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ABSTRACT  

   

Circuits on smaller technology nodes become more vulnerable to 

radiation-induced upset. Since this is a major problem for electronic circuits used 

in space applications, designers have a variety of solutions in hand. Radiation-

hardening-by-design (RHBD) is an approach, where electronic components are 

designed to work properly in certain radiation environments without the use of 

special fabrication processes. This work focuses on the cache design for a high 

performance microprocessor. The design tries to mitigate radiation effects like 

SEE, on a commercial foundry 45-nm SOI process. The design has been ported 

from a previously done cache design at the 90 nm process node. 

The cache design is a 16 KB, 4-way set associative, write-through design 

that uses a no-write allocate policy. The cache has been tested to write and read at 

above 2 GHz at VDD = 0.9 V. Interleaved layout, parity protection, dual 

redundancy, and checking circuits are used in the design to achieve radiation 

hardness. High speed is accomplished through the use of dynamic circuits and 

short wiring routes wherever possible. Gated clocks and optimized wire 

connections are used to reduce power. Structured methodology is used to build up 

the entire cache. 
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 INTRODUCTION Chapter 1. 
 

Electronic systems operating in radiation environment are increasingly 

vulnerable to radiation effects, due to fabrication process scaling, decreasing 

feature sizes, supply voltages and lower noise margins. Single event effects 

(SEEs) are caused when radiation particles such as protons, neutrons, alpha 

particles, or heavy ions strike sensitive diffusion regions of transistors in circuits. 

Studies have shown that SEEs are troublesome for military and space applications 

and radiation-induced single-event transients (SET) were the primary failure 

mechanism behind several spacecraft malfunctions in recent years [1-4]. There 

are also critical applications like biomedical, industrial and banking systems that 

also demand highly reliable systems [5]. Consequently, in recent years, the study 

and analysis of radiation effects on circuits has been a major research area. The 

technique of designing and fabricating electronic systems to withstand radiation is 

called radiation hardening [6]. This chapter provides an overview of the radiation 

environment, radiation effects on electronic devices and circuits and relevant 

techniques to achieve radiation hardness. 

1.1 Radiation Environment in space 

The space environment harbors phenomena that can be potentially 

hazardous to human and technological systems. This environment is not static and 

includes variations caused by solar flares or coronal mass ejections. This 

combined environment creates a multitude of issues for electronic systems 

contained within space systems [7]. The complex radiation spectrum of the space 
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environment typically consists of charged particles originating from various 

sources.  

Solar energetic particles (SEP) are large fluxes of atomic particles, 

primarily electrons and protons with energies of the order of MeV that are 

accelerated and expelled from the sun by its solar flares. Solar flares generally 

vary on the scale of minutes to a few days, in response to events such as storms or 

sub-storms in the Sun. Trapped particles, which are 93% protons, 6% alpha 

particles , and about 1% heavy nuclei, contribute the most to radiation effects in 

low and medium Earth orbits that pass through the Van Allen belts [8]. The Van 

Allen belt(s) comprises a ring of particles trapped by the earth’s magnetic field 

and consist of mostly high energy (1-10MeV/nucleon) electrons [9]. Figure 1.1 

illustrates the space environment and the Van Allen belts with respect to the earth. 

Galactic cosmic rays (GCR) comprise of ions from almost all elements in the 

periodic table. Even though typically found in much lower fluxes than trapped 

particles, they can have energies as high as a TeV/nucleon. These GCRs are 

modulated by the 11-year solar cycle or sunspot cycle [7]. GCRs are about 87% 

protons, 12% helium, with the remainder composed of heavy ions through 

actinides [11]. CRAN particles (primarily cosmic ray albedo-neutrons) are 

primarily secondary cosmic ray neutrons produced by the interaction of GCR with 

the earth’s atmosphere at about 55km above the earth surface. These have a half-

life of 11.7 minutes beyond which they decay in to an electron, proton and an 

anti-neutrino. Secondary neutrons produced by the interaction of interplanetary 
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GCRs and solar particles with the atmosphere, are the most important contributor 

to single event effects at altitudes below 60,000 feet. The rest of the 

electromagnetic spectrum in space consists of X-rays (wavelengths 10Å – 100Å), 

extreme ultraviolet or EUV (100Å – 1000Å), ultraviolet (1000Å – 3500Å), the 

visible spectrum (3500Å – 7000Å) and the infra-red spectrum (0.7 – 7mm). 

Each type of radiation has a characteristic spectrum and preferred interaction 

mode with matter that give rise to various effects such as photo-ionization, 

photoelectron emission, Compton effect, etc. Photon interactions are not a 

primary concern for satellites in the natural space environment [11]. Only those 

phenomena from the vast and complex radiation effects in space that affect 

circuits would be the focus of this research.  
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1.2 Radiation effects on circuits 

Radiation effects can lead to degradation, malfunction, or even permanent 

damage in electronic circuits and devices [12].  Radiation interactions with solid 

material depends on a variety of factors like the material type, kinetic energy, 

mass, and charge state of the incoming particle and the mass, atomic number and 

density of the target material to name a few. 

An ion travelling through a material loses its kinetic energy primarily 

through coulombic interactions with the electrons of that material leaving a trail 

of charge in its path. The higher the energy of the ion, the longer the distance it 

travels before being stopped by the material. The stopping power or linear energy 

transfer (LET) is a function of the material through which a charged particle is 

traveling and refers to the energy loss of the particle per unit length in the 

 

Figure 1.1 Cartoon showing the space radiation environment. (After [58] [59]) 
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material. The LET (MeV-cm
2
/mg) is a function of both the ion’s mass and energy 

and density of the target material.  

    
 

 

  

  
                     (1) 

where  
  

  
 is the energy loss per unit length and   is the material density in 

mg/cm
3
. The maximum LET value near the end of the particle’s range is called 

the Bragg peak [13]. Bragg peak is the peak on the Bragg curve which plots the 

energy loss of ionizing radiation when it travels through matter. 

