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ABSTRACT 

 In situ remediation of contaminated aquifers, specifically in situ bioremediation (ISB), 

has gained popularity over pump-and-treat operations. It represents a more sustainable 

approach that can also achieve complete mineralization of contaminants in the 

subsurface. However, the subsurface reality is very complex, characterized by 

hydrodynamic groundwater movement, geological heterogeneity, and mass-transfer 

phenomena governing contaminant transport and bioavailability.  

These phenomena cannot be properly studied using commonly conducted laboratory 

batch microcosms lacking realistic representation of the processes named above. 

Instead, relevant processes are better understood by using flow-through systems 

(sediment columns).  

However, flow-through column studies are typically conducted without replicates. Due 

to additional sources of variability (e.g., flow rate variation between columns and over 

time), column studies are expected to be less reproducible than simple batch 

microcosms. This was assessed through a comprehensive statistical analysis of results 

from multiple batch and column studies. Anaerobic microbial biotransformations of 

trichloroethene and of perchlorate were chosen as case studies. Results revealed that no 

statistically significant differences were found between reproducibility of batch and 

column studies.  

It has further been recognized that laboratory studies cannot accurately reproduce 

many phenomena encountered in the field. To overcome this limitation, a down-hole 

diagnostic device (in situ microcosm array – ISMA) was developed, that enables the 

autonomous operation of replicate flow-through sediment columns in a realistic aquifer 

setting. Computer-aided design (CAD), rapid prototyping, and computer numerical 
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control (CNC) machining were used to create a tubular device enabling practitioners to 

conduct conventional sediment column studies in situ.  

A case study where two remediation strategies, monitored natural attenuation and 

bioaugmentation with concomitant biostimulation, were evaluated in the laboratory and 

in situ at a perchlorate-contaminated site. Findings demonstrate the feasibility of 

evaluating anaerobic bioremediation in a moderately aerobic aquifer. They further 

highlight the possibility of mimicking in situ remediation strategies on the small-scale in 

situ.  

The ISMA is the first device offering autonomous in situ operation of conventional 

flow-through sediment microcosms and producing statistically significant data through 

the use of multiple replicates. With its sustainable approach to treatability testing and 

data gathering, the ISMA represents a versatile addition to the toolbox of scientists and 

engineers.  
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PREFACE 

This dissertation is organized into five chapters, which I will outline below. 

Chapter one is a critical review of the current use of treatability studies in lab and field 

and their ability to predict commonly observed failure modes when implementing in situ 

bioremediation. It is based on a survey among remediation professionals to supplement 

failure modes described in the (mostly academic) peer-reviewed literature. I conclude 

that failure of in situ bioremediation at the field scale could be studied and avoided if 

flow-through systems were used in either lab or field to assess and circumvent known 

potential failure sources prior to field implementation of cleanup technologies. Beyond 

in situ bioremediation, this conclusion also will hold true for other in situ remediation 

approaches governed by mass transport and delivery phenomena, e.g., in situ chemical 

oxidation/reduction or reactive barriers.  

Chapter two is a comprehensive statistical analysis of the experimental reproducibility 

of batch and column microcosms routinely used to assess in situ remediation processes 

under static and continuous-flow conditions. The work was motivated by the present 

lack of information on variability between replicate batch microcosms, and the 

customary reporting in the peer-reviewed literature of flow-through sediment column 

experiments performed without replicates. Anaerobic microbial biotransformations of 

trichloroethene to dichloroethene, vinyl chloride and ethene, and of perchlorate were 

chosen as case studies, and different error sources characteristic of batch and flow-

through microcosms were identified and quantified. Replicate small-scale column 

studies are identified as an attractive but currently under-utilized tool to study and 

parameterize phenomena occurring in flow-through environments such as aquifers. 

Miniaturized columns have reduced requirements for both sediment material and 
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laboratory space, yet enable one to conduct experiments with multiple replicates at 

experimental error rates comparable to those of batch microcosms. 

Chapter three describes the design and capabilities of a novel device that enables the 

autonomous operation of replicate flow-through sediment columns in a realistic aquifer 

setting. When deployed in a well, the in situ microcosm array (ISMA) approximates in 

situ conditions by drawing groundwater directly from the aquifer and delivering it to 

replicate columns (up to 10) filled with site sediment. Storage of influent and effluent in 

the device affords in situ testing at ambient subsurface temperatures and conditions 

without causing release of either the chemicals or bacteria evaluated. The ISMA is the 

first device offering autonomous in situ operation of conventional flow-through 

sediment microcosms and produces statistically significant data through the use of 

multiple replicates.  

Chapter four presents a case study for the ISMA. Two remediation strategies, 

monitored natural attenuation and bioaugmentation with concomitant biostimulation, 

were evaluated in the laboratory and in situ at a perchlorate-contaminated site. Field 

results qualitatively matched those of identical studies conducted in the laboratory; 

however, differences were found between first-order perchlorate degradation rates (0.55 

hr-1 in the lab vs. 0.24 hr-1 in situ). Findings demonstrate the feasibility of evaluating 

anaerobic bioremediation in a moderately aerobic contaminated aquifer. They further 

highlight the possibility of mimicking in situ remediation strategies on the small-scale in 

situ. As demonstrated here, the ISMA enables analysis of effluent samples from each 

experiment for multiple parameters with statistical significance, as well as DNA analyses 

of both attached and suspended microbial communities.  

Chapter five contains recommendations for hardware improvements as well as next 

steps to demonstrate use of the ISMA for remedy testing of other groundwater 
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contaminants. These are meant to aid moving the ISMA from a research stage to a 

technology that is available to environmental consultants and site managers in the U.S. 

and worldwide. With the creation of a startup company (In Situ Well Technologies, LLC.) 

and a commercialization agreement with an international environmental consulting firm 

in place, the ISMA is well on its way to be available for routine testing.
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1. CRITICAL REVIEW OF FAILURE MODES AND OPPORTUNITIES FOR THEIR 

PREVENTION IN IN SITU BIOREMEDIATION  

INTRODUCTION 

In situ remediation of contaminated aquifers, specifically biological remediation, has 

gained popularity over pump-and-treat operations1, 2 by representing a more sustainable 

approach that can also achieve complete mineralization of contaminants in the 

subsurface. In contrast, pump-and-treat operations merely transfer contaminants from 

water into another medium requiring subsequent disposal or treatment. However, the 

subsurface environment is very complex, characterized by groundwater movement, 

geochemical, physical and biological heterogeneity, zones with different terminal 

electron accepting processes, and mass-transfer phenomena governing contaminant 

transport and bioavailability. These lead to many challenges of in situ bioremediation 

(ISB). Remediation failures may be caused by inadequate site characterization, poor 

technology selection, and flawed design or implementation of a selected remedy. 

However, ISB is particularly prone to failure modes relating to microbiology; the peer-

reviewed literature cites limited contaminant bioavailability3-8 and survival of introduced 

microorganisms5-10 as the main sources of failure. Further issues involving 

bioremediation discussed in the literature are incomplete contaminant degradation5, 11, 

regulatory issues4, 11, and injection-well clogging8.  

Failure Modes Survey 

To supplement the failure sources identified by the mainly academic publications 

listed above, we conducted a limited survey (Figure 1-1.) among leading remediation 

practitioners that combined have worked on over 1400 bioremediation sites. Survey 

participants were asked to rank different failure modes on a scale of 1-5, and encouraged 
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to identify further failure modes not listed in the survey (survey provided in Appendix 

A).  

  

Figure 1-1. Results from limited survey among remediation practitioners on the relative 
importance of different failure modes encountered during in situ bioremediation. 
Surveyed individuals combined worked on a total of 1493 bioremediation sites. Only 
individuals with experience from >5 sites were considered. Captured under “other” are 
pH buffering issues pointed out by three survey participants. Failure modes were rated 
on a scale of 1 (minor concern) to 5 (frequent/important concern). Results shown are 
average responses, weighted by the number of bioremediation sites the individual has 
worked on. Error bars represent standard deviation (n=19). 

Remediation practitioners identified ineffective delivery of bioaugmentation agents 

throughout the plume, clogging of injection-wells, and incomplete contaminant 

degradation and accumulation of toxic degradation products or metal solubilization from 

changing redox conditions as the main failure sources when implementing ISB, followed 

by unsustained biological activity and death/inactivity of bioaugmented microorganisms. 

Additional identified failure sources were clogging of the aquifer and ineffective delivery 

of nutrients, which often go hand-in-hand. Difficulty to control pH was identified as an 
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important failure mode by three individuals representing 750 bioremediation sites. The 

survey results reveal that many of these failure modes are equally important and no one 

predominant cause of bioremediation failure was identified.  

In this critical review, we examine the fundamental processes leading to these failure 

modes, and discuss suitable methods to identify potential problems early on in the 

feasibility assessment phase during the treatability studies preceding ISB. 

FUNDAMENTALS OF BATCH AND FLOW-THROUGH STUDIES 

Because the prediction of issues encountered in the field are inextricably linked to 

fundamental differences between closed batch microcosms and flow-through treatability 

studies, we will highlight some fundamentals of these two systems before discussing 

different failure modes of ISB in detail.  

Laboratory incubation of field samples is an accepted approach to studying subsurface 

processes, pinpointing potential failure modes, and devising alternative remedies to 

meet requirements at specific sites before full-scale remediation is implemented. For this 

purpose, samples assumed to be representative of the subsurface are brought to the 

laboratory and incubated under controlled conditions. While every investigator strives to 

replicate field conditions in the lab, the natural environments where microorganisms 

dwell are poorly understood12. Owing to this fact is our inability to culture many 

environmental microorganisms which thrive under natural conditions in the 

environment. It has been estimated that the fraction of culturable bacteria present in 

soil, sediment or freshwater is only 0.25 – 0.3% of total cell counts13.  

Typically, these laboratory incubations are conducted in batch microcosm (most often 

serum bottles ranging in volume from 100-250 mL14-19), filled with sediment and 

groundwater from the site under evaluation. Candidate amendments (carbon sources, 

electron donors, nutrients, microbial agents, etc.) are added to the batch microcosms, 
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and contaminant reduction is observed over time during long-term incubation (typically 

50-100 days14-16, 18, 20). Laboratory microcosms are simple in design, offer good control 

over experimental conditions, facilitate complete mass balances, and allow for tests to be 

conducted in multiple replicates to distinguish between experimental reproducibility and 

distinct outcomes actually caused by the differing treatment scenarios simulated. They 

are therefore very popular to assess the feasibility of bioremediation, and are 

recommended by a number of guidance documents21-25.  

Although many limitations exist, laboratory batch microcosm studies can answer a 

range of questions, which are prerequisite for evaluating bioremediation at a 

contaminated site (Table 1-1): 

1. Are microorganisms present at the site capable of degrading the 

contaminant(s) of concern without accumulation of harmful byproducts?26 

2. Can augmentation of known degraders expedite and/or complete the 

degradation?27-31  

3. Which amendments (carbon source, electron donor, and other co-factors) are 

effective and what dosing is needed?32, 33  

4. What are important interactions between wanted degraders and 

competitive/synergistic microorganisms; and how can they be influenced to 

optimize contaminant removal?34, 35 

5. Are toxic substances or inhibitors at the site interfering with complete 

removal?36-40 

6. Is there a potential for metals leaching from sediment through changes in 

redox/pH conditions?41 
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Table 1-1. Suitability of different treatability test systems to assess fundamental 
processes relevant to implementation failure modes. 

Batch Microcosm Flow-through Microcosm Field Test 

Redox/pH changes42, 43  Small-scale mass transfer 
limitation44-50  

Large-scale mass transfer 
limitation51-55  

Presence of 
toxics/inhibitors in aquifer 
material36-40 

Clogging/permeability 
reduction56-58  

Geological/biological 
heterogeneity59-64  

Evaluation of different 
nutrients for 
bioremediation32, 33  

Long-term performance (1 
yr65, 6 mo66, 5 mo67, 3-4 
mo68) 

Amendment delivery and 
distribution69-72  

Presence/activity of 
degrading microorganisms 
/ need for 
bioaugmentation27-31  

Degradation rate under 
given flow conditions73-76  

Bacterial survival69, 77  

 

Beyond these, results from batch studies are often employed to inform full-scale 

system design and implementation of ISB, often without considering their inherent 

limitations in accurately predicting processes in the environment. However, it has been 

widely acknowledged that laboratory test results are often “quantitatively, even 

qualitatively different from the same determination in situ”78. This leads to failures 

during field-scale implementation that are not predicted by laboratory batch studies. 

Feasibility studies conducted in batch bottles assess degradation under enhanced 

mass-transfer conditions. Sediment material is broken up, destroying the aggregate 

structures and eliminating air, water and nutrient gradients, which control microbial 

activity in intact sediment. A sediment slurry is prepared, reducing heterogeneity and 

allowing maximum contact between the sediment particles and the aqueous phase. Batch 

bottles can be incubated statically18, but are often periodically shaken20 or incubated 

under constant agitation on a shaker15-17. This agitation leads to enhanced diffusive and 

convective transport of contaminants from sorbed phase to dissolved phase (Figure 1-2) 

and enhances contaminant bioavailability79. In contrast, only some of the sediment in 
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the subsurface is in contact with the dynamic portion of the groundwater, whereas large 

portions of the sediment are in equilibrium with stagnant pore water, leading to only 

minimal diffusion of sorbed contaminants into the aqueous phase. This leads to 

significant mass-transfer limitations in the subsurface, which are described as limiting 

factors in numerous studies3-8, 80, 81, but which cannot be adequately addressed by batch 

microcosm studies. 

 

Figure 1-2. Dominating conditions in a laboratory batch microcosm: A - sediment slurry 
leading to maximized mass transfer between sediment and aqueous phase, and therefore 
maximized bioavailability of contaminant, nutrients, electron donor/acceptor; B - closed, 
hydrostatic system leading to a temporal sequence of terminal electron accepting 
processes, accumulation of degradation products, and transient microbial community 
composition caused by constantly changing conditions. 

The subsurface contains distinct geochemical zones characterized by certain redox 

conditions along with the corresponding dominant terminal electron accepting process 

(TEAP; e.g., oxygen, nitrate, iron, sulfate reducing zones – see Figure 1-3). These zones 

have been found on different scales, ranging from centimeters to a few meters at the 

plume edge (perpendicular to groundwater flow)62, 82-85 to several hundred meters to 

kilometers in length along the flow path of a plume86, 87. Associated with these TEAP 
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zones are microbial communities that utilize the dominant electron acceptor and are 

therefore responsible (along with abiotic redox reactions and groundwater movement) 

for the creation of zones with distinct microbiological and chemical conditions88. From 

the perspective of microorganisms living attached to the sediment, electron acceptor, 

electron donors (oxidized contaminant), and other nutrients are constantly supplied by 

groundwater flow or desorbing from sediment, while degradation products are carried 

away. Conditions at the scale of individual microorganisms are fairly constant. Although 

TEAP zones have been found to change over timeframes of multiple days to several 

months87, 89, they are stable enough to accommodate the development of distinct 

microbial communities83, 90, 91. 

 
Figure 1-3. A – Idealized conceptual aquifer model showing sequential zones of 
dominant terminal electron acceptors along a redox gradient in a contaminant plume; B 
– Zones of terminal electron acceptors, which can be formed in a flow-through 
laboratory column simulating aquifer conditions. 
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In batch microcosms, spatial establishment of TEAP zones is not possible due to 

constant mixing and lack of directional flow of water. Instead, TEAPs come to pass 

sequentially over time. For the microorganisms in the system that means having to 

adjust to gradually, but constantly changing environmental conditions (e.g., facultative 

anaerobes adjusting metabolically from usage of oxygen to nitrogen as the terminal 

electron acceptor). When conditions change to a degree beyond their adaptive capability, 

microbial communities change completely with some groups becoming inactive and 

dying off, while others thrive under now more favorable conditions. This temporal 

sequence, vs. the evolution of spatial zones, is a fundamental difference between closed 

batch systems homogenized through agitation (as opposed to open, undisturbed 

Winogradsky columns) and flow-through systems such as sediment microcosms and 

natural aquifers.  

DELIVERY AND DISTRIBUTION OF BIOREMEDIATION AGENTS 

In a survey conducted among remediation practitioners, delivery and plume-wide 

distribution of bioaugmentation cultures was rated as the top concern when 

implementing ISB. It is often connected with inefficient delivery of nutrients. For 

remediation to be successful, carbon source, electron donor, and microorganisms should 

be evenly distributed throughout the plume to ensure contact with contaminants, which 

is the prerequisite for biodegradation, and presents one of the great challenges when 

implementing ISB92. Groundwater flow in the subsurface is characterized by uneven 

advection and dispersion, caused by low-permeability zones (clay lenses) and 

preferential flow channels (regions with coarse rock or sand). It is therefore challenging 

to distribute even soluble amendments throughout the plume. The challenge becomes 

even greater when microorganisms are amended to supplement intrinsic microbial 

communities93. Transport of bacteria through the subsurface is governed by sorption-
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desorption reactions70, 94, 95, filtration of microorganisms, as well as cell growth, death, 

predation and active attachment strategies by introduced and native microbes. A 

common approach to predicting and designing amendment delivery are numerical 

models based on the advection-dispersion equation96, 97. Models can examine the various 

scales relevant for aquifer-wide distribution of amendments through 

advection/dispersion of groundwater (across 10-1000s of meters in travel length), as 

well as for sorption/desorption and biotransformation processes occurring at the µm-

scale5, 98. Models to predict microorganism distribution in the subsurface are also based 

on the advection-dispersion equation, with modifications to account for processes 

governing transport of bacteria outlined above71, 99-104. However, models have only a 

limited ability to predict microbial transport at a specific site98, which is determined by 

sediment type and mineralogy105, 106, pH and ionic strength of the water107, as well as 

surface properties of the cells108, predation, and motility109. Further, while numerical 

models are available to predict either micro-scale (biodegradation) or macro-scale 

processes (groundwater transport), major knowledge gaps exist at the interface between 

these scales98. Integrated models could potentially predict bioclogging of injection wells 

and interactions between sorption and biodegradation, and therefore provide more 

comprehensive data to inform design of bioremediation systems and predict long-term 

performance.  

Until such models are available, and to provide field data for model validation, multi-

well tracer tests that track specifically labeled microorganisms or surrogate particles 

throughout a portion of the plume can be employed71, 72, 110. These methods have been 

used in sandy sediments71, 72 as well as fractured rock110. Tracer tests are also employed to 

characterize hydraulic conductivity, which is the main driver of amendment distribution. 

One study utilized tracer, flowmeter, and permeameter tests to characterize depth-
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specific hydraulic conductivity in a heterogeneous aquifer64. Results yielded information 

on depths where solutions should be added to stimulate bioremediation. The study also 

showed that grain-size analyses of sediment cores was not a good indicator of hydraulic 

conductivity, and concluded that core-logging would not be sufficient to design remedial 

solution delivery systems64. 

