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ABSTRACT

Under the framework of intelligent management of power grids by leveraging

advanced information, communication and control technologies, a primary objective

of this study is to develop novel data mining and data processing schemes for several

critical applications that can enhance the reliability of power systems. Specifically,

this study is broadly organized into the following two parts: I) spatio-temporal wind

power analysis for wind generation forecast and integration, and II) data mining and

information fusion of synchrophasor measurements toward secure power grids.

Part I is centered around wind power generation forecast and integration.

First, a spatio-temporal analysis approach for short-term wind farm generation fore-

casting is proposed. Specifically, using extensive measurement data from an actual

wind farm, the probability distribution and the level crossing rate of wind farm gen-

eration are characterized using tools from graphical learning and time-series analysis.

Built on these spatial and temporal characterizations, finite state Markov chain mod-

els are developed, and a point forecast of wind farm generation is derived using the

Markov chains. Then, multi-timescale scheduling and dispatch with stochastic wind

generation and opportunistic demand response is investigated.

Part II focuses on incorporating the emerging synchrophasor technology into

the security assessment and the post-disturbance fault diagnosis of power systems.

First, a data-mining framework is developed for on-line dynamic security assessment

by using adaptive ensemble decision tree learning of real-time synchrophasor measure-

ments. Under this framework, novel on-line dynamic security assessment schemes are

devised, aiming to handle various factors (including variations of operating conditions,

forced system topology change, and loss of critical synchrophasor measurements) that

can have significant impact on the performance of conventional data-mining based on-
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line DSA schemes. Then, in the context of post-disturbance analysis, fault detection

and localization of line outage is investigated using a dependency graph approach.

It is shown that a dependency graph for voltage phase angles can be built accord-

ing to the interconnection structure of power system, and line outage events can

be detected and localized through networked data fusion of the synchrophasor mea-

surements collected from multiple locations of power grids. Along a more practical

avenue, a decentralized networked data fusion scheme is proposed for efficient fault

detection and localization.
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Chapter 1

INTRODUCTION

The age of a “smart” grid is upcoming. In the past decades, tremendous national

efforts have been dedicated to building the elements of a modern electric power grid,

which will ultimately become a smart grid. Futuristic smart grids are envisaged to

dramatically increase the efficiency of electricity production and distribution, reduce

greenhouse gas emissions and support a sustainable energy infrastructure. According

to the Energy Independence and Security Act [3], some key distinguishing character-

istics of smart grids are given below:

• increased use of digital information and communication technology (ICT) con-

cerning grid status and situational awareness;

• deployment of advanced wide-area monitoring, protection and control (WAMPAC)

schemes to improve the reliability and the efficiency of electric power grids;

• high penetration of renewable power generation and distributed energy re-

sources (DER).

The aforementioned three characteristics of smart grids define the scope of this study.

In what follows, some basic concepts are first introduced.

1.1 Big Data in Smart Grid

The future smart grid is expected to leverage advanced ICTs to improve grid op-

erations and planning. For example, widely dispersed phasor measurement units

(PMUs) and PMU-enabled intelligent electronic devices (IEDs) make WAMPAC pos-

sible; smart meters and advanced metering infrastructure (AMI) enable two-way com-

munications between end-users and utilities and sophisticated demand side manage-
1



ment; at wind farms, measurement data of individual turbine’s power output at high

temporal resolutions facilitates wind power generation analysis and forecast.

Figure 1.1: Big data emerging in smart grids [1].

Therefore, future smart grids have the potential to generate massive amounts

of data from widely deployed measurement devices. Massive amounts of more detailed

data collected from networked measurement devices provides great opportunities for

enhanced situational awareness. On the other hand, it also raises new challenges for

the effective extraction of relevant information from massive data so as to support

decision making. Under increasingly dynamic and uncertain conditions of the power

grid, new computational methods are necessary for efficient management of massive

data. New algorithms for data fusion, data mining and data analytics have to be

developed based on deeper understanding of the spatial and temporal dynamics of

power systems.
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1.2 Synchrophasor Technology

A phasor is a representation of sinusoidal signals using magnitude and phase. In power

system monitoring and control applications, bus voltage and branch current are usu-

ally represented as phasors. Given the sinusoidal function of a voltage/current signal,

the magnitude of the voltage/current phasor is the effective value, i.e., the root mean

square (RMS) value of the sinusoidal function, and the phase of the voltage/current

phasor is calculated with regard to a specified reference, by using an angular measure.

Fig. 1.2 illustrates the phasor representations of the voltages measured at two termi-

nal buses of a transmission line. Here, the common reference for the phase angles is

90 degrees (at time 0).

time = 0 

1
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1
δ

Common

Reference
time = 0 

2
V

2
δ

2
δ

2
V

1
V

1
δ

Phasor representation

Bus 1 Bus 2

1 1V δ� 2 2V δ�

Figure 1.2: Phasor representation of bus voltage with a common reference [2].

The phasor measurements collected from widely dispersed locations of a power

grid are precisely synchronized to a common reference, by using GPS receiver embed-

ded in PMUs. The block diagram of PMUs is provided in Fig. 1.3. Basically, a PMU

is an electronic device that uses state-of-the-art digital signal processing techniques
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that converts analog waveforms from current/potential transformers into digital data.

This analog-to-digital conversion is typically carried out at a rate of 48 samples per

cycle (2880 samples per second), and the output rate of PMU data can reach up

to 60 samples per second. A phase-locked oscillator, together with a GPS reference

source with 1 microsecond accuracy, guarantees that all phasor measurements are

time-tagged and all phase angles are synchronized to the same reference. By use of

synchronized phasor (thus called “synchrophasor”) data, the system-wide snapshots

of a power grid can be obtained at a very high temporal resolution.

Anti-aliasing filters

Anolog Inputs

A/D converter

Phase-locked

oscillator

GPS receiver

Phasor micro-

processor

Modems

Figure 1.3: PMU block diagram [2].

Synchrophasor technology has been recognized as one of the most critical

measurement technologies of smart grids. Compared to existing supervisory control

and data acquisition (SCADA) systems, wide area monitoring systems (WAMS) built

on synchrophasor technology offer greater flexibility to WAMPAC applications:

• The precise synchronization of phasor measurement data offers wide-area visi-

bility of power grids. Further, it also makes distributed synchrophasor data pro-

cessing and information fusion possible, facilitating coordinated decision making

and control actions.

• In conventional SCADA systems, grid status awareness is achieved through

static state analysis, and therefore the dynamic behavior of power grids cannot
4



be observed. Whereas in WAMS, synchrophasor data is typically collected at

20, 30 or 60 samples per second. Therefore, the limitations of conventional

SCADA systems are overcome by the high sub-second visibility of power grids

provided by synchrophasor data.

• PMUs directly measure the phasor angles of bus voltage and branch current.

In conventional SCADA systems, those values are obtained from static state

estimation, which is highly susceptible to unsynchronized measurements and

bad data.

• Synchrophasor data provides enhanced post-contingency assessment capability

and can improve the agility of protective and corrective control actions.

1.3 Reliability of Power Systems

For bulk power systems, reliability is defined by the North American Electric Reli-

ability Corporation (NERC) as the capability to meet end-users’ electricity demand

with a reasonable assurance of continuity and quality [4]. Further, NERC subdi-

vides the reliability of power system into adequacy and security. Specifically, power

system adequacy refers to “having sufficient resources to provide customers with a

continuous supply of electricity at the proper voltage and frequency, virtually all of

the time” [4]. Here, the “resources” include a combination of generation, transmis-

sion and distribution facilities, as well as demand side management (DSM) which

may reduce end-users’ electricity demand as needed. Power system security relates

to the ability of bulk power systems to withstand unexpected disturbances, such as

transmission line outage, loss of generator and transformer failure.
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1.3.1 Impact of Wind Generation Integration on Power System

During the last decade, wind power has been the fastest in growth among all renew-

able energy resources [5]. With a prospective high penetration level, wind generation

integration is expected to change dramatically the existing operating practices (e.g.,

unit commitment, economic dispatch and ancillary services procurement) that are

critical to the adequacy of bulk power systems. Compared to conventional genera-

tion (e.g., thermal, hydro, nuclear), wind generation has three distinct characteristics:

non-dispatchability, variability and uncertainty. Wind generation is generally non-

dispatchable, in the sense that the power output of a wind farm cannot be simply

dispatched at the request of power grid operators. This is because, unlike conventional

generators, the “fuel” of wind turbines, i.e., wind, cannot be controlled or stored. Due

to the aforementioned characteristics, timely and accurate wind generation forecast-

ing is critical to ensure that adequate resources for dispatch, ancillary services and

ramping requirements are available all the time. Several balancing authorities in

North America have been implementing wind generation forecasting systems [6].

1.4 Scope of The Dissertation and Summary of Main Contributions

1.4.1 Part I: Spatio-temporal Analysis for Wind Farm Generation Forecast and

Integration

In Chapter 2, a Markovian model for wind farm generation forecast is developed.

This model takes into account both the spatial and temporal dynamics of the power

outputs from widely dispersed turbines within a large wind farm. Using extensive

data from a wind farm in the western U.S., a spatio-temporal analysis of the aggregate

wind generation from the farm is performed. It is observed from actual measurement

data that the power outputs from the turbines are often not equal. Motivated by
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this observation and using tools from graphical learning, a rigorous step-by-step pro-

cedure to characterize the probability distribution of the aggregate wind generation

from the farm is carried out, while the diurnal non-stationarity and the seasonality

of wind speed are also accounted for. The temporal dynamics of the aggregate wind

generation are then characterized using auto-regression analysis. Built on these spa-

tial and temporal characterizations, a finite state Markov chain for aggregate wind

generation forecast is then derived in a rigorous optimization framework. Numerical

study using realistic data demonstrates the significant gain in the forecast accuracy

by using the designed Markov chain compared to the wind-speed-based forecasting

methods. The procedure developed here is amenable to the case when the farm has

turbines from multiple classes, e.g., when they belong to multiple manufacturers or

when they are deployed at different hub heights.

Chapter 3 addresses the challenges of integrating volatile wind generation into

the bulk power grid. Notably, wind generation is among the renewable resources that

has most variability and uncertainty, and exhibits multi-level dynamics across time.

To enhance the penetration of wind energy, multi-timescale scheduling and dispatch

of both conventional energy sources (e.g., thermal) and wind generation is studied, for

a smart grid model with two classes of energy users, namely traditional energy users

and opportunistic energy users (e.g., smart meters or smart appliances). Specifically,

the system operator performs scheduling at two timescales. In day-ahead scheduling,

with the statistical information on wind generation and energy demands, the operator

optimally procures conventional energy supply and decides the optimal retail price

for the traditional energy users for the next day. In real-time scheduling, upon the

realization of the wind energy generation and the demand from traditional energy

users (which is stochastically dependent on the day-ahead retail price), the operator

decides the real-time retail price for the opportunistic energy users. In particular,
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two types of opportunistic energy users are considered: non-persistent and persistent

users. The non-persistent users leave the power market when they find that the

current real-time price is unacceptable, whereas the persistent opportunistic users

wait for the next acceptable real-time price. Closed-form solutions for the scheduling

problem are obtained for non-persistent case. For the persistent case, the scheduling

problem is first formulated as a multi-timescale Markov decision process (MMDP),

which is then recast explicitly as a standard Markov decision process (MDP) that can

be solved via standard solution techniques. Numerical results demonstrate that the

proposed two-timescale scheduling and dispatch improves the overall efficiency with

high penetration of wind generation, by enabling two-way energy exchange between

energy providers and end-users, and by facilitating both information interaction as

well as energy interaction.

1.4.2 Part II: Synchrophasor Data Mining and Information Fusion

In Chapter 4, a robust on-line dynamic security assessment (DSA) scheme is de-

veloped by using adaptive ensemble decision tree (DT) learning, with an objective

to handle the variations of operating condition (OC) and system topology changes.

Specifically, the classification model for DSA is built on boosting multiple unpruned

small-height DTs. In off-line training, the small DTs and their voting weights are se-

quentially identified in a “gradient-descent” manner to minimize the misclassification

cost. The small DTs, together with their voting weights, are then periodically up-

dated throughout the operating horizon, by using new training cases that are created

to account for any change in OC or network topology. Different from conventional

DT-based DSA schemes, the training cases are assigned different data weights by each

small DT; and higher data weights are assigned to a new training case if it is misclas-

sified by the small DTs. The aforementioned techniques are utilized to minimize the

misclassification cost as new training cases are added to the knowledge base, so that
8



the classification model can smoothly track the changes in OCs or system topology.

The results from a case study using a variety of realistic OCs illustrate the effec-

tiveness of the proposed scheme in dealing with OC variations and system topology

changes.

Chapter 5 extends the effort made in Chapter 4 to develop a on-line DSA

scheme that is robust to missing synchrophasor data. In on-line DSA, synchrophasor

data can become unavailable due to the expected failure of PMUs or communication

links. Similarly to the scheme of Chapter 4, the proposed scheme consists of three

processing stages; the difference is that the random subspace technique is employed

in the latter scheme. First, multiple small DTs are trained off-line, each by using

a randomly selected attribute subset. In near real-time, new cases are used to test

the small DTs. The test results are then utilized in on-line DSA to choose a few

viable small DTs (i.e., the DTs without missing data from their attribute subsets)

and calculate the voting weights via a boosting process. Finally, security classification

decisions of on-line DSA are obtained via a weighted voting of the chosen small DTs.

Specifically, the randomized algorithm for selecting attribute subsets exploits the

locational information of attributes and the availability of synchrophasor data, so

as to guarantee that a significant portion of small DTs are still viable when some

synchrophasor data become missing. Further, the process of boosting viable small

DTs in on-line DSA guarantees that accurate decisions can be obtained by making use

of the viable small DTs, in the sense that the viable small DTs are iteratively chosen

in a gradient descent manner and assigned proper voting weights, leading to the high

robustness and accuracy of the proposed approach in case of missing synchrophasor

data.

Chapter 6 discusses the fault detection and localization of line outage by using

synchrophasor data. For large-scale power grids, this task is challenging, due to the
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massive scale, system uncertainty and inevitable measurement errors. It is clear

that deterministic approaches would not work well. With this insight, probabilistic

graphical models are utilized to model the spatially correlated synchrophasor data,

and statistical hypothesis testing method is utilized for the task of fault detection and

localization. The contributions of this study are twofold. 1) Based on the DC power

flow model, a Gaussian Markov random field (GMRF) model is developed for the

phasor angles across the buses. Specifically, based on the stochastic characteristics of

power flows, phasor angles are modeled as Gaussian random variables, which have a

latent dependency graph governed by the interconnection structure of the power grid.

The relationship between the partial correlations of phasor angles and the physical

parameters of power systems is also revealed. 2) A decentralized networked data

fusion algorithm for fault detection and localization is developed, by exploiting the

multi-scale decomposition property of GMRF.

Finally, Chapter 7 discusses future research directions.

10



PART I

SPATIO-TEMPORAL ANALYSIS FOR WIND FARM

GENERATION FORECAST AND INTEGRATION
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Chapter 2

SPATIO-TEMPORAL ANALYSIS FOR SHORT-TERM WIND FARM

GENERATION FORECAST

2.1 Introduction

A critical aspect in meeting the renewable portfolio standard (RPS) goals adopted

by many states in the U.S. includes the integration of renewable energy sources, such

as wind and solar [7]. Given the fact that the power outputs of wind turbines are

highly dependent on wind speed, the power generation of a wind farm varies across

multiple timescales of power system planning and operations. With increasing pene-

tration into bulk power systems, wind generation has posed significant challenges for

reliable system operations, because of its high variability and non-dispatchability [8].

Specifically, one key complication arises in terms of committing and dispatching con-

ventional generation resources, when the short-term forecast of wind farm generation

is not accurate. Currently, wind generation forecast for an individual wind farm typ-

ically has an error of 15% to 20% [6], in sharp contrast to the case of load forecast.

When the actual wind generation is above the forecasted value, i.e., more conven-

tional generation capacity has been committed than needed, it could result in less

efficient set points for thermal units. In some cases, wind generation may need to be

curtailed [9]. On the flip side of the coin, when the actual wind generation is less

than the forecasted value, costly ancillary services and fast acting reserves have to

be called upon to compensate for the deficit. Therefore, it is imperative to develop

accurate forecast approaches for wind farm generation.

State-of-the-art short-term wind power forecast approaches include time-series

models (e.g., auto-regressive models [10], Kalman filtering [11]), Markov chains [12,

13], and data mining [14, 15]. A comprehensive literature review on wind power
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forecast can be found in [16] and [17]. Time-series models and data mining-based

regression models, while being able to provide continuous-value wind power forecast,

could suffer from high computational complexity. Compared to other forecast models,

finite-state Markov chains strike a good balance between complexity and modeling

accuracy. In particular, given the state space and historical data, the state transition

matrix can be computed by using the maximum likelihood estimation technique [12];

when new data points are available online, it is also very easy to update the transition

matrix. Generally, aggregate wind power data is a double-bounded non-Gaussian

time series [18]. In reference [19], the logit transform is carried out as preprocessing,

so that such a bounded time series can be studied by using auto-regressive models

in a Gaussian framework. In this chapter, finite-state Markov chains are utilized to

model the bounded wind power time series with a general probability distribution. It

is worth noting that finite-state Markov chains inherently have bounded support, and

the stationary distribution of a Markov chain can be general. Despite the appealing

features of Markov chains, there is no systematic method to design the state space

of Markov chains for wind power modeling. The proposed approach in this chapter

addresses this issue by developing a general spatio-temporal analysis framework. An

overview of the main contributions is presented below.

2.1.1 Summary of Main Results and Contributions

One key observation of this study is the wind farm spatial dynamics, i.e., the power

outputs of wind turbines within the same wind farm can be quite different, even if

the wind turbines are of the same class and physically located close to each other.

The disparity in the power outputs of wind turbines may be due to the wake effect

of wind speed, diverse terrain conditions, or other environmental effects. Motivated

by this observation, graph-learning based spatial analysis is carried out to quantify

the statistical distribution of wind farm generation, with rigorous characterization of
13



wind farm spatial dynamics. Then, time series analysis is applied to quantify the level

crossing rate (LCR) of the wind farm’s aggregate power output. Finite-state Markov

chains are then constructed, with the state space and transition matrix designed to

capture both the spatial and temporal dynamics of the wind farm’s aggregate power

output. Based on [66], the distributional forecast and the point forecast of wind farm

generation are provided by using the Markov chains and ramp trend information. In

this work, another finding of independent interest is that the tail probability of wind

farm’s aggregate power output exhibits a “power-law” decay with an exponential cut-

off, where the power-law part has a much heavier tail than the Gaussian distribution.

This indicates that one cannot simply apply the central limit theorem (CLT) to

characterize the aggregate power output, because of the strong correlation across the

power outputs of wind turbines within a wind farm.

The main contributions of this study are summarized below:

• A general spatio-temporal analysis framework is developed, in which the spatial

and temporal dynamics of wind farm generation are characterized by analyti-

cally quantifying the statistical distribution and the LCR.

• Built on the results of spatio-temporal analysis, a systematic approach for de-

signing the state space of the Markov chain is introduced.

• By modeling variable wind power as a Markov chain, stochastic unit com-

mitment and economic dispatch problems can be studied by using Markovian

state-space approaches instead of scenario-based approaches [20,21]. Thus, the

complexity induced by exponentially-growing scenarios of scenario-based ap-

proaches can be avoided. Therefore, this study is a timely contribution to the

recent efforts on wind generation integration that involves Markov-chain-based

stochastic optimizations.
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The rest of this chapter is organized as follows. A few critical observations

from the measurement data are first discussed in Section 2.2. Spatio-temporal analy-

sis and the design of Markov chains are presented in Section 2.3. Section 2.4 discusses

the proposed Markov-chain-based forecast approach and numerical examples. Con-

clusions are provided in Section 2.5.

2.2 Available Data and Key Observations

In this chapter, spatio-temporal analysis is carried out for a large wind farm with a

rated capacity of Pmax
ag =300.5MW. There are M = 2 classes of wind turbines in this

wind farm, with N1 = 53 and N2 = 221, respectively. The power curves of the two

turbine classes are provided in Fig. 2.1. For each class Cm, a meteorological tower

(MET) Hm is deployed and co-located with a wind turbine, denoted by rm. The

power outputs of all wind turbines and the wind speeds measured at all METs are

recorded every 10 minutes for the years 2009 and 2010. From the measurement data,

several key observations can be made as follows.
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Figure 2.1: Power curves for wind turbines from classes C1 and C2.
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Figure 2.2: Power outputs of three wind turbines in C1.

2.2.1 Spatial Dynamics of Wind Farm

A critical observation from the measurement data is that the power outputs of wind

turbines within the wind farm can be quite different. Fig. 2.2 illustrates the power

outputs of three wind turbines in C1. It is clear that the power outputs are not equal,

despite the geographic proximity of r1 and its nearest neighbor (the disparity in the

power outputs of the wind turbines belonging to C2 has also been observed; the plots

are not included for the sake of brevity). This disparity has been largely neglected in

the existing literature.

Although the variable power outputs of wind turbines are not identical, it

is reasonable to assume that they follow the same probability distribution if the

wind turbines are of the same class. A natural question here is whether the CLT,

either the classic CLT or the generalized CLT, can be applied to characterize the

probability distribution of the aggregate power output of a large number of wind

turbines. To this end, the tail probability distribution of the wind farm’s aggregate

power output is examined and plotted in Fig. 2.3. As illustrated in Fig. 2.3, the tail

probability demonstrates a “power-law” decay with an exponential cut-off and the
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power-law part has a much heavier tail than the Gaussian distribution. It is useful

to note that this kind of tail behavior has been observed in many natural phenomena

(e.g., size of forest fires) that have strong component-wise correlations [22]. Because

of the strong correlation between the power outputs of wind turbines, particularly

from adjacent wind turbines, the classic CLT cannot be applied to characterize the

probability distribution of the wind farm’s aggregate power output. In fact, even the

“CLT under weak dependence” cannot be directly applied, despite the fact that the

correlation between the power outputs of wind turbines weakens with the distance

between them (the “mixing distance”). Hence, the probability distribution of the

wind farm’s aggregate power output cannot be characterized using the classic CLT;

and it may not even be governed by stable laws [23]. With this insight, the proposed

approach resorts to graphical learning methods to model the dependence structure

in the power outputs of individual wind turbines and carries out spatio-temporal

analysis accordingly.
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Figure 2.3: Tail probability of the wind farm’s aggregate power output.

2.2.2 Diurnal Non-Stationarity and Seasonality

Another key observation, as illustrated in Fig. 2.4, is the diurnal non-stationarity

and the seasonality of wind farm generation. Specifically, it is observed that within
17
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Figure 2.4: Empirical distribution of wind farm generation over various 1-hour inter-
vals of different epochs of the day and different months.

each three-hour epoch, the probability distributions of wind farm generation over

three consecutive 1-hour intervals are consistent. However, these CDFs from different

epochs of three hours and different seasons can be quite different, indicating the non-

staionarity of wind farm generation. The non-stationarity of probability distributions

of wind farm generation caused by diurnal pattern and seasonality can be handled

by developing a Markov chain for each epoch of the day and for each month.

In what follows, data-driven analysis is carried out to characterize the spatial

and temporal dynamics of the wind farm’s aggregate power output. The data for the

year 2009 is used in spatio-temporal analysis to guide the design of Markov chains,

and the data for the year 2010 is used to assess the accuracy of the forecast provided

by the proposed Markov-chain-based approach. Specifically, the 9 AM-noon epoch

of January 2009 is used as an illustrative example in the following spatio-temporal

analysis, since this epoch exhibits the richest spatio-temporal dynamics, in the sense

that the wind farm’s aggregate power output during this epoch takes values ranging

from 0 to the wind farm’s rated capacity and exhibits the highest variability over time

(quantified by LCR).
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2.2.3 Weibull Distribution of Wind Speed
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Figure 2.5: Weibull-fitted CDF (λ=11.37, k=1.54) and empirical CDF of W1 for the
9 AM-noon epoch of January 2009.

In the existing literature, wind speed is usually characterized using Weibull

distributions [24]. In this work, it is observed from the measurement data that the

wind speed Wm at each MET within the wind farm closely follows a Weibull distri-

bution during each epoch, the probability density function (PDF) of which is given

by:

fWm(x) =
k

λ

(x

λ

)k−1

exp−(x/λ)k

, ∀x ≥ 0, (2.1)

where k is the shape parameter and λ is the scale parameter. Specifically, the maxi-

mum likelihood estimation technique [25] is utilized to estimate the parameters from

the measurement data. The fitted cumulative density function (CDF) and the em-

pirical CDF of W1 for the 9 AM-noon epoch of January 2009 are plotted in Fig. 2.5.

Note that reference [25] presents several other methods for estimating the parameters

of the Weibull distribution, in which one method with good visual interpretation is

the Weibull plot adopted by [26].
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2.3 Spatio-temporal Analysis of Wind Farm Generation

2.3.1 Spatial Analysis and Statistical Characterization
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Figure 2.6: MST of C1 (with distance to the southwest corner of the wind farm).

A key objective of spatial analysis is to characterize the statistical distribution

of Pag(t). To this end, regression analysis is applied to the measurement data of each

turbine’s power output, so that Pag(t) could be expressed in terms of wind speed.

Then, the analytical CDF of Pag(t) can be obtained from the fitted Weibull CDF of

wind speed. In what follows, the key steps of spatial analysis are provided in detail.

Using the geographical information of wind turbines, an MST with rm as

the root node is constructed for each class Cm by using Prim’s algorithm [27], as

illustrated in Fig. 2.6. It is easy to see that for each wind turbine i in Cm, there

exists only one path from rm to i in the MST of Cm. Define the node which is

closest to i along this path as the “parent” node of i. Another key observation from

the measurement data is that an affine relationship exists between the parent-child

turbine pairs for each class, with the case of C1 illustrated in Fig. 2.7. Therefore, a
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Figure 2.7: Power outputs of parent-child turbine pairs of C1 for the 9 AM-noon
epoch of January 2009.

coefficient αm is introduced for Cm, and the linear regression model Pk(t)=αmPj(t) is

used for each parent-child turbine pair (j,k) in Cm accordingly. Further, define dm(i)

as the number of the nodes (excluding node i) along the path from rm to node i,

then the linear regression model Pi(t)=α
dm(i)
m Prm(t) can be used for any wind turbine

i in Cm. The value of αm is determined by applying the minimum mean square error

(MMSE) principle to the aggregate power output of Cm, as follows:

αm = argmin
α

1

Nt

∑
t

(Pag,m(t) −
∑
i∈Cm

αdm(i)Prm(t))2. (2.2)

Similarly, an affine relationship between the wind speeds is also observed from the

measurement data. For convenience, H1 is chosen as the reference MET, i.e., m=1.