Radiation particles interact with material, depositing charge by two major 

mechanisms: direct ionization and indirect ionization. In direct ionization, a high 

energy charged particle interacts directly with the electrons in the target material, 

breaking them free from their bound states, creating a dense track of free charge. 

During indirect ionization, the high energy particle collides with a nucleus in the 

target material, freeing that nucleus from its bound location. This recoiling 

nucleus is the charged particle which then creates the charge track. The two major 

radiation effects on MOS circuits and devices are single event effects (SEEs) [14] 

and total ionizing dose (TID) effects [15]. 

 

 Single Event effects (SEE) in CMOS 1.2.1

      SEEs are caused by a single radiation particle strike. All single-event 

effects are caused by the collection of charge at a sensitive region of an electronic 

device following the passage of an energetic particle through the device as shown 
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in Figure 1.2(a). Heavy ions, protons and neutrons constitute the majority of the 

particles responsible for this effect. Radiation effects from heavy ions are most 

often due to direct ionization while the vast majority of SEEs from protons are 

due to indirect ionization through collisions with heavier nuclei. Except for 

certain devices like photo detectors that are designed to detect small amounts of 

charge and large collection lengths, direct proton ionization is a rare phenomenon 

in space. This is due to the fact that protons have small LET owing to their 

smaller mass. For example 60 M-eV protons have an LET as low as 0.008 M-

eV.cm
2
 /mg in Si for a collection depth of 10µm [56]. SEEs from neutrons are 

entirely due to indirect ionization, as they do not cause direct ionization owing to 

their neutral charge [16]. This is due to the fact that protons have small LET 

owing to their smaller mass. For example 60 M-eV protons have an LET as low 

as 0.008 M-eV.cm
2
 /mg in Si for a collection depth of 10µm [56]. SEEs from 

neutrons are entirely due to indirect ionization, as they do not cause direct 

ionization owing to their neutral charge [16].    

 

 SEE Mechanism  1.2.1.1

Formation of a SEE involves three stages – charge generation, charge 

collection and circuit response. Charge generation is influenced by the particle’s 

mass and energy and the properties of the materials it passes through. Charge is 

generated from a single event phenomenon generally within a few microns of the 

junction. In silicon one electron-hole pair is produced for every 3.6 eV of energy 
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lost by the incident radiation. As silicon has a density of 2.328 g/cm
3
, it is easy to 

calculate from equation (1) that an LET of 97 MeV-cm
2
/mg corresponds to a 

charge deposition of 1 pC/sq.m. Hence the amount of collected charge in silicon 

can be given by the formula  

                            (2) 

Thus, the charge collected (Q) for these events range from one to many 

hundreds of fC depending on the type of ion, its trajectory, and its energy over the 

path through or near the junction. The worst-case would be in case the junction is 

floating (as in DRAMs, dynamic logic circuits without keepers, and some analog 

designs) and is extremely sensitive to any charge collected from a radiation event. 

As discussed above when a particle strikes a microelectronic device, the sensitive 

regions are the reverse biased p/n junctions, as illustrated in Figure 1.2(b). Charge 

generated along the particle track can locally collapse the junction electric field 

 

Figure 1.2 (a) Ion strike at the output of an inverter. (b) Funnel formation and charge  

collections mechanisms in the semiconductor following an ion strike. (After [18]) 
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due to the highly conductive nature of the charge track creating a “field funnel” as 

shown in          Figure 1.3 [18]. This funneling effect increases charge collection 

at the affected node by extending the junction electric field away from the 

junction deep into the substrate, such that charge deposited some distance from 

the junction gets collected through the drift process. This gives rise to a transient 

current at the junction contact. Strikes near a depletion region can thus result in a 

significant current transient as carriers diffuse into the vicinity of the depletion 

region field where they can be efficiently collected. 

Even for direct strikes, diffusion plays a major role as carriers generated 

beyond the depletion region can diffuse back toward the junction. This can lead to 

unwanted current flow in associated circuit nodes. 

Funneling is just not dependent on a direct strike on a depletion region. 

Near misses can also cause funneling if a high enough carrier density diffuses into 

          

         Figure 1.3 Funneling in an n+/p silicon junction following an ion strike showing 

         contours of (a) electrostatic potential, (b) electron concentration (After [17]). 
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the depletion region to collapse it [18]. Due to the differences in the hole and 

electron mobility, funneling occurs in reverse biased n/p diodes, but is much 

weaker or nonexistent in equivalent p/n diodes as shown in          Figure 1.3. The 

applied voltage at the struck junction is not a constant and in fact the struck node 

may switch from being reverse-biased to zero-biased. In such cases, funneling 

may play a role in the early-time response of the circuit by initially helping to flip 

the node voltage, but it is the late-time collection by diffusion that ensures the 

node stays flipped. This causes an error in the circuit operation. 

The device characteristic that determines the sensitivity of a device to 

radiation upsets is its critical charge. This is the amount of charge needed at the 

terminal of the device to flip the node state. 

 Types of single event effects 1.2.1.2

Single-event effects can be characterized as non-destructive (causing a 

soft error) [19] or destructive SEE (resulting in a hard error). The error is called 

“soft” because the circuit is not permanently damaged by the radiation – i.e. if 

new data is written to the bit cell, the device will store it correctly. In contrast, a 

“hard” error leads to the device being physically damaged such that it 

malfunctions, data is lost, and the damaged state is permanent. 

Examples of non-destructive SEE include single-event transients, single 

event upsets in memory circuits (SEU), multi-bit upsets (MBU) and single event 

functional interrupts (SEFI). Destructive SEE include such phenomena as single-

event latch up (SEL, which can be either destructive or non-destructive depending 



 

10 

 

on circuit design), single-event burnout (SEB), and single-event gate rupture 

(SEGR). 