Subsurface Heterogeneity 

This leads us to another important consideration for delivery and distribution of 

bioaugmentation agents: subsurface heterogeneity. Heterogeneity of hydraulic and 

geologic features of the subsurface is one of the greatest challenges for in situ 

remediation. In the field, pilot studies seeking to demonstrate efficient in situ 

degradation may fail, contrary to results obtained in prior laboratory column tests69, 111. 

The stated reason for the failure was site heterogeneity, which prohibited establishing 

hydraulic control and effective delivery of amendments. Other experiments in 

heterogeneous media showed that variations in hydraulic conductivity impact 

availability of oxygen and substrate and therefore microbial growth in different 

regions112. Density effects impact reactive transport in heterogeneous matrices and are 

responsible for enhanced mixing of amendments112. Experiments with undisturbed 

sediment cores have shown that physical heterogeneities (aggregation, fracturing, 

stratification) control the transport of contaminants (in this case trichloroethene), and 

that mass-transfer limitations (sorption/desorption) are of secondary importance50.  

While the importance of heterogeneities for in situ remediation is undisputed, it is very 

difficult, if not impossible, to assess its impact prior to implementation. Thus, it is one of 

the driving factors to conduct experiments in the field rather than in the laboratory, 

where large-scale aquifer heterogeneities cannot be reproduced. Field tracer tests can 
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integrate the heterogeneity present along a given flow path and generate results that are 

more reflective of the transport behavior at aquifer scale113, but even the larger area 

surveyed may not represent the full complexity of the site as a whole. 

Multiple field studies have examined the transport behavior at heterogeneous sites for 

ISB59-61, 63, 114, 115. During a study conducted in preparation of enhanced ISB at a 

heterogeneous site, reactive and non-reactive tracers were injected to assess the 

infiltration of nutrients, mixing processes within the groundwater, and extend of 

microbial activity in the plume60. Samples were obtained from a multi-level sampling 

network to assess the effect of geological heterogeneities on the parameters mentioned 

previously. Results informed a site-specific numerical flow- and transport model, and 

showed which infiltration conditions are suitable to treat a large section of the aquifer. 

SURVIVAL OF BIOAUGMENTATION CULTURES 

Historically, there has been a discussion in the peer-reviewed literature over 

bioaugmentation vs. biostimulation, with augmentation proponents arguing for the 

necessity of adding known degraders when they are not naturally present or to speed up 

the degradation process, and bioaugmentation skeptics arguing that indigenous 

microorganisms are better adapted to prevailing environmental conditions and therefore 

will outperform introduced microorganisms in the long run. 

While for most contaminants, biostimulation of indigenous microbes is a viable 

option, bioaugmentation is advantageous in some cases. For example, bacteria capable of 

anaerobic degradation of benzene are sparsely distributed in the environment; and 

bioaugmentation can initiate and accelerate benzene degradation114, 116-118. Further, 

complete dechlorination of chlorinated ethenes to innocuous ethene is only carried out 

by specialized bacteria of the genus Dehalococcoides spp., which may need to be 

augmented if not naturally present119, 120. The consent among remediation industry 
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practitioners and academics alike is that bioaugmentation is necessary where 

contaminant degraders do not naturally exist or can be enticed to grow to sufficient 

numbers121.  

Successful bioaugmentation is based on the long-term activity of the augmented 

microorganisms under environmental conditions they may not be well adapted to. 

Bacterial survival in soil depends on a range of factors122, including bacterial 

movement108, 123, substrate competition with indigenous bacteria124, inoculum density125, 

126, and protozoa that actively graze on bacteria in aerobic environments. Results from 

numerous studies have shown that numbers of protozoa increase when large numbers of 

bacteria are introduced127, 128 or stimulated to grow129, 130, leading to a sharp decline in 

bacteria numbers127. In a laboratory batch study, protists present in aquifer material 

were found to inhibit reductive dechlorination by selectively grazing on bioaugmented 

Dehalococcoides spp., and potentially causing failure of bioaugmentation at the site131. 

Competition of introduced bacteria with the indigenous community was monitored in 

another laboratory batch study132, which found that survival of introduced bacteria was 

dependent on the introduced strain, inoculum size, and physicochemical conditions 

imposed in the laboratory. Yet another study conducted with two different pure strains 

showed soil type and moisture content to influence bacterial survival133. The results of 

these studies point to specific parameters that can influence bacterial survival in the 

subsurface. However, all these studies were conducted in laboratory batch microcosms, 

sometimes with pre-sterilized sediment133, and therefore have little predictive power for 

assessing the likely survival of bacteria introduced into the subsurface. 

It has also been shown that bacteria attached to sediment and located in sediment-

micropores  exhibit the chief degradation activity in situ134, 135,  and are mostly protected 

from fluctuating environmental factors136 and protozoan grazing122, 126, 136-140, which 
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targets planktonic bacteria. However, most batch microcosms are constructed as 

sediment slurries, where bacteria may preferentially pursue a free-living lifestyle. One 

study examined protist predation and contaminant mineralization in soil slurries 

compared with intact soil79. The researchers concluded increased predation in soil 

slurries (soil:water ratio of 1:3 to 1:100) lead to slower mineralization of contaminants 

when compared to intact sediment. Therefore, and for our inability to accurately 

reproduce environmental conditions in the laboratory, batch microcosms may not 

correctly predict the survival of introduced microorganisms in the subsurface. To really 

assess if bioaugmentation can be successful in the subsurface, it needs to be tested in 

situ77. This problem is highlighted in a remediation project in Michigan. Laboratory 

column studies conducted with groundwater from the site showed complete degradation 

of carbon tetrachloride without accumulation of chloroform to be achievable only after 

bioaugmentation with a pure culture 111 capable of carbon tetrachloride degradation111. 

During the field pilot study69 it became evident, however, that the augmented strain 

could not compete with the indigenous microflora, following a period of poor nutrient 

conditions. These feasibility studies were followed by successful site remediation using a 

biobarrier design with the previously tested bacterial strain141, which remained active 

four years after installation. 

SUSTAINED BIOLOGICAL ACTIVITY 

Sustained biodegradation of contaminants over time was identified as an important 

failure mode when implementing ISB. This should come to no surprise when often 

results from batch microcosm studies are used to inform expected microbial behavior in 

situ. Batch microcosms are not designed to assess ongoing biological activity. 

Microorganisms in a closed system degrade a specific mass of contaminant and then go 
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into dormancy unless more contaminants (or alternative nutrients) are provided, e.g., by 

“re-spiking” of batch microcosms.  

However, long-term performance can be tested in continuous-flow reactors such as 

flow-through columns66-68, 142, or continuously stirred reactors with constant supply and 

waste.  These tests should be conducted for an extended period of time (several months, 

if the remediation project is expected to take years). 

For example, one laboratory column study examined the anaerobic bioremediation of 

benzene, toluene, ethylbenzene, and xylene (BTEX) through bioaugmentation with two 

different methanogenic communities. Significant benzene removal (up to 88%) could be 

sustained for one year65, while toluene degradation was only observed after two years of 

acclimation. While this is an example of an extremely long study period, which likely 

would be cost-prohibitive to conduct on a routine basis, it highlights the potentially long 

timeframe that can be monitored with flow-through studies. 

COMPLETENESS OF CONTAMINANT DEGRADATION 

For ISB and other remedies considered, achieving cleanup goals is the most important 

measure of success. However, biological degradation faces specific challenges when very 

low contaminant levels need to be achieved to meet cleanup goals. The rate of biological 

degradation slows down with decreasing substrate concentrations. It has long been 

recognized143, 144 that extended adaptation periods and high inoculum densities are 

needed at contaminant concentrations much smaller than the half-saturation constant 

(Monod kinetics) or Michaelis constant (Michaelis-Menten kinetics).  Biological 

degradation is characterized by a minimum substrate concentration145 below which 

microorganisms do not gain enough energy from a particular metabolic process, and 

therefore become inactive or switch to an alternative substrate80, 146-148.  This limitation is 

especially significant at the plume edge and in the end phase of site cleanup when 
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significant reductions in contaminant concentrations have been achieved but levels are 

still hovering above cleanup goals. We surveyed published half-saturation constants (KS) 

for priority contaminants in soil/groundwater systems (Figure 1-4). If contaminant 

concentrations are <<KS, they may not be sufficient to induce enzyme expression and 

sustain active growth of contaminant degraders, or microorganisms utilize alternative 

substrates yielding more energy. This can lead to ineffective or lacking biodegradation of 

contaminants, even under stimulation. For contaminants with a maximum contaminant 

level (MCL) of <10 µg/L (e.g., chlorinated ethenes, benzene, polychlorinated biphenyls 

[PCB], polycyclic aromatic hydrocarbons [PAH], etc.), situations may arise where 

concentrations exceed the MCL, yet are still too low to support effective biological 

degradation of that contaminant. This poses a potentially significant problem for ISB.  

 

Figure 1-4. Published half-saturation constants for priority contaminants and their 
corresponding maximum contaminant level (MCL), which often serves as cleanup goal. 
Contaminant (Number of different cultures/species/strains assayed): PAHs (3); PCBs 
(5); VC (5); PCE (4); TCE (14); cis-DCE (5); Benzene (4); Toluene (10); o-Xylene (1). 
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To address the likelihood of this remediation failure mode prior to implementation, 

one needs to assess the ability of the microbial community to degrade even very low 

contaminant concentrations while sustaining growth. This can initially be done in batch 

bottle microcosms, where the endpoint of degradation is determined. However, as 

described earlier, batch bottle microcosms have fundamental differences to conditions in 

the aquifer, and results obtained cannot simply be extrapolated to the field. Metabolic 

enzymes may still be expressed and active because they were induced at higher 

contaminant concentrations at the beginning of the batch bottle test. This kind of setup 

does not investigate if biological degradation can be sustained over time by low 

contaminant concentrations. In the subsurface, although microorganisms can migrate 

significant distances within a contaminant plume, the chief degradative activity has been 

attributed to attached bacteria forming biofilms on particle surfaces134, 135. Therefore, 

from the perspective of the biofilm, conditions at the edge of a plume resemble a flow-

through reactor with continuously low contaminant concentrations, rather than a batch 

system that starts out at higher contaminant concentrations and transitions to lower 

ones. 

To gain an understanding if the contaminant can be degraded to cleanup levels at the 

edge of a plume within a given hydraulic residence time, flow-through studies should be 

conducted. These can be column studies operated in the laboratory, which simulate flow 

conditions found in the aquifer, and enable the formation of distinct zones along the flow 

path. These zones are characterized by distinct redox conditions, contaminant 

concentration, and characteristic microbial communities adapted to those specific 

conditions. They resemble the geochemical zones that are found in a subsurface plume149, 

150 (Figure 1-3). 
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For example, one study employed flow-through columns to simulate co-metabolic 

degradation of low levels of benzene, toluene and o-xylene (BTX) by adding co-

substrates151. The results showed that benzoate, but not acetate, was able to stimulate 

BTX degraders, triggering a reduction of contaminant concentrations from ~190 µg/L 

each to below the regulatory limit of 5 µg/L within a hydraulic residence time of just over 

2 hrs. The acclimation period of the columns was 2 days, and continued degradation of 

low BTX concentration was observed for 10 days. 

Another aspect of the subsurface environment is the bioavailability of the 

contaminant. Several studies have shown that contaminants sorbed onto sediment are 

not available for biodegradation152-164, and that this lack of bioavailability is caused by 

slow diffusion of contaminants from micropores in soil and sediment aggregates to the 

location of active microbial communities on particle surfaces157, 165-167. In fact, limited 

bioavailability has been listed as the number one limitation of ISB by a number of 

publications3-8. Due to physical limitations, bacteria only occupy about 50-70% of the 

pore spaces in the subsurface80. As a consequence, bacterial colonies can be quite distant 

from pollutants sorbed to the sediment matrix80. Therefore, mass-transfer limitations 

between sorbed and dissolved phase are the driver for bioavailability, because desorption 

from sediment and diffusion from micropores to larger pore spaces where 

microorganisms reside must occur before biodegradation can proceed. In batch 

microcosms containing soil slurries, this limitation is not accounted for. One study 

showed that slurrying of soil enhanced the rate of biodegradation for organic compounds 

compared to degradation in consolidated materials81. Diffusive transport of small 

organics in soils and sediments can be up to 12 orders of magnitude slower than in 

water80, caused by physical barriers of sediment particles168, and chemical or physical 

interactions with soil constituents. As described above, an evaluation of small-scale mass 
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transfer phenomena is possible with flow-through studies44-49, which incorporate the 

porous structure of the subsurface and potential small-scale mass transfer limitations of 

the contaminant between sorbed phase, dissolved phase, and that fraction of the 

contaminant that is actually available to enzymatic degradation (i.e., intra-cellular 

concentration). Large-scale mass transfer phenomena can only be assessed through field 

pilot tests51-55 as discussed earlier. 

Not achieving cleanup goals can also stem from accumulation of toxic breakdown 

products, e.g., vinyl chloride from dehalogenation of trichloroethene. This can be caused 

by inhibition or absence of vinyl chloride reducing bacteria (dehalococcoides type 

organisms), which have more fastidious metabolic needs and are less abundant169 than 

perchloroethene and trichloroethene degraders such as dehalobacter, 

desulfitobacteria170, or desulfuromonas171. 

The presence of key degraders at the site can be determined by employing samplers 

that trap resident microorganisms, e.g., “bio-traps”172, 173. These are passive samplers that 

are placed in the aquifer and serve as a solid matrix upon which microorganisms can 

settle and grow. Upon retrieval of the bio-trap, microorganisms can be identified and 

enumerated by quantitative PCR, and metabolic activities can be inferred from 

incorporation of isotopically-labeled contaminants into biomass captured on the 

sampler172. While bio-traps provide important information on presence and activity of 

key microorganisms, they are not designed to assess degradative rates under typical 

mass-transfer limiting conditions extant in the aquifer. Microorganisms grow directly on 

the substrate loaded with amendments and/or contaminants, and therefore experience 

maximum bioavailability of contaminants. In that sense, bio-traps provide a best-case 

scenario, but are not able to predict limitations regarding mass-transfer in the aquifer 

and completeness of contaminant degradation under flow conditions. 
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SECONDARY CONTAMINATION 

A significant concern with in situ remediation, aside from not achieving cleanup goals, 

is to negatively impact groundwater quality during treatment of primary contaminants. 

One area of particular concern is the solubilization of redox-sensitive toxic metals (Cr, 

As, Cd, Sb, Pb, Cu, Se, U), a process readily induced by changes in pH and/or redox 

conditions (Eh)174, 175. All microbial reactions lead to changes in soil redox potential if the 

redox capacity (ability of the system to “buffer” the redox potential) is exceeded. 

Reduction and oxidation are the mechanism for all microorganisms to gain energy176, 

and therefore impact redox conditions (the only exception being fermentation reactions, 

where the substrate is both oxidized and reduced, leading to a net zero change in redox 

potential, but which can still effect changes in pH).  

In contrast, not all microbial reactions lead to changes in pH, but bioremediation can 

lead to acidic or alkaline conditions if the buffering capacity of the groundwater is 

exceeded, and no other steps are taken to control pH. Acidification can be caused by 

fermentation of carbon sources or electron acceptors with the concurrent release of 

hydrogen ions177-181; alkalization can be caused by bacterial sulfate reduction, for 

example182, 183. Low pH can also decrease or completely cease contaminant reduction, 

e.g., in the case of dehalogenation of chlorinated ethenes179, 184, 185, and therefore has 

undesirable effects beyond solubilization of metals. 

The potential for redox and pH changes, and associated behavior of redox sensitive 

metals, is routinely assessed in batch microcosms42, 43. This provides a “worst-case-

scenario” based on maximum exposure of sediment surfaces participating in redox 

reactions. Effects of pH will also be maximized, as no additional buffer capacity (e.g., 

dissolved carbonate) enters the closed batch system. As pointed out by one of the survey 
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participants, metal solubilization is easily assessed, but unfortunately often not 

considered in the remedial design phase. 

Another form of secondary contamination is the production of harmful degradation 

products. The prime example for this unwanted event is the accumulation of vinyl 

chloride from degradation of higher chlorinated ethenes186-188. Although significant 

degradation activity may be present, remediation is only successful if chlorinated ethenes 

are completely dechlorinated to the innocuous ethene. The potential for complete 

dechlorination may be assessed in batch microcosms25, which can inform on the 

presence of site-specific inhibitors limiting dechlorination. However, even if complete 

dechlorination is possible in laboratory batch microcosms, the reaction may not be 

completed within the treatment zone given the flow conditions at the site. In a study 

employing batch bottle activity tests to supplement a meso-scale artificial aquifer 

experiment, perchloroethene dechlorination was limited in the flow-through aquifer 

(only 30% conversion to trichloroethene and dichloroethenes). Sediment cores were 

taken from the artificial aquifer and incubated in batch microcosms, where complete 

dechlorination of perchloroethene was observed184. As described in the prior section on 

‘completeness of contaminant degradation’, flow-through studies, e.g., laboratory 

column studies, should be employed to assess degradation in a hydrodynamic 

environment within a given hydraulic residence time. This residence time in the column 

can easily be converted to its corresponding treatment zone in the aquifer at a given 

groundwater velocity. 

 

 



 

21 

PERMEABILITY REDUCTION 

During in situ remediation, permeability of the subsurface can be reduced by biomass 

build-up (biofouling), precipitation of minerals, or accumulation of gases in pore spaces 

(gas clogging). All lead to a reduction in permeability, and therefore decrease hydraulic 

conductivity. This is of concern to remediation practitioners because it limits the ability 

to inject amendments, and can cause contaminated groundwater to circumvent a 

treatment zone, and therefore forego treatment.  

In the field, amendment injection regimes that aim to prevent zones of very high 

biological activity can control biofouling and gas clogging. These measures include 

pulsed injection189-191, adjusting amendment concentrations192, or choosing the right 

amendment as nutrient source193. 

Permeability reduction is of particular concern in reactive barriers or funnel-and-gate 

systems, where the treatment zone is limited, and passing of all contaminated 

groundwater through that treatment zone is paramount. Failure of these systems if often 

caused by permeability reduction in the treatment zone and subsequent bypassing of 

groundwater194-199. Long-term performance of these in situ reactors should be tested in 

prior flow-through tests with relevant contaminant concentrations. Performance data for 

abiotic reactive barrier material197, 199-211 (zero-valent iron, activated carbon, etc.) exist to 

inform hydrological models212, and in general do not require site specific testing. 

For aquifer-wide in situ remediation clogging can occur in the direct vicinity of the 

well, or in the aquifer itself. Well-clogging is often easier to prevent, and measures are 

available to clean a clogged well213-216. As a last resort, a different well can be used for 

amendment delivery. Permeability reduction in the aquifer is difficult to address, and is 

best avoided through predictive treatability studies using flow-through columns56. 

