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ABSTRACT  
   

Estimating cointegrating relationships requires specific techniques.  Canonical 

correlations are used to determine the rank and space of the cointegrating matrix. 

The vectors used to transform the data into canonical variables have an 

eigenvector representation, and the associated canonical correlations have an 

eigenvalue representation. The number of cointegrating relations is chosen based 

upon a theoretical difference in the convergence rates of the eignevalues. The 

number of cointegrating relations is consistently estimated using a threshold 

function which places a lower bound on the eigenvalues associated with 

cointegrating relations and an upper bound on the eigenvalues on the eigenvalues 

not associated with cointegrating relations.  The proposed estimator performs 

better with a large number of cross-sectional observations and moderate time 

series length. 
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Introduction 

Multiple economic time series display certain features that require specific 

techniques for parameter estimation.  Classical multivariate techniques require 

stationary assumptions that restrict the behavior of the variables; when the 

variables appear non-stationary, alternative methods are required for testing 

procedures.  On the other hand, cointegrated data series appear non-stationary 

while certain relationships between these variables appear stationary.  This paper 

proposes estimating cointegrating relationships using a canonical correlation 

method that is easy to implement and provides consistent estimators of the span 

and number of cointegrating vectors.   

Cointegrated series are individually nonstationary.  However, certain 

linear combinations of nonstationary time series are stationary.  Cointegration 

research dates back to Granger (1987) and Engle and Granger (1987).  Engle and 

Granger (1987) use an error-correction representation which models current 

differences in the observed variables as linear functions of their lagged levels 

with, or without, lagged differences.  The linear functions of the lagged levels are 

known as error-correction components.  The stationarity of the differenced data 

and the inclusion of non-stationary lagged level as explanatory variables suggest 

certain linear combinations of the lagged level data are stationary. 

Johansen (1988) proposes estimating the cointegrating relationships using 

a full information maximum likelihood method.  Using a finite order vector 

autoregression with independent and identically distributed Gaussian error terms, 

Johansen (1988) provides a consistent estimator for the number of cointegrating 
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relationships.  Here, likelihood ratio methods are used to estimate the number of 

cointegrating vectors, coefficients in the vectors and restrictions on the vectors.  

All of these results are derived under the assumption that level data follow a 

vector autoregressive (VAR) process of a finite order.   

Likelihood methods may provide misleading results when the data-

generating process is mis-specified.  For example, selecting the correct number of 

lags to use is important in the estimation.  If too few lags are used, the error term 

will be autocorrelated.  Also, the level data may follow more general vector 

autoregressive and moving average (VARMA) processes that cannot be written as 

VARs of finite orders.  Here, the error vector will follow a VMA(q) process.  In 

both instances, the error terms will not be identically and independently 

distributed over time as the model assumes. 

testing procedures may fail to produce reliable inferences in finite samples.  Toda 

(1995) investigates the performance of the test to estimate the number of 

cointegrating vectors when there are two variables observed over 100 time 

periods with varying specification for the data generating process of the error 

term.  He finds that the testing procedure for the number of cointegrating vectors 

suffers from a lack of power when there is a high degree of autocorrelation in the 

error terms; with a high degree of autocorrelation, the testing procedure says there 

is no cointegration when in fact, one cointegration does exist in the data.       

In addition to poor performance when there is a large amount of 

autocorrelation in the error term, the testing procedure has poor results when the 
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data generating process for the error term is mis-specified.  For example, 

simulations reported below show that the testing procedure does not perform well 

when the error term follows an MA(1) process. An MA(1) process has an AR( ) 

representation and using a finite number of lags, as assumed in Johansen (1986), 

is an approximation of the data series; however an MA(1) process can be 

approximated using an AR(d) process with sufficient d, yet the choice of p further 

complicates the estimation procedure.  

Furthermore, Cheung and Lai (1995) show that the performance of the 

estimation procedure begins to deteriorate as the number of variables increases. 

cointegrating vectors in the 

data.  Further, simulations below show that this problem is exacerbated when the 

autocorrelation in the error term increases.  These results extend the results in 

Toda (1995) to situations with more observed variables. 

Other methods involving more general data-generating processes for the 

innovation terms have been developed.  Phillips (1991) develops a regression 

framework for estimating cointegrating vectors with a general data-generating 

process.  In this setup, one of the observed variables is treated as a response 

variable while the remaining variables are explanatory variables.  Using a 

triangular system, Phillips (1991) produces a consistent estimator for the number 

of cointegrating vectors.  The estimation procedure requires one of the values of 

the cointegrating vector normalized to be unity.  However, simulations below 

show the choice of normalization is crucial for estimation, and an improper 

normalization can provide misleading results. 
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The estimation procedure in this paper involves forming canonical 

correlations between the differences in the observed variables and the lagged 

levels of the observed variables.  Solutions to this problem involve eigenvectors 

of a matrix involving the variance of and the covariance between the levels and 

differences.  Theoretical convergence rates of the eigenvalues similar to Bai and 

Ng (2002) are used in order to estimate the number of cointegration vectors as 

well as their span.  This estimation procedure allows for general data-generating 

processes for the innovation terms and produces estimators which are consistent. 

use 

canonical correlation method.  We estimate cointegration vectors and the number 

of cointegration vectors analyzing unconditional canonical correlations between 

current values of differenced variables and one-period lagged level variables.  The 

Johansen (1986) method uses canonical correlations between current values of 

differenced variables and one-period lagged level variables conditional on lagged 

values of differenced variables.  Also, both methods use asymptotic methods to 

derive the results.   

 However, there are a couple of differences between the estimation 

methods in Johansen (1986) and our procedure.  First, Johansen (1986) uses 

maximum likelihood estimation and assumes a specific functional form for the 

differenced data.  On the other hand, we do not assume a specific functional form 

but instead make assumptions that ensure partial sums constructed from the error 

terms converge to functions of Brownian motion.  Second, estimating the number 

of cointegrating vectors in Johansen (1986) is done using a distribution which 
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does not incorporate certain time-series features in data.  However, our procedure 

for estimating the number of cointegrating vectors incorporates time-series 

properties in the data and adjusts accordingly.   

 

Preliminaries and Motivation 

We begin by defining the data-generating process for the data.  There are 

(N+P) observed variables over T time periods.  Let i tz  be the observed variable i  

(= 1, 2, ..., N+P) at time ( 1, ..., )t T .  The i tz  are assumed all I(1) variables.  

Define an 1N  vector of I(1)  variables 1 2( , , ..., )t t t N tu u u u .  The variables in tu  

follow a multivariate unit root process:  

1
t

t s su g ,  (1) 

where 1 2( , , ..., )t t t N tg g g g  is an 1N  vector of I(0) variables with ( ) 0isE g , 

,i s .  Further, define a 1P  vector of I(1) variables 1( , ..., )t t P tf f f .  The 

( ) 1N P  vector of observed variables 1 2 ,( , , ..., )t t t N P tz z z z  is generated by 

the tf  and tu  variables.  The variables tf , tg  and ut  are unobserved. 

Using the above notation, the data-generating process for the observed 

variables is described by 

zt = Bft +Cut                   (2) 

Here,  B is an (N +P)  P  matrix of the loadings on the I(0) variables in tf  and C 

is an ( )N P ×N matrix of the loadings on the I(1) variables in tu . The combined 
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matrix [ , ]B C  is of full column rank.  Using the notation in (2), we can describe 

the complete data in matrix form by 

 Z = F  B +U  C                                                (3) 

where 1 2( , , ..., )TZ z z z , 1 2( , , ..., )TF f f f , and 1 2( , , ..., )TU u u u .   

Using the above equations, the observed Z variables are linear 

combinations of the unobserved F  and U variables. The non-stationarity in Z 

comes from the non-stationarity in the U variables.  Removing the effect of the U 

variables from the Z variables leaves only the I(0) variables.  Granger (1987) and 

Granger and Weiss (1983) define the components of an I(1) vector, say x, as being 

cointegrated of order one, if there exists a non-zero vector  such that x  = 

I(0).  If we choose an ( )N P P  matrix orthogonal to C (that is, 0 P NA C ), 

we have  

  A zt =  ABft = I(0)                                        (4) 

Thus, each column of A is a cointegrating vector for tz .  Estimating the 

dimension and span of A is the primary focus of this paper. 

 The model in (2) can be generalized to include a linear time trend and non-

zero intercept.  A time trend can be introduced by specifying gt = gt +  where 

 is an 1N vector.  A non-zero intercept can be introduced to equation (2) by 

specifying ft = ft + , where  is a nonzero 1P  vector.  With these additions, 

the model in (2) can be written as 

zt = Bft +Cut = Bft +Cut +B + tC                               (5) 
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It should be noted that the time trend component is in the space of C; this 

specification restricts the number of time trends to be no more than the rank of C.  

As well, when the time trend is in the space of C, the columns of A can still be 

interpreted as cointegrating vectors.  However, with the inclusion of the intercept 

term, some of the cointegrating relationships may have non-zero expected value. 

Estimating the number of cointegrating relations in (2) is achieved by 

maximizing the sample canonical correlations between the differenced data (

1t t tz z z ) and the lagged levels ( 1tz ).  The solution to this problem has an 

eigenvector representation; further, the estimated eigenvalues are the squared 

canonical correlations between the tz  and 1tz .  It is shown in the next section 

that if there are P cointegrating relations, there will be P eigenvalues which are 

(1)pO .  The remaining N eigenvalues will be 1( )pO T .  The divergence in the 

order of the eigenvalues forms the basis for the testing procedure. 

