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ABSTRACT 

This thesis presents an overview of the calculation and application of locational marginal prices in 

electric power systems particularly pertaining to the distribution system. The terminology proposed is a 

distribution locational marginal price or DLMP.  The calculation of locational process in distribution engi-

neering is conjectured and discussed. The use of quadratic programming for this calculation is proposed 

and illustrated. A small four bus test bed exemplifies the concept and then the concept is expanded to the 

IEEE 34 bus distribution system. Alternatives for the calculation are presented, and approximations are 

reviewed. Active power losses in the system are modeled and incorporated by two different methods. 

These calculation methods are also applied to the 34 bus system. The results from each method are 

compared to results found using the PowerWorld simulator.  

The application of energy management using the DLMP to control load is analyzed as well.  This 

analysis entails the use of the DLMP to cause certain controllable loads to decrease when the DLMP is 

high, and vice-versa.  Tests are done to illustrate the impact of energy management using DLMPs for res-

idential, commercial, and industrial controllable loads.  Results showing the dynamics of the loads are 

shown. 

The use and characteristics of Matlab function FMINCON are presented in an appendix. 
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Chapter 1:  Locational marginal prices and their application and calculation in distribution systems 

1.1 Motivation for thesis 

Locational marginal pricing has been used in transmission systems for over a decade [1]. It has 

served as an adept measurement of different variations in prices and bottlenecks within the transmission 

system. There is no measurement like this currently in the system. As government and industry influences 

push towards a “smarter” grid, the application of a distribution based locational marginal price (DLMP) 

could be very useful. The DLMP would be very similar to that of the transmission system in that it would 

as accurately as possible display the cost for one additional unit of energy to be supplied to a particular 

bus. Where the transmission system is commonly defined as the cost for one additional megawatt to be 

supplied, it might make more sense to define the DLMP as the cost of one additional kilowatt.  

The DLMP could then serve many purposes. Most obviously it could show price variations 

throughout the distribution grid, but others as well. The application of a DLMP could identify which com-

ponents cause high prices within the system. With this information, it could be determined where im-

provements in the system would be most beneficial. Improvements such as additional lines, distributed 

generation or even distribution level storage could be implemented to lower costs of the system. Addi-

tionally the DLMP could serve as a pricing structure for consumer level energy management. Consumers 

could obtain information from the DLMP and react to the prices, choosing whether to continue consuming 

or to reduce load. This control would not only save consumers money, but it could also help reduce the 

peak load in times of high prices.  

1.2 Objectives of the study 

 Recently, a variation of the LMP concept has been proposed for distribution systems, e.g., [2].  

In distribution engineering, a pricing signal could be used for local control [3,4].  As an example, when 

pricing signals are high, local energy storage (e.g., in electric vehicles [5]) could be controlled to ‘dis-

charge’ alleviate the high energy cost condition. Conversely, when the pricing signal is low, energy stor-

age elements could be controlled to ‘store’ energy.  Such a mechanism has the advantage of leveling dis-

tribution system demand and concurrently increasing load factor. 
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As stated previously, the DLMP would be defined as the cost to produce on additional kilowatt to 

a particular bus. This research aims to show the application of the DLMP in multiple sized systems. A 

very small system will be used as well as a slightly larger system from IEEE. For these two systems, dif-

ferent optimizing methods will be used to calculate the DLMP to illustrate: 

� The inclusion of active  losses 

� To evaluate accuracy of the solution 

� To include or exclude such phenomena as reactive power limits, PV versus PQ buses, 

and voltage controlled buses 

� To show illustrations of the calculation method. 

1.3 Literature review  

1.3.1 Locational marginal prices 

The present structure of LMPs was originally developed by Hogan of Harvard University in the 

early and mid 1990s [6]. Over a decade ago numerous markets around the world adapted location mar-

ginal pricing for their grids. The issues related to locational marginal prices, their calculation and use in-

clude 

 “adequacy of models and tools being used for economic dispatch, unit commitment 

and the calculation of the LMP; addressing infeasibilities; interpreting LMP compo-

nents; physical and marginal loss pricing; recovering ‘as bid’ costs for the generators 

etc.” [7]  

Reference [1] outlines the history of how LMPs have been applied to contemporary power mar-

keting: 

• 1992: The Energy Policy Act is passed. FERC initiates the transition to competitive bulk energy 

markets 

• April 1997: PJM becomes the first association of interconnected  electric systems,  or  power  

pool,  to  officially operate as a regional transmission organization and independent system oper-

ator (RTO/ISO) 

• July 1997: New England (ISO-NE) is declared an ISO. 
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• July 1999: ISO-NE implements wholesale energy markets. 

• December 1999: New York Independent System Operator (NYISO) formally takes over control 

and operation of bulk transmission and generation dispatch in New York from New York Power 

Pool (NYPP). 

• 2003: ISO-NE adopts an LMP scheme as part of its transition to a so-called SMD. 

• April 2009: California ISO (CAISO) goes live with a fully nodal LMP market. The Market Redesign 

and Technology Upgrade (MRTU) project establishes an LMP real-time market and a day-ahead 

market (DAM). This combination, known as the Integrated Forward Market (IFM), is designed  to  

co-optimize energy, reserves, and capacity, balancing supply and demand. 

• December 2010: ERCOT goes live with a fully nodal LMP market and DAM. 

 

1.3.2 Contemporary applications of LMPs 

Locational marginal prices conventionally are the cost to deliver one additional megawatt hour to 

a given bus within a power system. The calculation includes optimal dispatch, line and generation con-

straints, and potentially additional equality and inequality constraints. Locational Marginal Prices are a 

pricing method used to establish the price for energy purchases and sales at specific location and under a 

specific operating regime. Contemporary practice is that LMPs are calculated through a linear program-

ming (LP) process. The LP minimizes the total energy cost for the entire area subject to constraints that 

represent the physical limitations of the power system. For example, at the New England ISO, the linear 

programming process yields three portions of the LMP corresponding to the energy component, the loss 

component and congestion component [8] as seen in (1.1). The energy component does not depend on 

the physical location in the system, while the loss and congestion components are uniquely calculated at 

each specific system bus, 

��� � ��������	 
 ������������ 
 �����. (1.1) 

A common calculation method to obtain the LMPs is linear programming because (1) can be written in 

approximate terms by linearizing the power flow equations.  However, the loss term in (1.1) is often omit-

ted.  In transmission systems, the active power losses are in the range of 2 to 5%. The unique character-

istics of each individual bus are what cause price differentiation between each bus. 
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In transmission systems, LMPs have value in revenue pricing and identification of bottlenecks in 

the system.  Since their implementation they have become one of the most popular methods for conges-

tion management in many markets worldwide. As a result of their current structure, LMPs not only reveal 

current energy prices, but help price other ancillary services as well.  [7].  

1.4 Energy management systems 

Numerous companies offer home energy management systems. Companies like General Elec-

tric, Schneider Electric, Hitachi and others provide a system that a home owner can use to control their 

home. [9] In the case of the Schneider electric product it “allows homeowners to reduce or shift energy 

use during peak times and helps electricity providers improve grid efficiency and network reliability.” [10] 

When referring to load control the device can be used for remote monitoring and management of HVAC 

compressors, water heaters, pool pumps and other power circuits.  

These types of systems however are manually driven where a more automatically driven system 

is based on the DLMP is proposed later in this thesis. With the high probability of increased distributed 

generation and storage there is a need to have a more automatic energy management system. Other ‘au-

tomatic’ systems have been proposed. In [11] a system based on control through cloud computing is pro-

posed. In this system the load is controlled based on peak power times and mitigates power based on 

connected appliances. In addition to [11], more proposals for energy management are listed in table 1.1 

as well as different projects by the Electric Power Research Institute (EPRI) in Table 1.2. 

