to consider stime +1 progressively

smoothed time series. Moreover, as also seen in the figure, since the scale-space extrema

detection involves comparison of each DoG series to the DoG series that come immediately

before and immediately after, we need to consider stime+2 smoothed time series (including

one DoG series before and one DoG series after) to fully cover an octave of DoG series. For

example, in Figure 3.7, given the initial time series smoothed with parameter σ0, s+2 series

with smoothing parameters, kσ0 through k2(2σ0) (or equivalently, ks+2σ0), are needed to

generate the difference of Gaussians series D0 through Ds+1 that covers the first octave.

Let Z(t) be the first multi-variate series of a new octave (i.e., (stime + 1)st series

from the beginning of the previous octave). To reduce the amount of work, we reduce the

size of Z(t), by resampling it, taking every second time instant of each Zi(t) ∈ Z(t); i.e.,

∀1≤t≤blength(Zi)/2cZ′i(t) = Zi(2t). The resulting multi-variate series Z′(t) is then used as the

input to the subsequent octave.

Example 4. As visualized in Figure 3.8(a), a smoothed multi-variate time series data set

with 4 variates is presented on the upper level. To reduce it’s size without losing details,

we resample by taking every other time instance. The new multi-variate time series (on the

lower level), which contains 4 variates that are half the size of the upper one, is used as the

input to the subsequent octave.
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Variate/Relationship Reduction.

Since the multi-variate data is smoothed both in time and relationships, temporal only

reduction would maintain more information than necessary and would potentially waste

space and processing time. Variate/relationship reduction reduces resolution in relation-

ship graph and, thus, prevents this waste.

Let Z(t) = 〈Z1(t), . . . ,Zz(t)〉 be the first series of a new octave, where z is the current

number of variates, and Rcur be the current relationship matrix. To reduce the amount of

work, Z is reduced along the relationships as follows:

Let C = {C1, . . . ,Cbz/2c} be a clustering3 of the variates in the relationship graph.

We reduce Z according to C as follows:

∀Zi ∈ Z ∀1≤t≤length(Zi)Z
′
i(t) = AV G

j∈Ci

(
Z j(t)

)
.

The relationship matrix is also reduced according to C :

∀1≤i≤bz/2c∀1≤h≤bz/2cR′[i,h] =
∑ j∈Ci;u∈Ch

(Rcur[ j,u])
‖Ch‖

.

The resulting reduced multi-variate time series, Z′, and relationship graph, R′, are then

used as inputs to the next octave.

Example 5. The Variate/relationship reduction process is visualized in Figure 3.8(b). A

smoothed multi-variate time series data set with 4 variates and its variate relationship

graph are presented on the upper level. To reduce its size along relationship, we divide

the variates into 2 clusters based on the relationship graph and combine the uni-variate

time series in the same cluster. In this case, we combine series 1 and series 2; series 3 and

series 4 to form the new multi-variate time series, which contains 2 variates and has the

same temporal length as original. The new series, on the lower level, is treated as the input

to the next octave.

3 C can be obtained either operating directly on the relationship graph and applying a clustering algo-
rithm, such as k-means, or by leveraging domain knowledge (such as reducing the resolution of the space in
which sensors are distributed).
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Figure 3.9: Asynchronous reduction of time and variates / relationships.

Asynchronous Reductions

As shown in Figure 3.9, time reduction and variate/relationship reduction steps and itera-

tions are carried out asynchronously. In this example, stime is smaller than srel , indicating

that the multi-variate data set is smoothed faster along time than along the relationships.

This might for example be when the length of the time series is much longer than the di-

ameter of the variate relationship graph.

In cases where stime = srel or when, by coincidence, the temporal and variate / rela-

tionship reductions overlap in the same iteration, without loss of generality, we first apply

temporal reduction on the given time series, followed by the relationship reduction.

Note that the octaves are achieved by determining the reduction factor in regards to

time or relationship. When the DoG series in a single octave is less than 3, we treat it as

inefficient because, as we will discuss in the next section, at least 3 DoG layers are needed

for searching feature candidates.

Identify RMT Feature Candidates

In order to detect RMT feature candidates using the difference-of-Gaussians (DoG) multi-

variate series, D, the value of D for each 〈i, t,Σ〉 triple is compared to its neighbors (both

in time and relationships) in the same scale as well as the scales above and below Σ and

triple, 〈i, t,Σ〉, is selected as a candidate only if it is an extremum; i.e., it is larger or smaller
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Figure 3.10: 26 neighbors of a triple 〈i, t,Σ〉 (in time, relationship and scale).

than all of them. More specifically, whether the given 〈i, t,Σ〉 triple is a local maximum is

identified by comparing Di(t,Σ) against max neighbor(i, t,Σ), defined as the maximum of

the 26 neighboring triples of 〈i, t,Σ〉 in time, scale, and relationships4 shown on Figure 3.10:

max



Di(t−1,Σ/κ) Di(t−1,Σ) Di(t−1,κΣ)

Di(t,Σ/κ) Di(t,κΣ)

Di(t +1,Σ/κ) Di(t +1,Σ) Di(t +1,κΣ)

H [i, t−1,Σ/κ] H [i, t−1,Σ] H [i, t−1,κΣ]

H [i, t,Σ/κ] H [i, t,Σ] H [i, t,Σ/κ]

H [i, t +1,Σ/κ] H [i, t +1,Σ] H [i, t +1,κΣ]

H ′[i, t−1,Σ/κ] H ′[i, t−1,Σ] H ′[i, t−1,κΣ]

H ′[i, t,Σ/κ] H ′[i, t,Σ] H ′[i, t,Σ/κ]

H ′[i, t +1,Σ/κ] H ′[i, t +1,Σ] H ′[i, t +1,κΣ]



,

where the term Σ/κ is defined as

Σ/κ =

〈
σtime

ktime
,
σrel

krel

〉
.

4The number of neighboring triples may be less than 26 if the triple is at the boundary in terms of time,
scale, or relationship graph.
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F =



y1 y2 y3 y4 y5 y6 y7 y8

y1 0 0 0 1 0 0 0 0
y2 0 0 0 0 0 0 0 0
y3 0 0.8 0 0 0 0 0.2 0
y4 0 0 0 0 0 0 0 0
y5 0 0 0 0 0 1 0 0
y6 1 0 0 0 0 0 0 0
y7 0 0 0 0 0 1 0 0
y8 1 0 0 0 0 0 0 0


(a) F matrix obtained from R in Figure 3.1

B =



y1 y2 y3 y4 y5 y6 y7 y8

y1 0 0 0 0 0 0.5 0 0.5
y2 0 0 1 0 0 0 0 0
y3 0 0 0 0 0 0 0 0
y4 1 0 0 0 0 0 0 0
y5 0 0 0 0 0 0 0 0
y6 0 0 0 0 2/3 0 1/3 0
y7 0 0 1 0 0 0 0 0
y8 0 0 0 0 0 0 0 0


(b) B matrix obtained from R in Figure 3.1

Figure 3.11: F and B matrices corresponding to R in Figure 3.1.

and the terms, H [i, t,Σ] and H ′[i, t,Σ], denote the values of the forward and backward re-

lationship neighbors of the triple respectively (in an undirected graph, H ′=H ). H [i, t,Σ]

is defined as

H [i, t,Σ] = (FD(t,Σ)) [i].