 There are two approaches for determining the number of eigenvalues 

which are (1)pO .  The first involves constructing a threshold level.  The number 

of eigenvalues larger than this threshold value is an estimate of the number of 

(1)pO  eigenvalues.  Bai and Ng (2002) utilize a threshold level in estimating the 

number of factors in stationary data with a large number of cross-sectional units 

and times series observations.  The second approach follows Ahn and Horenstein 

(2011).  There, the eigenvalues are first sorted, and then eigenvalue ratios are 

constructed using the consecutive eigenvalues.  The number of cointegrating 

relations is chosen as the largest of these eigenvalue ratios; thus, creating the 
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ratios eliminates the need for a threshold value.  However, if the eigenvalues have 

different orders of convergence, the ratio test can be misleading.  Further 

discussion of the merits of the ratio test can be found in Ahn and Horenstein 

(2011).  

 There exists previous research which estimates the number of 

cointegrating relations.  Johansen (1988) uses maximum-likelihood methods.  In 

the Johansen (1988) model, the differenced data are assumed to follow a Gaussian 

VAR(d) model, which is equivalent to  

 0 1 1 1 ...t t t p t d tz z z z ,                        (6) 

where t  are i.i.d. (0, )N .  Here, the differenced data is a function of the lagged 

levels, a finite number of lagged differences and an error vector t .   

 Although the lagged levels are nonstationary, multiplying the lagged 

levels by a cointegrating vector creates a stationary series.  Let  0 B A  where 

B  is an ( )N P P  matrix.  Here, 1tA z  is a vector of error-correction terms 

which are I(0).  Testing for cointegration in equation (6) involves testing the rank 

of the matrix 0 .   

If we difference (2), we have 

  zt =  Bft 1+Bft +Cgt =  B(AB) 1A zt 1+et                        (7) 

where et = Bft +Cgt .  The second equality follows if we solve (2) at time t-1 for 

1tf  using the orthogonality of A and C.  The representation in equation (7) 

displays the differenced data as a function of the lagged levels plus error terms.   
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 Comparing the models for the differenced data in (7) and (6), we can see 

that the matrix  B(  AB)  A  is equal to 0  and 1 1 ...t p t p tz z  is equal 

to te .  If we assume that te  follows an AR(k) process, we see that the model in 

Johansen (1986) is a special case of the model in (2).  Suppose that the model in 

Johansen (1988) stipulates te  can be represented using a finite number of lagged 

differences of tz  plus an error vector t .  However, there do exist some 

specifications in which this is not a proper assumption; to wit, if te  follows a 

MA(1) process, the AR(k) assumption is not appropriate. 

  At the moment, we place no such restrictions on the te  other than it has a 

moving average representation of finite or infinite order.  Further, Johansen 

(1988) stipulates the covariance matrix of t  is not time variant; this precludes 

various GARCH models.  The model in this paper allows the short-run covariance 

matrix to vary; however, the long run covariance matrix of te  is assumed to 

converge to a fixed matrix. 

 In addition, Phillips and Ouliaris (1990) provides an alternative procedure 

to that in Johansen (1988).  In this alternative procedure, the data has a triangular 

representation 

 zt
1 =Wzt

2 + t
1 =Wzt 1

2 + t
1+W t

2                                      (8a) 

 zt
2 = zt 1

2 + t
2 .                                                (8b) 

Here, 1
tz  and 2

tz  are the observed variables where 1
tz  and 1

t  are 1P , 2
tz  and 2

t

are 1N , and W  is a P N  matrix. 
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The testing procedure for cointegration involves regressing the 1
tz  

variables on the 2
tz   variables and using the residuals to test for cointegration.  

Phillips and Ouliaris (1990) assume the 1
t  and 2

t  are assumed strictly stationary 

and ergodic.  With these assumptions, the OLS estimators of the coefficients of W 

converge to functions of Brownian motion.  Testing the coefficients of the 

cointegrating vector is done using confidence intervals from simulated Brownian 

motion; testing for the presence of cointegration is done using the residuals from 

the OLS estimation.   

In addition, the triangular system of (8a) and (8b) is a special case of (2).  

This is so because, when the variables in tz  are arranged in an appropriate way, 

the system becomes a nonsingular transformation of (2).  To show this,  let 

1 2( , )A A A , where 1A  is a N N  matrix.  Assume momentarily that the 

variables in tz  are arranged so that 1A  is invertible.  Let 1
1 2( )W A A ;  and  

 
0P P N

N

I
D

W I          (9)
 

Notice that D is a nonsingular matrix by construction.  If we pre-multiply 

equation (2) by D, we obtain (8a) and (8b) with 

1 ( , )( ) ( , )t P t t P tI W B f C u I W B f  and 2 (0 , )( )t N P P t tI B f C g .  

However, it is important to note that this result requires the matrix 1A   to be 

invertible.  When the variables in tz  are inappropriately arranged and 1A  is not 

invertible, the triangular system of (8a) and (8b) becomes a misspecified model.      
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Finally, Bossaerts (1988) avoids the normalization issues above and 

estimates the number of cointegrating relations using canonical correlation 

methods.  His procedure involves two steps.  First, the canonical correlations 

between the current level of the observed variables and the lagged level of the 

observed variables are estimated.  Canonical correlations are found by forming 

linear combinations of the current and lagged levels which maximize the 

correlation between the two; the canonical variables are the resulting linear 

combinations of the variables formed by this process.   

Next, each canonical variable is regressed on its lagged level.  The 

autoregressive coefficient from this regression is tested using unit root 

asymptotics developed in Phillips (1987); the number of regressions which do not 

have a unit root correspond to the number of cointegrating relations.  However, 

the setup in Bossaerts (1988) uses the Phillips (1987) unit root tests to test for 

cointegration which has low power against stationary alternatives as documented 

in Phillips and Perron (1988) and Kwiatkowski, Phillips, Schmidt and Shin 

(1992).   

 

Assumptions and Asymptotic Results 

Assumptions 

The following assumptions are from Phillips and Durlauf (1986) and 

describe the asymptotic behavior of partial sums constructed from the tg  and tf .  

Define ( , )t t tv f g  as the stacked vector of innovations.  These partial sums are 
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constructed from the ( ) 1N P  vectors ts  = 1
t
q qv .  The following assumptions 

ensure these partial sums will converge to functions of Brownian motion.  When 

tv  is a covariance stationary process, the ts  will converge to functions of 

Brownian motion; however, less restrictive assumptions allow for more general 

data-generating processes.   

 

Assumption A : ( ) 1( ) 0t N PE v , for all t. 

Assumption B: 1
T TE T s s , where  is a positive definite matrix, as 

T . 

Assumption C : 2{ }i tv  are uniformly integrable, for all 1, 2, ...,i N P . 

Assumption D: sup t i tE v  for some 2  and all 1, 2, ...,i N P . 

Assumption E : 1 ( )k T T k T TE T s s s s , as m in( , )k T . 

Assumption F : Either M  is of size / (2 2)   or 2  and m  is of size 

/ ( 2) .1  

                                                 
1 For algebras F  and G,  

 (F,G) = sup{  F ,  G,P( )>0} P( |  )  P( )  ; 

( , )F G  sup{  F ,  G} P( , )  P( )P( ) . 

 Further, define the algebras generated by { , ..., }a bv v  as b
aF  and the algebras generated 

by { , }a bs s a b  as b
aL .  The measures m  and m  are defined as  

1sup sup ( , )n j
m n j n m n mF L ; 

m  = 1sup sup ( , )n j
n j n m n mF L . 
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Assumption G :  T  1 s=1
T fs fs p H1 

and T  1 s=1
T (Bfs+1,Cgs+1)  Bfs fs p H2  as 

, where  and  are both fixed matrices where 

1 2( ) ( )r ank H rank H P . 

 

Assumptions A  F provide sufficient conditions for which partial sums 

constructed from the tu  converge to functions of Brownian motion. This is an 

asymptotic invariance result from Phillips and Durlauf (1986) which is used 

throughout the paper.2  The term asymptotic invariance is used because regardless 

of the short-term dynamics of the process tu , only the long-term covariance 

matrix  determines the shape of the Brownian motion. 

Assumption B allows the tv to have a moderate amount of cross-sectional 

heteroskedasticity.  In addition, Assumption B also permits some serial 

dependence in the tv .  The influence of any one individual short-run covariance 

matrix is asymptotically negligible as the sample size increases.  Only the long-

term covariance matrix determines the shape of the limiting function of Brownian 

motion.  

                                                 
2 Asymptotic invariance pertains to the limiting distribution of the sum  

*1/ 2 1/ 2
1( ) t

T q qX r T v , 

where  *t  = m ax{ | , [0,1]}t t r T r .  For two processes 1
tv  and 2

tv  with identical long-term 
covariance  but different short run dynamics, ( ) ( )TX t W r  for both processes where ( )W r  is 
Brownian motion. 

T H1 H2
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Assumptions C and D are technical assumptions which provide limiting 

results relating to the probability of outliers.  If i tf  and i tg  are random variables 

with finite fourth moments, then Assumptions C and Assumption D hold.  These 

assumptions are necessary for applying the functional central limit theorem.  The 

parameter  regulates the probability of outliers and the persistence of these 

outlying observations.  GARCH processes allow for time-varying, persistent 

variance that can permit significant outliers requiring a larger value for ; 

Assumption F requires that the influence of these observations decay more 

quickly.   For a more detailed discussion see Andrews (1988) and Li and 

Terasvitra (1999). 

Assumptions E and F pertain to the limiting temporal properties of the 

distribution.   Assumption E concerns the relationship between subsets of the unit 

root processes and the entire process { }i tu ; in the limit, any unit root process 

constructed from contiguous values of i tf  and i tg  will have a long-run covariance 

matrix equal to   Assumption F limits the amount of serial dependence in the 

error terms.  The amount of serial dependence in the tv  must become 

asymptotically negligible at the specified rates.  Alternatively, the joint 

distribution of the error terms must become asymptotically independent at a 

specified rate, as the time between the error terms increases.  For a detailed 

discussion see the Appendix in Phillips and Durlauf (1986). 