Table 1.1 Energy management proposals 
Load(s) Controlled Basic Strategy Reference 
Home appliances 
based on a given 
schedule; has dis-
tributed generation 

and storage capabili-
ties 

Assigns dynamic priority to a household appliance according to the 
type of appliance and its current status. In accordance with the as-
signed priority, the use of household appliances is scheduled con-
sidering renewable energy capability 

[11] 

Controls household 
load based on appli-

ances and cost 

Consists of price prediction, a load scheduler and energy consump-
tion monitor. The electricity pricing models provide the price predic-
tion capability. The load scheduler is used to control the residential 
load with an aim at reducing the total energy cost and the smart me-
ter and smart switchers are utilized to collect and monitor the energy 
consumption in the house 

[28] 

Individual homes 
major appliances 

and lighting 

A smart home control system that can assign tasks to suitable com-
ponents. It can automatically gather physical sensing information 

and efficiently control various consumer home devices. 
[29] 
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Table 1.2 EPRI projects on Energy Management 
Title Abstract      [31] 

Energy Management 
Systems for Commer-
cial Buildings: 

Approximately 25,000 commercial buildings in the United States have energy 
management systems. Planners estimate that by 1990 another 80,000 sys-
tems will be in use. This primer on commercial building energy management 
systems describes their functions, components, and design options 

Assessment of Com-
mercial Building Auto-
mation and Energy 
Management Systems 
for Demand Response 
Applications: 

An overview of commercial building automation and energy management sys-
tems with a focus on their capabilities (current and future), especially in sup-
port of demand response (DR). The report includes background on commer-
cial building automation and energy management systems; a discussion of 
demand response applications in commercial buildings, including building 
loads and control strategies; and a review of suppliers’ building automation 
and energy management systems 

Commercial Building 
Energy Management 
Systems Handbook: 
Opportunities for Re-
ducing Costs and Im-
proving Comfort: 

This document is written for the commercial building owner, manager, or de-
veloper without a technical background but wanting to understand and evalu-
ate recommendations for energy savings or comfort made by energy consult-
ants and/or building engineers. It provides an overview of commercial building 
heating, ventilating, air-conditioning (HVAC), and lighting systems, and of the 
energy management systems (EMSs) that control comfort and provide energy 
savings. 

Integration of Utility En-
ergy Management 
Technologies into Build-
ing Automation Sys-
tems: 

The challenges with managing peak demand are expected to worsen as de-
carbonization, plant retirement, renewable integration, and electric vehicle 
rollouts unfold. One solution to this problem is in better management of the 
demand side. This study is focused on commercial buildings, which account 
for approximately 27% of all electricity used in the United States and have a 
large impact on demand since much of the consumption falls during business 
hours, which tend to correspond with peak demand windows 

Standard Interfaces for 
Smart Building Integra-
tion: 

Electricity systems in the United States are changing to accommodate in-
creasing levels of distributed energy resources and demand responsive 
loads. Commercial buildings are positioned to play a central role in this 
change. With advances in energy generation and storage technologies, pro-
cess management, and controls, commercial buildings are increasingly able 
to provide a range of grid supportive functions 

 

1.5 Organization of this thesis 

The remainder of this thesis will be organized into five additional chapters. Chapter two will dis-

cuss the process of using quadratic programming to minimize a cost. In addition it will discuss how the 

‘FMINCON’ function in Matlab can potentially be used to approximate the losses. Chapter three will take 

the theory in chapter two and apply it to calculating the DLMP using quadratic programming. Both a small 

example and larger example will be analyzed. Chapter four is a continuation of chapter three but with the 

application of losses. Comparison of the three methods proposed in this thesis will be made against 

PowerWorld simulator. Chapter five discusses the role of the DLMP and it uses for energy management. 
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In this chapter, the DLMP is used in various ways to control the load of the system. Chapter six ends the 

thesis with a conclusion, recommendations and future work. 

An appendix contains comments on Matlab function FMINCON.  Execution time and convergence 

is discussed and illustrated. 
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Chapter 2: The theory and application of quadratic programming in power distribution engineering 

2.1 Definition of the quadratic programming problem 

Quadratic programming (QP) is the optimization of a quadratic function. Mathematically, consider 

the extremization of the scalar function c(x), 

����  �  12 ���� 
  ��� 
(2.1) 

where the objective function has a vector valued argument x, a vector of n rows, Q is a constant n by n 

matrix, and c is a constant n-vector. In the case where Q = 0, the problem is solved by LP. The con-

straints of (2.1) are  

�� � � (2.2) 

�� � � (2.3) 

where A is an m by n matrix and E is a k by n matrix.  

 Quadratic programming is commonly solved by the Karush-Kuhn-Tucker (KKT) method. This 

method entails the creation of the Lagrangian function, 

���, !� � �� 
 12 ���� 
 !��� " �� (2.4) 

where µ is a m-dimensional row vector. The conditions for a local minimum are as follows [10], 

#�#�$  %, & � 1, … , ( 

#�#!$  �, ) � 1, … , * 

�$ #�#�$ � 0, & � 1, … , ( 

!�,���� � 0,    ) � 1, … , * 

�$ % 0, & � 1, … , ( 

!$ % 0, ) � 1, … , ( 

� 
  ��� 
  !� % 0 

 

�� " � � 0 

 

���� 
  ��� 
  !�� � 0 

!��� " �� � 0 

� % 0 

! % 0. 

Reference [13] also discusses this formulation.  In essence, the KKT method causes the last term in (2.4) 

to be zero.  This happens by virtue of either the term µ as zero, or the coefficient of µ as zero (this occurs 
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row by row when the elements in (2.4) are vectors).    To solve, rearrange the inequality constraints with 

nonnegative slack variables y, v inserted, and the KKT conditions can now be written as follows, 

�� 
  !��� " - � �� (2.5) 

�� 
 . � � (2.6) 

� % 0,        ! % 0,        - % 0,        . % 0 (2.7) 

-�� � 0,        !. � 0. (2.8) 

Eqs. (2.5-2.8) are linear and LP is applied to obtain a solution [12].  This is the method used in Matlab.   

 Appendix A contains a more detailed discussion of the Matlab implementation of QP, namely 

FMINCON. 

2.2 Formulation of DLMP using quadratic programming 

 The application of quadratic programming is a process of taking real world functions and con-

straints and applying them to the process above. The function that will be minimized is associated with 

costs of the system. Those costs are the result of fuel (generation) and system related costs (congestion 

and losses).  The equality and inequality constraints are derived from the characteristics of the system. 

Line data such as resistances, impedances and thermal limit, as well as load data and generation capaci-

ty all can contribute to these constraints. So to follow the formulas above, Q and c in equation (2.5) are 

derived from costs and A, b, E and d are due primarily line and load data.  

2.3 Inclusion of losses  

The inclusion of line losses in the above formulation is problematic because quadratic program-

ming, at least in the classic formulation shown in section 2.1, does not permit nonlinear constraints. Loss-

es are generally not negligible in distribution systems (estimates vary as to the percentage of losses, but 

generally 3 to 7% active power losses are reasonable estimates). Additionally, there are losses in the dis-

tribution transformers at the points of common coupling.   

There are many approaches to the inclusion of losses one being linearization.  However, in this 

paper another approach is offered:  relaxation of the loss term by inclusion in the objective function.  If the 

function  f(x) is augmented with an additive term that captures the cost of the losses, the minimization of 
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f(x) (i.e., calculation of  f* = f(x*)) will give an approximate solution to the constrained optimal dispatch.  

Subsequently, the loads specified can be increased by a small amount to calculate the change in  f*.  

Then the LMP at the bus at which the load was increased is calculated as the change in  f*. 

To effectuate the approach outlined above, modify the f(x) formulation as used in the lossless 

case,  

���� � 0��� 
  1�23�456789:;:45678< =���9 
 ; 
 ���<>                (2.9) 

where C(x) is the total cost of generation without considering losses.  In (2.9), the coefficient of the se-

cond term is the approximate generation cost expressed in $/MWh, the sum term at the end of (2.9) rep-

resents the total system-wide active power losses.  Therefore the entire second term in (2.9) is the ap-

proximate cost of active power losses.  Assuming f* = f(x*)  to be the optimum (i.e., minimum operating 

cost) solution, and the total cost calculated including losses, then  

����  �   0���
1 " ���9 
 ; 
 ���<���?@9 
 ; 
 ���?@<

 
 

(2.10) 

It is interesting to note that in (2.9), the term f(x*) is taken to be a constant, and differentiation of 

(2.9) then treats f(x*) as a constant.  Of course, if f(x) on the right hand side of (2.9) were taken as a vari-

able, the derivative of f(x) with respect to x would nonetheless be zero because f(x) is being extremized 

(minimized in this case). 