Here F = row normalize(R− diag(R)), accumulates the contributions of all forward re-

lated variates. Note that, unlike R which also encodes the self-dependency of the variates,

F, encodes only forward relationships across variates. Moreover, the contributions of the

variates with forward relationships are normalized to 1.0 (compare Figure 3.1(a) vs. Fig-

ure 3.11(a)).

The term H ′[i, t,Σ] is defined similarly,

H ′[i, t,Σ] = (BD(t,Σ)) [i],

using backward relationships; B = row normalize(FT ), accumulates the (normalized) con-

tributions of all backward related variates. Again, unlike R which also encodes the self-
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(a) a poorly localized feature (b) a better localized feature

Figure 3.12: (a) A poorly localized feature has a large principal curvature, but a small one
in perpendicular direction, whereas (b) for a well localized feature, both curvatures are
large.

dependency of the variates, B, encodes only backward relationships across variates (com-

pare Figure 3.1 (a) and Figure 3.11 (b)). The term min neighbor(i, t,Σ) is defined similarly

(using the min function instead of max) for identifying the local mimima. The triple 〈i, t,Σ〉

is selected as a candidate if Di(t,Σ) is larger than max neighbor(i, t,Σ) or it is less than

min neighbor(i, t,Σ).

Eliminating Poor Feature Candidates

Local extrema of DoG can include candidate triples that are poorly localized and the well-

localized candidates can be identified by considering the ratio of the eigenvalues of the

2× 2 Hessian matrix, describing the local curvature of the scale-space in terms of the

second-order partial derivatives [24, 39]. As shown on Figure 3.12, a poorly defined peek

in the difference-in-Gaussians will have a large principal curvature in the scale space in

one direction, but a small one in the perpendicular direction. To apply this observation

to the problem of identifying poorly localized features in multi-variate time series, we

construct the 2×2 time/relationships Hessian matrix, DT R
i,t,Σ, on a given point 〈i, t,Σ〉 at the

corresponding scale Σ:

DT R
i,t,Σ =

DT,T DT,R

DR,T DR,R

 ,
where

• DT,T = DT DT is the second derivate along time at the location and scale of 〈i, t,Σ〉,
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• DR,R = DRDR is the second derivative along “relationships” at the location and scale

of 〈i, t,Σ〉,

• DT,R = DT DR is the partial derivative along time of the partial derivate along rela-

tionships (at the location and scale of 〈i, t,Σ〉), and

• DR,T = DRDT is the partial derivative along relationships of the partial derivate along

time (at the location and scale of 〈i, t,Σ〉).

To construct this time/relationships Hessian matrix, we estimate the derivatives along time

and relationships by taking differences of neighboring sample points:

DT (i, t,Σ) = Yi(t +1,Σ)−Yi(t−1,Σ),

DR(i, t,Σ) =



(
FY(t,Σ)

)
[i]−

(
BY(t,Σ)

)
[i]

for directed relationships

(
FY(t,Σ)

)
[i]−Yi(t,Σ)

for undirected relationships

Note that if, to save work, time series are reduced at each octave as described in Section 3.2,

we use the reduced time series and relationship matrices instead.

Once this Hessian matrix, DT R
i,t,Σ, is constructed for the triple 〈i, t,Σ〉, whether the

triple is poorly localized can be checked using eigenvalue-based techniques [24, 39].

Extracting RMT Features

Given a triple 〈i, t,Σ〉 identified in the previous steps, the corresponding feature descriptor

is created by considering the gradients around the feature in the scale space.

Scope of an RMT Feature

Each multi-variate feature, 〈i, t,Σ〉, has an associated scope, defined by the scale, Σ, in

which it is identified. More specifically, for a given Σ = 〈σtime,σrel〉, the radii along time
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(a) Feature scope in time
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(b) Feature scope in variates
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(c) Scope of an RMT feature

Figure 3.13: Scope of an RMT feature: feature center is highlighted in orange.

and scope are 3σtime and 3σrel , respectively, since, under Gaussian smoothing, 3 standard

deviations would cover ∼ 99.73% of the original observations that have contributed to the

identified feature. Intuitively, the larger the scale, the bigger the feature scope.

This means that the four parameters, σtemp,0, σrel,0, ktime, and krel , can be used for

controlling the sizes of the smallest and largest features (in time and relationship spaces)

identified in the data. In particular, given a scale-space generation process with L iterations

layers,

• the smallest radius of any feature will be 3× σtime,0 in time and 3× σrel,0 in the

relationship space, and

• the largest feature radius will be

– 3×σtime,0× kL
time (∼ 3×σtime,0×2

⌊
L

stime

⌋
) in time and

– 3×σrel,0× kL
rel (∼ 3×σrel,0×2

⌊
L

srel

⌋
) in the relationship space.

The identified feature triple, 〈i, t,Σ〉, will form the center of the feature both in time and
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in relationship. Naturally, as we have seen in Section 3.2, observations closer in time and

relationships to the triple will have significantly larger contributions to the feature than

the points closer to the boundaries of the scope. Figure 3.2 (a) highlights a sample RMT

feature (marked in orange) and its scope in time (highlighted in red). As we discussed, the

majority temporal neighbors (more than 99%) that contribute to the feature will be covered.

Similarly, as shown in Figure 3.2 (b), the neighbors along relationship that contribute to the

feature are also highlighted. Figure 3.2 (c) highlights the scope of a given RMT feature

along time and relationship. Note that the RMT feature descriptor, as we will introduce in

next section, will also cover the entire highlighted region.

RMT Feature Descriptor

To describe the RMT features in a form that is indexable and searchable, we rely on high-

dimensional gradient histograms.

Gradient Histograms If the input data object were a 2D matrix (such as an image), a gra-

dient histogram around given point 〈x,y〉 on the matrix could be constructed by computing

a gradient for each element in the neighborhood of the point [39]; to give less emphasis

to gradients that are far from the point 〈x,y〉, a Gaussian weighting function is often used

to reduce the magnitude of elements further from 〈x,y〉. The resulting gradients are then

quantized into c orientations. Finally a 2a×2b grid is superimposed on the neighborhood

region centered around the point and the gradients for the elements that fall into each cell

are aggregated into a c-bin gradient histogram. This process leads to a feature descriptor

vector of length 2a× 2b× c. In the case of multi-variate time series, however, we cannot

directly apply these techniques. Instead, we first need to construct an extractor matrix to

enable the gradient extraction process.