Assumption G states the sample covariance matrix of the I (0)  

components converge in probability to a matrix that has rank P as T .  
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Equation (7) shows  zt  is a function of ft , ft+1  and gt+1.  The second part of 

Assumption G states that the sample covariance matrix between  zt and ft  must 

converge in probability to a matrix that has rank P.   

With assumptions A  F, the limiting distributions of certain matrices are 

functions of Brownian motion.  However, as mentioned above, these are only 

sufficient conditions.  The only requirement is that the canonical correlations in 

the data approach random or fixed matrices at specified rates.  It is the divergence 

in the speed of these canonical correlations that allows canonical correlations to 

be used as a means of estimating cointegrating relations. 

 

Estimating the Number of Cointegrating Vectors 

The first k largest canonical correlations between the  zt+1 and tz  are 

calculated by finding linear combinations of the variables which maximize the 

correlation.  The problem can be stated as 

 max{A,D}Tr  A  Z  ZD /T( )                                         (10) 

subject to the constraints on the vectors such that / kA Z Z A T I  and 

/ kD Z Z D T I .  Here, 2 1( , ..., )TZ z z , A  and D  are  ( )N P k  

matrices, and I  is k k  identity matrix, and Tr is the trace operator.  The 

constraints in the maximization problem require the canonical variables Z A  and 

Z D  to have unit variances and zero covariances; the correlations between the 

Z A  and Z D  are the squared canonical correlations. 
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Setting up the Lagrangian and solving the constrained maximization, we 

have the following first order conditions  

 1 1
, , , ,Z Z Z Z Z Z Z Z D D                                  (11) 

Here, , /X Y X Y T  for any matrices X and Y , and  is an k k  diagonal 

matrix with the squared Lagrangian multipliers along the diagonal, j .  The 

solution D  contains the eigenvectors of the matrix 1 1
, , , ,Z Z Z Z Z Z Z Z ; the 

Lagrangian multipliers are the associated squared eigenvalues. From the 

constraint placed on the problem, all of the eigenvalues are between zero and one.  

 

Theorem 1: With assumptions A  G and when 1P , the P largest eigenvalues 

are strictly positive and (1)pO , while the N smallest eigenvalues are 1( )pO T .  

With assumptions A  G and when 0P , all of the eigenvalues are 1( )pO T . 

 

Theorem 1 states that the number of eigenvalues in the data approach zero 

at different rates will depend on the number of cointegrating relations. 

Alternatively, the number of eigenvalues which are bounded away from zero is 

equal to the rank of A.  Further, because the eigenvalues are also squared 

correlations, the eigenvalues are all bounded above by unity.  Similarly, the 

smallest N eigenvalues will approach zero at speed 1T .  This divergence in the 

eigenvalues provides the basis for testing the number of cointegrations. 
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 Selecting the true number of P  is related to previous research on model 

selection which trade-off model performance and a penalty for overfitting.  Cragg 

and Donald (1997) estimate the rank of a matrix by minimizing an objective 

function where the penalty function increasing in the choice of the matrix rank.  

Bai and Ng (2002) estimate the number of I(0) factors where the penalty function 

is designed to approach zero at a specified convergence rate as both the cross-

sectional and time dimension become large.  Moon and Perron (2007) use a 

modified estimator similar to that of Bai and Ng (2002) to estimate the number of 

non-stationary factors when N and T are large.  Here, we are interested in creating 

an objective function which will consistently estimate the true number of 

cointegrations when N is small and T is large.  Alternatively, Stock and Watson 

(1989) choose the number of factors to include by minimizing the mean squared 

forecast error of forecasts in out of sample testing. 

We propose estimating the number of cointegrations using a threshold 

function. The threshold function is designed to approach zero at a rate slower than 

1T ; in this way, it places an upper bound on the eigenvalues which are not 

formed from cointegrating relations.  Any threshold function which is ( )pO T  

for (0,1)  will correctly select the number of cointegrating relations in the 

data.   

For any threshold function ( )f T  which is ( )pO T , define 

max{ | ( )}jP j f T .  Here, P  is the estimated number of cointegrating 

relations estimated as the number of eigenvalues which are above the value of the 
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threshold function for a given T.  Alternatively, the threshold function can be 

included in an objective function as a penalty function similar to the related works 

above.  For example, selecting the number of cointegrations can be formulated as 

*P  = 1arg max { ( ( ))}j
j s s f T , where ( )f T  acts as a penalty function for over 

selecting the number of cointegrations. 

Asymptotically, the functional form of ( )f T  and the resulting  are 

flexible so long as ( )f T  is ( )pO T .  This flexibility allows the threshold 

function to incorporate features of the data in order to more accurately estimate 

the number of cointegrating relations in finite samples. 

 
Proposition 1:  With assumptions A  F, 0P  and for any ( )f T  which is 

( )pO T , lim Pr( )T P P , where max{ | ( )}jP j f T . 
 
 

Proposition 1 states that using the eigenvalues in conjunction with a 

particular form of threshold function provides a consistent estimator of the true 

number of cointegrating relations.  With a nonstationary series and no 

cointegrating relations, this implies we have ( )N P  unit root processes.  

Various functional forms for the threshold function which exploit information in 

the data sample are explored below.    

 

Consistency of the Cointegrating Vector 

Having shown using a threshold function to consistently estimate the 

number of cointegrating relations, the next step is to show the eigenvectors 



 19 

associated with these P largest eigenvalues lie in the span of the true A.  Define 

PA  and PD  as the eigenvectors associated with the P largest eigenvalues in the 

data from (9) associated with the P  largest eigenvalues.  The estimators PA  and 

PD  are related through 

 1 1/ 2( ) ( )P PA Z Z Z Z D .                                   (12) 

The term on the right hand side is the OLS estimator obtained by 

regressing the differenced data on the lagged levels multiplied by the estimator 

1/ 2
PD .  OLS estimates in cointegrated series have been studied at length in 

Phillips and Durlauf (1986), Phillips and Ouliaris (1990) and Phillips and Hansen 

(1990).  As mentioned above, these regressions all require normalization where 

one variable is regressed on the remaining variables.  However, when the data is 

generated by (2), the eigenvectors from canonical correlation analysis consistently 

estimate the space of the true A. 

 

Theorem 2:  With assumption A  G and 1P , 1( )P PA A A A D  + 1( )pO T .   

 

Theorem 2 states that the vectors in pA  are T- consistent estimators for the space 

of the true A.   

 

Estimation with a T ime T rend 
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Cointegrating relationship in the data can still be estimated when the data 

includes a time trend and the expected values of the cointegrating relationship is 

not zero; these correspond non-zero values for  and  in (5) .  Estimating the 

time trend is not the focus in this paper; however, the intercept and time trend 

must be accounted for when estimating.  Forming an alternative theory is 

avoidable by transforming the data before estimation.  Previously, it was shown 

the largest P eigenvalues of the matrix   
 Z , Z
 1  

 Z ,Z Z ,Z
 1  Z , Z  are (1)pO while the 

smallest N eigenvalues are 1( )pO T .  Transforming the data to remove the time 

trend produces a data series where the eigenvalues will have the same rates of 

convergence as in Theorem 1. 

Transforming the data involves removing the intercept; removing the 

intercept is not necessary.  This is done using the orthogonal complement of the 

matrix ( )M  = TI  - 1( ) .  Here,  i  equal to i; 

in other words,  is a vector with a time trend.  The appendix shows that 

multiplying the level data by this matrix removes the time trend while not 

affecting the orders of convergence of the eigenvalues; define the resulting data 

series as the transformed data.  After transforming the data using ( )M , the 

estimated number of cointegrations consistently estimates the rank of A. 

 

Theorem 3: With assumptions A  G, when the data is generated by equation (5), 

and when the  largest eigenvalues of the transformed data are strictly 
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positive and (1)pO , while the N smallest eigenvalues are 1( )pO T .  With 

assumptions A  G and when P = 0 all of the eigenvalues are 1( )pO T .   

 

 Theorem 3 states that the orders of convergence of the eigenvalues of the 

transformed data are identical to the orders of convergence of the eigenvalues of 

the data when a time trend is not present.  Testing procedures for the number of 

cointegrating relationships when there is a time trend proceed in the same manner 

as when there are not a time trend. 

 

Proposition 2:  With assumptions A  G, when the data is generated by equation 

(5), 0P , when the data contains a time trend and intercept and for any f T  

which is ( )pO T , lim Pr( )T P P  where P  = max{ | ( )}jj f T .   

 

 

 

 

Response Surface Analysis 

L iterature Review 

Some previous studies have detailed poor finite sample properties of the 

ML estimator.  For example, Cheung and Lai (1993) document the size of the 

MLE estimator for the number of cointegrating vectors increases, the number of 

variables increases and the data-generating process is mis-specified.  The authors 
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find that when the number of variables ( )N P  increases the MLE overestimates 

the true number of cointegrations.  In addition, when the innovation terms are 

finite moving-average processes, the MLE requires three or more lags for 

appropriately sized tests.   

 In addition to describing the performance of the MLE in finite samples, 

Cheung and Lai (1993) increase finite sample MLE performance by using 

response surface analysis which provides modified test statistics of the Johansen 

(1986) estimator for the number of cointegrations.  Response surface analysis 

involves fitting response variables to control variables that are under the control 

of the researcher.  The control variables under the control of the authors are the 

Ahn and Reinsel (1990) scaling factor, (T  (N +P)d) /T , where T, N and P are 

as defined above and d is the number of lagged differences as in (6); the response 

variables are the ratios of the finite sample quantiles calculated from simulated 

data to their corresponding asymptotic critical values.  This estimation procedure 

is designed to improve finite sample performance while adhering to asymptotic 

results. 