Laboratory column studies have been used to pinpoint causes of permeability reduction 
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in situ. In one study57, the use of unfiltered groundwater from the site was essential, and 

colloids suspended in the groundwater were identified as the major cause for 

permeability reduction, besides mineral precipitation and gas clogging57. In biological 

systems, it is also important to use fresh groundwater for flow-through tests as 

protozoan grazing on bacteria can effect clogging217. In summary, different phenomena 

leading to permeability reduction are fairly well understood in principle. But, as a 

detailed review on biological clogging shows58, flow-through studies are needed to 

quantify the extent of permeability reduction in a given situation, especially if they 

involve environmental factors such as predation or competition among microorganisms. 

Measures to prevent permeability reduction in treatability studies, as taken in some 

laboratory flow-through studies184, 210, 218, should be avoided as they prohibit insights into 

potential clogging issues. 

SUMMARY AND CONCLUSIONS 

Failures of ISB do occur and delay cleanup of contaminated sites, as has been 

identified in the survey among remediation practitioners. Although not all potential 

failures can be predicted prior to implementation of ISB, some of the most frequently 

encountered failure sources can be addressed in suitable treatability studies. These 

include the inability to (i) deliver and distribute bacteria and/or amendments within the 

subsurface; (ii) ensure survival and metabolic activity of augmented microorganisms; 

(iii) sustain biological activity in time and space; (iv) reach cleanup goals within the 

treatment area; (v) prevent dissolution of heavy metals or accumulation of toxic 

byproducts; and (vi) prevent or manage clogging of injection wells and the surrounding 

aquifer. 

While laboratory batch microcosms are useful tools to answer fundamental questions 

on the suitability of ISB at a given site, and can address some concerns of remediation 
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practitioners, e.g., secondary contamination through metal dissolution, they are not 

suited to predict many common failures of implementing ISB. Column experiments are 

suitable to pinpoint many of these issues early on and may therefore reduce the failure 

rate in the field, leading to cost savings and reducing the time to reach cleanup goals.  

Mass-transfer limitations govern many in situ processes, including contaminant 

transport and bioavailability. On the small scale these process are simulated in 

continuous treatability studies such as flow-through columns, which can inform on 

continuous biological activity of contaminant-degrading microorganisms, extent of 

contaminant degradation within a given flow field, and bioavailability limits in a 

sediment dominated environment. Sustained biological activity is also intricately linked 

with the survival of augmented microorganisms in face of competition with indigenous 

microbes and other environmental factors. Because of fundamental limitations of 

laboratory studies to replicate environmental conditions, interaction of indigenous and 

introduced microorganisms is best assessed by introducing the bioaugmentation culture 

into the contaminated environment. Field experiments are also vital to test delivery 

systems for remediation agents. The distribution of any amendment throughout the site 

is strongly influenced by heterogeneity of site geochemistry, hydrology and biology, and 

can be assessed to some extent by fate and transport models. However, issues with 

amendment delivery are typically not encountered prior to full-scale treatment, and can 

only be addressed by designing a flexible remediation system. 
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TRANSITION 1 

The first chapter presents compelling arguments for the use of flow-through systems to 

study processes occurring in groundwater aquifers. These can be multi-well studies in 

the field, using the natural or induced groundwater gradient. In the laboratory, sediment 

columns are typically used to study hydrodynamic processes. However, due to cost-, 

space-, and/or material limitations, column studies are often conducted without multiple 

replicates. While it is a paradigm of environmental science that differences between 

experiments can only be determined with some certainty if the data variability within the 

experiment is known (i.e. by using multiple replicates), this is often not extended to flow-

through column studies. 

The second chapter of this dissertation is the first study to systematically examine and 

quantify variability sources in batch and flow-through sediment microcosm studies 

commonly performed in the remediation industry and academia. I examine the 

reproducibility of column studies conducted in the laboratory, and compare the findings 

to the more commonly used batch microcosm approach. Based on analysis of 833 data 

points from triplicate batch and column microcosms, relative standard errors in batch 

and column studies were found to be statistically indistinguishable. Contributions to the 

overall standard error from analytical error sources were minor, and column-study 

specific error sources, i.e., variability in pump flow-rate and packing of columns with site 

material, also contributed little. Biological variability was identified as the main 

contributor to overall standard error (up to 90%) for both batch and column 

microcosms. Replicate small-scale column studies are identified as an attractive but 

currently under-utilized tool to study and parameterize phenomena occurring in flow-

through environments such as aquifers. 
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2. STATISTICAL ANALYSIS OF BATCH AND COLUMN MICROCOSM 

METHODOLOGIES EMPLOYED FOR THE IN SITU REMEDIATION OF 

CONTAMINATED AQUIFERS 

INTRODUCTION 

Flow-through column studies are regarded as more realistic than batch microcosms to 

simulate processes in a hydrodynamic environment, such as contaminated aquifers219. 

They are commonly used for treatability studies of in situ permeable reactive barriers for 

groundwater remediation52, 68, 199, 209, 210, and are recommended in guidance documents 

for the design of reactive barrier systems220, 221. It has been recognized that batch 

microcosm tests are useful as “an initial screening tool”, but that “column testing 

provides more reliable reaction rate parameters than batch testing” and it “provides 

information from dynamic flow conditions”221 similar to conditions underground. 

Column studies afford the assessment of flow-through reaction kinetics, longevity of 

reactive material, and hydraulic properties of the barrier material220. Much of this 

information is valuable not only to reactive barrier design, but also to full-scale in situ 

remediation feasibility assessments.  

Column treatability studies for in situ bioremediation are expensive when conducted 

by commercial laboratories, where one column experiment can cost on the order of $10-

15K, as much as a complete batch microcosm study with 12 bottles (SiREM, personal 

communication). They are generally regarded as challenging to set up and operate and 

often are limited by the need for large amounts of site material to fill and operate 

multiple columns. Additionally, the space requirement of multiple large columns can be 

a significant cost factor for commercial laboratories. Consequently, column studies are 

not routinely conducted for bioremediation treatability studies, and typically lack 

replicates when performed. In the rare instances where replicate columns are used, 
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investigators may opt to not explicitly report on the variability between them222-227 or 

show representative data from individual columns only228. Only few column studies 

regarding groundwater remediation were identified that reported individual data from 

duplicate columns, either graphically229-234 or numerically235-238. The use of triplicate 

columns is even less common. A thorough literature search only identified eight column 

studies211, 239-245 for groundwater remediation that reported results from more than two 

replicate columns, only one of which assessed an in situ biological remediation process 

extant in a permeable reactive barrier211. 

While multiple replicates and statistical significance testing of results is recognized as 

essential to environmental science in general, it appears this has not been extended to 

the design of column studies for in situ remediation, where single columns continue to 

be recommended even in guidance documents23, 220.  

Results from multiple nutrient amendments246, 247, distinct bioaugmentation cultures65, 

and different treatment approaches, are compared based on single columns per 

treatment, often without discussion of reproducibility or information on the margins of 

statistical significance between the various treatments. For example, one study looking at 

bioaugmentation to degrade carbon tetrachloride set up two identical columns111. 

Although the columns were operated almost identically, some parameters differed 

between the columns (i.e., age of inoculum, duration of nutrient addition, pH 

adjustment). While in general performance was similar for both columns, some 

parameters varied quite significantly (specifically, chloroform production in only one 

column, different extent of colonization of column sediment by introduced bacteria, 

different location and extent of bioactive zone) and could have been caused by differing 

conditions or simply by real-world variability between replicates. To interpret such data, 
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it would be invaluable to understand in statistical terms the variability of biological 

microcosm experiments and the type and magnitude of error sources involved. 

To address this knowledge gap, the objective of the current study was to examine the 

statistical variation of several data sets (two batch microcosm studies and four column 

studies) gathered from simulation of in situ biodegradation of trichloroethene and 

perchlorate, to assess the relevance of errors associated only with column studies, and to 

draw comparisons to statistical variation found in other column studies. At the onset of 

this work, we hypothesized that the data variability from column studies would be larger 

than from batch microcosms, because in addition to mutual error sources like biological 

activity, sampling and analytical error, column studies possess additional error sources 

(e.g., column fill material, flow rate, influent composition/feed source) that might lead to 

greater data variability.  

EXPERIMENTAL SECTION 

Batch Microcosm Studies 

Culturing of a chloroethene-dechlorinating consortium (Dehalo R^2) was carried out 

as described previously19. Briefly, Dehalo R^2 was maintained in sediment-free 

anaerobic mineral medium supplemented with vitamins as well as sodium lactate and 

methanol as sources of electrons and carbon. Trichloroethene (TCE) was supplied as an 

electron acceptor and injected manually with a gas-tight syringe. Data suggest good 

reproducibility. 

Batch Study I was carried out in 160-mL glass serum bottles capped with butyl rubber 

stoppers and aluminum caps. Bottles contained 10 g of dry sediment (<0.5 mm grain 

size), 10 mL Dehalo R^2 inoculum (contained about 1.54*10^9 and 1.25*10^10 gene 

copies of Dehalococcoides and total bacteria, respectively), and mineral medium or 
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groundwater was added to give a total liquid volume of 100 mL, leaving 60 mL 

headspace for sampling of volatilized chlorinated ethenes (CE). Batch microcosms were 

incubated at 30°C on an orbital shaker. Batch Study II was carried out in 250-mL glass 

serum bottles containing 50 g of sediment, 180 mL of anaerobic mineral media medium 

or groundwater, and 3 mL of KB-1 inoculum. Batch microcosms were incubated statically 

at room temperature. Sodium lactate was supplied when dechlorination stalled. An 

overview of the experiments conducted is provided in Table 2-1. All experiments were 

conducted in triplicate. 

Table 2-1. Experimental design for batch microcosms and column studies. All 
medium/groundwater contain vitamins, unless otherwise specified.  

 Inoculation Medium composition Electron donor/acceptor 
supplied [mg/L] (mM) 

Batch Microcosm Study I:  

Control 10 mL 
Dehalo R^2 

Adjusted to 100 mL 
with mineral medium 

TCE [73] (0.55)             
Methanol [396] (12)                 
Na lactate [560] (5) 

Groundwater 10 mL 
Dehalo R^2 

Adjusted to 100 mL 
with groundwater 

TCE [73] (0.55)             
Methanol [396] (12)                 
Na lactate [560] (5)  

Sediment 10 mL 
Dehalo R^2 

10 g dry sediment                 
Adjusted to 100 mL 
with mineral medium 

TCE [73] (0.55)             
Methanol [396] (12)                 
Na lactate [560] (5) 

Batch Microcosm Study II:  

Control 3 mL KB-1 180 mL mineral 
medium 

TCE [16] (0.12)                                                        
Na lactate [311] (2.8) 

Bioaugmentation 
without Vitamins 

3 mL KB-1 180 mL groundwater 
(without vitamins) 

TCE [16] (0.12)                                                        
Na lactate [311] (2.8) 

Bioaugmentation   3 mL KB-1 180 mL groundwater TCE [16] (0.12)                                                      
Na lactate [311] (2.8) 

Column Study I:    

No amendment N/A Groundwater 
(sediment in column) 

TCE [33] (0.25)                  
Methanol [179] (5.6) 

Biostimulation N/A Groundwater 
(sediment in column) 

TCE [33] (0.25)                  
Methanol [179] (5.6)                 
Na lactate [2000] (17.8) 
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Bioaugmentation Dehalo R^2 Groundwater 
(sediment in column) 

TCE [33] (0.25)                  
Methanol [179] (5.6)                 
Na lactate [2000] (17.8) 

Column Study II:   

No amendment N/A Groundwater 
(sediment in column) 

TCE [33-0.4] (0.02-0.003)   
Methanol [179-2.14] (5.6-
0.067) 

Biostimulation N/A Groundwater 
(sediment in column) 

TCE [33-0.4] (0.02-0.003)   
Methanol [180-2.1] (5.6-0.1)                                 
Na lactate [2000] (17.8) 

Bioaugmentation Dehalo R^2 Groundwater 
(sediment in column) 

TCE [33-0.4] (0.02-0.003)   
Methanol [180-2.1] (5.6-0.1)                                 
Na lactate [2000] (17.8) 

Column Study III:   

No amendment N/A Groundwater 
(sediment in column) 

ClO4
- [0.5] (0.005) 

Na acetate Perchlorate 
reducers 

Groundwater 
(sediment in column) 

ClO4
- [0.5] (0.005)               

Na acetate * 3H2O [1000] 
(7.3) 

Ethyl lactate Perchlorate 
reducers 

Groundwater 
(sediment in column) 

ClO4
- [0.5] (0.005)          

Ethyl lactate [290] (2.5) 

Column Study IV:   

No amendment N/A Groundwater 
(sediment in column) 

ClO4
- [0.5] (0.005) 

Na acetate Perchlorate 
reducers 

Groundwater 
(sediment in column) 

ClO4
- [0.5] (0.005)               

Na acetate * 3H2O [1100] 
(8.1) 

Ethyl lactate Perchlorate 
reducers 

Groundwater 
(sediment in column) 

ClO4
- [0.5] (0.005)           

Ethyl lactate [340] (2.9) 

N/A – not applicable 

 

Column Studies 

All column experiments were conducted in triplicate using glass chromatography 

columns (25 cm long, 1.2 cm inner diameter, Chemglass Life Sciences, Vineland, NJ) 

filled with site sediment (0.5 – 1 mm grain size). The columns were packed with dried, 

sieved sediment and tapped vigorously on all sides to ensure homogenous packing. 

Columns were operated in upflow-mode. A schematic of the setup is provided in Figure 
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2-1. The column studies were conducted at 22°C and columns were covered with 

aluminum foil to prevent growth of photosynthetic organisms. Columns were fed from 

the same influent reservoir, ensuring minimal variability in influent composition 

between columns. A multi-channel peristaltic pump (Ismatec, IDEX Health and Science, 

Oak Harbor, WA) was used to provide groundwater flow to the columns, and a multi-

syringe pump (New Era Pump Systems, Farmingdale, NY) was used to add nutrient 

amendments to the columns (added at 1% of groundwater flow). Experimental 

parameters for all column studies are listed in Table 2-1. 

 

Figure 2-1. Experimental setup for flow-through column studies. 

 

The first column study (Column Study I) was conducted with high TCE influent 

concentrations to ensure that TCE was not limiting dechlorination activity. Natural 

attenuation (no amendment), biostimulation (addition of sodium lactate) and 

bioaugmentation (sodium lactate and Dehalo R^219 inoculation) were tested 

simultaneously (each in triplicate). Site groundwater amended with TCE and methanol 

was used as the column influent for all nine columns. Groundwater was pumped through 
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the columns at a flow-rate of 5 µL/min, leading to an approximate column residence 

time of 30 hrs. Sodium lactate was supplied at 2 g/L effective concentration. This 

concentration was chosen to provide non-limiting carbon concentrations to reduce all 

electron acceptors present in the groundwater (oxygen, nitrate/nitrite, sulfate, 

manganese, iron, CEs, etc.). 

The second column study (Column Study II) was conducted similar to the former. 

Throughout the study, several parameters (flow rate, column length, TCE concentration) 

were varied, and dechlorinating activity in all columns was monitored in response to 

parameter changes. 

Column studies III and IV were conducted with perchlorate-contaminated 

groundwater. A facultative anaerobic microbial consortium (enriched from sewage 

sludge obtained from five different U.S. wastewater treatment plants) was utilized as a 

seed culture for bioaugmentation experiments. Sodium acetate trihydrate or ethyl lactate 

was added as carbon source and electron donor (see Table 2-1). All columns were 

operated at 15 µL/min flow, equivalent to residence time of 10 hours in the column (as 

determined in tests employing a conservative tracer, bromide). 

Analytics 

For batch microcosms, 200 µL headspace sample was withdrawn with a gastight glass 

syringe with Teflon plunger, and injected directly into a gas chromatography (GC) 

system with flame ionization detector (FID). Chlorinated ethenes (perchloroethene 

[PCE], TCE, dichloroethene [DCE] isomers, vinyl chloride [VC]) and ethene as well as 

methane were quantified. Method details have been previously described19. 

For Column Studies I and II, 1 mL liquid sample was taken from each column outlet 

using a gastight syringe and transferred to a 1.5-mL glass vial with crimp top. Liquid 
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samples were analyzed with a solid-phase microextraction GC/FID system using an 

autosampler. Chlorinated ethenes (PCE, TCE, DCE isomers, VC) and ethene were 

quantified. The method has been described in detail elsewhere228. 

For Column Studies III and IV, 1 mL liquid sample was taken from each column outlet 

and pH was measured before the sample was filtered through a 0.45-µm filter for further 

analysis. Perchlorate was analyzed using an ion chromatography system with 

conductivity detector following EPA method 300.0. Perchlorate standard solution was 

obtained from SPEX Certiprep (Metuchen, NJ). Details of the analytical methods have 

been published previously248. Sulfate was analyzed following EPA method 314.0. 

Standard solutions were obtained from Dionex (Thermo Scientific, Sunnyvale, CA; 

Combined Seven Anion Standard containing fluoride, chloride, nitrite, bromide, nitrate, 

phosphate, sulfate).  

Statistical Data Analysis 

Relative standard error (RSE), instead of standard deviation (σ), was used to express 

statistical uncertainty of analytical results (N – number of equivalent observations; yi – 

individual observations; yav – sample mean). 

     (1) 

  (2) 

Standard error indicates the uncertainty around the estimate of the mean 

measurement, and is most useful as a means of calculating a confidence interval249. In 

contrast, standard deviation describes the variability of individual values, but does not 

describe the accuracy of the sample mean. 
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A thorough literature review was conducted using ‘Web of Knowledge’ and ‘Google 

Scholar’. Peer-reviewed publications regarding in situ groundwater remediation were 

identified that conducted flow-through column studies with two or more replicates per 

experiment. Relative standard errors were calculated from numerically reported data in 

those manuscripts. To compare standard errors from different studies, values were 

transformed to RSE. Standard errors of one parameter (e.g., metal leachate 

concentration) measured for different experimental groups (e.g., control, treatment A, 

treatment B) were combined to give an average RSE. These mean values are reported 

along with the SE of the mean. 

The following setting was used for all student t-tests conducted on multiple data sets: 

unpaired, 2-tailed, homoscedastic. 