Extractor Matrix To identify gradients across time and relationships, we construct a

2N×2M matrix Wi,t,Σ:
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Definition 8 (Extractor Matrix). Let Y = 〈Y1(t), . . . ,Ym(t)〉 be a multi-variate time series

and R be a matrix describing how the variates relate each other. Let us be given a triple

〈i, t,Σ〉 and let Yi be the time series Yi,Σ at scale Σ; then,

• if the relationship graph is directed, then for all −N < u≤ N and −M < v≤M

Wi,t,Σ[u,v] =


if v > 0

(
FvYi,Σ

)
[t +u]

if v = 0 Yi,Σ(t +u)

if v < 0
(

BvYi,Σ

)
[t +u]

• if the relationship graph is undirected, then for all −N < u≤ N and 0≤ v≤M

Wi,t,Σ[u,v] =

 if v > 0
(

FvYi,Σ

)
[t +u]

if v = 0 Yi,Σ(t +u).

The values of N and M should be selected to roughly cover the scope of the feature;

i.e., N ∼ 3σtime and M ∼ 3σrel .

Descriptor Extraction Given this extractor matrix, Wi,t,Σ, the feature descriptor is cre-

ated as a c-directional gradient histogram of this matrix, sampling the gradient magnitudes

around the salient point using a 2a× 2b grid (or 2a× b grid for undirected relationship

graphs) superimposed on the matrix, Wi,t,Σ. To give less emphasis to gradients that are

far from the point 〈i, t〉, a Gaussian weighting function is used to reduce the magnitude of

elements further from 〈i, t〉.

This process leads to a feature descriptor vector of length 2a×2b×c (or 2a×b×c

for undirected graphs). The descriptor size must be selected in a way that reflects the

temporal characteristics of the time series; if a multi-variate time series contains many

similar features, it might be more advantageous to use large descriptors that can better

discriminate.
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3.3 RMT Feature Set of a Time Series

Given the above, the salient features of an IMTS multi-variate time series Y = 〈Y (t),R〉 is

defined as a set, F , of RMT features, where each feature, f ∈F , extracted from Y (t), is a

pair of the form, f = 〈position,descriptor〉:

• position = 〈i, t,Σ〉 is a triple denoting the position of the feature in the multi-variate

time series, where i is the index of the uni-variate time series Yi,Σ, at scale Σ, on which

the feature is centered, t is the time instant around which the duration of the feature

is centered, and Σ = 〈σtime,σrel〉 is the temporal and relationship scales in which the

feature is identified.

• descriptor is a vector of length 2a×2b×c for directed relationship graphs and 2a×

b× c for undirected graphs.

This feature set can be used for various applications, including alignment of multi-variate

series (as discussed in next Chapter), indexing, visualization, classification, and change

detection as discussed next.
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Chapter 4

RMT FEATURE ALIGNMENT

Let us be given two multi-variate time series and let us assume that we are asked to iden-

tify how these two series align with each other. One way to achieve this is to locate the

best match for each RMT feature of one of the series (let us call this the query series)

on the other series (let us call this the data series). As shown in Figure 4.1 (a), however,

this strategy may include many conflicting matching pairs that would imply incompatible

stretching of time or other inconsistencies. If we want to ensure that the feature matches

imply a transformation which potentially stretches time and may also slightly differ in the

features that are involved, but does not alter the order of features. We need to eliminate

those matching pairs that are less dominant, in terms of the degree of match and temporal /

relationship alignments, than those it conflicts with.

Motivated by this observation, we propose a pruning process that involves two

steps: (a) matching score calculation and (b) inconsistency elimination.

Note that we can search for different types of alignments between a pair of multi-

variate time series:

• Synchronized / asynchronized: this is when we have a common temporal dimension

shared by the two time series and we want to preserve the alignments of the two

series with respect to this common time dimension, we refer to this as synchronized

alignment; otherwise we refer to it as asynchronized alignment.

• Paired / un-paired: this is when we know which variate in one series correspond to

which variate in the other series and we want to preserve the mappings between the

variates across the two series, we refer to this as the paired alignment, otherwise we

refer to it as the unpaired alignment.
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(b) Matching pairs after inconsistency pruning

Figure 4.1: Alignment of two multi-variate time series based on the matching pairs of local
RMT features. Each time series contain 53 variates.

In this chapter, we will discuss the strategies for computing pair scores and the

elimination strategies for all possible cases.

4.1 Overall Matching of a Given Pair of Features

Given two multi-variate time series A and B; and a feature pair,
(

fi, f j
)
, where fi ∈ A and

f j ∈ B, we compute the following scores:

Similarity score:

µsim
(

fi, f j
)
= µdesc×

(
1−4amp

(
fi, f j

))
, (4.1)

where µdesc =
1

1+EuclideanDistance( fi,desc, f j,desc)
is the matching score between the descriptors

of fi and f j, and 4amp is the percentage difference between the overall amplitudes of the

features within their corresponding scopes. This formula reflects the observation that we

prefer matching feature pair which have similar descriptors and similar average amplitudes.

Alignment score:

µalign
(

fi, f j
)
=

(
µscope,time +µscope,depd

)
/2(

µcdist,time +1
)
×
(
µcdist,depd +1

) , (4.2)
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here,

µcdist,time =

 |center ( fi)− center
(

f j
)
| ,synchronized

1 ,asynchronized
(4.3)

µcdist,depd =


| fi set∩ f j set |
| fi set∪ f j set | , paired

1 ,un− paired
(4.4)

where µscope,time, µscope,depd are the average time / dependency scope of fi, f j respectively;

µcdist,time describe how close the two features are in terms of time; and µcdist,depd indicates

the relationship similarity between two features using Jaccard set similarity [29], where

fi set , f j set correspond to the variates that are involved in fi , and f j respectively.

Given µsim and µalign, we can further combine these two scores as µcomb
(

fi, f j
)

which we

computed using F-measure:

µcomb
(

fi, f j
)
= 2× µalign

(
fi, f j

)
×µsim

(
fi, f j

)
µalign

(
fi, f j

)
+µsim

(
fi, f j

) . (4.5)

Note that this feature pair score will be used in computing similarity score of time series.

4.2 Temporal Inconsistency Pruning

We call two pairs of matches temporally inconsistent, if the temporal relationships between

the features in one time series are inconsistent with the temporal relationships between the

corresponding features in the second series. In this section we will consider all matching

pairs in descending order of their µcomb scores and follow the inconsistency definition in

sDTW [8]:

• Given a feature matching pair M =
〈
(st1,i,end1,i);(st2, j,end2, j)

〉
, in which (st1,i,end1,i)

and (st2, j,end2, j) correspond to the scopes of the two involved features in query se-

ries and data series.
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• We attempt to insert the time points st1,i and end1,i into a list,

temporalscope boundary order1, which is in decreasing order of time. Similarly we

attempt to insert the time points st2,i and end2,i into the list,

temporalscope boundary order2, which is also in decreasing order of time.

• Let rank(st1,i), rank(st2,i), rank(end1,i), and rank(end2,i) be the corresponding ranks

of the four time points in their respective time ordered lists.

• If rank(st1,i) = rank(st2,i) and rank(end1,i) = rank(end2,i), then we confirm the in-

sertion and we keep the pair.

• Else, we drop the pair and eliminate these scope boundaries from consideration.