Then, the linear regression models for wind speeds are given by Wm(t)=βmWm(t),

where βm is solved using the MMSE principle as follows:

βm = argmin
β

1

Nt

∑
t

(Wm(t) − βWm(t))2. (2.3)

Using Prm(t)=Um(Wm(t)), the aggregate power output of the wind farm could be

characterized as follows:
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Pag(t) =
∑
m

Pag,m(t) =
∑
m

∑
i∈Cm

αdm(i)
m Um(βmWm(t))

, Gpw(Wm(t)). (2.4)

It is easy to see that due to the monotone characteristics of Um(·), Gpw(·) is mono-

tonically increasing. Therefore, the analytical CDF of Pag(t) can be obtained from

the fitted Weibull distribution of Wm(t), given by FPag(·)= FWm
(G−1

pw(·)). The ana-

lytical CDF and the empirical CDF of Pag(t) for the considered epoch are illustrated

in Fig. 2.8. Note that the discontinuity in the analytical CDF of Pag(t) is a result of

the cut-out wind speed (25 m/s), as plotted in Fig. 2.1.

0 0.5 1 1.5 2 2.5 3

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ag

 (kW)

F
P

ag

 

 

Empirical
Analytical (by spatial analysis)

Figure 2.8: CDF of Pag(t) for the 9 AM-noon epoch of January 2009.

It is worth noting that the linear regression models with homogeneous regres-

sion coefficients used here are motivated by the observation from the measurement

data. The above regression analysis could be generalized by applying more general

regression analysis methods. For example, each parent-child turbine pair can have a

different linear regression coefficient or the parent-child turbine pairs can be analyzed

by using different regression models.
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2.3.2 Temporal Analysis and LCR Quantification

During each epoch, both the wind speed Wm(t) and the wind farm generation Pag(t)

could be regarded as stationary stochastic processes. The LCR of a stochastic process

is formally defined as the number of instances per unit time that the stochastic

process crosses a level in only the positive/negative direction [28]. Intuitively, LPag(·)

quantifies how frequently Pag(t) transits between different generation levels. It will

be apparent soon that LPag(·), together with the statistical characterization FPag(·),

is critical in designing the state space representation of the Markov chains used for

wind farm generation forecast.

It is useful to note that due to the discontinuity in FPag(·), as illustrated in

Fig. 2.8, a smooth Gaussian transformation for Pag(t) is unattainable. Hence, the

LCR of wind speed is first characterized. In order to quantify LPag(·) analytically,

LWm
(·) is first derived and converted to LPag(·) by using the mapping defined in

(2.4). To this end, autoregressive analysis is applied to Wm(t). As argued in [29],

autoregressive analysis preceded by transforming the stationary non-Gaussian process

Wm(t) to a Gaussian process can result in a better fit, compared with fitting to an

autoregressive model directly. Therefore, Wm(t) is transformed to a standard normal

random variable, given by

WN
m (t) = F−1

N (FWm
(Wm(t))), (2.5)

A first-order autoregressive (AR(1)) model [30] is then fitted to WN
m (t):

WN
m (t) = φWN

m (t − 1) + ε(t), (2.6)
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where the white noise term is modeled as a zero-mean Gaussian random variable

ε(t)∼N (0, σ2
ε ). The parameters φ and σε can be estimated by solving the Yule-Walker

equations [30]. Then, the LCR of WN
m (t) for a specific wind speed level γ (γ>0) can

be calculated using the following steps:

L
W

N (0,1)
m

(γ)

=

∫ γ

−∞
Pr(W

N (0,1)
m (t) > γ|WN (0,1)

m (t − 1) = w)fN (0,1)(w)dw

=

∫ γ

−∞
Pr(ε(t) > γ − φw)fN (0,1)(w)dw

=

∫ γ

−∞

(
1 − FN (0,1)

(
γ − φw

σε

))
fN (0,1)(w)dw. (2.7)

It is easy to see that LWm
(·) can be obtained from L

W
N (0,1)
m

(·) using the inverse

mapping of the strictly increasing function defined in (2.5). Further, using the mono-

tonically increasing function defined in (2.4), the LCR of Pag(t) for a specific wind

farm generation level Γ (Γ∈(0,Pmax
ag ]) is given by:

LPag(t)(Γ) = L
W

N (0,1)
m

(F−1
N (0,1)(FWm

(G−1
pw(Γ)))). (2.8)

The procedure presented above completes the characterization of the analytical LCR

of Pag(t) for an arbitrary epoch. The analytical LCR and the empirical LCR of Pag(t)

for the 9 AM-noon epoch of January 2009 are illustrated in Fig. 2.9.

2.3.3 Markov Chain Model for Spatio-temporal Wind Power

A critical step in developing the Markov-chain-based forecast approach is to capture

the statistical distribution and the temporal dynamics of Pag(t) during each epoch

using a Markov chain with the following characteristics:
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Figure 2.9: LCR of Pag(t) for the 9 AM-noon epoch of January 2009.

• The Markov chain has finite states. Specifically, state Sk (k=1,· · · ,Ns) cor-

responds to a specific range of generation levels [Γk,Γk+1), with Γ1=0 and

ΓNs+1=Pmax
ag .

• The Markov chain is discrete-time and of order 1.

The above characteristics are adopted to make the Markov chains practical for fore-

casting applications, so that forecast is made based on the most recent 10-min data

only. But this can be generalized easily by using high-order Markov chains.

The procedure developed in [28] is utilized to design the state space. First,

define τk as the average duration that Pag(t) falls in state Sk per unit time, given by:

τk =
FPag(Γk+1) − FPag(Γk)

LPag(Γk+1) + LPag(Γk)
, (2.9)

where FPag(·) is the analytical CDF of Pag(t) that was characterized in spatial analysis,

and LPag(·) is the analytical LCR of Pag(t) derived in temporal analysis. By definition,

τk quantifies the performance of the Markov chain in terms of how well the stochastic

process Pag(t) is captured:
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• A smaller value of τk suggests that Pag(t) is more likely to switch out of the state

Sk within a 10-min slot, i.e., non-adjacent transitions are more likely to occur,

and hence the transitional behaviors of Pag(t) are not sufficiently captured by

the discrete-time Markov chain.

• If all the values of τk (k=1,· · · ,Ns) are too large, there would be fewer states,

indicating that the quantization brought by the Markov chain is too crude, and

the corresponding forecast would be less accurate.

Therefore, a key objective of state space design is to make each of τk (k=1,· · · ,Ns)

fall into a reasonable range [28]. However, it is challenging to meet this design goal,

especially when the closed-form expressions of FPag(·) and LPag(·) are unattainable. A

practical solution adopted here is to introduce a constant τ and find the Ns−1 vari-

ables {Γ2,Γ3,· · · ,ΓNs} by solving (2.9) numerically with τk=τ , ∀k∈{1,· · · ,Ns−1}.

Once the state space S is designed, the transition probabilities could be easily es-

timated following the approach proposed in [12]. Specifically, the probability of a

transition from Si to Sj in a 10-min slot is given by

[Q]i,j =
nij∑Ns

k=1 nik

, i, j ∈ {1, · · · , Ns}, (2.10)

where [·]i,j denote the entry at row i and column j of a matrix, and nij is the number

of transitions from Si to Sj encountered in the measurement data. The representative

generation level for each state Sk, k∈{1, · · · , Ns}, is determined using the MMSE

principle, given by (the time index of Pag(t) is dropped for simplicity):

Pag,k = argmin
Pk

EPag [(Pk − Pag)
2|Pag ∈ [Γk, Γk+1)], (2.11)
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where EPag [·|Pag∈[Γk,Γk+1)] denotes taking expectation over Pag conditioned on Pag∈[Γk,Γk+1).

Then, it is easy to see the representative generation level is given by:

Pag,k =

∫ Γk+1

Γk
xfPag(x)dx

FPag(Γk+1) − FPag(Γk)
. (2.12)
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Figure 2.10: boundaries and average duration for each state of the Markov chain for
the 9 AM-noon epoch of January 2009.

The above procedure is applied to the 9 AM-noon epoch of January 2009, by

choosing τ=2 mins. The designed state space S and the values of τk are illustrated

in Fig. 2.10, and the corresponding transition probabilities are plotted in Fig. 2.11.

In the existing literature on Markov chain models for wind power [12] (not in the

context of wind farm generation), all states of the Markov chain are simply chosen

to be of uniform length. This simplistic design method is applied to the aggregate

power output of the wind farm, by choosing Γk+1=Pmax
ag k/Ns, ∀k∈{1,· · · ,Ns−1}.

The resultant state space, denoted by Sunif, is compared with S. From Fig. 2.10 and
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Figure 2.11: Transition matrix (a) by spatio-temporal analysis (b) by uniform quan-
tization, for the 9 AM-noon epoch of January 2009.
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Figure 2.12: Offline spatio-temporal analysis (carried out for each epoch and each
month by using historic measurement data).

Fig. 2.11, it is clear that higher values of τk are achieved for most of the states in S,

whereas more non-adjacent transitions are incurred by the Markov chain with state

space Sunif.

2.4 Markov-Chain-based Short-term Forecast of Wind Farm Generation

Given the current 10-min wind farm generation data Pag(t), the state of the Markov

chain at time t, denoted by S(t), is determined by searching for a state k0 so that
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Figure 2.13: Online short-term forecasting.

Pag(t)∈[Γk0 ,Γk0+1). Thus, S(t+1) and hence Pag(t+1)=Pag,S(t+1) are random variables

that depend on the transition matrix Q, S(t) and R(t). Further, let R(t)=−1 denote

a decreasing trend, and R(t)=1 for the non-decreasing case. Then, the distributional

forecast is given by

Pr(Pag(t + 1) = Pag,j|S(t), R(t)) =



Qk0,j

Ns∑
k≥k0

Qk0,k

, if R(t) = 1 and j ≥ k0

Qk0,j

k0−1∑
k=1

Qk0,k

, if R(t) = −1 and j < k0

0, otherwise.

(2.13)

2.4.0.1 Point Forecasts

From the above distributional forecast, a point forecast can be derived by using the

MMSE principle:

P̂ag(t + 1) = argmin
Pag

E
[
(Pag − Pag,S(t+1))

2|S(t), R(t)
]

(2.14)
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Then, the solution to the above problem is given by:

P̂ag(t + 1) =



Ns∑
k≥k0

Pag,kQk0,k

Ns∑
k≥k0

Qk0,k

, if R(t) = 1

k0−1∑
k=1

Pag,kQk0,k

k0−1∑
k=1

Qk0,k

, if R(t) = −1

(2.15)

which is exactly the mean value of the Markov chain conditioned on the currently

observed state and the ramp trend.

2.4.1 Numerical Examples

2.4.1.1 Distributional Forecasts

By using the continuous rank probability score (CRPS) as a metric for distributional

forecast, the empirical skill of the Markov-chain-based distributional forecast is de-

fined as the average of the CRPS of the Markov-chain-based distributional forecast

over all Nt realized data points, given by:

Skill =
1

Nt

∑
t

∫ P max
ag

0

(
F̂ (x) − H(x − Pag(t))

)2

dx, (2.16)

where F̂ (x) is the CDF obtained by using the Markov-chain-based distributional fore-

cast, and H(x − Pag(t) is the unit step function, which takes value 0 when x<Pag(t)

and takes value 1 when x≥Pag(t). Basically, a higher skill value suggests that the

Markov-chain-based distributional forecast is less accurate. By using the above defi-

nition, the CRPS value of the Markov-chain-based distributional forecast over all the

52560 (365*24*6) data points of the year 2010 is calculated. The Skill of the Markov-

chain-based distributional forecast over the data points of the year 2010 is provided

in Table. 2.1. Since one main objective of this work is to develop Markov-chain-based

distributional forecasting models, the Markov chain developed by the existing ap-
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Table 2.1: Skill values of Markov-chain-based distributional forecasts over the testing
data points of the year 2010.

MC (unif.) MC (τ=2) MC (τ=1)
Skill 7.14 MW 6.27 MW 6.09 MW
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Figure 2.14: Statistics of CRPS over all months of the year 2010.

proach [12, 13] (uniform quantization) is used as a benchmark. The Markov chain

developed by the proposed spatio-temporal analysis with the design parameter τ=2

(column 3 of Table. 2.1) has a skill score that is 13% less than that of the benchmark

Markov chain that has the same number of states designed by uniform quantization

(column 2 of Table. 2.1). By reducing the design parameter τ to 1, the forecasting

performance of the Markov chain developed by the proposed spatio-temporal analysis

(column 4 of Table. 2.1) is further improved.

To further examine the skill of the developed Markov-chain-based distribu-

tional forecasting method over different epochs and different month, the mean and

percentiles of the CRPS values over the data points for each month or each epoch is

computed. In the box plots of Fig. 2.14 and Fig. 2.15, the red bar in a box repre-

sents the mean value of the CRPS values over all data points that fall into a specific
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Figure 2.15: Statistics of CRPS over all 8 epochs of the year 2010.

epoch or a specific month. The top edge and bottom edge of a box represent the

25th and 75th percentiles, respectively. The top bar and bottom bar correspond to

the extremes calculated from 1.5 interquartile ranges. It is observed from Fig. 2.15

that the means and standard deviations of the CRPS values are a little higher during

afternoon-night epochs. Fig. 2.14 shows that the means of the CRPS values have

little variability across different months, and the standard deviations of the CRPS

values are slightly higher across the winter season. Another key observation from the

results of numerical experiments is that the CRPS of the Markov-chain-based distri-

butional forecast over a realized data points Pag(t) is highly dependent on the ramp

rate of Pag(t) at time t. Here, the ramp rate of Pag(t) is defined as the absolute value

of the change in the wind farm generation in a 10-min slot. For example, the ramp

rate of Pag(t) at time t is given by |Pag(t)−Pag(t−1)|. By using the data points of the

year 2010, the corresponding 52560 pairs of ramp rates and CRPS values are plotted

in Fig. 2.16. It is observed that the ramp rates of Pag(t) and the CRPS values of the

Markov-chain-based distributional forecast over a realized data points Pag(t) follows a
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Figure 2.16: Correlation between the ramp rates of Pag(t) and the CRPS values of
distributional forecast.

positive correlation. The above observation also explains the “phase transition” from

the noon-3 PM epoch to the 3-6 PM in Fig. 2.15, i.e., the increased wind ramp caused

by the sudden change in diurnal heating/vertical mixing conditions [31]. In summary,

the statistics (especially the mean value) of the CRPS values vary slightly differently

over different months and epochs, which suggests that the developed Markov-chain-

based distributional forecasting methods deliver consistent forecasting performance

across the entire year.

Further, three episodes of prediction intervals are plotted to better illustrate

the developed Markov-chain-based distributional forecasts. According to the above

observation, three representative time periods are chosen: 1) the 3-6 PM epoch of

January 8th, 2) the 0-3 AM epoch of January 23rd, and 3) the 3-6 PM epoch of

April 16th. The first period is chosen because January and the 3-6 PM epoch have

the highest mean CRPS value (i.e., least accurate forecasts), and the CRPS value of

January 8th is mostly close to the corresponding mean value. For the second period,

January 23rd is an extreme day that had the highest average ramp rate among all
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Figure 2.17: 10-min distributional forecasts on January 8th, 2010.

January days, and the 0-3 AM epoch experienced a large down-ramp from 75% to

25% of the rated capacity. The third period is chosen due to similar reasons as the

first period, except that April is the month that has the least CRPS values. Fig. 2.17-

2.19 illustrate the 90% prediction intervals obtained by the developed Markov-chain-

based distributional forecasts. It is observed at for all three representative periods,

the realized wind farm generation reasonably lies in the 90% prediction intervals.

2.4.1.2 Point Forecasts

By comparing the point forecast P̂ag(t) with the actual wind farm generation Pag(t),

forecast errors are quantified by mean absolute error (MAE), defined as

MAE =
1

Nt

∑
t
|Pag(t) − P̂ag(t)|, (2.17)

mean absolute percentage error (MAPE), defined as

MAPE =

∑
t |Pag(t) − P̂ag(t)|∑

t Pag(t)
, (2.18)
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Figure 2.18: 10-min distributional forecasts on January 23rd, 2010.
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Figure 2.19: 10-min distributional forecasts on April 16th, 2010.

and root mean square error (RMSE), defined as

RMSE =

√∑
t |Pag(t) − P̂ag(t)|2

Nt

. (2.19)
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Table 2.2: 10-min point forecast error of wind farm generation over the period shown
in Fig.2.17.

Error Persistent
MC MC MC

(unif) (τ=2) (τ=1)
MAE 7.45 MW 7.61 MW 6.87 MW 6.71 MW
MAPE 8.75 % 8.94 % 8.07 % 7.88 %
RMSE 8.12 MW 8.24 MW 7.47 MW 7.31 MW

Table 2.3: 10-min point forecast error of wind farm generation over the period shown
in Fig.2.18.

Error Persistent
MC MC MC

(unif) (τ=2) (τ=1)
MAE 9.63 MW 9.88 MW 7.12 MW 6.85 MW
MAPE 7.53 % 7.73 % 5.58 % 5.36 %
RMSE 10.13 MW 10.37 MW 7.54 MW 7.25 MW

Two point forecast approaches are used as benchmark:

• persistent forecast [32]: P̂ag(t + 1)=Pag(t);

• forecast by Markov Chain with uniform quantization.

The test results by using the data for the three selected epoches and the year 2010 are

provided in Table 2.2-2.5, respectively. It is observed that the proposed Markov-chain-

based forecast approach has improved accuracy compared to the persistent forecast

approach. Note that the improvements for the ramp periods shown in Table. 2.2-

2.4 are all higher than the average over the entire month in Table. 2.5. Also note

that the Markov chains based on uniform quantization give less accurate forecast

than persistent forecast. This can be attributed to the uniform quantization not

considering the spatio-temporal dynamics of wind farm generation.

Another key observation from Table 2.2 and Table 2.5 is that smaller values

of τ leads to higher forecast accuracy of the Markov chains, at the cost of higher

complexity of the Markov chains (in terms of the number of states). The trade-off
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Table 2.4: 10-min point forecast error of wind farm generation over the period shown
in Fig.2.19.

Error Persistent
MC MC MC

(unif) (τ=2) (τ=1)
MAE 8.43 MW 8.84 MW 6.92 MW 6.74 MW
MAPE 7.06 % 7.40 % 5.80 % 5.64 %
RMSE 8.87 MW 9.21 MW 7.23 MW 7.05 MW

Table 2.5: 10-min point forecast error of wind farm generation (all test data of the
year 2010 is used).

Error Persistent
MC MC MC

(unif) (τ=2) (τ=1)
MAE 6.97 MW 7.14 MW 6.83 MW 6.62 MW
MAPE 6.68 % 6.84 % 6.55 % 6.34 %
RMSE 7.23 MW 7.54 MW 7.09 MW 6.89 MW

between the forecast accuracy and the complexity of the Markov chain for the 9

AM-noon epoch of January 2010 is illustrated in Fig. 2.20.
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Figure 2.20: Number of states and the forecast error of Markov chains at various τ
for the January 9 AM-noon epoch).
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2.5 Conclusion

A general spatio-temporal analysis framework is developed for wind farm generation

forecast, in which finite-state Markov chain models are derived. The state space,

transition matrix and representative generation levels of the Markov chains are op-

timized by using a systematic approach. The short-term distributional forecast and

point forecast are derived by using the Markov chains and the ramp trend infor-

mation. One main contribution of this study is that the distributional forecast can

be directly integrated into the problems of unit commitment and economic dispatch

with uncertain wind generation, so that these problems can be studied in a general

Markov-chain-based stochastic optimization framework. Further, the performance of

the proposed Markov-chain-based point forecast approach is evaluated via numerical

tests. Improved forecast accuracy of the point forecast over persistent forecast is

observed.

In a related work [20], we are investigating power system economic dispatch

with wind farm generation by utilizing a realistic test system and the Markov-chain-

based distributional forecasts of wind farm generation. The distributional forecasts

of wind farm generation are integrated into a stochastic programming framework of

multi-period economic dispatch, so as to optimize the dispatch decisions over the

operating horizon. The impact of the forecast errors of wind farm generation on

economic dispatch is also studied.
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Chapter 3

MULTI-TIMESCALE SCHEDULING WITH STOCHASTIC WIND

GENERATION AND OPPORTUNISTIC DEMAND

3.1 Introduction

Wind energy is expected to constitute a significant portion of all renewable genera-

tion being integrated to the bulk power grids of North America [5]. High penetration

of wind generation not only brings many benefits, economically and environmentally,

but also puts forth great operational challenges [33, 34]. Unlike conventional energy

resources, wind generation is non-dispatchable, in the sense that wind energy could

be not harvested simply by request. Further, wind generation highly depends on ge-

ographical and meteorological conditions and thus exhibits greater variability across

all timescales, which makes it challenging for system operators to obtain accurate

knowledge of future wind generation. Therefore, volatile and uncertain wind gen-

eration would have significant impact on the reliability of power systems, since the

precise balance between the energy supply and demand at all time is of paramount

significance to the reliable operations of power systems.

Recently, a significant amount of effort (e.g., [35–38]) has been directed towards

integrating wind generation into the operation and planning of bulk power grids, in

which wind generation is usually treated as negative load, and auto-regressive models

(e.g., in [35]) or scenario trees (e.g., in [36,37]) are used to characterize the uncertainty

in the net load. To cope with the uncertainty in the net load, the approaches proposed

in [36–38] resort to the operating reserve (the additional generation capacities from on-

line or fast-start generators) which is co-scheduled with the energy supply. However,

as pointed out in [5], the variability and uncertainty in the demand is to a much

lesser extent to that of wind generation, and hence, the cost of operating reserve
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would increases significantly when the penetration level of wind generation is high.

Towards high penetration levels of wind generation, changes will be required to the

traditional methods used by system operators in order to maintain the reliability of

bulk power grids.

With the objectives to maintain the reliability of bulk power grids with wind

generation integration and reduce the operational cost involved, we observe that op-

erating reserve could be obtained from the demand response of an emerging class of

energy users, namely opportunistic energy users, instead of conventional generation.

It is noted in [39] that over 10% daily electricity consumption in U.S. is from (resi-

dential and small commercial) energy users such as water heater, cloth dryers, and

dish washers. Traditionally, these energy users pay a fixed price per unit of electric-

ity that is established to represent an average cost of power generation over a given

time-frame (e.g., a season). In smart grids with two-way communications, real-time

pricing programs could be implemented so that the prices are tied with generation

cost and vary according to the availability of energy supplies. In this scenario, these

energy users would become smart by receiving and responding to real-time price sig-

nals, and are branded as opportunistic energy users, with the following behaviors

distinct from traditional energy users : 1) they access the smart grid systems in an

opportunistic manner, according to the availability of energy supply; 2) different from

the “always-on” demand of traditional energy users, the load profiles of opportunistic

energy users can be bursty and can be either inelastic or elastic; 3) the demand of

opportunistic energy users respond to the price signals on a much finer timescale, and

thus could be used to tune the balance between the energy supply and the demand

in a real-time manner (i.e., within minutes). The prevalence of the new class of op-

portunistic energy users, if utilized intelligently, makes DSM a promising solution to

reduce the costs incurred by high penetration of wind generation [40].
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Figure 3.1: A multi-timescale scheduling framework with integrated wind generation
and two classes of energy users

3.2 A Multi-timescale Scheduling Framework

In this paper, we study multi-timescale scheduling in a framework as illustrated in

Fig. 1. Specifically, the system operator procures energy supply from conventional

generation and wind generation, and manage the demand of both classes of energy

users via day-ahead/real-time prices to achieve system-wise reliability. Conventional

generation, in turn, is drawn from two sources: base-load generators (e.g., thermal)

and fast-start generators (e.g., gas turbines), in which base-load generators have

stringent requirements on the minimum on/off time and ramp rates, and thus are

scheduled one-day ahead and on hourly basis. The energy supply procurement and

end-user pricing are performed in two stages, i.e., day-ahead scheduling and real-time

scheduling, at different timescales. In day-ahead scheduling, with the distributional
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information of wind generation W and energy demands Dt, the system operator

decides the energy supply procurement s from base-load generators and the day-

ahead price u, for the next day. In real-time scheduling, upon the realization of W

and Dt, the system operator decides the real-time price v for opportunistic energy

users, and uses fast-start generation or cancels part of scheduled base-load generation,

as needed, to close the gap between demand and supply.

It is worth noting that the above framework that consists of day-ahead and

real-time scheduling is developed based on the state-of-the-art scheduling schemes of

power systems (e.g. [33,34,41]), by explicitly incorporating opportunistic energy users

and the heterogeneous demand response of two classes of energy users.

3.2.1 General Problem Formulation

As illustrated in Fig. 3.1(b), a 24-hour period is divided into M T1-slots of equal

length, and each T1-slot, in turn, consists of K T2-slots. A T1-slot and a T2-slot can

span an hour and 10 minutes, respectively. The objective of the system operator is to

find a policy π that dictates the multi-timescale decisions s, u and v, so that the overall

expected profit across the next day is maximized. Here, the scheduling problem is

investigated from the perspective of an (vertically integrated) utility which owns the

wind generation asset. Accordingly, wind generation is utilized as much as possible

(with no curtailment). and the study could be generalized to deregulated markets

where social welfare is maximized at the discretion of ISO. A general formulation of

the multi-timescale scheduling problem is provided below:

P : max
π

M∑
m=1

Ru
m(π), (3.1)
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where Ru
m(π) is the total net profit in a T1-slot, under policy π, given by1:

Ru
m(π) =

K∑
k=1

Eπ
ψl

k,m
Rl

k,m(ψl
k,m, π), (3.2)

where Rl
k,m is the net profit in the kth T2-slot of the mth T1-slot (henceforth called the

(k,m)th slot), and ψl
k,m is the system state in the (k,m)th slot that is observable in

real time2. When the opportunistic energy users are non-persistent, the system state

consists of the wind generation and the energy demand from traditional users, i.e.,

ψl
k,m = {Wk,m, Dtk,m

}. When the opportunistic energy users are persistent, the system

state is ψl
k,m = {Wk,m, Dtk,m

, P l
k,m}, where P l

k,m denotes the number of persistent

opportunistic energy users carried over from the previous T2-slot to the (k,m)th slot.