Specifically, Cheung and Lai (1993) simulate data for various data 

configurations and calculate sample percentiles of the test statistics corresponding 

to specific confidence levels.  Next, the ratios of these sample quantiles are 

divided by the asymptotic critical value of the test statistic.  Finally, these ratios 

are regressed on an intercept and the Ahn Reinsel (1990) scaling factor, 

(T  (N +P)d) /T  as defined above.  The estimated slope and intercept 
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coefficients are found to improve the finite sample performance of the Johansen 

(1986) estimator.   

 Response surface analysis is also used in MacKinnon (1996) to produce 

functional forms for critical values and p-values of the MLE using simulated data.  

The critical value functions are affine functions of 1T  and 2T  with a non-zero 

intercept.  As T approaches infinity, the finite sample corrections due to 1T  and 

2T  approach zero.  Therefore, the intercepts are interpreted as the asymptotic 

critical values and p-values from the simulated data. 

 Ho and Sorenson (1996) and Cheung and Lai (1995) investigate the 

number of lags to use in the error-correction model and finite-sample MLE 

performance when the number of variables and cointegrations is allowed to grow.  

In finite samples, the authors find the MLE estimator has low power when N + P 

> 2.  In fact, the MLE tends to select too many cointegrations in the simulated 

data.  As N + P grows, the MLE estimator has low power against hypothesis tests 

where the null assumes more cointegrations than the true number.  Binder, Hsiao 

and Pesaran (2005) develop methods for estimating cointegrating relations with 

small T and large N that rely on N approaching infinity and T fixed.  However, the 

purpose of this study is to investigate the relative performance of the competing 

estimators when N is small and T is large. 

 The methods developed in this paper do not use a parameter-free 

asymptotic distribution to test for the number of cointegrations.  Instead, the 

estimator developed here has a flexibility in parameter choice.  Any threshold 

function which is ( )pO T , where 0 <  < 1, can be used to consistently estimate 
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the number of cointegrating relationships.  The  can be chosen such that the 

threshold function performs well in finite samples. 

 

 

Proposed M ethod 

 For the simulations here, the threshold function, ( , , , )T h T N R S , is 

assumed to be of the form 

 ( , , , ) ( )Th T N P R S k T N P R S                           (13) 

Here T is the number of time periods, N+P is the number of variables observed 

over the time period and R and S are functions explained below.  For 0 1 , 

the threshold function is ( )pO T when all other variables are held constant.  This 

functional form is chosen because both sides can be transformed into a linear 

function by taking the log of each side; after this transformation, the parameters 

can be estimated using least-squares methods. 

 In equation (13), R is a function of a weighted average of autocorrelations.  

Toda (1994) documents that the autocorrelation present in the innovations plays a 

large role in the accuracy of the test.  Because of this, the weighted average of the 

autocorrelations is included.  This value is calculated in four steps.  First, the 

matrix of level observations is multiplied by the ( ) ( )N P N P  matrix of 

eigenvectors from (11) producing a T N  matrix of candidate stationary 

components F = ZA.  The variables in the matrix F are candidate stationary 

components because only P of the (N + P) variables are stationary when the true 
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number of cointegrations is P.  The (t,i)th element of F  is i tf .  Second, the 

correlation between each i tf  and 1i tf , i , is computed.  These correlations 

measure the autocorrelation present in the candidate stationary components.  

Because there are only P stationary components in the data, N correlations will 

approach unity as the sample size increases.   

 Third, weights are calculated using the i .  For each component, the 

weight is calculated as  

 
1

1

1
i

i N P
i i

w                                             (14) 

With this functional form, the i tf  with less autocorrelation will have greater 

weight; if R is computed using an equally-weighted average, R will increase as the 

number of non-stationary components increases.  With the weights chosen using 

(2), the near unity autocorrelations from the non-stationary components are 

negligible.  Finally, R is computed using3  

 11 N P
i i iR w .                                             (15) 

The weighed sum is added to unity in (15) to control for the situation when there 

is no autocorrelation in the stationary processes.  When there is no autocorrelation 

                                                 
3 Additional specifications for R were also considered. Using 

1 1 1
1 11 ( )N P N P

j j jR j j ,  R = 1 + ( i=1
N+P exp( j)) 1 i=1

N+P exp( j)  j , and R =1+  1 , 

where  j is the jth largest value of all i  (i = 1, ..., N+P) and  j  is the jth largest 

value of all i  ( 1, ...,i N P ).  All provided similar results, but the weights in (2) 
provided an R that was the most accurate. 
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in the stationary processes, P of the i  will be close to zero and the weighted sum 

1
N P
i i iw  will be close to zero.  In order to prevent the threshold function from 

approaching zero as a result of low autocorrelation, the weighted sum is added to 

unity.   

 The variable S is an equally-weighted average of 2R  when regressing 

 zit+1 on zt and a constant for all i =1,...,N +P .  The 2R  measures the amount of 

variation in the differenced data that the lagged levels can.  When the 2R  is small, 

the lagged levels do not explain a large amount of the variation in the differenced 

data.  In this instance, the correlation between the differenced data and the lagged 

levels will be low and the resulting canonical correlations will be lower as well.  

Controlling for the average 2R  in the data allows the threshold function to adjust 

accordingly.   

 Each of the variables in the threshold function influences the behavior of 

the Pth and (P+1)st  eigenvalues.  Figure 1 shows the average 1st and 2nd largest 

eigenvalues for various values of N when P = 1; in these simulations tf  and tg  

follow an AR(1) process.  Both eigenvalues are increasing with the number of 

variables.  Further, the eigenvalues decrease as the serial correlation in the i tf  and 

i tg  increases; in fact, when  = 0.9, the average (P+1)st eigenvalue is above the 

average Pth eigenvalue when N > 5.  These and other simulations suggest the 

threshold function should take into account the number of variables as well as an 

estimate of the serial correlation in the innovations.   
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 The choice of the parameters k , ,  and  determine the intercept of 

the threshold function while the parameter  determines the speed at which the 

threshold function approaches zero.  Ideally, the value of the threshold function 

will lie between the Pth eigenvalue,  p , and the (P+1)th eigenvalue, 1P .  This 

suggests estimating the following equation 

 w P + (1 w) P+1   w,P,P+1 = kT   N  R S                            (16) 

Taking logs 

 ln( w,P ,P+1) = ln(k)   ln(T )+ ln(N )+ ln(R)+ ln(S)                (17) 

Here 0 1w .  This methodology will provide a good and practical estimator of 

a specific linear combination of the eigenvalues.  However, there is no guarantee 

the parameter estimates are the parameters which will select the true number of 

cointegrating relationships with the greatest accuracy.  Still, simulations will show 

that this methodology can provide parameter estimates which provide accurate 

estimates for the true number of cointegrating relationships. 

 The choice variable T is ( )O T , but the term , , 1w P P  is (1)pO .  Therefore, 

with finite N and R, the ordinary least-squares estimate for  will be 1( )pO T .  

The asymptotic behavior of T was not an issue in MacKinnon (1996) because the 

regression used 1T as a regressor.  Because of this, the estimation is done in two 

parts.  First, a value for  is chosen4 and the parameters  and  are estimated 

using ordinary least-squares with small values for T and various combinations of 

                                                 
4 Here, possible   
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N, P, as well as the parameters governing the data generating process for the 

innovations.  Here, the least-squares estimates ( )  and ( )  are functions of 

.  In addition to storing the least-squares estimates, the percentage of times the 

threshold function is between the Pth and (P+1)st eigenvalues, ( ) , is stored as 

well.  The estimated parameter values are the argmax for  ( ) , , as well as the 

corresponding  ( )  and  ( ) . 

 

Simulations 

Previous Methods 

The virtue of the proposed estimation procedure is that it does not require 

any specific normalization of the data.  This flexibility precludes improper 

conclusions about the presence of cointegrating vectors.  As mentioned above, the 

testing procedure in Phillips and Ouliaris (1990) does require this normalization.  

Table 1 displays results for simulations where there is only one cointegrating 

vector among 5 observed variables; here W is a 1 × 4 row vector with a 1 in the 

first column and zeros in the remaining columns.  This table shows that the 

Phillips and Ouliaris (1990) testing procedure correctly rejects the null of no 

cointegration in every simulation when one of the cointegrated variables is on the 

left-hand side of the regression.  However, when both of the cointegrated 

variables are on the right-hand side of the regression, the testing procedure rejects 

the null of no cointregrations less than 4% of the time.  These simulations show, 
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the method in Phillips and Ouliaris (1990) cannot detect any cointegrating 

relations which include only the variables in 2
tz .  

The theory for determining the number of cointegrations uses asymptotic 

results as the number of time periods goes to infinity.  However, because all data 

sets are finite, estimator performance in finite samples is of interest.  Toda (1995) 

discusses the finite sample performance of the MLE estimator for the number of 

cointegrations developed in Johansen (1988).  The experiment in Toda (1995) 

fixes the number of variables at N + P = 2 and the number of time periods at T = 

100 while varying the temporal parameters governing the data-generating process 

for the innovations; in equation (2), the experiment is similar to varying the 

parameters describing the data-generating process for tf  and tg .  

The simulation procedure in Toda (1995) can be expressed using equation 

(2).  When N = 2, there are no cointegrating vectors and the matrix C is set equal 

to an identity matrix.  When N = 1, [1, 0]A  and [0,1]C .  The variables tf  

and tg each follow an AR(1) process.  Toda (1995) investigates the performance 

of the Johansen (1986) estimator for the number of cointegrating vectors when the 

autocorrelation of the tf  and tg  is varied and the correlation between the 

innovations to the are varied tf  and tg .   