4.3 Variate-Relationship Inconsistency Pruning

As we have argued, each RMT feature includes a variates set, which we call it the scope in

relationship (Section 3.2). Here we denote set1,i, set2,i as the variate scopes of two RMT

features in query series. We consider three distinct scenarios for set1,i and set2,i (as we see

in Table 4.2, we cluster the 13 relationships between a pair of intervals [2] into 3 symmetric

relationships):

Table 4.1: Three distinct variate relationships between two RMT features’ variate scopes.

Relation Interpretation
(a). Disjoint set1,i and set2,i have no common variates
(b). Intersect set1,i and set2,i are partially intersect with

each other
(c). Equal/Contain set1,i equals to set2,i, or set1,i contains set2,i,

or set2,i contains set1,i

We call two pairs of matches inconsistent, if the variate relationships between the

features in one time series are inconsistent with the variate relationships between the corre-

sponding features in the second series. Again, we consider all matching pairs in descending

order of their µcomb scores:
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• Given a matching pair, M =
〈
set2,i;set2, j

〉
, and a matching pair list that are com-

mitted, commit list, we compare M with every matching pairs on commit list. We

denote N =
〈
set1,i;set1, j

〉
as one of the matching pairs on commit list.

• Get the relation , r1, between set2,i and set1,i and relation, r2, between set2, j and set1, j

according to Table 4.1.

• If r1 = r2, then we confirm that matching pairs M and N are not conflict to each other.

And we continue compare M with other matching pairs on commit list.

• After comparing M with all the matching pairs on commit list, if no conflict occurs,

we commit M =
〈
set2,i;set2, j

〉
by inserting it into commit list. Otherwise, we prune

it as inconsistent matching pair.

Matching pairs are considered in descending order of their µcomb
(

fi, f j
)

scores so

that the dominant matching pairs are kept while less dominant pairs are eliminated when

conflict occurs. Figure 4.1 (b) shows the maintained matching pairs after the elimination

of inconsistencies.
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Chapter 5

RMT FEATURE VISUALIZATION

Since RMT features contain local information (position and scope), a better interpretation

of the given multi-variate time series can be made by properly visualizing these features.

Therefore, we build a RMT feature visualization system to help users understand a given

multi-variate time series and to compare two multi-variate time series at once.

5.1 RMT Feature Selection Interface

In this interface, a user can select and explore a multi-variate time series data set and the

RMT features extracted from it. For the user, the first step is to select a multi-variate time

series using the multi-variate time series selection interface (shown on Figure 5.1). Once

the time series is selected, the user is provided with two screens, as shown in Figure 5.2

(a). The left-hand side view provides the standard curve-plot style visualization of all in-

dividual variates, in which the x-axis corresponds to the time and the y-axis corresponds

to the amplitude. The right-hand side window provides a heat-map style visualization, in

which the y-axis corresponds to the different variates and the amplitude is denoted by the

different shades.

 

 

 

 

 

 

Figure 5.1: RMT feature selection interface (click button in red circle to select multi-variate
time series).
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The user can use a mouse to interact with both sides of the interface. When the user

moves the mouse along the time-axis on the curve-plot, a temporal-focus interval (whose

boundaries are marked by the blue-dashed, vertical lines, and whose size is selected by

the user) moves along the time axis. Moreover, on the heat-map visualization, all RMT

features whose temporal scopes intersect with the temporal-focus interval are displayed as

shown in Figure 5.2 (a). The user can also interact with the heat-map interface on the right.

As shown in Figure 5.2 (b), as the user moves the pointer along the right-hand side window,

only the features whose scopes contain the pointer are highlighted and the variates involved

in these features are displayed on the plot-style window on the left.

Note that the interface also allows the user to filter features based on their sizes in

time and the number of variates they involve, as well as on how well-defined and well-

localized the features are on the time series.

As the user explores the RMT features on the time series using this interface, they

may also choose to study a particular feature in more details. When the user clicks on the

center of a feature of interest, information of the selected feature will be displayed in the

feature visualization window, which we will introduce in the next section.

5.2 RMT Feature Interface

Given a feature, f = 〈position,descriptor〉, where position = 〈i, t,Σ〉. The position of the

center, in scale Σ, is determined by i and t. As described in Chapter 3, i is the index of the

uni-variate time series Yi, in which the feature is centered and t is the time instant around

which the duration of the feature is centered.

In the detailed RMT feature visualization interface, the selected feature is displayed

with the ”center” of the feature being marked as ”*”, the temporal scope being marked by

white dashed-lines, and variates that are involved being marked as gray-dashed lines. The

temporal scope corresponds to the temporal duration of the feature, in which most contri-

butions are covered. The relationship scope corresponds to all of the uni-variate time series
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(a) Curve-plot interaction.

 

 

 

 

 

 

(b) Heat-map interaction.

Figure 5.2: RMT feature selection interface. Berkeley Mote Data set: 1024 readings in
temporal and 53 variates.

that are involved in the feature.

For better understanding of the relationship among the variates involved in the fea-

ture, this interface allows the user to shrink and expand the feature around the center vari-

ate(s) based on the hop distance. Figure 5.4 (a) shows all variates involved in the feature

with a hop distance lesser than or equal to 5, whereas Figure 5.4 (b) shows variates with a

hop distance lesser than or equal to 1.
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Figure 5.3: A sample relationship graph, R.

Example 6. Figure 5.3 shows a sample relationship graph. Suppose we have an RMT

feature with variate v8 as its center. Feature center, v8, is treated as 0-hop; uni-variate

time series, v3,v4,v6, that have only one step away from the center v8, are 1-hop; and uni-

variate time series, v1,v7, that have two steps away from the center v8, are 2-hop neighbors

of v8.

5.3 RMT Feature Matching

The visualization interface also allows the user to select two multi-variate data series (a

query series and a data series) and explore them in tandem, based on the matching RMT

features. As shown in Figure 5.5, when the user moves the mouse over the query heat-map

on the left, the features that the mouse highlights will be shown in that window. Moreover,

in the heat-map corresponding to the data series on the right, the best matching features to

those highlighted on the query heat-map will also be shown. As before, the corresponding

variates involved in the data will also be highlighted in the plot-style views.
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(a) A sample RMT feature with all involved variates shown.

 

 

 

 

 

 

 

 

 

 

 

(a) A sample RMT feature with only feature center variate shown.

Figure 5.4: RMT feature interface. Berkeley Mote Data set: 1024 readings in temporal and
53 variates.
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Figure 5.5: RMT feature selection interface. Berkeley Mote Data set: 1024 readings in
temporal and 53 variates.
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Chapter 6

EXPERIMENTAL SETUP

In this chapter, we introduce the setup we used for evaluating the RMT features and RMT

feature extraction algorithms presented in this thesis. We introduce the settings of the

experiments, the data sets we will use, and the evaluation measures.

6.1 Settings

All experiments were run on 4-core Intel Core i5-2400, 3.10GHz machines with 8GB mem-

ory, running 64-bit Windows 7 Enterprise. The codes were executed using Matlab 7.11.0

(2010b).

6.2 Data Sets

We use two distinct data sets in the experiments: Berkeley Mote data set and Mocap Data

set. High level characteristics of the two data set are presented in Table 6.1.