RESULTS AND DISCUSSION 

To examine the reproducibility of results in commonly used batch microcosms 

compared to flow-through columns, two independent batch microcosm studies and four 

columns studies were conducted. Different scenarios of biological dehalogenation of 

chlorinated ethenes and biodegradation of perchlorate were investigated with respect to 

variability and reproducibility among replicates (triplicates). In total, 381 samples from 

triplicate batch microcosms and 452 samples from triplicate columns yielded a mean 

relative standard error (RSE) of 18 ± 1.1% and 26 ± 1.1%, respectively, which were 

statistically indistinguishable, as revealed by a student t-test (p>0.1).  
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Feasibility of Triplicate Column Studies 

Most column studies for bioremediation are conducted using a single large column, 

constructed from stainless steel, glass or plastic with dimensions of 5-10 cm diameter 

and 1-2 m length65, 111, 250, 251. These dimensions require significant amounts of site 

material (2000 cm3 – 16,000 cm3) and groundwater (up to 40 L per week and 

column251). Columns for chemical treatment (e.g., reactive barriers) are often smaller, <5 

cm in diameter and <50 cm long68, 73. However, both bioremediation and chemical 

remediation studies have been conducted with columns as small as 1 cm or less in 

diameter and as short as 10 cm in length252-254. To minimize wall effects using small 

columns, the ratio of column-to-particle diameter ideally should be 50 or greater255, but 

greater than 10 at a minimum256. The ratio of column length-to-diameter should be small 

(<50) to minimize wall effects257 and to incorporate vertical and longitudinal 

transport258. For this study, we used small glass columns (1 cm inner diameter, 25 cm 

long) filled with site material (~20 cm3 per column; 0.5-1 mm grain size), resulting in a 

column-to-particle diameter ratio of 100 and a column length-to-diameter ratio of 25, 

well within the recommended range. Each experiment was conducted in triplicate. Due 

to the low flow-rate (5-15 µL/min) and the small column size, only moderate amounts of 

groundwater/liquid medium were needed to conduct the studies (50-150 mL per week 

and column). These moderate needs for site material, on par with the material needed 

for batch microcosms, enable the setup of replicate columns even for non-local sites, 

where site material has to be transported over long distances and shipping costs can be 

substantial. The small size of the columns also minimizes laboratory bench space 

requirements, which is another cost-driver for commercially conducted column studies 

(the bench space used for each column study as shown in Figure 2-1 – including pumps, 

influent/effluent reservoirs, columns, etc. - was about 1 m2). 
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Mutual Error Sources for Batch and Column Studies 

Variability between replicate microcosms/columns originates from biological, 

sampling and analytical parameters. Sampling errors can be avoided through good 

sampling protocols (using compatible materials, not storing samples for prolonged 

periods, etc.) and careful execution of these protocols by the investigator. Analytical 

errors are associated with the instrumentation and methods used for sample analysis. 

Standard analytical methods for CEs (gas chromatography with different detectors; 

listed in National Environmental Methods Index, www.nemi.gov) and perchlorate (ion 

or liquid chromatography with different detectors) list precisions between 0.78 – 25% 

and 10.6 – 14% relative standard deviation (RSD), respectively. The U.S. Food and Drug 

Administration guidelines for bioanalytical methods recommend an RSD of less than 

20%259. In our study, the error associated with replicate measurements of performance 

samples (see Table 2-2 for individual RSEs) ranged from 1.8 to 6.8% RSD (1.0 – 3.8% 

RSE) for batch microcosms (GC-FID analysis of headspace samples). For column 

studies, analytical errors ranged from 1.1% RSD (0.7% RSE) for perchlorate (IC with ion 

suppression and conductivity detector) to 2.5 – 9.3% RSD (1.5 – 4.7% RSE) for CEs 

(SPME-GC-FID analysis of liquid samples), which are in the same range as those of other 

analytical methods.  

Biological variability is typically the most significant of the three and is difficult to 

avoid, especially when using mixed microbial communities or environmental materials 

(groundwater, soil, sediment, etc.). It can be minimized through homogenization of the 

materials. 
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Table 2-2. Mean standard errors (± SE) [%] for dechlorination batch microcosm and 
column experiments over the monitoring period. Concentrations of chlorinated ethenes 
[mM] were measured over time in triplicate microcosms/columns. The number of 
individual SEs comprising the mean SE is given in parenthesis. 

 TCE             
[%] 

cis-DCE     
[%] 

VC             
[%] 

Ethene   
[%] 

Total CEs     
[%] 

Batch Microcosm Study I: 

Control 26±7 (17) 33±6 (19) 30±4 (36) 16±3 (36) 26±2 (108) 

Sediment 8±2 (16) 18±3 (17) 8±1 (34) 7±1 (32) 10±1 (99) 

Groundwater 8±1 (34) 56±5 (34) 16±2 (34) ND 27±3 (102) 

Batch Microcosm Study II:     

Control 5±1 (4) 18±8 (6) 15±3 (5) 4±1 (5) 11±3 (20) 

Bioaugmentation 
w/o vitamins 

6±1 (9) 11±8 (5) 19±101 (2) ND 9±9 (16) 

Bioaugmentation  10±2 (9) 10±2 (4) ND ND 10±2 (13) 

Batch Analytical 
Error (RSE)a 

3.4 3.9 1.0 3.6 3.0±0.7 (4) 

Column Study I:     

No Amendment 14±3 (20) 2±1 (6) 6±1 (7) ND 11±3 (33) 

Biostimulation 8±2 (21) 9±3 (6) 28±12 (8) ND 12±3 (35) 

Bioaugmentation 27±4 (20) 15±5 (11) 31±4 (15) 47±4 (10) 29±2 (56) 

Column Study II:     

No Amendment 20±3 (30) 18±4 (30) 35±7 (7) ND 19±2 (67) 

Biostimulation 41±3 (25) 27±3 (42) 40±6 (19) ND 34±2 (86) 

Bioaugmentation 38±7 (7) 41±3 (37) 36±4 (43) 36±3 (35) 38±2 (122) 

Column Analytical 
Error (RSE)b,c 

1.5 (1) 1.7 (1) 2.3 (1) 4.7 (1) 2.5±0.7 (4) 

a determined from triplicate sample analysis 
b determined from quadruplicate sample analysis 
c modified from standard deviation of recovery in groundwater as listed in Table 1 in 
Ziv-El et al. 2013228 
ND – analyte not detected 
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Error Sources Specific to Column Studies 

Flow-through column studies have additional sources of variability associated, e.g., 

from the soil/sediment used to fill the columns, uneven packing causing preferential flow 

paths, variability in flow-rates between columns, and variable influent/amendment 

composition. 

In this study, and most other column studies, the column fill material was 

homogenized prior to packing the columns. The reproducibility of the packing method 

was tested with conservative tracer tests. The RSE of tracer concentrations in the column 

effluent (2 sets of columns with different sediment grain sizes, each in triplicate) was 

43±6%, and therefore represents a relevant source of variability (tracer curves are shown 

in Appendix B, Figure S1). However, the resulting residence times in triplicate columns 

only had an RSE of 3% and 7% for two different grain sizes, respectively. 

The flow-rate RSE in our column study setup ranged from 2.5±1.3% to 1.4±0.4% for 

different flow rates tested (200, 100, 50, 20 µL/min, Figure S2), and therefore 

represents only a minor source of variability. The column feed came from one vessel, 

split into multiple channels through a manifold. This ensures that the influent 

composition for all columns is identical at all times. Amendments were supplied with a 

piston-driven multi-syringe pump, which is able to provide a very constant flow rate 

independent of pressure conditions in the column. 

A thorough literature review identified twelve in situ remediation studies that reported 

numerical results from flow-through columns with two or more replicates. Published 

results were analyzed to identify RSEs for different parameters (listed in Table 2-3). 

Average RSEs for abiotic or process parameters are generally low, between 3% and 21%. 

However, biological processes were found to exhibit higher RSEs. The RSEs found for 
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two published studies examining biological phosphate and nitrate removal was 19% and 

36±18%, respectively. These are on the high end of RSEs found for columns studies. 

Table 2-3. Average standard errors [%] (± SE of the average) reported in peer-reviewed 
literature that conducted column studies with multiple replicates. 

Parameter Observed Average SE 
[%] 

Number of 
SEs 

Reference 

Cr(VI) and As(V) removal capacitya 1.2 ± 0.4 6 236 

Mass balances for different electron 
acceptorsa 

36 ± 18 39 237 

Cr(VI) concentration in column soilsa 37 ± 6.7 8 238 

pH in column soilsa 2.7 ± 1.2 8 238 

Cr(VI) concentration in column soilsb 28 ± 2.9 5 238 

pH in column soilsb 2.4 ± 0.4 5 238 

Bacterial recoveryb 7.4 ± 4.0 19 242 

Steady state parameters and kinetic valuesb 5.0 ± 1.7 5 243 

Metal concentration leached from different 
soilsb 

6.7 ± 2.6 10 244 

Norfluorazon concentration leached from 
different soilsb 

3.8 ± 0.8 9 245 

Biological sulfate removal ratec 19 2 211 

a Column study conducted in duplicate 
b Column study conducted in triplicate 
c Column study conducted with 6 and 4 replicates 
 

Total Variability in Batch Microcosms and Column Studies with Biological Activity 

The reproducibility of triplicate batch microcosms was assessed for six sets of 

experiments assessing different scenarios of biological dehalogenation of chlorinated 

ethenes (CE). The reproducibility of dechlorination activity was found to be fairly good, 

with RSEs of measured CE concentrations ranging from 4 – 56% (Figure 2-2, Table 2-2), 

with an average RSE of 18 ± 1.1%. This includes the error sources discussed above 

(analytical, sampling, biological errors). 
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Figure 2-2. Average relative standard errors (RSE) for all chlorinated aliphatics in 
samples from batch microcosm/column studies. Error bars represent SE of the mean 
RSE.  

The RSE for CE effluent concentrations in Column Studies I and II ranged from 6 – 

41%, and from 5 – 38% for anions in column studies III and IV (Figure 2-2, Table 2-4). 

RSEs for all column studies were not significantly different from RSEs found for batch 

microcosms (p>0.1). This is despite the additional error sources characteristic for flow-

through column studies, and underscores the significance of biological variation 

expected to be similar in batch and flow-through systems. Similar RSEs (Table 2-5) were 

found for published data from a bioaugmentation column study examining TCE 

degradation rates235. Analysis of 12 duplicate data points revealed that RSEs in that study 

ranged from 0–71%, with a mean RSE of 32±8 %. This is very similar to the average RSE 

for Column Studies I and II we conducted, which was 27±1.1%.  
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Figure 2-3. Concentrations of chlorinated aliphatics monitored in triplicate batch 
microcosms (left) and column effluent (right). Shown are control microcosms (mineral 
medium, augmented with dechlorinating culture), and bioaugmented flow-through 
columns. Data from individual microcosms/columns are labeled 1-3; average data (±SE), 
as typically presented, are shown in the bottom panels. 
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Table 2-4. Mean standard errors (± SE) [%] perchlorate-reduction column experiments 
over the monitoring period of 21 days. Concentrations of anions [µg/L] and pH were 
measured over time in triplicate columns. Nine individual SEs comprise the mean SE, 
except for (*) which consisted of 8 samples.  

 ClO4
- [%] SO4

2- [%] Total Anions [%] pH [%] 

Column Study III:     

No Amendment 32 ± 10 11 ± 8* 22 ± 7 1.3 ± 0.5 

Na Acetate 27 ± 10 11 ± 5 19 ± 6 1.2 ± 0.3 

Ethyl Lactate 33 ± 17 30 ± 10 32 ± 9 1.1 ± 0.2 

Column Study IV:     

No Amendment 15 ± 5 11 ± 3 13 ± 3 1.1 ± 0.6 

Na Acetate 5 ± 5 30 ± 6 18 ± 5 2.0 ± 0.4 

Ethyl Lactate 38 ± 14 38 ± 14 38 ± 10 1.7 ± 0.4 

Analytical Error (RSE) 0.7 ± 0.3 
(14) 

   

 

Table 2-5. Standard errors [%] for duplicate column experiments described in Haest et 
al. 2011235. Concentrations of chlorinated ethenes [mM] were measured in column 
effluent after 245 days of incubation. Total CEs represents the mean standard error (± 
SE) for all CEs listed. 

 TCE [%] cis-DCE [%] VC [%] Ethene [%] Total CEs [%] 

High flow 70 5.4 64 0 35 ± 19 

Medium flow 13 12 63 71 40 ± 16 

Low flow 71 0 6.4 6.5 21 ± 17 

 

To further examine reproducibility of flow-through column studies, we conducted one 

study (Column Study II), where several parameters (flow-rate, column length, TCE 

influent concentration) were varied, and TCE dechlorination in response to these 

changes was observed. We hypothesized that RSE would increase following a change in 

operating conditions before conditions would stabilize again, accompanied by a decrease 
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in RSE. However, data showed that the RSE itself is not indicative of a change in 

operating conditions.  

The presented data illustrate the feasibility of conducting flow-through column studies 

for in situ bioremediation on a small scale that does not require large amounts of site 

material or laboratory space. Reproducibility was found to be in a range similar to that of 

batch microcosms, with no statistically significant differences detectable. Biological 

variability was identified as the main error source (up to 90%, with sampling, analytical, 

and column specific errors making up the rest), as underlined by the very similar RSE 

(p=0.98; student t-test) found for column studies with perchlorate (non-volatile, non-

sorbing salt) and CEs (volatile, sorptive), the latter of which are much more prone to 

sampling and analytical errors. This bodes well for the routine use of column studies 

(with multiple replicates) to produce results that are much more applicable to flow-

through environments such as subsurface aquifers, and should therefore be preferred 

over the more common methodology of using batch microcosms.  
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TRANSITION 2 

The first half of my dissertation identified flow-through studies (Chapter 1), and more 

specifically flow-through studies with multiple replicates (Chapter 2) as superior 

approaches over routinely used batch microcosms for the study of hydrodynamic 

environments, such as groundwater aquifers.  

In addition to choosing the appropriate experimental setup, it has been widely 

recognized that laboratory artifacts lead to limitations when predicting field performance 

from laboratory findings. Many of these artifacts impact specifically the microbial 

community found in different environments. Owing to this fact is our inability to culture 

the majority of microorganisms in laboratory settings, while they thrive under 

environmental conditions. Artifacts are introduced by removing material (water or 

sediment) from its environment, potentially changing its pH, concentration of dissolved 

gases (carbonate, oxygen, etc.) and salts, as well as removing microorganisms from 

protective niches in the sediment matrix and modifying cultivation conditions 

(temperature, humidity, etc.).  

The main part of my dissertation focuses on the development of a novel device that 

enables flow-through column studies to be conducted in contaminated aquifers, thereby 

preventing some of the artifacts described above. The in situ microcosm array (ISMA) 

approximates in situ conditions by drawing groundwater directly from the aquifer and 

delivering it to replicate flow-through columns filled with site sediment. Storage of 

column influent and effluent in the device affords in situ testing at ambient subsurface 

temperatures and conditions without causing release of either the chemicals or bacteria 

evaluated. Chapter 3 describes the design and capabilities of the ISMA. 
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3. IN SITU MICROCOSM ARRAY (ISMA) TECHNOLOGY FOR TREATABILITY 

STUDIES IN GROUNDWATER REMEDIATION – PART 1: DESIGN AND 

CAPABILITIES 

INTRODUCTION 

The National Research Council has estimated that in 2012 126,000 sites across the 

U.S. still have contaminated groundwater, and that their closure is expected to cost at 

least $110-127 billion260. To limit these costs, the remediation industry has largely moved 

away from energy-intensive pump-and-treat systems to clean up contaminated aquifers. 

It has been recognized that pump-and-treat systems on their own often do not achieve 

cleanup goals in a timely manner or at all261, 262, but are effective in plume control. To 

address recognized limitations of groundwater extraction and ex situ treatment, there 

has been a movement in the last decade to more sustainable in situ remediation 

technologies, which ideally destroy contaminants permanently, while using less energy 

and producing less hazardous waste in the process. The percentage of National Priority 

List sites at which in situ remediation is implemented has increased from 6 to 64% 

during the years 1986 through 20052, and some form of in situ remedy was implemented 

at 81% of National Priority List sites between 2005 and 20081. Research budgets to 

further these in situ technologies are limited, however. The U.S. government 

(Environmental Protection Agency, Department of Defense, Department of Energy) 

requested almost $9 billion for its environmental restoration obligations in 2012, but 

only $250 million (<3%) were requested towards research efforts263-265. This means that 

new remediation technologies will only come to market if they can be tested in a cost 

effective, yet scientifically defensible way. 

Rigorous treatability studies need to be conducted to determine if in situ remediation 

at a given site will be effective in lowering contaminant concentrations to meet cleanup 
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goals21. Treatability studies are conducted to identify the appropriate reagent and its 

dosage. They also need to inform on the impact of the remedy on other groundwater 

constituents, such as dissolution/mobilization of metals, changes in pH, redox 

conditions, and the potential to create hazardous byproducts266. Above all, treatability 

studies need to be predictive of the processes and degradation rates that actually will 

prevail in place, i.e., in situ. 

Current methodologies that are used for initial screening of accepted and experimental 

remediation strategies are laboratory batch microcosms267, laboratory flow-through 

column studies23, and in situ field studies conducted on the small scale268. Laboratory 

batch microcosms are most commonly used to assess a range of treatment options 

because they offer a fairly simplistic design and low implementation costs. Most 

guidance documents for in situ remediation call for the implementation of microcosm 

studies, typically in the form of batch microcosms24, 25, 269-271. The more elaborate 

approach272 of using sediment columns is sparingly applied by remediation professionals 

and in many instances deemed to be cost-prohibitive. Yet, from a scientific perspective, 

flow-through columns are considered the gold standard approach for studying 

phenomena in saturated subsurface environments273 because they can serve to study 

transport phenomena, which are key in the design and implementation of in situ 

remediation. 

It has been acknowledged that lab and field results are expected “to be quantitatively, 

even qualitatively, different from the same determination if it could be done in situ”274. 

The shortcomings of laboratory microcosm studies have been recognized by many261 and 

resulted in calls for the development of alternatives24. By removing site groundwater 

from the subsurface environment, changes in chemical and microbial parameters are 

introduced. These can include out-gassing of carbon dioxide, leading to changes in the 
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buffering capacity of the water and possibly its pH, which in turn can effect changes in 

the speciation and solubility of metals. Volatilization of organic compounds, e.g., 

halogenated aliphatics, and precipitation of metals and salts can change the 

concentration of contaminants of interest. Furthermore, during sampling and storage of 

groundwater, the microbial community is removed from its protective sediment 

environment and becomes susceptible to grazing by protozoa136, exposure to oxygen and 

to other unfavorable conditions. These stressors can lead to significant changes in the 

microbial community275, going as far as complete inactivation, death or removal of 

susceptible microorganisms that may be essential for bioremediation progress to occur 

(e.g., poisoning with oxygen of strictly anaerobic bacteria of the genus Dehalococcoides). 

All these factors play a significant role for in situ remediation276 and can distort a 

legitimate extrapolation of results obtained from laboratory treatability studies277-279.  

