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ABSTRACT
In this dissertation, an innovative framework farsyning a multi-product integrated
supply chain network is proposed. Multiple produet® shipped from production
facilities to retailers through a network of Dibuition Centers (DCs). Each retailer has
an independent, random demand for multiple produdise particular problem
considered in this study also involves mixed-pradwensshipments between DCs with
multiple truck size selection and routing delivésyretailers.

Optimally solving such an integrated problem isgeneral not easy due to its
combinatorial nature, especially when transshipsyand routing are involved. In order
to find out a good solution effectively, a two-pbaasolution methodology is derived:
Phase | solves an integer programming model whncludes all the constraints in the
original model except that the routings are sinmadifto direct shipments by using
estimated routing cost parameters. Then Phase dehswmlves the lower level inventory
routing problem for each opened DC and its assige&dlers.

The accuracy of the estimated routing cost andeffectiveness of the two-phase
solution methodology are evaluated, the computatigrerformance is found to be
promising. The problem is able to be heuristicatiyved within a reasonable time frame
for a broad range of problem sizes (one hour fernristance of 200 retailers).

In addition, a model is generated for a similammek design problem considering
direct shipment and consolidation within the samadpct set opportunities. A genetic
algorithm and a specific problem heuristic are glesd, tested and compared on several

realistic scenarios.



ACKNOWLEDGEMENTS

A Ph.D. project is not a one-person project, thaeef would first and foremost like to
thank my advisor Professor Ronald G. Askin fordupport and guidance throughout this
project. Without him this project would definitelyot have been possible. Moreover,
without his inspiration and help, my career pathuldanot be clear as it is now.

| would also like to thank my professors in the ustltial Engineering Faculty,
Arizona State University. My five year graduate esience with them was in every
respect wonderful. Professor Pitu Mirchandani daekd invaluable support and
supervising. | would also like to Professor Zhangl @rofessor Kierstead for their
insightful comments on the drafts of this disséotat

My special thanks go to my classmate, friend andblaod Felix Cheng. It was
significant for me to have his support and help thhough my undergraduate and
graduate life. During past eight years, we overcavery difficulty together and share
happiness together. Thanks so much for always beeng Finally, | would like to thank
friends and family for their support during the akhfive years it took to complete my
Ph.D. degree. In these periods, encouragement@ntbad from friends and family was

never missing.

Tempe, Arizona, April 2013

Mingjun Xia



TABLE OF CONTENTS

Page
LIST OF TABLES ... . ettt e ettt e e e e e et e e e e e e e e nen e e Vi
LIST OF FIGURES ... eeeeeee ettt e e e eeeemmee e e e eeeees Vil
PREFACE ... ettt e e e e e e et e e e e e e e e e rb e e e e e nrnaas X
CHAPTER
1. INTRODUCTION ..ottt ettt e ettt e e e e e e e e e e e s eemmn s 1
1.1 MOUIVATION ...ttt e e e e e e e e e e e e eeeeesnnrnnees 1
1.2 Integrated Supply Chain Network Design Problem...............ccccccvvnnns 3
2. LITERATURE REVIEW ...t 9
2.1 Facility Location Problem (FLP) .....ccoooceeeeiii e 9..
2.2 Inventory Control Problem (ICP) ........ocoeeiiiieeeeeeeeeeeeeeeeiiie 10
2.3 Vehicle Routing Problem (VRP) ...t ceeeeeiiiiiiieiee e 13
2.4  Integrated SUPPlYy Chain ...........oooiimmmmmeeeeiiir e eeeeeeeeenaeees 15
3. PROBLEM DESCRIPTION... oottt 19
3.1 Assumptions and DECISIONS ..........cceeeiiiiiiiiiiiiiiieee e 20
3.2  Problem FOrmulation ... 22
3.2.1 COSt COMPONENLS ....ciiiiiiieeieeiiiee e e e et e e e e e e e e aeeees 24
3.2.2 Mixed Integer Programming Model............coooviiiiiiiiiiiinneee, 27
3.3 Solution Methodology ..........cooiiiiiiiimmmre ettt eeeeeeeeebaenes 29
4. PHASE I: MULTI-PRODUCT FLP WITH APPROXIMATED IRC............... 30
4.1 Problem Description and Mathematical Formufatio.......................c.... 30
4.2 Problem ANAIYSIS .......cooiiiiiiiiiiiieeeeee i —————— 34



CHAPTER Page
4.3 Single Plant Warehouse CasSe ...........ceeeuuiirriiiiiiiiieeeeeeeeeeeeeeeeeiineens 40
4.4 Meta-heuristic: TS-SA Method............occcmeiiiiiiiiie s 43
4.5 DIreCt HEUNISTICS ....cooiiiiiiiii i emmeme ettt 46

4.5.1 Fixed Cost (FC) HEUNSHIC .....ccoeeeee e 46
4.5.2 Inventory Routing Cost (IRC) HEUNSHIC e evvvvvvenniiiiiiiiiieeeeeeenee. 48
4.6 Computational RESUILS ........uuii e e 49
4.6.1 Parameter SEtHNQGS .......uiiii ettt e e e e e e eeeeeeeees 50
4.6.2 Lower Bound Generation ...............commmmeeeeeeiiieeeeeeeeaee e 51
4.6.3 Results and ANAlYSIS .........oooiiiiimmmmmmme e 52
5. PHASE II: INVENTORY ROUTING PROBLEM ... 64
5.1 Problem Description and Mathematical Formutatio............................. 64
5.2  Problem CharacteriStiCS ..........coouiicommiiiiiiiiiei e 68
5.2.1 Optimal Delivery FreqQUENCY .......coooiceii e 68
5.2.2 Upper/Lower Bounds for the Number of TOUIS............covvvvvnnnnnen. 70
5.2.3 Upper/Lower Bounds for the Objective Values............ccccccn..... 70
5.3 SOlUtioN MELNOAS .......uuuiiiiiiiiiiiiet e 71
5.3.1 Modified Sweep Method (MS) ......uuiiimmmrre i 72
5.3.2 Tabu Search — Simulated Annealing Method $P$-..................... 74
5.3.3 Integrated Local Search Method (ILS) . ceeeeeeiiiiiiiiiiiiiiiiiee 75
5.3.4 Hybrid Genetic Algorithm Method (HGA)...coooiiiieiiiiiiiiiiiiiiiiis 85
5.4 Computational RESUILS ...........uui e 91
5.4.1 Parameter SettiNgS ........uuuuuuuumire ettt a1



CHAPTER Page
5.4.2 Results and ANAIYSIS ......coooiiiii i 92
6. INTEGRATED PROBLEM’'S RESULTS AND ANALYSIS ... 96

7. CONSOLIDATION FACILITY LOCATION AND DEMAND ALLOCATION

MODEL (CFLDAM) ...ttt eeemee et en s enes 104
7.1 Problem Description and Mathematical Formufatio........................... 104
7.2 SOIUtION MEtNOAS ......eeiiiiiiiiiiiicee e 112
7.2.1 Genetic AIGOrthms (GAS) .....cceveeeerummmmmeeeennniaaas e e e e e e e e eeeeeeeeesenennees 112
7.2.2 Proposed Greedy Construction Heuristic (GCH)..........cccceeeenn... 116
7.3  Computational RESUILS ...............uet et e e eeeeeeeaiieees 118
7.3.1 Parameter SettiNgS ........uuuuuuiiiie ettt 118
7.3.2 Results and ANAIYSIS ......cooooiiiiii e e aL2
8. CONCLUSION AND FUTURE WORK .....ooiiiiiii i ieeeme e 122
REFERENCQGE ... ..o et e e e e e e e nme e e e e eeeanns 126
APPENDIX
A OPTIMAL FREQUENCY ... e 135
B UPPER BOUND ON THE LOSS FROM USE OF FULL TRUCKAD ........ 137



LIST OF TABLES

Table Page
1.1 Available truck sizes and daily truCK COSES . .ovvviiieiiiiiiiiiiiiiiiiii e 5
1.2 Distances between all [0CAtIONS ........cooiiiiiiiiiiiiiiiii e 5
2.1 Related literature reVIeW SUMIMATY ......cccemoiieiieeeeeeeeeeeeeeeeiiiiiin e 16
4.1 Parameter Settings iN PhaSe L.......uicceeeaeiiiiiiiiire e e e 50
4.2 Scenario construction in phase I: part Ao 53
4.3 Scenario construction in phase I: part B......cccooooooi 53
4.4 Best solution scenarios and average GAP inegphas...........cccccceeiiiiiiiieeeiiiinieeee, 54
4.5 Full test running results iN PRASE | ... eeeeeeiiiiiiiiiiiiiee e 60
5.1 Parameter settings for the natural frequeneygme..............ooooiiiiiiiiiiieems 69
5.2 Natural frequency calculation for the naturafjiency example............cccccceeeeenennn. 69
5.3 Joint tour optimal frequency calculation foe thatural frequency example ............. 70
5.4 Parameter settings for the route overlap exampl............oiiiiiiiiiiiie s 79
5.5 Natural frequency calculation for the routerta@example........ccccceeeeeeniennnnnn. 80.
5.6 Joint tour optimal frequency calculation foe route overlap example ................... 80
5.7 Savings in the route overlap eXample ... .eeeeeee e 81
5.8 Optimal IRC calculation for each route in FIgB6 ............coooeeiiiiiiiiiiiiiiiiiimems 82
5.9 Optimal SOIULION iN FIQUIE 5.6 ... 83
5.10 Optimal IRC calculation for each route in FBB.7 .........ooovviiiiiiiiiiiiee e 84
5.11 Optimal SOIULION IN FIQUIE 5.7 ...t 85
5.12 Parameter Settings iN PRase 1l ....... oo 91
5.13 Scenarios construction iN Phase 1 ... ooiiieiiiiiiiiiiiiia e eeeeeeeeee e 92



Table Page

5.14 Heuristics parameter settings in phase.ll............coooiiiiiiiiiieeeeee 92
5.15 Computational results: CPU time (sec) in PHBRSE............ovviiiiiiiiii e 93
5.16 Computational results: Objective values ($)00®hase Il............cccccvvvvvvrnnnnne. 4.9
5.17 Saving percentage in PRase Il ..o 95
6.1 Computational results for the integrated pnoble...............oooeiiiiiiiiiiiiieee 96

6.2 Computational results for the integrated pnobionly routing cost; is used .... 101

6.3 Computational results for the integrated pnobitonly direct shipping cog; is

07T [P 101
7.1 Chromosome representation for CFLDAM ...coeeeeeeoiiiiieiiieiiieiieeeeeeiiiiie 114
7.2 Location variables’ ValUES .............oiiiiiiiee e 114
7.3 Heuristic Algorithm fOr CELDAM .........uuiimmmeeeiiiaaa e e 117
7.4 Scenarios construction for CFLDAM .......ccccceiiiiiiiiiii e 119
7.5 Computational Results for CEFLDAM ... oo 120

Vil



LIST OF FIGURES

Figure Page
1.1 Different [eVel dECISIONS .............utummmmmeeeertrnniaaaaa e e e e e e e e aeeeeeeeeeeeesbennnnesseennnnas 2
1.2 Different transportation SIUCTUINES .....ccooociiiiiiiiiiiiiiiiiiieea e eeeeeeeeeeeeeeeeees 4
3.1 Integrated problem and SOlUtION EXAMPI s eeeeieeieeeeieiieiiieeiiii s 20
4.1 Potential optimal network structure example.............cceiiiiiiniinieeeeeeeeeeee, 34
4.2 TWO NELWOIK SITUCTUIES....ceeiiiiiiiiiii et 35
4.3 STUUCIUIE A QN B e 36
4.4 Structure C, D and E .......ooooiiiiii et 38
4.5 Test result comparison between solving methads...............ceeiiiiiiiiieeeiniinieeen. 55
4.6 Log transfermation Of reSUILS ...........oiiiieiiiiiiiiiiii e 55
4.7 Results when NOR = 20, NODC = 2......uuccemmmruriiiiiieee e e e eeeeeeeeseisennnnees 56
4.8 Results when NOR =50, NODC = 5......uuccaammriiiiiinee e 56
4.9 Results when NOR = 100, NODC = 10....uuciiiiieieiiiiieeeieeeiiiiiiie e e e 57
4.10 Results when NOR = 150, NODC = 10....uuuciiiiirieee e s 57
4.11 Results when NOR = 200, NODC = 20 ... .uuceiaiiiieeeeeeeeeeeeeeeeeeeeiiii s 58
4.12 COSt COMPONENTS ... .iiiiiiiie et eeeet e e e e e eet e e e e eeeba e e e e essbmnaea e e e e eeennnaeeas 59
5.1 Two retailers: natural frequency example..........cccooeiiiiiiiiiiiiiiiiiiis 68
5.2 Sweep result @XampPle ... 72
5.3 INSErtioN @XamPle........uuuuiiiii e 77
5.4 RoULtING StrUCTUIE @XAMPIE ....uuuuiiii e ettt e e e e e e e e e e et e e e eeeeeeeeeenennes 78
5.5 Seven retailers: route overlap eXample ... 79
5.6 ILS method provides a better SOIULION .....ccceeviiiiiiiiiiii e 81

viii



Figure Page

5.7 MS method provides a better Solution .............cooeiiiiiiiiiiiiii e, 83
5.8 HGA fraAMEWOTK ....ceeiiiiiiiiiiee e e e 85
6.1 Solution MEethodoIOgY ........cevviiiiiiiceeeee s 96
7.1 ShIPMENT AIFECHIONS ...eueiiiii et e e e e e e e e e e e e e eeeeeeeees 113
7.2 CFLDAM feasible solution example ... 113



PREFACE

This Ph.D. dissertation entitled “Integrated supplyain network design: location,
transportation, routing and inventory decisions's lieeen prepared by Mingjun Xia
during the period August 2009 to March 2013, atltidustrial Engineering, School of
Computing, Informatics, and Decision Systems Engiimg, Arizona State University.

The Ph.D. project has been supervised by the ad®iedessor Ronald G. Askin. The
subjects of the dissertation are proposing a metlbgg for an integrated multiple
product supply chain network design problem, ambring the effectiveness of the
methodology. The results of the dissertation imprdlie classical approach in the
literature for the integrated supply chain. Thesdration is submitted as a partial
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CHAPTER

1. INTRODUCTION

Supply Chain Management (SCM) has been defineleasmtinagement of a network of
interconnected businesses involved in the ultinpatevision of products and services
required by end customers (Harland, 1996). It espglocess of planning, implementing
and controlling the operations of the supply chaimj spans all movements and storage
of raw materials, work-in-process inventory andsimed goods from the points-of-origin

to the points-of-consumption.

1.1 Motivation

There are many decisions that must be made anddsssiprocesses that must be
executed in managing a supply chain. Supplierstnies selected and qualified.
Customer orders must be received and contractstintgpgh Materials must be ordered,
received, converted into products and shipped. B@W! includes decisions at varying
levels of the organizational hierarchy and acroasactional boundaries. In this
dissertation, | will focus on the logistics funetiof moving materials through the stages
of the supply chain but will consider integrationeo hierarchical levels of the system
design and operation.

There are roughly three different levels of decisian a supply chain: the strategic,
tactical and operational (Figure 1.1). Strategicislens include where to locate facilities.
Tactical decisions include shipping methods andembery control policies. Actual
routing and stocking decisions are made at theatipeal level. Key aspects of designing

and operating a supply chain network include thb-mwblems: location-allocation
1



problem, which is also referred as Facility Locati®roblem (FLP); Vehicle Routing

Problem (VRP) and Inventory Control Problem (ICPhe last two problems can be
integrated as the Inventory Routing Problem (IRR)ecific versions of these general
supply system design and inventory planning problaave been studied for many years.
However, traditional decision models for the ovieslstems are disaggregated in the
literature. Failure to take an integrated consitienacan lead to sub-optimality in the
whole system.

= Corporate objectives

« Capacity / Facilities Facility Location
Strategic Level Long Term 1 - Markets to operate Problem (FLP)
= Location
| - Resources
[ . Aggregate planning
Tactical Level Medium T, = Resource allocation Inventory Control
e €M 4 . Capacity allocation Problem (ICP)
= Distribution
| = Inventory management
¥ - Shup floor SChE'j_'Ll]jIlg ‘J’yﬁh'.llC]ﬁ R.Outiﬂg
Operational Level Near Term 1 - Delvery scheduling 7
P | - Truck routing Problem (VRP)

Figure 1.1 Different level decisions

It is clear that these three key problems of a sugipain are highly related. As more
and more companies become aware of their suppin peaformance and the importance
of their performance improvement, coordination amdgration of the supply, inventory,
and distribution operations have been known asi¢xé source of competitive advantage.
Being able to build a decision support system wintbgrates these elements is a major
challenge and can provide a company with a tremendompetitive advantage in the
market, but the available research on integratedefsois very limited. It is shown by
Shen and Qi (2007) that “significant cost saving ba obtained by the integrated model

in comparison with the sequential approach”.
2



This dissertation research was motivated by thel Hee integrated supply chain
network models and the currently limited availalésearch. First, there is limited
research discussing integrated network design mguoietly considering location,
distribution and inventory. Second, many realigituations are ignored in available
research due to the complexity. For example, ssichdemand, multiple products and
joint transportation, transshipment between warslsu nonlinear cost function and
optimal routing delivery are rarely included dudhe complexity of solving such models.

Insights obtained from the modeling activities acmmparison of computational
results will provide a new depth of understandifhgupply chain networks. Through the
development of the general modeling framework amdeustanding of component
impacts and interactions, improved insight into elobduilding will emerge that will
benefit a broad range of operations managemenanagsand practice, and this insight

will extend beyond the specific example models agsked in this research.

1.2 Integrated Supply Chain Network Design Problem
In this dissertation, the author attempts to preasegeneral modeling framework which
can simultaneously optimize location, allocatiorgpacity, inventory and routing
decisions. These problems are all “hard” to sol¥en the magnitude of these problems
and the complexity of real life processes prohilsifrom solving these problems exactly.
To solve this large optimization model, problem relateristics will be analyzed and
several heuristics will be generated to solve lang&ances of the problem.

The dissertation will consider two innovative mydtoduct supply chain networks in

following chapters. Retailers such as Wal-Mart harmber thousands of products daily,
3



but this multi-product supply chain is restrictad available research because of its
complexity. There has been limited available redealiscussing multi-product supply
chain optimization problems, especially considenprgduct-mix during transportation
and transshipments. Under a multi-product systemgsalidation of shipments plays an
important role Consolidation centers receive products from mudtimlippliers and then
delivers mixed product loads to local distributioanters. Economies are achieved by
allowing full (or nearly full) truck load shipmeng&t bulk prices while keeping inventory
levels of each item low and allowing frequent remlament. In addition, distribution
centers will also ship mixed product loads to endt@mers through consolidation of
shipments. The advantage of consolidation shipnagt storage can be significant,

especially when the originating facilities are eds each other but far from retailers.

Retailer

Consolidation
Center

Distribution
Center

Facility

A: Through Consolidation Center

Retailer
Retailer
Distribution
o— Center N
Facility
Facility
B: Only Distribution Center C: Point-to-Point Transportation

Figure 1.2 Different transportation structures
4



One simple example is used to illustrate the usdgsonsolidation and distribution

centers. In Figure 1.2, there are three facilipesviding three different products, seven
retailers require all these three products ancetinetsilers are far from facility locations.
Three possible transshipment models are showreifighire. In structure A, there is one
consolidation center consolidating all productsnfrdifferent facilities, and then ship
them together to a DC which is close to retail@&mo routes are used for routing delivery
from this DC to all final retailers. In structure Bhere is only one DC which is close to
retailers, and each facility needs to ship its potsl to this DC separately, routing
delivery is still used for shipment to retailers. s$tructure C, each facility ships its
product separately to each retailer, and this stracis also called point-to-point
shipment.
Suppose each retailer requires 1 unit of each ptatieach demand cycle. Five different
truck sizes are available, and each truck can tngweo 5 miles per day. The cost and
distance data are shown in Table 1.1 and 1.2. Therotal shipping cost under each
structure is calculated in this section.

Table 1.1 Available truck sizes and daily trucktsos

Truck size (unit)| Cost/truck/day ($)

1 1.2
5 5
10 8
15 10
25 15

Table 1.2 Distances between all locations

Distance: miles (days)
Facility — Consolidation centgr 5 (1 day)
Consolidation center — DC 15 (3 days)
Facility — DC 20 (4 days)
DC- retailer, retailer-retailer 1
Facility — retailer 25 (5 days)




Structure A

Facility-Consolidation center: since each retaikguires 1 unit for each product
and there are 7 retailers in total, the total desrfan each product is 7, the truck
with size 10 units is selected for transportatibime shipping cost = 3 (trucks) * 8
(daily truck cost) * 1 (day) = $24.

Consolidation center-DC: the consolidation centensolidates all demand (21
units in total), thus the truck with size 25 ungsselected for transportation. The
shipping cost = 1 (truck) * 15 (daily truck costB*(days) = $45.

DC-retailer: two routes are used for routing delwvas shown in the Figure 1.1.
For the first vehicle, the total demand = 3*3 =% truck with size 10 units are
selected for transportation, and the total shippgiistance is 4 miles (1 day), thus
the shipping cost = 1 (truck) * 8 (daily truck cpstl (day) = $8. For the second
vehicle, the total demand = 3*4 = 12, the trucklwgize 15 units are selected for
transportation, and the total shipping distance msiles (1 day), thus the shipping

cost = 1 (truck) * 10 (daily truck cost) * 1 (day)$10.

Under this transportation structure, the total gimg cost = 24 + 45 + 8 + 10 = $87.

Structure B

Facility- DC: the truck with size 10 units is sdlt for transportation. The
shipping cost = 3 (trucks) * 8 (daily truck cost#*¥days) = $96.

DC-Retaller: this is the same case as in struckur&or the first vehicle, the
shipping cost = 1 (truck) * 8 (daily truck cost)1*(day) = $8. For the second

vehicle, the shipping cost = 1 (truck) * 10 (dailyck cost) * 1 (day) = $10.



Under this transportation structure, the total ging cost =96 + 8 + 10 = $114.
Structure C

e Facility-Retailer: since each retailer only reqgsirg unit for each product, the

smallest truck is selected for transportation. Each facility-retailer pair, the
shipping cost = 1 (truck) * 1.2 (daily truck cost) (days) = $6.

Under this transportation structure, the total pimg cost = 21 (pairs) * 6 = $126.

As noticed, total shipping cost under structure ®hwonsolidation and distribution
centers is smaller than the other two structurgenkt costs to build consolidation and
distribution centers, the transportation savings/ rmaercome the location cost if the
number of retailers and demand amount is large. atidition, having extra
consolidation/distribution centers will make thenmagement easier and efficient, and it
will also overcome demand uncertainty and shar&srim real business. In this
dissertation, several models are developed fos@sgiin planning supply distribution

including when and where to build consolidation diglribution centers.

The remaindert of this dissertation is as followghapter 2 contains a detailed
literature review of several widely studied subpeots relevant to the integrated
approach taken in this dissertation. This includes facility location, inventory
management and vehicle routing problems. In Cheptan integrated network structure
including transshipment between DCs is consideidte transshipment is allowed
between DCs to provide the functions of both cadation and distribution. A

transshipment network is a realistic representatfamany real world problems that have



a general network structure with many supply/demamoidts and interconnecting links.
While becoming more complicated, it has importappligations in industries. The
routing delivery strategy is also generally usethdustries to take the advantages of Full
Truck Load (FTL), especially when served customars close together and each
individual demand is small compared to the routieicle’s capacity. A mathematical
model will be presented and nonlinear terms am@duiced to better represent the actual
system cost. However, due to the complexity ofgtablem, only small instances can be
solved directly from the mathematical model. Coasity problem complexity and
recognizing costs are estimated and in reality rotty@amically variables, a two-phase
solution methodology is proposed at the end of @vaB. Chapter 4 and 5 describe
detailed problems under each phase, heuristicedon phase problem are proposed and
tested as well. Chapter 6 solves and analyzesntegrated problem by using heristics
proposed in Chapter 4 and 5.