Berkeley Mote Data Set

Berkeley mote data set [6] consists of sensor readings between February 28th and April

5th, 2004 from a set of 54 Mica2Dot sensors that are spatially distributed in a 40m× 30m

laboratory environment as shown in Figure 6.1. Each sensor is treated as a single variate.

 

Figure 6.1: Berkeley Mote Sensors arrangement [6].
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Table 6.1: Characteristics of the data sets.

Berkeley motes data set
# classes # variates series length

1 53 variable (576 to 1440)
Mocap data set 1

# classes # variates series length
8 62 ∼130 to ∼1000

Sensor 5 is discarded due to bad data reading. Thus the total number of variates for Berke-

ley Mote data set is 53. The sensors collect topology information, along with humidity,

temperature, light and voltage data. We chose the humility data over the 30 days to gen-

erate the multi-variate time series data set. The series length is variable in the sense that

we can choose different observation intervals (0.5 minute, 1.25 minutes, 2.5 minutes etc.).

The smaller the time interval that we choose, the longer the multi-variate time series will

be. The spatial distribution of the motes in the laboratory is used to create the underlying

correlation matrix. Each pair of sensors within 6 meters is assumed to be correlated with

each other, which gives an intentionally rough indication of sensor correlation as it ignores

other environmental characteristics.

Mocap Data Set

The Mocap data set [14] is created using 41 markers placed on the human body in order

to capture coordinate data for different types of motions.The coordinates of the markers

are collected as the human actors perform various motions. The so-called ASF / AMC

data contain angle information from 62 joints which means that we have 62 variates in the

mocap multi-variate time series data set. The relative positions of the joints on the human

body are used to create the underlying correlation matrix. More specifically, joints are

mapped in 2D space, in such a way that joints that closely coordinates with each other will

have smaller distance. For example, since the joints on the left hand will display similar

variates due to the interconnectedness of muscles and tendons, they will be mapped closely

to each other than other joints.
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(a) Mocap Marker Arrangement
(Front)

 

(b) Mocap Marker Arrangement
(Back)

Figure 6.2: Marker arrangement of Mocap markers. Figure provided by CMU Mocap lab
[14].

6.3 Alternative Algorithms

In the experiment, we compare the proposed RMT feature extraction algorithm with two

alternative feature extraction algorithms: the UNI feature extraction algorithm for uni-

variate time series [8] and the SVD fingerprint. We also consider direct use of the DTW

for measuring differences between pairs of multi-variate time series:

Local, uni-variate, paired (UNI)

We treat each variate as an individual time series and assume that the pairing of the variates

in the query and in the database are known in advance.

Given two multi-variate time series, A and B, their distance is computed as

AVG
Ai∈A,Bi∈B

(
AVG
f j∈Ai

mindist( f j,Bi)

)
,
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where mindist() returns the smallest distance (in terms of Euclidean distance) between the

given feature f j in the uni-variate series Ai and any feature in the series Bi.

Raw data, paired (DTW)

In classification task where we compare whole time series to each other, we also use a raw

data based strategy where distances are computed through DTW algorithm. Similar to the

strategy for paired UNI, when comparing two time series by DTW algorithm, we assume

that we know which variate in one series corresponds to which variate in the other.

Given two multi-variate time series, A and B, the degree of match is computed as

AVG
Ai∈A,Bi∈B

DTW (Ai,Bi),

where DTW () returns the DTW distance between the uni-variate series Ai and correspond-

ing uni-variate series Bi. For this purpose, we used the DTW code available at [33].

Global, multi-variate, non-paired (SVD)

Given two multi-variate time series, A and B and their SVD decompositions, A =UASAV T
A

and B =UBSBV T
B , the distance is computed as

AVG
u j∈UA

mincolumndist(u j,UB),

where u j is a column vector in UA and mincolumndist(u j,UB) returns the smallest matching

distance (in terms of Euclidean distance) between the column vector u j and any column

vectors in UB. Note that this feature does not need to assume that the variate pairings are

known in advance.

Local, multi-variate, (RMT)
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Here the proposed RMT algorithm will be used. Given two multi-variate time series, A and

B, the distance is computed as

AVG
f j∈A

mindist( f j,B),

where mindist() returns the smallest distance (in terms of Euclidean distance) between the

given feature f j in the multi-variate series A and any feature in B. Against the non-paired

strategy SVD, we use non-paired RMT. Whereas against paired strategies UNI and DTW,

we use paired RMT to measure the distance; in the case of pairing multi-variate feature

matches are ignored unless at least 50% of the variates are common.

We also consider an alternative similarity measure for multi-variate time series based on

RMT features. In this case, we consider the pairwise alignment scores of a consistent subset

of RMT features for the two series being compared.

In this case, given two multi-variate time series A and B, and a set consistent matchesA,B,

of matching pairs with their corresponding µcomb scores, we compute the overall matching

score of match as:

MatchScoreA,B = ∑
( fi, f j)∈consistent matchesA,B

µcomb
(

fi, f j
)

We evaluate this alternative in Chapter 7.

6.4 Evaluation Tasks

We consider two types of tasks for assessing the effectiveness of extracted RMT features:

(a) classification tasks and (b) partial search tasks.

Classification Tasks

For the classification task, we use the Mocap data set where the time series are pre-labeled

based on activity types (Table 6.1). As the accuracy measure, we use top-5 precision; i.e,

the ratios of series that are of the same class as the query among the top 5 nearest neighbors.
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Partial Search Tasks

In the case of Berkeley mote data, for partial search task, observations for each day is

treated as a different multi-variate series. Partial time series search queries are generated

by picking a random date from the data set and using that series for two queries:

• Temporal snippet search: a random time interval during the day is selected and the

rest of the series are cropped.

• Sensor subset search: sensors in a random portion of the lab space are selected and

the rest are dropped.

Accuracy is measured by checking, in the result, the rank of the time series selected to

formulate the query. The closer the rank is to 1, the more accurate is the result. Accuracy

results are reported both as mean; median accuracy is also reported when outliers skew the

mean. A similar process is also used for the Mocap data. One key difference is that in the

Mocap data set, multi-variate series are labeled with the type of human motions. Therefore,

accuracy is not only measured by checking the rank of the query, but also the average rank

of the series with the same label as the query motion.
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Chapter 7

EXPERIMENTAL RESULT

7.1 Classification Task Evaluation

Table 7.1: Top-5 classification accuracy (Mocap data set).