To overcome the fundamental limitations of laboratory studies78, in situ field studies 

can be conducted to obtain more realistic results. Treatability tests designed to compare 

multiple remediation approaches can be performed using amended passive samplers, for 

example Bio-Traps® 280 (sometimes referred to as BACTRAPs® 281), that capture 

microorganisms which actively grow on a porous artificial medium (e.g., Bio-Sep® 

beads). They can provide qualitative information on the potential for in situ contaminant 

degradation173 cost-effectively and in a relatively short amount of time, by showing the 

presence of specific degraders and/or incorporation of isotopically labeled contaminants 

into microbial biomass282. However, these samplers are neither meant to, nor suitable 

for, capturing the complex mass transfer processes that occur in the saturated sediment 

of the aquifer. Use of so-called in situ microcosms (ISMs)283, 284 – stainless-steel 

cylinders that are pushed into the sediment to isolate a portion of the aquifer, thereby 

enabling withdrawal, amendment with different agents, reinjection and sampling of 
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groundwater over time285 – offer the advantage of leaving microbial and geological 

features of the aquifer intact. However, this approach is labor intensive, requires on-site 

attendance and is applicable only to shallow subsurface sites284 where direct-push 

methods can be used. 

To overcome these limitations and to bridge the gap between laboratory tests, passive 

sampling technologies and pilot scale treatability tests, new approaches are needed that 

offer the benefits of realistic flow-through column studies and can sidestep many of the 

established artifacts associated with conducting experiments in the laboratory. We seek 

to address this need of conducting flow-through treatability studies in the field by 

introducing a novel down-hole remedial design tool, termed the in situ microcosm array 

(ISMA). This manuscript describes the design and capabilities of the ISMA, including 

how treatability tests can be conducted and what kind of data are produced when using 

the ISMA for in situ treatability studies.  

EXPERIMENTAL SECTION 

Design and Manufacturing of the In Situ Microcosm Array 

The outer shell of the device and some internal components were designed using 

computer-aided design software (3DS SolidWorks, Dassault Systèmes SolidWorks Corp, 

Waltham, MA). 

Pump Design 

An off-the-shelf pump (Ismatec, Glattbrugg, Switzerland) was modified to fit within an 

8.9 cm outer diameter shell, as required for the ISMA device to fit into a standard 10-cm 

(4-inch) inner diameter groundwater monitoring well. Pump cassettes that control flow 

in the pump tubing of the peristaltic pump were manufactured using rapid prototyping 

technology.  
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Performance of the customized pump was evaluated for long-term stability of delivered 

flow, accuracy, and inter-channel reproducibility of the flow volume. To test accuracy 

and inter-channel reproducibility, pumps were mounted in the laboratory and 

performance tests conducted in triplicate for 4.5 – 5 hours at flow rates set to 20, 50, 

100, or 200 µL/min. Pumped water was collected and measured volumetrically to infer 

flow rates. A long-term pump-rate stability test was conducted in the same fashion 

operating 12 channels at a target flow rate of 15 µL/min. Flow rate was monitored daily 

for a period of 35 days. 

Pump accuracy was also tested for an unmodified comparable pump (Ismatec Reglo 

Digital, Ismatec, Glattbrugg, Switzerland). The pump was operated in the laboratory 

with 24 channels at a target flow rate of 79.1 µL/min in duplicate experiments for 0.5 

and 2.7 hours, respectively. Results were averaged over all 24 channels and both tests. 

Sediment Column Tracer Tests 

Six custom glass columns (1 cm ID, 25 cm long; Chemglass Life Sciences, Vineland, 

NJ) were packed with dried, sorted sediment of two different grain size fractions (each in 

triplicate) referred to as fine (<0.5 mm) and coarse (0.5 – 1 mm) sediment. Sediment 

was obtained from a site in Mesa, AZ and characterized as well graded sands, gravelly 

sands, containing little or no fines, but containing inorganic clays. Tracer tests were 

conducted by injecting a slug of bromide (40 µL of 5 g/L NaBr) into sediment columns 

and monitoring effluent bromide concentrations over time. Bromide was analyzed 

following EPA Method 314.0. Details of the analytical method have been previously 

published248.  
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Preservative Efficacy Test 

A preservative (Kathon GC/ICP, Sigma-Aldrich, St. Louis, MO) was used to inhibit 

continuation of biological reactions in the effluent once it had left the sediment columns. 

The effectiveness of mixing of preservative and column effluent was tested using fresh 

groundwater that was pumped into four effluent capture vessels at a rate of 136 µL/min. 

The preservative was added according to manufacturer’s specifications at 0.01% final 

concentration to two of the vessels, while the other two served as a control with no added 

preservative. After 24 hours of pumping at room temperature, 100 µL of each effluent 

was plated in multiple dilutions onto Luria-Bertani agar plates. Plating was done in 

triplicate. Colonies formed on the plates were counted after incubating them at room 

temperature for two days. 

Adsorptive Cartridge Test 

One type of gas sampling cartridge (Anasorb CSC, SKC Inc., Fullerton, CA) containing 

activated carbon was tested with a mixture of chlorinated ethenes (trichloroethene, cis-

dichloroethene, vinyl chloride) and ethene, which were pumped as aqueous solutions at 

a rate of  80 µL/min into effluent vessels equipped with a gas vent line that was 

furnished with the cartridges. The test was conducted in duplicate. Influent 

concentrations were monitored daily, and the liquid in the effluent vessels was sampled 

at the end of the experiment. The gas sampling cartridges were analyzed for chlorinated 

ethenes by a contracted laboratory (Columbia Analytical Services, Simi Valley, CA) 

following standard methods (NIOSH 1003/1007). Mass recovery of the chlorinated 

ethenes was determined by comparing the total mass of chlorinated ethenes entering the 

vessels compared to the mass contained in the vessels at the end of the experiment, and 

the mass that was captured by the activated carbon. 



 

50 

Groundwater Well Sampling 

Groundwater was sampled at field tests before and after deployment of the ISMA 

device in the well. The water was analyzed at the site for field parameters, including 

temperature, pH, oxidation-reduction-potential, and dissolved oxygen using a pre-

calibrated multi-parameter probe (YSI Inc., Yellow Springs, OH).  

Data Analysis 

Degradation Rate Calculation 

To assess the performance of each treatment approach tested during an ISMA 

treatability study the column effluent was analyzed for the contaminant of interest, as 

well as for potential degradation products and secondary groundwater quality 

parameters, such as heavy metals, nitrate and nitrite concentration, etc. 

 

To calculate the in situ rate of contaminant transformation, R, two approaches are 

considered: 

a) Conservative rate estimation assuming zero-order contaminant transformation 

  (1) 

where Ri is the transformation rate and k0i is the zero-order rate constant of 

contaminant i, t is time, ΔTColumn is the residence time of the groundwater in the 

sediment columns, Ci is the concentration of contaminant i in the microcosm effluent of 

a specific treatment or in the influent groundwater collected as control.  

b) Conservative rate estimation assuming first-order contaminant transformation  

For experiments conducted using the ISMA, the first-order reaction rate constant k1i is 

calculated from log-transformed data according to the following equation: 
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  (2) 

The contaminant degradation rate R is then calculated according to the following 

equation. 

     (3) 

Geophysical Parameters 

In addition to contaminant transformation rates, it is important to obtain information 

on changes in physical properties of the subsurface caused by a given treatment 

approach. By conducting simple tests on the sediment microcosms before and after field 

deployment, the porosity Φ and effective porosity φe can be determined using equations 

4 and 5, respectively: 

    (4) 

     (5) 

where W is the weight of the sediment microcosm with wet or dry sediment, VTotal is 

the total volume of the sediment microcosm, q is the specific discharge derived from the 

groundwater flow rate divided by the cross section of the microcosm and RT is the 

retention time of a conservative tracer in the microcosm determined by a pulsed tracer 

test.  
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RESULTS AND DISCUSSION 

Flow-through column studies are the current gold standard when it comes to 

laboratory treatability tests in saturated media273. However, their value for in situ 

remediation could be much improved by conducting the experiments in a more realistic 

setting. We therefore set out to design and build a tool that can perform flow-through 

column studies in situ to eliminate laboratory artifacts. To make this tool practical for 

field application, a number of challenges had to be overcome, including autonomous 

operation of flow-through microcosms during incubation, and incorporation of all 

system components into a leak-proof shell. The resulting device, called in situ microcosm 

array (ISMA), contains all components of a laboratory column study in dual-

containment design that was chosen to preclude the potential risk of releasing chemicals 

into the aquifer during treatability tests. During device deployment, fresh groundwater is 

pumped directly from the aquifer, which eliminates the need for transport and storage of 

groundwater from the contaminated site to the laboratory, and thereby avoids out-

gassing of volatile compounds and carbon dioxide, potential introduction of oxygen and 

the associated adverse impact on groundwater chemistry and microbial community 

composition and activity in the groundwater.  

Design and Manufacturing of In Situ Microcosm Array 

To fit within the constraints of common 10-cm (4-in) diameter groundwater wells, 

many components of a standard laboratory column study needed to be miniaturized. 

Design restrictions included an 8.9-cm outer diameter (OD) of the device, a modular 

design limiting the length of each module to no more than 2.5 m, and the ability for 

quick assembly of the device in the field, while ensuring reliable functionality of all of its 

components. All materials needed to be compatible with a range of chemicals potentially 
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extant in contaminated aquifers. The materials used to manufacture reusable 

components (outer shell and connectors, sediment columns, pumps, pump cassettes, 

electronics, etc) include stainless steel (ASTM A312), Viton®, Teflon®, and glass. 

Different components of the device are housed in tubular stainless-steel sections, 

which are connected sequentially during field deployment of the device (Figure 3-1, left 

panel). The connections between modules are load bearing, waterproof and transmit all 

necessary fluid and electrical lines. The device is suspended on a steel cable to the 

desired depth and electrical power is supplied from an array of batteries and solar panels 

in remote locations or from a standard electrical outlet (110 V or more) where available. 

This enables autonomous operation for the duration of the treatability test. 

At the time of submission of this manuscript, the ISMA had been successfully deployed 

five times. To ascertain that no chemicals are released during in situ deployment, well 

water was sampled for multiple field parameters and chemicals before and after 

deployment of the ISMA. Results revealed no differences between groundwater 

chemistry before and after field deployments (data shown in Appendix C Table S1).  
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Figure 3-1. Left: Schematic of the In situ Microcosm Array in a groundwater well. 
*Denotes potential intake locations. Right: Detailed schematic of the ISMA device; Detail 
A - peristaltic pump; Detail B - injection module; Detail C - microcosm array; Detail D - 
360º intake and multi-channel manifold. 
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Groundwater Delivery 

Peristaltic pumps were chosen to achieve continuous low flow rates required for 

simulating slow groundwater movement through the sediment microcosms. The pump 

design chosen affords control and uniform flow of water through the multiple parallel 

channels regardless of differences in conductivity and headloss across the various 

microcosms. Additionally, none of the reusable parts of the pump hardware come into 

contact with contaminated groundwater with the chosen design. Selection of other types 

of pumps (piston pumps, gear pumps) would have increased the risk of chemical and 

bacterial cross-contamination when sequentially using the tool in different wells or at 

different sites. 

To accommodate the stringent size limitations, an off-the-shelf pump (Ismatec, 

Glattbrugg, Switzerland) was modified to fit into the 8.9-cm OD stainless steel shell. 

Customizations included re-design of the motor mounting plate as well as the cassettes 

holding the tubing. The cassette material Ultem® (polyetherimide) was chosen for its 

low surface friction to eliminate rubbing of the tubing material, as well as its rigidity to 

provide even pressure across the pump tubing. Physical properties of the cassette 

material are listed in Appendix C Table S2. Drawings of the customized pump assembly 

are shown in Figure 3-1, right panel, Detail A. Performance of the customized multi-

channel pumps was assessed in multiple flow tests. Results shown in Figure 3-2A and 2B 

demonstrate that flow rates are accurate (<30% standard deviation) and reproducible 

between multiple channels over a range of 20 – 200 µL/min flow. 
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Figure 3-2. Performance control experiments: A - Pump flow rate accuracy for peristaltic 
benchtop pump (Ismatec Reglo Digital) and customized peristaltic pump used inside the 
in situ microcosm array (ISMA). Tests were conducted for 24 or 12 channels, 
respectively. B - Flow rate reproducibility between 12 channels for customized pump in 
the ISMA. Flow rates [µL/min] were set to 20 (∆), 50 (x), 100 (□) and 200 (○) as 
indicated by the solid lines. Shown is the average of three measurements. C - 
Conservative tracer curves showing the bromide concentration in column effluent over 
time after a one-time injection of bromide. Sediment columns were filled with fine (<0.5 
mm) or coarse (0.5 – 1 mm) grains. Experiments were conducted in triplicate. D - 
Results from preservative test showing plate counts of column effluent treated with 
preservative and without (control). Experiments were conducted in duplicate, plating 
was done in triplicate. ND = non-detect (<300 CFU/mL). 

 

During the in situ test groundwater is pumped directly from the subsurface formation 

through a screened intake (100 µm pore size nylon mesh), which is aligned with the 

well’s screened interval at target deployment depth. Groundwater entering the ISMA is 

split into twelve individual lines by a custom manifold (Figure 3-1, right panel, Detail D) 

and fed through two six-channel peristaltic pumps which push groundwater through 

columns in up-flow mode to ensure sediment saturation and enable escape of gas 

Pump 

A 

B 

C 

D 4 

3 

2 

1 

0 

40 

30 

20 

10 

0 

n=6 ND 



 

57 

bubbles. Flow rates can be adjusted to achieve column residence times representative of 

the linear velocity of groundwater at the deployment site. 

Delivery of Treatment Agent 

The ISMA was designed to enable assessment of both natural and enhanced 

contaminant removal rates. To deliver a treatment agent (e.g., chemical or biological 

agent) to the columns the ISMA device contains a customized syringe pump as an 

injection module (Figure 3-1, right panel, Detail B) that uses a single drive shaft to 

actuate multiple syringes. Different agents can be supplied to each microcosm. Pump 

rate and amendment concentration are adjustable to simulate different dosing regimens 

and treatment approaches. Injection agents include carbon sources and electron donors 

to simulate biostimulation, nonindigenous bacteria for bioaugmentation, or a chemical 

oxidizer/reducing agent to simulate in situ chemical treatment. 

Sediment Columns 

In the configuration shown, up to ten flow-through columns can be operated 

concurrently (Figure 3-1). Custom glass columns (250 mm length, 14 mm ID) are 

furnished with Teflon® screw caps and Viton® O-rings that provide a waterproof seal 

(Figure 3-1; right panel, Detail C).  

Columns are ideally filled with fresh site sediment where available. If intact cores are 

not available, archived sediment, representative of the subsurface stratum of interest, 

can be used. Alternative packing materials include quartz sand, activated carbon, 

sediment mixed with iron filings, etc. 

The reproducibility of manually packing the sediment columns was tested by injecting 

a conservative tracer (bromide) and monitoring its concentration in the column effluent 
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over time. Figure 3-2C shows the tracer curves of two tests using different grain sizes of 

sediment in the columns. Both tests were carried out in triplicate. The tracer curves show 

that the replicate columns performed very similarly, proving the reproducibility of the 

packing method. The data also show that no preferential flow occurred in the columns as 

indicated by the tracer showing a retention time consistent with the pore volume of the 

column. Lastly, obtained data show that, as expected, the residence time in the column is 

dependent on the grain size of the sediment, due to the lower effective porosity of the 

smaller vs. the larger grains, which is inversely related to residence time (equation 5).  

Effluent Capturing 

The ISMA device is completely self-contained, which guarantees no impact on the well 

where the treatability test is conducted. All groundwater pumped through columns as 

well as an influent control (untreated groundwater) is stored inside the device in custom-

made Teflon® sample capture vessels (Figure 3-1; left panel). To ensure that the 

degradation activity measured occurred in the columns, these vessels are loaded with a 

preservative/quenching agent designed to stop all unwanted biological or chemical 

activity once the effluent enters the sample capture vessel. Design criteria for the 

microbial preservative were that it needed to be fairly benign to humans upon accidental 

contact and provide broad-spectrum inhibition of bacteria, fungi, and yeasts. The 

preservative chosen (Kathon® CG/ICP) contains 5-chloro-2-methyl-4-isothiazolin-3-

one and 2-methyl-4-isothiazolin-3-one as active ingredients. It is very stable, compatible 

with most analyses and is frequently used for abiotic control experiments142, 286-289. 

Passive mixing of the preservative with column effluent was demonstrated to be effective 

in inhibiting unwanted microbial growth (Figure 3-2D), and therefore further 

contaminant degradation.  
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The column effluent collected as a time-integrated sample is used for chemical and 

microbial analysis upon retrieval of the ISMA device. In addition to the effluent, the 

sediment inside the columns may be analyzed for sorbed or precipitated chemicals, 

presence and quantity of key microbial agents or geological sediment characteristics 

(permeability, porosity, etc.). 

Through microbial activity or chemical reactions, significant amounts of gas (e.g., CO2, 

N2, H2S) can be produced in the columns. The gas is allowed to vent from the sample 

capture vessels through vent lines, after passing through sorbent cartridges designed to 

capture volatile analytes of interest. Losses of volatile organics in escaped gas can thus be 

inferred from analysis of the sorptive material inside the cartridge. One type of cartridge 

containing activated carbon was tested with a mixture of chlorinated ethenes 

(trichloroethene – ethene), which resulted in a mass recovery by the cartridge (in 

percent of the total mass entering the vessel) of 1%, 3-7%, and 24-51%, for 

trichloroethene, cis-dichloroethene, and vinyl chloride respectively (data shown in 

Appendix C Figure S 3). Ethene, due to its small molecular weight and limited 

interaction with activated carbon, was not analyzed and was likely only captured in trace 

quantities. While this result suggests that the use of sorptive cartridges adds relatively 

little value to trichloroethene or cis-dichloroethene recovery, the capture of a significant 

portion of vinyl chloride, a known human carcinogen, justifies the use of sorptive 

cartridges to supplement chemical analysis of the liquid effluent. 
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Feasibility Testing Using the ISMA 

For a mechanistic understanding of contaminant degradation processes, it is vital to 

discern biological degradation from abiotic processes, such as dilution, sorption, and 

abiotic degradation78. The National Research Council calls for cause-and-effect linkages 

to assess in situ degradation processes270.  

The ISMA device is uniquely able to answer these questions. Since multiple 

experiments can be carried out simultaneously in a single well, it is possible to suppress 

biological activity in one set of columns through addition of a biological inhibitor or 

sterilizing agent.  

To evaluate natural attenuation processes of dilution, sorption or intrinsic 

degradation, columns in the ISMA can be operated with no addition of biological or 

chemical agents. 