Toda (1995) concludes that for 2N P ,  T = 100 is too few 

observations for reliable statistics.  He states that T > 300 is required for good 

performance of the MLE uniformly over parameters governing the data-

generating process.  However, when the correlation between the innovations in 
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the non-stationary components and stationary components increases, the 

percentage of times the Johansen (1986) estimator correctly selects the number of 

cointegrating vectors increases. When the degree of autocorrelation in the 

innovation process increases, performance decreases. 

 

Proposed M ethod 

 The AR(1) model can capture many features present in data.  Examining 

the error-correction model for the data can shed some light on the impact the 

serial correlation parameters have.  The differenced data can be written as  

 1 1 1 [( 1) ] ( )i t i t i t i f t t i g t tz b f c g b f h c g q               (18) 

As mentioned above, the cointegrating vectors are vectors which determine long-

run economic relationships.  In the model above, the cointegrating vectors are the 

( ) 1N P  vectors in A and the deviations from these long-run relationships are 

the stationary components tf .  The serial correlation in tf  determines how long 

the variables remain away from their long-run relationships; the larger f  is, the 

longer the stationary components will remain above zero, and the longer variables 

will remain away from their long-run level.  

 In addition, when the value of  f  
is large, the correlation between the 

lagged stationary components and the differenced data decreases.  From equation 

(18), the closer the value of  f  is to unity, the less the variance in the differenced 

data is explained by the lagged stationary components.  As a result, the correlation 

between the lagged stationary components and the differenced data decreases.  
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Therefore, the eigenvalues associated with the canonical correlations will 

decrease as well.  

 As mentioned before, the parameters are estimated using simulated data 

with finite values of T.  The innovations are generated using an autoregressive 

process AR(1) where fit =  f fit 1 +hit  and g jt =  gg jt 1 +qjt  where i th  and j tq  are 

iid 2(0,1 )N  for all all i, j and t,   and f  or g ; the variance is chosen in 

order to normalize the long-run variance of the i tf  and j tg .  The entries in the 

matrices A and C are all (0,1)N  random variables.  The simulations are run using 

T = 150, 200, 250; N = 2, 3, 4, 5; P = 0, 1, 2, 3, 4, and  =  0, 0.1, 0.25, 0.5. 

 The estimated parameters are displayed in the first column of Table 2.  

The estimated value for  is between zero and one.  As the other variables are 

assumed to be finite, the threshold function will be 0.23( )pO T .  The threshold 

function will approach zero as the number of time series observations grows large 

while the largest P eigenvalues will be (1)pO .  Because of this, the threshold 

function can be thought of as a lower bound to the P largest eigenvalues and an 

upper bound to the N smallest eigenvalues. 

 Also, the value for  is between zero and one; because of this, the 

threshold function will grow without bound as N grows large.  However, as N is 

assumed finite, the value of the threshold function in large samples will be 

determined by the number of time series observations.  Further, the positive value 

of delta indicates the threshold function must be adjusted upwards as more 
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variables are observed.   This upwards adjustment is a result of both the Pth 

eigenvalue decreasing with N and the (P+1)st eigenvalue increasing with N.   

 The degree of autocorrelation in the i tf  and j tg  plays a role in 

determining the threshold value.  The value for  is positive which indicates 

larger values of require an upward adjustment of the threshold function.  This 

result is intuitive.  In the limit, as  approaches unity for the stationary 

components, i tf , the process i tf  becomes I(1).  It must be noted that the latter 

estimated autocorrelations used in equation (2) will approach unity; however, the 

decreasing weights associated with the larger auto correlations will underweight 

the i  used to calculate R.  Therefore, additional i   will not play a significant 

role in determining R when N is increased.  To this extent, changes in N will not 

cause significant changes in R. 

 Three tests are compared when estimating the number of cointegrating 

relationships in the data.  The three tests include Johansen (1986) likelihood 

method procedure, the Ahn and Reinsel (1988) scaled version of the Johansen 

(1986) testing procedure and the threshold method outlined above.  The Ahn and 

Reinsel (1988) method adjusts the test statistics from Johansen (1986) by a factor 

of (T  (N +P)d) /T  where d is the number of lagged differences included in the 

estimation and compares the scaled test statistic to the critical value.  The scale 

factor is designed to improve the finite sample performance of the Johansen 

(1986) testing procedure.  This scaling factor approaches 1 as T grow large and 

decreases as the number of variables increases. 
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 Table 3 displays the performance of the procedures when the innovations 

in the data are iid N(0,1) random variables.  The table shows that all tests have 

increasing performance when T grows.  This is to be expected as all three 

procedures are based on large T asymptotics.  However, the table also shows that 

the Johansen (1986) test and the Ahn and Reinsel (1988) test have poor 

performance when (N + P) increases.  When N + P > 2 and T = 100 the Johansen 

(1986) method selects too few cointegrations.  However, the threshold method 

performs well and selects the true number of cointegrations more than 99% of the 

time. 

 Table 4 shows the performance of the testing procedures when the i tf  are 

autocorrelated.  The autocorrelation coefficient is set equal to 0.5 in all situations.  

Simulations show that both the Johansen (1986) method and the Ahn and Reinsel 

(1988) method perform poorly in samples where there are only one cointegrating 

relation; this performance deteriorates when T is smaller.  Further, in samples 

where T = 100, these procedures are biased downwards when selecting the 

number of cointegrations.  However, the threshold has superior performance in 

these simulations.  When T = 200, the threshold method selects the true number of 

cointegrating relations more than 98% of the time. 

 There can also be situation where there is autocorrelation in the i tg .  Table 

5 shows the simulation results for this situation.  In this setting, all three methods 

perform well.  However, in simulations where T = 100, each testing procedure has 

certain configurations of the data where it performs poorly.  The Johansen (1986) 

and Ahn and Reinsel (1988) methods perform poorly when N + P = 4 and P = 2 
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or 3; alternatively, the threshold method performs poorly when N + P = 4 and P = 

0 or 1.   

 Of course, the threshold function here is fit using data generated by an 

AR(1) process.  As a robustness check, the performance of the threshold function 

is checked using data simulated using an alternative data generating process.  

First, (N+P)×1 vectors tv  are generated where the tv  follow an AR(1) process 

with autocorrelation of 0.5 and iid error terms.  Next, the i tf  and j tg  are 

constructed from the tv  by using the equation ft =Mtvt .  Here, tM  is a matrix of 

the first P rows of a (N+P) × (N+P) random permutation matrix.  With this 

construction, correlation between the i tf  and fit 1 is random.  Table 6 shows the 

performance of the threshold estimator and the other competing estimators when 

the i tf  and j tg  follow this process; it is clear from the table that the threshold 

function outperforms all of the estimators. 

 

Conclusion 

 This paper builds on previous literature estimating cointegrating relations.  

The methods developed in this paper are based upon the asymptotic results of 

Phillips and Durlauf (1986) and permit flexible data-generating process for the 

innovations to the data series.  The eigenvalue and eigenvector methods 

developed rely on the order of convergence of eigenvalues computed from the 

data.  The resulting asymptotics of the data do not require exact specifications for 

the data-generating process but only assumptions on the limiting behavior of the 
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data-generating process. Previous research in Johansen (1988) has 

implemented full-information maximum likelihood methods which required 

Gaussian errors with an autoregressive specification.  As shown above, there are 

examples for which the maximum likelihood methods are not consistent and do 

not have good finite sample properties.  The proposed method is consistent over a 

wide variety of data-generating processes for the errors.  However, simulations 

have shown the maximum likelihood methods do have excellent properties when 

the error process is correctly specified.  Still, the proposed estimator consistently 

estimates the number of cointegrating vectors and the space of the cointegrating 

vectors for a large class of data generating processes. 

 In addition, this methodology can be used when there is a time trend in the 

data generating process.  Detrending the data before estimating the canonical 

correlation removes the time trend but retains the order of convergence 

differential between the first p eigenvalues and latter eigenvalues.  Even if there is 

no time trend present, de-trending the data in this manner will not affect any of 

the convergence results. 

 The focus in this paper has been on developing simple eigenvector and 

eigenvalue methods for estimating cointegrating relations in nonstationary data.  

Methods for consistent estimation of the size and space of the cointegrating 

relationships are developed.  Simulations show the proposed estimator 

outperforms maximum likelihood methods when there is misspecification in the 

maximum-likelihood objective function and is on par when the model is correctly 

specified.   
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Table 1 
 
Performance of the Hansen Test with Alternative Normalizations 
 
Number of 
Additional 
Variables 

in the 
Regression 

Index of 
the 

Variable 
Contained 
on the Left 

Average 
Value of 
the Zp 
Test 
Statistic 

Fraction of 
Times the 
Null of No 

Cointegration 
is Rejected 

Average 
Zt 

Statistic 

Fraction of 
Times the 
Null of No 

Cointegration 
is Rejected 

0 1 -495.4 1.00 -22.5 1.00 
1 1 -492.4 1.00 -22.5 1.00 
2 1 -489.5 1.00 -22.6 1.00 
3 1 -486.7 1.00 -22.6 1.00 
4 1 -484.0 1.00 -22.7 1.00 
0 2 -511.2 1.00 -22.3 1.00 
1 2 -518.0 1.00 -22.2 1.00 
2 2 -523.8 1.00 -22.1 1.00 
3 2 -528.6 1.00 -22.0 1.00 
4 2 -532.5 1.00 -22.0 1.00 
1 3 -6.610 0.02 -1.55 0.02 
2 3 -10.77 0.02 -2.12 0.02 
3 3 -14.85 0.03 -2.57 0.02 
4 3 -19.05 0.03 -2.96 0.03 
2 4 -10.76 0.02 -2.13 0.02 
3 4 -14.76 0.02 -2.56 0.02 
4 4 -18.82 0.03 -2.94 0.03 
3 5 -14.74 0.02 -2.56 0.02 
4 5 -18.83 0.03 -2.94 0.03 
4 6 -19.17 0.03 -2.97 0.03 