Top-5 Precision Classification Accuracy
Class # series RMT SVD RMT UNI DTW

(non-paired) (paired)
climb 18 83.3% 52.2% 88.9% 82.2% 68.9%

dribble(basketball) 14 54.3% 28.6% 87.1% 47.1% 84.3%
jumping 30 99.3% 82.0% 100% 98% 100%
running 19 92.6% 100% 93.3% 100% 100%

salsa 30 94.0% 59.3% 97.4% 100% 87.1%
soccer 6 73.3% 30.0% 63.3% 93.3% 96.7%
walk 36 100% 89.4% 100% 100% 100%

walk(uneven terrain) 31 100% 58.7% 100% 98.7% 98.7%
Overall 184 92.2% 88.8% 95.4% 93.5% 93.3%

(a) Classification Accuracy

Classification Time
(non-paired) (paired)

RMT SVD RMT UNI DTW
Total feature extraction time
for the data set

886.4s 15.2s 886.4s 95.7s NA

Pairwise distance computa-
tion time for the data set

375.8s 88.0s 538.3s 48.6K s 4Ms

Total cost 1.3K s 103.3 s 1.4K s 48.8K s 4M s
(b) Classification cost (in seconds)

Table 7.1 (a) compares the classification accuracy (Mocap data set) of the proposed RMT

feature extraction algorithm with three alternative algorithms, SVD, UNI and DTW. Here

we use RMT with mindist() (as in Section 6.3) to calculate the distance between two given

time series, in which inconsistency are not pruned and series are considered as asychro-

nized. Table 7.1 (b) compares the classification cost for each corresponding algorithm in

terms of feature extraction cost, feature matching cost and total cost. Algorithms can be

further divided into two categories: non-paired algorithms: non-paired RMT, SVD; and

paired algorithms: paired RMT, UNI, DTW.
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Table 7.2: Default configuration for RMT, UNI, and SVD (relevant subset of this is also
used as the configuration for the uni-variate feature extraction [8]).

RMT
# iterations, L 6
# of octaves, o 2
smallest temporal feature radius (3σtime,0) ∼ 15
smallest rel. feature radius (3σrel,0) ∼ 2
candidate prunning threshold, ω> 10
descriptor size, 2a×2b× c (4×4×8 =) 128
relationship reduction algorithm k-means

UNI
# iterations, L 6
# of octaves, o 2
smallest temporal feature radius (3σtime,0) ∼ 15
descriptor size 128

SVD
degree of energy preservation 95%

As we can see, paired RMT provide best overall top-5 precision accuracy result.

Non-paired RMT perform almost as good as other pairing algorithms and it can be used

when the pairing information is not available. UNI and DTW provide good classification

accuracy, but the overall costs are much higher than the proposed RMT algorithm. From

these results, we confirm that RMT feature extraction algorithm is highly effective and ef-

ficient in the classification tasks. Note that the configurations for RMT, SVD and UNI are

presented on Table 7.2.

7.2 Feature-based Partial Time Series Search Task Evaluation

In this section, we first discuss properties of the proposed RMT feature. Afterwards, we

compare (non-paired) RMT, (non-paired) SVD, and (paired) UNI by partial series search

tasks on both Berkeley Mote and Mocap data sets. At last, we analyze the effectiveness

of the proposed RMT feature alignments searching strategies, as in Chapter 4, by partial

query tasks.
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RMT Feature Properties

Benefit of Leveraging Metadata (Known Variate Relationships) during Feature Ex-

traction: Figure 7.1 (a) presents mean and median result ranks (aggregated for all ex-

perimented configurations for the Berkeley mote data set) for RMT leveraging the spatial

distribution of sensors and the version of RMT where the correlation matrix R is assigned

randomly, ignoring the underlying sensor distribution. This chart confirms that RMT is

able to leverage the correlation information for the variates to identify highly effective fea-

tures.

RMT algorithm returns on the average 99.3 features when using the correct rela-

tionship matrix and only 59.2 features when using the random relationship matrix. A paired

t-test shows that there is around 0 probability that this difference in the number of features

is by chance. This confirms the observation in Section 7.3 that significant changes in the

relationship structure of the data would lead to statistically significant changes in the num-

ber of RMT features.

Table 2: Default configuration for RMT, UNI, and SVD
RMT

# iterations,L 6
# of octaves,o 2
smallest temporal feature radius (3σtime,0) ∼ 15
smallest rel. feature radius (3σrel,0) ∼ 2
candidate prunning threshold,ω⊤ 10
descriptor size,2a × 2b × c (4 × 4 × 8 =) 128
relationship reduction algorithm k-means

UNI

# iterations,L 6
# of octaves,o 2
smallest temporal feature radius (3σtime,0) ∼ 15
descriptor size 128

SVD

degree of energy preservation 95%
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Figure 10: (a) RMT leverages correlation information to im-
prove accuracy (the lower the rank, the higher the accuracy)
and (b) most of the time spent on easily parallelizable tasks,
such as extrema detection and descriptor generation

Berkeley motes data set
RMT UNI SVD

# features 99.3 12818.6 16
length 128 128 576

ext. time 1.6s 0.68s 0.02s

Mocap data set
RMT UNI SVD
30.8 10765.6 9.8
128 128 800

0.49s 0.60s 0.05s

Figure 11: Average number of features, feature vector lengths,
and extraction times for different feature types

Berkeley motes data set
RMT UNI SVD

0.001sec 0.5sec 0.002sec

Mocap data set
RMT UNI SVD

0.0007sec 0.18sec 0.002sec

Figure 12: Matching time for a pair of multi-variate series (ex-
cluding feature extraction)

Berkeley mote data set) for RMT leveraging the spatial distribution
of sensors and the version of RMT where the correlation matrix R
is assigned randomly, ignoring the underlying sensor distribution.
This chart confirms that RMT is able to leverage the correlation
information for the variates to identify highly effective features.

RMT algorithm returns on the average99.3 features when using
the correct relationship matrix and only59.2 features when using
the random relationship matrix. A paired t-test shows that there
is ∼ 0 probability that this difference in the number of features is
by chance. This confirms the observation in Section 4 that signifi-
cant changes in the relationship structure of the data wouldlead to
statistically significant changes in the number of RMT features.
RMT Feature Extraction Work. Figure 10(b) shows how the fea-
ture extraction work is distributed over sub-tasks. As we can see,
most of the time is spent on easily parallelizable tasks, such as ex-
trema detection and descriptor generation (Section 4)
Feature Characteristics. The table in Figure 11 shows the char-
acteristics of the three different types of features. RMT leads to
significantly less features than UNI; this is because RMT is able to
leverage the relationship information among the variates to prune
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Figure 15: Total feature size (# features× feature length) for
RMT and SVD (in RMT the scope of the target features are
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redundant features. SVD leads to a smaller number of features than
RMT, but the SVD feature vectors are long (length of the time se-
ries). As a result, as we will see next, RMT performs better than
SVD both in terms of matching time and accuracy. As expected,
for this data size (any without any parallelizations) RMT takes
more time than SVD to extract features; but low-dimensionality
and faster matching times would pay off in large data sets.
Matching Performance and Scalability. The two tables in Fig-
ure 12 show that the time to match the features from two multi-
variate data series is smallest for RMT, followed by SVD. Since
features on each uni-variate series have to be considered, UNI gen-
erates redundant features and, thus, takes significantly more time to
compute the degree of match.

9

Figure 7.1: Impact of correlation information.