3.2.2 Energy Supply and Demand Models

3.2.2.1 Stochastic wind generation

Development of wind generation forecast techniques has been the focus of a signifi-

cant amount of research and industrial effort; see [6] for a detail discussion of wind

generation forecasting in practical power systems. One insight revealed by the sur-

vey [6] is that integrating a significant amount of wind will largely depend on the

accuracy of the wind power forecast. Therefore, by following the modeling method

in [36], we model forecast error as a random variable. Thus, given a “point-forecast”

Ŵm, the wind generation amount in (k,m)th slot hat is known to the system operator

in day-ahead scheduling is given by

Wk,m = Ŵm + εwm , (3.3)

1The notation Ey
x denotes the expectation over x conditioned on y.

2The super-scripts “u” and “l” are used to distinguish between the upper-level quantities in a
T1-slot and the lower-level quantities in a T2-slot.
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where forecast error εwm is closely tied to forecasting techniques, and hence can have

arbitrary probability distributions and can also be non-stationary across T1 slots.

Another observation from [6] is that the variance of εwm can be quite large (e.g.,

the mean absolute percentage error can be as high as 20%) for existing forecasting

techniques in practice.

3.2.2.2 Generation cost

To facilitate qualitative analysis, we adopt a linear generation cost model derived from

literatures [34,41]. Specifically, base-load generation incurs a cost of c1 per unit when

dispatched in real-time; fast-start generation incurs a cost c2 per unit when dispatched

in real-time as non-spinning reserves; base-load generation, scheduled day-ahead but

canceled in real-time, incur a cost of cp per unit. Typically, c2>c1>cp. Further, we

assume that wind generation is cost-free and utilized as much as possible.

3.2.2.3 Uncertain demand of traditional energy users

Based on [42], we model the energy demand of traditional energy users in the (k,m)th

slot as a random variable with mean depending on the day-ahead price um, i.e.,

Dtk,m
= αtmum

γt + εt, (3.4)

where εt is a zero-mean random variable which accounts for the uncertainty of the

demand of traditional energy users, and γt is the price elasticity which characterizes

the price response of traditional energy users, and αtm is the normalizing constant.

The price elasticity γ of energy users (either traditional or opportunistic), is defined

in [42] as the ratio of percentage change in the expected demand to that of price, e.g.,

for the case of traditional energy users,
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γt =
um

E[Dtm ]

dE[Dtm ]

dum

. (3.5)

It is worth noting that the price elasticity is typically negative.

3.2.2.4 Uncertain demand of opportunistic energy users

Under real-time pricing, we assume that opportunistic energy users have the following

behaviors:

• Opportunistic energy users arrive independently according to a Poisson process

with rate λo, which is constant within a T1-slot but can vary across the T1-slots;

• In each T2-slot, an opportunistic energy user i in the system decides to accept

or reject the announced real-time price v by comparing with a price acceptance

level Vi, which is randomly chosen and is i.i.d across the opportunistic energy

users.

• The expected demand of opportunistic energy users has a price elasticity γo,

which is defined in a similar manner to that of traditional energy users in (3.5);

• Each active opportunistic energy user has a per-unit power consumption of Eo.

3.2.2.5 Day-Ahead and Real-Time Pricing

We consider the following multi-timescale end-user pricing model:

• Traditional and opportunistic energy users have separate contracts: traditional

energy users pay day-ahead prices, and opportunistic energy users pay real-time

prices;

• Traditional energy users are informed, one day ahead, of the day-ahead prices

u corresponding to each T1-slot;
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• Opportunistic energy users receive the real-time price v at the beginning of each

T2-slot;

• Both day-ahead and real-time prices have price cap ucap and vcap, respectively.

The price caps are motivated by the study [43] and intended to protect energy

users by hedging against the risk under variable pricing.

3.2.3 Net Profit in a T2-slot

Given the amount of conventional energy supply procurement sm and the day-ahead

price um settled for each T2-slot of the m-th T1-slot in day-ahead scheduling, together

with the realizations of wind generation Wk,m and traditional energy demand Dtk,m
,

the net profit in the (k,m)th slot is

Rl
k,m(ψl

k,m, π) = umDtk,m
+ Eπ

Dok,m
[vk,mDok,m

+ (−cpsm)1A

+ (−cpεk,m − c1(sm − εk,m))1B

+ (−c1sm + c2εk,m)1C ], (3.6)

where Dok,m
denotes the energy demand of opportunistic energy users, and the quan-

tity εk,m is given by εk,m=Wk,m+sm−(Dtk,m
+Dok,m

). Indicator 1A corresponds to the

scenario when the wind generation is sufficient to meet the demand of both classes

of energy users. Indicator 1B refers to the scenario when the wind generation is not

sufficient but there is energy supply surplus, which necessitates the cancelation of

part of the scheduled base-load generation. Indicator 1C corresponds to the scenario

when there is energy supply deficit and fast-start generation is necessary to close the

gap. Formally, the indicators are described as follows:
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1A =

 1 if Wk,m ≥ Dtk,m
+ Dok,m

0 otherwise

1B =

 1 if 1A = 0 and εk,m ≥ 0

0 otherwise
(3.7)

1C =

 1 if εk,m < 0

0 otherwise

3.3 Multi-timescale Scheduling with Non-persistent Opportunistic Energy Users

The tight coupling between the decisions, in the sense that the energy supply pro-

curement and prices in day-ahead scheduling have significant impact on real-time

prices, and the real-time pricing policy, in turn, affect the realized net profit of day-

ahead schedule, underscores the need for joint optimization of the day-ahead and

real-time schedules. To this end, we take a “bottom-up” approach in solving the

multi-timescale scheduling problem. Specifically, we first solve the real-time schedul-

ing problem, conditioned on day-ahead decisions. Then, we investigate the day-ahead

scheduling problem by taking into account the real-time pricing policy.

3.3.1 Real-time Scheduling on Timescale T2

Recall that non-persistent opportunistic energy users response to high real-time price

v by leaving the system, thus the total demand in the T2-slot only depends on current

decisions. Then, it suffices to examine the scheduling problem in a T2-slot, which is

formulated as3:

PRT
non−pst : max

v
Rl(ψl, s, u, v), (3.8)

3We drop the suffix (k,m) for notational simplicity in this section.
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where recall that ψl={W,Dt} is the system state, and (s, u) are the decisions made

in day-ahead scheduling. The optimal solution to PRT
non−pst defines a real-time pricing

policy ϑs,u:ψ
l→v, a mapping from the system state to a real-time price conditioned

on the day-ahead decisions (s, u).

3.3.2 Day-ahead Scheduling on Timescale T1

The day-ahead scheduling problem could be re-formulated by taking into account the

real-time pricing policy ϑs,u. Further, since W and Dt are independent and identically

distributed across the T2-slots of the T1-slot, the day-ahead scheduling problem can

be optimized by simply considering the snapshot problem in a specific T2-slot, given

by:

PDA
non−pst : max

s,u
Eu

ψl

[
Rl(ψl, s, u, ϑs,u(ψ

l))
]
. (3.9)

3.3.3 Approximate Solutions

It is easy to see that a closed-form expression of ϑs,u in terms of arbitrary (s, u) is

unattainable. This observation, along with the convolved nature of the uncertainties

involved, makes a direct joint optimization of PDA
non−pst challenging. We therefore

take an alternative approach and obtain approximate solutions to the multi-timescale

scheduling problems. In light of the characteristics of practical power systems, we

impose the following conditions.

• Condition I: Wind generation is not sufficient to meet the total energy demand

in the system.

• Condition II: The uncertainty in the demand of opportunistic energy users is

significantly less than the uncertainty of wind generation.
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Condition I is motivated by the Renewable Portfolio Standards of U.S. [44], in

which most of the current state-by-state projected penetration levels of renewable

generations (including wind generation) are below 30%. Under such a penetration

level, it is unlikely that wind generation is sufficient to meet the overall load. We

then provide an explanation of Condition II. Since opportunistic energy users arrive

according to a Poisson process with rate λo, it follows that the number of active users

which accept the current price v, denoted as Na, is a Poisson random variable with

mean λoT2P(V ≥ v). Further, it is known that λoT2 is typically large, and hence, Na

could be approximated by a Gaussian random variable. Note that the demand of the

opportunistic energy users is given by Do = NaEo, and recall that the price elasticity

defined in (3.5):

γo =
v

E[Do]

dE[Do]

dv
. (3.10)

Then, it follows from (3.5) that

P(V ≥ v) ≈ αov
γo , (3.11)

where αo , v−γo

min is a normalizing constant, and vmin denotes the highest price that is

acceptable to all opportunistic energy users. Therefore, the demand of opportunistic

energy users has a Gaussian distribution N (qo(v), σ2
o(v)), with

qo(v) , λoT2αov
γoEo,

σ2
o(v) , λoT2αov

γoE2
o . (3.12)

Observe from (3.12) that the variance of the demand of opportunistic energy users is of

the same order as its mean. Further, wind generation and the demand of opportunistic

energy users are typically comparable regarding the mean, and it is observed that the
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uncertainty of wind generation is so high that the standard deviation is of the same

order as its mean. Therefore, we conclude that Condition II holds.

3.3.3.1 Approximate Solution to the Real-time Scheduling Problem

It is easy to verify that 1A = 0 holds under Condition I. Then, by using (3.12), (3.6)

reduces to

R̃l(ψl, s, u, v) = uDt − c1s + c2Y + (v − c2) qo(v)

− (2π)−1/2cσo(v) exp
(
−y2/2

)
− c (Y − qo(v)) (1 − Q (y)) , (3.13)

where Y ,s+W−Dt, y,Y −qo(v)
σo(v)

, c,cp−c1+c2, and Q(·) is the tail probability of the

standard normal distribution.

The demand of opportunistic energy users is said to be relatively inelastic

if −1≤γo<0, i.e., the percentage change in demand is greater than that of price;

otherwise, it is relatively elastic. Since the price elasticity can have significant impact

on the demand of opportunistic energy users, we proceed to study real-time schedule

for different cases of elasticity.

Proposition 3.3.1. Suppose Condition I and Condition II hold. When the de-

mand of non-persistent opportunistic energy users is relatively inelastic, i.e., −1≤γo<0,

the real-time pricing policy is given by ϑ̃s,u(ψ
l)=vcap.

Remarks: The proof is provided in Appendix A. Note that the above result is

intuitive, since, with the opportunistic energy users’ energy demand being relatively

insensitive (inelastic) to the real-time price, the system operator can maximize profit

by simply announcing the highest possible price, vcap.
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Proposition 3.3.2. Suppose Condition I and Condition II hold. When the

demand of non-persistent opportunistic energy users is relatively elastic, i.e., γo < −1,

the real-time pricing policy ϑ̃s,u which maximize R̂l(ψl, s, u, v) is given by

ϑ̃s,u(ψ
l) =


γo(c1−cp)

1+γo
if Y ≥ qo(

γo(c1−cp)

1+γo
)

γoc2
1+γo

if Y < qo(
γoc2
1+γo

)

q−1
o (Y ) o.w.

(3.14)

Remarks: The proof is provided in Appendix A. Note that the first case, i.e.,

Y ≥qo(
γo(c1−cp)

1+γo
), refers to a case of supply surplus, i.e., there is more supply than the

total demand from traditional and opportunistic energy users, and the second case is

tied with a case of supply deficit. Then, it is natural that the real-time price in the

first case is lower so as to encourage the consumption of opportunistic energy users,

whereas the real-time price in the second case is higher. Note also that, in both

cases, when the demand of opportunistic energy users becomes increasingly elastic,

the real-time price progressively decreases to the minimum allowable prices, i.e., c1−cp

and c2, respectively. This monotonic behavior of the real-time price with respect to

increasing elasticity comes at no surprise, since, as γo→−∞, the average demand of

opportunistic energy user qo(v)→0, i.e., the opportunistic energy users become more

and more thrifty. Therefore, the system operator has to offer power at increasingly

cheaper prices, up to the lowest possible price. Therefore, when opportunistic demand

is elastic, the above pricing scheme could effectively manage opportunistic demand

so as to enhance the system reliability.
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3.3.3.2 Approximate Solution to the Day-ahead Scheduling Problem

Having established a closed-form real-time pricing policy for both elastic and inelastic

cases, a day-ahead schedule can be obtained via the single-stage optimization below:

P̃DA
non−pst : max

s,u
EWEu

Dt

[
Rl(ψl, s, u, ϑ̃s,u(ψ

l)
]
. (3.15)

where Rl is given by (3.6) and the expectations depend on the exact stochastic models

assumed for wind generation and traditional users’ energy demand.

Proposition 3.3.3. The optimal decision of P̃DA
non−pst is

u∗ =

 ucap if − 1 ≤ γt < 0

γt

1+γt
c1 if γt < −1,

s∗ = arg max
s

{
(c2 − c1)s + Ev

W,D [(v − c2)Do

− c1B(s + W − αtu
∗γt − εt − Do)]} . (3.16)

Remarks: The proof is provided in Appendix A. Based on the results in

Proposition 3.3.1, it is easy to see that when opportunistic demand is inelastic, the

optimal procurement of base-load generation is given by:

s∗ = qo(vcap) + αtu
∗γt − Ŵ + F−1

Z (1 − cp/c) , (3.17)

where F−1
Z (·) denotes the inverse of the of Z , εt − εw. One key observation from

(3.17) is that the last term, F−1
Z (1 − cp/c) that equals s∗ − EW,D[D − W ] could be

regarded as spinning reserve, i.e., the additional generation beside those scheduled

to satisfy the expected net demand EW,D[D − W ]. Since F−1
Z (·) is a non-decreasing
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function, it is clearly that F−1
Z (1 − cp/c) becomes larger as cp decreases, or c2 − c1

increases, or the variance of Z increases. In other words, more spinning reserve would

be scheduled when the spinning reserve cost is lower, or when the non-spinning reserve

cost is higher, or when the uncertainty in net demand is higher. For the elastic case,

s∗ could be solved using numerical methods, and similar conclusion on reserve can be

drawn.

3.4 Multi-timescale Scheduling with Persistent Opportunistic Energy Users

We now study multi-timescale scheduling when the opportunistic energy users are

persistent. We assume that the opportunistic energy users are persistent across both

T2 and T1 slots, and that the opportunistic energy users that arrived in the day leave

the system at the end of the day. Due to the persistent nature of the opportunistic

energy users, scheduling decisions in both T2 and T1-slots affect the system trajec-

tory and hence scheduling decisions in future slots across both timescales. Thus, the

scheduling problem involves hierarchically structured control [45], with the hierarchy

defined across timescales. With this insight, we treat the scheduling problem as a

multi-timescale Markov decision process [46]. where the decisions made in the higher

level affects both the state transition dynamics and the decision process at the lower

level, while decisions at the lower level affect only the decisions made at the upper

level. Further, the MMDP in this study has the following special characteristics: the

two timescales do not overlap, since the upper level decisions (day-ahead) are made in

non real-time. Thus, the upper level decisions are made without any direct observa-

tion of the effect it has on the lower level system dynamics, and make decisions solely

based on stochastic understanding of the lower level process. These properties make

the rigorous formulation of the multi-timescale scheduling problem, with persistent

users, uniquely challenging. We now describe the problem in detail.
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For day-ahead scheduling, the system operator decides the energy supply pro-

curement sm and the price um for the mth T1-slot in the next day. Recall that the

expected amount of wind generation Ŵm is available in day-ahead. We define the sys-

tem state, ψu
m, corresponding to the mth T1-slot in the next day as ψu

m = {Ŵm, P u
m},

where P u
m denotes the number of persistent opportunistic energy users carried over

from the (m− 1)th T1-slot. During real-time scheduling, the system operator has the

knowledge of the wind generation, the demand from traditional energy users and the

number of persistent opportunistic energy users carried over from previous T2-slot.

Based on this information, it must decide a real-time price vk,m for the kth T2-slot

in the mth T1-slot, i.e., the (k,m)th T2-slot. We define the observable (observable

in real time) state of the system in (k,m)th T2-slot as ψl
k,m = {Wk,m, Dtk,m, P l

k,m},

where Wk,m denotes the wind generation in the kth T2-slot in the mth T1-slot, Dtk,m

is the energy demand from traditional energy users in the (k,m)th T2-slot, condi-

tioned on the day-ahead price, as defined in Section II A, P l
k,m denotes the number

of persistent opportunistic energy users carried over from the previous T2-slot to the

(k,m)th slot. Having explicitly defined the system states for the day-ahead schedul-

ing and real-time scheduling, we then introduce the optimality equations. With

~Xm = [X1,m, · · · , XK,m], we have

V u
m(ψu

m) = max
sm,um

{
E ~Wm, ~Dtm

[
max
~vm

{
E~P l

m

K∑
k=1

[
Rl

k,m({ψu
m, ψl

k,m}, sm, um, vk,m)
]

+ EP u
m+1=P l

K,m
V u

m+1(ψ
u
m+1)

}]}
(3.18)

As noted earlier, this is an MMDP over a finite horizon, with sm, um being the upper

level (slower timescale) decisions and vk,m being the lower level decisions.

To mitigate the complexity of the MMDP problem, we exploit the structural

properties of the multi-timescale scheduling problem and recast it as a classic MDP.

54



Proposition 3.4.4. With appropriately defined immediate reward Ru
m and action

space au
m, the two-level scheduling problem can be written as a classic MDP at the

slower time-scale, the Bellman equation of which is given by:

V u
m(ψu

m) = max
au

m={sm,um,ζm}

{
Ru

m(ψu
m, au

m) + E
{ψu

m,au
m}

P u
m+1

V u
m+1(ψ

u
m+1)

}
, (3.19)

where ζm:{Wk,m,Dtk,m
,P l

k,m}→vk,m is a stationary mapping within the mth T1-slot,

and the various expectations used in the MDP formulation are defined in (3.20).

E
{ψu

m,au
m}

P u
m+1

(.) = E
P l

1,m

P l
2,m

E
P l

2,m

P l
3,m

· · ·EP l
K−1,m

P l
K,m

E
P l

K,m

P u
m+1

(.)

E
P l

k,m

P l
k+1,m

(.) = EWk,m
EDtk,m

ENk,m
E

{Nk,m,P l
k,m}

P l
k+1,m

(.)

Πvk,m
= P (V ≤ vk,m)

E
{Nk,m,P l

k,m}
P l

k+1,m

(.) =

Nk,m+P l
k,m∑

P l
k+1,m=0

 P l
k,m + Nk,m

P l
k+1,m


(1 − Πvk,m

)P l
k+1,m(Πvk,m

)(Nk,m+P l
k,m−P l

k+1,m)(.) (3.20)

We now proceed to discuss the transformation of the two-level scheduling

problem from an MMDP to a classic MDP. In the two-level scheduling problem,

recall that the lower level decisions are essentially the mapping from the realizations

of wind generation, traditional users’ energy demand and persistent opportunistic

energy users to the real-time price, i.e., ζk,m : {Wk,m, Dtk,m, P l
k,m} → vk,m. Consider

a stationary real-time pricing policy within each T1 slot, i.e., ζ1,m = ζ2,m . . . ζK,m,

and denote this stationary mapping by ζm. Thus, vk,m = ζm(Wk,m, Dtk,m
, P l

k,m). A

key step towards the above results is to view ζm as an action at taken day-ahead

scheduling, in addition to actions sm, um. With this insight, we can simplify the
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MMDP into a classic MDP, as discussed below. Note that in (3.4.4), V u
m(ψu

m) is

the expected net reward from slot m until slot M in day-ahead scheduling, and the

terminal reward is given by

V u
M(ψu

M) = max
au

M

Ru
M(ψu

M , au
M). (3.21)

Note that the immediate reward corresponding to mth T1-slot is a function of the

realized values of wind generation mean (that is accurately forecast in day-ahead)

and the number of persistent opportunistic energy users carried over from previous

T1-slot. We now proceed to explicitly characterize the immediate reward Ru
m, for

m ∈ {1, . . .M}:

Ru
m(ψu

m, au
m) = V l

k,m({Ŵm, P l
k,m}, au

m)|k=1, (3.22)

where P l
1,m = P u

m by definition, and for k ∈ {1, · · · , K − 1}

V l
k,m({Ŵm, P l

k,m}, au
m = {sm, um, ζm})

= EŴm
Wk,m

Eum
Dtk,m

Rl
k,m(ψl

k,m, au
m)

+ E
P l

k,m

P l
k+1,m

V l
k+1,m({Ŵm, P l

k+1,m}, au
m), (3.23)

and V l
K,m is given by

V l
K,m({Ŵm, P l

K,m}, au
m) = EŴm

WK,m
Eum

DtK,m
Rl

K,m(ψl
K,m, au

m), (3.24)

where EŴm
WK,m

and Eum
DtK,m

are defined using (1) and (2), respectively. Note that the

quantities Rl
k,m and V l

k,m can be regarded as the immediate reward and the net re-

ward at the lower level MDP, respectively. The quantity Rl
k,m is a function of the

realizations of the wind generation, the demand from traditional energy users and
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the number of persistent opportunistic energy users carried over from the previous

T2-slot. More specifically, (3.6) can be re-formulated as

Rl
k,m(ψl

k,m, au
m) = umDtk,n

+ ENk,m
E

{Nk,m,P l
k,m,vk,m}

Nak,m
[vk,mDok,m

+ (−cpsm)1A + (−εk,mcp − (sm − εk,m)c1)1B

+ (−c1sm + c2εk,m)1C ], (3.25)

where Nk,m denotes the number of opportunistic energy users arriving at the (k,m)th

slot, which is Poisson distributed.

Summarizing, we have rigorously formulated the multi-timescale scheduling

problem as an MMDP with special characteristics, and shown that it can be recast

explicitly as an MDP with continuous state and action spaces. Using appropriate

discretization techniques, we can reformulate it as a classic discrete state and action

space MDP that can be solved optimally or near-optimally using various techniques

available in the literature [47].

3.5 Numerical Results

We now study, via numerical experiments, the performance of the proposed ap-

proach in the multi-timescale scheduling framework, through comparison with ex-

isting scheduling schemes in a benchmark smart grid system where all the energy

users are assumed to exhibit traditional response to the day-ahead prices u with the

same price elasticity γt. Therefore, the scheduling and pricing decisions (s̄∗,ū∗) of the

benchmark system could easily be obtained from (3.16) by neglecting the opportunis-

tic demand and real-time pricing, i.e., s̄∗=ᾱtū
∗γt−Ŵ+F−1

Z (1−cp/c) and ū∗ = u∗. The

performance metrics are the per unit generation cost, which is defined as the ratio

of total generation cost to the total demand served, and system reliability metrics
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including loss of load probability (LOLP) and expected energy not served (EENS).

Further, we also discuss the impact on the dispatched base-load and fast-start gen-

erations.

In this numerical study, we focus only on the key parameters and investigate

their impact on the system performance, including the penetration level of wind gen-

eration ηw, the penetration level of opportunistic demand ηo and the uncertainty of

wind generation. Specifically, as in literatures, the penetration level of wind genera-

tion ηw is defined as the ratio of wind generation to the total energy supply over the

whole scheduling horizon. Similarly, the penetration level of opportunistic demand

ηo is defined as the ratio of opportunistic demand to the total energy demand. Data

for other system parameters are described as follows. For simplicity, we assume that

the penetration level of opportunistic demand is a constant across T1 slots.

3.5.1 Simulation Data

3.5.1.1 Stochastic Wind Generation

Wind generation data are collected from [66] and scaled according to the penetration

level ηw. The “point-forecast” Ŵm in (3.3) is provided using the Markov chain devel-

oped in [66]. For simplicity, the probability distribution illustrated in Fig. 3.2 is used

for εw. It is easy to see that the forecast error εwm has a support (−3λŴm, 3λŴm),

and λ is exactly the MAPE. Therefore, the uncertainty of wind generation could be

controlled by varying λ, which is viable by varying the number of states of Markov

chain. For day-ahead forecast, λ is usually around 20% [6].

3.5.1.2 Generation Cost

We adopt the approach in [48], which utilizes the heat rates of generators to compute

the generation cost. Here, base-load generators of coal type and fast-start generators
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Figure 3.2: PDF of wind generation forecast error in the mth T1-slot.

of #2 oil type are considered. Specifically, c1=30.45$/MWh, c2=228.51$/MWh and

cp=15$/MWh.

3.5.1.3 Uncertain Demand

The hourly demand data in Table. 4 of [49] with peak value 8550 MW is used for

both systems. For given total hourly demand D, we set E[Dt]=D for the benchmark

system; for the multi-timescale scheduling system, traditional and opportunistic de-

mand are properly scaled by setting E[Dt]=(1 − ηo)D and E[Do]=ηoD, respectively.

For εt, a zero-mean normal distribution with standard deviation σ̃t that is 3% of

the expected demand E[Dtm ] is used by truncating over (−3σ̃t,3σ̃t). Further, we use

γt=−0.5, γo=−2 and 0.05$/kWh as the price cap for both u and v.

3.5.2 Performance Evaluation and Discussion

We use the case of non-persistent opportunistic demand and the hour with peak de-

mand of 8550 MW as an illustrative example. Note that the metrics are computed

via Monte-carlo simulations by choosing wind generation and demand randomly ac-

cording to their distributions specified earlier.
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Figure 3.3: Per unit generation cost (λ = 20%).
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Figure 3.4: Dispatched fast-start generation (λ = 20%).