In Chapter 7, another innovation structure to grprgmucts into different sets based
on environmental or other factors is consideredngobdation is allowed for shipping
products in the same product set, but products fdbifierent product sets must be
shipped separately. A mathematical model is deriveck, two versions of a greedy
heuristic as well as a genetic algorithm are predand tested in this chapter.

Chapter 8 concludes my dissertation work and poiis several possible future

research directions.



2. LITERATURE REVIEW

In this Chapter, a background review for each jnesly separate area in an integrated
supply chain network design problem is providediac8ithere is a vast amount of
literature on these topics, references mentionddwbare only examples to highlight

some of the results.

2.1Facility Location Problem (FLP)

Modeling and solving FLP is a key element in sgatelanning. It has its roots in the
pioneering work of Weber (1909) who consideredRbamat-Weber problem of locating
single facility to minimize the total travel distanbetween the site and a set of customers.
High costs associated with property acquisition &awility construction make facility
location or relocation projects long-term investiserand many other contributing
factors such as actual road network and congestimipmer response time demands and
dynamic customer bases complicate site selectianfacrility design. Cornuejols et al.
(1991), Sridharan (1995), Owen and Daskin (199&8) Ktelo et al. (2009) presented
summaries of FLP. More details about general charatcs in FLP can be found in
these papers.

Traditional FLP only considers fixed location coahd linear point-to-point
transportation cost (Albareda-Sambola et al., 2@0@&rbakh et al., 2007; Harkness and
ReVelle, 2003; Hinojosa et al., 2000; Holmberglet99; Mazzola and Neebe, 1999;
Pirkul and Jayaraman, 1998; Snyder and Daskin, 2@0basic fixed charge capacitated
plant location problem was formulated by Efroymsamd Ray (1966). This paper

provided an integer-programming method for solvihg plant location problem and a
9



branch-bound algorithm was then used to solve tbbl@m. Daskin, Ozsen and Shen are
among the early authors who consider inventoryrobim FLP. They published several
papers in the past ten years about FLP with invgrdonsiderations (Daskin, et al., 2002;
Ozsen et al., 2008; Qi and Shen, 2005; Sourirgjah,e2007; Sourirajan et al., 2009) in
which they used risk-pooling to represent safetyclstat DCs and used Lagrangian
relaxation based branch and bound heuristic teesmgposed mathematical formulations.
There are also a few papers discussing the locaboting problem. Min et al. (1998),
and Nagy and Salhi (2007) surveyed and classifiessdgroblem.

Among the available research, the multiple prodeese (Hinojosa et al., 2000;
Mazzola and Neebe, 1999; Melo et al., 2005; Sargosd., 2005; Yao et al., 2010; Melo
et al., 2012) has received limited attention. Thasy be two reasons for this: the multi-
product problem can be translated to a single popikoblem based on an independence
assumption (demand, production, distribution aodaste of each product is independent
from other products) and the complexity of multipfeduct problem.

The complexity of FLP has also limited much of flaeility location literature to
simplified static and deterministic models. Thestfipaper, published by Ballou (1968),
recognized the limited application of static anded®inistic location models. More
papers appeared later to discuss FLP and the sugm@in design problem under

uncertainty scenarios (Santoso et al., 2004; QiSireh, 2007).

2.2Inventory Control Problem (ICP)
Inventory is required at one or more locations imith system to protect against shortages

resulting from random events and to allow rapidooese to demand. Inventory also
10



exists due to the movement of economic load sizdémich quantities different than unit
consumption. Inventory models seek to balance tses®f setups, inventory holding and
opportunity costs, shortages, and obsolescence.

An extensive body of literature has appeared inpast fifty years dating back to
Clark and Scarf (1960) on periodic and continuawsew, deterministic and stochastic,
and single and multistage models. Silver et al98)%nd Zipkin (2000) are two well-
known books which provide a thorough introductidooat inventory modeling and
planning in operations research/management.

Within the ICP, the Economic Order Quantity (EOQddal and its variants are
classical models for constant demand rate prodddsier-of-two inventory policy is
widely used in multi-echelon inventory models, Rowit1986) introduced the power-of-
two policies and he presented a 98% effective penirwvo policy for a one-warehouse,
multi-retailer inventory system with constant dehaate.

Risk pooling is an important concept in supply chamanagement. Risk pooling
suggests that demand variability is reduced if aggregates demand across locations
because as demand is aggregated across diffecatiolas, it becomes more likely that
high demand from one customer will be offset by ldemand from another. This
reduction in variability allows a decrease in safstiock and therefore reduces average
inventory. For example: in the centralized disttibn system, the warehouse serves all
customers, which leads to a reduction in varigbifiteasured by either the standard
deviation or the coefficient of variation. Thusskdipooling is often used for modeling

optimal safety stock level when demand is stocbasti
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Traditional ICP research focuses on a constant ddmate or general distributions
for demand and constant unit transportation rateaidla and Garrido, 2009; Pourakbar
et al., 2007). Nenes et al. (2010) built an invepteview system for multiple
intermittent and lumpy products. Ertogral et al0q2) considered two problems under
equal-size shipment policy with an all-unit-discotransportation cost structure. Tagaras
and Vlachos (2001) considered a periodic reviewemmory system with two
replenishment modes: regular orders and emergendgro Schmitt et al. (2010)
invested an inventory system with stochastic denaanatsupply.

Excluding inventory holding at some physical locas, cross-docking operations
were first pioneered in the U.S. trucking industryhe 1930s. Cross-docking is done by
moving cargo from one transport vehicle directlyoiranother, with minimal or no
warehousing. Waller et al. (2006) analyzed the ichpé cross-docking on inventory in a
decentralized retailer supply chain. Retailers sashWal-Mart have built efficient
systems with rapid replenishment to such a compet#tdvantage with sale information
and cross-docking (Apte and Viswanathan, 2000).

Another innovation is Vendor-Managed Inventory (\JMbntrol systemVMI is a
family of business models in which the buyer ofradoact (business) provides certain
information to a vendor (supply chain) supplietttdt product and the supplier takes full
responsibility for maintaining an agreed inventofythe material, usually at the buyer's
consumption location (usually a store). A thirdtgalogistics provider can also be
involved to make sure that the buyer has the reduevel of inventory by adjusting the

demand and supply gaps (Franke, 2010).
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One of the keys to making VMI work is shared risksome cases, if the inventory
does not sell, the vendor (supplier) will repureéh#ise product from the buyer (retailer).
In other cases, the product may be in the possessite retailer but is not owned by the
retailer until the sale takes place, meaning thatétailer simply houses (and assists with
the sale of) the product in exchange for a predetexd commission or profit (sometimes
referred to as consignment stock). This is alsoadrike successful business models used

by Wal-Mart and many other big box retailers.

2.3Vehicle Routing Problem (VRP)
In its basic form, VRP is “to determirnte vehicle routes, where a route is a tour that
begins at the depot, traverses a subset of th@mess in a specified sequence and
returns to the depot. Each customer must be assignexactly one of th& vehicle
routes and total size of deliveries for customessgmed to each vehicle must not exceed
the vehicle capacity. The routes should be choseninimize total travel cost” (Fisher,
1995). Golden (1988) was a one of the first to sanire the theory and practice of VRP
in a book. Gendreau et al. (1996) provided a revaéwontributions to the VRP with
stochastic demands. A recent review is provideddporte (2009) who categorized and
summarized the main contributions during these syea. exact algorithms, classical
heuristics, and meta-heuristics.

There are three popular variants of VRP: Vehicleitithg Problem with Pickup and
Delivery (VRPPD) in which a number of goods neeéomoved from certain pickup
locations to other delivery locations (Ai and Kaeldhyanukul, 2009; Berbeglia et al.,

2012; Hoff et al., 2009; Subramanian et al., 20M@hicle Routing Problem with Time
13



Windows (VRPTW) in which the delivery locations leatime windows within which the
deliveries (or visits) must be made (Berger andk&awmi, 2004; Li, 2008); and
Capacitated Vehicle Routing Problem (with or witholime Windows) (CVRP or
CVRPTW) in which the vehicles have limited carryicepacity of the goods that must be
delivered (Lin et al., 2009; Toth and Tramontarip; Yurtkuran and Emel, 2010). In
addition, stochastic version problem (Dynamic reale VRPS) has also been studied
(Pillac, et al., 2012).

The Inventory Routing Problem (IRP) can be intetguteas an enrichment of VRP to
include inventory concerns. The inventory comporaiges because customers consume
product over time and have only limited storageac#y. The presence of inventory
complicates the routing decisions in two fundamlemays. First, the storage capacity
has to be taken into account when deciding on eefiuantities. Second, inventory
holding costs may be incurred which has to be adeolufor in the objective function
(Bertazzi et al. 2008).

The first papers on IRPs appeared in 1980s (DrdrBadl, 1987; Dror et al., 1985,
Federgruen and Zipkin, 1984; Golden et al., 1984lj,H985.) Then there are a varied
class of papers discussing IRP applications andisalapproaches (Archetti et al., 2007,
Bard et al., 2010; Bartazzi et al., 2002; Huang himg 2010; Li et al., 2010; Li et al.,
2011; Moin, et al., 2011; Shu et al.,, 2005; Solythal., 2012; Yu et al., 2008;
Zachariadis, et al., 2009; Zhao et al., 2008; Zbgal., 2007;), also about performance

analysis (Anily and Bramel, 2004; Li et al., 2010).
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2.4Integrated Supply Chain

Numerous books and papers have been published dh @8ering many issues and

problem environments. However, as noted above, mas&arch only focuses on some
particular issues and few models comprehensivetiress the integrated network. To
achieve a global optimal (or near optimal) solutitins necessary to consider the entire
system in an integrated fashion and include alldraffs in a realistic fashion.

When designing supply chains, firms are often fasgd the competing demands of
improved customer service and reduced cost. In rgenéhe higher the customer
responsiveness required, the higher the total mestied. Nozick and Turnquist (2001),
and Shen and Daskin (2005) considered the tradeetffeen service level and cost in an
integrated supply chain.

Two research papers are found to have considetetthirak problems in a supply
chain. Shen and Qi (2007) proposed a model incatpay inventory and routing costs in
strategic location problem in a three-level supphain. However, they just used an
approximate function for the routing stage instedonsidering details and real routing
decisions. Javid and Azard (2010) extended Shen @n@@007) to include routing
decisions in their model, but they fixed routingduency in their model and use them as
an input parameter. Both papers only consideredgesproduct system.

A summary table for most related journal papersrrefl in this dissertation is shown
as in Table 2.1. The table classifies papers by tgp demand (deterministic or
stochastic), whether location (L), transportation), (inventory (I) and routing (R)

decisions were considered, and also the main salatiethods used in each paper.
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Table 2.1 Related literature review summary

Author (year) Product Demand LT| I | R Main solution method
Albareda-Sambolg . .
et al. (2009) N/A N/A X | X Lagrangian relaxation
Averbakh et al. . .
(2007) N/A N/A X | X Dynamic programming
Bidhandi and . A Sample average approximation,
Yusuff (2010) Multiple | Deterministic X X Benders’ decomposition
. Lagrangian relaxation, interior point
Elhedhli and . I . )
Gzara (2008) Multiple | Deterministic X| X ﬁuttlr.\g.plane methods, primal
euristics
Harkness and . A . . .
ReVelle (2003) Single Deterministic X X Mixed integer programming
I(-Izlggjoo)sa etal Multiple | Deterministic X| X Lagrangian relaxation
Holmberg et al. . .
(1999) N/A N/A X | X Lagrangian relaxation
Mazzola and . R . .
Neebe (1999) Multiple | Deterministic X| X Lagrangian relaxation
Pirkul and . R . .
Jayaraman (1998) Multiple | Deterministic X| X Lagrangian relaxation
Santoso et al. . A Sample average approximation,
(2005) Multiple | Deterministic X X bender's decomposition
Snyder and Daskin Single Stochastic X Lagrangian relaxation
(2005)
Ertogral et al. . R .
(2007) Single Deterministic X Analytic method
Nenes et al. (2010) Multiplel  Stochastic X Analytic method
Pourakbar et al. . R . .
(2007) Multiple | Deterministic X Genetic algorithm
Schmitt et al. . . .
(2010) Single Stochastic X Analytic method
g%%gr)mlm etal. Single Stochastic X Recursive heuristic algorithm
Lee et al. (2008) Single Deterministic X Decomposition and post-improvement
Ai and
Kachitvichyanukul| Single Deterministic X | Particle swarm optimization algorithm
(2009)
Berger and . A . .
Barkaoui (2004) Single Deterministic X | Genetic algorithm
Gutiérrez-Jarpa et| . R Column generation, Label-setting
al. (2010) Single Deterministic X algorithm, Branch and Bound
Ho et al. (2008) Single Deterministic X | Genetic algorithm
Hoff et al. (2009) Single Deterministic X | Tabu Search
Lin et al. (2009) Single Deterministic X | Simulated annealing, Tabu search
Marinakis et al. . R Hybrid particle swarm optimization
(2010) Single Deterministic X algorithm
Nagy and Salhi . A - .
(2005) Single Deterministic X | Heuristic algorithm
Subramanian et al Parallel algorithm, variable
Single Deterministic X | neighborhood descent procedure,
(2010) .
iterated local search
Yurtkuran and . R Hybrid electromagnetism-like
Emel (2010) Single Deterministic X algorithm
Priori (space-filling curve) and
Chan et al. (2001)| Single Stochastic X X | posteriori (extended Clarke-Wright
procedure) optimization
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Author (year) Product Demand LT| I | R Main solution method
Anily and Bramel Single Deterministic X | X | Fixed partition policies
(2004)
Archetti et al. . R
(2008) Single Deterministic X | X | Branch-and-Cut
Bard and . A .
Nananukul (2010) Single Deterministic X | X | Branch-and-price
Bertazzi et al. . A - .
(2002) Single Deterministic X | X | Heuristic algorithm
I(-é%?%g)} and Lin Single Stochastic X | X | Ant colony optimization algorithm
Li et al. (2010) Single Deterministic X | X | Analytic method
Li et al. (2011) Single Deterministic X | X Decomp05|t|pn SOIUt'C.).n appr(_)ach
based on a fixed partition policy
Moin et al. (2011) | Multiple | Deterministic X | X | Genetic algorithm
Shu et al. (2005) Single Stochastic X | X | Column generation algorithm
Solyali et al. . .
(2012) Single Stochastic X | X | Branch and Cut
Yu et al. (2008) Single Deterministic X | X | Lagrangian relaxation
(Zzeg:&?)rladls etal. Single Deterministic X | X | Local search heuristic algorithm
Zhao et al. (2008) | Single Deterministic X | X ;/Izgi?rlﬁnlarge neighborhood search
Daskin et al. . . . .
(2002) Single Stochastic X | X Lagrangian relaxation
Erlebacher and . R - .
Meller (2000) Single Deterministic A X | X Heuristic algorithm
Liu et al. (2010) Single Stochastic XX | X Lagrangian relaxation
Melo et al. (2005) | Multiple| Deterministic XX | X Mixed integer programming
Melo et al. (2012) | Multiple| Deterministic XX | X Tabu search
Miranda and . . . .
Garrido (2004) Single Stochastic X | X Lagrangian relaxation
Miranda and . . . .
Garrido (2008) Single Stochastic X | X Lagrangian relaxation
Miranda and ) . . .
Garrido (2009) Single Stochastic X | X Heuristic algorithm
Nozick and . . .
Turnquist (2001) N/A N/A XX [ X Mixed integer programming
Ozsen et al. (2008) Single Stochastic X Lagrangian relaxation
Qi and Shen . . . .
(2007) Single Stochastic X | X Lagrangian relaxation
Shen and Daskin . . . .
(2005) Single Stochastic X | X Genetic algorithm
Shen and Honda Single Stochastic X | X Lagrangian relaxation
(2009)
Sourirajan et al. . . ) .
(2007) Single Stochastic X | X Lagrangian relaxation
Sourirajan et al. . . . .
(2007) Single Stochastic X | X Genetic algorithm
Yao et al. (2010) Multiple| Stochastic XX | X Recursive heuristic algorithm
‘(Jggll%;md Azad Single Stochastic X | X | X | Tabu Search and Simulated Annealing
(Szk(l)%r;?nd Q Single Stochastic X | X | X | Lagrangian relaxation

L: Location; T: Transportation; I: Inventory; R: Riing
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There are several contributions of this dissentatesearch: First of all, an integrated
optimization framework is proposed for a multi-puot supply chain network. There is
limited research discussing multi-product supplginhoptimization problems, especially
considering product-mix during transportation amdnsshipments. However, multi-
product supply chain network is much more realishig retailers such as Wal-Mart
handle thousands of different products. Jointly stdering ordering, distribution and
storage of multiple products will allow taking thdvantage of full-truck-load shipments,
economies-of-scale, risk-pooling, etc. In this feamork, DC location, allocation,
capacity, transportation, inventory and routingisieas in the whole system will be
optimized simultaneously. Second, a new networkictiire including transshipment
between DCs is considered in the model. Third, whemmizing total system cost, some
nonlinear terms are introduced to better represenactual system cost. Fourth, a routing
delivery strategy is used to serve retailers fro@sDTo take the advantage of full-truck
load, retailers are grouped into routes and oneacleelis assigned to serve multiple
retailers in the same route at an optimal jointgdency. Finally, several effective

heuristics are proposed for this integrated optatnin problem.
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3. PROBLEM DESCRIPTION
In this research, an integrated three-echelon spudiduct supply chain network design
problem is considered which includes multiple prtthn facilities (plants), DCs and
retailers. Each plant supplies one type of produnct retailers have stochastic demand
requirements for these products. Each plant shgénished products to one or more
DCs which are also called its corresponding Plamraiouses (PWs). DCs combine
different products from different PWs and then shipxed products to their assigned
retailers. Retailers are randomly clustered in eviee region so a routing delivery
strategy is used to ship products from DCs to lextai The goal of this research is to
select locations for DCs and determine transportatissignment, set inventory policy
based on service requirements, and to scheduleleebutes to meet customers’ demand
such that the total cost in the system is minimized

This three-echelon supply chain network is simgdiffrom a four-echelon supply
chain network which exists in many real businessations. In a four-echelon supply
chain, production facilities supply multiple difeart products, shipments from one or
more production facilities are stored or just crdesked at consolidation centers for
distribution. Regional warehouses then receive Bhlkments for subsequent delivery to
retailer outlets. The three-echelon research prnobterforms the same functions by
considering transshipments between DCs.

Figure 3.1 shows a four-echelon supply chain ndivas well as a three-echelon
supply chain network problem which will be discubge this dissertation. Products flow
along shipment arcs, generally from left to rigtatrsng at production facilities and then

going through one or more distribution centers iptm being delivered to the final
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customer. DCs in the proposed system have thetituns of both consolidation and
distribution, and opened DCs receiving finisheddoci directly from plants are called
plant warehouses (PWSs). Transhipments occur betdisembution centers where a DC
serves end customers but is not a PW. In additiere are transshipments between DCs

to combine different products.

3 3
4 4
2
5 2 5
2
6 6
7 7
8 3 8
3 3
9 9
Facility ConsolidationCenter DistributionCenter  Retailer Facility DistributionCenter Retailer

Figure 3.1 Integrated problem and solution example
In this network, cost components considered inclided cost of locating DCs,
direct shipping cost from plants to its PWs andgshipment cost between DCs, working
inventory and safety stock holding cost at DCs eetdilers, and routing cost from DCs

to retailers.

3.1 Assumptions and Decisions

Assumptions used in this dissertation and relatedistbns solved by the proposed
framework are provided in this section.

Assumptions

1. Each plant supplies a different type of product.
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2. Potential locations for DCs are known and differeajpacity level options are
available for each DC at each location.

3. Retailers are randomly clustered across the seregien. Routing delivery strategy
is used to ship products from DCs to retailers.nrHa€ owns a homogenous fleet of
vehicles, deliveries are made that begin and esid thins at each DC.

4. Demand of each type of product at each retaileppeod follows a known stationary
distribution (assumed to be the normal distributater). Demands between different
types of product and retailers are independent.

5. Single source: all products at one retailer shbeldielivered by one DC.

6. Single path: each plant ships its finished prodacts PWs, and then PWs deliver
products to retailers assigned to them by routimljvedry and other DCs by
transshipment. Only one path is allowed for eaple yf product at each retailer. This
path may be Plant-PW-Retailer or Plant-PW-DC-Retail

7. Both working inventory and safety stock inventorg held at DCs and retailers.

8. The same service level constraint applies to akipcts at all retailers.

9. Full truck load (FTL) shipping is used from plarits DCs and between DCs, but

multiple truck size choices may exist.

Decisions
1. Location and capacity decisions: how many DCs tate, where to locate them, and
what capacity level to locate for each opened DC.

2. Allocation decisions: assignments of PWs for plamtd DCs for retailers.
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3. Transportation decisions: truck size selection delivery from plants to PWs and
transshipments.
4. Routing decisions: how to build vehicle routes tatgrfrom DCs to serve retailers,

and routing frequencies of deliveries to retailers.

3.2Problem Formulation

A mathematical formulation of the problem is presdmas follows:

Index sets
P set of plants
I set of retailers
J set of potential DCs
K set of available DC capacity levels
L set of available truck size levels
N set of available routing frequencies
Vv set of tours
Parameters
Z left a-percentile of standard normal random variable Z
Miy Auxiliary variable defined for retailarfor subtour elimination in route of
vehiclev
PW, number of PWs allowed for plapt
Upi mean of annual demand of prodpdt retailen
azpi variance of annual demand of prodpéit retailen
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fn

capacity for DG at levelk

annualized fixed cost if DCis opened at capacity level
truck size at levdl

fixed cost of one FTL at size levefrom nodes to nodet
unit shipping cost from nodsto nodet

lead time from nodseto nodet

annual holding cost of produgtper unit at point storing poiist
routing distance limit per trip

routing vehicle’s capacity

distance from nodgto nodet

speed of the default vehicle

fixed cost of using one routing vehicle at DCs

unit routing delivery cost per mile

routing frequency at level

Decision Variables

1 if opening a DC at locatignat capacity levek, O otherwise

1 if using truck size at levéfor FTL from nodes to nodet, O otherwise
1if DCj is a PW for production facilitp, O otherwise

1 if simmediate preceddsn route v, 0 otherwise

1 if retaileri is assigned to D§; O otherwise

1 if retaileri obtains produgp through pattp-j-j’-i , O otherwise

1 if use router to supply demand at retailerO otherwise
23



Zn 1 if routev has routing frequency at lewel 0 otherwise
| i 1if DCj receives produgi from DCj (a PW for producp), O otherwise

To simplify the notation, let:

7, :Z fZ the number of trips for routein one year

neN n—vn

A= 0, % Xsw the distance of route

dR. ) . . )
[t = 1 +ZV6V R the lead time for the retailar Lead time is a

I ZVeV]/VR‘/i S

function of route frequency (first component) andte distance (second component).

Risk exposure to demand variability at a minimurouss due to the duration of time
between deliveries plus time along the route foetailer. For example, if a route
starts every hour and a retailer is 15 minutes ataute then when the order is
placed and the truck leaves the DC at 8:00am, dtaler's inventory position must
be sufficient to accommodate demand until 9:15aroesthat is the earliest time they
can receive another shipment. Any required preorgéime prior to truck departure

would need to be added onto this lead time.