As the LMP is defined as the cost to deliver one more megawatt for one hour for a given location, 

then the DLMP can be formulated as, 

A��� �  ����B 
 1�� " ����B�����?@�B 
 1� " ���?@�B� 
(2.11) 

where ����B 
 1�� is the new total cost due to load change ���?@�B 
 1�, ����B�� is the total cost deter-

mined previously, i.e., at load  ���?@�B�.  This is the approach taken to include line losses.  It is noted, 

however, that the model for the losses is approximate. 
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Note that the proposed formulation as given in (2.11) disallows the use of classically formulated 

QP because of the nonlinear term in f(x).  This term occurs due to the inclusion of losses in the mod-

el.  Modern commercially available software is used to solve the lossy case shown here.  For exam-

ple, Matlab uses function FMINCON which can be used in this application. FMINCON uses Sequential 

Quadratic Programming (SQP) [13] which is a variant of the Kuhn-Tucker approach.  The basis of SQP is 

to model the minimization problem at xk by a quadratic sub-problem and to use the solution to find a new 

point xk+1. The explanation of FMINCON and SQP in general appears in [14,15].   

The Kuhn-Tucker approach uses the exclusion conditions:  in (2.4), the µ(AX-b) term must be 

such that either the µi term is zero or the (AX-b)i term is zero. There is one such exclusion condition for 

each inequality constraint, and therefore one assumes that the number of cases to be checked is propor-

tional to 2d where d is the number of inequality constraints and d is the dimension of µ.  The actual Matlab 

code uses various procedures to reduce the dimensionality of the problem, but nonetheless, the execu-

tion speed is not an advantage of FMINCON.  Also, in large scale problems, excessive memory require-

ments have been reported [16].  In distribution system applications, neither the execution time nor the 

memory requirements were found to be problematic, but these are marked for potential problems in some 

large scale applications.  Note that in typical distribution engineering applications, the number of line limits 

to be applied as constraints is not large, and many could be dropped from consideration because of the 

robustness of the systems (i.e., the line limits are not reached in any credible steady state system operat-

ing condition). 
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Chapter 3: Calculation of DLMPs 

3.1 Locational marginal prices for power distribution systems 

 The process to calculate the distribution based LMP will be explained in this chapter. Using the 

concepts explained in Chapter 2 an example using a small four bus system will be used to display the 

DLMP concept. The concept will then be expanded and applied to the IEEE 34 bus test bed.  Both the 

lossless and lossy cases are illustrated.  Figure 3.1 shows the general approach taken in these examples. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 General approach to the calculation of a distribution LMP 

3.2 Illustrative small example 

 For purposes of illustrating the algorithms in Chapter 2, a small example is offered.  Figure 3.2 

shows a four-bus networked system with line data shown in Table 3.1.  In the system, there are two 

sources P1 and P2 with corresponding cost functions (Pi in MW, Ci in $/h),  
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0C � 2�C 
 0.1�CD (3.1) 

0D � 1.5�D 
 0.12�DD (3.2) 

Two cases are considered:  the lossless case, and the lossy case.   

3.2.1 Lossless case 

The lossless case is considered first by assuming that the line impedances shown in Table 3.1 

are all reactive (i.e., R = 0).  The loads �F and �G both are less than or equal to 30 MW.  It is desired to 

obtain the constrained economic dispatch for this system.  Using a base power of 10 MW, let the bus 

loads be represented as Pi  > 0.  Then the problem is, 

Min      CD H� I20 00 24 ; 0K L K0 ; 0M H 
 =20 15 …>H 

X = =�C �D �F    �G ��C ��D    ��F ��G ND     NF NG >O. 

The conservation of active power at each bus is, 

I"1 0   0 "1 0 00 0 0   0 0   0 1 00 1   1 1"1 0 0    01    1  0 "1  0 0 "1 0  0 "1 M
PQ
QQ
QQ
QR �C�D�F�G��C��D��F��GST

TT
TT
TU

� 0 
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Figure 3.2 An illustrative example of quadratic programming to calculate the DLMP 

Table 3.1 Line ratings for example system shown in Figure 3.2 

Line Line impedance (p.u., 10 MVA base) Rating (MW) 

1-2 0.0025+   j0.02 15 

1-3 0.0013 +  j0.01 15 

2-3 0.0030 + j0.02 25 

2-4 0.0040 + j0.02 30 

  

 The line active power flows are, 

��C � V9WVX29X          ��D � V9WVY29Y           ��F � VXWVY2XY      
   ��G � VXWVZ2XZ             NC � 0. 

The line constraints are (in per unit), 

|��C| � 1.5      |��D| � 1.5       |��F| � 2.5      |��G| � 3.0 

Using the QUADPROG function in Matlab, the optimum operating cost results are obtained and shown in 

Figs. 3.3 and 3.4.    Using (2.11), the DLMP for bus 3 is calculated and shown in Figure 3.4. 



Figure 3.3 Results obtained for a constrained 

The results in Figure 3.3 show a contoured map of the DLMP at buses three and four. As the load 

of each bus varies from zero to 30 MW, the DLMP at each bus is affected. The total load is set up in a 

way so that it is always equal to 30 MW. For instance is the load at bus three is five, bus four will be 25. 

3.2.2 The lossy case 

The same example shown in 

in Table 3.1).  The formulation is as in (

where 
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Results obtained for a constrained economic dispatch, P3 and P4 are loads 

The results in Figure 3.3 show a contoured map of the DLMP at buses three and four. As the load 

of each bus varies from zero to 30 MW, the DLMP at each bus is affected. The total load is set up in a 

y so that it is always equal to 30 MW. For instance is the load at bus three is five, bus four will be 25. 

The same example shown in Figure 3.2 is reconsidered with losses included (i.e., 

is as in (2.10).  For this case, 

 

 

economic dispatch, P3 and P4 are loads – lossless case 

The results in Figure 3.3 show a contoured map of the DLMP at buses three and four. As the load 

of each bus varies from zero to 30 MW, the DLMP at each bus is affected. The total load is set up in a 

y so that it is always equal to 30 MW. For instance is the load at bus three is five, bus four will be 25.  

is reconsidered with losses included (i.e., R ≥ 0 as shown 
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������ � ���D]�� 

X = =�C �D �F    �G ��C ��D    ��F ��G ND     NF NG >� 

The formulation shown here is used in Matlab function FMINCON, and the resulting DLMP is 

shown in Figure 3.4.  Abscissas and ordinates are superimposed so that quantitative comparisons can be 

made with lossy results. Bus P4 has been set to four different values and bus P3 is gradually increased.  

 

Figure 3.4 Result obtained for a constrained economic dispatch, P3 and P4 are loads – lossless case 

 The constraints are the same as those for the previous lossless example. Using the FMINCON 

function in Matlab, the optimum (minimum) total cost is obtained and shown in Figure 3.5 and the DLMP 

for bus 3 with loss are obtained and shown in Figure 3.6.  Note that abscissa and ordinates are shown in 

the figure so that a comparison with Figure 3.6 can be made.  

0 5 10 15 20 25 30
0

5

10

15

20

25

 

 

X: 26
Y: 19.48

P3/(MW)

D
LM

P
/(

$/
M

W
h)

DLMP of bus 3 vs load p3 variation

X: 26
Y: 7.48

p4=5MW

p4=15MW
p4=20MW

p4=30MW



16 

 

 

Figure 3.5 Result obtained for a system with constraint considering losses, P3 and P4 are loads  

 

Figure 3.6 Result obtained for a system with constraint considering losses, P3 and P4 are loads 
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 The results in Figure 3.6 show a slightly higher DLMP in the lossless case as compared to the 

results of the no loss case in Figure 3.4. The resistances of the system are low creating low losses. A sys-

tem with higher resistance values should see higher losses. 

3.3 Illustration using the IEEE 34 bus test bed 

 A test bed used is selected from an IEEE repository of test systems [17]. The intent is to demon-

strate the DLMP calculation on a larger system for which some published results are available.  This is a 

34 bus distribution test bed and for purposes of this work the system has been modified as follows:  

• Distributed generation was inserted at buses 800, 836 and 854, renamed 1, 2 and 3 respectively 

• All single phase buses have been eliminated 

• The symmetrical component transformation was used:  Zline= T-1ZabsT  = Zsc for given data which 

give the three phase bus impedance matrix Z 

• Unbalanced lines were ignored and only the positive sequence was considered 

• Distributed loads (i.e. 802 to 806) were placed as spot loads at the bus which is ‘upstream’ in the 

feeder. 