A single event transient (SET) is defined as a momentary voltage spike at 

a node in an integrated circuit [20-22]. The voltage spike can propagate through 

the combinational logic away from where it was generated and eventually appear 

at the circuit’s output, given certain conditions. It may also be captured locally if 

it is generated within a latch, or non-locally if it first propagates through the 

circuit before being captured by a latch. Once the SET is captured by a latch or 

flip-flop it becomes a single event upset (SEU), and it is impossible to distinguish 

SEUs that result from SETs that have propagated from other locations in the 

circuit from SEUs that have been generated within the latch or flip-flop itself [23]. 

When a charged particle strikes one of the sensitive nodes of a memory 

cell, such as a drain in an off state transistor, it generates a transient current pulse 

that can turn on the gate of the opposite transistor. This effect can cause a bit flip 

in the memory cell causing a SEU in the memory cell [16]  

If the radiation event generates sufficient charge, more than one bit can get 

affected, causing a multi-bit upset (MBU). MBUs are defined as the occurrence of 

two or more bit upsets, appearing within the same clock cycle from a single 

particle hit, to distinguish from random multiple hits within a single cycle [24]. 

While MBU usually constitute a fraction of the total observed SEU rate, their 

occurrences have significant implications for memory architecture in systems 

utilizing error correction methods. 



 

11 

 

Another type of soft error occurs when the bit is flipped is in system 

control registers, such as that found in field programmable gate arrays (FPGAs) or 

DRAM control circuitry, so that the error causes the circuit to malfunction . This 

type of soft error, called a single event interrupt (SEFI) [25], impacts the product 

reliability since each SEFI leads to a direct product malfunction as opposed to 

typical memory soft errors that may or may not affect the final product operation 

depending on the algorithm, data sensitivity, etc. Digital functions most likely to 

be affected by SEFIs are clock and trees, PLLs, counters, address and control 

registers as well as poorly regulated power networks. 

Single event latch-up is caused by a steady high current state that results 

when a parasitic silicon controlled rectifier (SCR) (p-n-p-n) structure is triggered 

into regenerative forward bias [17]. If the latch-up current is large enough this can 

lead to a destructive event. 

Single event gate rupture (SEGR) and the single event breakdown (SEB) 

[17] are both mechanisms that are destructive and lead to hard failures. In SEGR 

the gate oxide is in a high conduction state (breakdown) initiated by a hit to the 

gate region while in SEB the junction is broken-down when the event causes 

avalanche and thermal runaway. 

The rate at which soft errors occur is called soft error rate (SER). The unit 

of measure associated with SER is failure in time (FIT). One FIT is equivalent to 

one failure in 10
9
 device hours.  
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 Total ionizing dose 1.2.2

Total ionizing dose effects in electronics are caused by the interaction of 

radiation and the silicon dioxide insulating layers of the device [15]. When an 

MOS transistor is exposed to high-energy ionizing radiation, electron-hole pairs 

are created uniformly throughout the oxide. For MOS device degradation, the 

primary concern is electron-hole pair (ehp) generation in oxides (SiO2) which 

leads to almost all total dose effects. The generated carriers induce charge build-

up in the oxide and interface traps, which causes a threshold voltage shift and can 

lead to device degradation. 

The total amount of energy deposited by particles that result in ehp 

production is commonly referred to as total ionizing dose (TID).The typical unit 

of TID that is used is rad, which denotes the energy absorbed per unit mass of 

SiO2. 

 TID Mechanism 1.2.2.1

Ionization in a target material is caused by the interaction of protons, 

electrons, energetic heavy ions, and photons with the atoms of that material. The 

unit used to measure TID is rad. 

Radiation-induced charging of oxide involves many different physical 

mechanisms, which take place on very different time periods under different 

physical conditions. The physical processes (shown in Figure 1.4) that play a 

major role from the initial deposition of energy by ionizing radiation to the 

creation of ionization defects are:  
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1) Generation of ehp: Radiation-induced ionization damage is primarily 

the result of the generation of electron-hole-pairs (ehp) along the track of high 

energy electrons generated as a result of interactions by photons and protons. The 

density of e-hp generated along the tracks of incident particles is proportional to 

the LET of the incident particle and the band gap of the target material. 

2) Prompt recombination of a fraction of the generated e-hp: Once 

generated, a fraction of the ehp are annihilated through recombination. The holes, 

which escape initial recombination, are relatively immobile and remain near their 

point of generation, where they form fixed charge in the oxide and cause a 

negative threshold voltage shift. The electrons generated in the oxide are 

relatively mobile and drift out of the oxide [26].  

3) Transport of free carriers remaining in the oxide: This transport of holes 

to the Si/SiO2 interface causes a short-term recovery of the threshold voltage.  

and either    

4a) Formation of trapped charge: As holes approach the Si/SiO2 interface, 

some fraction of the holes get trapped in the device defects, forming a positive 

oxide-trap charge.  

 or 4b) formation of interface traps via reactions involving hydrogen in the 

SiO2.: Hydrogen ions (protons) are likely to be released as holes, “hop” through 

the oxide or get trapped near the Si/SiO2 interface and form interface traps.   
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                             Figure 1.4 Band diagrams showing the process of TID damage. After([57]) 

This entrapment of holes in the oxide can shift threshold voltages of 

NMOS/PMOS transistors. In addition to oxide-trapped charge and interface-trap 

charge buildup in gate oxides, charge buildup will also occur in field oxides as 

shown in Figure 1.5. 

1.3 Radiation hardening 

There are several methods used for mitigating the effects of radiation. 

Radiation effects can be mitigated by using design techniques at all levels of the 

system design [12]. From the device level to the circuit level to the system level, 

there are methods that can be implemented to mitigate all types of radiation and 

all types of radiation effects. 
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There are many published techniques in soft error mitigation; the most 

common techniques are outlined in the subsequent sections. 