3.2.1 Cost Components

e FC: Annualized fixed cost of locating DCs:
FC= ZjeJ,keK Fix Ok (3-1)
e |RC: Inventory routing cost from DCs to retailers:

ZpePO 5'upl
ZVEV R/J/V
24
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IRCincludes truck’s routing cost and inventory holglizost. The first component
of equation (3-2) is the annual routing cost. Eslsipment contains a fixed cosf) (
and a variable costd,), which are multiplied by the number of shipmepés time
(year). The variable cost is linear function oviee troute distance,. The second
component of equation (3-2) is the annual inventmst which includes both regular
inventory and safety stock inventory. The regutasentory level is half of each-time
delivery amount and the safety stock level is egldb delivery lead time as discussed
above with the appropriate service level specifizd the lead time demand
distribution..

e SC: Shipping cost. LeQ,; be the annual shipping quantity from Planio DC|
and Qyj; be the annual transshipment quantity of progufrom DCj to DCj,
then showing by equation (3-3):

Qo = 20101 Hp Yo ANAQy =2y Quy (3-3)

Let gy be the truck size used for direct shipping frormPfato DCj , g;; be the

truck size for transshipment from OTC to DCj, and letA; , A;; be the shipping

cost for one FTL from Plagtto DCj and between D to DCj, then:

qu :Zqu-I;il q'j :Z|e|_ q-lril (3'4)
Ay :ZIGL(anl—i_q)i'q)-l;“ N :ZIEL( A+ lq)J-jF (3-5)

Qy pION
S(:I:Zpep '%jq_‘)_J—i_Zj'eJ,j'ij '?‘J : B
i

d, (3-6)
SC: szJ S(l:
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Tsy is @ binary variable whether a truck size at lévslselected for the FTL from
nodes to nodet. Then equation (3-4) selects the optimal trucle diar direct
shipping from Planp to DCj and equation (3-5) is the optimal one FTL shipping
cost from Planp to DCj (Ay) and between DG to DCj (A;;). Total annual
shipping cost from plants and other DCs to PiS presented in equation (3-5)

and equation (3-6) is tha total annual shipping tmsall DCs.SSC Safety stock

inventory holding cost at DCs. Note that safetycktonust accommodate lead
time demand uncertainty. For each DC, its safatgksincludes two parts: (1)
safety stock for shipping from plants, (2) safetgck for transshipment from
other DCs. The proposed model could be modifieceiiacement lead time or
demand is more accurate. If using risk pooling méththen the safety stock at

each D@ is:

S§ = 5(\/ 'Ejzid e oo Vi +Z;-ea\/ It 2. o i )
SSC:ZpeP,jEJ Iaj S§

3-7)

Equation (3-7) provides safety stock against trgregated demand variability at
DCj. Depending on the exact ordering policy for D@srfrplants and other DCs,

this expression coubld be modified.

RIC. Regular inventory holding cost at DCs. For eadh, @ receives products
either through plants directly or through transemept from other DCs. Since
FTL is used for both cases, the Regular InventBly kevel of producip at DC]

is:
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Oy 9  Qyj
Rl =—2+>  —& >
"2 Srmam 2y Qy (3-8)
RIC: ZpeP, jed th Rlpl

3.2.2 Mixed Integer Programming Model
Using the cost terms defined in the previous sactite system decision problem can be

formulated as a mixed integer mathematical programgmodel. The formulation is as

follows:

Minimize (FC + IRC + SC + SSC + RI¢ (3-9)

Subject to:

2. Ri=1 Viel (3-10)

z""—'ﬂp& <q VveV (3-11)

Yy

d <D VveV (3-12

Mo —M +(I1 [xX ) <[l |-1 VstelveV (3-13)

Y X =Dy X VtelUJveV (3-14)

> o Xw sl VYveV (3)15

Yo (X + X )<S1+Y,  Viel,jedveV (3-16)

ZteIUJ X,=R, VielyveV (3-17)
Ok <1 Vjed (3-18)
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ZpeP,ieI'uPi (Yll +2j'eJ,j'¢j Yii l)jj')SZkeK CJ;< (9( Vje J

D Zn=1 VveV

Wy < PW Vpe F
Do i S W Vpe P je J
D Tus1 Vpe P jeJ

2 T st Vijedj=#]

Ojk'R/i' >gw-inv Zn’v\gj’ ij }I-w ) p&j'e{ovl}
Viel,j,j'ed pePkeKsstelUJ,veV,ne N,le L

M. >0 Viel yeV

v

(3-19)

(3-20)

(3-21)

(3-22)

(3-23)

(3-24)

(3-25)

(3-26)

The objective function (3-9) is to minimize the absystem-wide cost including

annualized fixed location cost, inventory routiragttfrom DCs to retailers, shipping cost

from plants to DCs and between DCs, safety stoslentory and regular inventory

holding cost at DCs. Constraint (3-10) makes shia¢ ¢ach retailer is placed on exactly

one vehicle route. Inequalities (3-11) and (3-12¢ a&ehicle capacity and distance

limitation constraints for each route. Constrai®1@) eliminates subtours which

guarantees each route must contain a DC and dt deascustomer (Descrocher and

Laporte, 1991). Equation (3-14) is flow conservaticonstraint ensuring that for any

routev, if a vehicle visits a vertex (DCs and retaileis)lso departs from that vertex.

More formally, the incoming flow is the same as thetgoing flow, or, the net flow is 0.

Constraint (3-15) implies that only one DC is ird#dd in each route. Constraint (3-16)
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links the retailer-DC allocation and the routingngmonents of the model. For each
retaileri, it is assigned to DCif the routev which visits it starts from D¢ (Javid and
Azad, 2010). Constraint (3-17) links the retaileate allocation and the routing
components of the model: retailas assigned to routeif the routev visits it. Constraint
(3-18) ensures that each DC can be assigned toooelgapacity level. Constraint (3-19)
is capacity limitation for DCs, DC’s capacity isfubed as the total product flow through
it, this constraint also ensures that opening o@ebBfore any retailer or PW assigning to
it. Equality (3-20) is route frequency constrainiaconstraint (3-21) limits the number of
PWs for each plant. Constraint (3-22) links th@sshipment and PW allocation: D@

a PW for production facilityp if there is any DC receiving product p from OC
Constraints (3-23) and (3-24) are truck size smactfor direct shipping and
transshipment. Constraint (3-25) and (3-26) aregrality and non-negativity restrictions

on the decision variables.

3.3Solution Methodology

The proposed model is a large-scale optimizatiablpm which includes both FLP and

IRP. In order to find a good feasible solution ireasonable time, the original problem is
decomposed into two phases: In the first phasapanoximated IRC function is used to

locate DCs, and assign retailers and PWs to thpseenl DCs. In the second phase,

actual routing order and delivery frequency forresaute will be determined.
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4. PHASE I: MULTI-PRODUCT FLP WITH APPROXIMATED IRC

In this chapter, a FLP which focuses on locatings2@d assigning retailers is discussed.
Detailed routing decisions will not be consideresteh An approximated routing cost

function representing distributions of retailer ddon and demand is developed to

provide insights into mathematical programing medel

4.1 Problem Description and Mathematical Formulation
A coefficientr; is introduced in this phase to approximately repne the annual IRC at

retaileri if assigned to DG. Then the approximated total inventory routingtdmscomes:
IRC = Ziel o i Y . This cost coefficient is approximated for each-@@iler pair off-

line. Shen and Qi (2007) introduced a continuoyzr@pmation method in their paper,

but in their research, customers are uniformly tecatl in a connected region and
location information for retailers are not includedhe routing cost estimation. However,
routing strategy is a better strategy comparedrextshipping if customers are clustered
and close to each other, thus retailers are asstortael clustered in the service region in
this research. The estimation of the routing cogfitr; in this research considers real
location information for all retailers and potehtl@Cs. To calculate this coefficient,

some new notation is introduced as follows:

aji routing cost using nearest neighborhood insertiwthod for retailen
from DCj

Bii direct shipping cost for retailefrom DCj

Ri(i) set of retailers in the route serving retailéom DC|
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A(i) set of arcs forming the route serving retailrom DC]|
N;i number of retailers in the route serving retaifeom DCj, | R(i) |

dii distance per route trip serving retaildrom DC|

If retaileri is far away from DJ (the distance between them exceeds half of the

routing distance limitD), retailer i will not be possible to assigned to DC
. D
Y, =0 ifd >

. For each DG to its reachable retailéra modified inventory routing cost formulation

can be used to determine the routing cost fronj Rretailen :

H a‘—i_C‘A'i i 1 A'i
a; = r@y[( — I an jLZ:pephpi [;—?4— z,0, T+_éﬂ (4-1)

I n n

Equation (4-1) utilizes the optimal routing frequs from available frequencies to
minimize IRC. The cost function includes annualizedividual routing delivery cost
(first component) and inventory holding cost (set@omponent). The inventory at
retaileri includes regular inventory which is half of a deliy batch plus safety stock
which is related to routing delivery time. Thisdmulation is similar as equation (3-2)
and detailed explanination is also similar as inagipn (3-2).

An optimistic route is constructed using nearesgm®orhood insertion method:
for retaileri, select as many neighbors as possible to formutersuch that both
distance and capacity limits are satisfied. Thecgse proceeds iteratively by

selecting the next nearest neighbor and then fagrramoptimal tour for selected set

31



of retailers in this route until no such a candidadtailer remains. This problem can

be formulated as:

n; = maxR () (4-2)

st:

AJi _Z(Lm)eA‘(i) qm <D (4'3)

ZmeRi(i), sz'quvp
Vii

<q (4-4)

The objective function (4-2) is trying to maximitetal number of retailers along
current route with route distance constraint (443l truck capacity constraint (4-4).

3. If direct shipping method is used to serve retaifeom DCj, then the direct shipping
cost is:

By = rn‘li&’[(a+ 2cd ) f +ZpeP B, [:_WJ’ 20, ijLﬂj] (4-5)

}/p yjl S

Equation (4-5) utilizes the optimal routing frequiss from available frequencies to
minimize IRC if retailen receives deliveries from Ddndividually.

4. The routing parameter; is estimated as the average of possible routirsg and
direct shipping cost a§=(a,-i +5 )/2. This average value is found in empirical

studies to more closely approximate solutions #jaalone. More discussion about

how to construct routing parametgris referred to Chapter 6.

Integer Programming Model
By using the off-line calculated routing paramejerthe overall problem then becomes:

Minimize (FC + IRC + SC + SSC + RIC (4-6)
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Subject to:

ZJEJ i = Viel (4-7)
Zj,’jdvpj.ji =1 Viel peP (4-8)
Zpeplj@vpj.ji <MY, Viel,jed (4-9)
2 1w Yo < MW Vpe P je J (4-10)
jEJij < PV\é Vps F (4-11)
L Op <1 Vjel (4-12)
D Ty < Vpe P jje J (4-13)
ZIEL i =<1 Vijedj=#] (4-14)
D2 pepict Mo+ 2 o g o it S0 G @ Vi€ d (4-15)
O Y, W, T . T Y, €03 VELjjedp Pk KE L (4-16)

The objective function (4-6) is to minimize systevide total cost. Constraints (4-7)
and (4-8) are single source and single path canstraConstraints (4-9) link variables
Ypiji and Yji. Constraints (4-10) link théy; transport path variables with the plant
warehouse variabléaj,; to ensure initial receiving warehouses are ope@edstraint (4-
11) limits the number of PWs for each plant if dedi Constraint (4-12) means that at
most one DC with one capacity level can be buikath potential location. Constraints

(4-13) and (4-14) allow at most one type of truekng used for direct shipping and
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transshipment between any plant-PW pair or DC-D@. paonstraint (4-15) is the
capacity limitation for each DC, the capacity oedDC is measured by its total annual
flow, and this constraint also guarantees to opBiCaf any retailer or PW is assigned to

it. Constraint (4-16) is the binary constraint &lrbinary decision variables.

4.2 Problem Analysis

In the current model, there are single source cams$ for each retailer (4-7) and single

path constraints for each type of product at eaehailer (4-8). To facilitate

implementation and solution, the optimality of thesstrictions is examed. Assume first

thatn > 1, and let PW{) be the set of DCs which are PWs for produc€Consider the

following cases:

1. DCjis not a PW for produgt, andj receives produgh from several different PWs.
In other words,j €PW(P), Jii,#id.#] o4 ,d i # X 5 =X, =1

2. DCjis a PW for producp, butj still receives produgb from other PWs. In other

words,j ePW(p, Jj'#jiel ¥ =1,

DC1

P1 DC2

p2 DC3

Figure 4.1 Potential optimal network structure egham
Figure 4.1 illustrates these two cases. In thisrégthere are two plants providing
two different types of products and three opened.IRW(1) = {1, 2}, PW(2) = {1,3}.
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In an optimal solution, may DC2 receive productpatially from DC1 and partially
from DC3 (Figure 4.2)? Or, may DC2 receive produgartially from DC1 even though

DC2 itself is a PW for product 1 (Figure 4.2)?

DC1
DC2 - ’.\

Figure 4.2 Two network structures

To simplify the problem, assume fixed cost of aergd DC is a continuous concave
function over the capacity level at this DC; holglimte, fixed and unit shipping cost are
the same, and there is no truck size limitatiorscAhssume annual demand standard

deviation ¢) equals coefficient of variatiorry) times demand().

Theorem: There exists an optimal solution in which eachngaeDCj receives each type
of productp from only one PW under above assumptions.

To see how this theorem holds, these two casesnatgzed as follows.

Case 1:j €PW(p
Structure A: DQ receives produgi from DCj; only with total quantity ofQ.
Structure B: DCj receives producp partially from DCj; with quantity of Q; and

partially from DCj, with quantity ofQ..
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DCj,

Q Q1

DCj.

Structure A Structure B

Figure 4.3 Structure A and B

Under these two structures, the retailer assignsnare the same, the only difference is
the transshipment for prodyett DCj, then:
Y=Y, Q=Q+ Q=X Y. 0=0+0,= Qc,
In the proposed model, Total co3iQ) = Fixed CostEC) + Inventory Routing Cost
(IRC) + Shipping Cost0 + Regular Inventory Holding CosR[C) + Safety Stock
Holding Cost §SG. To compare total costs under structure A and B:

1. FC: Let CAR be the least capacity required for RE&rom capacity constraint (4-15),
CAPR" = CAF, CAP = CAP+ CAF. Since fixed cost of an opened DC is a
continuous concave function over the capacity tevel
FC*= f(CARY+ f(CAP)< FC= { CAP)+ € CAP+ (f CAD

2. IRC: inventory routing cost under two structures s same sinclRC is only related
to retailer assignmentRC" = IRC°=3" o Y

3. SC + RIC this is the major difference between two struesurAccording to

assumptions:
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(SC+ RIO*=(g+ f @) +( g+ b S+ fov He

_ apiQ+ ha, N apJQ+ ha,
a;, 2

J* 2, Q

min{(SC+ RIQ"| =2(,[23 hQr § @

Similarly, min{(SC+ RIQ®} =2(,[2a hQ+,/23 hQ+ p &

Q=Q+Q. Hence,(SC+ RIQ"<( SG RIF.
4. SSC Letltg be the lead time from noddo nodet, ands be the standard deviation of

the demand variance, then the safety stock invemolding cost at DCs:

SSC' = hg(\/TJi-l0'+ It; 0)
SSC = hz;(\/TJi'lO-l"' It; (71+\/E0'2+ It 0'2)
ssc- sse- o[ ey )+

When DCj; is closer to planp and DCj, then the lead time is smaller compared to
DC j1, SSCunder structure B is smaller. However, then itbetter to receive

transshipment only from D(, Hence without loss of generality, assume

ity ity < ity +ft;; , therssc < sse.

As noticed, each cost component under structure Amaller than under structure B,
hence structure B cannot exist in the optimal smtutHowever, the cost parameters in
the SC+RIQ part is simplified assuming the holding rate gfixand unit shipping cost

are the same, and no truck size limitation. Stmec® may be better in some extreme
situations, and it is difficult to strictly excludkis situation mathematically. But this case

can be excluded by adding additional constraimedessary.
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Case 2j e PW(p)

Structure C: DG receives produgi from DCj only with total quantity of.

Structure D: DCj receives producp partially from DCj with quantity ofQ; and
partially from DCj with quantity ofQ-.

Structure E: DG receives produgi from DCj only with total quantity of.

Py DCj Q DCj
Q
o——
DCj
Q )
Structure C Structure D
DCj
Q Q
p
DCj
Structure E

Figure 4.4 Structure C, D and E

Using the same notation and argument processcesel:
1. FC: FC° < FCP FC® < FC'.

2. IRC: IRC® = IRC? = IRC .

3. SC+RIC

min{(SC+ RIQ}=,/23 hQ+ | Q
mln{(SC+ RIQ® | = (./ZQ,J- + R Q)+(\/2@ hQ+r p 9
min{(SC+ RIQ®}=2(,[2a, hQ+ § Q

Hence,(SC+ RIQ° <( SG RI°,( S€ R)E<( SC R
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4. SSC

SSC = hz[ o

SSC = hz({/ o+ o+ o)
SSC = hg(|/ o+ It;o)

SSCE - ssB-= m{ﬂy(ﬁﬂﬁ )}
SSCE - SSE= ga[ﬂt—(MJr\/Wﬂ

Ity <It,. +It;;, hence,flt, </t +«/1tj.j and then:SSC < SS& SS&  SS.

Again, each cost component under structure C isnfedlest under these three structures.

However, the cost parameters are simplified in mggions. To exclude both cases, the

following additional constraints can be added @ dhiginal model.

Single source for DCs: Dreceives each type of prodyxtor all retailers assigned

to it from only one PW (this PW maybe D@self).
Zj'eJ,j'ijIPj'j+ij =1 VvpeP,jel (4-17)

DYy ML, VpeP,j,jled,j% ] (4-18)
Constraints (4-17) and (4-18) guarantee each DEives each type of product from
only one source, either through plant directly ranf only one PW. However, these
constraints are only effective if more than one R®Vallowed. If PW, = 1,
transshipment between DCs for each type of prodwdt be determined
automatically. The binary constraint (4-16) shobédupdated to include new binary

variables if these new constraints are added.
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4.3Single Plant Warehouse Case

One special case of the original problem is thdy ome PW is allowed for each plant
(PW, = 1). Each plant ships its product to its spedifidVV and all demand for such a
product is supplied directly or indirectly (througtansshipment) from this PW. Note that
the plant may ship to other DCs or customers, hewethey are outside the logistics
system and set of retailers in the system beingidered. In this case, if DOs the PW
for plantp, then its optimal truck size can be determinedio# since the total demand
from the plant is fixed as the total demand ovénethilers. For direct shipping from
Plantp to DCj, select an optimal truck size such that diregbinig and regular working

inventory holding costISRIQ is minimized as in equation (4-19):

DSRIG, =n~,in{( a,+ b g)%+zpep 9%} (4-19)

To update the model formulation, constraint (4-4%3liminated.

For transshipment, a greedy method can be useecidalthe truck size off-line:

1. For each retailer, assign it to its closest candidate PGf DC j is not open, then
open it.

2. For each planp, assign it to its closest DICopened in step 1, thgnis the PW fop.

3. Since there is only one PW for each plant in tlise¢ transshipment decisions can be
determined by previous steps. This is a transshmproetween DG andj’ if either

DCj orj is a PW and the other serves a retailer.
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For transshipment from DG to DC j, select an optimal truck size such that
transshipment and regular working inventory holdaagt TSRIQ is minimized as in
equation (4-20):

TSRIG, =min (8 +h Iq)Zp:Q by ph[ ZZ:J(]?W] (4-20)
If Q =0, then use smallest truck for potential trarsslent. And ifj = |, transshipment
cost is zero. To update the model formulation, trang (4-14) is eliminated.

As described, truck selection variablég in this sub-problem can be estimated.

However, the model is still hard to solve directlyhe complexity comes from two

nonlinear components: one is the safety stock wlgontains two square roots

(\/I't,,jzieI e T oY pi ,\/l'[JJ Yoi i ) the other is the regular working inventory

. . Qyj :

where a fraction existse——:Qy; =D Yy | - If the holding rates for
ZpePij'j

different products are the same, the second nauliteem simplifies and will not be a

problem. The safety stock can be solved iterativEhe safety stock formulation can be

modified as in equation (4-21) by introducing tveefficientsS,;, S;; :

2 2
ZIt-E. oS Y th E ol
T pi e e PR il Laicl i pJ 'ji _
S%j - +Z]e.] =] (4 21)

Spj e %JJ

If coefficients S, S;; are the optimal safety stock; = %\/ I e oo Vi

= %\/ It Ziel o’ Y4 » then the solution solved from the modified lineajective
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function subject to the constraints will be the saas the original non-linear model. In
general, the close®,, S;is to the optimal safety stock, the closer thedmterm is to

the optimal safety stock cost. A similar recurgorecedure to that used in Gebennini et
al. (2009) based on the modified linear model igettgoed in order to find an admissible

solution with the following steps:
Setiter = 1. SetS,;, §;; to be 0.01.

1. Apply the new binary-integer linear model and fthé solution.
2. For each type of produgp and DCj where X . Ysi #00r >, Yy #0

calculate the actual safety stock as:

gter Z it > Gzi i qiter
hi \/ TPJZ'E' T Wi S;j-j = Zx\/ It Ziel O-pzi Yii
If Ziel je Yo =0or Ziel Y, =0, set the correspondiny;. S;; to be 0.01.

If S =S & = S torallS,, S, then go to step 4, else go to step 3.

3. Letiter =iter +1, go back to step 1.

4. Calculate the optimized total cost by applying tio&-linear objective function. STOP.
If the binary-integer linear model in step 2 in @i@ove recursive procedure can be

solved directly, the recursive procedure providesoptimal solution for the modified

formulation (Gebennini et al. 2009). However, th@ution may not be the real global

optimal solution since the approximate heuristiedufor selecting the truck size between

DCs off-line. Moreover, the binary-integer lineapde! is difficult to solve directly for

large instances, so additional heuristics are rebede
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4.4 Meta-heuristic: TS-SA Method

Tabu search (TS) and Simulated Annealing (SA) ae successful meta-heuristic
solution approaches to solve hard combinatoriableras (Javid and Azad, 2010). The
most important feature of Tabu search is to avadrch cycling by systematically
preventing moves that generate the solutions pusiyovisited in the solution space.
Simulated annealing allows the search to proceetkighboring state even if the move
causes the value of the objective function to bexaworse. This allows it to prevent
falling in local optimum traps. TS-SA approach widbmbine these two advantages
(Javid and Azad, 2010). This Meta-heuristic corganwo main stages: a construction
stage where an initial solution is generated antrgamovement stage where the solution

is improved by different types of improvement maves

Construction stage
The initial solution can be any feasible solutiéior example, the greedy method
used for calculating truck sizes can also be usegkherate an initial solution. The size

of each opened DC is the smallest feasible sizelwimieets the capacity constraint.

I mprovement stage

Improvement to the initial solution generated ia tonstruction stage is attempted by
two types of improvement: location improvement asdignment improvement. Location
improvement deals with whether to close an open€dobopen a closed DC, this move
potentially has a large affect on the final solotand is not used frequently to generate a

neighborhood solution. Assignment improvement less laffect on the solution and is
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widely used to generate a neighborhood solutiohefOhecessary parameters settings for
TS-SA procedure are selected based on previoug andipreliminary experimentations.
Location improvement
e Close an opened DC, assign its retailers and ptardggher remaining DCs. Since
there is a distance limitation for routing deliveBC j cannot be closed if it is a
unique reachable DC for any retailer
e Open a closed DC, assign retail¢o it if routing cost from this newly opened DC
to retaileri is less comparing from other opened DCs.
Assignment improvement
e Assign one retailer to another reachable DC.

e Assign one product from one of its current plantel@use to another opened DC.

Heuristic parameters
To: Initial temperature
T: Current temperature
o Decreasing rate of current temperature (cooloigedule), 0 «x < 1
FT: Freezing temperature
MaxNum Maximum number of accepted solutions at each &atpre
Num Counter for number of accepted solutions at éactperature
Xo: Initial solution
X: Current solution in algorithm

Xnh Solution which is selected in neighborhoodXah each iteration
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Xpest Best solution obtained in algorithm
C(X): Objective function value for solutiox
NOIMPROVE Maximum number of iterations to run algorithm

Noimprove Current number of iterations that the best sotuts not improved

Procedure

1.

2.

Take the initial solutioXp, setXpest= Xo, X = Xo, T = To. Num = Noimprove= O.

Is the stopping criterionl(< FT or Noimprove < NOIMPROV)Enatched? If so, stop;
otherwise go to Step 3.

Noimprove = Noimprovet.

Generate a feasible solutiod,, in the neighborhood ofX using location and
assignment improvements described above.

If Xnn is in the tabu list andX.,is not the best solution found so far, go back to
generate another neighborhood, and update thdisibOtherwise go to step 6.

Num= Num+.Update the tabu list and JeC = C(X.n) — C(X).