3.5.2.1 Per Unit Generation Cost

In Fig. 3.3, the per unit generation cost is plotted against various ηw. In the multi-

timescale scheduling system, the per unit generation cost decreases significantly with

ηw, since wind energy is harvested “cost-free”; in contrast, in the benchmark system,
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the per unit generation cost is not really reduced. The reason is revealed in Fig. 3.4,

i.e., much more fast-start generation is dispatched in the benchmark system.

3.5.2.2 Reliability

In practice, usually, a fixed amount of active reserve is scheduled. One practical rule is

the “X+Y ” rule [50], in which active reserve is R=X%D̂+Y %Ŵ for given forecasted

demand D̂ and wind Ŵ . As discussed earlier, part of s∗ is scheduled as spinning

reserve of amount SR=s∗−E[D − W ]. Therefore, adhering to a “3+10” rule, we

investigate the system reliability by considering NS=R−SR fast-start generation as

active non-spinning reserve, quantified by LOLP, i.e., E[1{D−s∗−W>NS}], and EENS,

i.e., T1E[(D−s∗−W−NS)+]. It is observed from the results illustrated in Fig. 3.5

that, for given penetration levels of wind generation, the proposed multi-timescale

scheduling approach achieves higher reliability with the same reserve requirement.
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Figure 3.5: System Reliability (λ = 20%).
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3.5.2.3 Impact of Forecast Accuracy

We control the uncertainty of wind generation due to forecast error by varying λ, and

investigate the impact on the fast-start generation that is necessary to maintain the

system reliability. It is observed in Fig. 3.6 that the fast-start generation requirement

increases with λ in all systems. For multi-timescale scheduling, this is because v keeps

fixed and the opportunistic demand could not be reduced any further in the supply

deficit case of Proposition 3.3.2). Therefore, it is imperative to develop advanced

models and techniques to improve the forecast accuracy.
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Figure 3.6: Non-spinning reserve requirement (ηw = 20%).

Summarizing, the above results suggest that the proposed multi-timescale

scheduling schemes have the potential to enhance the system reliability and reduce

the cost incurred by wind generation integration. Note also that, the benefit brought

by multi-timescale scheduling could be very limited if ηo is low, e.g., when ηo≤10%,

as observed in Fig. 3.3- Fig. 3.6.
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3.6 Conclusion

Multi-timescale scheduling and pricing with traditional and opportunistic energy

users is investigated to address the challenge of integrating volatile wind genera-

tion into smart grids. Specifically, when the opportunistic users are non-persistent,

we obtain closed-form solutions to the multi-scale scheduling problem, by assuming

two reasonable conditions. When the opportunistic energy users are persistent, we

formulate the scheduling problem as an MMDP and discussed its special character-

istics. We then show that the scheduling problem can be recast, explicitly, as a

classic MDP with continuous state and action spaces, the solution to which can be

found via standard MDP solution techniques. The optimal scheduling and pricing

decisions are characterized rigorously for both non-persistent model and persistent

model. Through numerical experiments, we demonstrate the potential benefit of the

proposed multi-timescale scheduling approach, when compared with existing system

and schemes.
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PART II

SYNCHROPHASOR DATA MINING AND INFORMATION

FUSION
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Chapter 4

A ROBUST DATA-MINING FRAMEWORK FOR ON-LINE DSA USING

ADAPTIVE ENSEMBLE DECISION TREE LEARNING

4.1 Introduction

Dynamic security assessment [51] can provide system operators important informa-

tion regarding the transient performance of power systems under various possible

contingencies. By using the real-time or near real-time measurements collected by

phasor measurement units (PMUs), online DSA can produce more accurate security

classification decisions for the present OC or imminent OCs. However, online DSA

still constitutes a challenging task due to the computational complexity incurred by

the combinatorial nature of N−k (k=1,2,· · · ) contingencies and the massive scale of

practical power systems, which makes it intractable to perform power flow analysis

and time domain simulations for all contingencies in real-time.

The advent of data mining techniques provides a promising solution to handle

these challenges. Cost-effective DSA schemes have been proposed by leveraging the

power of data mining tools in classification, with the basic idea as follows. First, a

knowledge base is prepared through comprehensive offline studies, in which a number

of predicted OCs are used by DSA software packages to create a collection of training

cases. Then, the knowledge base is used to train classification models that char-

acterize the decision rules to assess system stability. Finally, the decision rules are

used to map the real-time PMU measurements of pre-fault attributes to the security

classification decisions of the present OC for online DSA. The data mining tools that

have proven effective for DSA include decision trees [52–57], neural networks [58–60]

and support vector machines [61–63]. More recently, fuzzy-logic techniques [64] and

ensemble learning techniques [65–67] have been utilized to enhance the performance
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of these data mining tools in security assessment of power systems. Among various

data mining tools, DTs have good interpretability (or transparency) [68], in the sense

that the secure operating boundary identified by DTs can be characterized by using

only a few critical attributes and corresponding thresholds. As illustrated in Fig. 4.1,

a well-trained DT can effectively and quickly produce the security classification deci-

sions for online DSA, since only a few PMU measurements of the critical attributes

are needed. The high interpretability of DTs is amenable to operator-assisted preven-

tive and corrective actions against credible contingencies [69]. However, as discussed

in [70], there exists an “accuracy versus transparency” trade-off for data mining tools.

In order to obtain a more accurate classification model from DTs, one possible ap-

proach is to use an ensemble of DTs at the cost of reduced interpretability. Examples

of ensembles of DTs for DSA are the multiple optimal DTs [56], random forest [65]

and boosting DTs [66].

When applying data-mining-based approaches to online DSA, there are two

main issues that can result in inaccurate security classification decisions. First, the

realized OCs in online DSA can be dissimilar to those in the initial knowledge base

prepared offline, since the predicted OCs might not be accurate and the OCs can

change rapidly over time. Second, it is possible that a system topology change may

occur during the operating horizon due to the forced outage of generators, trans-

formers and transmission lines. These factors can compromise the performance of

the classification model trained offline. To develop a robust data-mining-based on-

line DSA scheme, the initial knowledge base and the classification model have to be

updated in a timely manner to track these changed situations. However, there have

been limited efforts directed towards handling OC variations and topology changes.

In the scheme proposed in [56], when the built DT fails to classify the changed OCs

correctly, a new DT is built from scratch or a sub-tree of the DT is replaced by
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a newly built corrective DT. Aiming to deal with possible topology changes, refer-

ences [59, 67] suggest creating an “overall” knowledge base that covers all possible

system topologies and choosing the attributes that are independent of topology for

data mining.

In this chapter, a robust data-mining-based DSA scheme using adaptive en-

semble DT learning is proposed to handle these challenges in a more efficient manner.

Specifically, the classification model for DSA is based on boosting multiple unpruned

small-height DTs1. Generally, the height of a DT is the maximal number of tests

that is needed for the DT to classify a case. For the sake of brevity, small DTs are

referred to as small DTs throughout. In offline training, the small DTs and their

voting weights are sequentially identified in a “gradient-descent” manner to minimize

the misclassification cost. The small DTs, together with their voting weights, are

then periodically updated throughout the operating horizon by using new training

cases that are created to account for any change in OC or network topology. Different

from existing DT-based DSA schemes, the training cases are assigned different data

weights by each small DT; and higher data weights are assigned to a new training case

if it is misclassified by the small DTs. The aforementioned techniques are utilized to

minimize the misclassification cost as new training cases are added to the knowledge

base, so that the classification model could smoothly track the changes in OCs or

system topology.

The rest of this chapter is organized as follows. A brief introduction to DTs

and their application to DSA are given in Section 4.2. The proposed scheme is

discussed in detail in Section 4.3. An illustrative example by using the IEEE 39-bus

test system is presented in Section 4.4. The proposed scheme is applied to the WECC

system in Section 4.5. Finally, conclusions are provided in Section 4.6.

1For the sake of abbreviation, small-height DTs are referred to as small DTs in the remainder
of this disseration
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4.2 Background on DT and Its Application to DSA

Internal node Leaf node
Decision

CSR

Training cases

Root node

Figure 4.1: A fully-grown DT of height 5 for the WECC system using an initial
knowledge base consisting of 481 OCs and three critical contingencies.

The data-mining framework for DSA was originally developed in [52], in which

DTs were introduced to perform DSA for power systems. A DT, as illustrated in

Fig. 4.1, is a tree-structured predictive model that maps the measurements of an

attribute vector x to a predicted value ŷ. When DTs are used for online DSA, the

attribute vector can consist of various PMU-measured variables and other system in-

formation, and the binary decision given by DTs represents the security classification

decision of an OC for a critical contingency (e.g., ŷ=+1 represents the insecure case,

and ŷ=−1 for the secure case). Usually, bus voltage phase angles, bus voltage magni-

tudes and branch power/current flows that are directly measured by PMUs are used

as numerical attributes. Fig. 4.1 illustrates the numerical and categorical attributes

used in a trained DT, in which an attribute with initial “V” stand for a bus voltage

magnitude, the attributes with initials “P”, “Q”, and “A” stand for an active power

flow, a reactive power flow, and a voltage phase angle difference between two buses,

respectively (the bus numbers in attribute names are different from their real ones),

“CTNO$” stands for the index of contingency.
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In a DT, each non-leaf node tests the measurement of an attribute and decides

which child node to drop the measurements into, and each leaf node corresponds to a

predicted value. As shown in Fig. 4.1, in a DT for DSA, the predictive value of each

leaf node is either “S” or “I”, in which “S” stands for secure cases and “I” for insecure

cases. Fig. 4.1 also illustrates the training cases that fall into each node, by using

dark bars for secure cases and bright bars for insecure cases. The number of non-leaf

nodes along the longest downward path from the root node to a leaf node is defined

as the height of a DT. Given a collection of training cases {xn, yn}N
n=1, the objective

of DT induction is to find a DT that can fit the training data and accurately predict

the decisions for new cases. State-of-the-art DT induction algorithms are often based

on greedy search. For example, in the classification and regression tree (CART)

algorithm [71], the DT grows by recursively splitting the training set and choosing

the critical attributes (numerical or categorical) and critical splitting rules (CSR)

with the least splitting costs until some predefined stopping criterion (e.g., the size

of tree or the number of training cases in a leaf node) is satisfied. In general, a fully-

grown DT that accurately classifies the training cases might misclassify new cases

outside the knowledge base. This feature of fully-grown DTs is usually referred to as

“overfitting” [68]. In order to avoid overfitting, DTs are usually pruned by collapsing

unnecessary sub-trees into leaf nodes. As illustrated in Fig. 4.1, in a pruned DT, some

leaf nodes do not have pure training cases, which is a result of either tree pruning or

early termination of tree growing [68]. By removing the nodes that may have grown

based on noisy or erroneous data, the pruned DT is more resistant to overfitting than

a fully-grown DT without pruning, and thus can give more accurate security decisions

A major advancement in DT-based DSA schemes was made in [57], in which

the authors proposed to build a single DT to handle multiple contingencies, by using

the index of contingencies as a categorical attribute of the DT. It is worth noting that a
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DT built by using such an approach can give the security classification decisions of an

OC concurrently for all the critical contingencies in the knowledge base, which is more

efficient and can identify the critical attributes that are independent of contingencies.

For example, the DT in Fig. 4.1, using CTNO$ as a categorical attribute, can give

security classification decisions of an OC for three critical contingencies, i.e., CT6,

CT45 and CT46, at the same time, and the critical attributes Q12,16, P7,2, Q7,9,

A11,9, A12,19, A5,12 and P36,7 can give security classification decisions independent of

contingence type for some cases.

4.2.1 Small DTs

(a) Small DT h1 (b) Small DT h2 (c) Small DT h3

Figure 4.2: The first three small DTs (J=2) for the WECC system, the voting weights
of which are 4.38, 3.04 and 0.93, respectively.

A small DT with tree height J is obtained by stopping the splitting of any

leaf node if the downward path from the root node to that leaf node has exactly

J non-leaf nodes. According to [72], a small DT is much less prone to overfitting

compared to a fully-grown DT; therefore, the small DTs used in the proposed scheme

are built without pruning. Examples of small DTs are given in Fig. 4.2 with J=2. It

can be seen that the non-leaf nodes of h1 are exactly the same as the corresponding

nodes of the DT in Fig. 4.1. It is worth noting that the optimal choice of J is highly

dependent on the knowledge base, and should be decided based on a bias-variance

analysis [68], which will be discussed in the case study of Section IV. Note also that

different from [68], the tree height, instead of the number of nodes, is used as the
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metric to quantify the tree size. The reason, which will be soon apparent, is to restrict

the number of nodes that will be revised when updating DTs to a value less than J .

4.2.2 Ensemble of DTs

In ensemble-DT-based DSA schemes, the security classification decision of an OC

vector x, denoted by HL(x), is made based on the voting of multiple DTs. For an

ensemble of DTs hl(l = 1,2,· · · ,L), there are two approaches to DSA classification:

deterministic and probabilistic. For the deterministic approach, the security classifi-

cation decision is given by:

HL(x) =

 +1, if
∑L

l=1 alhl(x) ≥ 0

−1, o.w.
(4.1)

where al (l = 1,2,· · · ,L) are the voting weights of DTs. To obtain probabilistic

classification decisions, the “logistic correction” technique [73] can be applied. Then,

the probability of an “Insecure” classification decision is given by:

Pr(HL(x) = +1|x) =
1

1 + exp(−
L∑

l=1

alhl(x))

(4.2)

In this chapter, deterministic classification decision is used to calculate the misclas-

sification rate for case studies.

The existing methods for ensemble DT learning include bagging, random sub-

space method, boosting and random forest. Reference [74] compares these methods,

and finds that boosting and random forest achieve significantly better performance

than the others. In previous work by the authors [66], an algorithm for boosting

DTs is developed in the context of avoiding overfitting to noisy training data. In this

chapter, the boosting algorithm is employed in online DSA to deal with OC varia-
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tions and possible topology changes. The algorithm for building the small DTs and

calculating the voting weights will be discussed in Section III.A.

4.2.3 Updating DTs

One existing approach for updating a DT without rebuilding it from scratch is the

efficient tree restructuring algorithm [75], with the main idea summarized as follows.

When incorporating a new case, the DT remains unchanged if the new case is classified

correctly; otherwise, the non-leaf nodes along the path which the new case passes are

revised in a top-down manner. Specifically, for each non-leaf node to be revised, a

new test is first identified by using the new case as well as the existing cases that

fall into the non-leaf node. If different from the original test, the newly identified

test is then installed at the non-leaf node, followed by tree restructuring operations

recursively applied on the sub-tree corresponding to that non-leaf node (there are six

slightly different restructuring operations for various structures of the sub-tree, which

are not discussed here). The motivation for these restructuring operations is that the

original test at the non-leaf node is highly likely to be the optimal tests for the two

child nodes after restructuring, which is usually the case when categorical attributes

are used by the test [75]; in this scenario, the two child nodes are exempted from

further update.

4.3 Proposed Scheme for Online DSA

The proposed scheme for online DSA, as illustrated in Fig. 4.3, consists of three steps,

with the details described below.
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Refined classification model
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DSA results
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(oc variations and topology change are 

accounted for) into knowledge base 

Figure 4.3: Proposed scheme for online DSA using adaptive ensemble DT learning.

4.3.1 Offline Training

4.3.1.1 Initial Knowledge Base Preparation

First, NOC predicted OCs are generated day ahead for each period of the future

operating horizon (e.g., the next 24 hours) based on day-ahead load forecast and gen-

eration schedules; each period may span several hours, and can be divided according

to the hours of peak load, shoulder load and off-peak load. Then, for each of the NOC

day-ahead predicted OCs, detailed power flow analysis and time-domain simulations

are performed for K critical contingencies that are selected by the system operator

or based on prior experience. It is worth noting that the key focus here is on dealing

with OC variations and possible topology changes, and thus the selection or screen-
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ing of critical contingencies is beyond the scope of this study. By using specified

dynamic security criteria (e.g., transient stability, damping performance, transient

voltage drop/rise, transient frequency, relay margin), the day-ahead predicted OCs

are labeled as “Secure” or “Insecure” for each critical contingency.

As a result, an initial knowledge base that consists of N= NOC×K training

cases is obtained, in which each case is represented by a vector {x1,· · · ,xP ,y}, where

x1 is the index of a critical contingency, {x2,· · · ,xP} are the values of numerical at-

tributes obtained from power flow analysis of an OC, and y is the transient security

classification decision of the OC for the critical contingency x1. Based on the previ-

ous studies [55–57], the following PMU-measured variables are selected as numerical

attributes:

• Branch active power flows {Pij; i∈B or j∈B}

• Branch reactive power flows {Qij; i∈B or j∈B}

• Branch current flows (magnitude) {Iij; i∈B or j∈B}

• Bus voltage magnitudes {Vi; i∈B}

• Bus voltage phase angle differences {Aij,Ai−Aj; i, j∈B and i>j},

where B denotes the set of PMU buses in the system. It is worth noting that only

raw measurements reported by PMUs are used as the numerical attributes in this

work; more generally, the variables computed using other system information may

also be used, e.g., the voltage at the bus connected to a PMU bus when the branch

impedance is constant [55].
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Figure 4.4: Boosting small DTs

4.3.1.2 Boosting Small DTs

The basic algorithmic flowchart of boosting small DTs is illustrated in Fig. 4.4. For

convenience, define HJ as the class of small DTs with height J , define FL as the score

of the weighted voting of the ensemble of small DTs, i.e., FL(x)=
∑L

l=1alhl(x), and

define CN(FL) as the cost function of FL on the N training cases, given by:

CN(FL) =
1

N

N∑
n=1

log2(1 + e−ynFL(xn)). (4.3)

It is observed from (4.1) and (4.3) that CN(FL) lies strictly above the misclassification

error rate of HL. Then, a primary objective of boosting is to minimize CN(FL), by

identifying the small DTs hl∈HJ and their voting weights al∈R+. An analytical

formulation is provided below:

PF : min
h1,··· ,hL∈HJ

a1,··· ,aL∈R+

CN(FL). (4.4)
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The convexity and the differentiability of CN(FL) with regard to FL make it possible

to solve PF in (4.4) by using a line search strategy [76], the details of which are

summarized as follows. A small DT hl is chosen to be the “gradient” of CN at

Fl−1 projected onto HJ , and the voting weight al is computed as the “step size”

that minimizes CN(Fl−1 + alhl). Then, the small DT hl is added to Fl−1 to obtain

Fl=Fl−1+alhl. The above steps are iterated, for l=1,2,· · · ,L, by using F0 as a zero

function. More specifically, it is shown in [66] that the small DT hl can be obtained

by solving the following problem:

P(l)
h : min

hl∈HJ

1

N

N∑
n=1

w(l)
n 1{yn 6=hl(xn)}, (4.5)

where w
(l)
n ,(1+eynFl−1(xn))−1 is the positive data weight of the training case {xn,yn},

and 1{yn 6=hl(xn)} takes value 0 if the training case {xn,yn} is correctly classified by the

small DT hl (otherwise, it takes value 1). By definition of w
(l)
n , it is easy to observe

that the data weights are assigned adaptively by small DTs, in the sense that if the

training case {xn,yn} is misclassified by the small DT hl, then w
(l+1)
n >w

(l)
n , i.e., the

training case has a higher data weight in the next round of the boosting process. It is

worth noting that highly skewed training data (e.g., the case in [65]) can be handled by

scaling up the weights of under-represented cases, such that
∑

y=+1 w
(l)
n =

∑
y=−1 w

(l)
n .

As suggested in (4.5), the objective of P(l)
h is to determine the small DT that has

the least misclassification error rate on the weighted training data. Thus, the small

DT hl can be obtained by employing the standard CART algorithm [71] subject to

the tree height J , and by using misclassification error rate as the splitting cost when

building the DT. Then, its positive voting weight is obtained by solving the following

problem:

P(l)
a : min

a∈R+
G

(l)
N (a), (4.6)
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where G
(l)
N (a),CN(Fl−1 + ahl). Under the condition that hl is a “descent direction”

of CN(Fl−1), it is easy to verify that G
(l)′

N (0)<0 and G
(l)′′

N (a)>0 holds for any a∈R+.

Therefore, G
(l)
N (a) has a unique minimum in R+ that can be found using standard

numerical solution methods (e.g., Newton’s method).

4.3.2 Periodic Updates

4.3.2.1 New Training Case Creation

In the initial knowledge base prepared offline, the predicted OCs generated using day-

ahead forecast may not reflect the actual system conditions, which is very likely to

be the case for power systems with high penetration of variable renewable generation

and distributed generation. Therefore, as the operating horizon is approached and

the data available to system operators is updated, it will be necessary to utilize

short-term forecast and schedules to generate newly changed OCs and add them

to the knowledge base on a slot-by-slot basis (one slot may span several minutes

depending on the processing speed [55]). Further, in case of a topology change, the

post-disturbance OCs should also be incorporated into the knowledge base. After

power flow analysis of these newly changed OCs, new training cases are generated as

described in Section III-A-1. It is worth noting that during the operating horizon, it

is also likely that the knowledge base may need to be updated by incorporating new

contingencies of interest. The solution to this problem has been discussed in [66]. In

this work, the critical contingency list is assumed to remain unchanged during the

operating horizon.

4.3.2.2 Updating the Classification Model

Given the newly created training cases, the classification model is updated by using

one new case at a time. Specifically, for the k-th new training case {xN+k, yN+k},

the classification model is updated by incorporating {xN+k, yN+k} with a data weight
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w
(l)
N+k=(1+eyN+kFl−1(xN+k))−1 into the small DT hl and recalculating the voting weight

al, iteratively for l = 1,2,· · · , L.

A key step for incorporating a new training case into a small DT is to adopt

the method described in Section II-C. Since misclassification error rate is used as

the metric of splitting cost, as suggested in (4.5), it is easy to observe that there

exists a even simpler solution for updating the small DTs. Specifically, a small DT

remains unchanged if the new case is correctly classified; otherwise, only the sub-

tree corresponding to the first non-leaf node that has a different decision for the new

case is subject to update. It is worth noting that, since the tree height is J , the

total number of non-leaf nodes to be revised is at most J . After the small DT hl is

updated, its voting weight al is recalculated by minimizing G
(l)
N+k(a).

The process of updating the classification model is summarized in Algorithm 1.

It is useful to note that when the k-th new training case is used to update the small

DTs, the data weights of the previous N+k−1 training cases calculated in Step 4 of

Algorithm 1 are different from the data weights that were used in building or updating

the small DTs in the past rounds. Therefore, unlike the case in offline training, it

is possible that the updated small DT hl is not a “descent direction” of CN+k at

Fl−1 any more. In order to detect and handle this situation, an extra step is used in

Algorithm 1. Specifically, if
∑N+k

n=1 w
(l)
n ynhl(xn)<0, then −hl is a “descent direction”

and used for weighted voting.

4.3.3 Online DSA

In real-time, when the synchronized PMU measurements are received, the pre-fault

values of the numerical attributes are retrieved and combined with the indices of

all critical contingencies to create K unlabeled cases, which will be used by the

classification model to give security classification decisions of the present OC for the
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Algorithm 1 Periodic updates using a new training case

1: Input: A new training case {xN+k, yN+k}.
2: Initialization: F0 = 0.
3: for l = 1 to L do
4: Recalculate the data weights of {xn, yn}N+k−1

n=1 .

5: Incorporate {xN+k, yN+k} with weight w
(l)
N+k into hl.

6: Calculate ε = 1
N+k

∑N+k
n=1 w

(l)
n ynhl(xn).

7: if ε < 0 then
8: hl ← −hl.
9: end if

10: Recalculate al by minimizing G
(l)
N+k(a).

11: Fl ← Fl−1 + alhl.
12: end for

K critical contingencies. Specifically, when an unlabeled case is processed by the

classification model, each of the small DTs uses the values of the attribute vector and

its CSRs to produce a binary decision. Finally, the binary decisions of all small DTs

are collected and used to give the security classification decisions of the present OC,

according to (4.1). It is worth noting that distributed processing technologies [77]

can be leveraged to speed up online DSA. Specifically, the K unlabeled cases can be

classified separately by using K duplicates of the classification model, and in each

classification model, all small DTs can process the attribute vector of an unlabeled

case in a parallel manner.

From the above development, it can be seen that the proposed scheme illus-

trated in Fig. 4.3 is derived from those in previous work [55–57], with the following

major modifications. a) The classification model is obtained via boosting multiple

small unpruned DTs instead of a single fully-grown DT after pruning. It is suggested

that boosting algorithms can lead to better model fitting and the produced classi-

fication model is quite resistant to overfitting [72]. Thus, boosting small DTs has

great potential to deliver better performance in terms of classification accuracy. b)

Unequal data weights are assigned to the training cases adaptively by small DTs. In
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: PMU placement

Figure 4.5: The IEEE 39-bus system with 8 PMUs

periodic updates, misclassified new training cases can have higher data weights than

those classified correctly. This will speed up adapting the small DTs to newly changed

OCs. c) The small DTs are gracefully updated by incorporating new cases one at a

time, whereas rebuilding DTs is used in [55–57]. d) The DT and the knowledge base

are updated only when the new cases are misclassified in [55–57]; whereas all new

training cases are incorporated into the knowledge base in the proposed scheme.

4.4 An Illustrative Example

The IEEE 39-bus test system [78] is used as an illustrative small system. As illustrated

in Fig. 4.5, 8 PMUs are installed in the system, according to the placement design

provided in [79]. In what follows, the main steps of the proposed approach, including

attribute selection, knowledge base preparation and ensemble small DT learning,
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will be demonstrated by using the IEEE 39-bus test system. Finally, the results of

robustness test on changed OCs will be presented.

4.4.1 Knowledge Base

4.4.1.1 Attribute Selection

Based on the PMU placement and system topology in Fig. 4.5, 111 numerical at-

tributes are selected according to the rules described in Section III-A, including:

• 8 bus voltage magnitudes at the 8 PMU buses;

• 75 branch active/reactive power flows and current flows, which take any of the

8 PMU buses as either a from-bus or a to-bus of the branch;

• 28 bus voltage phase angle differences, which are computed from the 8(8−1)
2

pairs

of phase angles.

4.4.1.2 OC Generation and Contingencies

The OC specified in [78] is used as the base OC. To enrich the knowledge base, more

OCs are generated by randomly changing the bus loads (both active and reactive)

within 90% to 110% of their original values in the base OC. For each generated

OC, limit checking is carried out by using the power flow and short circuit analysis

tool (PSAT) [80], so that any generated OC with pre-contingency overloading or

violation of voltage magnitude/angle limits is not included in the knowledge base.