 
Notes: Data is simulated using the Phillips (1991) triangular representation as in 
(8a) and (8b).  Here 1

tz  is a scalar variable and 2
tz  is a 4×1 vector.  The matrix W 

is a 1×4 vector with a 1 in the first entry and zeros elsewhere; this implies the first 
and second variables are cointegrated.  All error terms in  and  are iid  
random variables.  The table shows the percentage of times the null hypothesis of 
no cointegration is rejected using the methods described in Phillips (1991).  The 

iables included 

-
hand side of the regression. 
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Table 2 

Estimated Parameters from Equation 3 

 
Parameter Estimate 

K 1.538 
 0.230 
 0.252 
 -1.020 
 -2.504 

 
Notes: The parameter estimates below correspond to the threshold 
function .  The threshold function is designed to produce a value 
between the Pth and (P+1)st eigenvalues given value for T, N and R.  T is the 
number of time periods, N is the number of variables observed, R is a weighted 
average of the estimated autocorrelations computed from the estimated stationary 
components and S is an equally weighted average of the R2 from a regression of 
the differenced data in the lagged levels.  The parameters are estimated using 
ordinary least-squares. Data is simulated using  T = 150, 200, 250; N + P = 2, 3, 4, 
5; P = 0, 1, 2, 3 and | ent variable in the 
regression is 11P Pw w  where w = 0.66 and the explanatory variables 
include a constant, ln(T), ln(N+P), ln(R) and ln(S).  
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Table 3 

Simulation Results, No Autocorrelation 

   
Sample Averages Accuracy 

T N+P P Johansen A-R EV Johansen A-R EV 
100 2 0 0.00 0.00 0.00 100.0% 100.0% 100.0% 
100 3 0 0.00 0.00 0.00 100.0% 100.0% 100.0% 
100 4 0 0.00 0.00 0.00 100.0% 100.0% 100.0% 
100 2 1 1.06 1.05 1.00 94.4% 94.8% 100.0% 
100 3 1 0.93 0.90 1.01 92.4% 90.2% 99.8% 
100 4 1 0.60 0.52 1.05 59.8% 52.4% 98.8% 
100 3 2 2.05 2.04 2.00 93.0% 93.0% 100.0% 
100 4 2 1.67 1.52 2.01 71.4% 60.4% 99.6% 
100 4 3 2.97 2.87 3.00 85.8% 79.0% 100.0% 
150 2 0 0.00 0.00 0.00 100.0% 100.0% 100.0% 
150 3 0 0.00 0.00 0.00 100.0% 100.0% 100.0% 
150 4 0 0.00 0.00 0.00 100.0% 100.0% 100.0% 
150 2 1 1.06 1.05 1.00 94.0% 94.8% 100.0% 
150 3 1 1.00 1.00 1.00 100.0% 100.0% 100.0% 
150 4 1 1.00 1.00 1.00 99.8% 99.6% 100.0% 
150 3 2 2.07 2.06 2.00 93.4% 93.8% 100.0% 
150 4 2 2.01 2.01 2.00 99.4% 99.4% 100.0% 
150 4 3 3.06 3.06 3.00 93.6% 94.0% 100.0% 
200 2 0 0.00 0.00 0.00 100.0% 100.0% 100.0% 
200 3 0 0.00 0.00 0.00 100.0% 100.0% 100.0% 
200 4 0 0.00 0.00 0.00 100.0% 100.0% 100.0% 
200 2 1 1.04 1.04 1.00 95.8% 95.8% 100.0% 
200 3 1 1.01 1.01 1.00 98.8% 99.0% 100.0% 
200 4 1 1.00 1.00 1.00 100.0% 100.0% 100.0% 
200 3 2 2.04 2.04 2.00 96.0% 96.2% 100.0% 
200 4 2 2.00 2.00 2.00 99.8% 99.8% 100.0% 
200 4 3 3.06 3.05 3.00 94.2% 94.6% 100.0% 
 
Notes: Data is generated with various values of T, N and P for 500 simulations.  
The sample averages are the average values of the number of estimated 
cointegrations.  The Accuracy is the number of times the true number of 
cointegrations is selected.
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Table 4 
 
Simulation Results, Autocorrelation in the ft 

 

    
Sample Averages Accuracy 

T N+P F  P Johansen A-R EV Johansen A-R EV 
100 2 0.5 0 0.00 0.00 0.00 99.8% 99.8% 100.0% 
100 3 0.5 0 0.00 0.00 0.00 100.0% 100.0% 100.0% 
100 4 0.5 0 0.00 0.00 0.00 100.0% 100.0% 100.0% 
100 2 0.5 1 0.82 0.80 0.98 73.8% 73.0% 98.2% 
100 3 0.5 1 0.18 0.14 1.00 17.4% 13.8% 99.0% 
100 4 0.5 1 0.04 0.02 1.06 3.8% 1.8% 98.0% 
100 3 0.5 2 0.84 0.73 1.92 22.0% 16.0% 96.2% 
100 4 0.5 2 0.11 0.07 1.93 0.8% 0.4% 96.4% 
100 4 0.5 3 0.48 0.34 2.51 1.0% 0.6% 83.8% 
150 2 0.5 0 0.00 0.00 0.00 100.0% 100.0% 100.0% 
150 3 0.5 0 0.00 0.00 0.00 100.0% 100.0% 100.0% 
150 4 0.5 0 0.00 0.00 0.00 100.0% 100.0% 100.0% 
150 2 0.5 1 1.04 1.04 1.00 95.6% 95.6% 100.0% 
150 3 0.5 1 0.75 0.71 1.00 74.0% 70.0% 99.8% 
150 4 0.5 1 0.28 0.22 1.00 28.4% 22.4% 99.8% 
150 3 0.5 2 2.01 1.97 1.98 86.4% 83.4% 99.2% 
150 4 0.5 2 0.86 0.74 1.96 22.4% 18.0% 98.0% 
150 4 0.5 3 2.41 2.24 2.83 50.8% 43.8% 94.2% 
200 2 0.5 0 0.00 0.00 0.00 100.0% 100.0% 100.0% 
200 3 0.5 0 0.00 0.00 0.00 100.0% 100.0% 100.0% 
200 4 0.5 0 0.00 0.00 0.00 100.0% 100.0% 100.0% 
200 2 0.5 1 1.06 1.06 1.00 94.0% 94.2% 100.0% 
200 3 0.5 1 1.00 1.00 1.00 97.8% 97.6% 100.0% 
200 4 0.5 1 0.79 0.76 1.00 79.0% 75.8% 99.8% 
200 3 0.5 2 2.06 2.06 2.00 94.4% 94.4% 100.0% 
200 4 0.5 2 1.89 1.86 1.98 89.8% 87.6% 99.2% 
200 4 0.5 3 3.07 3.05 2.95 92.6% 93.2% 98.2% 
 
Notes: Data is generated with various values of T, N and P for 500 simulations.  
The sample averages are the average values of the number of estimated 
cointegrations.  The Accuracy is the number of times the true number of 
cointegrations is selected.  
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Table 5 

Simulation Results, Autocorrelation in the gt 

    
Sample Averages Accuracy 

T N+P g  P Johansen A-R EV Johansen A-R EV 
100 2 0.50 0 0.00 0.00 0.04 100.0% 100.0% 98.6% 
100 3 0.50 0 0.00 0.00 0.26 100.0% 100.0% 93.4% 
100 4 0.50 0 0.00 0.00 1.09 100.0% 100.0% 78.2% 
100 2 0.50 1 1.06 1.06 1.00 94.0% 94.2% 100.0% 
100 3 0.50 1 0.95 0.92 1.16 92.6% 90.2% 94.6% 
100 4 0.50 1 0.67 0.58 1.85 66.8% 57.8% 78.8% 
100 3 0.50 2 2.05 2.04 2.01 93.8% 94.6% 99.4% 
100 4 0.50 2 1.71 1.58 2.13 75.2% 65.4% 95.8% 
100 4 0.50 3 3.00 2.94 3.00 90.2% 86.4% 99.8% 
150 2 0.50 0 0.00 0.00 0.01 100.0% 100.0% 99.8% 
150 3 0.50 0 0.00 0.00 0.08 100.0% 100.0% 98.0% 
150 4 0.50 0 0.00 0.00 0.47 100.0% 100.0% 90.6% 
150 2 0.50 1 1.05 1.05 1.00 95.0% 95.2% 100.0% 
150 3 0.50 1 1.01 1.01 1.02 99.2% 99.4% 99.4% 
150 4 0.50 1 1.00 1.00 1.24 99.4% 99.6% 94.0% 
150 3 0.50 2 2.07 2.07 2.00 92.6% 92.8% 100.0% 
150 4 0.50 2 2.02 2.02 2.05 98.0% 98.2% 98.4% 
150 4 0.50 3 3.06 3.05 3.00 94.2% 94.6% 100.0% 
200 2 0.50 0 0.00 0.00 0.01 100.0% 100.0% 99.6% 
200 3 0.50 0 0.00 0.00 0.02 100.0% 100.0% 99.4% 
200 4 0.50 0 0.00 0.00 0.16 100.0% 100.0% 96.8% 
200 2 0.50 1 1.07 1.06 1.00 93.2% 93.6% 100.0% 
200 3 0.50 1 1.02 1.02 1.00 98.4% 98.4% 100.0% 
200 4 0.50 1 1.00 1.00 1.02 100.0% 100.0% 99.4% 
200 3 0.50 2 2.06 2.06 2.00 94.2% 94.4% 100.0% 
200 4 0.50 2 2.01 2.01 2.01 99.4% 99.4% 99.8% 
200 4 0.50 3 3.06 3.06 3.00 93.8% 94.4% 100.0% 
 