If AC <0, thenX =Xpn. If C(Xnn) < C(Xpesp, Xpest= Xnh, NOimprove = 0.

If AC>0,y< U(0,1),z= T /A C: If y <zand A C < T, thenX = Xy, In this case,

the solution may move to a worse one than curr@atien.

WhetherNum < MaxNurf If so, go to Step 4; otherwis®€,= Xpest, T = aT , go to
Step 8.

To further avoid sinking in a local optimal, gertera feasible solutioiX,, through a

big movement (location improvement) and Xet X, go to Step 2.
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4.5Direct Heuristics

According to preliminary experimentatiorfSC andIRC are two major cost components
while the inventory cost is a relatively small casimponent. For example, in the
computational experiment results for the fully gr&ted approach in Shen and Qi, (2007),
the average proportion of the location cost is 24%d 50% for transportation.
Experiments provided later result in similar prapors, thus two ad-hoc heuristics can

be derived by stating with minimizing eithé€ or IRC.

4.5.1 Fixed Cost (FC) Heuristic
InitialSolution_1(): Find a minimum set of DCs which can cover all iteta and open
those DCs in this set.

To find out a minimum set of DCs is a classical Severing Problem (SCP). SCP is
a well-known NP-complete problem, and several dligors exist for it. For example,
you can use an integer linear program and use dkiaable optimization software to
solve it. For each DC, leg be a binary variable which indicates whether € open or
not, andCSi) be a set containing all DCs which can cover letai Then the formulation
is:

min " X (4-22)

st: zjecs(i)xj >0 Viel

x, € {0, Viel (4-23)

The objective function (4-22) is to minimize theéalonumber of opened DCs and (4-

23) guarantees that each retailer is covered lpaat one opened DC.
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The formulation only considers the number of opeD€s. In order to include cost
considerations, a heuristic is used to find outnth@mum set as follows:
1. Open all necessary DCs: OGs necessary if only it can uniquely reach sontailex

i. Add those DCs t® which is the set including all opened DCs.

2. For each retailer: if it is reachable from any DC in s€, then assign it to D¢
wherej =argmin . {;}, otherwise, set the routing cost for this retat@M (a big
integer number).

3. Let IRG, be the totallRC=) = Yy with DCs in seD opened. IfIRG, > M, go

to step 4. Otherwise, a minimum set of DCs is alydaund, STOP.
4. Open a DG where j=argmin_;,{RCq,,},O=0U{ } . Update retailer assignments

if a lower routing cost exists for retailestarting from newly opened DC Go back
to step 3.

After finding the opened DC set, retailers and fdaran be reassigned to those DCs by:
Retailer assignment: for each retailer, assign it to DG wherej =argmin,_, {;}.
Plant assignment: for each planp, select DG as its PW wherg=argmin_, {DSRIC; }

(Equation 4-19).

OpenDCs(): In this stage, new DCs may be opened.

1. Open DCj where j =argmax_;, {RC, - IRCyy; };

2. Update plant assignment: BSRIG; < DSRIG,,, j =argmin_, {DSRIC, } (Equation
4-19), then select newly opened P&s the new PW for produpt
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3. Update retailer assignment: FTL transshipment bestveen DCs includes fixed cost
of using each truck and variable cost, and invgnieralso incurred because of
transshipment. To separate the transshipment gpeffiect among DCs and noticing
that fixed truck and inventory costs has been foanderically to be similar to
variable shipping cost§,SC+IC is estimated as twice of the total variable cesaa
simplification of the calculation. Ldt; be the average unit transshipping cost from
DCjtoj, then if retailei is originally DCj,, and

ZzpbPW( o it T < 22 pbPW( o M it Ty, assign retailerto DCJ.

4. If the total system cost is reduced by the abowegss, then open DCO=0U{ } .
Otherwise, reverse the change and keep originatisaol

5. If all closed DCs are tried by the above procesg.Otherwise, go to step 1.

Improvement(): TS-SA method introduced in previous section caused here as the

post-improvement method.

The FC Heuristic starts with finding out minimunmveosage DC set and then attempts
to open more DCs. Another heuristic, Inventory RayCost (IRC) Heuristic, starts with

minimizing IRC and then tries to close unnecessary DCs.

4.5.2 Inventory Routing Cost (IRC) Heuristic

InitialSolution_2(): Open all DCs and assign retailers to its near€st D
1. Retailer assignment: for each retaileassign it to DG where j =argmin_; {; }.
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2. Plant assignment: for each plgmtselect an opened DGrom the first step as its PW

where j =argmin_, {DSRIC;}.

CloseDCs(): In this stage, unnecessary DCs are closed.

1. Close DCj where j =argmin , IRC,; —IRG}, IRGy < M;

2. Update plant assignment: If closed D@ a PW for planp, then select DG as its
new PW wheré'=argmin. ., {DSRIG; }.

3. Update retailer assignment: if retaillers originally DCj, then assign it to D¢
wherej'=argmin; { D Pew 14+ rri} :

4. If the total system cost is reduced by above pscteen close DG, O=0\{} .
Otherwise, reverse the change and keep originatisaol
5. If all opened DCs irO are already tried by the above process, stop.r@ibe go

back to step 1.
Similarly, Improvement() function can help to improve current solution.
4.6 Computational Results

To evaluate the performance of the proposed hesgjsextensive computational

experiments are provided in this section.
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4.6.1 Parameter Settings
Parameter settings are selected by analogy toquevesearch on similar problems (e.g.,
Shen and Qi, 2007, Javid and Azad, 2010).

In all data sets, all points (plants, DCs, and a@usfrs) are assumed to be
geographically dispersed in a 500-mile by 500-rsid@are region. Plants are randomly
distributed in this space, while retailers are wtesd intom groups with the centers of
gravity also randomly distributed in this spacee3dém centers of gravity are selected as

potential DC locations. Other parameter settingssaown in Table 4.1.

Table 4.1 Parameter settings in phase |

Name Settings
Capacity level Cy)
TD: total demand of all products over all

retailers. k=4
TRD: total demand in D@'s reachable Cj ={0.5TRD, TRO, 05(TRD + TD), TD}
region.

Low: 2000 + 0. 1*[Cy + sart Cy)]
High: 4000 + 0. 2*[Cy + sqrt Ci)]
Routing vehicle capacitygf 150

Routing cost4, ) a=5,c=0.1

Truck size for direct shipping and  _

transshipmentc) a = {150, 500, 750}

Fixed location costfy)

One truck shipping cost a={5, 10, 12}

(apii + bpii * q aj + b *q) b = {0.0006*distance, 0.0004*distance, 0.0003*distgn
Vehicle speeds) 500 miles/day

Lead time (days)It,, It;) round up (distance / speed)

Average annual demand mean of agooo units
products at each retailéviD)
Case 1:
High level demand: 10% retailers consume 2IM%
AverageRD = 27%ID/10%NOR= 2.7TD/NOR
RD, = Uniform (2.4MD, 3MD)
Medium level demand: 80% retailers consume 7W¥%
RD: total annual demand mean of alAverageRD = 70%T D/80%dNOR= 0.875TD/NOR

products at each retailer RD, = Uniform (0.75MD, MD)
NOR number of retailers Low level demand: 10% retailers consume BR%
MD = TD/NOR AverageRD = 3%TD/10¥dANOR= 0.3TD/NOR

RD = Uniform (0.2MD, 0.4MD)

Case 2:

High level demand: 10% retailers consume 8%
AverageRD = 80%I'D/10%NOR= 8 TD/NOR

For each this type retaildRDi = Uniform (6MD, 10MD )
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Name Settings
Medium level demand: 10% retailers consume 1%
AverageRD = 10%I'D/10%NOR =TD/NOR
RD = Uniform (0.8MD, 1.2MD)
Low level demand: 80% retailers consume 1D
AverageRD = 10%I'D/80¥dNOR= 0.125TD/NOR
RD = Uniform (0.05MD, 0.2MD)
High level demand product: 10% products consume RD%
Annual demand mean of each product at,; = Uniform(2.4PD;, 3PD)

each retaileru(;) Medium level demand product: 80% products consudié RD
NOP. number of types of products Upi = Uniform(0.75PD;, PD))
PD,= RD /NOP Low level demand product: 10% products consumeRE¥%
Lpi = Uniform(0.2PD,, 0.4PD)
Standard deviation of demandj tpi * Uniform(0, 0.1)

Holding cost at DCs = Holding cost at retailers /2
Holding cost at retailers:
Low level: $15/(year*unit) High level: $ 30/(yeartit)

Annual unit holding costh;)

Service level 97.5%z, = 1.96
Available routing frequency {350, 175, 50, 25}, éay = 350 days
Routing distance limit 500 miles

4.6.2 Lower Bound Generation

As mentioned earlier, the original model, evenrimified model introduced in Section
4.3 with iteratively updating the safety stock dménts, is quite difficult to solve in
medium and large instances. In order to provideatuation of the proposed heuristics,

another modified model will be introduced here.

The major complexity in the model comes from tran@ments where product mix
exists. If the transshipment related componenhédbjective function (4-6) is ignored,
then the shipping and inventory cost is simplifien equation (4-24) to equation (4-25).
In addition, in the single PW case, if any DC iested as a PW, the quantity shipped
between the plant and this DC is determined addfa demand. In this case equation

(4-25) can be rewritten as equation (4-26) by agltiinary variabléM; (1 ifDCjis a

PW for facility p, O otherwise).
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So the modified model without considering transstept costs the objective function

becomes, in the single PW case, to minimize:

FC+ 'RC+ZpEp, @ WY, (4-27)
Subject to: Constraints (4-7) — (4-16) willWWp = 1. This makes the formulation an
integer programing model which can be solved byndded optimization software

directly in small-medium instances.

4.6.3 Results and Analysis
In this section, computational results are presefde 8 different data sets with each set

including 15 scenarios which sizes ranging front®?@00 retailers and 5 to 20 products.
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Those 8 data sets differ in fixed location cost &w, high), demand rate (case 1, case 2)
and holding cost rate (low, high). Table 4.2 arRlshow the construction of all scenarios,
and Table 4.4 summarizes results from all experimencluding objective value,
computational time, and the number of opened D@&upach scenario. All the time is
obtained on a Intel(R) Core(TM)2 T5550 at 1.83 Giding Windows 7.

Table 4.2 Scenario construction in phase I: part A

Scenario  Condition

1-15 Fixed cost = Low; Demand = Casel; Holding eodigh
16-30 Fixed cost = Low; Demand = Casel; Holdingt coLow
31-45 Fixed cost = Low; Demand = CaseZ2; Holdingt soHigh
46-60 Fixed cost = Low; Demand = Case?2; Holdingt coLow
61-75 Fixed cost = High; Demand = Casel; Holdiost & High
76-90 Fixed cost = High; Demand = Casel; Holdiosf & Low
91-105  Fixed cost = High; Demand = Case2; Holdiogt = High
106-120 Fixed cost = High; Demand = Case2; Holdiogt = Low

Table 4.3 Scenario construction in phase I: part B

Scenario NOP NOR NODC
1 16 31 46 61 76 91 106 5 20 2

2 17 32 47 62 77 92 107 5 50 5
3 18 33 48 63 78 93 108 5 100 10
4 19 34 49 64 79 94 109 5 150 10
5 20 35 50 65 80 95 110 5 200 20
6 21 36 51 66 81 9% 111 10 20 2

7 22 37 52 67 82 97 112 10 50 5
8 23 38 53 68 83 98 113 10 100 10
9 24 39 54 69 84 99 114 10 150 10
10 25 40 55 70 85 100 115 10 200 20
11 26 41 5 71 86 101 116 20 20 2

12 27 42 57 72 87 102 117 20 50 5
13 28 43 58 73 88 103 118 20 100 10
14 29 44 59 74 89 104 119 20 150 10
15 30 45 60 75 90 105 120 20 200 20
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Table 4.4 Best solution scenarios and average @GAdhase |

TSSA IRC FC
Best Solution Scenarios 27 of 120 74 of 120 5226F 1
Average GAP 12.9% 1.2% 2.0%

In Table 4.3, NOP is the number of plants (difféngroducts), NOR is the number of
retailers and NODC is the number of potential DEatens. Five random instances were
generated for each experimental scenario. The theeestics are then applied to each
scenario in Microsoft Visio Studio C++, and theule$or each scenario is the average of
those five random instances. IBM ILOG CPLEX Optiatian Studio is used to solve the
modified model and lower bound model. Only somelsmstances of the original model
can be solved in a reasonable time. Note that shedruck size is selected off-line, the
result is not guaranteed to be the true optimaltgwi. For the lower bound model, some
scenarios can be solved directly using CPLEX, otiser current objective value and best
integer solution after running 1 hour is recordéd.addition, Table 4.5 records the
improvement using heuristics ((1 — Best heurissighition/Original solution) x 100%)
and individual heuristic’s GAP ((Heuristic soluti@gst heuristics solution - 1) x 100%).

Figure 4.5 illustrates objective values from fivéfetent solution methods (original
greedy solution, TSSA method, IRC heuristic, FCristie¢ and lower bound solution).
It's clearly shown that direct heuristics improve toriginal greedy solution significantly
and close to lower bound solution value. Sinca ihard to tell the differences in small
instances, Figure 4.5 is transformed to Figureby.Galking the log function over the

objective value.
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Figure 4.6 Log transfermation of results

In addition, five figures are presented, each dosta4 cases covering the 8 scenarios

with 5, 10 and 20 plants respectively. The figuaes separated by the number of retailers.
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For example, Figure 4.7 is the result for NOR =120@DC = 2, and there are in total 24

such cases as shown in bold in Table 4.3.
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Figure 4.7 Results when NOR = 20, NODC =2
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Figure 4.8 Results when NOR = 50, NODC =5
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Figure 4.11 Results when NOR = 200, NODC =20

From all the experiment running results, the foilogvobservations are obtained:

All instances are solved in a reasonable time leyhéuristics, with the maximum
computation time of one hour. Note that even sinallances (e.g., scenario 3) could
not be solved optimally by CPLEX software after thaurs of computation.
Heuristics work well in terms of objective valuesntpared to the original greedy
solution and the lower bound. The original solusoabjective value is reduced by
26.9% on average, and the improvement is greatéerularge instances. The best
heuristic’s solution is only 11.1% higher than tlogever bound solution and 5.7%
higher than the integer solution of CPLEX after twer running, note that the lower
bound values do not include transshipment condidarand large instances do not
converge completely in CPLEX (a Gap between cursehition and the best integer

solution exists).
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3. Results from IRC and FC heuristiare better than simple TSSA method, espec
in large instances. This is because TSSA methodmbedded in IRC and F
heuristics as a posnaprovement step, indicing the importance of a good starti
point.

4. Differences among differentolution methods become more obtws in large
instances (Figure 4.7 through Figure 4.11). In snrathnces, eve the simple
heuristic could find a good/optimal solution inemsonable tim

5. IRC heuristic performs the best in both the nundidrest solution scenariosd the
average GARis shown in Tabl4.4. This maye because the largest cost compo
in the system is IR@nd th« IRC heuristic starts with a feasible solution witie
smallest total IRC.Figure 4.12 shows the cost components among running

experiments.
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Figure 4.12 Cost components
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Table 4.5 Full test running results in phase |

TSSA IRC FC Lower Bound Impro. Heuristic GAP
Greedy # of # of #of Curr. Integer Eiztr. to
Sol. Value  Sec DCs Value  Sec DCs Value  Sec DCs Value  Sol. Sol. %rc()eledy TSSA IRC FC

1 60928 58176 57 2 58176 44 2 58176 101 2 54076 764058176 45% 0.0% 0.0% 0.0%
2 142006 129045 590 3 122790 482 2 124657 495 2 23613 113236 122790 135% 5.1% 0.0% 1.5%
3 337704 271922 1104 4 271723 1408 4 277900 1404 5240421 246768 271723 195% 0.1% 0.0% 2.3%
4 418300 394083 1424 8 326696 959 3 327969 1984 3 9151B 294783 326696 21.9% 20.6% 0.0% 0.4%
5 799990 572953 2760 7 484503 1592 4 492016 2073 4435931 459736 484503 39.4% 183% 0.0% 1.6%
6 65618 60438 25 1 60717 10 1 60717 10 1 60401 1604060438 7.9% 0.0% 05% 0.5%
7 137905 109920 104 1 103029 105 1 104263 79 1 2830103028 103029 253% 6.7% 0.0% 1.2%
8 345284 275178 1397 4 254270 1298 4 257410 1390 4223482 229650 254270 26.4% 8.2% 0.0% 1.2%
9 440717 414109 1503 9 339563 1427 4 360767 1523 5311899 334699 339563 23.0% 22.0% 0.0% 6.2%
10 661228 579670 1746 12 463149 1753 6 445335 1786 367208 402240 445335 32.7% 30.2% 4.0% 0.0%
11 73881 73882 77 2 70881 54 2 73882 131 2 68482 4868 70881 4.1% 42% 0.0% 4.2%
12 175279 157058 1209 3 141923 568 2 142103 221 2 35147 138877 141923 19.0% 10.7% 0.0% 0.1%
13 357440 264526 2022 3 238344 1051 2 238494 930 2216119 225023 238344 33.3% 11.0% 0.0% 0.1%
14 482040 374034 1548 3 367739 1540 5 361185 1855 2303812 335063 361185 25.1% 3.6% 1.8% 0.0%
15 861397 501985 3824 5 452389 2543 2 463611 3044 3376061 412313 452389 475% 11.0% 0.0% 2.5%
16 43258 37529 9 1 37529 8 1 37529 8 1 37529 37527529 132% 0.0% 0.0% 0.0%
17 110527 106900 1863 5 93771 93 2 89638 652 2 B29B2957 89638 18.9% 19.3% 4.6% 0.0%
18 233572 168402 2264 2 167867 552 2 167120 1038 2152797 153003 167120 285% 0.8% 0.4% 0.0%
19 327009 268266 1383 4 229206 1325 2 229244 1293 2212662 217956 229206 29.9% 17.0% 0.0% 0.0%
20 580662 435928 2812 9 342172 1654 4 346116 1642 4292254 327513 342172 41.1% 27.4% 0.0% 1.2%
21 41026 41026 77 2 41026 31 2 41026 92 2 37852 517841026 0.0% 0.0% 0.0% 0.0%
22 103359 95846 1018 4 89303 177 3 96593 840 4 F7497499 89303 13.6% 7.3% 0.0% 8.2%
23 251714 180012 1712 2 178622 806 2 178604 963 2 53574 161470 178604 29.0% 0.8% 0.0% 0.0%
24 315053 277674 2117 5 250057 1124 2 255435 1407 4225205 232597 250057 20.6% 11.0% 0.0% 2.2%
25 595000 452326 1704 9 364909 1740 3 356721 1375 4324127 338257 356721 40.0% 26.8% 2.3% 0.0%
26 47835 44687 62 1 44687 19 1 44687 18 1 43697 9743644687 6.6% 0.0% 0.0% 0.0%
27 124696 98383 240 1 100579 381 2 100579 268 2 3602192136 98383 21.1% 0.0% 22% 2.2%
28 255065 222361 2191 6 191070 1377 3 223024 1062 5157309 175758 191070 25.1% 16.4% 0.0% 16.7%
29 363452 287878 3373 4 277301 1517 4 298217 1225 6234366 247231 277301 23.7% 3.8% 0.0% 7.5%
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TSSA IRC FC Lower Bound Impro. Heuristic GAP
Greedy # of # of #of Curr. Integer Egitr. to
Sol. Value  Sec DCs Value  Sec DCs Value  Sec DCs Value  Sol. Sol. %rc()eledy TSSA IRC FC
30 696137 477341 1504 9 363754 1449 3 365486 1372 3289488 329951 363754 47.7% 31.2% 0.0% 0.5%
31 66558 64577 28 2 65313 32 2 65313 35 2 60792 9607 64577 3.0% 0.0% 1.1% 1.1%
32 159410 141331 1344 2 138424 75 1 138424 119 1 291B3 132915 138424 132% 2.1% 0.0% 0.0%
33 446165 416010 1365 7 346922 1262 4 343589 750 3304534 305096 343589 23.0% 21.1% 1.0% 0.0%
34 529884 405186 1725 2 389906 1187 2 380801 1380 2348789 369088 380801 28.1% 6.4% 2.4% 0.0%
35 894131 639446 2069 8 545477 1635 4 554409 1155 2474156 503618 545477 39.0% 17.2% 0.0% 1.6%
36 74593 68898 25 1 69096 11 1 69096 13 1 68600 0086 68898 7.6% 0.0% 0.3% 0.3%
37 198341 172594 959 2 176813 575 2 176487 329 2 4638 154638 172594 13.0% 0.0% 2.4% 2.3%
38 433334 375889 1709 4 344253 2182 3 349761 1285 4305400 308485 344253 20.6% 9.2% 0.0% 1.6%
39 551753 444324 2599 3 412235 1381 2 406041 1305 2377265 378713 406041 26.4% 9.4% 15% 0.0%
40 1001097 568855 2775 3 569713 1748 5 582380 1366 459516 517488 568855 43.2% 0.0% 02% 2.4%
41 70061 68748 55 1 68748 13 1 68748 15 1 65854 5458 68748 1.9% 0.0% 0.0% 0.0%
42 176209 163091 672 2 148289 539 2 154290 551 2 04784 140476 148289 15.8% 10.0% 0.0% 4.0%
43 511315 424480 1762 6 373717 1325 3 362337 1421 3312129 329219 362337 29.1% 17.2% 3.1% 0.0%
44 595933 505879 2350 5 460701 1464 3 469338 1376 3391592 417683 460701 22.7% 9.8% 0.0% 1.9%
45 1029142 711828 3600 7 637322 1134 3 648089 1442 506430 587654 637322 38.1% 11.7% 0.0% 1.7%
46 55017 49203 19 1 49203 11 1 49203 11 1 49203 0392 49203 10.6% 0.0% 0.0% 0.0%
47 151329 141750 796 3 140380 152 3 142111 267 3 2092 122096 140380 7.2% 1.0% 0.0% 1.2%
48 314144 273545 1477 6 231574 1358 3 249097 1732 3205091 212383 231574 26.3% 18.1% 0.0% 7.6%
49 477297 374641 1756 4 372730 980 3 349354 1287 2304157 320974 349354 26.8% 7.2% 6.7% 0.0%
50 784966 533026 1667 7 409663 1651 3 423902 1647 3358988 390211 409663 47.8% 30.1% 0.0% 3.5%
51 59667 52792 24 1 52792 14 1 52792 15 1 52792 952752792 115% 0.0% 0.0% 0.0%
52 165152 148894 570 3 135331 177 2 141785 433 2 393® 123936 135331 18.1% 10.0% 0.0% 4.8%
53 285721 214268 1702 2 217315 1303 2 210704 1273 2195732 200555 210704 25.0% 1.7% 3.1% 0.0%
54 451527 398527 2115 6 345879 1436 3 340996 1311 2302856 313759 340996 24.5% 16.9% 1.4% 0.0%
55 821873 645541 2117 12 465626 2195 4 455408 2738 376349 444348 455408 44.6% 418% 22% 0.0%
56 49168 44449 24 1 44449 19 1 44449 23 1 44449 A4N44 44449 9.6%  0.0% 0.0% 0.0%
57 141823 136109 2694 4 123224 709 2 128525 387 2 114Qr 111402 123224 13.1% 105% 0.0% 4.3%
58 316108 297240 1407 8 236447 1419 3 236809 1388 3193303 208582 236447 25.2% 25.7% 0.0% 0.2%
59 476277 422932 1545 6 361695 1531 3 389890 1518 4315353 331703 361695 24.1% 16.9% 0.0% 7.8%
60 869445 566097 2663 7 510900 1480 4 519367 1202 3394021 491387 510900 41.2% 10.8% 0.0% 1.7%
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TSSA IRC FC Lower Bound Impro. Heuristic GAP
Greedy # of # of #of Curr. Integer Eiztr. to
Sol. Value  Sec DCs Value  Sec DCs Value  Sec DCs Value  Sol. Sol. %rc()eledy TSSA IRC FC