Further, transient stability assessment is carried out for the 30 N−2 contingencies

listed in Table. II of [81]. These N−2 contingencies, which can lead to stressed system

conditions, are identified by exhaustive search among all possible N−2 contingencies.
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Figure 4.6: Ensemble small DT learning with different tree heights for the IEEE
39-bus test system.

4.4.1.3 Transient Stability Assessment Tool and Criteria

The transient security assessment tool (TSAT) [80] is used to assess the transient

performance of the generated OCs. The time-domain simulation is executed for 10

seconds with a step size of 0.5 cycle. The power angle-based stability margin is used

as the transient stability index (TSI), defined as:

η =
360 − δmax

360 + δmax

× 100, − 100 < η < 100, (4.7)

where δmax is the maximum angle separation of any two generators in the system

at the same time in the post-fault response. In case of islanding, the above value

is evaluated for each island and the smallest value is taken as the TSI. During the

simulation time, whenever the margin η turns out to be negative, i.e., the rotor angle

difference of any two generators exceeds 360 degree, the case is labeled as transiently

insecure.
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4.4.2 Offline Training

4.4.2.1 Choice of J and L

V -fold cross validation (V =10) is carried out to determine the optimal tree height J

and the optimal number of small DTs L. Specifically, the training cases in the initial

knowledge base are randomly partitioned into V subsets of equal size. For given fixed

J and L, a classification model is trained by using V −1 subsets, and tested using the

other subset. The training process is then repeated V times in total, with each of the

V subsets used exactly once as the test data. Finally, the misclassification error rate

obtained by V -fold cross validation is calculated by averaging over the V classification

models. The results of the above procedure for different tree heights (J=1, 2, 3) are

illustrated in Fig. 4.6. It can be seen that as L increases, the misclassification error

rate of each classification model decreases and reaches a plateau at some L. Then,

when L grows larger, each classification model incurs a larger variance and hence a

higher misclassification error rate. On the other hand, a larger tree height J implies

a larger variance of classification model [68], which is also observed in Fig. 4.6. Based

on these observations, J=2 is chosen, and L=15 at which the misclassification error

rate drops below 1% and reaches a plateau is selected.

4.4.2.2 Ensemble Small DT Learning

When the optimal tree height J and the optimal number of small DTs L are deter-

mined, the algorithm described in Section III-A-2 is used to build the ensemble of

small DTs. Specifically, for l = 1, 2, · · · , L, the data weights w
(l)
n are first computed

according to (5). Then, the training cases together with their data weights are used

by the CART algorithm to build a small DT hl with height J , by using weighted

misclassification rate as the cost function, as shown in (5). Note that each small
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(a) Trained small DT h1 (CSR1 repre-
sents the critical splitting rule: CTNO$
= (CT1, CT2, CT3, CT7, CT11, CT12,
CT15, CT16, CT17))

(b) Small DT h1 updated with changed
OCs (CSR2 represents: CTNO$ = (CT1,
CT2, CT3, CT4, CT7, CT8, CT12,
CT15, CT16, CT19))

(c) Small DT h1 rebuilt with changed
OCs (CSR3 represents: CTNO$ = (CT1,
CT2, CT3, CT4, CT7, CT9, CT11,
CT15, CT17))

Figure 4.7: The first small DT h1 (J=2) for the IEEE 39-bus test system.

DT gives security classification decisions for all critical contingencies. Further, the

voting weight of hl is calculated by numerically solving (6). Then, the ensemble of

small DTs are obtained. It is worth noting that, different from the V -fold cross vali-

dation procedure, the entire training set (not a subset) is used by each small DT of

the ensemble.

4.4.3 Robustness Testing

4.4.3.1 Changed OCs

In the IEEE 39-bus test system, generator G1, together with transmission lines (39,

9) and (39, 1), represents the equivalent to the external system of the New England

area [78]. It is now assumed that the capacity of G1 reduces from 1100 MW to
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900 MW, which could be the result of either the loss of a transmission corridor or

a generator tripping outside the New England area. Therefore, the OCs will change

due to generation rescheduling. By setting the capacity of G1 to 900 MW, changed

OCs are generated by rescheduling generation and re-solving power flows for each

OC in the initial knowledge base. These changed OCs will be utilized to test the

robustness of the proposed approach.

4.4.3.2 Robustness Testing Results

First, 200 OCs are generated to create the initial knowledge base consisting of 6000

(200 OCs × 30 contingencies) training cases. Accordingly, another 200 changed OCs

are generated, in which 100 OCs are used to update the small DTs and the other

100 OCs are used for robustness testing. In the proposed approach, Algorithm 1 is

applied to update each of the 15 small DTs by using the 3000 (100 OCs × 30 con-

tingencies) new cases. To illustrate the change of small DTs, the first small DT h1 is

used as an example. Specifically, h1 obtained in offline training and updated with the

100 changed OCs by using the proposed approach are illustrated in Fig.4.7(a) and

Fig.4.7(b), respectively. It is observed that due to the changed OCs and generation

rescheduling, the critical attribute in the root node of h1 changes from the voltage

phase angle difference between bus 2 and bus 26, A 2 26, to the active power flow

between bus 17 and bus 18, P 17 18. The CSRs of the non-root nodes change accord-

ingly, as a result of the recursive procedure of the CART algorithm. The small DT h1

rebuilt with the 100 changed OCs is illustrated in Fig.4.7(c), which has the same CSR

at the root node as the small DT updated by using the proposed approach. Since the

small DTs h1 obtained by updating and rebuilding are different at non-root nodes,

the other small DTs, h2 to h15 are also different. This is because the ensemble DT

learning algorithm sequentially updates/builds the small DTs, in which each small

DT depends on the previous small DTs.
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Table 4.1: Misclassification Error Rate of Robustness Testing

secure cases insecure cases overall
Proposed 0.68% 0.36 % 0.55%

Small DTs (rebuilding) 0.59% 0.38% 0.54%
Small DTs (no updating) 10.68% 6.85% 9.57%

The proposed approach is compared with two benchmark approaches: 1) small

DTs rebuilt by using the 100 changed OCs together with the initial 200 OCs, 2) small

DTs without updating. The test results of the three approaches are presented in Ta-

ble. 4.1. It can be seen that the proposed approach achieves comparable performance

to the benchmark approach by rebuilding small DTs. The test results also suggest

that when OCs change, the small DTs have to be updated in order to track the

variation of OCs.

4.5 Application to the WECC System

The test power system used in this case study is part of the Western Electricity

Coordinating Council (WECC) system. It consists of over 600 buses (of which 33 are

PMU buses), 700 transmission lines and 100 generators.

4.5.1 Knowledge Base

4.5.1.1 OC Generation

The OCs used in the case study are generated by using real-life data of power flows,

bus loads and generator power outputs that were recorded every 15 minutes during

a 2008 summer peak day. The overall load profile is illustrated in Fig. 4.8. Based on

the variations of the aggregate load, each period for offline training is chosen to span

8 hours, and the peak load period 12:00 Hrs-20:00 Hrs is investigated in this case

study. Basically, there are three sets of generated OCs used in this case study: day-

ahead predicted OCs, short-term predicted OCs and realized OCs. The day-ahead
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predicted OCs are used to create the initial knowledge base, the short-term predicted

OCs are used to create the new training cases to update the knowledge base and the

classification model, and the realized OCs are used for testing purposes only.

Figure 4.8: Aggregate load of recorded OCs and generated OCs by interpolation.

In what follows, the procedure for generating the three OC sets is discussed

in detail. The realized OCs include the 33 recorded OCs and another 448 OCs

that are generated by interpolation, as illustrated in Fig. 4.8. Specifically, following

the method in [57], both the active and reactive load of each load bus for every

minute of the investigated period are obtained by linear interpolation based on the

two closest recorded OCs, and the generator power outputs are adjusted as needed to

ensure valid OCs. To enrich the initial knowledge base, a day-ahead predicted OC is

obtained by randomly changing the bus loads within 90% to 110% of the loads of the

corresponding realized OC, by using a uniform distribution. Similarly, a short-term

predicted OC is generated by uniformly randomly changing the bus loads within 97%

to 103% of the loads of the corresponding realized OC. After solving the power flows

for each OC using the power flow and short circuit analysis tool (PSAT) [80], 481 OCs

are generated for each of the three OC sets. Note that different from the day-ahead

predicted OCs, the short-term predicted OCs and the realized OCs are time-stamped.
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4.5.1.2 Critical Contingency Selection

A contingency list, which was created by the regional grid operator to account for

possible outages of transmission lines, three-winding transformers and generators that

could have significant impact, is used here. Specifically, the contingency list consists

of 1 N−4 contingency, 8 N−3 contingencies, 172 N−2 contingencies, and 0 N−1

contingencies (i.e., no N−1 contingencies lead to insecure conditions). The power

angle-based stability margin defined in (4.7) is used as the transient stability index.

After performing transient security assessment by using TSAT for all realized OCs

and adhering to the above security criteria, three N−2 contingencies which lead to

transiently insecure cases are selected as the critical contingencies in the knowledge

base. Each of the three N−2 critical contingencies is initiated by a “three-phase

short circuit to ground” fault at a bus which is cleared after 5 cycles, by tripping a

transmission line that connects the bus and by disconnecting a generator that will go

out of step as a result of the line tripping.

4.5.1.3 Case Creation

Combining the three sets of generated OCs with their transient security classification

decisions for the three critical contingencies, N=1443 cases are created for the initial

knowledge base, for updating and for testing, respectively. Based on the interconnec-

tion structure of the 33 PMU buses, 799 numerical attributes are identified using the

rules described in Section III-A; thus P=800. For each case, the values of the 799

numerical attributes are obtained from the power flow solutions. Then, the initial

knowledge base is organized into an N×(P+1) array.
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4.5.2 Offline Training

The initial knowledge base as an N×(P+1) array is first used by the CART algorithm

to build the small DTs. Following the procedure described in Section III-D, it is

found that J=2 and L=35 give the best results of V -fold cross validation. The first

three small DTs built from the initial knowledge base are illustrated in Fig. 4.2.

For comparison, a fully-grown single DT with pruning is also built, as illustrated in

Fig. 4.1 (in order to give a concrete impression of DTs and small DTs used for DSA,

Fig. 4.1 and Fig. 4.2 were presented in Section II).

4.5.3 Online DSA Simulation

Slot  tSlot  t-1

Generate short-term 

predicted OCs

Use new training cases to 

update the classification model

TSA

Collect current OCs

TSA

On-line DSA and 

record test resultsTesting

Updating

Figure 4.9: Flowchart for testing online DSA with periodic updating.

The online DSA is simulated iteratively on a slot-by-slot basis, as illustrated

in Fig. 4.9. Generally, each slot spans M minutes. Since it is sufficient to perform

security assessment of a short-term predicted OC for the three N−2 critical contin-

gencies, M=1 is chosen here. In case of more critical contingencies or a larger test

system, a longer slot can be chosen. In online DSA, a third scheme in which the

classification model is obtained by boosting small DTs but updated by rebuilding is

compared with the two aforementioned schemes.
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4.5.3.1 OC variations in sub-period 12:00 Hrs-16:00 Hrs

In each slot of this sub-period, the 3M test cases created from the M realized OCs

with time-stamps falling into this slot are collected, and then used as the present OCs

for online DSA to assess the performance of the classification model updated so far.

Meanwhile, another 3M new training cases created from the short-term predicted OC

for the next slot are incorporated into the knowledge base to update the classification

model.

4.5.3.2 Topology change in sub-period 16:00 Hrs-20:00 Hrs

At the peak hour 16:00 Hrs, a topology change is imposed on the test system, and

assumed to last for the remaining hours of the day. Specifically, among the 178 con-

tingencies that do not incur transient instability for all realized OCs, the contingency

which has the least positive margin averaged over all realized OCs is chosen; as a

result, a transmission line is removed and a generator is disconnected from the test

system. Then, the new training cases and test cases during the latter sub-period are

created using an approach similar to those used in the former sub-period, but by

using a different system topology.

4.5.4 Test Results and Discussion

Throughout the entire horizon of the above online DSA simulations, the misclassi-

fication error rate and the computation time for updating in each slot are recorded

and summarized in Table 4.2 and Fig. 4.10, respectively.
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4.5.4.1 Classification Accuracy

As illustrated in Table 4.2, the two boosting-based schemes turn out to be more

accurate than the single-DT-based scheme for both simulation sub-periods, and the

performance of the proposed scheme is quite close to the scheme based on boosting

small DTs with rebuilding.

4.5.4.2 Computation Requirement
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Figure 4.10: Computation time for updating/rebuilding (executed in MATLAB on a
workstation with an Intel Pentium IV 3.20 GHz CPU and 4GB RAM).

The computation time required by updating the classification models using

new OCs is illustrated in Fig. 4.10. It is clear that the proposed scheme requires the

lowest computation time. Further, as the number of new OCs increases, the proposed

scheme becomes less time-consuming than the other two schemes. The reason is

that for each new OC, the two benchmark schemes rebuild DTs from scratch, while

the graceful update of small DTs is carried out in the proposed scheme. Further,

according to the CART algorithm [71], it is known that the sorting operation of the

CART algorithm dominates the computational burden of DT building/rebuilding.
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Table 4.2: Misclassification Error Rate of Online DSA

Scheme
Sub-period 12-16 Hrs Sub-period 16-20 Hrs

secure insecure
overall

secure insecure
overall

cases cases cases cases

Proposed 2.41% 1.03% 1.67% 2.54% 1.08% 1.74%

A single DT
2.71% 1.80% 2.22% 2.26% 2.73% 2.5%

(rebuilding)
Boosting

1.81% 1.03% 1.39% 2.26% 0.82% 1.5%
(rebuilding)

When updating small DTs, the sorting operation is skipped [75]. Therefore, the

proposed scheme has a much lower computational burden.

4.6 Conclusion

In this study, a data-mining-based online DSA scheme is proposed to handle the OC

variations and topology changes that are likely to occur during the operating hori-

zon. The proposed scheme is applied to a practical power system, and the results

of a case study demonstrate the performance improvement brought by boosting un-

pruned small DTs over a single DT. Compared to single DTs, the classification model

obtained from ensemble DT learning often have higher accuracy, and lend themselves

to cost-effective incorporation of new training cases. The results presented here also

provide an insight into the possibilities of other ensemble DT learning techniques,

e.g., random forest, in handling the challenges of online DSA.

92



Chapter 5

ROBUST ON-LINE DSA WITH MISSING SYNCHROPHASOR DATA

5.1 Introduction

DSA provides system operators with important information, e.g., transient security of

a specific operating condition under various contingencies. Given a knowledge base,

DTs can identify the attributes and the thresholds that are critical to assessing the

transient performance of power systems [52, 54]. With the advent of synchrophasor

technologies, a significant amount of effort has been directed towards online DSA,

by using PMU measurements directly for decision making [55–57, 66]. Upon a dis-

turbance, by applying pre-determined decision rules to the PMU measurements of

critical attributes, DTs can give security classification decisions in real-time. In the

online DSA schemes proposed in [55–57,66], security classification decision regions are

first characterized by DTs in offline training, and then the real-time PMU measure-

ments of critical attributes are used to obtain timely security classification decisions

of the current OCs.

Previous studies on PMU measurement-based online DSA implicitly assume

that WAMS provide reliable measurements. However, in online DSA, PMU measure-

ments can become unavailable due to the unexpected failure of the PMUs or phasor

data concentrators (PDCs), or due to loss of the communication links. Recently, it

has been widely recognized that PMU failure can be an important factor that im-

pacts the performance of WAMS. For example, AESO’s newest rules on implementing

PMUs [82] require that the loss or malfunction of PMUs, together with the cause and

the expected repair time, has to be reported to the system operator in a timely

manner. In the report [83], the deployment of redundancy is suggested by PMU

manufacturers to reduce the impact of single PMU failure. Loss of PMUs has also
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been taken into account when designing WAMS and PMU placement [84]. Moreover,

the delivery of PMU measurements from multiple remote locations of power grids

to monitoring centers could experience high latency when communication networks

are heavily congested, which could also result in the unavailability of PMU measure-

ments. Therefore, it is urgent to design DT-based online DSA approaches that are

robust to missing PMU measurements.

Intuitively, one possible approach to handle missing PMU measurements is to

estimate the missing values by using other PMU measurements and the system model.

However, with existing nonlinear state estimators in SCADA systems, this approach

may compromise the performance of DTs. First, the scan rate of SCADA systems

is far from commensurate with the data rate of PMU measurements, and thus using

estimated values from SCADA data may result in a large delay for decision making.

Second, SCADA systems collect data from remote terminal units (RTUs) utilizing a

polling approach. Following a disturbance, it is possible that some post-contingency

values are used due to the lack of synchronization, which can lead to inaccurate

security classification decisions of DTs. It is worth noting that future fully PMU-

based linear state estimators [85] can overcome the aforementioned limitations; but

this is possible only when there is a sufficient number of PMUs placed in system.

With this motivation, data-mining based approaches are investigated in this chapter,

aiming to use alternative viable measurements for decision making in case of missing

data.

In DTs built by the CART algorithm [71], missing data can be handled by

using surrogate. However, a critical observation in this study is that when PMU

measurements are used as attributes, most viable surrogate attributes have low asso-

ciations with the primary attributes. Clearly, the accuracy of DSA would degrade if

surrogate is used. This is because a DT is essentially a sequential processing method,
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Figure 5.1: Three-stage ensemble DT-based approach to online DSA with missing
PMU measurements

and thus the wrong decisions made in earlier stages may have significant impact on

the correctness of the final decisions. Thus motivated, this chapter studies applying

ensemble DT learning techniques, including random subspace methods and boosting,

to improve the robustness to missing PMU measurements.

Aiming to develop a robust and accurate online DSA scheme, the proposed

approach consists of three processing stages, as illustrated in Fig. 5.1. Specifically,

given a collection of training cases, multiple small DTs are trained offline by using

randomly selected attribute subsets. In near real-time, new cases are used to re-check

the performance of small DTs. The re-check results are then utilized by a boosting

algorithm to quantify the voting weights of a few viable small DTs (i.e., the DTs

without missing data from their attribute subsets). Finally, security classification de-

cisions of online DSA are obtained via a weighted voting of viable small DTs. More

specifically, a random subspace method for selecting attribute subsets is developed by

exploiting the locational information of attributes and the availability of PMU mea-

surements. Conventionally, the availability of a WAMS is defined as the probability

that the system is operating normally at a specified time instant [86]. In this study,

the availability of PMU measurements is defined similarly, i.e., as the probability that

PMU measurements are successfully collected and delivered to a monitoring center.
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The developed random subspace method guarantees that a significant portion of small

DTs are viable for online DSA with high likelihood. Further, a boosting algorithm is

employed to assign the viable small DTs with proper voting weights that are quan-

tified by using the results from performance re-check, leading to the high robustness

and accuracy of the proposed approach in case of missing PMU measurements. The

proposed approach is applied to the IEEE 39-bus system with 9 PMUs. Compared

to off-the-shelf DT-based techniques (including random forests (RFs) with and with-

out using surrogate), the proposed ensemble DT-based approach can achieve better

performance in case of missing PMU measurements.

The rest of this chapter is organized as follows. An introduction to DTs

with application to DSA is given in Section 5.2. Section 5.3 focuses on the random

subspace method for selecting attribute subsets. The proposed three-stage approach

is presented in detail in Section 5.4. A case study is discussed in Section 5.5. Finally,

conclusions are given in Section 5.6.

5.2 Background on DTs

A decision tree is a tree-structured model that maps the measurements of the at-

tributes x∈X to a predicted value ŷ∈Y [71]. In a DT, a test on an attribute (thus

called the primary attribute of the internal node) is installed at each internal node

and decides which child node to drop the measurements into. Further, each leaf node

of the DT is assigned a predicted value, and the measurements are thus labeled with

the predicted value of the leaf node which it sinks into. The path from the root node

to a leaf node specifies a decision region in the attribute space corresponding to that

leaf node. Specifically, the length of the longest downward path from the root node

to a leaf node is defined as the height of a DT.
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5.2.1 Application of DTs in DSA

DTs with binary predicted values (i.e., Y={±1}) are used in DSA. Specifically, ŷ=+1

represents that an OC is classified as insecure under a given contingency. The nu-

merical attributes used by DTs in DSA include voltage magnitudes, voltage phase

angles and power/current flows. Moreover, the index of contingencies is used as a

categorical attribute. In DSA, a collection of training cases are first created by apply-

ing DSA packages (e.g., DSAToolsTM [80]) to NOC known OCs for a given list of NC

contingencies. Then, the training cases {xn, yn}N
n=1, where N=NOC×NC , are used

by the CART algorithm [71] to build a DT that fits the training data. Intuitively, if

the DT fits the training data well and the new OCs in online DSA are similar to the

OCs corresponding to the training cases, the trained DT can give accurate security

classification decisions for the new OCs in online DSA.

In this study, small DTs, which have a small height J are used. Generally,

a small DT could have lower accuracy than a fully-grown DT, but is less prone to

overfitting when the training data is noisy [72], and multiple DTs are usually combined

together to improve the classification accuracy.

5.2.2 Handling Missing Data by using Surrogate in DTs

A surrogate split at an internal node is the one that “mimics” the primary split most

closely, i.e., gives the most similar splitting results for the training cases. Usually,

the similarity is quantified by the association between the surrogate split and the

primary split [71]. The significance of a surrogate split that has a high association

(i.e., over 0.9) with the primary split is that the DT could still use the surrogate split

at this internal node to give almost the same decisions when the PMU measurement

of the primary attribute is missing.
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The performance of surrogate in DT-based DSA is evaluated via a case study,

in which a single DT is built by using the same knowledge base for voltage mag-

nitude violation analysis as in [66]. It is observed that co-located attributes (i.e.,

the attributes measured by the same PMU) would often be unavailable at the same

time when the PMU fails, which implies that co-located attributes cannot be used

as surrogate for each other in online DSA. Therefore, a modified CART algorithm

in which co-located attributes are excluded from surrogate searching is used to build

a single DT and identify the surrogate attributes. The results regarding the perfor-

mance of the surrogates identified by both the modified CART algorithm and the

CART algorithm are given in Table 5.1. Two key observations are drawn. First,

the results obtained by the modified CART algorithm suggest that all non-co-located

surrogates have relatively low associations with the primary ones. The low asso-

ciation could be explained by the complex coupling structure of the attributes in

power systems. According to the definition of surrogate, high association relies on

the dependency between the surrogate and the primary attributes, i.e., the surrogate

attribute gives similar decisions to the primary attribute on all the training cases

regardless of any other attribute. However, in power systems, one attribute (i.e.,

voltage magnitude, voltage phase angle or power/current flow) is coupled with many

other non-co-located attributes, as dictated by the AC power flow equations and the

network interconnection structure. Second, it is observed in Table 5.1 that the surro-

gate attributes found by the CART algorithm are mostly co-located with the primary

attributes. This observation signifies the redundancy between co-located attributes

when used for splitting the training cases, and thus sheds lights on exploiting the

locational information to create the attribute subsets, as described in Section III.

1Bus numbers are given in the subscripts of attributes, but are different from the real ones of
the practical system. For example, Q{204,207} and Q{207,209} are co-located; they are measured by
the same PMU at bus 207.
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Table 5.1: A case study on the surrogates of DTs

node
primary by modified CART by CART

attribute1 surrogate assoc. surrogate assoc.
1 V{217} V{207} 0.76 V{207} 0.76
2 Q{204,207} Q{212,216} 0.33 Q{207,209} 0.50
3 Q{204,207} V{209} 0.28 Q{207,209} 0.64
4 I{211,204} P{008,011} 0.62 P{209,211} 0.83
5 P{210,201} P{211,062} 0.87 P{231,201} 0.87
6 Q{005,033} Q{801,999} 0.71 Q{801,999} 0.71
7 P{213,222} Q{207,211} 0.85 P{222,223} 0.85
8 Q{041,060} I{011,051} 0.50 I{011,051} 0.50
9 P{211,062} P{213,216} 0.50 I{062,211} 0.75
10 P{236,219} Q{230,052} 0.42 P{236,207} 0.68

5.2.3 Ensemble DT Learning

Ensemble DT learning techniques (bagging, random subspace methods, boosting,

RF [74]) combine multiple DTs to obtain better prediction performance. Studies

(e.g., [87]) have shown that using random subspace methods can lead to improved

accuracy and generalization capability, if the DTs are trained from a variety of com-

pact and non-redundant attribute subsets. Usually, the attribute subsets used by DTs

are selected in a randomized manner. For example, in the random decision forest al-

gorithm [88], each DT is built by using an attribute subset that is randomly selected

from all possible candidate attribute subsets with equal weights. For online DSA, it

is observed that additional system information on the attributes could be utilized to

create and select the attribute subsets. First, the candidate attribute subsets could be

significantly refined by exploiting the locational information of attributes. Further,

by putting more weights on the attribute subsets that have higher availability when

randomly selecting attribute subsets, the resulting small DTs would be more likely

to be robust to possibly missing PMU measurements.
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Figure 5.2: Wide area monitoring system consisting of multiple areas

5.3 Random Subspace Method for Selecting Attribute Subsets

A key step of the random subspace method is to identify a collection of candidate

attribute subsets S and determine the weight ps that dictates how likely a candidate

attribute subset s∈S is to be selected. In this study, by exploiting the locational

information of attributes and the availability of PMU measurements, the random

subspace method adheres to the following two guidelines:

• G1: Co-located attributes do not co-exist within an attribute subset.

• G2: The average availability of the selected attribute subsets should be suffi-

ciently high.