The possibility to simulate both reducing and oxidizing conditions in the same in situ 

treatability study without impacting the groundwater in the deployment well is another 

unique feature of the ISMA. An electron donor, e.g., lactic acid, or reducing agent, such 

as zero valent iron, can be added to a set of columns leading to reducing conditions, 

while an oxygen donor, e.g., hydrogen peroxide, may be added to a different set of 

columns leading to oxidizing conditions. These conditions can be simulated in the ISMA 

independent of the redox state of the aquifer and can simulate different biological or 

chemical in situ remedies.  

To determine if bioaugmentation (addition of microorganisms and nutrients) is 

necessary, or if biostimulation (addition of nutrients only) of the intrinsic 

microorganisms may be sufficient, both approaches can be tested side-by-side. The 

columns can be inoculated with a bioaugmentation agent during the in situ test, or a 
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microbial community can be established in the sediment columns prior to field 

deployment.  

Data Analysis 

Degradation Rate 

For the ISMA, a comparison of the primary contaminant concentration between 

influent control and the different treatment approaches serves as an indicator of the 

overall qualitative and quantitative success of each simulated treatment. All samples in 

the ISMA are collected as composite samples over the duration of the experiment. To 

determine degradation rates, the contaminant concentration in the composite influent 

(representing conditions at the start of the experiment) are compared to the composite 

samples of each treatment (representing conditions after treatment simulated in the 

different columns). These two data points in conjunction with the residence time in the 

sediment columns (reaction time) enables determination of zero-order (equation 1) or 

first-order degradation kinetics (equation 2 and 3) in situ. 

Geophysical Parameters 

In addition to contaminant transformation rates, it is important to obtain information on 

changes in physical properties of the subsurface caused by a treatment approach (Table 

3-1). Conservative tracer tests can inform on porosity and effective porosity of the 

column sediment according to equations 4 and 5. The ISMA thus enables a 

determination of how different treatments affect sediment permeability, which has 

important implications for field implementation of a given treatment. Clogging of 

sediment pores and associated reduced permeability would limit the delivery of 

treatment agents, and can even lead to the contaminant plume bypassing the treatment 

zone by traveling through subsurface areas of higher conductivity. 
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Table 3-1. Overview of relevant parameters that are of interest in treatability studies and 
how they can be assessed using the ISMA device. 

Parameter  Assessment Capability of ISMA 

In situ rate of 
contaminant 
transformation 

Zero-order or first-order transformation rate can be 
determined (see Experimental Section) 

Release of secondary 
contamination / 
completeness of 
degradation 

Secondary contaminants and degradation products may be 
analyzed from column effluent 

Precipitate formation can be analyzed from column 
sediment 

Changes in geophysical 
parameters 

Assessment through standard sediment column tests before 
and after field deployment (see Experimental Section) 

Aquifer heterogeneity Small-scale heterogeneity on the order of cm can be assessed 
by using intact sediment cores; 

No assessment of large scale heterogeneity 

Long-term testing Experiment duration from three to six weeks, longer if 
needed 

Outcome variability  All experiments can be conducted in triplicate 
simultaneously 

Determination of statistically significant differences between 
treatment groups 

Multiple treatment 
approaches 

Multiple treatment strategies can be tested simultaneously 
in the same well allowing direct comparison 

Mass transfer limitation 
of carbon and electron 
donor/acceptor 

Can be assessed if added directly to the sediment, e.g., pure 
phase DNAPL, pure vegetable oil as carbon source, etc. 

No assessment of field-scale mass transfer limitations 
related to delivery of carbon source or electron donor  

Sampling of attached 
microbial community 

Microbial DNA and protein can be extracted from sediment 
material after field deployment 

Sampling of suspended 
microbial community 

Microbial DNA and protein can be extracted from column 
effluent after field deployment 

Proof of biological 
activity 

Direct comparison of microbially active (biostimulated or 
bioaugmented) columns with non-amended or poisoned 
control in the same experiment enables distinction of 
biological and abiotic processes 
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Microbiological Analyses 

The success of in situ bioremediation hinges on the presence and successful 

stimulation of microorganisms that can degrade the contaminants at a site. It is well 

known that the majority of microorganisms reside attached to the subsurface 

sediment135, and that representative biomass sampling should consist of both aqueous 

and solid phase samples290. By way of its design, treatability studies conducted with the 

ISMA afford the opportunity to obtain information on both attached microorganisms 

(present in the sediment columns) and planktonic microorganisms (suspended in 

column effluent). At the end of a field deployment the soil contained in the columns can 

be sampled and DNA extracted. Similarly, DNA can be extracted from the composite 

effluent collected from each column. Performing quantitative PCR on the genes of 

interest in both types of samples can inform on the presence and quantity of 

microorganisms critical to remedial success, such as Dehalococcoides spp. for 

dechlorination of halogenated ethenes169, 267, 291-293. Additional molecular tools can be 

employed to characterize the microbial community294, such as pyrosequencing, clone 

libraries295, terminal restriction fragment length polymorphism, etc. 

Limitations of the In Situ Microcosm Array 

Due to the physical size of the ISMA, it can only be deployed in wells with a diameter 

of 10-cm ID or larger. A survey of groundwater wells in five states (Arizona, Texas, 

Minnesota, Pennsyvania and Illinois) showed that the majority of wells have dimensions 

of 10 cm in diameter or larger. (Only wells up to 15.2 cm were considered in the survey, 

since larger wells are mostly used for water pumping purposes; so the numbers provided 

here are conservative.) If the whole device is to be submerged in water, a saturated 

thickness of 8.3 m or more is desirable so as to fully submerse the unit during incubation 
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in the well. However, because the location of the groundwater intake in the ISMA is 

flexible, shallower water levels can be accommodated, too. 

The ISMA is also limited by the amount of column effluent that can be stored in the 

sample capture vessels (8.4 L total), which correspondingly determines the maximum 

deployment duration at a given pump rate. This total effluent volume can be allocated to 

different experiments accommodating individual needs regarding sample volume.  

The physical size of the columns limits the residence time that can be achieved while 

simulating realistic groundwater flow velocity. This can mean that slow biological 

reactions do not go to completion, or that natural attenuation happening on a larger 

scale cannot be detected. Also related to the column size, the microcosms in the ISMA 

only incorporate soil heterogeneities at the cm-scale, similar to other small-scale in situ 

tests (ISM, single well push-pull tests). It is well known that geological heterogeneities, 

e.g., clay lenses and preferential flow channels, can have a significant impact on the 

success of in situ remediation112, 296. These factors can be assessed to some degree during 

thorough site investigation and in pilot scale treatability studies involving multiple wells, 

but may not be fully understood even during full-scale treatment. 

The in situ microcosm array is a novel tool for remedial design and decision-making. It 

overcomes limitations of current approaches by offering the ability to test multiple 

remediation strategies side-by-side in a comparable manner in the same location using 

the same groundwater as influent. It also combines the benefits of laboratory studies 

(tight system control, more complete mass balances, and no release of agents into the 

aquifer) with the greater realism of studies conducted in situ. It utilizes site groundwater 

coming directly from the aquifer and site sediment, thereby ensuring minimal 

disturbance of the indigenous microbial community. Nothing is released into the 

environment during a treatability study using the ISMA, ensuring low risk to the aquifer 
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and on-site personnel. By way of these characteristics, the ISMA may be characterized as 

a sustainable approach to treatability testing for in situ groundwater remediation, for 

scientific studies, bioprospecting and risk assessment of novel treatment technologies. 
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TRANSITION 3 

Chapter 3 of this dissertation described the challenges and solutions involved with 

miniaturizing all components of a flow-through column study to fit in a device that can 

be deployed in groundwater wells. In Chapter 4, a case study is presented for the use of 

the ISMA at a perchlorate-contaminated site. As demonstrated here, the ISMA enables 

the in situ operation of flow-through column experiments with multiple replicates for 

statistical evaluation. Analysis of effluent samples from each experiment for chemical 

constituents, hydrogeological analysis on sediment columns, as well as DNA analyses of 

both attached and suspended microbial communities were conducted. Thereby, the 

ISMA provides multiple lines of evidence on the performance of tested in situ remedies, 

as called for in guidance documents used by remediation practitioners and regulators. 

The concurrent evaluation of several in situ remedies side-by-side in the same well, with 

no impact on the deployment aquifer and well is demonstrated. As such, the ISMA 

technology provides a unique and novel capability for remedial design of in situ 

treatment by strategies including monitored natural attenuation, biostimulation and 

bioaugmentation.  
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4. IN SITU MICROCOSM ARRAY (ISMA) TECHNOLOGY FOR TREATABILITY 

STUDIES IN GROUNDWATER REMEDIATION – PART 2: FIELD APPLICATION IN A 

PERCHLORATE-CONTAMINATED AQUIFER 

INTRODUCTION 

In situ remediation of contaminated aquifers (in the subsurface) has become 

increasingly popular in the past two decades and has partly replaced or supplemented ex 

situ (i.e., pump-and-treat) approaches to aquifer remediation297, 298. Reasons for this 

shift are numerous. In situ treatment, specifically biological treatment, can decrease 

cleanup times and lower the cost when compared to pump and treat2, creates little or no 

hazardous waste, and often irreversibly destroys or mineralizes the contaminants to 

benign end products. In contrast, ex situ systems often transfer contaminants from one 

medium to another (e.g., transfer of volatiles dissolved in groundwater to the sorbed 

state, immobilized on sorption media that require further treatment or disposal)2. 

However, as with any other treatment approach in situ remediation also carries 

inherent risks6. The challenge is to find the right treatment agent for success, and to 

inject it in the proper dosage into the subsurface to effect contaminant removal without 

clogging the aquifer. Therefore, it is necessary to conduct feasibility studies to determine 

outcomes, predict reaction rates and identify any potential adverse outcomes of 

subsurface manipulation21, 261. Unwanted side-effects of in situ remediation include 

production of harmful contaminant breakdown products (e.g., vinyl chloride generation 

from the reduction of di-, tri- and tetrachlorinated ethenes299), mobilization of heavy 

metals (e.g., arsenic solubilization)41, 300, or increased iron and manganese 

concentrations301 that can lead to exceeding regulatory limits for these ions, any of which 

would limit or prohibit beneficial use of the groundwater for irrigation or potable water. 



 

68 

To address these uncertainties, in situ remediation approaches are usually tested in 

laboratory systems (batch microcosms or flow-through columns), and in a variety of field 

experiments261. Batch microcosm tests offer a simple design and typically show greater 

reproducibility than field experiments. However, their sediment/water ratio and 

associated mass-transfer phenomena are very different from the subsurface, both of 

which have been recognized to govern biodegradation processes in situ7. In contrast, 

flow-through columns simulate a hydrodynamic environment and associated processes 

which cannot be observed in batch microcosms272. Therefore, compared to batch 

microcosms, flow-through column experiments are generally considered to yield 

qualitative and quantitative results of higher predictive value concerning what later will 

be observed during cleanup at the field scale. However, because column studies can be 

cost-prohibitive, most treatability studies are conducted using batch microcosms. 

Degradation rates generated under optimal conditions in the lab frequently misrepresent 

those later observed in the field302-306. 

To bridge the knowledge gap between laboratory treatability studies and full-scale pilot 

studies, in situ tests should be conducted. Commonly used field technologies include 

multi-well tracer tests307, Bio-Traps®280, single well push-pull tests308, and in situ 

microcosms284. With the exception of (non-baited) Bio-Traps®, these technologies all 

impact the host formation in such a way that the wells can no longer be used for 

compliance monitoring.  

As a hybrid approach between laboratory and field-scale treatability testing, we have 

created the in situ microcosm array (ISMA)309, a novel technology that enables the study 

of multiple remediation strategies autonomously in situ on a small-scale with no risk of 

releasing chemical and biological agents into the deployment well and surrounding 

aquifer.  
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The ISMA relocates flow-through laboratory column studies to the aquifer, where 

multiple tests are conducted in situ. The ISMA contains all components of a traditional 

laboratory column study in a watertight shell measuring 8.9 cm in diameter, thereby 

being small enough for deployment in conventional 10-cm (4-inch) groundwater 

monitoring wells. Multiple flow-through sediment column tests can be performed over a 

period of several days or weeks, while the device is incubated in the well below the water 

table, and undisturbed groundwater is pumped through the columns. This technology is 

described in detail elsewhere309. 

To demonstrate the capabilities of this new technology, we report parallel results from 

laboratory and field tests at a perchlorate-contaminated site in the southwestern US. The 

perchlorate anion (ClO4
-) is a common groundwater contaminant in the southwestern 

United States, originating primarily from explosives manufacturing sites, research 

facilities and military sites310, where perchlorate is used as an oxygen carrier in rocket 

propellants and other explosives to speed up the combustion process. The U.S. 

Environmental Protection Agency (EPA) added this oxyanion to its Contaminant 

Candidate List in 1998 and estimates that it impacts the drinking water of more than 15 

million people311. Perchlorate is highly water soluble and therefore very mobile in the 

subsurface. It is also stable under most environmental conditions and can travel 

significant distances with the groundwater flow, leading to extensive groundwater 

plumes.  

Perchlorate is biologically reduced under anoxic conditions to benign chloride and 

oxygen with perchlorate acting as the electron acceptor. Dissimilatory perchlorate-

reducing bacteria (DPRB) have been studied intensively312-318 and are considered 

ubiquitous319. Addition of a carbon source and electron donor is typically sufficient to 

stimulate biodegradation316. However, some environments may lack adequate numbers 
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of perchlorate reducers to achieve the desired reduction. In such cases, it may be 

beneficial to shorten the lag time to onset of perchlorate biodegradation and therefore 

optimize the kinetics of perchlorate removal via introduction of DPRB into site 

groundwater in a process termed bioaugmentation. 

Remediation strategies evaluated in the present study included: (A) monitored natural 

attenuation (MNA); and (B) bioaugmentation with a perchlorate-reducing microbial 

consortium enriched from wastewater with concomitant addition of a carbon source 

consisting of either sodium acetate (B1) or ethyl lactate (B2). Batch and flow-through 

column studies were conducted in the laboratory in preparation of a field column study. 

The objectives of this study were to: (i) demonstrate the usefulness of the ISMA for 

conducting in situ treatability studies, (ii) determine in situ degradation rates, (iii) 

compare these with rates determined ex situ, and (iv) demonstrate the utility of data 

generated by the ISMA technology. 

EXPERIMENTAL SECTION 

Chemicals 

All chemicals were obtained from Sigma-Aldrich (St. Louis, MO), and were of 99% 

purity or higher, except for ethyl lactate (>98% purity) which was obtained from SAFC 

(St. Louis, MO). Quantitative PCR kits were obtained from TAKARA BIO Inc. (Shiga, 

Japan), qPCR primers were obtained from Integrated DNA Technologies Inc. (Coralville, 

IA). 
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Site Description 

The field demonstration was conducted at a small explosives-manufacturing facility 

located in the arid southwest of the United States (Figure 4-1). Legacy disposal practices 

at the site (since the 1960s) released ammonium perchlorate into sediment and 

groundwater, resulting in groundwater contamination above regulatory limits. The 

contaminant source area features several monitoring wells. The sediment in the area is 

characterized by low organic carbon content and mostly consists of silty sands and 

gravels, poorly and well graded sands, clayey sands and clayey gravels. The groundwater 

table is approximately 53 m below ground surface (bgs). Groundwater flow is generally 

to the southeast and has been induced by a groundwater recharge project northwest of 

the site. The groundwater is moderately aerobic with dissolved oxygen concentrations 

between 0.6 – 4.5 mg/L and around 12 mg/L nitrate, as measured in grab samples from 

wells HPA-1 and MW-8. 

 

Figure 4-1.  Left panel – Site overview including plume map of perchlorate in 
groundwater; Right panel – Source area of perchlorate contamination and location of 
wells used for in situ experiments and site materials obtained.                                                                                                                  

  Groundwater elevation contours (5-ft steps between lines)                         
Groundwater monitoring well 
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Site Material  

Both groundwater and sediments were obtained from well HPA-1 in 2010. Sediments 

had been stored at ambient temperatures in a closed barrel since the installation of the 

well in 2009. The sediment used for all experiments originated from 25 m bgs and 

contained about 500 mg/kg dry weight perchlorate . It further was composed of 64% 

sand, 22% silt, 14% clay, and 0.06% total organic carbon, and had a pH of 7.24. 

All sediment was dried prior to sieving to obtain several grain size fractions (>1 mm; 1 

– 0.5 mm; <0.5 mm). Since the sediment contained much higher concentrations of 

perchlorate contamination than the currently saturated zone at the site, it was washed 

with site groundwater until the perchlorate concentration in the wash water was below 3 

µg/L. 

Groundwater was obtained from well HPA-1 with a polypropylene bailer every few 

months and stored at 4°C until use in laboratory experiments. 

Flow-through Experiments – Hardware 

Flow-through experiments in the lab and in situ were conducted using the same 

sediment and groundwater sources. For the lab experiments, groundwater containing 

about 500 µg/L perchlorate was stored in a vented carboy at room temperature during 

the experiment. A manifold was used to split the influent into 12 individual lines. A 

multi-channel peristaltic pump (ISMATEC, IDEX Health & Science, Oak Harbor, WA), 

located downstream of the manifold, provided flow for the columns. Glass columns (25 

cm long, 1.2 cm inner diameter, Chemglass Life Sciences, Vineland, NJ) with Teflon® 

caps were used. Sampling ports for time-discrete sampling were installed at the outlet of 

each column. Effluent from each column was collected in individual containers made 
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from Teflon®. Viton® tubing was used throughout. All other fittings were made from 

either Teflon® or nylon.  

For field experiments, the same peristaltic pumps, glass columns, effluent containers, 

fittings and tubing as for the lab experiment was used. 

Experimental Setup - Laboratory Experiments 

Batch bottle experiments were conducted in 200-mL serum bottles capped with butyl 

rubber stoppers. Five replicate bottles were filled with 150 mL site groundwater and 5 g 

dried, well graded, washed sediment (<0.5 mm grain size) from the site. Each bottle was 

spiked with ethyl lactate (1000 mg/L; 8.5 mM) and potassium perchlorate (1000 µg/L 

perchlorate; 10 µM). No attempts were made to remove oxygen from the bottles at the 

beginning of the experiments. However, once capped, bottles were sampled periodically 

using gas-tight techniques to prevent oxygen from getting into the bottles, thereby 

enabling the development of anoxic conditions through microbial activity. Samples were 

analyzed for perchlorate concentration.  

All flow-through sediment column laboratory experiments were conducted using the 

hardware described above (glass columns, peristaltic pumps, Teflon® vessels, Viton® 

tubing). Columns were packed with well graded sediment (0.5 - 1 mm grain size) 

obtained from drill cuttings from well HPA-1. Site groundwater containing about 500 

µg/L (5 µM) perchlorate was used as the column influent for laboratory flow-through 

experiments. All lab experiments were conducted at room temperature, which is similar 

to the groundwater temperature of ~23°C at the deployment site. 