61 68884 65898 42 2 65359 48 2 65359 77 2 62230 302265359 5.1% 08% 0.0% 0.0%
62 176373 150616 171 2 157944 214 3 157706 1121 3 38508 138503 150616 14.6% 0.0% 4.9% 4.7%
63 380172 341329 1151 6 279400 1061 4 274207 1308 3250760 252766 274207 27.9% 245% 1.9% 0.0%
64 556114 494886 1432 7 413921 1298 3 426706 1041 4364094 374002 413921 25.6% 19.6% 0.0% 3.1%
65 1075650 715383 2131 9 561637 1216 4 559222 1150 504923 542152 559222 48.0% 27.9% 0.4% 0.0%
66 59810 52715 14 1 52715 9 1 52715 12 1 52715 $27152715 11.9% 0.0% 0.0% 0.0%
67 190322 158039 1958 3 136632 280 2 152496 804 2 3133B 131338 136632 28.2% 15.7% 0.0% 11.6%
68 430563 384282 1400 8 263430 1357 2 278752 953 3237787 245432 263430 38.8% 459% 0.0% 5.8%
69 549299 456546 3600 6 392281 1072 2 397130 1420 3346869 375594 392281 28.6% 16.4% 0.0% 1.2%
70 1157796 647292 2138 6 527163 1850 4 521174 217 464898 500148 521174 55.0% 24.2% 1.1% 0.0%
71 79361 67570 15 1 67570 8 1 67570 8 1 67570 675®¥570 149% 0.0% 0.0% 0.0%
72 183478 162198 1953 3 147635 442 2 151387 562 2 38159 138159 147635 19.5% 9.9% 0.0% 2.5%
73 439712 322804 1727 5 282332 2067 3 307578 1395 4241937 264686 282332 35.8% 14.3% 0.0% 8.9%
74 566400 456581 1541 4 399406 1562 2 382505 1430 2356532 370689 382505 32.5% 19.4% 4.4% 0.0%
75 1101735 567338 2357 4 544567 1533 4 552659 18B0 438662 525805 544567 50.6% 4.2% 0.0% 1.5%
76 50857 50857 73 2 49529 33 2 50857 21 2 47073 737049529 2.6% 2.7% 0.0% 2.7%
77 133244 105986 973 3 97220 491 2 102459 269 2 624394362 97220 27.0% 9.0% 0.0% 5.4%
78 325846 196153 1317 2 175547 904 2 175668 1173 2169555 169555 175547 46.1% 11.7% 0.0% 0.1%
79 420871 357470 1408 7 300592 1393 3 314397 1399 3270301 273611 300592 28.6% 18.9% 0.0% 4.6%
80 883370 577745 2074 9 380826 1618 3 391847 1262 3337052 402026 380826 56.9% 51.7% 0.0% 2.9%
81 53905 52963 54 2 52568 194 2 51981 299 2 485435431 51981 3.6% 19% 1.1% 0.0%
82 145144 111076 1246 2 111693 767 2 111846 184 2 0249 102494 111076 235% 0.0% 0.6% 0.7%
83 344524 224603 1689 3 229454 786 3 230265 949 3 9026D 205813 224603 34.8% 0.0% 22% 2.5%
84 452943 382455 1486 7 341346 1126 4 367218 2430 6277406 310517 341346 24.6% 12.0% 0.0% 7.6%
85 858688 401240 2978 4 365487 2159 3 369824 1753 3315742 504757 365487 57.4% 9.8% 0.0% 1.2%
86 58814 57956 188 2 58340 66 2 57742 77 2 53173 17%3 57742 18% 04% 1.0% 0.0%
87 146010 126613 2024 3 114123 929 2 114306 632 2 05516 105516 114123 21.8% 10.9% 0.0% 0.2%
88 354070 300222 1724 6 245455 1460 3 237488 1046 3202558 216255 237488 32.9% 26.4% 3.4% 0.0%
89 427952 362378 3119 6 315837 1245 3 288894 1103 2253679 291011 288894 32.5% 254% 9.3% 0.0%
90 946959 510910 2657 6 420331 1870 3 394520 1222 2324934 380298 394520 58.3% 29.5% 6.5% 0.0%
91 90095 86007 30 2 88531 16 2 88927 24 2 81467 681486007 45% 0.0% 29% 3.4%
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TSSA IRC FC Lower Bound Impro. Heuristic GAP
Greedy # of # of #of Curr. Integer Egitr. to
Sol. Value  Sec DCs Value  Sec DCs Value  Sec DCs Value  Sol. Sol. %rc()eledy TSSA IRC FC

92 194878 166118 1188 3 152264 1968 2 150302 1320 2143792 143792 150302 22.9% 105% 1.3% 0.0%
93 565169 487431 3600 8 403239 923 3 431002 1366 5344913 349693 403239 28.7% 20.9% 0.0% 6.9%
94 687053 538956 1415 5 486360 1067 3 435454 1286 2427661 428235 435454 36.6% 23.8% 11.7% 0.0%
95 1381632 987433 2421 11 596740 1552 2 597183 1544 570956 591129 596740 56.8% 65.5% 0.0% 0.1%
96 84364 76619 10 1 76619 8 1 76619 8 1 76619 76618619 9.2% 0.0% 0.0% 0.0%

97 195399 168463 668 3 170204 541 3 164652 851 3 787B4 147878 164652 15.7% 2.3% 3.4% 0.0%
98 539073 439129 1384 6 358524 940 2 355543 940 2 365® 337885 355543 34.0% 23.5% 0.8% 0.0%
99 836530 659383 1803 6 605684 1411 4 605422 1382 4510174 532667 605422 27.6% 89% 0.0% 0.0%
100 1315789 739312 2138 6 629805 1747 4 598945 2949 504104 601443 598945 545% 23.4% 52% 0.0%
101 88119 80613 15 1 80613 9 1 80613 12 1 80047 480080613 85% 0.0% 0.0% 0.0%

102 233553 196393 1685 3 181776 693 2 185652 472 2166329 166329 181776 22.2% 8.0% 0.0% 2.1%
103 631148 421742 3499 3 400342 1233 2 401952 1250 357133 379786 400342 36.6% 5.3% 0.0% 0.4%
104 824451 689145 1533 6 622704 1522 6 556633 1(B1 482332 522064 556633 32.5% 23.8% 11.9% 0.0%
105 1302067 769948 1778 9 579574 1371 3 631934 1837 472642 545655 579574 555% 32.8% 0.0% 9.0%
106 69782 54977 9 1 54977 9 1 54977 8 1 54977  549H4977 21.2% 0.0% 0.0% 0.0%

107 189229 150383 287 2 148684 264 2 137733 651 2 21184 121184 137733 27.2% 9.2% 8.0% 0.0%
108 455272 332581 1757 5 266417 1353 3 255038 12B5 239472 246359 255938 43.8% 29.9% 4.1% 0.0%
109 778168 620148 1444 6 512949 1092 3 513892 14r4 432317 449721 512949 34.1% 20.9% 0.0% 0.2%
110 1202676 831707 3600 11 559753 1605 3 554113 4 1% 483731 601756 554113 53.9% 50.1% 1.0% 0.0%
111 88432 72994 11 1 72994 8 1 72994 15 1 72994 942972994 175% 0.0% 0.0% 0.0%

112 155882 144041 1052 4 122214 603 2 122214 542 2110864 110864 122214 21.6% 17.9% 0.0% 0.0%
113 375032 268071 1418 4 239700 1365 3 217811 902 2203755 220346 217811 41.9% 23.1% 10.0% 0.0%
114 607656 550787 1502 8 435270 1497 3 455483 1880 424069 436657 435270 28.4% 26.5% 0.0% 4.6%
115 1506312 832701 3544 7 590362 1661 3 591865 2@3 505267 790495 590362 60.8% 41.0% 0.0% 0.3%
116 74736 63866 13 1 63866 9 1 63866 13 1 63866 6638 63866 14.5% 0.0% 0.0% 0.0%

117 196019 169072 1179 3 150043 1328 2 163246 1204 140460 140832 150043 235% 12.7% 0.0% 8.8%
118 447562 296019 3809 3 302342 1056 3 316288 14650 257485 302548 296019 339% 0.0% 2.1% 6.8%
119 801576 504925 1432 2 550683 1146 3 538847 1812 433571 513144 504925 37.0% 0.0% 9.1% 6.7%
120 1277470 714982 3834 7 637893 1349 4 700747 226 496549 654710 637893 50.1% 12.1% 0.0% 9.9%




5. PHASE II: INVENTORY ROUTING PROBLEM

The Inventory Routing Problem (IRP) is the finaatst distribution problem of the

proposed integrated supply chain design problenomFthe previous phase, DCs’
locations and retailers’ assignments are determilmethis phase, the IRP is considered
separately for each opened DC and its assignederstalhe goal is to decide routing
tours to each retailer and routing frequenciesawhetour so that the total routing and

inventory cost is minimized over an infinite plangihorizon.

5.1 Problem Description and Mathematical Formulation

A one-to-many IRP is considered in this phase facheopened DC and its assigned
retailers. The DC owns multiple homogenous capidtaehicles, and each routing tour
should start and end at the DC. While demand idaam | seek to form standard tours
and frequencies. Individual orders will vary basedrecent usage and vehicle capacity
will be considered to ensure a high probabilitybeing able to meet demand on each
route trip. Routing frequencies are assumed toirfiafl discrete set such as daily, every
other day, weekly and biweekly.

In this problem, the total cost is a summation aifiting cost over each trip and
inventory cost at each retailer for a specifiedgtanof time. In this dissertation, |
consider the static problem and use average cospg@d. Routing cost of one trip
contains a predetermined fixed cost and a variatd¢ depending on total distance of this
trip. Inventory at each retailer contains both eyiclventory and safety stock. Lead time

is assumed to be a function of routing frequenay/@distance.
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For each DCj and all retailers assigned to it, leR be the set of retailers and
R, = RU{ DCJ . Other parameters and variables are the samefiagdlén Section 3.2.

To be convenient, some of the definitions are res@nihere as follows.

P set of plants

R set of retailers assigned to the specificjDC

N set of available routing frequencies

Vv set of tours

Z left a-percentile of standard normal random variable Z

Miy Auxiliary variable defined for retailarfor subtour elimination in route of
vehiclev

Upi mean of annual demand of prodpdt retailen

i variance of annual demand of prodpeétt retailer

Itst lead time from nodeto nodet

hps annual holding cost of produgtper unit at point storing poist

D routing distance limit per trip

q routing vehicle’s capacity

st distance from nodgto nodet

S speed of the default vehicle

a fixed cost of using one routing vehicle at DCs

c unit routing delivery cost per mile

fi routing frequency at leval
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Kstv 1 if simmediate preceddsn route v, 0 otherwise

Ri 1 if use router to supply demand at retailerO otherwise
Zyn 1 if routev has routing frequency at lewel 0 otherwise
7, :ZneN fZ, the number of trips for routein one year

d=> 0, %X the distance of route

lti — 1 + Zvev dVR’i
ZVeV}/VRVi S

the lead time for the retailar Lead time is a

function of routing route frequency (first compotjeand route distance (second

component)

Mixed Integer Programming Model

The IRP problem of interest can then be formulateéllows:

Z peF’O 5/Jp|

Minimize 3, ,(a+6d)r, + ¥ | 55" LI LA SIS (5-1)

Subject to:
2=l VieR (5-2)
z"ep’iERﬂpiR'iSq VveV (5-3)
e
d,<D VveV (3
My, -M, +(IR[xX)SIRI-F1 Vst Re \ (5-5)
S/E%Xstv:zi% Xo VteR,veV (5-6)
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(R+1)ZieR Koy > Zs,te% X, YV ve V (5-7)

. X,=R, VieRveV (5-8)
2nZn=l VveV (5-9)
Ri» Xer £, €{0, 1} VieERsE R,e Ve I (5-10)
M, >0 Viel yeV (5-11)

The objective function (5-1) has two componentsitingg cost and inventory cost.
Inventory cost includes both cycle inventory to feeeseeable demand and safety stock
to overcome uncertain demand. Safety stock mustrcd@mand uncertainty risk during
the replenishment lead time from placement of ateoto receipt of the following order.
Equation (5-2) makes sure that each retailer isgolaon exactly one vehicle route.
Inequalities (5-3) and (5-4) are vehicle capacity aistance limitation constraints for
each route. The left hand side of constraint (&&)umulates total expected demand for
all retailers on a route per trip. This must nated truck capacity. The right hand side
truck capacity can be adjusted to provide safepaciy if desired as actual delivery
amounts will vary dynamically with random demanadn6traint (5-5) eliminates subtour
which guarantees each route must contain a DC taledst one customer. Equation (5-6)

is flow conservation constrainthat ensures routes are continuous and connected.

Constraint (5-7) implies that each effective rostarts at a DCd, :z d, X, as

sitellUd st

formulated in Section 3.2. Constraint (5-8) linkee tretailer-route allocation and the
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routing components. Equation (5-9) is route freqyeronstraint. Constraints (5-10) and
(5-11) are integrality and non-negativity restocis on the decision variables.
5.2Problem Characteristics

Several problem characteristics are provided titi@e solution generation.

5.2.1 Optimal Delivery Frequency
If a routing tour is decided, then retailers irsthoute and the routing cost per trip in this

route are known. To decide the optimal routing fierey is to Minimize:

0.5
(@+cd)y, +2, N M+Zmp 20| VeV (5-12)

\

subject to the vehicle capacity constraints, witgrs the set of retailers serviced by this
routev. As a discrete variable having relatively few éafale values, you can simply try
each value and use the one minimizing the total. ddse nonlinearity of the objective
makes it difficult to obtain a closed form optimglexpression, but the first and second
order derivatives are provided in tA@pendix A for nonlinear search techniques.

In some cases, the optimal delivery frequency nzase a retailer to receive items at
a frequency other than theiatural frequencyThe optimal routing frequency for each

retailer under an individual tour is called theunat frequency for this retailer).

100 mil 10 mile

DC r2
100 mile

Figure 5.1 Two retailers: natural frequency example
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For example: Consider two retailens, (r,) which are close together, they are both
100 miles from their assigned DC and only 10 mitelsetween (as shown in Figure 5.1).
The total annual demand meanuis= 1500,u, = 20000 and standard deviatiorsis= 5,
o> = 50. Other parameter settings are shown in Talile

Table 5.1 Parameter settings for the natural frequexample

Name Notation Value
Vehicle capacity C 150
Fixed cost of each vehicle a 5
Variable routing cost c 0.1
Distance limit D 500
Individual route distance dy, &b 200
Joint route distance dqs 210
Speed s 175000
Holding cost h, 10
Service level z 1.96

To calculate the natural frequency for each ratadlelect the optimal frequency from
available frequency set {350, 175, 50, 25} (Tabl2)5 The optimal routing frequency
for joint tour is shown in Table 5.3.

Table 5.2 Natural frequency calculation for theunaltfrequency example

M P!

Annual Annual
vehicle Annual Lead Annual Total Holding Total
Frequency capacity routing cost time Holding cost Cost cost Cost
350 52500 8750 0.0040 27.6 8777.6 347.7 9097.7
175 26250 4375 0.0069 51.0 4426.0 65. 5027.6
50 7500 1250 0.0211 164.2 1414.2
25 3750 625 0.0411 319. 944.9
Total Cost 59725

As shown in Table 5.2, the natural frequencyrfois 25/year and for, is 175/year.

Notice that frequency {50, 25} is not available ierbecause of the vehicle capacity.
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Total cost for both routes are $5972.5/year. Howe¥e/ou combine the tours and use
only one route to sever both retailers, then thet joptimal frequency is 175/year with
total cost $5253.9. In this case, the optimal @glifrequency causes to receive items
at a frequency other than its natural frequency.

Table 5.3 Joint tour optimal frequency calculationthe natural frequency example

Frequency  Annual vehicle capacity Annual routingtco Lead time Annual Holding cost ~ Total Cost

350 52500 9100 0.0041 375.8 9475.8
175 26250 4550 0.0069 703 5253.9

5.2.2 Upper/Lower Bounds for the Number of Tours
In this research, the optimal number of tours ndesl@ot known. If using full-truck-load

to delivery products as often as possible (at tleimum allowed frequency,...), a

Dy
-

max

lower bound is generated\as =

And if using one individual route for each retaildren an upper bound is generated:

V us = N. This upper bound is used later on in geneticrélyo to create chromosomes.

5.2.3 Upper/Lower Bounds for the Objective Values

The major benefit of routing comes from reductiondelivery cost. If there are no
distance/capacity limitations, nearest neighbolils @ merged into one tour. In an ideal
case, delivery distance to one retailer is 1 H\l/1() times the distance between nearest
neighbors, wheré is the total number of retailers. The smallesaltoiumber of trips

required is total demand for the period over afhiters divided by truck capacity. Let
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IRC be total inventory routing cost, so a lower bo@mrdthe objective value is generated

as:

i 1
cl 1+ d
( N+1J 7

|RQB:{@]+ZER 1 (1+ 1 Jdr (5-13)

z e ’Llpr N+1
+h, %+ZpEPZRGP" 7/_+—p

whered; is distance to its nearest neighbor for eachlegtailhe value of second part can
be found using methods introduced in the previeasian.

The above lower bound is very tight, so an esionabf total cost is also generated
by considering delivery distance to each retaileba n, whereD is the distance limit
andn is the average number of retailers in one roukgs €stimation formula is not a

lower bound, and is only used to estimate the ptessiptimal total routing cost.

IRC, =ZreRl(a+ CDjyr “h {#+Zpep 70, =+ 2 ﬂ (5-14)

+_
n 7/r 7/I' np

Any feasible solution is an upper bound, a simplatgon is using all direct-shipping.
In this case, each retailer has one individual @paind the frequency is selected to

minimize this individual tour.

5.3 Solution Methods
This proposed IRP belongs to the class of NP-hastlpms as an extension of VRP to
include inventory concern$he VRP in general is NP-hard as it lies at therggction of

these two NP-hard problems: Traveling Salesmanl&mland Bin Packing Problem. In
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this section, several heuristics are developedhzeshis IRP problem for medium and
large instances. The basic idea is to generatel fpagtitions of retailers and use one
vehicle to serve one group of retailers. After atireg tour is determined within a group

of retailers, routing frequencies are selected ftbenavailable frequency set.

5.3.1 Modified Sweep Method (MS)
Evidence indicates that the sweep method for rgutrehicles is computationally
efficient and produces an average gap from opttgnafiabout 10 percent (Ballou, 2003).
This gap may be acceptable where results must bened in short order and good
solutions are needed as opposed to optimal ones.

The simple sweep method is modified by considespecific characteristics in this
problem: optimize routing tour after inserting eanbw retailer, optimize routing
frequency within the route, start from each retaged sweep both clockwise and

counterclockwise. The procedure of the modifiedesymethod is as follows:

Figure 5.2 Sweep result example
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Procedure

1. Locate theDC and all retailers on a map or ghg polar coordinates with the center
at the DC.

2. Starting at any angle from ti®C, and then rotate the line clockwise until it iistcts
one retailer. For the first retailer the line irstects, build one individual route for this
retailer (retailer 1 in Figure 5.2).

3. Continue to rotate the line until next retailerésached, insert new retailer in current
route using nearest insertion method and try toravg the new route by 2-opt
method. After including new retailer and decidireywoptimal route in current route,
check all constraints and recalculate the optimating frequency and total cost.

4. If adding the new retailer to current route canueedtotal cost and all constraints are
met, add this retailer to the current route; otheewcreate a new route starting at the
new retailer.

5. Continue until all retailers are assigned.

In step 4, after checking all constraints if addthg next retailer, two cases are
compared to finally decide whether to add this metailer or not: one is to add this new
retailer resulting in one longer route, the otlsethie previous route and a new individual

route for this new retailer. Let:

RC routing cost per trip

IC inventory cost

IRC total inventory routing cost
y optimal routing frequency
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% previous route
i the new retailer

v+ a longer route after adding retaiier

Casel IR(:\/H = RQ+i7v+i + |Q+i
Case2 IRC,+IRG= RGCy,+ RG,+ IC+ IC

Whether to add retailarto the previous route depends on the value okthes cases,
the one with smaller value is the solution.

The procedure stated above starts rotation atdonametailer location, one issue may
arise: suppose rotating the line clockwise in theva figure, then the left retailer
(retailer 12) will be in a different route from agder 1 almost for sure, but it may be
better to group these two retailers. In order tlvesdhis issue, the sweep algorithm is
done A times, whereN is the number of retailers. Use each retailer stauding rotation
point, sweep both clockwise and counterclockwise dach starting point, and then

choose the best solution among thedes@lutions as the final solution.

5.3.2 Tabu Search — Simulated Annealing Method (TS-SA)
A similar TS-SA method as described in Section ¢éa# also be used here to find a
solution to the proposed IRP. Neighborhoods ofdineent solution are generated using

the moves described below. Before stating theseesyawo definitions are declared:
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Distance between two routes: For all pairs of retailers in two different route¢le
smallest possible distance between two retailecslied the distance between these two
routes. LetS be the set of retailers included in roleD; be the distance between
retailer i and j, and DRy, be the distance between route and n, then:
DR,,=argmin{D;} ie§, je §

Adjacent route: Two routes are called adjacent if the distanceveen these two
routes is the smallest compared to all other rofdesat least one of the two routes.
Alternatively, define routes as adjacent if thetatise is (or within some predetermined
value).

Move 1. Select two retailers in one route and then exchaneir delivery order.

Move 2: Select two retailers from two adjacent routes thieth exchange them.

Move 3: Select one retailer randomly and insert it to dj@@ent route.

Move 4: Select one retailer randomly and then open a ndwidual route for it.

5.3.3 Integrated Local Search Method (ILS)
A distinction of this research is to simultaneousbnsider routing tour and routing
frequency over an infinite planning horizon whitaditional routing solution methods
usually only focus on routing tour. In order to tap routing frequency, this integrated
local search method is proposed here.

The basic idea is to generate an initial solutidrere each retailer is serviced by one
individual tour, and then try to merge retailersoirone route. The optimal routing

frequency for each retailer under an individuartisi.called thenatural frequencyor this
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retailer. This heuristic is also suitable if natdraquency is given in reality, for example,
some retailers receive orders daily/weekly.

When calculating the natural frequency, routingt @&s trip is calculated as one fixed
vehicle cost plus variable cost fro@C to the retailer. This is considering the
performance of one retailer in a joint routing teuth multi-retailers. The routing cost
for one retailer in such a tour is only part of dneed cost and some inserted travel
distance from previous/next neighborhood. In themgating step, another two scenarios
are introduced: “Fixed cost + Variable cost (twite distance from th®C)” and
"[Fixed cost + Variable cost (distance limitatiod)Average number of retailer in one
route"”, all three scenarios' results are compabednario two implicitly assumes single
retailer rates.

Since the available values for routing frequenay discrete (daily, once other day,
weekly, biweekly and assume 1 year = 350 days)n#teral frequency for each retailer
will be found by searching for the lowest cost pplover these options. Whether to
merge two retailers depends on two factors: theadce between these two retailers and
similarity in natural frequency. If two close rd&as have similar natural frequency, using

one vehicle to serve both of them will reduce thtaltcost.

Procedure
1. Calculate natural frequency for each retailer.
2. Divide all retailers into different groups basedratural frequencies, retailers in the

same group will have the same natural frequencthignresearch, four groups will be
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generated with routing frequency to be 350, 175,85@ 25, respectively. Call these

four groups to b&;, G,, Gz andG,.

. Use embedded modified sweep method to merge netaleroupG; (the group with

largest routing frequency).

. After generating tours for all retailers in groGg, try to insert other retailers in other

groups (in the order db,, Gz andG,) in current routes. The motivation to do this step

is because of the possibility of the following case

l

1
I

I
I
I
I
I
|
I
I
I
|
I
I
I
|

Figure 5.3 Insertion example

In this case, one route is generated to servdeetgi2, 3 and all these three retailers
have the same routing frequency. The distancedtit is validated if adding any
other retailer from groufs;. However, one retailer (retailer 13) is very cldse
retailer 1 and has a natural frequency smaller tharif adding retailer 13 does not
violate any distance/capacity constraint, the toteat may be less if inserting retailer
13 into current route. This is also the reason stayting from the largest frequency
group G;. Merging a retailer with smaller natural frequenoya route with larger
routing frequency will reduce the average cycleemory level at this retailer, so the

inventory cost will be reduced. And since extrackricapacity is used and little
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additional variable routing cost to serve anothedaiter, the total routing cost will

also be reduced.