• Changes to the system have been reflected in Figure 3.7, and the system data are in Appendix A. 

 

Figure 3.7 System diagram with single phase lines removed and generation inserted 
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The following cost data were used at buses 1, 2, and 3: 

04C � 3.75 3 10WD�C 
 9.38 3 10Wa�CD 04D � 4.50 3 10WD�D 
 9.30 3 10Wa�DD 04F � 4.00 3 10WD�F 
 9.90 3 10Wa�FD 
 
The analysis procedure is as follows: 

• Convert line data and load data to per unit using a 500 kVA base, 24.9 kV  

• Form the admittance matrix Ybus 

• Use QUADPROG in MATLAB solve for the LMP for the lossless case 

• Use FMINCON to simulate case with losses. 

The DLMP in the no loss case was found to be constant at all buses in the system. This ‘lossless’ 

DLMP was 0.0728 $/kWh. The lossy case is solved and gives results shown in Table 3.2.  Figure 3.8 

shows contours of similarly valued DLMP regions superimposed on the system diagram.  

3.4 Discussion:  application of DLMPs 

As the power system transitions into the future, the implementation of smart meters and distribut-

ed generation will create an application for DLMPs [18-21]. The DLMP could help support cost effective 

growth of new technologies and could be used as a road map for new renewable distributed generation.  

That is, in regions with high DLMP, greater investments could be made in distribution system assets.  An-

other application of the DLMP might be in pricing energy and power differently at different buses.  In [22], 

Heydt conjectures that a DLMP signal might be used in a future power distribution system control:  the 

idea is to use a DLMP to control energy storage at the distribution level.  This concept is being promoted 

as part of the Future Renewable Electric Energy Distribution Management (FREEDM) center (a National 

Science Foundation supported Engineering Research Center).   



Figure 3.8 System diagram with similar DLMP regions. Region 1: 0.0726

0.0735$/kW

Table 3.2 Results for a distribution LMP calculated for the IEEE 34 bus system, lossy case 

Bus DLMP $/pu.h

1* 36.2829 

2* 36.7765 

3* 37.1253 

4 36.2922 

5 36.2979 

6 36.4028 

7 36.5249 

8 36.6218 

9 36.6218 

10 36.6233 

11 36.6370 

12 36.6771 

13 36.7742 
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System diagram with similar DLMP regions. Region 1: 0.0726-0.0730$/kW; Region

0.0735$/kW; Region 3: 0.0742-0.0749$/kW 

2 Results for a distribution LMP calculated for the IEEE 34 bus system, lossy case 

DLMP $/pu.h DLMP $/kWh Bus DLMP $/pu.h DLMP $/kWh

0.0726 14 37.1001 0.0742 

0.0736 15 37.1002 0.0742 

0.0743 16 37.4300 0.0749 

0.0726 17 37.4300 0.0749 

0.0726 18 37.1206 0.0742 

0.0728 19 37.1431 0.0743 

0.0730 20 37.1446 0.0743 

0.0732 21 37.1517 0.0743 

0.0732 22 37.1548 0.0743 

0.0732 23 37.1551 0.0743 

0.0733 24 37.1371 0.0743 

0.0734 25 37.1253 0.0743 

0.0735 26 37.1256 0.0743 

* indicates generation bus 

 

; Region 2: 0.0732-

2 Results for a distribution LMP calculated for the IEEE 34 bus system, lossy case  

DLMP $/kWh 
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Figure 3.9 shows a ‘Generation II’ control scheme for distribution systems.  Various inputs are 

brought to a point of calculation of the DLMP, and the DLMPs are distributed to smart loads and other 

distributed controls.  Intelligent fault management (IFM) may be integrated into the system.  The building 

blocks of the concept illustrated are electronic controls, phase locked loops (PLLs) and pulse width modu-

lated (PWM) controllers.  The FREEDM center relates to the electronic control of power distribution sys-

tems. 

 

 
Figure 3.9 A conceptual picture of a ‘Generation II” electronically controlled distribution system 

3.5 Conclusions 

The use of quadratic programming and the FMINCON application in common software has been 

demonstrated to find the DLMP within a small distributed grid. When comparing the results of the no loss-

es case to the results found in the lossy case the effects of losses on the system can be viewed. The 

largest DLMP of the system is found to be about 6.45% higher than the value found in the lossless case 
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and 9.15% higher than the lowest value of the lossy case. According to [23] the average losses within the 

transmission and distribution systems are about 7%. More of the losses are found in the distribution sys-

tem compared to the transmission system thus the increases found in the DLMP throughout the system 

are in line with what would be expected in real distribution system.  
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Chapter 4: DLMP calculation for the lossy case using loss factors 

4.1 Motivation for the use of loss factors 

In Chapter 3, a technique for the calculation of DLMPs for the lossy case was presented.  That 

method was based on the Karush Kuhn Tucker method as implemented in FMINCON, a Matlab mainline 

program.  Because of the significant run times of FMINCON, additional ways of calculating the DLMP 

have been explored. One technique is to use a concept from the method of B-coefficients [24] in which 

optimal dispatch is done for the lossy case using loss penalty factors. The central idea is to apply a pre-

calculated penalty factor to generator incremental operating costs to model losses. That is, the higher the 

losses produced by a generator, the higher the penalty factor, and therefore the higher the penalized in-

cremental operating cost.  In the case of DLMP calculation, instead of calculating a penalty factor that is 

applied to the generation incremental cost, the penalty is applied to pre-calculated DLMPs at system bus-

es, and the penalty is intended to capture the level of system losses due to loading at the specified bus.  

Figure 4.1 shows the general proposed concept. 

 

Figure 4.1 Concept of losses in a distribution system 

4.2 Calculation of loss penalty factors 

A way to calculate an appropriate loss factor for each bus is presented as follows: 

• Run the lossless OPF using ‘quadprog’ as seen in Chapter 2 and calculate all the bus voltage 

phase angles (δ) in the distribution system. 
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• Calculate the total active power loss Ploss in the system by calculating the Iℓ
2Rℓ losses for every 

line. 

• Calculate Ybus and convert to Zbus with all the generators grounded. Examine (Zbus)kk for load bus 

k. This is rkk+jXkk. Assume that at each load bus the contribution to the losses Ploss is proportional 

to approximately rkk(Pkk)
2. 

• The fractional loss at each load bus k is, 

��� @b� �� ��?@ c �  �dc  � ecc��c�D∑ �ℓDℓ eℓℓ ��� 

where k is the specific load bus for which the DLMP is sought, and ℓ refers to the system lines. 

• Add PLk to the original precalculated DLMP (i.e., the precalculated DLMP using quadprog), 

A���ch � A���c i1 
  4jk4k l. 

4.3 Application of the loss factor method to the 34 bus test bed 

An example using the methods of Section 4.2 has been applied to the IEEE 34 bus system.  The 

system diagram for the 34 bus system is reproduced in Figure 4.2.  The original QP DLMP was calculated 

then each calculated loss factor was appropriately applied to each non-generation bus. Table 4.1 shows 

the common (data given) load profile. Table 4.2 shows the load at bus 17 equally distributed between 

buses 16 and 17. The results are shown in Table 4.1. 
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Figure 4.2 Test bed: 34 bus system [17] 

A few noticeable characteristics are displayed in the results. Most notably is that load immediately 

adjacent to the non-generation side of the system transformer experiences the highest increases in the 

DLMP. Bus 16 reflects that in Table 4.1 and in Table 4.2. The next largest contributor to a higher DLMP is 

load size. Buses with a large load see a much greater percent change in comparison to smaller loads. 