RMT Feature Extraction Time: Figure 7.2 shows how the feature extraction work is

distributed over sub-tasks. As we can see, most of the time is spent on easily parallelizable

tasks, extrema detection and descriptor generation.
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Table 2: Default configuration for RMT, UNI, and SVD
RMT

# iterations,L 6
# of octaves,o 2
smallest temporal feature radius (3σtime,0) ∼ 15
smallest rel. feature radius (3σrel,0) ∼ 2
candidate prunning threshold,ω⊤ 10
descriptor size,2a × 2b × c (4 × 4 × 8 =) 128
relationship reduction algorithm k-means

UNI

# iterations,L 6
# of octaves,o 2
smallest temporal feature radius (3σtime,0) ∼ 15
descriptor size 128

SVD

degree of energy preservation 95%
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Figure 10: (a) RMT leverages correlation information to im-
prove accuracy (the lower the rank, the higher the accuracy)
and (b) most of the time spent on easily parallelizable tasks,
such as extrema detection and descriptor generation

Berkeley motes data set
RMT UNI SVD

# features 99.3 12818.6 16
length 128 128 576

ext. time 1.6s 0.68s 0.02s

Mocap data set
RMT UNI SVD
30.8 10765.6 9.8
128 128 800

0.49s 0.60s 0.05s

Figure 11: Average number of features, feature vector lengths,
and extraction times for different feature types

Berkeley motes data set
RMT UNI SVD

0.001sec 0.5sec 0.002sec

Mocap data set
RMT UNI SVD

0.0007sec 0.18sec 0.002sec

Figure 12: Matching time for a pair of multi-variate series (ex-
cluding feature extraction)

Berkeley mote data set) for RMT leveraging the spatial distribution
of sensors and the version of RMT where the correlation matrix R
is assigned randomly, ignoring the underlying sensor distribution.
This chart confirms that RMT is able to leverage the correlation
information for the variates to identify highly effective features.

RMT algorithm returns on the average99.3 features when using
the correct relationship matrix and only59.2 features when using
the random relationship matrix. A paired t-test shows that there
is ∼ 0 probability that this difference in the number of features is
by chance. This confirms the observation in Section 4 that signifi-
cant changes in the relationship structure of the data wouldlead to
statistically significant changes in the number of RMT features.
RMT Feature Extraction Work. Figure 10(b) shows how the fea-
ture extraction work is distributed over sub-tasks. As we can see,
most of the time is spent on easily parallelizable tasks, such as ex-
trema detection and descriptor generation (Section 4)
Feature Characteristics. The table in Figure 11 shows the char-
acteristics of the three different types of features. RMT leads to
significantly less features than UNI; this is because RMT is able to
leverage the relationship information among the variates to prune
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Figure 13: Accuracy for temporal snippet search
(the lower the rank, the higher the accuracy)

!"

#"

$"

%"

#&'" &!'" (!'" #&'" &!'" (!'"

)*+,"-../0+.1"2*3/453" )*67+,"-../0+.1"2*3/453"

2*
3/
45"
0+
,8

"

97:*";<"5=*">/*01"3/?3*5"

9*+0.="+..@"A75="3*,3;0"3/?3*5"

BC@"D;5*"6+5+E"

2)F" GHI" 9JK"

!"

#"

$"

%"

&'"

#()" $!)" %*)" #()" $!)" %*)"

+,-."/0012-03"4,51675" +,89-."/0012-03"4,51675"

4,
51
67"
2-
.:

"

;9<,"=>"7?,"@1,23"51A5,7"

;,-20?"-00B"C97?"5,.5=2"51A5,7"

D+=0-E"8-7-F"

4+G" HIJ" ;KL"

Figure 14: Accuracy for variate subset search
(the lower the rank, the higher the accuracy)
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Figure 15: Total feature size (# features× feature length) for
RMT and SVD (in RMT the scope of the target features are
kept constant relative to the length of the time series)

redundant features. SVD leads to a smaller number of features than
RMT, but the SVD feature vectors are long (length of the time se-
ries). As a result, as we will see next, RMT performs better than
SVD both in terms of matching time and accuracy. As expected,
for this data size (any without any parallelizations) RMT takes
more time than SVD to extract features; but low-dimensionality
and faster matching times would pay off in large data sets.
Matching Performance and Scalability. The two tables in Fig-
ure 12 show that the time to match the features from two multi-
variate data series is smallest for RMT, followed by SVD. Since
features on each uni-variate series have to be considered, UNI gen-
erates redundant features and, thus, takes significantly more time to
compute the degree of match.

9

Figure 7.2: RMT feature extraction time.

Table 7.3: Average number of features, feature vector lengths, and extraction times for
different feature types.

Berkeley motes data set
RMT UNI SVD

# features 99.3 12818.6 16
length 128 128 576

ext. time 1.6s 0.68s 0.02s

Mocap data set
RMT UNI SVD
393.8 26712 16.8
128 128 800
4.9s 0.52s 0.08s

Table 7.4: Matching time for a pair of multi-variate series (excluding feature extraction –
see Figure 7.3 for the one-time offline feature extraction costs).

Berkeley motes data set
RMT UNI SVD

0.001sec 0.5sec 0.002sec

Mocap data set
RMT UNI SVD

0.011sec 1.43sec 0.003sec

Feature Characteristics: Table 7.3 shows the characteristics of the three different types

of features. RMT leads to significantly less features than UNI; this is because RMT is able

to leverage the relationship information among the variates to prune redundant features.

SVD leads to a smaller number of features than RMT, but the SVD feature vectors are long

(length of the time series). As a result, RMT performs better than SVD both in terms of

matching time and accuracy. As expected, for this data size (without any parallelizations)

RMT takes more time than SVD to extract features; but low-dimensionality and faster

matching times would pay off in large data sets.

Matching Performance and Scalability: The two tables in Table 7.4 show that the time
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to match the features from two multi-variate data series is smallest for RMT, followed

by SVD. Since features on each uni-variate series have to be considered, UNI generates

redundant features and, thus, takes significantly more time to compute the degree of match.

Figure 7.3 compares the total feature size for RMT and SVD as the length of the

time series grows: as the figure shows, the total feature size stays more or less constant for

RMT, whereas for SVD the feature size grows (since the length of the feature vectors grow

with the length of time series).
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Figure 7.3: Total feature size for RMT and SVD.

RMT vs. SVD vs. UNI

As in the classification tasks, (paired) RMT provides the best accuracy, (non-paired) RMT

is competitive and cheap, whereas (paired) DTW is much costlier than (paired) UNI. Thus,

we compare (non-paired) RMT, (non-paired) SVD, and (paired) UNI features for partial

snippet searches when the whole series are not available. Again, we calculate the distance

between two time series using RMT features without prune inconsistencies and series are

considered as asynchronized.

Time Snippet Search

Figure 7.4 compares the effectiveness of the three features types for the temporal snippet

search scenario described above. As we see here, due to the (temporally) local nature of

the queries, both RMT and UNI perform better than SVD-based global feature. In the
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Figure 7.4: Accuracy for time snippet search (the lower the rank, the higher the accuracy).

Mocap data set, RMT also outperforms UNI (moreover, as discussed earlier, RMT costs

significantly less to identify matches Figure 7.4). The SVD-based global feature, on the

other hand, performs poorly both in mean and median rank accuracy, which indicate that it

is ineffective for temporal snippet search.