5. Repeat the same process of step 3 and 4 for rstailegroupG,, G; and Gq4
respectively.

6. *After generating an initial solution from the aleofive steps, an improvement step
using Tabu search can be added. Neighborhoods eayeherated by two moves
introduced in Section 5.3.2, however, negative gaimot allowed here. A solution is
updated only if one neighborhood has smaller objectalue.

In the Modified Sweep method, the final solutionlwisually be several disjoint
routes since the method adds retailers by sweeapirdine clockwise/counter-clockwise.
However, in this method, the final solution may @avstructure as shown in Figure 5.4.
Two routes are overlapped but with different rogtinequencies. For example, route 1

deliveries products daily, and route 2 deliveriezdpicts weekly.

——@® Route 1

@ ----@ Route?

Figure 5.4 Routing structure example

To illustrate the case of route overlap, let ussoer seven retailers geographically
located as in Figure 5.5. The first three retaiees 240 miles from their assigned DC and
10 miles in between, the next four retailers ar@ dles from their assigned DC and 10

miles in between. The total annual demand meathfffirst three retailers is 8000 and
78



the standard deviation is 50. The total annual delmaean for the next four retailers is

800 and the standard deviation is 5. All other peater settings are shown in Table 5.4.

240 mile

10 mile @0 Routel
10 mile
~
r4 < , rr Q= = ==@ Route2
100 /100 mile

DC

Figure 5.5 Seven retailers: route overlap example

Table 5.4 Parameter settings for the route ovexiagmple

Name Notation Value
Vehicle capacity C 150
Fixed cost of each vehiclea 5
Variable routing cost c 0.1
Distance limit D 500
Individual route distance dy, d,, d; 480
Individual route distance d,, d, ds, d; 200
Joint route distance dq: 500
Joint route distance Uase: 230
Speed S 175000
Holding cost h, 10
Service level z 1.96

To calculate the natural frequency for each ratadlelect the optimal frequency from
available frequency set {350, 175, 50, 25}. Thecgkdtion is shown in Table 5.5, the

natural frequency for the first three retailerd ¥6/year with annual total cost of $9593.7
79



for each individual route, and noticing that theguency {50, 25} is not available
because of the vehicle capacity. The natural frequdor the next four retailers is
25/year with annual total cost of $804.9 for eautividual route.

Table 5.5 Natural frequency calculation for theteooverlap example

Individual route: retailer 1,2, 3 Individual routetailer 4, 5, 6, 7
Annual Annual Annual Annual Annual
Frequ : h Lead X Total . Lead ; Total
vehicle routing - Holding routing - Holding
ency . time Cost time Cost
capacity cost cost cost cost
350 52500 18550 0.0056 187.6 1873Y7.6 8750 0.0040 .6 178767.6
175 26250 9275 0.0085 318.7 9593.7 4375 0.0069 31.0 4406.0
50 7500 1250 0.0211 94.2 13442
25 3750 625 0.0411 179.9 804.9

Using the ILS method introduced in this sectiontaiters are divided into two
different groups based on their natural frequendiég first three retailers are in the first
group with the natural frequency of 175/year argl idmaining are in the second group
with the natural frequency of 25/year. Then thstfioute is formed as the bold solid line
shown in Figure 5.5. Since the route distance direaaches the limit (500 miles), you
will not be able to insert any other retailers liie second groups into current route. The
remaining retailers are formed as the second rasitee bold dotted line shown in Figure
5.5. Thus, an overlap route pattern appears irettasnple.

Table 5.6 Joint tour optimal frequency calculationthe route overlap example

Joint route: retailer 1,2, 3 Joint route: retafleb, 6, 7
Ann_ual Ann_ual Lead Annyal Total Ann_ual Lead Anngal Total
Freq. vehicle routing time holding cost routing time holding cost
capacity cost cost cost cost
350 52500| 19250 0.0057 565.1 19815|1 9800 0.0042 53.3 9853.3
175 26250 9625 0.0086 957.9 10582.9 4900 0.0070 93.2  4993.2
50 7500 1400 0.0213 282.9 16829
25 3750 700 0.0413 539.8 1239.8
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The optimal routing frequency for joint tours isogm in Table 5.6. In this example,
the optimal frequency for joint routes is the saaweretailer’s natural frequency. In
addition, you can notice that by using routing d=ly, the total cost is decreased and the

vehicle usage is increased in Table 5.7.

Table 5.7 Savings in the route overlap example

Cost savings Vehicle usage

Total cost
Individual route: retailer 1,2, 3 9593.7 * 3 = 2878B 21.3%
Joint route: retailer 1,2, 3 10582.9 63.2% 85.3%
Individual route: retailer 4, 5, 6, 7 804.9*4213.5 30.5%
1239.8 61.5% 91.4%

Joint route: retailer 4, 5, 6, 7

Neither the ILS nor the MS method dominates theemwthnd it is difficult to

determine clear rules apriori as to which will besbfor a given problem instance.The

following two examples will illustrate how these dwnethods perform under different

cases.
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Figure 5.6 ILS method provides a better solution
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In Figure 5.6, there are four retailers which dr€@0 miles from their assigned DC
and 60 miles in between. The total annual demarahnf@ retailers 1 and 4 is 1500 and
the standard deviation is 10. The total annual aelmaean for retailers 2 and 3 is 8000
and the standard deviation is 50. All other par@msettings are the same as in Table 5.4.
The optimal IRC for each possible route is showmable 5.8.

If ILS method is used, then the first route contagnretailer 2 and 3 is formed as the
bold solid line shown in Figure 5.6.A. Since thereat route distance is 460 miles and
adding either retailer 1 or 4 will exceed the dist& limit (500 miles), a new route is
generated. The second route containing retailerdldas shown as the bold dotted line in
Figure 5.6.A. MS method starting rotating from retal will form two different routes
as shown as dotted lines in Figure 5.6.B.

Table 5.8 Optimal IRC calculation for each routé-igure 5.6

Annual Annual
Route vehicle Annual routing Lead holding Total
Freq. capacity cost time cost cost
Mean 1500| 350 52500 15750 0.0051 355 157855
DC-1-DC  Std. Dev. 10 | 175 26250 7875 0.0080 60.4 7935.4
DC-4-DC  pistance 400 | 50 7500 2250  0.0223 1793 24293
25 3750 1125 0.0423 340.3 1465.3
Mean 8000 | 350 52500 15750 0.0051 184.6  15934.6
DC-2-DC o pev 50
DC-3-DC . Dev. 175 26250 7875 0.0080 316.2 8191.2
Distance 400
Mean 3000|350 52500 19250 0.0057 725 193225
DC-1-4-DC  Std. Dev. 20 | 175 26250 9625 0.0086 122.0 9747.0
Distance 500 50 7500 2750 0.0229 359.3 3109.3
25 3750 1375 0.0429 681.2 2056.2
Mean 16000 350 52500 17850 0.0055 373.7  18223.7
DC-2-3-DC  Std. Dev. 100 | 175 26250 8925 0.0083 636.2 9561.2
Distance 460
Mean 9500| 350 52500 19250 0.0057 725 193225
DC-1-2-DC oy pey 60
DC-3-4-DC . Dev. 175 26250 9625 0.0086 122.0 9747.0
Distance 460
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Theoptimal solution using ILS and MS methods are sunued in Table 5.9. In this

case, ILS method provides a better solution.

Table 5.9 Optimal solution in Figure 5.6

Route IRC Frequency Vehicle usage Total cost

ILS method DC-1-4-DC 2056.2 25 80.0% 11617.3
DC-2-3-DC  9561.2 175 61.0%

MS method DC-1-2-DC  9747.0 175 36.2% 19494.0
DC-3-4-DC 9747.0 175 36.2%

In the next example, there are still four retailensd distances among them are shown
in Figure 5.7. The annual demand mean for retalleiz and 3 is 8000 and the standard
deviation is 50, and the annual demand mean faileet 4 is 4000 and the standard

deviation is 10. All other parameter settings dre same as in Table 5.4. The optimal

IRC for each possible route is shown in Table 5.10.
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Figure 5.7 MS method provides a better solution
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Table 5.10 Optimal IRC calculation for each routd-igure 5.7

Annual Annual Lead Annual Total

Route Freq. vehicle capacity routing cost time holding cost  cost
DC-1-DC Mean 8000 350 52500 15750 0.0051 184.6 15934.6
DC-2-DC  Std. Dev. 50 175 26250 7875  0.0080 316 81912
DC-3-DC Distance 400
DC-4.pC  Mean 4000 350 52500 12250  0.0046 704  12320.4

Std. Dev. 10 175 26250 6125 0.0074 131.2 6256.2

Distance 300 50 7500 1750 0.0217 428 21789

Mean 16000 350 52500 19250 0.0057 376.7 19626.7
DC-1-2-DC

Std. Dev. 100 175 26250 9625  0.0086 638 10263.6

Distance 500

Mean 12000 350 52500 19250 0.0057 260.3 19510.3
DC-3-4-DC  Std. Dev. 60 175 26250 9625  0.0086 451 10076.7

Distance 500

Mean 12000 350 52500 17500 0.0054 258.1 17758.1
DC-1-4-DC

Std. Dev. 60 175 26250 8750 0.0083 449 9199.9

Distance 450

Mean 16000 350 52500 19250  0.0057 376.7 19626.7
DC-2-3-DC

Std. Dev. 100 175 26250 9625 0.0086 638 10263.6

Distance 500

If ILS method is used, then the first route contagnretailer 2 and 3 is formed as the
bold solid line shown in Figure 5.7.A. Since thereat route distance already reaches the
distance limit (500 miles), a new route is genatat@nly retailer 3 is left in the first
group and it forms the second route, then try sentretailer 4 into the second route. An
updated route containing retailer 1 and 4 is shawthe bold dotted line in Figure 5.7.A.
MS method starting rotating from retailer 1 willrfio two different routes as shown as
dotted lines in Figure 5.6.B. Theptimal solution using ILS and MS methods are

summarized in Table 5.11. In this case, MS methogiges a better solution.
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Table 5.11 Optimal solution in Figure 5.7

Route IRC Frequency Vehicle usage Total cost
ILS method DC-1-2-DC 10263.6 175 61.0% 20340.3
DC-3-4-DC  10076.7 175 45.7%
MS method DC-1-4-DC 9199.9 175 45.7% 19463.5
DC-2-3-DC  10263.6 175 61.0%

5.3.4 Hybrid Genetic Algorithm Method (HGA)

A genetic algorithm (GA) is a search heuristic timaitmics the process of natural
evolution. This heuristic is routinely used to gexte useful solutions to optimization and
search problems. Genetic algorithms belong todhgel class of evolutionary algorithms
(EA), which generate solutions to optimization pgesbs using techniques inspired by

natural evolution, such as inheritance, mutatiefecion, and crossover.

‘ (TSP) ‘

NO

YES

STOP
Figure 5.8 HGA framework

The idea for the hybrid heuristic proposed her®igse a genetic algorithm (GA) to

generate/update a fixed partition for all retaileksTSP is solved within each partition
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and optimal delivery frequency is selected accaiginin a fixed partition policy (FPP),

the retailers are partitioned into disjoint andledively exhaustive sets. Each set of
retailers is served independently of the othersatnits optimal replenishment rate. The
framework is shown in Figure 5.8, where GA is usedgenerate and update fixed

partition, TSP is solved by 2-opt heuristic.

Procedure

1. Sett = 0. Initialize PopulatioP(t) with randomly constructed solutions. Alternativel
use results from heuristics (i.e., modified sweegthnd) as partial population.

2. Evaluate the feasibility and fitness function adinduals included irP(t).

3. Apply Crossover and Mutation operators to obtasetC(t) of candidates that can
satisfy problem constraints.

4. Evaluate the se€(t) of candidate and select the best individuals wébkpect to
fithess value to add to new Populatiet+1). The new population consists of the best
PS(population size) chromosomes frdt(t) andC(t).

5. t=t+ 1, while stopping criteria are not met do, gokbto step 2.

6. End and keep the best individual of the last pdprieas the solution of the problem.

Chromosome Repr esentation

In current research, the real number of vehicledus an unknown variable, but the
maximum number will be the number of retailersthiat case, each retailer is serviced by
one individual route. The length of a chromosomeqgsal to the number of retailexs

Each gene of the chromosome is related to a retaileé is assigned to an integer number
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between 1 andll. If theith gene is assigned to integay for instance, then it means that

retaileri is served by vehicle.

1 2 3 456 7 8 9 10
[2]a]4f2] 1] 1] 493 2

The above chromosome represents a 4-vehicle sojutahicle 1 services retailer 2, 5

and 6, vehicle 2 services retailer 1, 4 and 10, etc

Chromosome Justification

The chromosome representation introduced abovasig te understand, but there will be
an issue in practice. For example, the following mhiromosomes actually represent the
same solution. It's a 4-vehicle solution with onehicle services retailer 1,4,10; one
vehicle services retailer 2,5,6, one vehicle sewicetailer 8,9 and one vehicle services

retailer 3,7.

10

w|bh|w
[LENNIEN
R0
R|lRk|o
[N N RN
Nlw| oo
NI O

gaiN| e
RPN

The differences in chromosomes' representationsecivom the order of different
routes. To deal with this symmetry and make theth&r calculation easier, a
chromosome justification is done every time aftemgrating a new chromosome.

Justification: Number retailers from 1 tdl. Following the order of retailers, each
retailer is assigned to the smallest availableatemumber.

By adopting this justification, the above two chmsomes will be modified to:

1 2 3 456 7 8 9 10

[1]2]3[ 12 2] 3 4 4 1
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Crossover

Crossover is a mechanism in which the informati@itween two chromosomes is

exchanged randomly. Two-point crossover operatasésl, for example:

3 4 5 6 7 8 9 10
112|3(1|2|2|3|4]4|1
3/412|1(5|4|5

After crossover:

4 5 6 7 8 9 10
1(2(3(4]2|1(34]4]1
1(2(3(1]2|2|5|4]|5

[EnY
N
w

Additionally, one-point crossover operator can dsaised, for example:

1 2 3 4 5 6 7 8 9 10
31 1{2|2(3|4|4]1
112(3|4|2|1|5| 4| 5| 3

After crossover:

1 2 3 4 5 6 7 8 9 10
1]2 1) 2 1] 5 4 5 3
112|3(4(|2|2|3|4|4]1

Mutation
In a mutation operator, each gene can change ifteaedit integer number with a defined

probability, two examples:

1 2 3 45 6 7 8 9 10
[1]2]3[ 12 2] 3 4 4 4

Example 1

1 2 3 456 7 8 9 10
[1]2]3]1faf2]3]4] 4 1]

Example 2

1 2 3 45 6 7 8 9 10
HEEIREHEREIRIRIEY
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In the first example, the number of routes doeschange, but the real routes change.
In the second example, by assigning retailer Sotder 5, the original 4-route solution
becomes a 5-route solution. Also check if justiiima is necessary whenever a new

chromosome is generated.

Fitness Function (ff)

The fithess score is a possibly-transformed ratisgd by the genetic algorithm to
determine the fitness of individuals for mating.tims heuristic, the objective function
value (total cost) is used directly as fithess scdt is probabilistically possible for
infeasible solutions to survive. A penalty valueb{g positive numbeM) is applied to
the fitness function without removing infeasibléusimns. The logic behind this is that an
optimal solution may exit with high probability rrean infeasible solution. However, at
the same time, the proposed algorithm will recdrel best feasible solution. Since the

fitness function here is the total cost, the snnaHe value is, the better the chromosome.

Selection

The roulette wheel selection operation is adopted¢hoose chromosomes to undergo
genetic operations. The approach is based on amnai®n that a roulette wheel has a
section allocated for each chromosome in the peipulaand the size of each section is
proportional to the chromosome’s fitness: the fittee chromosome, the higher the
probability of being selected. Although one chrooms has the highest fitness, there is

no guarantee it will be selected. On average, ansbsome will be chosen with the
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probability proportional to its fitness. Supposees thopulation size iPPS then the
selection procedure is as follows:
1. Calculate the total fitness of the populatior-&s

FF — ff (X))

2. Iculate th lecti ilgp f h ch . Sp =
Calculate the selection probabilip for each chromosomé: sp FF(PS-1)

3. Calculate the cumulative probability for each chromosomé: qp ZZSQ
j=1

4. Generate a random numbydirom a uniform distribution in the range (0, 1].

5. If gp_,<r<qp, then chromosomy; is selected.

Traveling Salesman Problem (T SP)
In the first stage, retailers are grouped into sdveets and each set is serviced by one
vehicle. Within each set, use 2-opt search metlodptimize the delivery tour and a

delivery frequency is selected later. For examipyesolving TSP, the final solution is:

Route 1: {1, 4, 10} DC-4-10-1-DC
Route 2: {2, 5, 6} ::> DC-2-6-5-DC
Route 3: {3, 7} DC-3-7-DC
Route 4: {8, 9} DC-8-9-DC

The total cost can be calculated based on the fimaling schedule after selecting

delivery frequency for each route.
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5.4 Computational Results
To evaluate the performance of the proposed fowristecs, an all direct-shipping
method is used to calculate upper bound. Total esSimation and a lower bound are

generated using methods introduced in Section 5.2.

5.4.1 Parameter Settings
Parameter settings are defined in Tables 5.12 &l 5

Table 5.12 Parameter settings in phase Il

Name Notatiorvalue Remark

Service level Z, 1.96 97.50%

Vehicle capacity C 150

Distance limit D 500 miles

Vehicle speed S 500 miles/day

Fixed cost a $ 5/truck

Variable routing cost cd c=$ 0.1miled = distance (miles)

Available frequencyl/year fa {25, 50, 175, 350} lyear = 350 days
Location of DC 0 (0,0)

Number of retailers N {20, 50, 100, 150, 200}

Locations of retailers x(y) [-100, 100] Uniform Distribution

Demand mean/year 1 10% Low: [50, 150] Uniform Distribution
r 80% Medium: [500, 2000]

10% High: [10000, 25000]

Demand standard deviation/year o Low: [1, 5] Uniform Distribution
r High: [10, 50]
Holding cost h, Low: $ 10/unit year

Medium: $ 50/unit year
High: $ 100/unit year

Retailers are assumed to be randomly located @Oan@le by 200-mile square with
the DC in the center. Number of retailers, holdoogt and demand standard deviation
were variables shown in Table 5.9 to form 30 saesaMean retailer demand, service
level, vehicle capacity and speed, distance liteihdth of daily tour), location oDC,
and fixed truck cost were held constants. Vehiepacity is set to be 150, this value is

roughly estimated so that one vehicle is used teesabout 10 retailers every two days
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(Average demand/18 150). Deliveries may be made daily, every other, aegekly, or
biweekly. Additional parameters were set for theS&and HGA procedure as in Table
5.14. These were selected based on preliminaryriex@etation.

Table 5.13 Scenarios construction in Phase 1l

Scenariok) N h o, Scenariok) N h oy

1 20  High High| 16 20 Medium Low
2 50 High High| 17 50 Medium Low
3 100 High High| 18 100 Medium Low
4 150 High High| 19 150 Medium Low
5 200 High High| 20 200 Medium Low
6 20  High Low | 21 20 Low High
7 50 High Low | 22 50 Low High
8 100 High Low| 23 100 Low High
9 150 High Low| 24 150 Low High
10 200 High Low| 25 200 Low High
11 20 Medium High| 26 20 Low Low
12 50 Medium High| 27 50 Low Low
13 100 Medium High 28 100 Low Low
14 150 Medium High 29 150 Low Low
15 200 Medium High| 30 200 Low Low

Table 5.14 Heuristics parameter settings in phiase |

TS-SA Hybrid GA

Name Value Name Value
To 1500 Population size N2

FT 10 Elite proportion 0.05

a Uniform: [0.7, 1.0 Mutation probability 0.05
MaxNum 500 TG 3000
NOIMPROVE SG 100

5.4.2 Results and Analysis

Five random instances were generated for each iexgretr scenario. All four heuristics
were then applied to each instance, and resultiserrfollowing tables for each scenario
are the average of those five random instances. nk@@a-heuristics, the maximum
running time was set to be 3600 seconds (1 houi)th&® computational times are

obtained on a Intel(R) Core(TM)2 T5550 at 1.83 Giding Windows 7.
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Computational times in seconds are shown in Taldlb.S able 5.16 summarizes the
objective value results. The best value for eaemaico is shown in bold font.

Table 5.15 Computational results: CPU time (se®hase Il

k MS TS-SA ILS1 ILS2 ILS3 ILS+TS HGA
1 2 48 0 0 1 44 132
2 14 182 2 1 4 298 1216
3 61 247 5 4 8 1214 3600
4 146 1958 17 13 27 3600 3600
5 267 2063 47 34 42 3600 3600
6 2 126 1 0 0 30 98
7 14 256 1 1 2 553 1346
8 53 484 6 5 4 1663 3600
9 158 496 35 16 15 3600 3600
10 | 286 908 106 49 35 3600 3600
11 | 3 88 0 0 0 36 132
12 | 14 322 1 1 1 820 822
13 | 56 537 4 3 4 1608 3600
14 | 116 1273 5 5 9 3600 3600
15 | 237 2753 15 12 14 3600 3600
16 | 2 75 0 1 1 44 116
17 | 13 146 1 1 1 401 1525
18 | 36 253 2 1 8 1660 3600
19 | 79 470 6 5 26 3600 3600
20 | 171 875 16 13 58 3600 3600
21 | 2 74 0 0 0 59 136
22 | 9 140 2 2 1 165 1212
23 | 28 314 14 19 2 1549 3600
24 | 57 346 53 61 20 3600 3600
25 | 95 534 163 183 64 3600 3600
26 | 2 127 1 0 0 32 151
27 | 7 117 2 2 1 1367 1050
28 | 26 340 14 15 2 2553 3600
29 | 60 364 63 78 19 3600 3600
30 | 97 568 195 207 77 3600 3600
ILS1:a + cdy,

ILS2: a + 2cd,,

ILS3:a + cD / n wheren is the average number of retailers in one route

As noticed in the results, all heuristics exceptAd@ork well in terms of objective
values. The HGA takes the most computational efind returns the highest average cost.
Compared to the all direct-shipping method, usiogting to serve sets of retailers will
reduce total cost by 25.8% - 51.4%. Moreover, amalhdheuristics, Modified Sweep

method performs the best and HGA method is thetwdisng modified sweep, even the
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largest case, it only takes 2 minutes and findsagolution. But HGA takes a long time

and generates worse solutions. Two major reasogeRrmain this result:

Table 5.16 Computational results: Objective vali$d900) in Phase Il

Lower Direct
k | MS TS-SA ILS1 ILS2 ILS3 ILS+TS HGA bound IRC; shipping
1 | 450 47.3 58.8 56.6 52.3 475 453 30.8 41.0 71.9
2 99.5 110.6 128.2 1319 121.X97.2 109.7| 63.4 99.0 174.0
3 1982 215.2 260.2 271.8 233.0 200.9 25(0.8 123.9 207.0 .9363
4 288.6 285.7 3885 409.2 364.4 290.2 3476 173.7 307.2 548.0
5 | 3735 375.1 509.9 525.3 4347 374.3 48%5 217.4 401.3 5723
6 [ 334 345 42.0 37.2 473 33.9 35.(¢ 20.8 30.5 57.7
7 |86 930 107.9 1095 107.2 86.6 91.0 50.3 81.6 152.8
8 | 1450 150.2 186.3 200.2 194.9 1485 175.3 81.8 153.8 3R79.
9 | 2008 215.3 292.3 285.0 267.3 205.3 224.3 1142 228.9 .1413
10| 2719 272.3 385.8 381.4 358.270.3 347.2| 148.3 307.4 555.0
11| 375 38.2 434 464 574 386 370 | 234 30.8 52.6
12| 68.0 71.4 83.2 88.3 95.1 68.0 77.4 | 41.8 68.8 114.3
13| 138.9 138.0 166.2 169.7 175.135.7 160.3| 74.9 140.2 2355
14| 2141 2145 253.6 265.6 285.1 215.1 264.1 1114 217.0 .7369
15| 274.8 2480 330.5 347.9 347.7 268.9 35111 139.3 2844 482.3
16 | 30.3 315 35.1 36.9 418 304 297 | 18.2 23.1 42.4
17| 808 83.6 95,5 99.4 98.1 81.9 87.1 41.9 66.4 119.5
18 | 1429 148.3 163.2 167.0 175.6433.3 175.3| 65.8 1195 217.2
19| 209.5 209.3 242.8 249.8 260.200.3 233.1| 92.7 180.0 325.8
20 | 248.4 2446 302.1 311.7 307.234.3 333.9| 107.7 2255 4085
21162 16.9 18.3 18.3 23.6 16.4 179 8.7 10.9 23.0
22| 36.8 393 426 426 47.6 37.1 38.9 18.4 26.1 55.4
23| 76.3 76.6 90.3 85.9 92.0 70.1 90.2 | 345 53.7 112.1
24 | 1085 116.9 128.7 125.3 145.002.3 143.4| 47.2 80.0 163.5
25| 149.8 156.1 176.9 174.6 194.140.2 191.6| 61.9 109.0 2245
26| 162 17.1 18.7 178 244 17.2 16.5 9.0 10.0 21.8
27 | 342 36.3 39.9 38.9 50.0 34.6 38.4 16.3 22.6 50.4
28 | 65.2 68.2 78.8 774 819 641 70.3 | 34.6 56.6 100.0
29| 994 108.5 118.3 119.0 138.86.1 136.2| 455 80.1 153.8
30| 139.7 146.9 164.7 163.8 169.034.7 188.1| 50.7 91.6 214.6

1. Even the modified sweep method is straightforwaitdhas some theoretical
foundation and captures many important aspect f tbuting problem. In the
problem, it has distance and capacity constraiatg] it is preferred to merge
proximate retailers together for the considerat@nshipping. Thus the method
sweeps all retailers clockwise and counterclockwisesry time deciding whether or

not to insert a new retailer, the route is modifeedl 2-opt is used to improve the
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route tour. In addition, joint tours and separaggfiency tours are compared to find a

better solution.