Further, for a power system consisting of K areas, the corresponding WAMS is as-

sumed to have a hierarchical architecture [89]. As illustrated in Fig. 5.2, each area of

the power system has a PDC that concentrates the PMU measurements of this area

and submits them to the monitoring center.
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5.3.1 Candidate Attribute Subsets

The candidate attribute subsets are created based on the three following specific rules:

1) Within a candidate attribute subset, all the attributes are from the same area. 2)

In area k (k=1,· · · ,K), three categories of pre-fault quantities measured by PMUs

are used as the numerical attributes:

• Category 1: voltage magnitude Vi, for i∈IPMU
k ;

• Category 2: active power flow Pij, reactive power flow Qij and current magni-

tude Iij, for i∈IPMU
k and j∈N (i);

• Category 3: phase angle difference θij, for i,j∈ IPMU
k .

where IPMU
k denotes the collection of the buses with PMU installation within area k,

and N (i) denotes the collection of the neighbor buses of bus i. An attribute subset

of area k is created by including one voltage or flow measurement from each bus

i∈IPMU
k and all phase angle difference measurements from this area. 3) The index

of contingencies is included as a categorical attribute in any attribute subset.

The criteria used in creating the attribute sets are elaborated below. By re-

stricting the attributes of a subset to be the PMU measurements within the same

area, the impact of some scenarios, i.e., when a PDC that concentrates PMU mea-

surements within an area fails, is significantly reduced, since the small DTs using

the PMU measurements from the other areas could still be viable. For a given bus,

since Category 1 and Category 2 PMU measurements are co-located, it suffices to

include only one of them in an attribute subset so that the redundancy within an

attribute subset is minimal. Further, all measurable phase angle differences are in-

cluded. This is because theoretical and empirical results (e.g., in [56]) suggest that
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angle differences contain important information regarding the level of stress in OCs,

and thus are more likely to be the attributes critical to assessing transient instability.

It is also worth noting that the Category 2 attributes from two different buses are

unlikely to be redundant, in the sense that they are the measurements from different

transmission lines, given the fact that PMUs could provide power flow measurements

and it is usually unnecessary to place PMUs at both ends of a transmission line to

achieve the full observability of power grids.

For convenience, let Sk denote the collection of candidate attribute subsets of

area k. Then, the size of Sk is given by

Mk =
∏

i∈IPMU
k

(3deg(i) + 1), (5.1)

where deg(i) denotes the degree of bus i, i.e., the number of buses that connect with

bus i. Then, S=
∪K

k=1Sk is the collection of candidate attribute subsets.

5.3.2 Randomized Algorithm for Selecting Attribute Subsets

It is plausible to develop the randomized algorithm so as to achieve maximum ran-

domness of the selected attribute subsets by maximizing the entropy of the weight

distribution {ps,s∈S}. Without any other information of attribute, equal weights is

usually used by existing random subspace methods (e.g., [90], [91]). Here, by adher-

ing to guideline G2, an additional constraint is that the average availability of the

randomly selected attribute subsets is above an acceptable level A0. As a result, the

weight distribution can be determined by solving the following problem:

Ps : max
{ps,s∈S}

∑
s∈S

pslog2p
−1
s (5.2)
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s.t.
∑
s∈S

psAs ≥ A0, (5.3)

∑
s∈S

ps = 1, (5.4)

where As denotes the availability of an attribute subset s. According to the rules for

creating the candidate attribute subsets, it is easy to see that each of the attribute

subsets of an area consists of exactly two measurements from each PMU within this

area. Therefore, the availability of an attribute subset s of area k, which was formally

defined in Section I as the probability that the measurements of s are successfully

delivered to the monitoring center, equals that of the WAMS within area k, i.e.,

As = Ak, ∀s ∈ Sk. (5.5)

In availability analysis of WAMS (e.g., in [86]), it is usually assumed that the avail-

ability of PMUs, PDCs and communication links are known (e.g., estimated from

past operating data) and independent from each other. Under these assumptions,

the availability of the WAMS within area k is given by:

Ak =
∏

i∈IPMU
k

(APMU
i Alink

i )ÃPDC
k Ãlink

k , (5.6)

where APMU
i , Alink

i , ÃPDC
k and Ãlink

k denote the availability of the PMU at bus i,

the communication link from the PMU at bus i to the PDC, the PDC and the

communication link from the PDC to the monitoring center, respectively. It is worth

noting that (3) and (4) are derived for the case illustrated in Fig.2, and thus may

not be directly applicable to the cases with measurement redundancy. For example,

when multiple dual use PMU/line relays are utilized in substations, the availability of

bus voltage phasor measurements can be enhanced. The procedure for analyzing the

availability of WAMS in case of redundancy can be found in the literature (e.g., [92]).
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By taking (5.5) into account, it follows that the solution to problem Ps in (5.2)

has the following property.

Proposition 5.3.1. The optimal solution to Ps in (5.2) takes the following form:

p∗s = p∗k/Mk, ∀s ∈ Sk, (5.7)

where Mk is the size of Sk as defined in (5.1), and {p∗k,k=1,· · · ,K} is the solution to

the following problem:

P̃s : min
p1,···pK

K∑
k=1

pklog2(pk/Mk), (5.8)

s.t.
K∑

k=1

pkAk ≥ A0, (5.9)

K∑
k=1

pk = 1. (5.10)

Proof: Since Ps maximizes a concave function with affine constraints, the Karush-

Kuhn-Tucker (KKT) conditions are necessary and sufficient for a solution to be op-

timal. Therefore,

(1 + lnp∗s)/ln2 − λ∗As + µ∗ = 0, ∀s ∈ S (5.11)

where λ∗ and µ∗ are the KKT multipliers for the two constraints of Ps. Then, by

taking the equality in (5.5) into account, it is easy to verify that p∗s have the same

value for all s∈Sk. Define pk=Mkps for s∈Sk, then Ps reduces to P̃s.

The above result leads to the following implementation of the randomized

algorithm, as summarized in Algorithm 2. Further, it is also observed from (5.11)

that the attribute subsets which have higher availability are assigned higher weights.
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Algorithm 2 Randomized algorithm for selecting an attribute subset

1: Calculate Mk and Ak according to (5.1) and (5.6), respectively, for k = 1, · · · , K.
2: Find {pk, k = 1, · · · , K} by solving P̃s in (5.8).
3: Select an area k among the K areas with weight pk.
4: For the chosen area k, select an attribute subset s from Sk with weight 1/Mk.

5.4 Proposed Approach for Online DSA with Missing PMU Measurements

First, L small DTs are trained offline by using randomly selected attribute subsets.

In case of missing PMU measurements in online DSA, L̃ (L̃≤L) viable small DTs are

identified, and are assigned different voting weights. Specifically, the results of perfor-

mance re-check in near real-time are utilized to quantify these voting weights. Finally,

the security classification decisions for the new OCs in online DSA are obtained via

weight voting of the L̃ viable small DTs.

5.4.1 Offline Training

Given a collection of training cases {xn, yn}N
n=1 and candidate attribute subsets S, a

primary objective of offline training is to obtain small DTs {h1,· · · ,hL} so that the

majority voting of them, i.e., FL(x) =
∑L

l=1 hl(x) could fit the training data. The

iterative process to obtain a FL is summarized in Algorithm 3. In the l-th iteration,

a small DT hl is first obtained by solving the following problem:

P(l)
DT : min

hl

1

N

N∑
n=1

1{yn 6=hl(xl
n)}, (5.12)

where xl
n denotes the measurements of the attribute subset sl. It is well-known

that the problem in (5.12) is NP-complete [93]. Here, the CART [71] algorithm

is employed to find a sub-optimal DT, by using misclassification error rate as the

splitting cost function. It is clear from (5.12) that equal weights, i.e., 1
N

, are assigned

to all training data. When historical data that identifies potential weak spots of the
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system is available, these data can be integrated by assigning higher weights, and by

replacing 1
N

with unequal data weights.

Algorithm 3 Offline training using the random subspace method

1: Input: Training cases {xn, yn}N
n=1, ε0 ∈ (0, 1).

2: Initialization: F0 = 0.
3: for l = 1 → L do
4: Select an attribute subset sl by using Algorithm 2.
5: Find a small DT hl by solving P(l)

DT in (5.12) using the CART algorithm.
6: Fl ← Fl−1 + hl.
7: end for

5.4.2 Near Real-time Performance Re-check

In near real-time, a more accurate prediction of the imminent OC in online DSA can

be made. Then, a collection of new cases {x̃n, ỹn}Ñ
n=1 are created in a similar manner

to that in offline training and used to re-evaluate the accuracy of the L small DTs.

The re-check results are then utilized by the boosting process in online DSA. In case

of variations between the OCs used in offline training and the new OCs in online

DSA, near real-time re-check is also a critical step to make sure that the small DTs

still work well.

5.4.3 Online DSA

The results of near real-time re-check {h̃l(x̃
l
n), ỹn}Ñ

n=1, ∀l=1,· · · ,L̃ are utilized to

choose a few viable small DTs to be used in online DSA and calculate the corre-

sponding voting weights via a process of boosting small DTs. In order to make

best use of existing DTs, the viable small DTs in online DSA include the small DTs

without any missing PMU measurement and non-empty degenerate small DTs.
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Figure 5.3: Degeneration of a small DT as a result of missing PMU measurements of
attribute x1 when node (x1<S1) is originally assigned +1.

5.4.3.1 Degenerate Small DTs

A degenerate small DT is obtained by collapsing the subtree of an internal node with

missing PMU measurement into a leaf node. Specifically, a small DT degenerates to a

non-empty tree if the PMU measurements used by the internal nodes other than the

root node are missing, an example of which is illustrated in Fig. 5.3. Further, since

each internal node of the original small DT is also assigned a decision in building

the DT, the new leaf node of the degenerate small DT is assigned the same decision

as the original internal node. Therefore, for a non-empty degenerate small DT, the

re-check results on the Ñ new cases could be easily obtained.

5.4.3.2 Weighted Voting of Viable Small DTs

Let H̃ be the collection of viable small DTs. Then, weighted voting of the viable small

DTs in H̃ is utilized to obtain the security classification decisions of online DSA, due

to the following two reasons. First, in case that some small DTs degenerate to empty

trees and the accuracy of non-empty degenerate small DTs degrades, weighted voting

could improve the overall accuracy compared to majority voting, provided that the

voting weights are carefully assigned based on the re-check results of the viable small

DTs. Second, even though all the small DTs are viable, choosing the small DTs with
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proper voting weights based on their accuracy can still be a critical step to guarantee

accurate decisions. This is because small DTs trained offline fit the training cases

that are created based on day-ahead prediction, while the re-check results on the Ñ

new cases contain more relevant information on assessing the security of the imminent

OCs in online DSA.

In the proposed approach, weighted voting of small DTs in H̃ is implemented

via a boosting process. Following the method in [66], initially with F̃0 as a zero

function, a small DT h̃l∈H̃ is first identified and added to F̃l−1, i.e.,

F̃l = F̃l−1 + alh̃l, (5.13)

iteratively for l=1,2,· · · ,L̃, so that the cost function, i.e.,

Ĉ(F̃L̃) =
1

Ñ

Ñ∑
n=1

log2(1 + e−ỹnF̃L̃(x̃n)), (5.14)

is minimized in a gradient descent manner. In the boosting process, h̃l is identified

by solving the following problem:

P̃(l)
DT : min

hl∈H̃

1

Ñ

Ñ∑
n=1

w(l)
n 1{ỹn 6=h̃l(x̃l

n)}, (5.15)

and the data weights and voting weight are given by


w

(l)
n = 1

1+eỹnF̃l−1(x̃n)
n = 1, · · · , Ñ

al = argmin
a∈R+

gl(a)
(5.16)

where gl(a), Ĉ(F̃l−1+ah̃l). Boosting viable small DTs in online DSA is summarized

in Algorithm 4.
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Algorithm 4 Boosting viable small DTs for online DSA

1: Input: Re-check results {h̃l(x̃
l
n), ỹn}Ñ

n=1, ∀l = 1, · · · , L̃,
2: Initialization: F̃0 = 0.
3: for l = 1 → L̃ do
4: Calculate the data weights according to (5.16).

5: Find a small DT h̃l from viable DTs by solving P̃(l)
DT in (5.15).

6: Calculate the voting weight al according to (5.16).
7: F̃l ← F̃l−1 + alh̃l.
8: end for

5.4.4 Further Discussion

Through detailed complexity analysis, it is shown that the low computational com-

plexity of the online processing renders that the time criticality of online DSA would

not be compromised when the proposed approach is used. Specifically, the compu-

tationally intensive part of the online processing stage is the boosting process that

consists of calculating the data weights w
(l)
n , solving P̃(l)

DT and calculating the voting

weights al of small DTs. According to (5.16), calculating the data weights requires

evaluating F̃l for the new cases, which could be easily obtained from the re-check re-

sults of the small DTs. Therefore, it is easy to see that the complexity in calculating

the data weights is O(Ñ). Solving P̃(l)
DT boils down to searching for the small DT in

H̃ that has the least weighted misclassification error. Since the re-check results of the

small DTs in H̃ for the new cases are already known, the optimal small DT could

be found by comparing the weighted misclassification errors of the small DTs in H̃.

Therefore, the complexity in solving P̃(l)
DT is O(L̃Ñ). In the l-th iteration of the boost-

ing process, the voting weight is obtained by minimizing gl(a). It is easy to verify that

g′
l(0)<0 and g′′

l (a)>0 holds for a∈R+. Therefore, gl(a) has a unique minimum in R+

that could be found by using standard numerical methods (e.g., Newton’s methods).

Further, since gl(a) is convex, standard numerical methods could find the minimum

in a few iterations. In each iteration, F̃l−1+ah̃l needs to be evaluated for all the Ñ
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new cases. Therefore, the complexity in calculating the voting weight for a small DT

is O(Ñ). Summarizing, the overall computational complexity of the boosting process

is O(L̃2Ñ).

The proposed approach above relates to that in [66] in the following sense:

small DTs are utilized in both approaches; new cases are used in near real-time for

accuracy guarantee by both approaches; the security classification decisions of online

DSA are both obtained via a weighted voting of small DTs. However, the two ap-

proaches are tailored towards different application scenarios. The approach proposed

here is more robust to missing PMU measurements, while the approach in [66] could

give accurate decisions with less effort in offline training when the availability of PMU

measurements is sufficiently high. The major differences of the two approaches are

outlined as follows. First, the small DTs in the proposed approach are trained by

using attribute subsets for robustness, whereas the entire set of attributes is used

in [66]. Second, the usage of new cases in near real-time is different. In [66], the new

cases are used to update the small DTs, whereas in the proposed approach, the new

cases are only used to re-check the performance of viable small DTs so as to quantify

the voting weights.

5.5 Case Study

5.5.1 Test System

The IEEE 39-bus system [78] is used as the test system which contains 39 buses, 10

generators, 34 transmission lines and 12 transformers. Particularly, G1 represents

the aggregated generation from the rest of eastern interconnection [78]. In this case

study, the test system is assumed to consist of three areas. The three areas together

with the PMU placement are illustrated in Fig. 5.4. It is worth noting that the PMU

placement guarantee the full observability of the test system when zero-injection buses

110



: PMU placement

Area 2
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Figure 5.4: The IEEE 39-bus system in three areas and PMU placement

are taken into account.

5.5.2 Knowledge base

The knowledge base only consists of the OCs that are both pre-contingency secure

and N−1 secure. The cases in the knowledge base are created from the combinations

of the “PMU measurements” of the OCs and their transient security classification

decisions for a few selected N−2 contingencies. In this case study, the power flow

solutions of an OC are used as the “PMU measurements.”
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5.5.2.1 OC Generation

The OC given in [78] is used as the base OC. Following the method in [57], more OCs

are generated for offline training, by randomly changing the bus loads (both active

and reactive) within 90% to 110% of their original values in the base OC; for the

OCs generated for near real-time re-check and online DSA test, the bus loads varies

from 97% to 103% of their original values in the base OC. The rationale for the above

percentage values is that offline training is usually carried out day/hours ahead, and

thus the predicted OCs can have a larger prediction error than those in near real-

time. The power flows of each generated OC are solved using the PSAT software [80],

followed by a limit check such that the generated OCs with any pre-contingency

overloading or voltage/angle limit violations are excluded from the knowledge base.

5.5.2.2 Contingencies

The loss of any of the 46 components (i.e., the 34 transmission lines, the 9 generator-

transformer pairs and the 3 transformers at (11,12), (12,13) and (19,20)) is considered

as an N−1 contingency. Due to the large number of possible N−2 contingencies,

only a few of them are selected. Intuitively, a severe impact on the security of power

systems is more likely if a second component gets overloaded after the loss of the first

component. As such, the N−2 contingencies are selected in the following manner.

First, each of the aforementioned 46 components is removed from the test system.

Then, power flows are re-solved and limit check is re-run for the base OC using PSAT.

The first removed component together with any overloaded component are regarded

as the removed pair of an N−2 contingency. As a result, 15 pairs are identified, as

listed in Table 5.3.
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Table 5.2: Data used by Algorithm 1 for the system in Fig. 5.4.

Area Placement
Number of attributes

Mk Ak pkCat. 1 Cat. 2 Cat. 3
1 8, 13, 39 3 24 3 700 b 0.28
2 18, 25, 29 3 24 3 700 b 0.28
3 16, 20, 23 3 30 3 1120 b 0.44

5.5.2.3 Transient Security Assessment

TSAT [80] is used to assess the transient performance of the OCs that are pre-

contingency secure. To create a contingency in TSAT, the “three-phase short circuit

to ground” fault is applied at either of the two terminal buses of the first removed

component with a primary clearing time of 4 cycles. Therefore, 92 N−1 contingencies

and 30 N−2 contingencies are created. The “power angle-based stability margin”

defined in TSAT [80] is used as the stability index.

5.5.3 Performance Evaluation

Three other approaches are used as benchmarks, including a single DT using sur-

rogate, an RF using surrogate, and an RF without using surrogate. Following [91],

unpruned DTs are used in RFs; in RFs, all training cases are used to build a single

DT; in each split of DTs, a number of log2P + 1 attributes are randomly selected

(where P=96 according to Column 3 of Table III); the optimal number of DTs in

the forest is determined through out-of-bag validation [91]. Specifically, for the for-

mer two benchmark approaches, surrogate attributes are obtained from those which

are not co-located with the primary attributes; for the third benchmark approach,

degenerated DTs are used.
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5.5.3.1 Attribute Subsets

The hypothetical WAMS for the test system has a hierarchical architecture simi-

lar to that in Fig. 5.2. Based on the evaluation results of the reference [94], it is

assumed that all the PMUs have the same availability a (a∈ [0.979975,0.998920]),

and all the communication links from PMUs to PDC have the same availability

Alink=0.999. Further, the availability of the PDC and the communication link from

the PDC to the monitoring center is assumed to be 1. Let b=(0.999a)3, and thus b∈

[0.938299,0.993776]. Then, it follows that when A0≤b, the solution to P̃s in (6) exists,

as given in Table 5.2. In what follows, the data in Table 5.2 is explained in detail.

Specifically, column 2 provides the indices of PMU buses, which can also be seen from

Fig.4. Column 3 contains the number of attributes for the three categories defined

in Section III.A. Take area 1 for example, there are 3 voltage magnitude attributes,

24 transmission line (including power flow and current magnitude) attributes, and

another 3 attributes from voltage phase angle difference. Given the system topology

and availability information, Mk in column 4 and Ak in column 5 are calculated using

(1) and (4), respectively. Then, pk is obtained by solving (6).

5.5.3.2 Offline Training

NOC=200 generated OCs which are both pre-contingency and N−1 contingency se-

cure are used for offline training. Combining the generated OCs with their transient

security classification decisions for the NC=30 selected N−2 contingencies, are used

to generate the N=6000 cases in the knowledge base. The size and the number

of small DTs are determined by bias-variance analysis [68] and v-fold cross valida-

tion [56]. In this case study, L=40 and J=3 are used by the proposed approach; 45

DTs are used in the two RF-based approaches.
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Table 5.3: The first and second removed components of the selected N−2 contingen-
cies

line( 4,14), line( 6,11) line( 6,11), line( 4,14) line( 6,11), line(13,14)
line( 6,11), line(10,13) line(10,11), line(10,13) line(10,13), line( 6,11)
line(10,13), line(10,11) line(13,14), line( 6,11) line(13,14), line(10,11)
line(16,21), line(23,24) line(21,22), line(23,24) line(21,22), line(22,23)
line(21,22), line(16,24) line(23,24), line(16,21) line(23,24), line(21,22)

5.5.3.3 Near Real-time Re-check

By following the procedure described in Section V.B, 100 OCs are generated for

performance re-check. The DTs trained offline are applied to the new cases; the

classification results are compared with the actual security classification decisions of

the new cases. Then, these re-check results are used by Algorithm 4 to quantify the

voting weights of DTs.

5.5.3.4 Online DSA Test

Another 100 OCs are generated for testing, by following the procedure described in

Section V.B. Recall that the availability of the PDCs and the communication links

connecting PDCs is 1, and then it can be seen from Fig. 5.2 and Fig. 5.4 that the total

number of failure scenarios can be reduced to 512 (29, since there are 9 pairs of PMUs

and links). Online DSA test is repeated for all failure scenarios, by identifying the

missing PMU measurements and viable small DTs, calculating the voting weights

of viable small DTs, and evaluating the misclassification error rate. The overall

misclassification error of online DSA is calculated by:

ē(F̃ ) =
512∑
k=1

Prob(Ω(k))e(F̃ |Ω(k)), (5.17)

115



0.940.9450.950.9550.960.9650.970.9750.980.9850.99
1

2

3

4

5

6

7

8

Availability b

M
is

cl
as

si
fic

at
io

n 
er

ro
r 

(%
)

 

 

A DT using surrogate
Random forest using surrogates
Random forest without surrogates
Proposed ensemble DT−based approach

Figure 5.5: Performance of online DSA in case of missing PMU measurements

Table 5.4: Misclassification error rate when b=0.94.

Scheme Secure cases Insecure cases overall
A single DT 8.92% 8.63% 8.74%

RF with surrogates 5.14% 5.81% 5.33%
RF without surrogates 4.52% 4.17% 4.28%

Proposed 2.36% 1.92% 2.03%

where, Ω(k) denotes the k-th failure scenario, Prob(Ω(k)) denotes the probability for

Ω(k) to happen, which can be easily calculated by using the assumed availability, and

e(F̃ |Ω(k)) denotes the misclassification error rate of F̃ in the failure scenario Ω(k)

(e(F̃ |Ω) is set to be 1 when all PMUs fail). The test is performed for various values

of b, and the test results are illustrated in Fig. 5.5. It is observed that the benchmark

approaches are comparable to the proposed approach only around b=1. However, the

gaps become more significant as b decreases. More specifically, the misclassification

error rates when the availability b=0.94 are shown in Table 5.4, for “Secure” and

“Insecure” cases respectively.
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5.5.3.5 Impact of Measurement Noise

In reality, PMU data can contain measurement noise. Following the approach in [95],

numerical experiment is carried out to study the impact of measurement noise on the

performance of the proposed approach.

For convenience, let V ]θV and I]θI denote a voltage phasor and a current

phasor, respectively; let Ṽ ]θ̃V and Ĩ]θ̃I be the corresponding measurement. For

PMUs complying with IEEE C37.118 standard [96], the PMU measurements should

have a total vector error (TVE) less than 1%, i.e.,

| Ṽ ]θ̃V − V ]θV

V ]θV

| < 1% (5.18)

| Ĩ]θ̃I − I]θI

I]θI

| < 1% (5.19)

Let nV and nI denote the measurement noise, respectively. In order to obtain PMU

measurements that comply with the above specifications, nV and nI are randomly

generated, by using the following density functions (note that other density functions

can be also used) that are properly scaled and truncated from the standard complexity

Gaussian distribution:

f(nV ) =


9

π(1−e−9)10−4V 2 e
− 9|nV |2

10−4V 2 if |nV | ≤ 10−2V

0 o.w.
(5.20)

f(nI) =


9

π(1−e−9)10−4I2 e
− 9|nI |2

10−4I2 if |nI | ≤ 10−2I

0 o.w.
(5.21)

Then, it is clear that all noisy measurements have TVE not more than 1%, and

are complex Gaussian distributed within their support. The generated random mea-
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Figure 5.6: Impact of measurement noise.

surement noise is added to the both training and testing data. The test results are

provided in Fig. 5.6.

5.6 Conclusion

A data-mining approach has been proposed to mitigate the impact of missing PMU

measurements in online DSA. In particular, the various possibilities of missing PMU

measurements in online DSA can make off-the-shelf DT-based techniques (e.g., a sin-

gle DT, RF) fail to deliver the same performance as expected. The proposed ensemble

DT-based approach exploits the locational information and the availability informa-

tion of PMU measurements in randomly selecting attribute subsets, and utilizes the

re-check results to re-weight the DTs in the ensemble. These special treatments de-

veloped from a better characterization of power system dynamics guarantee that the

proposed approach can achieve better performance than directly applying off-the-shelf

DT-based techniques.
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Chapter 6

A DEPENDENCY GRAPH APPROACH FOR FAULT DETECTION AND

LOCALIZATION USING SYNCHROPHASOR DATA

6.1 Introduction

One of the primary challenges on securing power systems has been the early detection

and localization of fault events so as to mitigate their impacts on the overall stability

of the power grid. It has been well recognized that a lack of “situational awareness” is

often the main reason for large-scale fault events that begin with failures in one area

and eventually propagate to other regions, e.g., the 2003 blackout that spread across

the eastern United States and Canada. However, today’s power systems are not

equipped with adequate fault detection and localization mechanisms against various

malicious attacks and natural physical events [97]. There is therefore an urgent need

to enhance the situational awareness, so that corrective actions can be taken promptly

to avoid cascading events.

Traditionally, in SCADA systems, critical buses in the transmission system

are monitored using the data measured at RTUs. These measurements could pro-

vide only a snapshot of power systems, i.e., the static or quasi-dynamic status. In

contrast, WAMS [98], in which the measurements are made at a much finer granu-

larity, is designed to enhance the system operator’s real-time situational awareness.

In a WAMS, the current, voltage and frequency phasor at the monitored buses are

collected by PMUs, together with the time stamps provided by GPS. After process-

ing these highly synchronized measurements, the system operator is able to observe

not only the steady-state, but also the dynamic state of the entire power system.

The availability of synchronized measurements has enabled a new level of situational

awareness. Indeed, recent years have witnessed a surge of various WAMS-based appli-
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cations, e.g., voltage and frequency instability analysis [56], fault diagnosis [99–101],

and the detection of cascading failures [102].