The final factor that influences the DLMP is distance from generation. While not as impactful as load size, 

it clearly contributes to the DLMP change. 
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Table 4.1 Table with loss factors applied to DLMP 

 

Bus Number Load (pu) QP LMP 
Loss Factor 

DLMP 
% Change Multiplier 

4 0.1 0.0883 0.0883 0.00% 1.0000 

5 0 0.0883 0.0883 0.00% 1.0000 

6 0 0.0883 0.0883 0.00% 1.0000 

7 0 0.0883 0.0883 0.00% 1.0000 

8 0 0.0883 0.0883 0.00% 1.0000 

9 0 0.0883 0.0883 0.00% 1.0000 

10 0.007 0.0883 0.0883 0.00% 1.0000 

11 0.01 0.0883 0.0883 0.00% 1.0000 

12 0.008 0.0883 0.0883 0.00% 1.0000 

13 0.03 0.0883 0.0883 0.00% 1.0000 

14 0 0.0883 0.0883 0.00% 1.0000 

15 0.015 0.0883 0.0883 0.00% 1.0000 

16 0 0.0883 0.089 0.79% 1.0079 

17 0.5 0.0883 0.0883 0.00% 1.0000 

18 0.05 0.0883 0.0895 1.36% 1.0136 

19 0.15 0.0883 0.0883 0.00% 1.0000 

20 0.006 0.0883 0.0883 0.00% 1.0000 

21 0.3 0.0883 0.0885 0.23% 1.0023 

22 0.0233 0.0883 0.0884 0.11% 1.0011 

23 0.06 0.0883 0.0883 0.00% 1.0000 

24 0.14 0.0883 0.0883 0.00% 1.0000 

25 0.08 0.0883 0.0883 0.00% 1.0000 

26 0.018 0.0883 0.0886 0.34% 1.0034 
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Table 4.2 Table with calculated loss factors applied to DLMP and load at bus 17 distributed to buses 16 
and 17 

 

Bus Number Load (pu) QP LMP 
Loss Factor 

DLMP 
% Change Multiplier 

4 0.1 0.0896 0.0896 0.00% 1.0000 

5 0 0.0896 0.0896 0.00% 1.0000 

6 0 0.0896 0.0896 0.00% 1.0000 

7 0 0.0896 0.0896 0.00% 1.0000 

8 0 0.0896 0.0896 0.00% 1.0000 

9 0 0.0896 0.0896 0.00% 1.0000 

10 0.007 0.0896 0.0896 0.00% 1.0000 

11 0.01 0.0896 0.0896 0.00% 1.0000 

12 0.008 0.0896 0.0896 0.00% 1.0000 

13 0.03 0.0896 0.0896 0.00% 1.0000 

14 0 0.0896 0.0896 0.00% 1.0000 

15 0.015 0.0896 0.0896 0.00% 1.0000 

16 0.25 0.0896 0.0902 0.67% 1.0067 

17 0.25 0.0896 0.0896 0.00% 1.0000 

18 0.05 0.0896 0.0908 1.34% 1.0134 

19 0.15 0.0896 0.0896 0.00% 1.0000 

20 0.006 0.0896 0.0896 0.00% 1.0000 

21 0.3 0.0896 0.0898 0.22% 1.0022 

22 0.0233 0.0896 0.0897 0.11% 1.0011 

23 0.1 0.0896 0.0896 0.00% 1.0000 

24 0.14 0.0896 0.0896 0.00% 1.0000 

25 0.08 0.0896 0.0896 0.00% 1.0000 

26 0.018 0.0896 0.0897 0.11% 1.0011 
 

4.4 Proportioning active power losses in the penalty factor loss approximation 

 In the optimization of generation sources as described above, a method has been proposed 

based on penalty factors (see Sections 4.2 and 4.3).  The loss penalty factors account for the impact of 

losses on cost; but, as stated above, there is no inclusion in the model for the need for generation to pro-

duce power to balance and accommodate active power losses.   

 At this point, the concept is to attribute losses to each system generator based on the “distance” 

from each generator.  For this purpose, consider a general distribution system as shown in Figure 4.3.  In 

this figure, three generation sources are depicted.  Regions I, II, and III are established based on the 
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electrical distance (i.e., point to point impedance) from a load bus to a generator.  Thus the load at bus L 

in Figure 4.3 is evaluated to determine whether the point to point impedance L – N, L to T, or L to U is 

smallest.  Then L is taken to be in the region associated with the smallest impedance.  In Figure 4.3, this 

is shown as bus L in region I.  This procedure is repeated for all the load buses.  The result is exemplified 

by Figure 4.3. 

 

Figure 4.3 General distribution system  

 The foregoing procedure is applied to the IEEE 34 bus system shown in Figure 4.2.   The result is 

shown in Figure 4.4.  Generator #1 lies in region I which contains buses 4-8;  generator #2 lies in region II 

which contains buses 9-17;  and generator #3 lies in region #3 which contains buses 18-26.  
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Figure 4.4 The 34 bus test bed with regions I, II, and III superimposed, used to identify attribute losses to 

generation. 

In order to apportion losses among the several generators, the total load inside each identified 

region is divided the total load of the entire system. The resulting percentage is used to proportion the 

losses to each region.  The proportioned loss is added to the generation in that region.  The basic con-

cept is written for the generalized case as, 

�?����mb��@ �� �����?��� c �  ���?� ��?@ �� ������ c���?� 	��n ��?@ 3 =opBqr s-sBt* q�B).t upvte rpssts>. 
The loss apportioning method is applied to the 34 bus test bed and results are shown in Table 4.3. 

Table 4.3 Example of proportioning losses for the IEEE 34 bus test bed 

Region 
No loss 

generation 
level (kW) 

Buses 
Load 
(kW) 

% of to-
tal load 

Load added to 
generation* 

(kW) 

New genera-
tor setting 

(kW) 

1 0.543 4-8 0.1 6.68% 0.001108662 0.54411 

2 0.4671 9-17 0.57 38.07% 0.006319375 0.47342 

3 0.4893 18-26 0.8273 55.25% 0.009171963 0.49847 
* The total loss found by this method is 0.0166 kW. 
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The loss apportioning method shown here has the following disadvantages and weaknesses: 

• Reactive power is not modeled 

• The load flow equations are not modeled. 

The advantages of the approach are: 

• The method is simple and completely repeatable 

• The calculation is fast – even for large distribution systems. 

Of course, the salient question relates to the accuracy of the apportioning method.  This is discussed us-

ing the 34 bus test bed as an example below. 

4.5 Optimal dispatch using PowerWorld 

In PowerWorld, optimal power flow studies (OPFs) are solved using a linear programming (LP) 

approximation. In the standard mode, ‘Simulator’ solves the power flow equations using a Newton-

Raphson power flow study algorithm. With the optimal power flow enhancement (an ‘add on’), ‘Simulator 

OPF’ in PowerWorld can also solve many of the system control equations using an Optimal Power Flow 

algorithm. Specifically, Simulator OPF uses a linear programming OPF implementation. In the Simulator 

OPF, the LP OPF determines the optimal solution by iterating between a solved case that was obtained 

using a standard power flow algorithm, and then solving a linear programming problem to change the sys-

tem controls.  The latter is done to remove any limit violations [25].  

The results of the base case using PowerWorld can be seen in Figure 4.3 and the load data in 

Table 4.4. The PowerWorld solution clearly displays the generation in MW at P1, P2 and P3 as well as 

the marginal cost in $/MWh. The loads are very small so they are depicted as zeros on a MW scale in 

Figure 4.3.  

 

 

 

 



Table 4.4 System load d
Bus Number 
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Figure 4.

4.6 Comparison of results of the several methods

 The results from each method used to calculate the DLMP and 

Tables 4.5-4.8 and graphically in Figures 4.

trial. Each trial has a different set of cost functions. Trial A uses an original set of cost functions used 

throughout the project. Trial B uses a set of cost func
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Table 4.4 System load data (modified IEEE 34 bus test bed) 
Load (pu) Bus Number Load (pu) 

0.1 16 0.25 
0 17 0.25 
0 18 0.05 
0 19 0.15 
0 20 0.006 
0 21 0.3 

0.007 22 0.0233 
0.01 23 0.06 
0.008 24 0.14 
0.03 25 0.08 

0 26 0.018 
0.015   

Figure 4.5 PowerWorld results (34 bus test bed) 

Comparison of results of the several methods 

The results from each method used to calculate the DLMP and the operating cost

and graphically in Figures 4.6-4.8. Table 4.4 shows the linear and quadratic costs of each 

. Each trial has a different set of cost functions. Trial A uses an original set of cost functions used 

throughout the project. Trial B uses a set of cost functions that are very similar and trial C uses a set with 

 

the operating costs are shown in 

shows the linear and quadratic costs of each 

. Each trial has a different set of cost functions. Trial A uses an original set of cost functions used 

tions that are very similar and trial C uses a set with 
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constant linear terms but varying quadratic terms. The first calculation method, namely ‘QuadProg no 

loss’, shows the results from a purely quadratic programming calculation only. There are no losses calcu-

lated in the system. The second method, labeled as ‘FMINCON’, uses the loss approximation method via 

the FMINCON function in Matlab. This method has been detailed in Sections 2.3 and 3.2.2, and in Ap-

pendix A. The third method, ‘QP with loss approximation’, uses the loss approximation method detailed in 

Sections 4.1 and 4.4. The final column shows the results calculated using PowerWorld.  