 Shielding  1.3.1

One simple method to mitigate the effects of radiation is the use of 

shielding. Since a majority of cosmic rays have very high energies, shielding has 

very little effect on them. For this reason shielding is seldom considered for the 

mitigation of SEE in electronic circuits. 

 Radiation hardening by process (RHBP) 1.3.2

Radiation hardening by process (RHBP) is a method to harden a device to 

TID and/or SEE using certain features in the fabrication process. This is done by 

modifying a current fabrication process. Modification is typically done by adding 

or changing  process steps, ideally without impacting the performance or normal 

operating characteristics of the device. However higher costs makes it a less 

attractive approach. 

 

Figure 1.5 TID induced leakage in MOS devices. (After [26])  
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 Radiation Hardening by Design (RHBD) 1.3.3

Radiation hardened by design (RHBD), has recently become possibly the 

most popular approach uses design techniques implemented in a standard 

commercial foundry to make a non-hardened process hard to some level. RHBD 

techniques promise to improve the performance of rad-hard ICs by utilizing state-

of-the-art commercial foundry silicon processes [27]. The work carried out in this 

thesis and presented in this report is based on these RHBD principles. 

 Design techniques for mitigating SEE effects 1.3.3.1

o Layout and Electrical level based techniques: 

 Built-in sensors for ionization detection: The bulk-built in current 

sensor (BICS) works as a monitor that senses the current at the bulk 

terminal. During fault-free operation, the current in the bulk is 

approximately zero. When a charged particle generates a current in the 

bulk, it is sensed by the BICS and the system control logic is notified to 

perform some fault tolerant technique to mitigate the effect. 

 Transistor resizing for charge dissipation: Widening transistors 

increases the capacitance of the most sensitive nodes making it harder 

for an SET to upset it [28]. 

o Logic-level based techniques: 

 Hardware (Spatial) redundancy using majority voting: A tri-voting  

system compares the outputs of three identical devices bit by bit, 

relying on the fact that while each bit is equally vulnerable to upset, the 
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probability of the same bit upsetting in two independent devices is very 

low [29] [30]. To save area and power, duplex architectures [54] has 

been developed. Two sets of circuits are calculated independently. Each 

of them has a parity bit to detect a single error. If there is an error in 

one set of circuit, the result of the other circuit is used. If both circuits 

have an error, a calculation error will be reported. 

 Time redundancy using temporal filtering: Temporal voting is 

employed against SETs in which the same device or data path is polled 

3 times and the results stored and voted as shown in Figure 1.6. One of 

the side effects of using this technique is that it limits the maximum 

speed at which the circuit can operate. If the delay is long enough it will 

literally filter out the signal [14] [31]. 

 

                   Figure 1.6  Implementation of TMR based hardware scheme 

 

 Error correcting codes (ECC) for detection and correction of bit-flips 

[32]: In an error detection and correction (EDAC) scheme, redundant 
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bits are added to a data word to enable the system to detect and correct 

errors in the data (caused by SEU or SEFI) using ECC schemes such as 

Hamming codes [33]. Owing to the delay introduced by conventional 

EDAC, only large memories and L2 caches have used it in high 

performance ICs [54]. 

 Hardened memory cell to avoid bit-flipping: Memory elements can be 

protected against SEU by modifying their original design by including 

extra resistors or transistors. These extra transistors would be able to 

recover the stored value if a particle strikes one of the drains of a 

transistor in “off” state [34] [35]. 

o System level techniques: 

 Recovery and recomputation: Some highly reliable microprocessor 

systems maintain checkpoints that detect faults at various stages and try 

to recover the information [36]. Forward error recovery is detecting an 

error and continuing on in time, while attempting to mitigate the effects 

of the faults that may have caused the error. Backward error recovery is 

detecting an error and retracting back to an earlier valid system state or 

time. The later is more commonly used. 
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 Design techniques for mitigating TID effects 1.3.3.2

 

Figure 1.8 Layout of (a) edge transistor (b) edgeless transistor used in TID mitigation 

 

The primary effect of total-dose irradiation on isolated, standard non-

hardened layout NMOS transistors is to cause an increase in the off-state leakage 

                                         

Figure 1.7 Layout of an edgeless transistor with a P+ guard ring for inter-device TID 

induced leakage mitigation (After [37]) 
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current. This increased leakage current is caused by the inversion of parasitic 

transistors at the transistor edges at or near the gate-oxide/field-oxide interface. A 

layout design technique that eliminates edge leakage by removing the parasitic  

edge transistors between the source and the drain is shown in Figure 1.8 [37]. This 

layout has no active diffusion edges overlapped by polysilicon that separates the 

source and the drain. This type of transistor with a closed-geometry layout is 

called an edgeless or annular transistor. TID induced inter-device leakage is 

caused when the field-oxide inverts due to exposure to ionizing radiation. The 

most common design solution to this problem is to surround each transistor with a 

p+ diffusion ring as shown in Figure 1.7. 

 Mitigation of destructive SEE 1.3.4

In contrast to SEU and SET mitigation, destructive single event effects 

would be hard to recover and it depends majorly on the individual device’s 

response to the radiation effect. Hardening from the system level is difficult and 

in most cases, not very effective [38]. Non-recoverable destructive single event 

effects such as single event gate rupture and burn-out heavily damage devices in a 

manner which completely compromises the circuit’s operation. 

Detecting a hard error by using correction techniques like EDAC and by 

making use of unaffected bits to replace the damaged ones are effective 

techniques in mitigating destructive SEE effects. 
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1.4 Thesis Organization 

 This chapter provided a brief overview of the radiation environment, the 

effects of radiation on circuits and common radiation hardening techniques. 