It is known that the fault localization of transmission lines is challenging [97],

due to the massive scale, global coupling and time-varying system states. Specifically,

the complexity of fault localization, if not taken care of carefully, can be extremely

high, since it involves a large volume of PMU measurements from a massive-scale

transmission system. Moreover, in power systems, given the bus injections, the volt-

age and phase angle of a bus are determined by the states of neighboring buses and

the electrical connectivity, as described by Kirchoff’s law. The inherent dependency

between the states of buses dictates that the PMU measurements are spatially corre-

lated and coupled. Accordingly, anomalies in the PMU measurements at the buses of

a transmission line might be the consequence of failures at other lines. Further, due to

stochastic events in power systems, the abnormal trajectories of PMU measurements

might be the result of a sudden change in the power injections from load or genera-

tion, other than the failure of transmission lines. In light of the stochastic nature of

power systems, bus injections and branch flows could be volatile across various time

scales, which could be even more phenomenal in smart grids that are supposed to

integrate a large number of distributed generations and renewable energy resources.

A main objective of this study is to devise a decentralized fault localization

scheme that can capture the latent dependency and the uncertainty of power systems.

We note that Markov random fields (MRFs) and graphical models [103] offer a con-

venient platform to characterize the dependency between a large number of random

variables, and thus, have found various applications in many fields (see [104–106]

and the references therein). In particular, based on the Hammersley-Clifford Theo-

rem [107], graphical models have shown great potential for designing decentralized

algorithms for large scale inference problems.
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In this chapter, we will explore decentralized network inference using graphical

models to address the following challenges in the fault detection and localization of

transmission lines: 1) the computational complexity of large scale inference problems;

2) the global coupling and correlation between the PMU measurements; and 3) the

uncertainty of system states caused by stochastic load and generation.

6.2 Dependency Graph Models for PMU Data

6.2.1 Background on Dependency Graph

A random field X on a finite set S with p sites is a collection of random variables

Xs, s ∈ S, with values in state space Λ, and a configuration x ∈ ΛS on X is a collection

of the values of the random variables. For a site s ∈ S in a Markov random field, its

neighborhood Ns is a subset of S such that the following Markov property holds [108]:

Xs⊥XS\{s∪Ns}|XNs , (6.1)

i.e., given XNs , Xs is conditionally independent of the other random variables. It is

worth mentioning that the neighborhood of Xs is non-trivially not unique, and Ns is

said to be minimal [108] if none of Xt, t ∈ Ns, satisfies the pairwise Markov property:

Xs⊥Xt|XS\{s,t}. (6.2)

In what follows, we use Ns to denote the minimal neighborhood of site s. Note that

this neighborhood relation is symmetrical, i.e., t ∈ Ns if and only if s ∈ Nt.

The dependency graph G = (S,E) of MRF X is obtained by placing an edge

{s, t} ∈ E between each pair of sites s and t that are in each other’s minimal neigh-

borhood. We use the standard notation in graph theory, namely s ∼ t, to denote

this adjacency relation in undirected graph, otherwise it is s 6∼ t. A clique c in G
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is a subset of S, either with cardinality |c| = 1 or such that any two sites in c are

neighbors in the dependency graph. Let C denote the collection of cliques in G.

According to the Hammersley-Clifford theorem [107], under the positiveness

condition, i.e., PX(x) > 0 for any configuration x ∈ ΛS, the probability distribution

of MRF X can be expressed in terms of potential functions. A potential function on

clique c is a measurable mapping Vc : ΛS → R, that depends only on the variables

{Xs, s ∈ c}, i.e., if two configurations x1,x2 ∈ ΛS agree on the values of the sites

contained in c, then Vc(x1) = Vc(x2). An irreducible potential function Vc is either

zero everywhere on ΛS or could not be represented as a sum of non-zero potential

functions on other cliques that are the subsets of c [108].

A Gaussian Markov random field is a MRF that has probability distribution

X ∼ N (0,J−1), where J is the information matrix of the GMRF. Without loss of gen-

erality, we consider zero-mean GMRFs, and the diagonal entries of J are normalized

to 1. It is clear that the positiveness condition is satisfied by GMRFs, accordingly, the

probability distribution of GMRF X can be expressed in terms of non-zero irreducible

potential functions on the singleton and pairwise cliques [109]:

PX (x) =
1

Z
exp

−
∑
i∈S

V{i} (xi) −
∑

(i,j)∈E

V{i,j} (xi, xj)

 , (6.3)

where, the partition function is given by

Z = (2π)p/2 |J|−1/2 , (6.4)

and potential function on singleton clique {i} is given by

V{i}(xi) =
1

2
Jiix

2
i , (6.5)
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Figure 6.1: The IEEE 14-bus system and the dependency graph of the phase angles

and potential function on pairwise clique {i, j} is given by

V{i,j}(xi, xj) = Jijxixj. (6.6)

One key observation from (6.5) and (6.6) is that each site or edge in the dependency

graph of a GMRF corresponds to a non-zero entry of the information matrix, vice

versa, i.e., for GMRF X, i ∼ j if and only if Jij 6= 0.

6.2.2 Gaussian Markov Random Field for Phase Angles

The DC power flow model [110] is often used for the analysis of power systems in nor-

mal steady-state operations, where the power flow on the transmission line connecting

bus i to bus j is given by

Zij = bij(Xi − Xj), (6.7)

where Xi and Xj denote the phase angles at bus i and bus j, respectively, and bij,

the inverse of line inductive reactance, measures the electrical connectivity between

bus i and bus j. Further, the power injection to bus i, which is equal to the algebraic

sum of the power flowing away from bus i, is given by

Zi =
∑

j 6=i
Zij =

∑
j 6=i

bij (Xi − Xj). (6.8)
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It follows that the phase angle at bus i can be represented as

Xi =
∑

j 6=i
rijXj + βZi, (6.9)

with β ,
(∑

j 6=i bij

)−1

and rij , βbij.

Existing probabilistic power flow approaches [111] usually model the load flows

at buses as random variables, to account for the random disturbances and uncertainty

of various load profiles. Some of these approaches [111,112] model the aggregated load

flow injection at buses as Gaussian random variables. Following these approaches, we

assume that during the observation window of fault diagnosis applications, the flow

injection originating from the aggregated load requests of a large number of users can

be well approximated by Gaussian random variables.

According to [113], branch flows can be expressed as linear combinations of

the power injection at buses. It follows that branch flow Zij could also be modeled

as a Gaussian random variable. Since the phase difference of buses would not be too

large in order to drive branch flows [114], the linear relationship shown in (6.7) implies

that the difference of phase angles across a bus can be approximated by a Gaussian

random variable truncated within [0, 2π). In power systems, since the phasor is fixed

at the slack bus, we assume that, under steady-state, the phase angles at non-slack

buses can be approximately modeled as Gaussian random variables.

In a nutshell, based on (6.9), the conditional distribution of Xi can be specified

in the form of a conditional auto-regression (CAR) model [115], i.e.,

Xi |X−i ∼ N
(∑

j 6=i
rijxj, 1

)
, (6.10)

with X−i denoting the random variables on S\{i}. Here, we abuse the notation and
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use Xi |X−i to denote the conditional distribution of Xi given {Xj = xj, j 6= i}, and

the distribution is normalized to highlight the conditional correlations. It is shown

in [115] that under the condition that I − R is positive definite, GMRF X follows

the joint distribution N (0, (I − R)−1), with R , [rij] as the matrix consisting of

conditional correlation coefficients. Note that for each Xi, its conditional correlation

coefficients {rij, j 6= i} are proportional to {bij, j 6= i}. Through building the de-

pendency graph of phase angles on the topology of power systems, as illustrated in

Fig. 6.1, we observe that, similar to the susceptance matrix B , [bij], the conditional

correlation matrix R also reflects the electrical distance between buses. Intuitively,

the change of the electrical connectivity of buses would result in a different conditional

correlation coefficient between phase angles; particularly, rij vanishes if a line outage

takes place between bus i and bus j.

6.3 Decentralized Network Inference for Fault Detection and Localization

In light of the computational complexity of fault localization brought by massive

scales, a fault detection is performed first. Specifically, let E′ be the edge set, Σ′

denote the covariance matrix of the GMRF, and R′ be the conditional correlation

matrix when the power system is under normal conditions. Mathematically, the

proposed fault detection approach boils down to hypothesis testing on the change of

the conditional correlation coefficients, with null and alternate hypothesis given by

 H0 : rij = r′ij ∀{i, j} ∈ E′

H1 : rij 6= r′ij ∃{i, j} ∈ E′
(6.11)

It can be shown that the above null hypothesis is equivalent to that of Σ = Σ′. Then,

it suffices to apply standard change detection methods (see, e.g., [116]). Further, if

H1 is accepted, |E ′| locators are deployed to localize all the possible faults:
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δij (dij, ε) =

 0 if dij 6 ε

1 o.w.
∀ {i, j} ∈ E ′, (6.12)

where, dij ,
∣∣∣ r̂ij

r′ij
− 1

∣∣∣ , ∀ {i, j} ∈ E′ , are computed using the conditional correla-

tion coefficient r̂ij estimated from PMU measurements, and ε > 0 depends on the

significant level of fault events.

In performing the above change detection and localization using PMU mea-

surements, we notice a few challenging issues. First, the change of rij cannot be

localized by using the measurements of Xi and Xj only. Note that the measurements

of Xi and Xj form a sufficient statistic of the unconditional correlation coefficient ρij,

which relates to the conditional ones globally, as described by the walk-sum expres-

sion [117]:

ρij =
∞∑
l=0

(
Rl

)
i,j

=
∞∑
l=0

ϕ
(
i

l−→ j
)
, (6.13)

where, ϕ
(
i

l−→ j
)

is defined as the walk on G from site i to j with length l. It is

clear that ρij depends on the products of the conditional correlation coefficients over

all the possible walks from i to j, and therefore, the change of ρij can be the result

of the changes of other entries of R. To tackle this issue, a feasible solution is to

obtain a complete estimate of R from the global measurements. This boils down to

obtaining Ĵ, the estimate of J, from the sample covariance matrix Σ̂. However, Σ̂−1

cannot be directly used for change localization, since Σ̂−1 usually does not have the

same sparsity as J, due to noisy measurements or the small number of measurements.

In related work [118], the estimation of the information matrix of a GMRF is

often treated as a constrained optimization problem that maximizes the likelihood:
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P : maximize log
∣∣∣Ĵ∣∣∣ − tr

(
ĴΣ̂

)
subject to Ĵij = 0, (i, j) /∈ E′.

(6.14)

However, solving P requires centralized computation and global measurements. As

noted in [118], the computational complexity could be very high for large-scale prob-

lems and current algorithms are not scalable. Also worth mentioning is that the

estimation of J generally requires the number of measurements at least to be compa-

rable to the size of X.

We first devise a decomposition scheme using the multiresolution transform of

GMRFs. As noted above, in the traditional multiresolution analysis of GMRFs in re-

lated work (e.g., in image processing) where the dependency structure of the original

GMRF, usually built on lattice graphs, is irreversibly lost due to transform operations

(e.g., subsampling [106] and block-averaging [104]). In contrast, the devised scheme

can perfectly reconstruct the original GMRF from the sub-fields. Accordingly, a de-

centralized network inference algorithm using message passing is designed, to achieve

a global solution for fault detection and localization. Compared to the centralized al-

gorithm, the proposed approach has the following salient features. 1) The number of

samples, required for the estimation of information matrix using local measurements,

is proportional to the size of the largest sub-field other than that of the complete

GMRF. 2) The dimension of the subproblems is much smaller, significantly reduc-

ing the overall computational complexity. Recall that, in the centralized algorithm,

a hypothesis testing for fault detection is employed before the fault localization to

mitigate the potential computational complexity incurred in estimating R. In con-

trast, in the decentralized network inference, we directly perform fault localization

based on (6.12). Specifically, for a power system consisting of several subsystems,

we decompose the fault localization problem into multiple subproblems, in which the
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inference can be carried out based on local measurements. Accordingly, the GMRF

is decomposed into corresponding sub-fields, and the sites of the GMRF are classified

into border sites and inner sites, of which the latter are not connected to the other

sub-fields. Further, the edges in the original dependency graph are classified into

tie-line edges which connect different sub-fields, border-line edges which connect the

border sites of the same sub-field, and inner-line edges which have at least one end

as inner site. We note that a direct decomposition of the GMRF, by grouping the

sites into disjoint subsets, is not capable of capturing the dependency between the

sub-fields. With this insight, we construct an additional sub-field by grouping all the

border sites in the dependency graph.

In solving the subproblems, a key challenge is that the dependency graphs of

the sub-fields are no longer the same as in that of the original GMRF. Indeed, as

discussed in [106,108], the decomposition of MRF would result in a “loss of locality”.

Consequently, for a GMRF, the information matrices of the sub-fields would have

different sparse patterns and non-zero entries from the corresponding blocks of J.

Therefore, the knowledge of local information matrix is not sufficient to detect and

localize all the faults in the corresponding subproblem.

To tackle the above challenge, we devise a decomposition scheme that can

perfectly reconstruct the information matrix of the original GMRF from those of

the sub-fields. We first show that for the information matrices of the sub-fields, the

entries corresponding to the inner sites, inner-line edges, and tie-line edges remain

the same as in J after the decomposition. Then, message passing between the sub-

fields is employed to “reconstruct” the entries corresponding to the border sites and

the border-line edges, that changed due to decomposition.

In what follows, we first study the two-scale decomposition of a GMRF, and

demonstrate that J can indeed be reconstructed from the information matrices of the
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Figure 6.2: The two-scale decomposition of GMRF X

sub-fields through message passing. Then, we extend the study to the multiscale

decomposition of GMRFs.

6.3.1 Two-scale Decomposition of GMRF

Simply put, the two-scale decomposition partitions S into K disjoint subsets Sk,

k = 1, 2, · · · , K, at the lower scale, and creates one additional subset B at the

higher scale by grouping all of the border sites, as shown in Fig. 6.2. For notational

convenience, let XSk
be the sub-field on Sk, k = 1, 2, · · · , K, and XB be that on

B. Further, we use G̃k, C̃k, and Jk to denote the dependency graph, the collection

of cliques, and the information matrix of XSk
, respectively, for k = 1, 2, · · · , K, and

G̃B, C̃B, and JB for those of XB.
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Recall that, for a GMRF, the non-zero entries of the information matrix are

the coefficients of clique potential functions. By exploring the information matrices of

the K+1 sub-fields, we find that 1) the off-diagonal entries of JB and J corresponding

to the same tie-line edge have the same value; 2) for Jk, k ∈ {1, 2, · · · , K}, and J, the

off-diagonal entries corresponding to the same inner-line edge have the same value,

and the diagonal entries corresponding to the same inner site have the same value.

The above results are summarized in the following two lemmas on the dependency

graphs and clique potential functions of the K +1 sub-fields, and the proofs are given

in Appendix C.

Lemma 6.3.1. a) Let i and j be two border sites contained in different sub-fields,

then i ∼ j in G̃B if and only if i ∼ j in G.

b) Let c be a clique in C with a non-zero irreducible potential function. If c contains

two sites connected by a tie-line edge, then c ∈ C̃B, and the corresponding potential

function is given by Ṽ c (xB) = V c (xB, aB̄), for any configuration aB̄ ∈ ΛS\B on

XS\B.

Lemma 6.3.2. a) Let i be an inner site, and j be another site in the same sub-field

XSk
, k ∈ {1, 2, · · · , K}, then i ∼ j in G̃k if and only if i ∼ j in G.

b) Let c be a clique in C with a non-zero irreducible potential function. If c contains

an inner site of Sk, k ∈ {1, 2, · · · , K}, then c ∈ C̃k, and the corresponding potential

function is given by Ṽ c (xSk
) = V c

(
xSk

, aS̄k

)
, for any configuration aS̄k

∈ ΛS\Sk on

XS\Sk
.

Further, in order to enable the complete reconstruction of J, we consider

the border sites, the border-line edges, and the corresponding potential functions.

For notational convenience, let Bk and Ik be the set of the border sites and inner

sites in Sk, respectively, and XBk
and XIk

the corresponding random fields, for k =
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1, 2, · · · , K. Note that B = ∪K
k=1Bk. Without loss of generality, GMRF X could be

organized as

X =

 XB

XI

 ,

with

XB =


XB1

...

XBK

 XI =


XI1

...

XIK

 .

Then, J consists of four block matrices JBB, JBI , JIB, and JII , with the border-line

edges and border sites corresponding to the diagonal blocks of JBB. According to

Lemma 6.3.2, the non-zero entries of JBI , JIB, and JII have the same value as those of

Jk, k = 1, 2, · · · , K corresponding to the same inner-line edge or inner site. Another

key observation on the block matrices of J and JB is given by the following result.

Proposition 6.3.1. The k-th diagonal blocks of JBB is given by

[JBB]kk = [JB]kk + [JBI ]kk [JII ]
−1
kk [JBI ]

T
kk , (6.15)

where, [ ¦ ]kk retrieves the k-th diagonal block of an information matrix.

Proposition 6.3.1 indicates that the entries of J corresponding to the border-

line edges and border sites could be computed from JB, and the entries of J that

corresponds to the inner-line edges and inner sites. Combining Lemma 6.3.1, Lemma

6.3.2 with Proposition 6.3.1, we conclude that J could be completely reconstructed

from JB and Jk, k = 1, 2, · · · , K, through message passing between the sub-fields.

For large-scale GMRFs, even if the size of each sub-field XSk
is moderate, the size

of XB could still be very large, which makes the estimation of JB intractable. This

problem could be solved by applying further decomposition on XB.
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Figure 6.3: The multiscale decomposition of GMRF X

6.3.2 Multiscale Decomposition of GMRF

According to Lemma 6.3.1, one characteristic of the proposed two-scale decomposition

of GMRFs is that the tie-line structure of G is preserved in G̃B. Accordingly, the

two-scale decomposition could be applied to XB, the newly created sub-field at the

higher scale, recursively as needed.

In general, for the L-scale decomposition, we first perform a hierarchical clus-

tering on S, as illustrated in Fig. 6.3. For notational convenience, we use the super-

script as the index of scale. Specifically, S(2) is used to denote the set of sites at the
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second scale, instead of B in the two-scale decomposition scenario. Suppose that S(l)

is obtained by grouping the border sites of the K(l−1) disjoint subsets of S(l−1). To

obtain S(l+1), we re-group the scale-l sites into K(l) disjoint subsets of S(l), such that

each pair of sites in the same subset of S(l−1) are still contained in the same subset

of S(l). In each scale-l subset S
(l)
k , the sites and edges are re-classified according to

the same rule as in the two-scale decomposition, and then S(l+1) could be obtained

by grouping all the border sites of S(l). As a result, the entire set of sites S is par-

titioned into the disjoint subsets of scale-1 inner sites, ..., scale-(L − 1) inner sites,

and scale-(L − 1) border sites, and the entire set of edges E into those of the scale-1

inner-line edges, ..., scale-(L−1) inner-line edges, scale-(L−1) border-line edges, and

scale-(L − 1) tie-line edges which are also scale-L edges since we cease clustering at

the scale L.

Summarizing, once the information matrices J
(l)
k of the sub-fields X

S
(l)
k

, k =

1, 2, · · · , K(l), across all L scales are known, the complete J could be obtained by

performing the reconstruction procedure recursively from the top to the lowest scale,

using Proposition 6.3.1, for the reconstruction at each scale. With this insight, we

design a decentralized network inference algorithm via using message passing for the

estimation of the information matrix.

6.3.3 Decentralized Network Inference using Message Passing

Simply put, if all the buses of the power system are observable, we first perform

a multiscale decomposition on X based on the hierarchical topology of the power

system. Once the estimates of the information matrices of sub-fields are obtained, a

complete Ĵ could be reconstructed from the estimated information matrices of sub-

fields. For each scale l, l = 1, 2, · · · , L, we assume that there is an inference center at

each sub-field X
S

(l)
k

, k = 1, 2, · · · , K(l). Let F (k, l) be the collection of the indices of
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the sub-fields that are located at the lower scale of X
S

(l+1)
k

. Then, the procedure of

the decentralized estimation of the information matrix is summarized in Algorithm

5.

Algorithm 5 Decentralized estimation of J using message passing

Local estimation: Estimate the information matrices of all the sub-fields based
on local measurements, by solving the subproblem P l

k using the dependency graph
of X

S
(l)
k

.

Down-top message passing: For l = 1, 2, · · · , L − 1, the inference centers of
X

S
(l)
f

, f ∈ F (k, l), submit Ĵ
(l)
f to that of X

S
(l+1)
k

.

Top-down reconstruction: For l = L − 1, L − 2, · · · , 1, the inference center of
XS(L) reconstruct Ĵ(l) from Ĵ(l+1) and Ĵ

(l)
k , k = 1, 2, · · · , K(l).

Top-down message passing: The inference center of XS(L) broadcast Ĵ, i.e., Ĵ(1)

to the inference centers of all the sub-fields.

We note that in some practical scenarios, the power system is not completely

observable, e.g., due to the failures of some PMUs. As a result, the complete Ĵ is not

obtainable. However, fault diagnosis could still be performed for a sub-field under

mild conditions. To this end, we have the following result.

Corollary 6.3.1. The measurements at a sub-field XSk
and its neighbor sites form

a sufficient statistic for Jkk.

The above result indicates that the information matrix of the interior of an

observable island can be estimated from the measurements of the island only. To get

a more concrete sense, suppose sub-field XS3 and its neighbor sites are observable in

Fig. 6.2. We first construct an extended sub-field X̄S3 as the concatenation of XS3

and its neighbor sites, as shown in Fig. 6.4. Then, according to Corollary 6.3.1, J33

is same as the block of the information matrix of X̄S3 , that corresponds to XS3 .
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Figure 6.4: The extended sub-field for the fault diagnosis of S3

6.4 Numerical Results

6.4.1 Decentralized Estimation of Information Matrix

In what follows, we perform numerical experiments to evaluate the proposed decen-

tralized estimation algorithm. Following the approach in [119], we consider a GMRF

with p = 300 sites uniformly distributed on a 40× 40 grid. Any two sites i, j are con-

sidered to be neighbors whenever their Euclidean distance d(i, j) is less than a cut-off

value d0. Further, the conditional correlation coefficients of adjacent sites are param-

eterized as rij = γ
d2(i,j)

. We choose γ ∈ [0, 1] such that (I − R) is positive definite.

We generate i.i.d samples and perform the estimation procedure. For the multiscale

estimation, we apply the clustering algorithm in [120] and group the GMRF into 16

clusters at the second scale, and 4 clusters at the third scale. The accuracy of estima-

tion is quantified by the Kullback-Leibler (KL) distance between the true distribution

N0(0,J
−1) and the distribution N1(0, Ĵ

−1) that is estimated from measurements:

D (N0||N1) =
1

2

(
log det

(
JĴ−1

)
+ tr

(
J−1Ĵ

))
. (6.16)

We vary the values of d0 and γ to generate various simulation cases with different

graph density and strength of conditional correlations. As shown in Fig. 6.5 and
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Figure 6.5: The performance of estimation algorithms (γ = 0.5)

Fig.6.6, the numerical results indicate that the KL distances decrease approximately

in a power law against the number of samples, and the proposed decentralized al-

gorithms have comparable accuracy with the centralized one. For d = 6, graph for

the sub-field at the 2nd scale is so dense that further clustering gives no gains. They

also indicate that the accuracy of the estimation algorithms does not depend on the

topology of graph, or the strength of conditional correlations.

6.4.2 Fault Localization

In order to evaluate the effectiveness of the proposed approach, we run simulations on

the IEEE 300-bus system. Following the Monte Carlo methods, we consider the fault

detection and localization in a 20-second observation window, i.e., n = 1200 samples

are simulated since phasors are measured at up to 60 samples per second according

to the specifications of PMU. Power injections to buses are generated randomly, and

then the branch flows and phasors at buses are solved using the MATPOWER [121]
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simulation package. We take the solution of the phasors as the measurements collected

from the IEEE 300-bus system by PMUs .

Based on the locators defined in (6.12), we specify the detection rules for the

two categories of fault events: line outage and the change of physical parameter. In

the event of a line outage between the buses i and j, Xi and Xj become conditionally

un-correlated, and then, we could use the following rule for the identification of line

outage: Line outage at {i, j}, if r′ij À ε and r̂ij < ε, where ε ¿ 1 is a small value.

For the fault event of a parameter change (i.e., caused by physical damages), the

increase of the electrical distance between buses would result in less conditionally-

correlated phase angles. Therefore, we could use the following rule for identifying

these faults: Line {i, j} with parameter change, if r′ij/r̂ij > η, where η > 1 depends

on the significant level of the fault events to be detected.
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Figure 6.7: The top-scale sub-field of the IEEE 300-bus System

6.4.2.1 Decomposition of the IEEE 300-bus System

We perform a two-scale decomposition on the graph of the phase angles in the IEEE

300-bus System, as shown in Fig. 6.7. Since the IEEE 300-bus system contains three

management areas, we take the three areas as the sub-fields at the lower scale, and

the top-scale sub-field is obtained by grouping all the border sites of the sub-fields at

the lower scale. It is worth noting that only the tie-line edges are shown in Fig. 6.7,

and the border sites in each sub-field form a complete subgraph.

6.4.2.2 Testing cases for line outage

We test a case of line {26,27} outage. To simulate the line outage, we exclude the

failed line from solving the power flows. Once an estimate of the information matrix

of the GMRF are obtained from the measurements of phase angles, the conditional

correlation coefficients are computed, as shown in Table 6.1. It indicates that the

conditional correlation coefficient between the phaosr angles at the buses 26 and 27

turns into a small value. Thus a decision rule with ε = 0.05 could detect this line

outage.
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Table 6.1: A case of line {26,27} outage

line Area Reactance
Con. Cor. Coef.
r̂′ r̂

Bus 26
{25,26} 1 0.071 0.61 0.62
{26,27} 1 0.12 0.36 0.03
{26,320} 1 0.13 0.34 0.39

Bus 27
{20,27} 1 0.186 0.23 0.25
{26,27} 1 0.12 0.36 0.03

6.4.2.3 Testing cases for the change of physical parameter

We test a case that both line {26,27} and line {199,200} have parameter change. In

this case, we double the reactance of the faulted transmission lines to simulate an

increase of electrical distance. The results are summarized in Table 6.2. Note that if

we choose η = 1.3, then the faulted lines are detected.