Sensor Subset Search

Figure 7.5 compares the effectiveness of the three feature types for the sensor subset search

scenario described above. As we see here, due to its variate-paired nature, as expected

UNI performs well (but requires costly matches, Figure 7.4). Among the two non-paired

schemes, RMT performs much better than SVD, especially on the Berkeley motes data set

and when the search ranges are very small, which indicate that RMT is more robust.
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Figure 7.5: Accuracy for sensor subset search (the lower the rank, the higher the accuracy).
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Table 7.5: RMT noalign vs. RMT time vs. RMT var vs. RMT both.
Search acc. with Time Snippet

RMT RMT time RMT var RMT both
50% 60% 70% 50% 60% 70% 50% 60% 70% 50% 60% 70%

Mean 1.32 1.23 1.12 1.31 1.2 1.06 1.67 1.36 1.33 1.28 1.14 1.12
Median 1.03 1 1 1 1 1 1 1 1 1 1 1

Correct rank # 14 19 24 28 27 28 25 28 28 29 29 29

(a)Accuracy comparison of four strategies for temporal snippet search.
Search acc. with Sensor Subset

RMT align RMT time RMT var RMT both
25% 50% 90% 25% 50% 90% 25% 50% 90% 25% 50% 90%

Mean 2.67 1.53 1.1 1.8 1.06 1 4.7 5.5 2.67 1.63 3.76 1.33
Median 1 1 1.03 1 1 1 1 1 1 1 1 1

Correct rank # 17 26 27 26 28 30 16 22 17 26 24 24

(b)Accuracy comparison four strategies for sensor subset search.

RMT Alignment Analysis

In Chapter 4, we proposed two alignment score computation methods,

synchronized / asynchronized score and paired / unpaired score; and two inconsistency

pruning strategies, temporal inconsistency pruning and variate inconsistency pruning. In

this section, we will evaluate the effectiveness of the proposed alignment score computa-

tion methods and inconsistency pruning strategies through partial time series search tasks.

When searching for alignments, query series in time snippet search task are considered

as asynchronized and paired, since we randomly select time intervals from original series;

query series in sensor subset search task are considered as synchronized and unpaired, since

an unknown subset of sensors are selected.

In this section, we compare RMT without inconsistency pruning (RMT noalign),

RMT with temporal inconsistency pruning (RMT time), RMT with variate inconsistency

pruning (RMT var) and RMT with temporal & variate inconsistency pruning (RMT both)

through time snippet search task and sensor subset search task.

Time Snippet Search

As shown on Table 7.5 (a), RMT both benefits from both RMT time and RMT var, thus, it

outperforms the other strategies in time snippet search task in terms of mean, median and
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correct rank amount (correct rank #). As we discussed in Section 6.3, the best result rank

for the query snippet should as close to 1 as possible, correct rank # counts for queries (out

of 30) that return the correct rank. So the higher correct rank #, the better accuracy. Here

we can claim that RMT both gives stable and highly accurate results.

Sensor Subset Search

Table 7.5 (b) provides the sensor subset results for the four scenarios, here we preserve

sensors in 90%, 50% and 25% of the lab spaces (the rests are dropped). As we expected,

for sensor subset search, RMT time performs the best. RMT var is not suitable for subset

search since when losing sensors, the variate relationships are not comparable any more.

7.3 Sensitivity Test

In this section, we examine the robustness of the proposed RMT feature and also explain

how the default parameters for the RMT feature are chosen. More specifically, we focus on

the impacts of following parameters: number of smoothed series s in each octave (stime =

srel); smallest temporal radius, σtime; and smallest relationship radius, σrel , on the Top-5

precision classification results (Mocap data).

Figure 7.8 (a) shows the Top-5 classification precision results by changing the

smallest feature radius from 0.5% to 3.5% of the series’ temporal length. As we observed,

when choosing radius around 1.5% , we get the best classification accuracy results with

relatively smaller amount of features. Similarly, as shown in Figure 7.8 (b), the accuracy

is also influenced by the feature scope in relationship (here we denote it as # of hops). The

best accuracies occur when # of hops equals around 1.2 to 1.3. Moreover, since the speed

of the smoothing process is controlled by the # of iterations in each octave, we test the

impact of smoothing speed by changing # of iterations from 5 to 9. And when choose 6

iterations, we get the best accuracy result.

Therefore default parameters for the proposed RMT feature extraction algorithms

are determined by the presented experiments. Meanwhile, we claim that the accuracies are

relatively robust for a large range of parameter values, since in most cases, we get results
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in terms of accuracy larger than 80%.
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Chapter 8

FUTURE DISCUSSIONS AND CONCLUSION

Parallel and Online Feature Extraction. The various steps of the RMT candidate fea-

ture detection process (smoothing, DoG computation, and extrema detection) can all be

parallelized by mapping different portions of the multi-variate data and/or different scales

to different processing units. The candidate pruning step can also be trivially parallelized

by mapping different subsets of the candidate features to different units. Similarly, in an

online setting where the time-series grows continuously with new observations, both the

candidate detection and candidate pruning steps can be performed incrementally as new

observations arrive.

RMT Feature Indexing. RMT descriptors are high-dimensional and therefore feature

search and nearest-neighbor based tasks would benefit from locality-sensitive hashing

(LSH) based indexing structures [27], which have been shown to perform well when the

data is embedded in high dimensional vector spaces.

Change Detection on Streaming Data. RMT also provides efficient and effective ways

to detect the points in which significant structural changes occur in the data: As we exper-

imentally validate in Chapter 7, the number of features identified in the multi-variate data

changes significantly when the dependency/correlation matrix used for RMT feature detec-

tion does not reflect the true structure of the data: this is because, when supposedly nearby

observations are not correlated, this leads to smaller features that can be removed by the

process as noise. Therefore, any statistically significant change in the number of features

from the historical norms may indicate a shift in the underlying dependency/correlation

structure of the data, thereby necessitating re-assessment of the dependency/correlation re-

lationships among the variates. Moreover, frequently occurring or co-occurring features

can be used as evidences for strengthening existing variate relationships and/or weakening

others.
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In this thesis, we presented the robust multi-variate temporal (RMT) Feature extraction al-

gorithm by adjusting the scale invariance process which is used in extracting features for

images (SIFT) and uni-variate time series (sDTW). We proposed the inter-related multi-

variate time series (IMTS) model and leveraging the variate relationship information to

extract features during the whole process: multi-variate time series smoothing, difference

of Gaussian (DoG) scale-space constructing, feature candidate detecting, poorly localized

feature eliminating and feature descriptor generating. We also built a RMT feature vi-

sualization system that enable users to visualize and understand RMT features and IMTS

model. In addition, we tested the efficiency and effectiveness of RMT feature and compared

it with other alternative feature extraction algorithms. Results show that RMT features are

robust against noise and outperform SVD in terms of execution time and accuracy. Also,

we demonstrated that RMT algorithm performs almost as good as UNI in most tasks but

with less cost. In sum, the proposed RMT feature is highly effective in multi-variate time

series searching, alignment and classification tasks.
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