Notes: Data is generated with various values of T, N and P for 500 simulations.  
The sample averages are the average values of the number of estimated 
cointegrations.  The Accuracy is the number of times the true number of 
cointegrations is selected.  
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Table 6 

Simulation Results, non-AR(1) Process 

 

   
Sample Averages Sample Averages 

T P N+P v  Johansen A-R EV Johansen A-R EV 
100 0 2 0.5 100.0% 0.0% 0.0% 0.00 1.00 0.00 
100 0 3 0.5 100.0% 0.0% 0.0% 0.00 1.00 0.00 
100 0 4 0.5 100.0% 0.0% 0.0% 0.00 1.50 0.00 
100 1 2 0.5 100.0% 100.0% 100.0% 1.00 1.00 1.14 
100 1 3 0.5 100.0% 20.0% 40.0% 1.00 1.20 1.20 
100 1 4 0.5 100.0% 0.0% 0.0% 1.00 1.63 1.00 
100 2 3 0.5 100.0% 0.0% 75.0% 2.00 2.00 1.25 
100 2 4 0.5 100.0% 100.0% 100.0% 2.00 2.00 1.25 
100 3 4 0.5 100.0% 0.0% 83.3% 3.00 3.00 1.17 
150 0 2 0.5 100.0% 0.0% 0.0% 0.00 1.00 0.00 
150 0 3 0.5 100.0% 0.0% 0.0% 0.00 1.00 0.00 
150 0 4 0.5 100.0% 0.0% 0.0% 0.00 1.60 0.00 
150 1 2 0.5 100.0% 100.0% 100.0% 1.00 1.00 1.20 
150 1 3 0.5 100.0% 25.0% 25.0% 1.00 1.25 1.00 
150 1 4 0.5 100.0% 0.0% 0.0% 1.00 1.75 1.00 
150 2 3 0.5 100.0% 0.0% 75.0% 2.00 2.00 1.25 
150 2 4 0.5 100.0% 100.0% 100.0% 2.00 2.00 1.00 
150 3 4 0.5 100.0% 0.0% 92.9% 3.00 3.00 0.93 
200 0 2 0.5 100.0% 0.0% 0.0% 0.00 1.00 0.00 
200 0 3 0.5 100.0% 0.0% 0.0% 0.00 1.00 0.00 
200 0 4 0.5 100.0% 0.0% 0.0% 0.00 1.50 0.00 
200 1 2 0.5 100.0% 100.0% 100.0% 1.00 1.00 1.00 
200 1 3 0.5 100.0% 45.5% 45.5% 1.00 1.45 1.09 
200 1 4 0.5 100.0% 0.0% 0.0% 1.00 1.00 1.00 
200 2 3 0.5 100.0% 0.0% 66.7% 2.00 2.00 1.33 
200 2 4 0.5 100.0% 83.3% 83.3% 2.00 2.17 1.17 
200 3 4 0.5 100.0% 0.0% 80.0% 3.00 3.00 1.07 
  
Notes: Data is generated with various values of T, N and P for 500 simulations.  
The sample averages are the average values of the number of estimated 
cointegrations.  The Accuracy is the percentage of times the true number of 
cointegrations is selected.  

 
 
 

  



 42 

Figure 1 

Average Eigenvalues for the Pth and (P+1)st Eigenvalue. 

 
 
Notes: The data is simulated using T = 150,  = 0.0, 0.5 one cointegrating 
relationship and N = 2, 3, 4, 5, 6, 7, 8.  With one cointegrating relationship, the 
first eigenvalue will be (1)pO  and the second eigenvalue is 1( )pO T .  In all cases, 
both eigenvalues increase when the number of variables observed increases.  
When the serial correlation is low, there is a large spread between the first and 
second eigenvalues. As the serial correlation increases, the second eigenvalues 
increase rapidly for all N and the spread between the P and (P+1) eigenvalues.   
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We begin by introducing some notation.  First, we use  to denote the jth 

largest eigenvalues of a symmetric matrix A and  as the eigenvector 

associated with the jth largest eigenvalue normalized so that .  

Second, for any matrix X of full column rank, define  =  and 

.  Third, for any matrix X with T rows, the matrix  is 

used to signify a matrix where a linear time series is removed.  Specifically,  

 , where .   

 Lemma 3.1 of Philips and Durlauf (1986) implies the following results for 

the data generating process in (2) or (5): 

 (i) 
1

23/ 2 3 3/ 2

1 1
;

Z F Z Z
Z F H

T T T T T T
 

 (ii) 
1

13/ 2 3 3/ 2

1 1
;

F F F F
F F H

T T T T T T
 

 (iii) 
1

3/ 2 3 5/ 2

1
(1);p

Z U Z U
Z U O

T T T T T
 

 (iv) 
1

3/ 2 3 5/ 2

1
(1);p

F U F U
F U O

T T T T T
 

 (v) 
1

2 2 5/ 2 3 5/ 2

1
(1).p

U U U U
U U O

T T T T T

 

 The following lemmas are used to prove the above theorems and 

propositions.   

 

L emma 1: Suppose the two matrices A and B are symmetric of order p, then 

 ,   

Proof: See Onatski(2006) or Rao (1973, p. 68) 

 

 

( )j A

 j (A)

 j (A  )  j (A) =1

( )P X 1( )X X X X

1( ) ( )M X I X X X X X

X

( )M X (1, 2, ..., )T

1 ( ) ( ) ( )j k j kA B A B 1j p k
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L emma 2: Suppose the two matrices A and B are positive semi-definite of order 

p, then 

 ,  

Proof: See Ahn and Horenstein (2011) 

 

L emma 3:  Under Assumptions G,  

 T  1 ZP(F) Z p H3 

as , where H3 = H1H2H1  and .   

 

Proof:  Notice that 1 1 1 1 1 1( ) ( ) ( ) ( )T Z P F Z T Z F T F F T F Z .  Observe 

that  

1
1 1 1 1 1 1 1 1

1 1 1
( , )T T T T

s s s s s s s s s s s s s s

Z F
B f f B f f C g f T B f C g B f f

T T T T
. (L3.1) 

The matrix product is a continuous function and H1 is of full rank.  Therefore, by 

the continuous mapping theorem we have 

     (L3.2) 

 Further, because 1 2( ) ( )r ank H rank H P  we have  

3( )rank H P .     (L3.3)   

QED 

 

L emma 4: Under Assumptions A  G, with  

 (i)  

 (ii)  

Proof: The matrix product 

 
1

1 ( ) (1)p

Z U Z F F F F U
T Z M F U O

T T T T
        (L4.1) 

( ) ( )j jA A B 1, ...,j p

T rank(H3) = P

T  1 ZP(F) Z p H2H1H2
 = H3

T  1 ZP[M (F)U ] Z =Op(T
 1)

T  1 ZP(U ) Z =Op (T
 1)
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And 

 
1

2
2

1
( ) (1)p

U U U F F F F U
T U M F U O

T T T T T
       (L4.2) 

Lemma 3.1 of Phillips and Durlauf (1986) provides the convergence results for 

the products involving U under Assumptions A  G provides the other 

convergence results; under Assumptions A  F, the matrix sums converge to 

functions of Brownian motion.  Therefore, the matrix product is 

 T  1 ZM (F)U[  UM (F)U ] 1  UM (F) Z =Op(T
 1)            (L4.3) 

This proves part (i).  The proof of part (ii) is similar.  Once again, using Lemma 

3.1 of Phillips and Durlauf (1986), the matrix product 

  1 (1)pT Z U O                                     (L4.4) 

And 

  T  2  UU =Op(1)                                      (L4.5) 

The product of the matrices in (L4.4) and (L4.5) is .  Therefore, the matrix 

product 

  1 1 1( ) ( )pT Z U U U U Z O T .                       (L4.6) 

QED. 

 

L emma 5: Under Assumptions A  G, , k =  P and l =  N, as 

T , 

 (i) 1
3( ) 0;k p kT Z P F Z H   

(ii) 1 ( ) 0;P l pT Z P F Z  

(iii) 1 1[ ( ) ] ( ).l pT Z P M F U Z O T  

Under Assumptions A  G, P = 0 and m =  N P ,  

 (iv) 1 1( ) ( ).m pT Z P U Z O T  

Op (1)

1P
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Proof:  The eigenvalues of 3H  are the roots of the characteristic polynomial given 

by the determinant of the matrix .  It is sufficient to show that the roots of 

the characteristic polynomial associated with T  1 ZP(F) Z  converge to the 

roots of the characteristic polynomial associated with .  By Lemma 3,  

lim
T
Pr(||T  1 ZP(F) Z  H3 ||>  ) = 0,  > 0.   (L5.1) 

Here, ,max i j i jX X  for any matrix .  Because the determinant is a 

continuous function of the matrix elements, the coefficients of the characteristic 

polynomial are also continuous functions of the matrix elements. Theorem 1 part 

(ii) of Henrikson and Isbell (1953) states that if a polynomial has real roots, the 

real roots are continuous in the coefficients.  Because is a positive definite 

matrix, all of the eiganvalues are real.  Combining this result with (L5.1) proves 
1

3lim Pr(| ( ( ) ) ( ) | ) 0, 0, 1, ..., .j j
T

T Z P F Z H j N P   (L5.2) 

By Lemma 3,  is positive semidefinite with rank(H3) = P  which implies 

3( )k H  > 0, for k = 1, 2, ..., P, and 3( )P l H  = 0, for l  = 1, ..., N.  Combining this 

with (L5.2) proves parts (i) and (ii). 