Chapter 2 discusses the original 90nm cache design done by Xiaoyin Yao as part 

of his PhD dissertation. The cache design presented in this thesis relies heavily on 

this cache architecture. Chapter 3 deals with the detailed design of the 45nm 

RHBD cache circuit design. Chapter 4 provides the layout details of the cache 

data and tag circuits. Chapter 5 discusses the flow used for laying out the whole 

cache using structured array methodology. Chapter 6 concludes.  
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 90 NM CACHE DESIGN Chapter 2. 
 

The original cache architecture and design was done by Xiaoyin Yao as 

part of his PhD program [47]. It was implemented on the IBM 90nm CMOS bulk 

process. He made use of specially designed logic cells to radiation harden the 

design. The following sections give an overview of the architecture and design 

details of the 90nm cache. This architecture would be used for the new design 

with some significant circuit modifications. 

2.1 Introduction to Cache 

Memory system follows a hierarchy as shown in Figure 2.1. As we go up 

the hierarchy, the memory is generally smaller and faster. These higher level 

memories normally reside on chip while the main and disk memories reside 

outside of the processor system. 

 

                                            Figure 2.1 Memory Hierarchy 
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Cache works on the principle of locality. Consider the spatial locality and 

temporal locality of memory accesses. Spatial locality states that data whose 

addresses are near one another tend to be referenced close together in time. 

Temporal locality means that data recently accessed would be more likely to be 

accessed in the near future [48]. In more simple terms, the principle of locality 

means that same groups of data or instructions that were accessed recently are 

most likely to be reused soon. 

Cache is used to store most recently used data and instructions. If the 

cache contains the data or instruction that the CPU is going to execute, the access 

is a hit. Otherwise, it is results in a miss even though not every cycle accesses the 

cache. Hit rate defines the percentage of the total CPU cycles in which an access 

results in a hit. The miss rate is “the remaining percentage of CPU cycles” [49]. 

The miss rate (or hit rate) is an important measure of cache design. It is affected 

by the cache size and the write policies. There are two types of write policies: 

Write-through and write-back. In the write-through policy the information is 

written to the cache as well as to the lower memory. The write-back policy 

requires the information is written to cache only. Therefore, there is only one 

copy of the modified data. In the former case, there are two copies of data, one in 

the cache and the other in the lower-level memory. This is important when 

designing a rad-hard cache. For the cache with write-through policy, it only needs 

to detect a radiation induced error [47]. The correct data can be copied from the 
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lower-level memory. However, the write-back cache needs to correct the data by 

itself making it less ideal to function as a radiation hardened cache. 

Cache can be used as either data cache or instruction cache. Data cache is 

used to fetch and store data, while instruction cache just fetches instructions. Data 

cache can be loaded from a lower level memory and store values which may be 

changed by the CPU. Instruction cache can only load from lower level memory, 

since instructions are not supposed to be changed. 

If a miss happens during a read, a block in the cache needs to be replaced 

with the desired block from the lower level memory. There are many strategies 

employed to decide which cache block will be replaced. The block can be 

randomly selected or the least recently used. In this work, the replacement 

algorithm is based on the least recently filled (LRF) line. This algorithm is 

consistent with the standard MIPS architecture, which was chosen for the design. 

In addition, it is simpler to implement LRF [47]. 

Cache organization can be classified into 3 main categories: direct 

mapped, fully associative and set associative. They decide the block replacement 

policy in a cache. In a directly mapped cache, each block can only be mapped to 

one place.  A fully associative cache can map a block anywhere. A set associative 

cache has restricted places or sets where the blocks can be placed. For example if 

there are n blocks in a set, the cache is n-way set associative.  

If a miss happens during a write, there are two common policies that are 

employed: write allocate or no-write allocate. Write allocate caches replace the 
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missed block and perform a write again. No-write allocates caches only modify 

the block in the lower level memory. 

The cache performance is a major factor that affects the overall throughput 

of a microprocessor. It is measured in terms of average memory access time: 

                                                                  

where hit time is the time taken for a  hit in a cache, miss rate is the percentage 

that a miss happens, miss penalty is the additional time needed when a miss 

happens. Average memory access time can measured either in absolute time or in 

number of clock cycles.  

 

                           Figure 2.2 A high level example of the Cache structure [47].  

 

Cache performance depends greatly on and can be improved by reducing 

the average memory access time. Some methods to reduce the access time are by 

reducing the hit time, miss rate or miss penalty. The cache is split into tag and 

data arrays so they can be addressed independently. This speeds up the hit 
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generation and data read out. A write to the cache is usually slower than the read 

because the tag must be read before writing the data. A write buffer which acts 

like a prefetch is often used, so that the write operation is pipelined. A translation 

look-aside buffer (TLB) is added to convert virtual address to physical address. 

Figure 2.2 shows a cache diagram with TLB, tag, data and write buffer.  

Reducing the cache miss rate has been one of the greater focuses of cache 

research. The primary methods of reducing miss rates are by using larger blocks, 

higher associativity, pseudo-associativity, hardware prefetching, prefetching 

instructions, or complier optimizations [48]. Figure 2.3 shows the miss rate for 

different cache size and associativity.  

 

 

Figure 2.3  Miss rate for vs cache size and set associativity. (After [50]) 
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The miss penalty can be reduced by giving priority to read misses over 

writes, using sub-block placement, restarting early and sending critical data first, 

implementing nonblocking caches to reduce stalls on misses, and adding a 

second-level cache [48]. 