Perchlorate is readily biodegradable316 if sufficient perchlorate-reducing bacteria, 

nutrients, and appropriate redox conditions are present.  Previous tests had shown a 

very low population of facultative anaerobic microbes in native sediment from the site320. 
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Therefore, our experiments focused on bioaugmentation tests. The following 

experiments were conducted using flow-through columns in the laboratory: (A) site 

sediment without amendments, simulating monitored natural attenuation (MNA), (B1) 

bioaugmentation with a seed culture containing perchlorate reducing bacteria with 

concomitant addition of sodium acetate as a supplemental carbon source and electron 

donor, and (B2) bioaugmentation with concurrent addition of ethyl lactate. All 

experiments were conducted in triplicate. As a control, influent groundwater was 

collected in the same fashion as column effluent over the duration of the experiment 

without passing through sediment columns. All experiments were conducted 

simultaneously using the same source of site groundwater. 

A facultative anaerobic microbial consortium enriched from sewage sludge obtained 

from five different U.S. wastewater treatment plants was utilized as a seed culture for 

bioaugmentation experiments to accelerate the onset and rates of perchlorate reduction. 

Each bioaugmentation column received 1 mL of seed culture at the beginning of the 

experiment by injection of the liquid culture at the influent (bottom) of each column. 

Sodium acetate trihydrate was added at 1100 mg/L (8.1 mM) influent concentration in 

experiment (B1), and ethyl lactate at 340 mg/L (2.9 mM) in experiment (B2). To compare 

bioaugmentation to the effects of natural attenuation, three columns were operated 

without addition of carbon source or biomass (Experiment A). All columns were 

operated in up-flow mode at 15 µL/min flow, equivalent to residence time of 10 hours in 

the column (as determined in conservative tracer tests). 

The effluent of all columns was collected as a composite sample throughout the 

duration of the experiment to have effluent measurements comparable to the ones 

collected in the field in-situ. Effluent was stored at room temperature in individual 

Teflon® vessels containing a microbial preservative (Kathon® [5-chloro-2-methyl-4-
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isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one], minimum concentration 0.5 

mL/L effluent). In addition, time discrete samples of the effluent were collected 

periodically, filtered through a 0.45 µm polyvinylidene difluoride (PVDF) filter (PALL 

Life Sciences, Port Washington, NY), and analyzed for pH as well as concentration of 

perchlorate, nitrate, nitrite and sulfate using established techniques as described below.  

Experiments were conducted for a period of 3 weeks. After termination of the 

experiments, composite effluent samples were analyzed for the same parameters as time-

discrete samples. In addition, DNA was extracted from column effluent as well as the 

column sediment. 

Experimental Setup - Field Experiment 

The field experiments conducted in well MW-8 consisted of experimental scenarios (A) 

and (B), and were conducted in the same way as the laboratory experiments using 

identical equipment, including glass columns, peristaltic pumps, Teflon® vessels, Viton® 

tubing, etc. Field experiments were conducted in four replicates. The columns were 

operated in up-flow mode at an effective flow rate of 15 µL/min.  The duration of the 

field experiments was 3 weeks, matching that of the lab experiments. 

To ensure no impact on the deployment well had occurred, grab samples were taken 

from the well before and after deployment. The grab samples were analyzed for 

perchlorate concentration, DNA and a suite of other anions to assure no contamination 

had occurred.  
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Analytical Methods 

Anion Analysis 

A suite of anions (nitrate, nitrite, sulfate) was analyzed using an ion chromatography 

system with conductivity detector following EPA method 314.0. Standard solutions were 

obtained from Dionex (Thermo Scientific, Sunnyvale, CA; Combined Seven Anion 

Standard containing fluoride, chloride, nitrite, bromide, nitrate, phosphate, sulfate). 

Perchlorate was analyzed following EPA method 300.0. Perchlorate standard solution 

was obtained from SPEX Certiprep (Metuchen, NJ). Details of the analytical methods 

have been published previously248. To remove particles all samples were filtered through 

a 0.45 µm filter prior to analysis. 

DNA Analysis 

At the end of the experiments, DNA was sampled from 3 sections of the sediment 

column columns (inlet, middle, and outlet). Around 0.25 g of sediment removed from 

each section was extracted using the PowerSoil DNA extraction kit (MoBio Laboratories, 

Inc., Carlsbad, CA) in combination with the DNeasy Blood and Tissue kit (Qiagen Inc., 

Valencia, CA). A detailed protocol is provided in Appendix D. 

DNA was also extracted from the composite effluent from each column and from well 

grab samples. A known volume of effluent water was filtered through a 0.2-µm filter and 

DNA was extracted according to the manufacturer’s protocol using the UltraClean Water 

DNA kit (MoBio Laboratories, Inc., Carlsbad, CA). 

Extracted DNA was quantified spectrophotometrically using a NanoDrop ND-1000 

(Thermo Fisher Scientific, Wilmington, DE) as per the manufacturer’s instructions. 

DNA from composite effluent and from sediments was characterized using 

quantitative polymerase chain reaction (qPCR). DNA targets included the 16S rRNA 
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gene as a measure of general bacteria, and the perchlorate reductase gene (pcrA) as a 

proxy of perchlorate reducing bacteria in each sample321-323. Plasmids containing the 

target DNA fragments used here were the same as those developed for previous 

studies324. PCR primer sequences are listed in Appendix D in Table S 3.  

Residence Time, Porosity, Effective Porosity in Sediment Columns 

Residence time (RT) in the sediment columns was determined by injecting a 

conservative tracer (40 µL slug of 5 g/L sodium bromide) into each column and 

monitoring its concentration in the effluent over time. This was done before the start of 

the lab experiment and after termination to observe potential effects from biomass 

growth, e.g., reduced porosity from biofouling leading to preferred flow paths and 

reduced residence times. 

Porosity (Φ) was determined by comparing dry and wet weight (W) of the columns 

with the total volume (V) of each glass column.  

Φ = Wwet - Wdry / VTotal     (1) 

Effective porosity (φe) was calculated from column residence time and specific 

discharge (q). Specific discharge is equal to the volume of flow per time divided by the 

cross section of the flow path (radial area of the glass column). 

φe = q / RT                  (2) 

Perchlorate Degradation Rate  

The first-order degradation rate of perchlorate was calculated for flow-through 

experiments in the lab and in the field. For laboratory experiments, time-discrete 

monitoring of the column effluent provided time-resolved data for calculation of a first-

order degradation rate constant (kDiscrete) using the log transformed perchlorate 
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concentration of the influent (Cin) and effluent (Cout) grab samples for each experiment, 

as well as the residence time in the sediment column (RT). 

     (3)  

The first-order degradation rate R is then calculated according to the following 

equation: 

  (4) 

where Ci is the mean contaminant concentration. 

For the field experiments where time-discrete samples were unavailable, a composite 

sample collected over the duration of the experiment served to calculate a time-averaged 

first-order degradation rate.  

 (5)    

  (6)  

RComposite is the composite degradation rate, CInfluent and CEffluent are the composite 

perchlorate concentration in the influent and effluent of each column, respectively. 

RESULTS AND DISCUSSION 

The main objective of this study was to demonstrate the possibility of conducting 

treatability studies in situ using the ISMA, with a perchlorate-contaminated field site 

serving as the deployment location of this proof-of-concept study. In preparation, 

laboratory batch and column studies were conducted prior to field column studies. The 

goal was to show the possibility of simulating anaerobic degradation in a moderately 

aerobic aquifer, without changing the groundwater in the demonstration well. Further, 
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we determined in situ degradation rates, and demonstrate the utility of the data 

generated during use of the ISMA. 

Laboratory Experiments - Batch 

Preliminary screening experiments were conducted in batch microcosms using 

groundwater and sediment from a perchlorate contaminated site. Biostimulation with 

ethyl lactate led to complete perchlorate reduction from 1000 µg/L to less than 3 µg/L 

within 4.5 to 23 days caused by lag times up to 10 days (data shown in  

Figure S 4). These long lag times likely are due to the low number of active 

microorganisms and low organic carbon content (0.06% total organic carbon) of the 

sediment. To overcome potential long lag times, a seed culture containing perchlorate-

reducing bacteria was used in subsequent column experiments. 

Laboratory Experiments – Flow-through Columns 

Multiple transport parameters for the sediment columns were determined prior to the 

start of flow-through experiments. The hydraulic residence time in the columns was 10 ± 

0.6 hrs and the mean effective porosity was 0.35. The hydraulic residence time was also 

determined after the experiments to detect effects caused by microbial growth, leading to 

clogged pore space and potentially shorter residence time. After the experiment, average 

hydraulic residence time decreased significantly (p<0.05) to 9 ± 0.3 hrs, and mean 

effective porosity was 0.33. 

After bioaugmentation with a seed culture and both carbon amendments (experiment 

B1 and B2), perchlorate was reduced consistently after an adaptation period of two days 

(Figure 4-2), while monitored natural attenuation (MNA - experiment A in Figure 4-2) 

did not lead to perchlorate reduction over the course of the experiment (Table 4-1). Both 
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carbon amendments led to similar perchlorate reduction rates (Table 4-1) determined 

from time-discrete sampling data as well as composite samples.  

 

Table 4-1. Overview of perchlorate concentrations and first-order reduction rates (mean 
± standard error). Results from lab and field flow-through experiments are listed.  

 Influent  
[µg/L] 

Composite 
Effluent   
[µg/L] 

Time-discrete 
Concentration 
at End of 
Experiment 
[µg/L] 

Composite 
Reduction 
Rate             
[hr-1] 

Time-
discrete 
Reduction 
Rate               
[hr-1] 

Natural 
Attenuation  

448 ± 44 525 ± 53 594 ± 60 0.02 ± 0.006 n/a 

Bioaug 
Sodium 
Acetate  

448 ± 44 6 ± 3 <0.53 0.55 ± 0.12 0.74 ± 0 

   
   

   
   

  L
A

B
 

Bioaug Ethyl 
Lactate 

448 ± 44 22 ± 9 <0.53 0.35 ± 0.03 0.74 ± 0 

Natural 
Attenuation  

228 ± 1 227 ± 2 n/a <0.003* n/a 

   
   

  F
IE

L
D

 

Bioaug 
Sodium 
Acetate  

228 ± 1 30 ± 21 n/a 0.24 ± 0.09 n/a 

n/a = data not available;  
* A derivation of the minimum detectable reduction rate is provided in Appendix D. 
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Figure 4-2. Concentration of perchlorate in effluent of continuous-flow sediment 
columns operated for 3 weeks. All experiments were conducted in triplicate, except for 
the influent concentration, which was measured from one sample at a time. Error bars 
represent standard error. 

The groundwater also contained around 5 mg/L sulfate and traces of nitrate (<1 

mg/L), both of which could serve as electron acceptors for the microbial community. 

Nitrate was reduced to <0.01 mg/L for both carbon amendments in less than two days, 

and no nitrate was detected for the remainder of the experiment. Nitrite was not 

detected at any point in the experiment. Sulfate was completely reduced to <0.01 mg/L 

in the columns with ethyl lactate amendment (B2) after an adaptation period of 16 days. 

During the adaptation period, sulfate concentrations decreased steadily. In sodium 

acetate amended columns (B1) sulfate concentrations started decreasing after 18 days, 

but only some sulfate was being reduced at the end of the experiment after 21 days. In 

MNA columns (A), neither nitrate nor sulfate was reduced throughout the experiment.  

While nitrate is typically reduced before the onset of perchlorate reduction312 or 

simultaneously with perchlorate reduction325, it can be beneficial to perchlorate 
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reduction given that many perchlorate reducing microorganisms are also able to reduce 

nitrate. Therefore, the presence of small amounts of nitrate can serve as an alternate 

electron acceptor for perchlorate reducers stimulating their growth. The presence of 

sulfate has not been shown to directly affect the ability of bacteria to reduce perchlorate. 

Therefore, reduction of sulfate is not desirable for in situ remediation of perchlorate326, 

as it consumes valuable carbon source and may produce hydrogen sulfide, which is toxic 

to many organisms. 

DNA analysis of the column effluent and sediment revealed that sodium acetate 

stimulated the growth of bacteria and specifically of perchlorate-reducing bacteria much 

more effectively than ethyl lactate. This was evident from copy numbers for 16S rRNA 

genes and perchlorate reductase (pcrA) genes in both effluent and sediment, which were 

on average 31±17 times higher when sodium acetate rather than ethyl lactate was 

supplied as a carbon source (Figure 4-3).  
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Figure 4-3.  Results of quantitative PCR targeting the 16S rRNA gene of general bacteria 
and perchlorate reductase (pcrA). Shown are sediment results for the influent section of 
each column, which contained the highest numbers of bacteria compared to mid and 
effluent section. N/A = not tested in field experiment. Error bars represent standard 
error. 

Field Experiments using the In Situ Microcosm Array (ISMA) 

A flow-through field experiment was conducted with the ISMA testing MNA 

(experiment A) and bioaugmentation with a seed culture and sodium acetate 

(experiment B).  In addition, an influent control was included in the experiment. Sodium 

acetate was chosen over ethyl lactate because in lab experiments its addition resulted in 

higher numbers of perchlorate-reducing bacteria and did not lead to unwanted sulfate 

reduction.  
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To ensure that the deployment well (MW-8) was not impacted by the deployment 

event, grab samples taken before and after deployment of the ISMA were analyzed for 

DNA concentration and a range of anions. Results (Appendix D, Table S4) revealed no 

impact by the deployment of the ISMA. 

Perchlorate was reduced over a period of 21 days from 228±1 µg/L to 30±37 µg/L in 

the columns with the bioaugmentation treatment (B), while perchlorate concentrations 

did not decline in the MNA experiments (A), compared to the influent control (Figure 

4-4). Sulfate was not reduced significantly in any of the samples (data not shown). 

 
Figure 4-4. Concentration of perchlorate in different experimental groups normalized to 
influent. Data represent composite samples collected over 21 days, representing the 
whole duration of the experiments. N/A = not tested in field experiment. Error bars 
represent standard error. 

By its design, the ISMA allows analysis of microbial communities in column effluent 

and sediment and examination of their spatial distribution across the columns. Sampling 

of both habitats has been recognized as essential to provide a complete picture of the 

microbial community135, 327. DNA analysis of effluent and sediment showed that 

perchlorate reducers mainly settled onto column sediment (concentration 2 - 3 orders of 

magnitude higher in sediment [copies/g] than in aqueous phase [copies/mL] – Figure 4-
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3), while general bacteria were found at similar levels on sediment and suspended in the 

aqueous phase. Results further show that bioaugmentation with nutrient addition led to 

an increase in gene copy numbers of 16S rRNA (180-fold on average) and perchlorate 

reductase (pcrA) (690-fold on average), indicators for general and perchlorate-reducing 

bacteria, respectively (Figure 4-3). The column sediment was sectioned in three equal 

sections (inlet, middle, and outlet) and DNA copy numbers were analyzed. Results show 

that the majority of bacteria in all columns (lab and in situ) resided in the inlet portion of 

the sediment columns, which harbored 77±10 % of general bacteria (data shown in 

Appendix D Figure S 5). This was even more pronounced for the columns that were 

bioaugmented, where around 90±5% of general bacteria was found in the inlet portion of 

the sediment columns. The reasons for this likely are two-fold: in MNA columns to which 

no nutrients were added, different sediment filtration mechanisms328, 329 straining the 

bacteria from the incoming groundwater most likely caused the high DNA copy numbers 

found near the inlet. In addition to sediment filtration, nutrient concentrations (carbon 

source and electron acceptors) in bioaugmented columns are highest at the inlet of the 

columns, and therefore provide ideal growth conditions for bacteria leading to higher 

numbers near the inlet. This has been found in several flow-through column studies330-

333. 

Whereas concentrations of general bacteria were similar between lab and field 

experiments, the concentrations of perchlorate-reducing bacteria in the effluent and 

influent samples were about one order of magnitude lower in situ than in the lab 

experiment.  Similar observations have been reported previously, where bacteria 

introduced through bioaugmentation were not able to compete with the indigenous 

community as effectively as predicted by lab studies334, 335 or were subject to grazing by 

protozoa122, 125, 336. These effects play a large role in situ and are one reason why in situ 
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experiments are more valuable than similarly performed laboratory tests. At the same 

time, perchlorate-reducing bacteria were found in similar concentrations in the sediment 

for both lab and in situ experiments. This finding, which is in contrast to the differences 

found in effluent concentrations, is supported by previous findings that bacteria attached 

to surfaces (sediment) or residing in small pore spaces are generally better protected 

from adverse environmental conditions and attack by grazers122, 140, 337. Overall, the lower 

total number of perchlorate-reducing bacteria in situ is in accordance with the lower 

perchlorate reduction rate found in the field. 

Degradation Rate Calculation 

Biological degradation processes generally follow Monod kinetics338 that describe the 

utilization of a single, rate-limiting substrate (in this case perchlorate) and resulting 

microbial growth. Half-saturation constants (KS) for growth of perchlorate-reducers have 

been determined for a mixed community of autotrophic bacteria to be 14.9 ± 6.0 

mg/L339, and for two heterotrophic pure strain bacteria to be 470 and 45 mg/L, 

respectively340. These values for KS are one to two orders of magnitude larger than the 

perchlorate concentrations in this study (~0.2 – 1 mg/L), suggesting that a first-order 

approximation should be used to describe perchlorate degradation in this study. To 

assert this, we used a graphical evaluation of the perchlorate degradation data for 5 batch 

bottle microcosms containing site groundwater, sediment, 1000 mg/L ethyl lactate and 

1000 µg/L perchlorate. Log-transformed concentrations were plotted against time. We 

fitted all data sets with a linear regression revealing a first-order degradation rate of 0.05 

± 0.009 hr-1 with a correlation coefficient R2 between 0.62 – 0.97 for five replicates 

(Figure S4). Overall, using a first-order approximation of Monod kinetics was found 
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reasonable for the perchlorate concentration range of the experiments conducted in this 

study. 

In the configuration used for the field column study, the ISMA allowed collection of 

only a single composite sample per column, which was used to estimate the degradation 

rate from triplicate measurements by employing equations 5 and 6. To determine the 

magnitude of the impact caused by determining rates by this composite approach, we 

used the lab flow-through experiment to calculate degradation rates from both time-

discrete and composite sampling. On a conceptual level, composite samples will yield 

inherently conservative rates, since they represent an average of the adaptation phase 

(when the contaminant is not reduced) and steady state conditions (stable contaminant 

degradation – see Figure 4-2). The extent of underestimation of the “true” degradation 

rate depends on the relative duration of adaptation vs. the period of steady state 

examined. 