2. HGA method works by making improvement from opermatdcrossover, and
mutation). However, there is a high probabilityttaachild is infeasible with capacity
and distance constraints, especially in large nt&s. If allowing the HGA to run
infinitely, it may find the best solution, but thsnot efficient.

LS works very fast in terms of CPU time, but itgedbive values are much higher
than MS. If joint with Tabu search, ILS-TS genesateetter results than MS in large
scenarios, but CPU time increases because of Tabrcts step. So MS method is
recommend for IRP in this research stage, and $ahtch method can be used to further
improve results from MS method if necessary.

The saving percentage (1 - best solution / direigsng cost) is shown in Table 5.17.
When the holding cost and demand variance decrdasdenefits from routing strategy
decrease. Retailers will prefer to order more peteleach time when their inventory cost
is lower, so the number of retailers in one routd decrease because of capacity
limitation. In the extreme case, when the numbeaetdilers in one route is only one, this
is equivalent to direct-shipping. Routing strategll have more benefits if the demand
or optimal order size of each retailer is small paned to vehicle capacity.

Table 5.17 Saving percentage in Phase Il

hy oy N=20 N=50 N=100 N=150 N=200| Average
High High | 37.4 44.2 45.5 47.9 48.4 44.7
High Low | 42.1 44.6 48.1 51.4 51.3 47.5
Medium High| 29.7 40.5 42.4 42.1 48.6 40.7
Medium Low | 29.9 32.3 38.6 38.5 42.6 36.4
Low High | 29.6 33.7 37.5 37.2 37.6 35.1
Low Low | 25.8 32.2 35.9 37.5 37.2 33.7
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6.

INTEGRATED PROBLEM’S RESULTS AND ANALYSIS

To sum up, the original integrated problem is deggosed into two phases. The DC’s

locations and PW/retailer's assignments are detexthiin the first phase using IRC

heuristic described in Section 4.5.2. The actuating decisions are determined in the

second phase using modified sweep method.

Original network design proble

v

Phase IFLP with approximate IR

v

DC locations and retailer assignme

A 4

Each opened C

Phase Il: IRP, route assignme

Figure 6.1 Solution methodology

In this Chapter, the integrated problem is solvasthg the proposed methods as

shown in Figure 6.1. Eight different data setse@sin phase | are used here, all

parameter settings are the same as in Table 4ble Bal summarizes results from all

experiments including objective value, computatidivae, and the number of opened

DCs and the number of total routes under each soena

Table 6.1 Computational results for the integragexblem
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Original | Objective CPU Approx. | Real Total No. Total IRC

Solution | Value time (sec) No. DCs IRC IRC cost Routes| CPU time| Gap
1 60928 58176 44 2 3394p 31504 55738 5 49 0.07
2 142006 122790 482 p 83963 8155 120403 16 617 0.03
3 337704 271723 1408 4 1812%2 183543 274014 36 185901 0
4 418300 326696 959 B 223307 239583 342972 51 15907 0.
5 799990 484503 1592 1 3256%6 336614 495461 57 25693 0
6 65618 60717 10 1 37077 36122 59761 7 16 0.03
7 137905 103029 105 L 74460 76163 104732 15 221 0.02




Original | Objective CPU Approx. | Real Total No. Total IRC
Solution | Value time (sec) No. DCs IRC IRC cost Routes| CPU time| Gap
345284 254270 1298 4 159298 153504 248476 25 1404 0
440717 339563 1427 4 223461 231161 347263 44 18893 0
10 661228 463149 1753 5 2833%9 266003 445793 43 20286 0
11 73881 70881 54 2 30280 28220 68821 4 59 0.07
12 175279 141923 568 D 84838 87957 145053 18 591 0.04
13 357440 238344 1051 P 156586 163545 245304 34 123®4 0
14 482040 367739 1540 5 217478 199291 349553 31 194408 0
15 861397 452389 2543 P 317889 355398 489898 78 36122 0
16 43258 37529 8 1 2455p 25596 38566 7 14 0.04
17 110527 93771 93 2 55761 53841 91851 13 188 0.03
18 233572 167867 552 P 110799 114481 171549 37 6493 0.0
19 327009 229206 1325 P 155542 167072 240736 51 20197 0
20 580662 342172 1654 4 215101 211163 338234 56 19622 0
21 41026 41026 31 2 20784  173%0 37593 5 37 0.17
22 103359 89303 177 B 49928 47246 86621 13 P50 0.05
23 251714 178622 806 P 112316 112373 178679 33 9630 0.0
24 315053 250057 1124 P 167901 187029 269185 71 15731 0O
25 595000 364909 1740 B 218522 223647 370034 65 29692 0
26 47835 44687 19 ] 24897 23232 43022 5 23 0.07
27 124696 100579 381 D 55020 524p9 97967 15 578 0.05
28 255065 191070 1377 3 105105 106414 192379 32 15621 0
29 363452 277301 1517 4 1550%5 156860 279106 44 216D1 O
30 696137 363754 1449 3 2201%1 233431 377034 67 21916 0
31 66558 65313 32 2 40398 35705 60620 5 36 0.12
32 159410 138424 75 ] 100617 104052 141858 21 149 0.03
33 446165 346922 1262 4 204297 205194 347820 32 131400 O
34 529884 389906 1187 P 277816 315980 428071 60 19124 0
35 894131 545477 1635 4 339706 358123 563894 65 19405 0
36 74593 69096 11 ] 44309 41705 66492 8 17 0.06
37 198341 176813 575 P 109408 112236 179642 17 5983 0.0
38 433334 344253 2182 B 220242 243334 367344 51 23010 O
39 551753 412235 1381 P 290029 319810 442016 57 32240 0
40 | 1001097 569713 1748 5 335786 33943 573570 55 20801
a1 70061 68748 13 ] 36635 36087 68200 9 20 0.01
42 176209 148289 539 D 91294  862p4 143249 13 572 0.06
43 511315 373717 1325 B 217132 231837 388422 38 147@7 O
44 595933 460701 1464 B 286737 292370 466334 47 20622 0
45 | 1029142 637322 1134 B 394111 431764 674975 77 31020
46 55017 49203 11 ] 33857 510%2 66398 11 18 051
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Original | Objective CPU Approx. | Real Total No. Total IRC

Solution | Value time (sec) No. DCs IRC IRC cost Routes| CPU time| Gap
47 151329 140380 152 B 73763 73081 139698 15 230 0.01
48 314144 231574 1358 B 1395%1 139573 231595 35 14400 O
49 477297 372730 980 B 208845 221223 385109 50 17026 0.
50 784966 409663 1651 B 258329 281449 432783 69 27289 0
51 59667 52792 14 ] 33358 36000 55434 9 21 0.08
52 165152 135331 177 D 75009 76922 137244 18 258 0.03
53 285721 217315 1303 P 128515 141001 229801 37 19740 0O
54 451527 345879 1436 B 204110 218322 360091 55 19087 0O
55 821873 465626 2195 1 261308 264659 468976 64 250D1 0O
56 49168 44449 19 ] 23577 24997 45869 8 28 0.06
57 141823 123224 709 D 67285 66681 122570 15 733 0.01
58 316108 236447 1419 B 128098 138527 246876 39 156408 0
59 476277 361695 1531 3 197979 207134 370850 55 20525 0
60 869445 510900 1480 4 270102 292256 533054 67 229108 0
61 68884 65359 48 y 36790 36539 65108 7 53 0.01
62 176373 157944 214 B 89204 868D1 155541 15 233 0.03
63 380172 279400 1061 4 161550 160374 278224 31 11401 O
64 556114 413921 1298 B 243718 244947 415150 43 19231 0
65 | 1075650 561637 1216 A4 330483 333247 564401 55 22691
66 59810 52715 9 1 2974l  259%9 48933 4 15 0.13
67 190322 136632 280 D 80394 77285 133474 11 433 0.04
68 430563 263430 1357 P 160774 164559 267216 35 19492 0
69 549299 392281 1072 P 247815 263725 408191 58 15506 0
70 | 1157796 527163 1850 4 293683 287166 520647 45 26002
71 79361 67570 8 1 3171 28529 64382 6 14 0.10
72 183478 147635 442 D 784585 75119 144299 14 600 0.04
73 439712 282332 2067 3 157786 155197 279743 34 22502 0
74 566400 399406 1562 P 241076 262587 420917 52 22429 0
75 | 1101735 544567 1533 4 305017 306107 545657 59 26000
76 50857 49529 33 2 2297 22002 48554 6 37 0.04
77 133244 97220 491 2 54692 5030 92898 14 B04 0.08
78 325846 175547 904 P 106017 104619 174149 27 148®1 0.
79 420871 300592 1393 3 164574 166429 302448 51 21991 0
80 883370 380826 1618 B 208382 219057 391501 61 28485 0
81 53905 52568 194 2 22816 20418 50170 6 199 0.11
82 145144 111693 767 D 57074 56143 110762 13 791 0.02
83 344524 229454 786 8 111195 113164 231422 33 9152 0.0
84 452943 341346 1126 4 166998 169877 344226 53 15002 0
85 858688 365487 2159 3 202221 213825 377090 68 32296 0

98




Original | Objective CPU Total No. Total IRC

Solution | Value time (sec) No. DCS cost Routes| CPU time| Gap
86 58814 58340 66 . 57 56503 5 71 0.09
87 146010 114123 929 D B2 114040 19 1048 0.00
88 354070 245455 1460 3 50 253487 38 16687 0
89 427952 315837 1245 3 14 318530 43 18392 0
920 946959 420331 1870 3 03 433049 72 303106 0
91 90095 88531 16 2 2 83728 6 20 0.10
92 194878 152264 1968 P 08 150760 17 19882 0.0
93 565169 403239 923 B 82 401535 35 12581 0.
94 687053 486360 1067 3 34 502174 56 18996 0
95 | 1381632 596740 1552 P 36 656471 93 23235
96 84364 76619 8 1 0 78294 7 15 0.04
97 195399 170204 541 B 60 168052 17 557 0.02
98 539073 358524 940 D 21 363180 41 106@2 0.
99 836530 605684 1411 a 80 618895 49 17904 0
100 | 1315789 629805 1747 a 45 644807 55 21005
101 88119 80613 9 1 4 81421 9 16 0.02
102 | 233553 181776 693 D P5 183345 14 715 0.02
103 | 631148 400342 1233 P 52 409530 35 13984 0
104 | 824451 622704 1522 3§ 61 646219 38 162409 0
105 | 1302067 579574 1371 13 591349 60 22834
106 69782 54977 9 1 9 55451 7 16 0.02
107 | 189229 148684 264 D D1 144888 16 466  0.05
108 | 455272 266417 1353 3 34 270279 30 18783 0
109 | 778168 512949 1092 3 29 550832 68 15986 0
110 | 1202676 559753 1605 ¢ 30 587929 76 25840
111 88432 72994 8 1 7 77834 11 15 0.12
112 | 155882 122214 603 D 37 120095 18 627 0.03
113 | 375032 239700 1365 3 46 241556 37 14592 0
114 | 607656 435270 1497 3 94 460315 62 22182 0
115 | 1506312 590362 1661 B 14 623998 74 2499 2
116 74736 63866 9 1 6 60762 8 15 0.09
117 | 196019 150043 1328 P A9 154252 22 14766 0.0
118 | 447562 302342 1056 3 94 306863 36 12103 0
119 | 801576 550683 1146 3 87 566856 50 200D7 O
120 | 1277470 637893 1349 A 07 662403 66 1989

From the experimental results for the integrateobj@m shown in Table 6.1, the

following observations are observed:

99



. All instances are solved in a reasonable time leyhauristics, with the maximum

computation time of one hour (3612 seconds in stei&).

. Heuristics work well in terms of objective valuesntpared to the original greedy
solution. The original greedy solution’s valueesluced by 25.3% on average.

. The IRC gap in the table is calculated as |Real/AR@roximated IRC - 1|. The

average value for this gap is 5.6%. This indicalesapproximate cost function for
IRC constructed in Chapter 4 provides a good fithi® actual IRC in the integrated
problem.

. From the number of retailers and the number ofe®utsed for delivery, there are on
average 3 to 5 retailers in one route. There allesetne retailers using individual

route delivery from the detailed routing informatiolhis is why using the average
value of possible routing cost and direct shippiogt (f; =(aji +5 )/2 in Section

4.1, a; is the routing cost using nearest neighborhoodrtimey method for retailer
from DC | andp; is the direct shipping cost for retailefrom DCj) as the routing
parameter; is found in empirical studies to more closely apfimate solutions than
using routing cost; alone.

For example, Table 6.2 records the running redattshe first 15 scenarios if only
routing coste; is used and Table 6.3 records the running redaitghe first 15
scenarios if only direct shipping cgt is used. The average IRC gaps in these two
cases become 14.4% and 32.8% separately, theseatwes are large and indicate

inaccuracy of estimated IRC.
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Table 6.2 Computational results for the integratesblem if only routing cost; is used

Original | Objective CPU Approx. | Real Total No. Total IRC

Solution| Value time(sec) No.DCs IRC IRC cost Routes| CPUtime| Gap
1 43026 37364 12 1 23781 20521 34104 3 19 0.14
2 115974 95176 350 p 62798| 64894 97272 16 493 0.03
3 246788 175265 1299 3 122301 137424 190390 36 1784 0.12
4 327825 228772 1384 p 160612| 193444 261606 44 2457 0.20
5 616569 343016 1243 y 233923| 347391 456485 46 2408 0.49
6 52543 49934 432 2 26958| 22202 45179 b 438 0.18
7 131854 88561 106 ] 62314 66808 93055 1y 228 0.07
8 270301 180150 928 4 110066| 106981 177065 21 1058 0.03
9 329369 251674 935 p 184990| 209318 276002 45 1626 0.13
10| 632161 343345 1825 W 227234| 264920 381031 64 3216 0.17
11 62460 62420 26 2 26535| 21807 57692 b 33 0.18
12| 220621 214335 361 p 124550| 1194827 209267 16 543 0.04
13| 271742 180809 1129 p 113867| 130528 197470 34 1367 0.15
14 | 376550 583347 1132 3 368449| 393097 607990 57 1861 0.07
15| 708067 336230 1486 3 206430| 240520 370321 49 2728 0.17

Table 6.3 Computational results for the integragieblem if only direct shipping cogj

is used

Original | Objective CPU Approx. | Real Total No. Total IRC

Solution | Value time (sec) No.DCg IRC IRC cost Routes| CPU time| Gap
1 79648 68162 10 ] 43067 50915 76010 5 18 0.18
2 | 188584 164943 266 P 107386 136509 194066 24 4017 0.2
3| 442915 333540 848 3 201330 270447 402657 35 9244 0.3
4| 626553 461071 1779 B 296029 427001 592044 56 23184 0
5 | 1138800 611697 1651 A 341453 492463 762707 68 24pa4
6 84658 75404 10 ] 42482 49674 82596 6 16 0.17
7 | 201397 178192 97 ? 98868 1306p2 209987 18 161 0.32
g | 464876 324986 2055 P2 211185 315717 429519 59 4295189
9| 639992 468034 1460 3 276531 380209 571713 47 20087 0
10 | 1066300 619865 1753 B3 383099 553918 790684 93 24835
11 79604 79062 81 2 36567 43121 85616 7 87 0.18
12 | 220621 194624 171 P 112902 134132 215855 17 2839 0.1
13| 484423 352984 1345 4 185667 225817 393134 29 13922 0
14 | 666544 510598 1227 4 257921 346112 598790 35 18584 0
15 | 1182180 621347 2553 B 341757 519640 799230 82 BLE2
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In this research, whether the location decisioragsurate depends on how the
estimated IRC compared to the actual IRC. Theravawmevays to increase this accuracy,
one is to update IRC for each retailer to its as=igDC in current solution each time and
the other is to update weights to parametefs In the first case, only the related IRC for
each retailer to its assigned DC can be updatedtl@advalue also depends on other
retailers assignments (because of the route gemeyaFor example, there are two DCs
and five retailers, retailers 1, 2 and 3 are assigio DC 1 and retailers 4 and 5 are
assigned to DC 2 in current solution. Then onlated IRC &11 a12 a13 024, 025) can be
updated and these valued are only accurate inrduassignment solution. This will make
the iteration nonsense or too inefficient. So iadtef updating IRC at each time, the
more efficient way is to consider selecting or updathe weights to parametetsf. By
comparing the estimated IRC and actual IRC, theerlthese two values are, the more
accurate the location decision is.

The actual routing structure depends on the locatensity (the retailer’s distance to
its nearest neighbor compared to the routing degtdimit) and the demand density (the
individual's annual demand rate compared to thetimguvehicle’s capacity). Prior
knowledge will provide better estimation about IRE in phase I. If retailers are close to
each other and each retailer's annual demand satdatively small, then higher weight
should be given to the possible routing cost whetimating routing parameters.
Otherwise, higher weigh should be given to thedlishipping cost. To estimate a more

accurate routing cosg, the following formula is proposed:

i = w i+ (1-w) fj (6-1)
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D C _

Equation (6-1) states that the routing agsis a weighted average af (the routing

cost using nearest neighborhood insertion method) fa (the direct shipping cost).
Equation (6-2) states that the weigits a function of location densityd(: the average
distance to nearest iglbors;D: routing distance limit) and the demand density: the

average annual demand; the routing vehicle’s capacif@). The numerical relationship
is undefined and should become one future resednattion. But in general, an
approximate weight value can be found by the birssgrch method until a predefined

acceptable gap value is achieved.
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7. CONSOLIDATION FACILITY LOCATION AND DEMAND ALLOCATION

MODEL (CFLDAM)

Chapter 3 through 6 derived an integrated modetHerproposed multi-product supply
chain network design problem with location, invegtand routing decisions, and then
generated a two-phase solving methodology for t¢meptex model.

One distinguishing part in this proposed problenoigclude transhipments between
DCs. A transhipment network is a realistic représtgon of many real world problems
that have a general network structure with many psUgemand points and
interconnecting links, and this network structisenot usual in available research work.
In this chapter, another model of designing a ihistion network which also acquires
products from multiple facilities and then delivgseoducts to retailer is introduced.
Different to previous models, this problem is fotatad with direct shipment and
consolidation opportunities. Even though it is Is@ multi-product system, the
transhipment option does not exist and each pramudacility ships its product directly
to each opened DC. Another innovation structureivated from many real world
problems is to group products into different setsdal on environmental or other factors
is generated. Consolidation is allowed for shippdngducts in the same product set, but

products from different product sets must be shdpgeparately.

7.1Problem Description and Mathematical Formulation
This chapter considers the selection of DC locatiand sizes from a predetermined
finite set of options and the subsequent choiadisifibution paths from multiple product

suppliers to retailers in a three-echelon supphirciifacility, DC and retailer) system.
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The objective is to optimize the whole system amdimmze the total cost which includes
fixed location cost, inventory cost and transpaostatcost. Two shipment methods are
considered for products to each retailer: diredgpralent from facility to retailer and
indirect shipment from facility to DC and then fradC to retailer. Moreover, multiple
products are grouped into sets based on enviromnenmt other factors and allow
consolidation in transportation. With respect teeintory, both safety stock and regular
inventory are included and the trade-off betweemimory and transportation costs when
delivery time requirements must be met or repldnedafety stock is considered.

Production facilities already exist and each presidne specific product. DCs can be
located at potential locations with alternativeesiand need hold both cycle inventory
and safety stock. They may also effectively sergeciass-docking points. Retailers’
locations are also known in advance and the dematedor each product at each retailer
is assumed to have a known distribution per timesymed later to be normally
distributed for simplicity of presentation). Eaatailer can order from a DC or directly
from manufacturers but chooses a single routedoh groduct. In practice, this decision
is based on cost and delivery lead time. In additm regular cycle inventory, retailers
hold safety stock if the lead-time of replenishome order is above a specific threshold
value (for example, one day).

Products are divided into sets based on envirorshentother factors. Consolidation
is allowed for shipping products in the same prodiet, but products from different
product sets must be shipped separately. The hplcbst rate for products is the same

for products in the same set. For instance, inoa fchain, certain products may require
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refrigerated trucks. In other environments secwityandling considerations may dictate
compatibility of products.

Different notation to previous chapters is usethia new problem and is described as

follows:
Index sets
I set of products
S set of product sets
K set of DCs
J set of possible DC sizes—small, medium and large
R set of retailers
N set of subscripts) = 1, ..., 5, where 1 means from a facility to aiteta2

means from a facility to a DC, 3 means from a D@ teetailer, 4 means at a DC, 5

means at a retailer

Parameters
fy fixed cost of opening one DC at locatiowith sizej
Uy capacity of one DC at locatidwith sizej
It lead time from poinittoj (n =1, 2, 3)
Cui capacity of one truck used for shipping from poitdtj (n =1, 2, 3)
A setup cost of each order from paitoj (n=1, 2, 3)
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ay; fixed transportation cost per trip for using dn&k from pointi toj (n =

1,2, 3)

bl variable transportation cost from poiribj (n =1, 2, 3)

h,; holding cost of produdtat pointj per time 6 = 4, 5)

h® holding cost of product s&at retailerr

ti 1 if the lead time from pointto | is greater than threshold value (one day),

0 otherwisert =1, 3)

D, demand mean of produicat retailer per time

Ir

o’ demand variance of producat retailer

Ir

Decision Variables

Wy 1 if opening one DC at locatidat sizg, O otherwise

X, 1 if retailerr orders produdtfrom facility i directly, O otherwise
Xie 1 if retailerr orders produdtfrom DCk, O otherwise

Qi guantity of one order of produictrom the facility toj (n = 1, 2)
Qi quantity of one order of produicfrom DCK to retailerr

Qs guantity of one order of one product sefrom DCk to retailer

The objective is to minimize the total cost inchgti fixed DC location costs
(depreciation), regular inventory cost, safety ktoost, order cost and transportation

cost. When calculating safety stock at a DC, risk#mg is applied for each product. At a
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DC, the total safety stock for one product is shawEquation (7-1) and is determined as
the desired confidence multiplier times the staddaeviation of cumulative product

demand served by that DC.