 

 

 

Table 2.1 MAJOR INTEL
®

 MICROPROCESSORS AND THE CACHE SIZE  

Processor Clock Speed(s) Introduce

d Date 

Process Cache 

Intel
®
 Atom

®
 230  1.60 GHz Jun-08 45 nm  512 KB L2  

Intel
®
 Xeon

®
  2.80-3.60 GHz Feb-05 90 nm 2048 KB 

L2  

Intel
®
 Pentium

®
 4  2-2.60 GHz Aug-01 0.13 µm 512 KB L2  

Intel
®
 Pentium

®
 

III  

500 M-1.13 GHz Oct-99  0.18 µm 256 KB L2  

Intel
®
 Pentium

®
 200-75 MHz Mar-94 0.6 /0.35 µm 8 KB  

     

 

 

 

The above techniques no doubt improve the cache performance, but they 

add quite a lot of hardware and software complexity to the cache design. This 

http://www.intel.com/products/atom/
http://www.intel.com/products/server/processors/index.htm
http://www.intel.com/products/processor/pentium4/
http://www.intel.com/design/intarch/pentiumiii/pentiumiii.htm
http://www.intel.com/design/intarch/pentiumiii/pentiumiii.htm


 

28 

 

leads to more silicon area and power. Therefore, tradeoffs have to be made while 

planning to implement the above techniques. 

Table 2.1 (after [51]) lists major Intel
®

 microprocessors. The clock speed, 

introduced date, process node and cache sizes are included.  

2.2 RHBD Cache Design Requirements, Assumptions and Approaches 

This cache is intended to be used in a high performance radiation hardened 

microprocessor. The target operating frequency for the 90nm cache was 1GHz 

and the cache maximum operating power is less than 300 mW. The design should 

be able to work as either instruction or data cache. Thus a data cache is designed 

and some features are disabled when used as an instruction cache. There are two 

fundamental differences between the data and instruction caches. First, the 

instruction cache can only be loaded from a lower level memory. The data cache 

can be loaded or written by instructions executing in the CPU. Second, the 

minimum operation unit in the instruction cache is a word, while in the data cache 

it is a byte. Thus the data cache design is a superset and the work focuses on the 

same. 

Two assumptions can be made about the radiation environment based on 

the underlying statistics [47]. First, when an error is caused by a SEE, a localized 

region (less than 25 × 25 µm
2
 across) is affected for a very short time (less than 

10 ns). Second, the probability that another error will immediately follow a SEE-

induced error is small. The time duration between consecutive strikes could be 

many thousand nanoseconds. This applies to the space radiation environment near 
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the Earth. In GEO orbit, the average interval time between particles that hit the 

cache and has a LET of greater than 1 MeV-cm
2
/mg is 3 × 10

12
 ns [47]. Two 

major RHBD techniques were used in the 90nm cache design: Annular NMOS 

transistors and guard rings around NMOS transistors to achieve TID hardness. A 

detect-invalidation-reload scheme is used to achieve SEE hardness. 

2.3 Cache Design and Architecture 

The capacity of the cache is 16 KB and it is 4 way set associative, using 

write-though and no-write allocate policies. This size and set associativity gives a 

reasonable hit rate. The write-though policy is necessary to implement the detect-

invalidate-reload scheme. Every eight data bits have one associated parity bit. The 

cache has 1024 cache lines, with 16 bytes of data in each cache line. The cache is 

virtually tagged and physically indexed. A cache line is the smallest division of a 

cache memory for which there is a distinct tag address. In this cache, a line 

consists of four words (with four bytes in each word) that have the same set 

address and way. Thus there are 256 cache lines (or 4 KB of data) per way.  
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                                           Figure 2.4 The basic diagram of cache. (After[47]) 

 

The most significant 20 bits from the virtual address are fed into TLB 

which generates the physical address, which is turn is used for the tag 

comparison. Unmapped virtual address bits are sent to the tag and the data array 

decoders. The way hit signal from the tag selects one of the 4 ways of the data 

array to generate the final cache data read out.  

The cache supports four operations: lookup, read, write, and global 

invalidation [47]. In a lookup operation, all 4 ways are read and the tag address is 

compared with the physical address from the translation lookaside buffer (TLB). 

If there is a match, the selected way is chosen and a hit signal is generated. 

Otherwise, a miss signal is generated. This supports an instruction fetch 

(instruction cache) or a load instruction (data cache). The read operation can read 

a specified set and way from the data array or tag. The minimum unit that can be 
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read from the data array is a word. In the tag, the tag address and parity bits from 

a certain set and way can be read out. Other tag status bits belonging to all other 

ways are read out at the same time. A write operation writes a specified set and 

way of the data array or tag. The minimum unit written is a byte. In a line fill, a 

whole line is written. Global cache invalidation invalidates the whole cache. This 

operation clears the dual redundant valid bits in every tag entry. This occurs when 

the cache is reset after a power up, reset or a SEE-induced error is detected. 

 Data Array and Tag Array 2.3.1

This cache design achieves high performance and low power by using 

simple yet efficient design approaches. The design does not make use of the 

traditional sense amplifiers on the read paths. There are no column multiplexers 

due to the BL circuit architecture and word line (WL) arrangement. To achieve 

high performance, both data array and tag array use dynamic circuits to precharge 

and read their SRAM arrays. Gated clocks are used in the banks to reduce active 

power. 

The floor plan of the cache is shown in Figure 2.5. The data array is 

divided into two halves, with the most significant 18 bits of each byte and parity 

protected word on the left and the least significant 18 bits on the right with the tag 

in the middle. This reduces the wire length of the way select signals and thus 

helps reduce power and speed up the cache operation. 
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Figure 2.5  Floor plan of cache. (After [47]) 

 

The left or right half data array consists of 4 words. Each word comprises 

of 4 banks, consisting of a top and bottom sub-bank. A sub-bank comprises 32 

rows and 72 columns of SRAM cells. In the data array, there are a total 16 KB of 

data. Since the smallest writable unit is a byte, it must be parity protected. 

Therefore, there are a total of 147,456 total bits of storage in the data array. 

In each cell row, there are two word lines (WL) and two ways. In each 

WL of each way, there are two bytes. Each byte is composed of eight data bits 

and one parity bit. Figure 2.6 shows major circuits in the data array [47]. The data 

array fills in a single cycle, since all the words can be written simultaneously by 

activating the four banks at once.  