 Next, define  as the eigenvector associated with the lth eigenvalue of 

T  1 ZP[M (F)U ] Z normalized so that .  The eigenvalues and 

eigenvectors are related through  

  l (T
 1 ZP[M (F)U ] Z) =   l (T

 1 ZP[M (F)U ] Z)l  l =Op(T
 1). 

 (L5.3) 

The first equality is by the definition of eigenvalues and eigenvectors.  The 

second equality comes from the normalization of the eigenvalues and Lemma 4 

(i).  This proves part (iii). 

H3   I

H3

X

H3

H3

 l

 l
  l =1
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 Define  as the eigenvector associated with the lth eigenvalue of 

T  1 ZP(U ) Znormalized so that .  The eigenvalues and eigenvectors 

are related through  

 l (T
 1 ZP(U ) Z) =  l

 
l (T

 1 ZP(U ) Z)l  l =Op(T
 1).   (L5.4) 

The first equality is by the definition of eigenvalues and eigenvectors.  The 

second equality comes from the normalization of the eigenvalues and Lemma 4 

(ii).  This proves part (iv). 

QED 

 

L emma 6: Under Assumptions A  G, when , j =  P and k =  N, 

 (i) 1 1 1
, , , , ( );j Z Z Z Z Z Z j Z F F F F Z pO T  

 (ii) 1 1
, , , ( )P k Z Z Z Z Z Z pO T . 

Under Assumptions A  F, when P = 0 and for m =  N+P, 

 (iii)  m  
 Z ,Z Z ,Z

 1  Z , Z( ) =Op (T
 1)  

Proof:  Since ( ) ([ , ]) ( ) [ ( ) ]P Z P F U P F P M F U , we have  

 .

 (L6.1) 

With (L6.1), for any j P,  the jth largest eigenvalue of 1
, , ,Z Z Z Z Z Z  can 

be written as  

 

 (L6.2) 

The first inequality is due to Lemma 1 and the second inequality is due to Lemma 

5 (ii).  Also, with (L6.1) and for any j P, 

                           (L6.3) 

 l

 l
  l =1

1P

 
 Z ,Z Z ,Z

 1  Z , Z =  ZP(Z) Z =T  1 ZP(F) Z +T  1 ZP[M (F)U ] Z

1 1 1
, , ,

1 1

( ) [ ( ) ]

( ) ( )

j Z Z Z Z Z Z j j

j p

T Z P F Z T Z P M F U Z

T Z P F Z O T

1 1
, , ,( )j j Z Z Z Z Z ZT Z P F Z
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This inequality is due to Lemma 2.  Combining (L6.2) and (L6.3) proves Lemma 

6 (i).  Since , for any k N,  

                                      (L6.4)   

With (L6.1), for any k N, the (P+k)th largest eigenvalue of 1
, , ,Z Z Z Z Z Z  

can be written as  

 

 (L6.5) 

The inequality is due to Lemma 1 and the equality is due to (L6.4) and Lemma 5 

(ii).  Further, 

      (L6.6) 

The inequality is due to Lemma 2 and the equality is due to Lemma 5 (ii).  

Combining (L6.5) and (L6.6) proves Lemma 6 (ii).  When P = 0, .  

Therefore, we have 

 1 1
, , , , , ,Z Z Z Z Z Z Z U U U U Z . 

Using Lemma 5 (iii) provides the result. 

QED 

 

L emma 7:  Suppose the two matrices A and B are positive definite of order N, 

then for  = 1, ..., N and . 

 ;  

Proof: See Anderson and Dasgupta (1963) 

 

L emma 8: Suppose the two matrices A and B are positive definite of order N, 

then for  = 1, 2, ..., N,  

  

rank(T  1 ZP(F) Z) = P
1 ( ) 0P k T Z P F Z

 P+k  
 Z ,Z Z ,Z

 1  Z , Z( )   P+k T
 1 Z P(F) Z( ) +  P+k T

 1 Z P[M (F)U ] Z( )
=  P+k T

 1 Z P[M (F )U ] Z( ) =Op (T
 1)

 P+k  
 Z ,Z Z ,Z

 1  Z , Z( )   P+k T
 1 ZP[M (F)U ] Z( ) =Op (T

 1)

Z =UC '

, ,i j k 1j k i

( ) ( ) ( )i j kA B A B 1 1 1( ) ( ) ( )N i N j N kA B A B

h

1( ) ( ) ( ) ( ) ( )N h h hA B A B A B
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Proof: Set , , and  for Lemma 7.  Then, .  

Set  =  -  + 1, , and .  Then, we have 

. 

QED 

 

Proof of Theorem 1:  By Lemma 8, 

 , 

where .  The matrix  is positive definite and has rank (N+P); 

all of its eigenvalues are  and positive.  Thus, when P  1. The convergence 

rates of the eigenvalues of the matrix are determined by the 

order of convergence of the eigenvalues of the matrix .  Using 

Lemma 5 part (i) and Lemma 6 part (i), 

 ,  

Using Lemma 8, 

 ,  

When P = 0, Z = U.  Therefore, we have  = .  

Using Lemma 6 (iii) provides the result. 

QED. 

 

Proof of Proposition 1:  The threshold function is shown to consistently estimate 

the number of cointegrations.  The threshold function will be larger than the Pth 

eigenvalue with probability one; alternatively, the Pth eigenvalue divided by the 

threshold function will be larger than one as .  Because of this and Lemma 

5 part (i), we have 

                            (P1.1) 

1j k h i h 1( ) ( ) ( )h hA B A B

i N h 1j 1k N h

( ) ( ) ( )N h hA B A B

1 1 1 1 1 1
, , , , , , , , 1 , , , ,P N Z Z r Z Z Z Z Z Z r Z Z Z Z Z Z Z Z Z Z r Z Z Z Z Z Z

1, ...,i N P 1
,Z Z

(1)pO

1 1
, , , ,Z Z Z Z Z Z Z Z

1
, , ,Z Z Z Z Z Z

1 1
, , , , (1)j Z Z Z Z Z Z Z Z pO 1, ...,j P

1 1 1
, , , , ( )j Z Z Z Z Z Z Z Z pO T 1, ...,j P P N

1
, , ,Z Z Z Z Z Z

1
, , ,Z U U U U Z

T

1 1
, , , ,

( )
( )

P Z Z Z Z Z Z Z Z

pO T
f T
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The ratio of the Pth eigenvalue and the threshold function diverges to infinity with 

probability one.  The threshold function will be smaller than the (P+1)th 

eigenvalue with probability one; alternatively, the threshold function divided by 

the (P+1)st eigenvalue will be zero with probability one as .  The smallest 

N eigenvalues of  are all positive and ; the 

threshold function is strictly positive and .  Because of this and Lemma 5 

part (ii), 

               (P1.2) 

The ratio of the (P+1)st eigenvalue and the threshold function will be smaller than 

one with probability one converges to zero with probability one.  

QED. 

 

Proof of Theorem 2:  Define 1 2( , , ..., )TE e e e .  From equation (11) , 

 

1 1/ 2

1 1 1/ 2 1 2 1 1 1/ 2

1 1/ 2 1 2 1 1 1/ 2

1 1/ 2 1 1/ 2

( ) ( )

( ) ( ( ) ) ( ) ( )

( ) ( ) ( )

( ) ( )

P P

P P

P P

P p P

A Z Z Z Z D

Z Z Z Z A B A D T T Z Z T Z E D

A B A D T T Z Z T Z E D

A B A D O T D  

The second equality follows when using the relationship for the differenced data 

in equation (7).  The third equality follows because the matrices cancel each 

other.  The last inequality follows from the limiting distribution of  Z Z .  The 

matrix  Z Z  can be written as  ZZ =C  UU  C +C  UF  B +B  FU  C +B  FF  B .   

QED. 

 By Lemma 3.1 of Philips and Durlauf (1986), all of the above lemma and 

theorems hold even if we replace U and F  by U  and F .  Stated formally:  

 

L emma 9: Under Assumptions A  G,  

 T  1 ZP(F) Z p H3 as , 

T

1 1
, , , ,Z Z Z Z Z Z Z Z

1( )pO T

( )pO T

1 1 1
1 , , , , 1( )

( )
( ) ( )

P Z Z Z Z Z Z Z Z p
p

p

O T
O T

f T O T

T
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where .  

 

L emma 10: Under Assumptions A  G, with  

 (i) T  1 ZP[M (F)U ] Z =Op(T
 1);  

 (ii) T  1 ZP(U ) Z =Op (T
 1). 

 

L emma 11: Under Assumptions A  G, , k =  P and l =  N, as 

T , 

 (i)  k T
 1 ZP(F) Z( ) p  k H3( ) > 0;  

(ii)  P+l T
 1 Z P(F) Z( ) p 0; 

(iii)  l T
 1 ZP[M (F)U ] Z( ) =Op (T

 1). 

Under Assumptions A  G, P = 1 and m =  N P ,  

 (iv)  m T
 1 ZP(U ) Z( ) =Op (T

 1). 

 

L emma 12: Under Assumptions A  G, when , j =  P and k =  N, 

 (i)  j  
 Z ,Z ZZ

 1  Z , Z( ) =  j  
 Z ,F FF

 1  F , Z( ) +Op (T
 1) 

 (ii)  P+k  
 Z ,Z ZZ

 1  Z , Z( ) =Op (T
 1) 

Under Assumptions A  G, when P = 0 and for m =  N+P, 

 (iii)  m  
 Z ,Z Z ,Z

 1  Z , Z( ) =Op (T
 1)  

 

Proof of Theorem 3:  The proof follows the reasoning in the proof of Theorem 1. 

 

Proof of Proposition 2: Lemma 5 part (i) states that the P largest eigenvalues of 

  1
 Z , Z  Z ,Z ZZ

 1  Z , Zwill be positive while Lemma 5 part (iii) states the remaining 

rank(H3) = P

1P

1P
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eigenvalues will be Op(T )
 1.  Using arguments similar to this in the proof of 

proposition 1 provide the result. 

QED.  