Table 6.2: A case of parameter changes at line {26,27} and {199,200}

line Area
Reactance Con. Cor. Coef.

1/b′ij 1/bij r’ r

Bus 26
{25,26} 1 0.071 0.071 0.61 0.72
{26,27} 1 0.12 0.24 0.36 0.21
{26,320} 1 0.13 0.13 0.34 0.39

Bus 27
{20,27} 1 0.186 0.186 0.23 0.43
{26,27} 1 0.12 0.24 0.36 0.21

Bus 199
{199,200} 2 0.135 0.27 0.53 0.38
{199,210} 2 0.102 0.102 0.68 0.75

Bus 200
{199,200} 2 0.135 0.27 0.53 0.38
{200,210} 2 0.128 0.128 0.58 0.63
{200,248} 2 0.22 0.22 0.38 0.41

6.5 Conclusion

A dependency graph approach is proposed for the fault detection and localization of

transmission lines in large scale power systems. Then, the fault diagnosis is performed

through the change detection and localization in the conditional correlation matrix
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of the GMRF. In particular, in order to mitigate the complexity, a decentralized

algorithm based on multiresolution transform of GMRFs is devised. The proposed

decentralized algorithms can be useful in some practical scenarios, e.g, when the

PMU measurements from multiple utilities are incompatible (not synchronized or at

different sampling frequencies).
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Chapter 7

Future Research

7.1 Impact of Communication QoS on the Performance of Special Protection

Schemes

Special protection schemes (SPS), also known as remedial action schemes (RAS),

are typically contingency-related schemes that are designed to initiate pre-planned,

corrective action upon disturbance and abnormal operating conditions are detected

[122]. SPS actions may include load shedding, generator tripping, or change in system

configuration (e.g., shunt banks inserting, capacitor bypassing) to maintain system

frequency stability and acceptable voltages levels. The trigger of SPS is usually

a logical combination of the status signals that are collected from multiple remote

substations.

With this insight, it is obvious that the overlay communication system can

have significant impact on the performance of SPS. First, the reliability of the com-

munication system determines the availability of these input signals. Further, large

latency incurred by wide-area communication may lead the failure of SPS to meet

the timing requirement of correction actions. Therefore, it is necessary to perform

reliability analysis and risk assessment of SPS under a two-layer framework, i.e., a

power system with an overlay communication system.

Basically, the communication system for wide-area protection system can be

divided into two parts: intra-substation communication and inter-substation com-

munication. The task of intra-substation communication network, i.e., a local area

network (LAN), is to collect the status data of lines and switchgears and report it

to the server within the substation; and inter-substation communications aim to de-

liver the needed status data in a timely manner to the control center or the site of
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SPS. Inter-substation communications can be implemented through dedicated point-

to-point communication technologies, e.g., microwave and optical-fiber, or through a

wide-area network (WAN). Reliability and latency analysis will be carried out for both

parts of the communication system, and for all possible implementation scenarios.

7.2 Near Real-time Prediction and Quantification of Extreme Ramp-down Events

of Wind Farm Generation

Ramp events of wind farm generation refer to the rapid change in the farm’s aggre-

gate power output [123]. Ramp is usually characterized by the magnitude of change

and the length of the considered time interval. Extreme ramp-down events, e.g., a

reduction of 20% of the rated capacity in 10 minutes, can have significant impact on

the efficiency of wind generation integration and power system reliability if ancillary

services are not sufficient. This kind of low probability high impact events have to be

taken into account in wind farm generation forecast and power system operations.

A vast majority of existing forecasting methods, which are built on time-series

analysis or Markovian models, may not be appropriate to handle extreme ramp-down

event Time-series analysis approaches, e.g., ARMA model based approaches, implic-

itly assume that wind farm generation is a stationary or quasi-stationary process,

thus cannot capture the non-stationarity of the rapid change of wind farm generation

when extreme ramp-down events occur. Markovian models, e.g., Markov chains, may

also fail when extreme ramp-down events are under-represented in the historic data

that is used to estimated the transition probabilities.

Thus motivated, near real-time prediction of extreme ramp-down events and

quantification of ramp magnitude will be studied in a new framework. In this frame-

work, individual turbine’s power output, combined with neighborhood graph obtained

by using the geographical information, will be utilized to predict the occurrence of ex-
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treme ramp-down events, by using tools from graphical learning and inference. From

the extensive measurement data, two major causes of extreme ramp-down events are

identified: steep wind speed drop, and diversion of wind direction combined with

speed drop. For the latter case, real-time detection of wind direction change is more

challenging, since there is limited number of MET towers even for large wind farms.

Further, when quantifying the ramp magnitude, wake effect needs to be accounted

for when predicting individual turbine’s power output.

7.3 Data Security and Privacy in Smart Grids

Besides reliability of power systems, another key objective of smart grids is to improve

the efficiency of the electricity grid, by using ICTs that enabling two-way communica-

tions between end-users and utilities. It is thus obvious that data containing detailed

usage information of end users will be collected by utilities and/or third parties; the

utility can provide real-time pricing and billing information to smart meters and other

end-user devices. From the perspective of utilities, AMI and the overlay information

system will allow for a more flexible monitoring and control on the distribution grid.

Undoubtedly, incorporating smartness to a critical electricity distribution grid

imposes stringent requirements on data security and privacy. A security breach of

the information system of distribution management system can have severe impact

on the reliability of distribution grid. With regards to privacy, the metering data

collected by the utility contains a significant amount of information about individual

end-users. The potential implications of data privacy have already been identified

as another most important issue of smart grid, besides interoperability, by National

Institute of Standards and Technology (NIST) [124].

It is thus urgent to deploy data security and privacy protection and assur-

ance schemes into the overlay information infrastructure. Specifically, the following
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aspects needs to be taken into account. 1) Communication security: two-way infor-

mation exchange will require new ways of secure communications between end-users

and utilities, as well as new ways to build secure communication networks within the

home area. 2) Implementation security: With a huge number of small devices em-

bedded in electricity appliances are getting networked, implementation security issues

become significant. Conventionally, those devices are not equipped with protection

schemes against network-based attacks, and the limited hardware and software re-

sources of these devices make implementation of security solutions what are designed

for larger computer systems impossible. Thus, new implementation security schemes

are required. 3) Privacy: The amount of smart metering data collected from individ-

ual end-users is unprecedented, and leads to massive concerns about users privacy.

Flexible privacy-conserving technologies are required to balance the tradeoff between

end-user privacy and data usage. 4) Grid Architectures: The smart grid combines

architectural requirements that are inherently contradictory. On one side, grid pro-

tection and control schemes always put more wights on the availability of data. On

the other side, this particular privacy related and security critical data require ad-

equate protection schemes. New architectures need to be designed to accommodate

both privacy and dependability.
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A.1 Proof of Proposition 3.3.1

Dt and W usually have continuous, symmetrical and unimodal probability distribu-
tions. Since σ2

Y À σ2
o , intuitively, there exists a finite constant c0 ≥ 0, such that:

P ({Y − qo(v) ≤ −c0σo(v)} ∪ {Y − qo(v) ≥ c0σo(v)}) ≈ 1, (A.1)

and
Q(−c0) ≈ 1, Q(c0) ≈ 0, exp(−c2

0/2) ≈ 0. (A.2)

If Y − qo(v) ≥ c0σo(v), (3.13) boils down to:

R̃l(ψl, s, u, v) = (v − (c1 − cp)) qo(v) + (c1 − cp)Y

+ uDt − c1s; (A.3)

When Y − qo(v) ≤ −c0σo(v), (3.13) simplifies to

R̃l(ψl, s, u, v) = (v − c2) qo(v) + uDt − c1s + c2Y. (A.4)

It is clear that (A.3) and (A.4) are unimodal for v ∈ [vmin, vcap], both with peaks at

v = vcap. This yields the real-time pricing policy: ϑ̃s,u(ψ
l) = vcap.

A.2 Proof of Proposition 3.3.2

When the demand of non-persistent opportunistic energy users is relatively elastic,
i.e., γo<−1, σo(v) can be expected to be much smaller than that in the inelastic
case under the same real-time prices. With this insight, we resort to the “certainty
equivalence” techniques. By approximating Do by its mean qo(v), the net profit is
given by:

R̂l(ψl, s, u, v) = uDt − c1s + c2Y + (v − c2) qo(v)

−c(Y − qo(v))+. (A.5)

Clearly, (A.5) is a piece-wise polynomial in v. Thus, the optimal v could be easily
obtained, as summarized in Proposition 3.3.2.

A.3 Proof of Proposition 3.3.3

We first show that ϑ̃s,u depend on S and u only through s−Eu
Dt

[Dt]. For convenience,
define s′ = s − Eu

Dt
[Dt]. Since Y = s′ + W − εt, it is clear from Proposition 3.3.1

and Proposition 3.3.2 that the real-time pricing policy ϑ̃s,u depends on the day-ahead

decision only through s′. We denote this policy as ϑ̃s′ : (W, εt) → v. With this
insight, by using the change of variable technique in (3.13), the objective function of
P̃DA

non−pst can be rewritten as

EWEu
Dt

[
Rl(ψl, s′, u, ϑ̃s′(W, εt))

]
= f1(u) + f2(s

′) + c2EW [W ], (A.6)
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where
f1(u)

∆
= αt(u − c1)u

γt , (A.7)

f2(s
′)

∆
= EW,εtE

ϑ̃s′ (W,εt)
Do

[
(ϑ̃s′(W, εt) − c2)Do

− c1B (s′ − εt − Do + W )
]
+ (c2 − c1)s

′. (A.8)

Let F denote the solution space for the objective function of P̃DA
non−pst defined in

(A.6). Then,

F = {(u, s′); u ≥ 0, s′ ≥ −αtu
γt}. (A.9)

It can be verified that u∗ defined in the proposition statement maximizes f1(u). Define
s′0 = −αtu

∗γt , and let s′∗ maximize f2(s
′). If we show that (u∗, s′∗) belongs to the

solution space F , then (u∗, s′∗) optimizes the day-ahead scheduling problem in (A.6).
Since u∗ ≥ 0, it is now sufficient to show that s′∗ ≥ s′0. A sufficient condition to
establish this is given by

f2(s
′) ≤ f2(s

′
0), ∀ s′ ≤ s′0. (A.10)

Under condition A, wind generation is not sufficient to meet the total energy demand
when day-ahead price is u∗, thus:

W < (−s′0 + εt) + Do. (A.11)

Therefore,
W + s′ < εt + Do, ∀ s′ ≤ s′0. (A.12)

It follows that 1) W + s < Dt + Do, i.e., there is no scheduled energy surplus, thus
1B = 0 in (A.6); 2) Using the preceding statement, recalling the definition of Y ,
we see that Y < qo(

γoc2
1+γo

). Thus, from Proposition 3.3.2, the optimal real-time price

ϑs′(W, εt) turns out to be a constant γoc2
1+γo

, i.e., independent of the system state and
the day-ahead decisions, when the opportunistic energy users are relatively elastic.
Also, for the relatively inelastic case, we know from Proposition 3.3.1 that the optimal
real-time price is a constant vcap. Letting v0(γo) denote this constant real-time price
for both the elastic and inelastic cases, respectively, we have

f2(s
′) = (c2 − c1)s

′ + (v0(γo) − c2)qo(v0(γo)), ∀ s′ ≤ s′0. (A.13)

Therefore, f2(s
′) ≤ f2(s

′
0), ∀ s′ ≤ s′0, and (u∗, s′∗) indeed lies in the feasible region

F and hence optimizes the day-ahead scheduling problem in (A.6). The optimal
day-ahead decision, S∗, can now be computed using s′∗ and u∗.

159



APPENDIX B

DERIVATIONS FOR CHAPTER 4

160



B.1 Derivation for ê(HL)≤CN(FL)

By definition, the misclassification error rate of HL is given by:

ê(HL) =
1

N

N∑
n=1

1{yn 6=HL(xn)}. (B.1)

In the case that yn = HL(xn),

1{yn 6=HL(xn)} = 0 < log2(1 + e−ynFL(xn)). (B.2)

And in the case that yn 6= HL(xn), it is easy to see that ynFL(xn) < 0. Then,

1{yn 6=HL(xn)} = 1 < log2(1 + 1) < log2(1 + e−ynFL(xn)). (B.3)

In sum, we have

ê(HL) =
1

N

N∑
n=1

1{yn 6=HL(xn)} <
1

N

N∑
n=1

log2(1 + e−ynFL(xn)) = CN(FL). (B.4)

B.2 Derivation for Convexity of CN(FL)

Let FL and F ′
L be two functions in the linear closure of HJ . For α ∈ [0, 1],

CN(αFL + (1 − α)F ′
L) =

1

N

N∑
n=1

log2(1 + e−yn(αFL(xn)+(1−α)F ′
L(xn))) (B.5)

It is easy to see that log2(1 + e−x) is convex with regard to x. Then,

log2(1 + e−yn(αFL(xn)+(1−α)F ′
L(xn))) ≤

αlog2(1 + e−ynFL(xn)) + (1 − α)log2(1 + e−ynF ′
L(xn)). (B.6)

Combining the above two equations, we have

CN(αFL + (1 − α)F ′
L)

≤ 1

N

N∑
n=1

αlog2(1 + e−ynFL(xn)) +
1

N

N∑
n=1

(1 − α)log2(1 + e−ynF ′
L(xn))

= αCN(FL) + (1 − α)CN(F ′
L). (B.7)

Therefore, CN(FL) is convex.
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B.3 Derivation for Differentiability of CN(FL)

Using tools of functional derivatives, the derivative of CN(FL) is given by

OCN(FL) , d

dα
CN(FL + α1x) |α=0

= lim
α→0

1

α
(CN(FL + α1x) − CN(FL))

= lim
α→0

1

α

1

N

N∑
n=1

log2

(
1 + e−yn(FL(xn)+1{x=xn})

1 + e−ynFL(xn)

)

=
1

N

N∑
n=1

d

dα
log2

(
1 + e−yn(FL(xn)+1{x=xn})

)
|α=0

= − 1

N ln2

N∑
n=1

yn1{x=xn}

1 + eynFL(xn)
. (B.8)

Therefore, CN(FL) is differentiable. Further, for any two functions FL and F ′
L in the

linear closure of HJ , we have

‖ OCN(FL) − OCN(F ′
L) ‖

=‖ − 1

N ln2

N∑
n=1

yn1{x=xn}

(
1

1 + eynFL(xn)
− 1

1 + eynF ′
L(xn)

)
‖

=
1

N ln2
max

n
| 1

1 + eynFL(xn)
− 1

1 + eynF ′
L(xn)

| (B.9)

It is clear that 1
1+ex is Lipschitz continuous with regard to x with Lipschitz constant

1. Thus,

| 1

1 + eynFL(xn)
− 1

1 + eynF ′
L(xn)

|≤| ynFL(xn) − ynF
′
L(xn) |=

| FL(xn) − F ′
L(xn) |≤‖ FL − F ′

L ‖, (B.10)

Therefore,

‖ OCN(FL) − OCN(F ′
L) ‖≤ 1

N ln2
‖ FL − F ′

L ‖, (B.11)

i.e., CN(FL) is Lipschitz differentiable with Lipschitz constant 1
N ln2

.
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B.4 Derivation for Convergence of FL

Using Lemma 3 of [125], for any α ≤ 0, we have

CN(Fl) − CN(Fl+1) ≥ CN(Fl) − CN(Fl + αhl+1)

≥ −α〈OCN(Fl), hl+1〉 −
1

2N ln2
α2 ‖ hl+1 ‖2

≥ N ln2〈OCN(Fl), hl+1〉2

2 ‖ hl+1 ‖2
. (B.12)

Therefore, the boosting process either halts on a finite round L∗ with 〈OCN(FL∗),
hL∗+1〉≥ 0, or FL would converge to some function in the linear closure of HJ with
lim

L→∞
〈OCN(FL), hL+1〉 = 0.

B.5 Derivation for Uniqueness of the minimum of G
(l)
N (a)

Based on (4.3), the derivatives of G
(l)
N (a) are given by:

d

da
G

(l)
N (a) = − 1

N ln2

N∑
n=1

ynhl(xn)

1 + eyn(Fl−1(xn)+ahl(xn))
, (B.13)

d2

da2
G

(l)
N (a) =

1

N ln2

N∑
n=1

eFl−1(xn)+ahl(xn)

(1 + eFl−1(xn)+ahl(xn))
2 . (B.14)

Under the condition that hl is a “descent direction” of CN(Fl−1), i.e.,

〈hl,OCN(Fl−1)〉 = − 1

N ln2

N∑
n=1

ynhl(xn)

1 + eynFl−1(xn)
< 0. (B.15)

It thus follows that G
(l)′

N (0) < 0. Further, it is clear from (B.14) that G
(l)′′

N (a) > 0

holds for any a∈R+. Therefore, G
(l)
N (a) has a unique minimum a∗ in R+, at which

G
(l)′

N (a∗) = 0.
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C.1 Proof of Lemma 6.3.1

In what follows, by leveraging the Hammersley-Clifford Theorem [107], we first ex-
plore the dependency graph and potential functions of the additional sub-field XB.
Following the approach in [108], we define

CB = {c ∈ C : c ⊂ B},
Ck = {c ∈ C : c ∩ Ik 6= Φ} , (C.1)

for k = 1, 2, · · · , K. That is, any clique in CB is comprised of border sites only, and

any clique in Ck would contain an inner site in Ik. Further, C = CB ∪
(

K
∪

k=1
Ck

)
. Then,

for a configuration xB on B, its probability is given by

PXB
(xB) =

∫
λ∈ΛS\B

1

Z
exp

{
−

∑
c∈C

V c (xB, λ)

}
dλ. (C.2)

Note that for any c ∈ CB, the potential function does not depend on configuration on
S\B, and for any c ∈ Ck, its potential function depends only on XIk

. It follows that,
(C.2) can be rewritten as

PXB
(xB) =

1

Z
exp

{
−

∑
c∈CB

V c (xB, aB̄)

}

K∏
k=1

∫
λ∈ΛIk

exp

{
−

∑
c∈Ck

V c
(
xB, λ, aB̄\Ik

)}
dλ, (C.3)

where aB̄ ∈ ΛS\B and aB̄\Ik
∈ ΛS\{B∪Ik} are arbitrary configurations on XS\B and

XS\{B∪Ik}, respectively. For k = 1, 2, · · · , K, define:

Vk (xB) = − ln

∫
λ∈ΛIk

exp

{
−

∑
c∈Ck

V c
(
xB, λ, aB̄\Ik

)}
dλ. (C.4)

Then, (C.3) can be rewritten as

PXB
(xB) =

1

Z
exp

{
−

∑
c∈CB

V c (xB, aB̄) −
K∑

k=1

Vk (xB)

}
. (C.5)

Note that based on the definition in (C.4), potential function Vk (xB) depends only
on the configuration on the border sites in Bk.

“ ⇒ ”. We prove the contrapositive, i.e., if i 6∼ j in G, then i 6∼ j in G̃B.
For notational simplicity, we use X−i to denote XB\i, and x−i the corresponding
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configuration. By definition, i 6∼ j in G̃B refers to that for any xi, xj ∈ Λ and
x−ij ∈ ΛB\{i,j}:

Pr{Xi = xi, Xj = xj|X−ij = x−ij} =

Pr{Xi = xi|X−ij = x−ij}Pr{Xj = xj|X−ij = x−ij}. (C.6)

Under the positiveness condition, it suffices to show that

Pr{Xi = xi, Xj = xj|X−ij = x−ij} =

Pr{Xi = xi|X−i = x−i}Pr{Xj = xj|X−j = x−j}. (C.7)

Without loss of generality, we assume that i ∈ Bm and j ∈ Bq with m, q ∈ {1, 2,
· · · , K} and m 6= q. Based on (C.5), the right hand side and the left hand side of
(C.7) are expanded further as in (C.8).

Pr {Xi = xi, Xj = xj|X−ij = x−ij} =

1

Zij (x−ij)
exp

{
−

∑
c∈CB :i∈c or j∈c

V c (xB, aB̄) − Vm (xB) − Vq (xB)

}
,

Zij (x−ij) =∫
λ∈Λ2

exp

{
−

∑
c∈CB :i∈c or j∈c

V c (x−ij, λ, aB̄) − Vm (x−ij, λ) − Vq (x−ij, λ)

}
dλ,

Pr {Xi = xi|X−i = x−i} =
1

Zi(x−i)
exp

{
−

∑
c∈CB :i∈c

V c (xB, aB̄) − Vm (xB)

}
,

Zi (x−i) =

∫
λ∈Λ

exp

{
−

∑
c∈CB :i∈c

V c (x−i, λ, aB̄) − Vm (x−i, λ)

}
dλ,

Pr {Xj = xj|X−j = x−j} =
1

Zj(x−j)
exp

{
−

∑
c∈CB :j∈c

V c (xB, aB̄) − Vq (xB)

}
,

Zj (x−j) =

∫
λ∈Λ

exp

{
−

∑
c∈CB :j∈c

V c (x−j, λ, aB̄) − Vq (x−j, λ)

}
dλ.

(C.8)
Plugging (C.8) in (C.7), it follows that a necessary and sufficient condition for (C.7)
to hold is:

Zij (x−ij)

Zi (x−i) Zj (x−j)
exp

−
∑

{i,j}⊆c

V c (xB, aB̄)

 = 1. (C.9)

Note that if i 6∼ j in G, then there are no cliques in G that contain both i and j.
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Actually, the set {c ∈ CB : {i, j} ⊆ c} is the null set. In this scenario, it is easy to
show that Zij (x−ij) = Zi (x−i) Zj (x−j), since {c ∈ CB : i ∈ c} and {c ∈ CB : j ∈ c}
are disjoint. Thus, (C.9), (C.7), and (C.6) hold, i.e., the pairwise Markov property
between site i and j in the additional sub-field XB is proved .

“ ⇐ ”. We prove this part by contradiction. If i ∼ j in G, according to
Proposition 3 of [108], there exists a clique c0 ∈ C such that {i, j} ⊆ c0 and V c0 is
non-zero and irreducible. Further, since sites i and j are contained in different border
sets, all the sites in c0 are the border sites of X. Therefore, we have c0 ⊂ XB.

On the other hand, since i 6∼ j in G̃B, then c is not a clique of G̃B. According
to the property of GMRF X as a Gibbs random field, potential functions on non-
clique c0 is zero everywhere on ΛB. However, observe from (C.5) that the potential
function Vk(xB) only depends on the sites in Bk, thus, the potential function on non-
clique c in G̃B is exactly equal to that on clique c in G with any given configuration
aB̄ on S\B. It follows that V c0 (xB, aB̄) is zero for any xB ∈ ΛB, which contradicts to
the fact that V c0 is non-zero and irreducible. Therefore, the contradiction is proved,
i.e., if i ∼ j in G, then i ∼ j in G̃B.

If a clique c of G contains two sites that are connected by a tie-line edge, then
all the sites in c are border sites. Further, based on Lemma 6.3.1(a), we conclude
that c is also a clique of G̃B.

Now, based on (C.5), we express PXB
(xB) using only non-zero irreducible

potential functions. Further, since V c is non-zero and irreducible, therefore, the
probability distribution of XB could be expressed in terms of the potential function
on c, denoted as Ṽ c. Note that in (C.5), the potential function Vk only depends on the
sites in Bk. Thus, it is easy to show that Ṽ c is irreducible and, Ṽ c(xB) = V c(xB, aB̄)
for any given configuration xB on XB,

C.2 Proof of Lemma 6.3.2

Similarly, we first explore the dependency graph and the clique potential functions of
the sub-field XSk

, k ∈ {1, 2, · · · , K}. Define CĪk
= C\CIk

. Further, the probability of
a configuration xSk

on XSk
is given by

PXSk
(xSk

) =

∫
λ∈ΛS\Sk

1

Z
exp

{
−

∑
c∈C

V c (xSk
, λ)

}
dλ. (C.10)

Observe that if c ∈ CIk
, then all the sits in c is contained in Sk, this is because inner

sites are not connected to other sub-field. Therefore, the potential function of c does
not depend on the configuration on S\Sk. Then, (C.10) could be rewritten as

PXSk
(xSk

) =
1

Z
exp

−
∑
c∈CIk

V c
(
xSk

, aS̄k

)
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∫
λ∈ΛS\Sk

exp

−
∑
c∈CĪk

V c (xSk
, λ)

dλ, (C.11)

where, aS̄k
∈ ΛS\Sk is any given configuration on XS\Sk

. For convenience, define:

V̂k (xSk
) = − ln

∫
λ∈ΛS\Sk

exp

−
∑
c∈CĪk

V c (xSk
, λ)

dλ. (C.12)

It follows that in this case, (C.2) can be rewritten as

PXSk
(xSk

) =
1

Z
exp

−
∑
c∈CIk

V c
(
xSk

, aS̄k

)
− V̂k (xSk

)

 . (C.13)

Observe from (C.12) that V̂k(xSk
) depends only on the configuration on XBk

. Using
(C.13), we can complete the proof of the lemma using a similar procedure as in that
of Lemma 6.3.1.

C.3 Proof of Proposition 6.3.1

Recall that XB denotes the additional sub-field, in which the border sites are arranged
in accordance with the sub-fields. Then, according to [109], the information matrix
JB is given by

JB = JBB − JBIJ
−1
II JT

BI . (C.14)

It is clear that the off-diagonal blocks of JBI are zero matrices, because a border
site and an inner site are not connected if they are contained in different sub-fields.
Similarly, JII is also block diagonal. Therefore,

JBI = diag ([JBI ]11, · · · , [JBI ]KK) ,

JII = diag ([JII ]11, · · · , [JII ]KK) . (C.15)

Plugging (C.15) in (C.14), we obtain that

[JB]kk = [JBB]kk − [JBI ]kk[JII ]
−1
kk [JBI ]

T
kk, (C.16)

for k = 1, · · · , K. Then Proposition 6.3.1 follows.
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