There are two reasons why two WLs and two ways were implemented in a 

row. The first is to avoid column multiplexers which are usually used in a cache 

design. Therefore the BL development path is simplified, which helps the cache 

achieve high speeds. The second reason is that by interleaving bits belonging to 
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two bytes, two WLs and two ways, the bits belonging to the same parity group 

(same byte, WL and way) are separated by a distance equal to the width of seven 

SRAM cells, rather than three. This helps obtain SEE hardness against multi-bit 

upsets since a charge track would have to span 8 cells to upset two bits protected 

by the same parity bit. 

 

Figure 2.6  Basic diagram of data array (after [47]). 

 

The precharge circuits for the bit lines (BL), write drivers and sense 

amplifiers are placed in the center of each of the half data array. The central 

location provides the shortest wires, again to reduce power and wire RC delay. 
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Redundant match lines are generated, and one of each is routed to the left or right 

halves respectively. 

 

 

                             Figure 2.7  Basic diagram of tag (after [47]). 

 

The tag array is composed of four ways, with four banks in each way and 

two sub-banks (top and bottom sub-bank) in each bank. Each way has 2 sets of 

redundant tag comparison and hit generation logic, so that SETs on them can be 

detected. There are 32 rows and 28 columns in a sub-bank. The components of 
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each way are shown in Figure 2.7. The tag array uses interleaved layout. There 

are 24 tag bits and 4 parity bits. The tag bits consist of a lock bit, a least recently 

filled (LRF) bit, two valid bits, and 20 tag address bits. The lock bit indicates a 

line that should not be replaced, making the cache suitable for real-time systems. 

The LRF bit indicates the least recently filled line. It is used to determine which 

line to replace after a cache miss. The valid bits are dual redundant and indicate 

the corresponding cache line is valid. For an invalid cache line, if either valid bit 

is set by SEE, the other valid bit would still indicate the cache line to be invalid. 

2.4 “Staticizing” the 90nm Cache Design 

The original 90nm cache design was almost fully designed using dynamic 

logic. Peripheral circuits like the way hit logic and comparators used dynamic 

logic. The objective here was maximum speed for a radiation hardened design but 

there are downfalls to this type of a design. The first among these issues is the 

timing characterization and second a more difficult problem, which is portability. 

Dynamic logic while very fast can consume a lot of power and can also lead to 

potential functional failures as nodes are minimally driven. Careful design 

practices are required, like the inclusion of keepers, which are a must though there 

is a small performance/area/power loss. The next few sections describe the 

original dynamic design, the static design, and some important design practices. 

The logic that was staticized was the critical tag way hit logic and readout paths. 
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 The Dynamic way hit design 2.4.1

              The tag address which has been read from the SRAM cells are compared 

to the TLB input bits to generate the way select logic. The design is shown in 

Figure 2.8 and Figure 2.9.  The tag data coming from the SRAM cells through the 

single ended 4 input NAND sense amplifiers from each bank in a tag way is wire 

ORed together by dynamic bus lines before they are compared in the comparator.  

The 20-bit mismatch signals generated are passed into a D1 type domino OR 

structure before converging into a NAND set dominant latch. The total delay from 

the clock rising edge to the cache final data read output is 930ps (after [47]). 

 

                                    Figure 2.8 Overview of the Tag critical path. (After [47]) 
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                                      Figure 2.9 Hit Generation Circuits. (After [47])            

 The Static way hit design 2.4.2

              The original dynamic logic based design was replaced with the more 

robust static CMOS based design. The schematic captured from the schematic 

editor of the entire modified way hit logic to the data read output is shown in 

Figure 2.10. A 4-input NOR gate combines the tag address readouts from the 

SRAM cells from the 4 banks of a tag way. The comparator used is a static 

CMOS 2 x 2 input OAI gate.  
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                                         Figure 2.10 Static way hit  schematic 

 



 

38 

 

                            
tag_in

tag_in_n

GBL_addr_n

GBL_addr

 

                                      Figure 2.11 2x2 OAI Comparator static logic 

 

 The gate as shown in Figure 2.11 basically does an XNOR operation on 

the global address to generate the match signal. This signal propagates through a 

series of combinational gates to generate the way hit signal to the data banks. 

Figure 2.12 shows the simulation and the delays for the critical path. The delay 

when compared to the dynamic case is slightly greater but acceptable. This proves 

that a highly optimized static design can nearly equal its dynamic counterpart in 

terms of performance while the main advantage is that substantial dynamic power 

dissipation is saved. 
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                             Figure 2.12 Simulation waveform for the cache critical path 

 

              The final data is read out from the data array through an inverter set 

dominant latch (SDL).  The SDL provides the dynamic to static conversion. The 

bank discharging is the beginning of a dynamic path. Any static path that comes 

after a dynamic path will just let the dynamic circuit precharge edge propagate 

through. The SDL is used in such a way that it only allows the precharge to ripple 

through only when during the evaluate phase, otherwise it retains the previous 

value. Care is taken such that during precharge the SDL has a logic high at its 

input, otherwise the precharge can corrupt the data. The schematic as well as the 

simulation waveform is shown in Figure 2.13 and Figure 2.14 respectively. 
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                                           Figure 2.13  Schematic of an Inverter SDL 
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                                        Figure 2.14  Simulation snapshot for an inverter SDL 

 

              The output inverter is a must while designing an SDL owing to the fact 

that a bare exposed node of a SDL can be susceptible to noise issues which can 

lead to functional failures. The keeper gives a good robust dynamic logic design 
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but the keeper sizing should be small else the pull down would have to fight with 

the keeper during the evaluate phase. 

2.5 45nm RHBD Cache Design 

              The 90nm RHBD Cache has been proven to be very hard in SEE beam 

testing and TID testing [34] [60]. It features a TID hardened SRAM cell as shown 

in Figure 2.15. The layout is shown in Figure 2.16. It uses annular devices. 

              

           Figure 2.15  Modeling the parasitic neck loading due to the annular devices (after 

[47]). 