Table 4.5 The coefficients of a quadratic cost function for three different test trials 

Cost coefficients of each trial ($/h) 

Trial A Trial B Trial C 
Linear* Quadratic* Linear* Quadratic* Linear* Quadratic* 

3.75 9.38 3.75 9.40 3.75 9.38 

4.50 9.30 3.76 9.30 3.75 9.30 

4.00 9.90 3.74 9.50 3.75 9.90 

*Linear terms are multiplied by (*10-3) and quadratic terms are multiplied by (*10-6) 
 
 

Table 4.6 Trial A – Original test case 
Calculation Methods 

Solution QuadProg no loss FMINCON 
QP with loss ap-

proximation‡ 
PowerWorld 

P1 (kW) 0.543 0.5283 0.54411 1.498 

P2 (kW) 0.4671 0.4689 0.47342 0 

P3 (kW) 0.4893 0.5022 0.49847 0 
Linear cost 

term** 
0.06095 0.06100 0.06165 0.05618 

Quadratic cost 
term** 

0.00014 0.00014 0.00014 0.00014 

Total calculat-
ed cost* ** 

0.0611 0.0611 0.06179 0.0563 

*The total cost is the linear cost term plus the quadratic cost term 
** In arbitrary cut consistent units, may be interpreted as $/h 
‡Losses served by generation as described in Section 4.4 

 
 



32 

 

 
Figure 4.6 Graphical representation of trial A 

Table 4.7 Trial B using similar cost functions 
Calculation Methods 

Solution QuadProg no loss FMINCON QP with loss ap-
proximation‡ 

PowerWorld 

P1 (kW) 0.4997 0.5283 0.50081 1.498 

P2 (kW) 0.504 0.4689 0.51032 0 

P3 (kW) 0.4955 0.5022 0.50467 0 
Linear cost 

term** 
0.05622 0.05622 0.05684 0.05618 

Quadratic cost 
term** 

0.00014 0.00014 0.00014 0.00014 

Total calculat-
ed cost* ** 

0.0564 0.0564 0.05699 0.0563 

*The total cost is the linear cost term plus the quadratic cost term 
** In arbitrary cut consistent units, may be interpreted as $/h 
‡Losses served by generation as described in Section 4.4 
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Figure 4.7 Graphical representation of trial B 

Table 4.8 Trial C – test using constant linear term 
Calculation Methods 

Value QuadProg no loss FMINCON 
QP with loss ap-

proximation‡ 
PowerWorld 

P1 (kW) 0.5072 0.4939 0.50831 0.489 

P2 (kW) 0.5116 0.5128 0.51792 0.509 

P3 (kW) 0.4806 0.4926 0.48977 0.48 
Linear cost 

term** 
0.05623 0.05622 0.05685 0.05543 

Quadratic cost 
term** 

0.00014 0.00014 0.00014 0.00014 

Total calculat-
ed cost* ** 

0.0564 0.0564 0.05699 0.0556 

*The total cost is the linear cost term plus the quadratic cost term 
** In arbitrary cut consistent units, may be interpreted as $/h 
‡Losses served by generation as described in Section 4.4 
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Figure 4.8 Graphical representation of trial C 

The results from each trial show that the linear component of the cost function plays a large role 

in determining the dispatch. Table 4.9 shows a comparison of the assumed characteristics of each solu-

tion method. The variance in each method is likely due to the solution method each one takes. Not sur-

prisingly the ‘FMINCON’ and the ‘QP with loss approximation’ are higher than the no loss QP method. 

Since these are just extensions to include losses of the QP method the results are reasonable. One po-

tential reason for the difference between the three new proposed methods and PowerWorld is that 

PowerWorld solves the system by changing the quadratic costs into a piece-wise linear programming 

problem. This is less exact and could be the cause for the slightly lower total costs. There are also likely 

differences in how MATLAB and PowerWorld solve iteratively. Tables 4.10 and 4.11 show the percent 

difference in the results compared to PowerWorld regarding total load and total cost. Some other possible 

reasons for the variance in total load and total cost are: 

• PW was created for large scale systems; does better with transmission system, megawatts not 

kilowatts 

• In PW, DLMP (seen as bus marginal cost) is constant throughout system, while the other meth-

ods solve for the DLMP individually. 

• The three new proposed methods don’t take into account reactive power. 

Table 4.9 A comparison of assumed characteristics of solution methods for the calculation of DLMPs 
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QuadProg no 
loss 

N Y N N N Y 

FMINCON Y Y N N N Y 

QuadProg 
with losses 

Y Y N N N Y 

PowerWorld Y Y Y Y* Y N* 

*Piecewise linear representation of the cost function is used 
N = NO                             Y = YES 

Table 4.10 Percent difference from PowerWorld results regarding total load 

Trial QuadProg no loss FMINCON QP with loss approximation‡ 

A 0.09% 0.09% 1.20% 

B 0.08% 0.09% 1.19% 

C 1.45% 1.44% 2.57% 

 
Table 4.11 Percent difference from PowerWorld results regarding total cost 

Trial QuadProg no loss FMINCON QP with loss approximation‡ 

A 8.53% 8.53% 9.75% 

B 0.18% 0.09% 1.19% 

C 1.44% 1.44% 2.50% 

 
 In each trial the total load wasn’t too much higher than the results found from PowerWorld. A 

maximum of 2.57% larger in load was found. The proposed new systems were not as close to the results 

of PowerWorld when it came to total cost. When each cost had a similar or exactly the same linear cost 

as in trials B and C, the total cost was not much different varying as much as only 2.5%. However, in trial 

A where the linear cost of the system was much more diverse, the total cost of the system was approxi-

mately 9% higher than the PowerWorld cost.  

  



5.1 Introduction 

 The previous chapter displayed the application and calculation of a distribution based locational 

marginal price. In this chapter, further applications involving energy management within the IEEE 34 bus 

test bed will be demonstrated. In most

DLMP, that is, it will adjust based on original DLMP values

ferent factors affect the energy management. 

 Before going through the examples on how an energy management system (EMS) coinciding 

with a DLMP can be used, the possible applications for a realistic EMS should be discussed. 

5.2 Example 1: the role of DLMP set points

 Depending on the system parameters (costs, load values, line ratings, etc.) the DLMP will vary 

from load to load. The energy management system created looks at the initial values of the DLMP and 

applies energy management system ‘multipliers’. In the real world this would be either load reduction or 

an increasing of the load with some sort of storage. Assuming there is some desired range of DLMP va

ue, convergence to this value can vary depending location of the DLMP set p

tem. Figure 5.1 depicts a visualization of the ranges for a DLMP. Each range would have an associated 

multiplier. The EMS would view the previous DLMP data and apply the appropriate multiplier. 

where the multiplier is one or no change is the desired range of DLMP for the system to be in.

Figure 5.1. Visualization of different DLMP multiplier ranges.

 Adjusting the location of the set points

of the DLMP. In Figure 5.2 the system converges to the desired range after 4 units of time. Figure 
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can have varying effects on the speed of the convergence 

the system converges to the desired range after 4 units of time. Figure 5.3 is 



the result of reducing the size of the desired range of DLMP.  In this scenario it takes the system much 

longer than 10 units of time and does not even show signs of conve

on the DLMP set points can have a significant impact on the speed and completion towards convergence 

of a desired DLMP. 