In the lab flow-through experiment, the time-discrete rates were on average 39% 

(±14%) higher than those calculated with composite concentrations (Table 4-1– 

comparing time-discrete degradation rate for bioaugmentation columns in lab [sodium 

acetate, ethyl lactate] to composite degradation rate for the same columns). The 

adaptation phase before steady-state contaminant reduction was only two days (or 10%) 

of the total duration of the experiment (Figure 4-2). We therefore expect the composite 

degradation rate determined in situ to underestimate the “true” rate by approximately 

39%. In contrast, laboratory batch microcosms more commonly used by the remediation 

industry often overestimate field performance302, 303, sometimes by one or two orders of 

magnitude (1,000 – 10,000 %)277, 304, 305. Thus, the discrepancy between rates observed 

in lab and field can be reduced from the hundreds of percent to the tens of percent by 

using in situ feasibility studies employing composite sampling. Further refinement of 
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estimates may be achieved by fractionating the effluent from individual ISMA channels 

to obtain time-resolved in situ data.  

Perchlorate reduction rate determined in situ was half of that determined in the lab 

flow-through experiment (both from composite effluent) for bioaugmentation with 

sodium acetate. This difference is in line with overestimated laboratory-derived 

degradation rates found by other studies302-306, and may be due to perchlorate 

concentrations fluctuating in situ341, different numbers of perchlorate reducers in lab and 

field (Figure 4-3), as well as inherent differences between lab and in situ conditions78. 

These considerations again highlight the need to conduct treatability studies in situ 

rather than in the lab. 

The data presented demonstrate that it is feasible to conduct multiple treatability tests 

in situ at the same time, through the use of the ISMA. This new tool enables analysis of 

effluent samples from each experiment for multiple parameters with statistical 

significance, as well as DNA analysis of both attached and suspended microbial 

community. The ISMA provides in situ generated degradation rates for contaminants in 

hydrodynamic sediment columns, which addresses a major shortcoming of the current 

standard (batch microcosms). The data presented here constitute experimental proof of 

the feasibility of evaluating multiple, mutually exclusive in situ remedies side-by-side in 

the same well, at the same time, without impacting in any way the groundwater well 

selected for remediation technology screening. As demonstrated here, this includes the 

capability of conducting anaerobic tests in aerobic wells without changing redox 

conditions in the deployment well itself. As such, the ISMA technology provides a unique 

and novel capability for the remedial design of contaminated, saturated subsurface 

environments. 
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TRANSITION 4 

In Chapter 4 a case study using the ISMA to test biological perchlorate reduction is 

presented. The data demonstrate that several lines of evidence can be collected, 

including chemical concentrations, information on presence and abundance of key 

microbial species, and hydrogeological parameters. In addition to this case study, the 

ISMA has been used to study anaerobic reduction of hexavalent chromium and 

dehalogenation of chlorinated ethenes.  

The goal of my work was to develop the ISMA and to make this tool available for 

groundwater remediation research and design. To this end, chapter 5 contains 

recommendations regarding hardware development and demonstration of the ISMA 

technology in other contaminated groundwater settings. 
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5. CONCLUSIONS AND RECOMMENDATIONS 

The ISMA is intended as a tool to guide remedial design at sites with contaminated 

groundwater. As such, the goal was to develop a technology that can be made available to 

environmental consultants and site managers in the U.S. and worldwide. With the 

creation of a startup company (In Situ Well Technologies, LLC.) and a commercialization 

agreement with an international environmental consulting firm in place, the ISMA is 

well on its way to be available for routine testing. To support this process, I have outlined 

a few recommendations and opportunities for improvement as I see them. Many of these 

suggestions stem from past discussions with ISMA team members, first and foremost 

Tomasz Kalinowski. 

IMPROVEMENTS TO ISMA HARDWARE 

Several modifications can be made to make the ISMA more user-friendly, and thereby 

reduce chances of failure during field deployments. 

Flexible Viton tubing is currently used to transport groundwater throughout the ISMA. 

Although easy to use, it is prone to getting pinched between the internal components and 

outer shell, and barbed connections can come apart if not connected properly. The use of 

permanent stainless steel or rigid Teflon tubing with compression fittings would 

minimize those sources of failure. In addition, use of permanent tubing would lower the 

cost of consumables (~150 ft of Viton tubing is needed per deployment, which costs 

~US$300). The disadvantage of using permanent tubing is the added effort required for 

decontamination/sterilization of the device between deployments, and the risk or cross-

contamination between different field sites. 

Currently, the ISMA can be safely deployed at depths up to 6 m below the water table, 

which limits is usefulness at many sites with deep wells, or screened intervals farther 

below the groundwater table. This limitation is inherent to the peristaltic pump 
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technology used in the ISMA, which can control a differential pressure up to 1 bar 

(corresponds to a depth of 10 m). To address this limitation, a pressure reducer can be 

incorporated in the intake section of the ISMA. Available pressure reducers (e.g., Series 

P60-M5 Miniature Plastic Water Pressure Regulators, Watts, North Andover, MA) can 

reduce pressures up to 20 bar (corresponds to 210 m of below water) down to 0-1 bar. 

The pressure reducer should be situated after the groundwater is screened through the 

100-µm filter of the intake to avoid large particles entering the pressure reducer, but 

before the peristaltic pumps.  

On-line sensing capability has been in development, and it is mentioned here only for 

the purpose of completeness. The purpose of this capability is to monitor column 

effluent in real time for parameters that indicate biological activity in the columns. These 

parameters can be pH, dissolved oxygen, redox potential, concentration of certain anions 

(nitrate, nitrite, etc.), all of which can be measure using commercial electrodes. The 

latter three indicate a progression of oxidizing to more reducing conditions, while pH 

should be monitored to determine if favorable conditions prevail (around neutral pH for 

most biological processes). Decreasing or increasing pH can also indicate potential 

secondary effects, such as dissolution of metals. The monitoring of redox conditions can 

inform on the period of deployment when contaminant degradation likely occurs, as 

most biodegradation processes occur preferentially under aerobic (e.g., benzene 

degradation) or anaerobic conditions (e.g., dehalogenation of chlorinated solvents). 

Knowledge of the degradation period will make degradation rate calculations (as 

outlined in Chapter 4) more exact. 
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CONTAMINANTS TO TARGET 

In addition to hardware improvements, demonstrations of the ISMA technology with 

further groundwater contaminants should be a priority. Currently, field data have been 

generated for the anaerobic biodegradation of perchlorate, perchloroethene, 

trichloroethene, dichloroethene isomers, vinyl chloride and hexavalent chromium. 

Although efforts were made to capture the very volatile chloroethene species (see 

“adsorptive cartridge tests” in chapter 3), it remains challenging to achieve a complete 

mass balance. A closed mass balance enhances the confidence of results and is therefore 

highly desirable. Without a closed mass balance, results still inform on degradation 

processes and rates, but in are considered less reliable, specifically in regards to 

measured degradation rates. Complete mass balances were achieved for perchlorate and 

hexavalent chromium, facilitated by their lack of volatility. 

Therefore, initial applications should focus on non-volatile groundwater contaminants, 

such as metals (chromium, arsenic, uranium, etc.) and non-metal ions (perchlorate, 

nitrate, selenate, ammonium, etc.). Further applications should be done with gasoline 

components (mainly benzene, ethylbenzene, toluene, xylenes [BTEX], and methyl-tert-

butyl ether [MTBE]), which are less volatile than chlorinated solvents (or non-volatile in 

the case of MTBE) and can therefore be captured more easily. 

Another application that should be explored with the ISMA is the testing of combined 

remedies. These can be sequential aerobic and anaerobic processes, chemical and 

biological treatment, or concurrent treatment with chemical and biological amendments 

(e.g., addition of zero-valent iron and dechlorinating consortia to reduce halogenated 

contaminants). 

One area where the ISMA has distinct advantages over other in situ tests is the 

exploration of unproven treatment technologies. The ISMA is self-contained, and 
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releases nothing into the aquifer. This allows for no-risk testing of experimental 

treatment approaches for emerging groundwater contaminants, e.g., 1,4-dioxane or 

perfluorinated organic compounds. 
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Failure Modes Survey conducted among remediation practitioners: 

Please rate the importance of the following failure modes encountered during field 

implementation of in situ bioremediation: 

(1 – minor, 5 – frequent/major concern) 

Concern:                                                       Rating (1-5): 

1. Clogging of injection well         

2. Clogging of subsurface formation surrounding injection well               

3. Biological activity cannot be sustained over time              

4. Difficulty of delivering bioaugmentation culture throughout the plume        

5. Difficulty of delivering biostimulation agent throughout the plume                

6. Limited survival/activity of bioaugmentation culture (competition with 

indigenous  bacteria/protozoa)               

7. Limited activity of native microorganisms when compared to feasibility study 

outcomes       

8. Solubilization of heavy metals and other sediment constituents as an unwanted 

side-effect    

9. Incomplete degradation/detoxification (namely problematic species such as vinyl 

chloride formation from PCE/TCE)   

10. Other (please specify)  

 

What is the approximate number of bioremediation projects you have worked on?    
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Figure S1. Conservative tracer curves showing the bromide concentration in column 
effluent over time after a one-time injection of bromide. Sediment columns were filled 
with fine (<0.5 mm – blue curve) or coarse (0.5 – 1 mm – red curve) grains. Experiments 
were conducted in triplicate.  

 

 

Figure S2. Flow rate reproducibility between 12 channels for customized pump in the 
ISMA. Flow rates [µL/min] were set to 20 (□), 50 (◊), 100 (Δ) and 200 (○) as indicated 
by the solid lines. Shown is the average of three measurements. 
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Table S 1. Field parameters recorded at deployment wells before and after ISMA 
deployments. Parameters were measured from grab samples using an YSI 650 MDS 
meter. N/A – parameter not measured 

Property  Prior to deployment Post-deployment 

Dissolved oxygen [mg/L] Site 1 

Site 2 

0.6 

5.16 

0.6 

5.27 

Temperature [°C] Site 1 

Site 2 

N/A 

23.21 

N/A 

22.88 

Oxidation-reduction potential 
[mV] 

Site 1 

Site 2 

-47 

264.3 

-36.3 

260.6 

pH Site 1 

Site 2 

8.2 

7.44 

8.14 

7.71 

Conductivity [µS/cm] Site 1 

Site 2 

N/A 

1.039 

N/A 

1.670 

 

 

Table S 2. Physical properties of pump cassette material 

Property Pump cassettes 

Tensile strength 1.14 * 108 N/m2 

Flexural strength 1.38 * 108 N/m2 

Compressive strength 1.52 * 108 N/m2 

Maximum operating 
temperature 

170° C 
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Figure S 3. Performance of activated carbon cartridge in capturing chlorinated ethenes. 
Test was conducted in duplicate; results from both tests are shown in comparison. Error 
bars represent standard deviation of six measurements. – Figure provided by T. 
Kalinowski 
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Protocol for DNA extraction from sediment 

Materials needed: PowerSoil DNA Isolation Kit from MoBio 

   DNeasy Blood & Tissue Kit from Qiagen 

   Sterile 2mL centrifuge tubes 

   Vortexer with MoBio tube adapter 

   Ethanol for sterilization 

 

Use the following materials from the PowerSoil DNA kit: 

1. To the PowerBead Tubes provided, 0.25 grams of soil sample. (sterilize 
spatula in flame between each sample) 

2. Gently vortex to mix. 

3. Check Solution C1. If Solution C1 is precipitated, heat solution to 60°C until 
dissolved before use. 

4. Add 60 µl of Solution C1 and invert several times or vortex briefly. 

5. Secure PowerBead Tubes horizontally using the MO BIO Vortex Adapter tube 
holder for the vortex or secure tubes horizontally on a flat-bed vortex pad with 
tape. Vortex at maximum speed for 10 minutes. 

Note: If you are using the 24 place Vortex Adapter for more than 12 preps, 
increase the vortex time by 5-10 minutes. 

6. Make sure the PowerBead Tubes rotate freely in your centrifuge without rubbing. 
Centrifuge tubes at 10,000 x g for 30 seconds at room temperature. CAUTION: 
Be sure not to exceed 10,000 x g or tubes may break. 

7. Transfer the supernatant to a clean 2 ml Collection Tube (provided).  

Note: Expect between 400 to 500 µl of supernatant. Supernatant may still 
contain some soil particles. 

8. Add 250 µl of Solution C2 and vortex for 5 seconds. Incubate at 4ºC for 5 
minutes. 

9. Centrifuge the tubes at room temperature for 1 minute at 10,000 x g. 

10. Avoiding the pellet, transfer up to, but no more than, 600 µl of supernatant to a 
clean 2 ml Collection Tube (provided). 

11. Add 200 µl of Solution C3 and vortex briefly. Incubate at 4ºC for 5 minutes. 
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12. Centrifuge the tubes at room temperature for 1 minute at 10,000 x g. 

13. Avoiding the pellet, transfer up to, but no more than, 750 µl of supernatant into a 
clean 2 ml Collection Tube (provided). 

14. Shake to mix Solution C4 before use. Add 1200 µl of Solution C4 to the 
supernatant and vortex for 5 seconds. 

From here use materials from the DNeasy Blood & Tissue kit: 

15. Pipet the mixture from step 14 into the DNeasy Mini spin column placed in a 
2 ml collection tube (provided). Centrifuge at _6000 x g (8000 rpm) for 1 min. 
Discard flow-through and collection tube. 

Repeat this step until you have loaded all the solution from step 14 onto the spin 
column. This can be up to 3 times. 

16. Place the DNeasy Mini spin column in a new 2 ml collection tube (provided), add 
500 µl Buffer AW1, and centrifuge for 1 min at _6000 x g (8000 rpm). Discard 
flow-through and collection tube. 

17. Place the DNeasy Mini spin column in a new 2 ml collection tube (provided), add 
500 µl Buffer AW2, and centrifuge for 3 min at 20,000 x g (14,000 rpm) to dry 
the DNeasy membrane. Discard flow-through and collection tube. 

It is important to dry the membrane of the DNeasy Mini spin column, since 
residual ethanol may interfere with subsequent reactions. This centrifugation 
step ensures that no residual ethanol will be carried over during the following 
elution. 

18. Following the centrifugation step, remove the DNeasy Mini spin column carefully 
so that the column does not come into contact with the flow-through, since this 
will result in carryover of ethanol. If carryover of ethanol occurs, empty the 
collection tube, then reuse it in another centrifugation for 1 min at 20,000 x g 
(14,000 rpm). 

19. Place the DNeasy Mini spin column in a clean 1.5 ml or 2 ml microcentrifuge tube 
(not provided), and pipet 200 µl Buffer AE directly onto the DNeasy membrane. 
Incubate at room temperature for 1 min, and then centrifuge for 1 min at 6000 x 
g (8000 rpm) to elute. 

Elution with 100 µl (instead of 200 µl) increases the final DNA concentration in 
the eluate, but also decreases the overall DNA yield (see Figure 2, page 21). 

Recommended: For maximum DNA yield, repeat elution once as described in 
step 18. This step leads to increased overall DNA yield. 

Note: Do not elute more than 200 µl into a 1.5 ml microcentrifuge tube because 
the DNeasy Mini spin column will come into contact with the eluate. 
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Table S 3. Quantitative PCR Primers 

Target Primer name and sequence Reference 

Perchlorate reductase 

pcrA 

320F 

5’GCGCCCACCACTACATGTAYGGNCC-3’ 

598R  

5’-GGTGGTCGCCGTACCARTCRAA-3’ 

322 

General bacteria 

16S rDNA  

1055YF  

5’-ATGGTGTCGTCAGCT-3’ 

1392R  

5’-ACGGGCGGTGTGTAC-3’ 

321 

323 

 

Table S 4. Deployment well chemistry pre- and post-deployment of ISMA 

 Pre-deployment Post-deployment 

Perchlorate [µg/L] 234 228 

Nitrate [mg/L] 12.6 12.1 

Sulfate [mg/L] 58.2 57.8 

Ammonium [mg/L] 532 531 

Total DNA [ng/mL] 26 18 
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Figure S 4. Perchlorate Degradation in Batch Microcosms. Shown on the left are 
perchlorate concentrations monitored in batch microcosms over time. Shown on the 
right is the natural logarithm of the perchlorate concentrations and linear fits used to 
determine first-order degradation rates for batch microcosms. 
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Figure S 5. Relative Bacteria Distribution in Sediment Columns. Results of quantitative 
PCR targeting the 16S rRNA gene of general bacteria and perchlorate reductase (pcrA). 
Shown are relative results for all column sections. 
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Limit of detection for lowest detectable degradation rate 

Relative standard deviation was determined from 14 samples, each analyzed in 

triplicate with perchlorate IC 2000 (3 injections from same sample) 

 triplicate analyses MEAN STDEV rel. STDEV 

1 523.16 513.23 504.69 513.69 9.24 0.02 

2 595.65 584.52 598.34 592.84 7.32 0.01 

3 623.85 627.03 624.16 625.01 1.74 0.003 

4 553.31 548.00 548.36 549.89 2.96 0.005 

5 537.64 533.49 532.91 534.68 2.57 0.005 

6 545.01 549.23 551.25 548.50 3.18 0.006 

7 1509.2 1531.4 1547.2 1529.2 19.09 0.01 

8 1430.1 1394.6 1378.8 1401.1 26.27 0.02 

9 1555.2 1564.7 1569.4 1563.1 7.22 0.005 

10 1685.6 1687.8 1694.5 1689.3 4.61 0.003 

11 1512.8 1493.5 1503.5 1503.2 9.66 0.006 

12 1468.6 1381.7 1336.5 1395.6 67.13 0.05 

13 1348.3 1338.0 1334.2 1340.2 7.30 0.005 

14 1418.2 1441.0 1455.4 1438.2 18.76 0.01 

       

    MEAN STDEV 0.011 

 

 

The average standard deviation was 1.1% (average standard error = 0.7%) 

Limit of detection is defined as 3X Stdev. = 3.4% 

If we assume 600ppb of influent perchlorate (influent conc. in lab column 

experiment), 579.6ppb effluent perchlorate (600 – 3.4%) and 10 hrs residence time: 

K=[ln(600)-ln(579.6)]/10 = 0.0034 hr-1 = minimum degradation rate that can 

be detected in MNA column experiments 
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APPENDIX E 

 

Peer-reviewed publication not included in dissertation: 

Kristin McClellan, Rolf U. Halden: “Pharmaceuticals and personal care products in 

archived US biosolids from the 2001 EPA national sewage sludge survey”. Water 

Research 2010, 44, 658-668. 
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APPENDIX F 

 

Peer-reviewed publication not included in dissertation: 

Kristin McClellan, Rolf U. Halden: “Pharmaceuticals and Personal Care Products in 

U.S. Biosolids”, in ACS Symposium Series, Vol. 1048 “Contaminants of Emerging 

Concern: Pharmaceuticals, Personal Care Products and Organohalogens in Municipal 

Waters and Biosolids”, Chapter 8, pp 199–211.  
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