S$= 724200 U ¥ (7-1)

When calculating the transportation cost, assunfi#e@l cost of using a truck per
shipment along with a variable cost related to neimdif units and shipping distance.
Thus, cost for each order is equal to: fixed costmber of trucks + variable cost
distance- quantity of one order. Assuming full truck loadlier size, the cost is shown in

Equation (7-2).

Transport Cost / Shipment & [g% bl-Q (7-2)

An economic order quantity model is used to deteenthe initial optimal order
guantity. And since the existence of order cosisishown to be near optimal using
multiple full-truck loads at one time instead ohding one full-truck load several times.
Let Q° be the optimal economic order quantity assumireditruck costs are linearized.
Due to the relative insensitivity of actual costdoantity and the economics of full
truckload shipments, the actual order quantity usesklected from the floor or ceiling
function of Q° as eithep=[Q*/C|-corQ =[Q°/c|-C. Bounds on maximal loss from
considering only full truck loads are derived ire thppendix B. The model is easily
extended to allow for multiple capacity truck opisoin the case that the natural order

size is significantly different than the capacitytbe normal truck for such shipments.

The modeller could include options for 20’, 40’ aB®& containers for instance or even
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smaller delivery trucks for local deliveries fronCB to retailers. Indeed, structurally,

options such as mail packages could even be caeside

Mixed Integer Programming Model
By using the defined notation and decision varigbie previous section, the proposed

problem can be modelled as follows:

Minimize
ZQZik M
ZK:ZJ: fig Wiy + ZkllTJer:ZZa ™ ’Zaif Ity %
22N +2Qh
ARy an (S 6 ek
(7-3)
z Dir )skr
+ZZ['AM + & Fg—z:—“k bl, Q JETT'FZK:Z['AW + Ay Fg—z:—“k bly, szj : Q.
Qs z Dir )gkr
+zzz (Askr + askrlr - —‘+ b|3<r Q;«J = S
k r s C3kr Q3kr
Subject to:
Q, < Z Mw, Vi, k (7-4)
Qe <D Mw, Vs, k1 (7-5)
Qs = Z Qaie Vs, kr (7-6)
D w <1 vk (7-7)
D X + % =1 Vi,r (7-8)
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ZQ—;"("'Z ZQfItZkXKr SO-SZUij\@' vk (7-9)
i i r I

Qy Qe @, =0 vi,s, Kk, r (7-10)

X % €{0,3 ik, (7-11)

The objective function (7-3) has six terms- theetiXDC location costs, the average
inventory costs at DCs, the average inventory cadtsretailers, order cost, the
transportation cost from facilities to retailersedily, the transportation costs from
facilities to DCs and the transportation costs fio@s to retailers when needed. Safety
stock at a site is based on desired percentilessakeplenishment lead time demand.
When delivery lead time (distance) is below an ptaige threshold, safety stock is not
needed. The order quantities are computed by firgting the optimal continuous
economic order quantity and then costing out theoop of that quantity against the
rounded up and down full truck load alternativeBased on the choice of;, Xk the
candidate continuous optimal order quantity valae be found using the typical EOQ
model as shown in Equations (7-12) to (7-14). Ascaidibed above, these values are then

rounded to find the appropria@@value for use in the model.

0 2A, D %
.r = —_— - 2
Q= n (7-12)

(o)

h4ik

Qi = (7-13)
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D.

sO ir
3Kr
2.0,

ieS

2%1« (Z Dlr )&r j
. ' Q:gkr =

S = : 7-14
x (7-14)

The cost model is adaptable. For instance, suppatsgs are for multiple truck loads.
The model above assumes all loads are shippedcat ¢towever, if truck loads are
spaced in time by the ratio of truck capacity tonded, then the inventory terms in (7-3)
would be replaced by expressions of the fadim/ 2 (A similar change is used in
equation (7-9)).

Constraint sets (7-4) and (7-5) require that simggjuantities for one plant to one DC
or from one DC to one retailer can be greater tBaonly when opening this DC.
Constraint set (7-6) sets the total shipping qtyargf one product set equal to the
summation of all the shipping quantities of proguatthis product set. Constraint set (7-
7) limits opening at most one DC at one potenti&l [@cation. Constraint set (7-8)
requires only one supplier for each retailer-pradrembination; the retailer can order
directly from the plant or order from one DC. Coastt set (7-9) assumes random access
and guarantees the average inventory level at Bacshould be less than the effective
capacity of this DC. Average inventory includesleystock plus safety stock. Effective
capacity is nominally set at 80% of total spacet (lsueasily adjusted). Average
inventory is equal to average cycle inventory @usafety stock based on replenishment
lead time and total product volume. Constraints(8€l0) and (7-11) are nonnegative

and binary constraints.
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7.2 Solution Methods

A genetic algorithm and construction heuristic pr@posed and tested here.

7.2.1 Genetic Algorithms (GAS)

Deriving optimal or near-optimal solutions to laoat problems has fed the growth of the
field of location analysis over the past three desa(Jamarillo et al. 2002). The large
number of integer variables makes it computatigndilificult to solve. For this reason a
genetic algorithm approach is applied.

In recent years, GAs have been used to solve dewptimization problems, but
applications of GAs to location models have bedatikely few. Hosage and Goodchild
(1986) and Chaudhry et al. (2003) present an agpdic of GA for thep-median problem.
Gen and Syarif (2005) propose a spanning tree-b@&gedo solve a location facilities
problem considering multi products and multi pesiodinally, Jamarillo et al. (2002) and
Zhou et al. (2003) propose GA application to twm@e models for location-allocation
problems. A GA application is presented for a caxpodel of location considering
several factories with single product producticevesal potential sites for opening DCs,
multiple customers having different and continualesnand for each product and the
choice of direct or indirect shipment from facterignd retailers. In the next section, the

GA heuristic is presented in detail and then regf@toutcome of empirical tests.

Chromosome representation

The chromosome representing the problem soluticomposed for each product by 3

sub-strings representing respectively: (i) the aighipment of products from a single
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factory to network’s retailers for), (ii) the link among a single factory and the gibke
sites for opening DC3 (o k), and (iii) the shipment of products from DCs &tailers k
tor). (Thei tok link is unnecessary since it may be inferred ke ather two, but it is
included here for ease of description. During iempéntation, its presence did not impact
performance). For each product-retailer there K& possible tours for shipment.
However, only one route must be chosen. A retader be supplied by one of the DCs or

directly by the plant as showed by Figure 7.1.

X,

/\
i / k )gkr d

Figure 7.1 Shipment directions

il

1 A

Figure 7.2 CFLDAM feasible solution example

Figure 7.2 shows a feasible solution where Prodiyct) is directly shipped from plant to
retailer 1 and through DKL for retailer 2. Retailers 1 and 2 are both segpirom DC
k1 for Product 2. In this scenario D& is not opened and the corresponding

chromosome is:
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Table 7.1 Chromosome representation for CFLDAM

Product 1P1) Product 2 P2)

Fromi tor Fromi tok Fromktor Fromi tor Fromi tok Fromktor

1 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0

0 1 2 3 4 5 6 7 8 9 10 1] 12 13 14 15

The genes are represented by binary values showalle 7.1. The gene in position
0 that assumes value equal to 1 means that retailisrsupplied directly by plani for
product 1. The 1 in position 5 indicates DC 1 is thter model shipment point for
product 1 to retailer 2. The gene equal to 1 initmes 10 means that there is a link
between plani2 and DCk1. The gene in position 13 means that retaikeis supplied by
DC k1 for product 2. With respect to the model presgntethis chapter, this string
represents only the values of variables calkéd The values of variables calleav™ are
calculated with a simple method that checks theevalf the chromosome’s genes and
decides to open a DC when a DC supplies at leasttdiler. With respect to the
chromosome presented in Table 7.1, the correspgrstiing for the DCs opened is
shown is Table 7.2. The value 1 in position 0 mehas DCk1 will be opened, the value
0 in position 1 means that D2 will be not opened.

Table 7.2 Location variables’ values

k1l k2
Value 1 0
Position 0 1

Constraint feasibility and Fitness Function evaluation
For each chromosome, the feasibility is checketl vaspect to the following constraints:
e Single sourcing constraint: for each product ailestdas to be supplied and has

to be supplied by the plant or by just one DC.
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e DCs’ capacity limit.

e The total flow entering a DC has to be equal tofkbv exiting for each product.

e If required, the limit about the service level (dety time).

For the feasible individuals the next step is tiwwdate the fithess functiorif value
corresponding to the objective function of the mquatesented in Section 7.2. When the
individual chromosome is not feasible with resgedDCs capacity or service level, then
the value off is assumed to be equal to a big integer calletMilen the individual is not
feasible with respect to other constraints then twethods called ToBuilt_1() and
ToBuilt_2() are applied in order to build a feasildolution from a infeasible solution.
The first method operates fixing the first subrgjrof the chromosome and building the
rest of it. The second fixes the last sub-stringtled chromosome and builds the

remaining parts respecting the above-mentionedtints.

Operators

In the general crossover, given a pair of paremgs, an arbitrary cutoff point is picked.
The only difference of crossover operator here wébpect to the normal one is the
choice of the cutoff point. In order to obtain fisdes offspring, the cutoff is chosen
randomly from a predefined set of possibilitiese3é points correspond to the end of
substring relative to a product. With respect tdl&ar.1, the unique possible cutoff is
between positions 7 and 8.

Mutation is an operation at the genes level. Witprerdefined probability a gene
changes its value, from 1 to O or from O to 1. Ehkends of mutations can be defined

depending on which substring of chromosome is cimgngAfter this operation, the
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ToBuilt_1 and ToBuilt_ 2 () methods are applied ascessary to re-establish the

solution’s feasibility.

Evolution mechanism

The mechanism known in the literature as Elitisradspted here. For every generation
10% of population represents the “Elité” of the seid it is composed of the best
solutions found during the evolution process. Témaining 90% of population changes
on basis of pre-determined percentages for appl@irassover and Mutation operators.
The evolution stops when reaching the number afatitens declared or when not

improving the best solution for a specified largenter of iterations.

7.2.2 Proposed Greedy Construction Heuristic (GCH)

Merging concepts from opportunity cost and steepggiroach, a greedy heuristic is
developed for comparison to GA. The GCH heuristilds the solution step by step
using a “cascade” method. Each iteration makeseide for a product-retailer pair and

includes the decision taken in the previous itersi

Procedure

1. Sett=0.

2. To build a table with I'x R” rows and K+1” columns and evaluate the feasibility of
the solution with respect to DCs’ capacity. If ttenstraint is satisfied then calculate

the objective function for each product-mode-reradombinatiorOF;(t) comparing
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the K+1 possibilities of shipment (directly by plant loy K DCs). Otherwise put the
OFi(t) equal to a big integer calléd.
3. Comparing the value dDF.(t) for each row to select the minimum and the second
smallest for each row respectively call&ting= min{OF(t)}, SecMin = ming
{ OFi (t)/Min; }.
4. Calculated; as the difference betwedfin;, andSecMin (potential regret).
5. Select themax,{ 4;; } and in correspondence to the column, fix the sofufor the
relative product/retailer couple. Set t +1.
6. Repeat the steps 2-5 fdr X R’ iterations.
As an alternative to step 4, selection may be basksly onMin;; .
Table 7.3 shows an iteration of the heuristic dbsdrabove. With 3 DCs, 2 products,
and 4 retailers, at the first iteration, a dirdapsent for the couple plamt and retailer
rl is fixed. The rest of the solution is built thbug “cascade” method. The selected

product-mode-retailer combination is fixed and rgew from the table. All affected
values are then updated for the next iteration.sThhe complexity is oD(IZR2 K)

consolidation policy and objective function evalaas.

Table 7.3 Heuristic Algorithm for CFLDAM

OF sk[\)igricént DC 1 opened DC 2opened DC 3 opened Min SecMin aDelt
iir;  680.386 2.327.768 78.905.221 372.698.028  680.386 2.327.768 1.647.382

i1r; 20.002.904 21.318.949 20.992.233 181.298.158  2(®0@ 20.992.233 989.329
i1r3 168.036.279  169.608.843  181.057.583  169.554.096 8.036.279  169.554.096  1.517.817
i1r4 82.576.957 84.028.851 92.402.173 199.285.905 8257 84.028.851 1.451.894
iory 74.843.490 75.753.105 84.512.660 98.935.406 74983  75.753.105 1.269.615
iofp 21.002.242 29.974.560 21.741.500 29.248.200 212802  21.741.500 739.258
iof3 8.939.292 84.280.026 73.877.307 10.039.649 8.929.2 10.039.649 1.100.357
iofy 36.870.220 80.561.996 67.847.045 36.866.944 30886  36.870.220 3.276

Max 1.647.382
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7.3 Computational Results
To evaluate the performance of proposed heurisgidgnsive computational experiments

are provided in this section.

7.3.1 Parameter Settings

Products are divided into two different productssetthe tests. Consolidation is allowed
for shipping products in the same product set,dvatlucts from different product sets
must be shipped separately. Holding costs for prtedare different for different product
sets and different holding places.

Production facilities and retailers are chosen agomcities in the United States.
Potential DCs can be located at the locations tH#ilees. Each DC has three possible
sizes: small, medium and large. The distances anuires are supplied by Daskin
(1995). The fixed cost of each DC is calculatedbanis of home value in the respective
cities which is also supplied by Daskin (1995) arapacity of the DC which is set
according to potential service amount.

Demands of products at each retailer are normaistributed. The mean is
proportional to the population around that retaildre variance of demand is calculated
using coefficient of variation times mean demanding trucks to distribute products,
lead time between two cities depends on the distaaned speed of a truck (500
miles/day). Each truck has specified capacity. fihip cost of one order is computed as
the fixed cost of using trucks plus variable castsch depends on distance and shipping

quantity.
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Eight scenarios are compared defining the set atp] possible sites for opening
DCs, customers’ locations and kind of function usediefine the batch size. The eight
scenarios are shown in Table 7.4.

Table 7.4 Scenarios construction for CFLDAM

. # Locations for Function to define Length of Chromosome
Scenario  # Plants #Customers X
DCs the batch size (genes)

1 2 10 10 Floor 140

2 2 10 10 Ceiling 140

3 5 10 10 Floor 600

4 5 10 10 Ceiling 600

5 2 10 49 Floor 608

6 2 10 49 Ceiling 608

7 5 10 49 Floor 2745
8 5 10 49 Ceiling 2745

Using the chromosome representation described enStbction 7.3, the length of
chromosome is defined as: Chromosome’s length =mfn of plantsc number of
customers) + (number of plantsnumber of possible sites for DCs) + (number of
possible sites for DGsnumber of customers). The length of chromosomeejbinith the
number of iterations required to reach a feasiblat®n determines the complexity of
the algorithm and consequently the computation ti{@®&U). Each element of the
chromosome is called a gene so length is definediaber of genes.

The population size is equal to 100 individuals tfze first 6 scenarios and equal to
10 for the last two scenarios. The number of itenat has been fixed equal to 50,000.

The GA stops when it fails to improve the solution10,000 continuous iterations.
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7.3.2 Results and Analysis

For each scenario in Table 7.4, the performand¢beofenetic and the two versions of the
heuristic algorithms is tested and compared. Inteadto the two heuristics discussed
earlier, the cost for all direct-shipping is alsaloulated. Table 7.5 presents the results

obtained for the scenarios presented in the prewseation.

Table 7.5 Computational Results for CFLDAM

Genetic (Max {Deltgezugset::(l:\/lin — Min}) Heuristic (Min {Min}) Asllh%;)?ﬁg

%fn% No. Objective No. %I:)n% No. Objective No. %fn% No. Objective No. Objective

(sec) Iter. Value DCs (sec) Iter. Value DCs (sec) Iter. Value DCs Value
1 98 422 3.0567E+8 4 1 20 3.0303E+8 3 1 20 3.0303E+8 3 4.2113E+8
2 123 329 3.0551E+8 4 1 20 3.0302E+8 3 1 20 3.0303E+8 3 4.2112E+8
3 1435 9238 1.1807E+9 4 3 50 9.8272E+8 6 3 50 9.8462E+8 7 1.1800E+9
4 1203 1399 1.1797E+9 4 3 50 9.7914E+8 7 2 50 9.8462E+8 7 1.1801E+9
5 80 652 5.0602E+7 O 10 98 5.0602E+7 0 10 98 5.0602E+7 0 5.0602E+7
6 39 589 5.0618€E+7 O 10 98 5.0618E+7 0 9 98 5.0618E+7 0 5.0618E+7
7 17771 23760 1.7430E+8 1 49 245 1.5454E+8 0 25 245 1.5452E+8 1 1.5454E+8
8 20486 25900 1.5152E+8 1 49 245 1.5452E+8 1 24 245 1.5452E+8 1 1.5454E+8

From all the experiment running results, the follagvobservations are obtained:

1. The heuristic proved computationally efficient gmuvided the best solution in all

but one case (scenario 8).

2. The “delta” form of the heuristic (making the seienc based on difference between

the best and second best options) outperformethi€ form in two cases and the

“min” form performed best in one case.

3. As expected, both forms of the heuristic perforraekbast as well as direct shipments

in all cases and better in five of eight casestlierdelta version and six of eight for

the min version.
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4. The genetic algorithm found the unique best feassblution in the last case and tied
for best in two additional cases where no DCs wgrened. However the genetic
algorithm required significantly longer computatitome.

Larger scenarios is also tested for examples auntaia set of 88 customers, 2 or 5
plants, and 190 possible sites where opening DGsiggested by Daskin. In these cases
the GA gives solutions in a reasonable time depentdy the choice of population size.
These results are not reported here due to thiewdtif to evaluate the goodness of these

solutions.
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8. CONCLUSION AND FUTURE WORK

In this dissertation, an innovative framework fasgyning a multi-product integrated
supply chain network is proposed. | have derived ewmaluated the effectiveness of a
two-phase solution methodology for solving thisegrated location, inventory and
distribution problem. Transshipment is allowed be#w DCs to provide the functions of
both consolidation and distribution, and routingivay strategy is considered for
delivering mixed-products from DCs to served retail A transshipment network is a
realistic representation of many real world prolddimt have a general network structure
with many supply/demand points and interconnectings. While becoming more
complicated, it has immense applications in indudiouting delivery strategy is also
generally used in industries to take the advantagesill truck load, especially when
served customers are close together and eachdndiviilemand is small compared to the
routing vehicle’s capacity.

A mixed-integer programming model is proposed foe full problem and sub-
problems in each phase. However, due to the contyleikthe problem, several heuristic
methods are generated in each phase to find aggotion in a reasonable time.

In phase I, the multi-product FLP is solved subjecll the constraints in the original
model except that the routings are restricted fiectlishipment by using estimated routing
cost parameters. The accuracy of the estimatedngpabst parameters is discussed in
Chapter 6. A hybrid TS-SA method with an initialig®on starting minimizing total IRC
is finally selected to solve the phase | model. ®p&mal solution to Phase | is always
feasible to the original problem and determinesltitations of DCs and PWs/retailers

assignments.
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Phase Il model solves the routing problem for eapbned DC and its assigned
retailers. The associated delivery problem is fdateal as a capacitated IRP with
additional constraints to solve the optimal routiogrs and frequencies simultaneously.
The study on this problem enriches the existingrditure of IRP, and the proposed MS
method provides an alternative to solve complicaead life distribution problems with
heterogeneous fleet efficiently.

Computational performance of this proposed two-phagthodology is promising.
The heuristics are able to solve the problem witleiasonable time frame for a broad
range of problem sizes and the solution from h&asisignificantly improves the general
greedy solution.

There are several potential extensions from thiskw&irst, even the proposed
heuristics can apply to the integrated problem witee number of PWs for each plant is
greater than one, only the special case of thanaldigproblem where only one PW is
allowed for each plant is discussed in detail irrext research. Extra experiments could
be performed to discuss available heuristics.

Second, from an academic research point of view, algorithms that can provide a
more accurate lower bound solution for the integtaproblem, other than using the
CPLEX MIP solver to solve the model without nonlneerms directly, will be of
interest. For a noticeable number of test casesreqred, the time required for CPLEX
even to verify the optimal solution to the modetheut nonlinear terms was excessive
(test results in Section 4.6).

Third, in this dissertation, DC locations and retaassignments are determined and

then fixed in Phase | model, an algorithm allowingdating these decisions by
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considering the routing information solved in PhAsmuld be of a great value to the real
world needs.

Finally, the usage of routing strategy is one ingair innovation in this dissertation
when deciding DC locations. As discussed in Chapténe final routing structure highly
depends on the demand/retailer density, and erBaarch could be done to provide
better IRC estimation under different demand/retastructures.

In addition, Chapter 7 presents an innovative maddelguide the design of a
distribution network for shipping multiple productsach originating from its unique
production plant, to retailers considering diffarpnoduct consolidation sets. Shipments
may be direct or use intermediate DCs for shipmmntsolidation and/or inventory
pooling prior to final delivery to retail demandipts. Facility costs, inventory costs and
shipping costs are considered. This model is flexdmd may consider factors such as
multiple types of delivery trucks for each segméul, or less than full truck shipments
and different service requirements. A bound isvéeron the maximum cost penalty that
could be incurred from restricting all deliveriesftll truck loads.

Two versions of a greedy construction heuristic andgenetic algorithm are
developed to solve the model. The construction ibecg are shown to provide
computationally efficient approaches to obtain gsotutions as compared to a direct
shipment strategy. Given a set of possible DC lonatand standard cost data for
shipping alternatives and storage, the user catuaeaone or multiple scenarios and
generate a system design by applying the heuriBlie. genetic algorithm also provides
good, feasible solutions but requires greater cdatjmnal effort to produce comparable

results.
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In this work, | assume a continuous demand didfioby experimentation further
assumed a Gaussian distribution. Future work ceufaore discrete demand. Another
possible improvement can be the consideration @fdalitional level of consolidation that
would allow for early consolidation from multipléants for long shipments to demand
regions which are then divided into delivery ordatdocal DCs within demand regions.
With regards to model solution, other chromosonmfend®ns may be considered for the
genetic algorithm. The use of integers insteadimdily values could improve the running
time as a result of chromosome’s length reduct®ensitivity to shipping policies could

able be investigated.
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OPTIMAL FREQUENCY
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problem is to find the value afto minimizey.
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APPENDIX B

UPPER BOUND ON THE LOSS FROM USE OF FULL TRUCK LOAD
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The proposed model in Chapter 7 assumes use ofrdick loads in transportation.
However, the number of full-trucks in each ordewyrba greater than 1. In practice, these
loads may be staggered but this research assumeallttare shipped jointly in current
inventory calculations. The model could be readilyusted for other shipping scenarios
as discussed earlier in the paper. An upper bawmnithe loss from use of full truck load
shipments is derived here.

For each supplier-customer pair, the total costhH pair given a policy needs to be

minimized. Using the same parameters as in therpape

inimi —(Ara Qi 0. Ry R0 i
Minimize TC=(A+ a{c}r bl- Q Q+ h > (B-1)

Let the optimal quantit9 = mC, wherem may not be an integer. Total Cost function

(B-1) becomes

TC(m=(A+ a[ m+ bl m (}~%+ hmTC (B-2)

To know the maximum loss between tiggs and the better of the floor and ceiling

function multiples ofC, define:

m=m|, m=[ n,
min{TC(m)-Tq iy T¢ g)— TC)p if ol
d=1TC(m)—-TQ ny, if ©nx
0, if m=

_tqp-AR L Ly, aofm] [m ke
T(m) = TAM=" (- Do (D m e m

Note thatm-1<m<
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. _ AD 1 1, ab, [m] hC -
STC(m) = TA A< (== S )+ = (m- )

. ~ AD
~TC(m) TC(n)sCm(m_l)
tqm.AP 1 1 ab[m] [m] hC
TC(m)- TA M= c ey g M
Note thatm<m < m+1
“TC(m)-TQ ”)'<—( ) (1 [ 1)+—(m+1 m)
' C m+1 m

~TC(m)-TQ n)us7

min{ AD h—C} if m>1
Cmm-1) 2
S O0<
E, if @m< 1
2
0, if m=

In conclusion,s < hTC
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