Figure 5.2 Faster DLMP convergence with a wider desired rang
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the result of reducing the size of the desired range of DLMP.  In this scenario it takes the system much 

longer than 10 units of time and does not even show signs of convergence at all.  It is clear the placement 

on the DLMP set points can have a significant impact on the speed and completion towards convergence 

Faster DLMP convergence with a wider desired range 

Time (unit) 

Industrial Load = 250 kW 

Commercial Load = 50 kW 

Residential Load = 3.5 kW 

Time (unit) 

Load = 50 kW 
Residential Load = 3.5 kW 

Industrial Load = 250 kW 

the result of reducing the size of the desired range of DLMP.  In this scenario it takes the system much 

It is clear the placement 

on the DLMP set points can have a significant impact on the speed and completion towards convergence 

 

 



Figure 5.3 No DLMP convergence with a 

5.3 Example 2: the role of energy management systems ‘multipliers’

 As said previously the ‘multipliers’ of the system would act as either load increase such as i

plementing storage or a load shedding. The severity of the load increase can d

DLMP. Two different runs were performed. The first, “run A” had a large variance in load manipulation. As 

much as 50% of the load could be shed based on what range the DLMP fell in. The second

had far less variance. A maximum of 10% could be reduced at one time. The multipliers of each range 

are located in Table 5.1 and the results are in figures 5.3 and 5.4.

Table 5.1 Range multipliers for each run

Name 
Range 1
multiplier

Run A 0.5 
Run B 0.9 

Figure 5.4 DLMPs with large variance in ‘multipliers’
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Industrial Load = 250 
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No DLMP convergence with a reduced desired range 

.3 Example 2: the role of energy management systems ‘multipliers’ 

As said previously the ‘multipliers’ of the system would act as either load increase such as i

plementing storage or a load shedding. The severity of the load increase can drastically change the 

Two different runs were performed. The first, “run A” had a large variance in load manipulation. As 

much as 50% of the load could be shed based on what range the DLMP fell in. The second

maximum of 10% could be reduced at one time. The multipliers of each range 

are located in Table 5.1 and the results are in figures 5.3 and 5.4. 

Table 5.1 Range multipliers for each run 
Range 1 
multiplier 

Range 2 
multiplier 

Range 3 
multiplier 

0.75 1 
0.95 1 

Figure 5.4 DLMPs with large variance in ‘multipliers’ 

Load = 50 kW 

Residential Load = 3.5 kW

Industrial Load = 250 kW 

Time (unit) 

As said previously the ‘multipliers’ of the system would act as either load increase such as im-

rastically change the 

Two different runs were performed. The first, “run A” had a large variance in load manipulation. As 

much as 50% of the load could be shed based on what range the DLMP fell in. The second trial, “run B”, 

maximum of 10% could be reduced at one time. The multipliers of each range 

Range 4 
multiplier 

1.25 
1.05 

 

kW 



Figure 5.5 DLMPs with small variance in ‘multipliers’

 The figures show how much this can affect the DLMP. In the case of having large multipliers the 

industrial load DLMP varied from 44 to 38. However, in the run with smaller multipliers, the industrial load 

varied from less than 43.4 and greater than 43.2. 

 

5.4 Example 4: load control using DLMP with a single load

 In sections 5.2 and 5.3 each bus of the system was increased or decreased based on its own 

DLMP. Conversely, this section looks into how individual DLMPs change based a single load having an 

energy management system based on the DLMP. 

system in three different trials and their load values and load type are seen in Table 5.2. 

each run are shown in figures 5.6 and 5.7.
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Figure 5.5 DLMPs with small variance in ‘multipliers’ 

The figures show how much this can affect the DLMP. In the case of having large multipliers the 

ad DLMP varied from 44 to 38. However, in the run with smaller multipliers, the industrial load 

varied from less than 43.4 and greater than 43.2.  

load control using DLMP with a single load 

In sections 5.2 and 5.3 each bus of the system was increased or decreased based on its own 

DLMP. Conversely, this section looks into how individual DLMPs change based a single load having an 

energy management system based on the DLMP. Buses 2, 8 and 26 of figure 4.2 are controlled in the 

system in three different trials and their load values and load type are seen in Table 5.2. 

each run are shown in figures 5.6 and 5.7. 

Table 5.2 Controlled load data 
Load Value Load Type 

50 kW Commercial 
3.5 kW Residential 
250 kW Industrial 

Load = 50 kW 

Residential Load = 3.5

Industrial Load = 250 kW 

Time (unit)  

The figures show how much this can affect the DLMP. In the case of having large multipliers the 

ad DLMP varied from 44 to 38. However, in the run with smaller multipliers, the industrial load 

In sections 5.2 and 5.3 each bus of the system was increased or decreased based on its own 

DLMP. Conversely, this section looks into how individual DLMPs change based a single load having an 

figure 4.2 are controlled in the 

system in three different trials and their load values and load type are seen in Table 5.2. The results of 
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Figure 5.6 Single industrial load 

Figure 5.7 Results from residential and commercial load

 When the industrial load is changed the system sees a variant DLMP. 

larger percentage of total load this bus has compared to the others. However when in the case of the i

dustrial and residential loads, the change is insignificant

course is also dependent on the settings of the ‘set point’ as discussed in section 5.2.

5.5 Conclusions 
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Figure 5.6 Single industrial load (bus 26) altering load based on DLMP

Figure 5.7 Results from residential and commercial loads (bus 2 and 8) altering load based on DLMP 

When the industrial load is changed the system sees a variant DLMP. This is likely due to the 

larger percentage of total load this bus has compared to the others. However when in the case of the i

the change is insignificant to the DLMP as it remains constant. This of 

course is also dependent on the settings of the ‘set point’ as discussed in section 5.2. 

Commercial Load = 50 kW

Residential Load = 3.5 kW

Industrial Load = 250 kW 

Time (unit) 

Commercial Load = 50 kW

Load = 3.5 kW 

Industrial Load = 250 kW 
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altering load based on DLMP 
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larger percentage of total load this bus has compared to the others. However when in the case of the in-

to the DLMP as it remains constant. This of 
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 A few approaches to the use of the DLMP as a pricing based method for energy management 

have been discussed in this chapter. The underlying concept is that a single home, neighborhood or en-

tire distribution network could use DLMP signals to control loads. The user could identify which loads are 

controllable and what strategy might be employed to control load based on price. This could be done ei-

ther from the utility perspective or the homeowner depending on the deployment of certain technologies. 

Many contemporary smart meters are able to give present load values immediately, which is the primary 

real time data needed to calculate the DLMP. It is likely that only a few selective loads have the ability to 

be controlled. Any load with this type of control would require technologies such as Wi-Fi integrated ap-

pliances to control the load. As an example, ZigBee technology has been used for energy management 

[28, 29].  Deployment of energy management using DLMP to save money would likely be customer driven 

rather than utility driven.   

 An additional application relates to the use of the DLMP as a signal that can be used to identify 

heavily used assets in the distribution system.  The potential utility company application would be that the 

DLMP is used to identify which distribution assets need to be enhanced. 

The effects of DLMP set points in the controller and the ‘multiplier’ (in the form of load shedding 

and storage) have also been discussed in this section.  The set points in the controller determine the time 

response of the load. The ‘multipliers’ discussed in this chapter also have a significant impact on the time 

response of the energy management system.   
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 Chapter 6: Conclusions, recommendations, and future work 

6.1 Conclusions 

 The main and secondary conclusions of this thesis are outlined in Tables 6.1 and 6.2. The tables 

include conclusions and application areas. The selected application areas are ‘Calculation Methods’, 

‘DLMP applications’, ‘DLMP results’ and ‘Energy Management’. 

Table 6.1 Main conclusions of thesis 

Description Application Area 
The application of present techniques for the calculation of transmis-
sion LMPs in distribution systems can be transported to distribution 
engineering. 

DLMP applications 

Quadratic programming is effective in finding  the minimal operating 
cost (quadratic expressions for fuel costs assumed). 

Calculation methods 

FMINCON can be used for the indicated optimization and results com-
pare favorably with PowerWorld. 

DLMP results 

Modeling active power losses using loss factors gives results that are 
close to PowerWorld results.   

DLMP results 

The use of DLMPs as a fundamental control signal for energy man-
agement  could be effective. 

Energy management 

Distributed generation will have significant effects on the DLMP. DLMP applications 

 

 

6.2 Recommendations and future considerations 

 Table 6.3 contains topical areas for future work. Issues and recommendations are presented in 

the table. 
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Table 6.2 Secondary conclusions of thesis 

Description Application Area 

Calculation time to obtain the DLMP is faster using the described 
method with loss factors – as compared to the use of FMINCON. 

Calculation methods 

Costs increase in moving from source to load in a radial distribution 
system. 

DLMP applications 

The use of FMINCON and the use of the method of loss factors for the 
calculation of DLMPs give results that do not agree well with 
PowerWorld (e.g., approximately 9% discrepancies).  The discrepancy 
appears to exacerbate when the generation operating cost  functions 
differ widely. 

DLMP results 

The DLMP is an indicator for assets (e.g., lines and transformers) 
needing improvement in the distribution system DLMP applications 

 
 
 

Table 6.3 Issues and recommendations for future work 
Recommendations and Future Explorations 

Issue Recommendation 
DLMP should be applied to 
networked distribution sys-
tems 

Explore test systems with a mesh configuration; note differences in 
cost and still include distributed generation.  Could be usefully applied 
to new construction neighborhoods with smart meters that have im-
plemented distributed generation and possibly storage. 

Determining the best location 
for distributed generation 

Develop software to identify optimal location of distributed generation; 
compare total cost and individual DLMP at each bus to determine op-
timal locations for the generation. 

Consider time varying LMPs 
in the transmission system 

Consider having system adapt to changing transmission LMP as well 
as time varying distributed generation.  

Public acceptability of paying 
for electricity based on home 
location 

Conduct market research to determine homeowner opinion of subject. 
Consider developing incentive programs if DLMP is found to be helpful 
in lowering utility total cost. 

Methods have only been ap-
plied to 34 bus system 

Apply to larger distribution network. Look at percent change in total 
cost and total load compared to PowerWorld as before. Note change 
in percentage differences based on each scenario. 

Consider energy storage. Model energy storage. 

Utilization of more complex 
generation cost ‘curves’ (e.g., 
tabular costs) 

Use of alternative optimization methods. 
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Appendix A:  

The utilization and performance of Matlab function FMINCON 
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A.1 Function FMINCON:  a brief description 

The Matlab function FMINCON is an optimization routine based on the ‘interior point’ method [30].  

As stated in the Matlab ‘help’ command, the function “FMINCON attempts to find a constrained minimum 

of a scalar function of several variables starting at an initial estimate. This is generally referred to as con-

strained nonlinear optimization or nonlinear programming.” 

A.2 Function FMINCON and its implementation in Matlab 

Matlab function FMINCON is an automated optimization tool.  Function FMINCON finds a con-

strained minimum of a nonlinear multivariable function of several variables. It attempts to minimize the 

function subject to linear and non-linear equality and inequality constraints. FMINCON uses Sequential 

Quadratic Programming (SQP) which is a variant of the Kuhn-Tucker approach.  The basis of SQP is to 

model the minimization problem at xk by a quadratic sub-problem and to use the solution to find a new 

point xk+1  -- this is a search. FMINCON has options for four different algorithms to solve the equation. 

They are ‘sqp’, ‘active-set’, ‘interior-point’ and ‘trust region reflective’.   Figure A.1 shows the pseudocode 

for a quadratic programming problem. 

The call for FMINCON is set up in the following: 

X = FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB) 

FMINCON starts at an initial point X0 and finds a minimum X to the function FUN. The function is subject 

to the linear inequalities A*X ≤ B and linear equalities Aeq*X = Beq. The function FUN accepts input X 

and returns a scalar function value F evaluated at X. Initial value X0 may be a scalar, vector, or matrix. LB 

and UB are a set of lower and upper bounds on the variables, X, so that a solution is found in the range 

LB ≤ X ≤ UB [26]. 
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Figure A.1 A quadratic programming pseudocode taken from Matlab [27]  

A.3 Execution time of FMINCON 

The run time of FMINCON has been found to be long and variant based on the optimization set 

and starting point x0 used by the program.  Investigation into different parameters of the ‘optimset’ and 

starting point (x0) of FMINCON was done to find the performance of the software.   The approach taken is 

purely experimental.  Consider two different test beds, 

�C � ��C " 1�D 
 ��D " 12 
 ; 
 ��aw " 50�D (A.1) 

�D �  x��� " )�D.aw
�yC  (A.2) 

In order to investigate the performance of FMINCON, parameters x0 and ‘optimset’ are varied. 

Considering (A.1) first, varying the starting point x0, three possible variations are studied and listed below.  

The equations (A.3) – (A.5) define the X) value for three tests.  For convenience, the tests shall be de-

nominated as run A.3, A.4, and A.5 respectively.  The three cases studied are: 

H0 �  
z
{|

000K0}
~� 

 

(A.3) 

H0 �  
z
{|

123K50}
~� "  0.1 3  

z
{|

111K1}
~� (A.4) 

H0 �  
z
{|

123K50}
~� (A.5) 

The timing difference when solving (A.1) was explored using the three different X0 values that are 

shown in (A.3) – (A.5). No modification to the ‘optimset’ of FMINCON was done. Each initial value x0 

(A.3-A.5) was run twice using the ‘sqp’ algorithm type and twice using the ‘active-set’ type. The total run 
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time was recorded in Table A.1. Each initial value was run again 25 times in each algorithm type and the 

average time was recorded in Table A.2.  

The results depicted in Tables A.1 and A.2 show that there is a benefit to initiating the search 

near the solution.  The run times are about four times longer in A.3 as compared to starting exactly on the 

answer as in run A.5. The difference between the average run times of starting at the solution as com-

pared to very close to the solution ranges from about 30-75% longer per run when starting at an X0 value 

displaced by 0.1 in each row of the vector X0 as indicated in (A.4).   

Table A.1 Run times with different X0 values for examples (A.3) – (A.5) 

X0 value* Algorithm Type Time (s) fval 

A.3 sqp 21.5737 1.6271*10-12 

A.3 sqp 19.5066 1.6271*10-12 

A.3 active-set 22.0704 5.4432*10-10 

A.3 active-set 20.9760 5.4432*10-10 

A.4 sqp 6.6423 2.3819*10-12 

A.4 sqp 6.6989 2.3819*10-12 

A.4 active-set 5.9303 2.3827*10-12 

A.4 active-set 6.1320 2.3827*10-12 

A.5 sqp 4.2784 0 

A.5 sqp 3.6210 0 

A.5 active-set 6.7066 0 

A.5 active-set 5.0039 0 

*The contents of this column show the ‘run number’ for tests performed  
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Table A.2 Average time after 25 runs for examples (A.3)-(A.5) 

X0 value* Algorithm Type Time (s) 

A.3 sqp 21.2264 

A.3 active-set 21.9850 

A.4 sqp 8.1359 

A.4 active-set 6.7765 

A.5 sqp 4.6500 

A.5 active-set 5.211 

*The contents of this column show the ‘run number’ for tests performed, the actual X0 values are shown 
in equations (A.3) – (A.5)  
 
 
A.4 Solution accuracy for FMINCON 

Using the run (A.2), the different ‘Algorithms’ of the optimset of FMINCON were varied to investi-

gate the error and value obtained (F*). The results are displayed in Table A.3 

Table A.3 Solution error in FMINCON for run (A.2) 

Algorithm Type F* Error in x* ∆T (s) 

Active-set ~2.4 ~1.5 0.07-0.042 
Interior-point Bad away from x* Does not solve 0.026-0.075 
sqp ~2.4 ~1.5 0.034-0.072 
Trust-region-reflective ~2.4 ‡ ~1.5 0.04-0.05 
‡ This method produces an automated warning that advises the user that the method can not be used. 
 
A.5  OPTIMSET parameters for MATLAB 

The parameters of OPTIMSET are used in MATLAB for various optimization parameters. They 

are: 

� Display - Level of display [ off | iter | notify | final ] 
� MaxFunEvals - Maximum number of function evaluations allowed [positive integer] 
� MaxIter - Maximum number of iterations allowed [positive scalar] 
� TolFun - Termination tolerance on the function value [positive scalar] 
� TolX - Termination tolerance on X [ positive scalar ] 
� FunValCheck - Check for invalid values, such as NaN or complex, from user-supplied 

functions [ {off} | on ] 
� OutputFcn - Name(s) of output function [ {[]} | function ]  
� All output functions are called by the solver after each iteration. 
� PlotFcns - Name(s) of plot function [ {[]} | function ] 
� Function(s) used to plot various quantities in every iteration [26] 