 

 

          Figure 2.16  Layout of the NMOS-access RHBD SRAM cell (after [47]).  

The TID hardening produces a large area and also requires the use of larger logic 

peripheral circuits. This slows down the cache operation. Additionally, as 
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mentioned, the entire design made extensive use of dynamic circuits which is very 

difficult to characterize and port to a different technology. The proposed cache 

design tries to address these issues by using a regular foundry cell from the IBM 

45nm SOI process and by the use of static standard cell logic. 

2.6 IBM 45nm SOI issues 

Silicon on Insulator (SOI) has been an interesting area of research for 

decades. SOI is attractive since it has the potential for higher performance and 

lower power. The main difference between SOI and the conventional bulk process 

is that source, drain and body are surrounded by an insulating oxide rather than a 

conductive substrate. This eliminates most of the parasitic capacitance of the 

diffusion regions. Figure 2.17 and                Figure 2.18 show a SOI inverter 

cross-section and an electron micrograph, respectively. 

 

                                Figure 2.17  SOI Inverter cross-section (after [52]).  
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               Figure 2.18 IBM SOI process electron microscope snap (courtesy of IBM). 

 

However SOI comes with higher manufacturing cost and unusual device behavior 

which complicates circuit design. Using an insulator means that the body is 

floating as it is no longer tied to VDD or VSS through the well. Any change in the 

body will lead to a modulation of the threshold voltage (Vt). It can also lead to 

higher device temperature. SOI suffers from history effects whereby changes in 

the body voltage modulate the Vt, causing variable gate delays. Gate delay 

becomes a function of the switching history as the body voltage depends on 

whether the device was switching or staying idle. Figure 2.19 shows the charge 

paths to and from the floating body. 
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                        Figure 2.19  Charge paths in an SOI device (after [52]).  

 

A reduced threshold voltage makes the gates faster but the uncertainty poses a 

challenge for circuit designers. These effects can be modeled and given sufficient 

guard band in a design, the critical timing variations can be taken care of. One can 

bound delays by subjecting the design to various conditions like initializing the 

body to VDD for fastest performance or to VSS for the slowest. History effect 

causes significant mismatches also between identical transistors. Another problem 

is due to pass transistor leakage. There is a parasitic bipolar transistor in each 

transistor as shown in Figure 2.20. In a bulk process the bulk is connected to 

supply whereas in SOI the body floats. If the source and drain are both held high 

for a long time while the gate is off, the base floats high due to diode leakage. 

When the source is pulled down low the parasitic transistor turns on. This results 

in a flow of current from drain to source even though the gate is off, causing 

leakage. This does not affect static circuits much, since one of the complementary 

gates is on. This can lead to incorrect functionality for pass gates as well as 
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dynamic logic. Therefore strong enough and carefully designed keepers are 

required for holding dynamic nodes steady. 

                       

Figure 2.20  Parasitic bipolar transistor in an SOI device (after [52]).  

 

Figure 2.21 shows the pass leakage example [52]. The dynamic node X is 

precharged high initially and the gate connected to this node is off. The source is 

high and discharges low producing a current stream which partially discharges the 

node X. 

                   

             Figure 2.21  Pass gate leakage in dynamic gates (after [52]).  
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SOI can also lead to self-heating in devices. This is due to the insulating 

oxide which serves as a good thermal as well as an electrical insulator. The heat 

dissipated tends to stay inside the transistor rather than dissipate to the substrate. 

This may lead to slower operation and higher thermal dissipation in clock drivers 

or IO drivers. This leads to hotter chips. The issues described above are 

manageable, and if the designer takes care of all these issues during the design 

phase by including margins, the benefits of SOI can be reaped. 
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 CIRCUIT DESIGN Chapter 3. 
 

The goal of this work is to port a RHBD high performance cache design 

from a 90nm CMOS bulk process to a more recent 45nm SOI process. The 

technical difficulties presented by this type of logic was overcome by the 

implementation of many of the logic like the tag way hit and read out by using 

static logic standard cells from ARM. This cache design makes use of standard 

foundry 6T SRAM cells from the IBM 45nm SOI library unlike the 90nm one 

which used specially designed 6T SRAM cells to achieve radiation hardness. The 

decision to use normal cells was to achieve faster design time and a much smaller 

design which would not have been possible with the use of larger cells. On the 

downside TID radiation hardness decreases but SOI and the use of complex 

checking circuits and dual redundancy alleviates SEE. Section 3.1 lists the 

performance and radiation hardness requirements. The cache is planned to be 

fabricated on an IBM 45 nm SOI foundry process. 

3.1 Cache Design Requirements 

This cache will be used in a high performance radiation hardened 

microprocessor, which determines the performance requirements. The target 

operating frequency is more than 2 GHz and the cache maximum operating power 

is less than 300 mW.  

3.2 Data Array Design Details 

The data array needs to perform basic function of a memory unit, 

including write and read at 2GHz clock frequency. A number of circuit and 
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micro-architecture techniques are used to achieve radiation hardness. Subsequent 

sections describe the basic design features of the data array. Low power is another 

goal of this design.  

 

Figure 3.1  Basic diagram of data array. 

 

The major component circuits in the data array include the WL decoder, 

SRAM cell, precharge circuitry for BL, write control, and the way multiplexer, as 

shown in Figure 3.1.   During the precharge stage, the BL is pulled up to VDD by 

PMOS transistor. When the clock is asserted and there is an operation to a 

particular bank, the WL decoder asserts one WL high. One SRAM cell in each 
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column or an entire row selected by the WL is selected for a read or a write. On a 

write operation, the BLs are driven by the write drivers and the selected SRAM 

cells are written. During a read, the BLs are driven by the selected SRAM cell. 

The read out value propagates through the NAND4 sense gate. The BL of the top 

four banks and bottom four banks are combined through a high-fan-in logical 

AND function implemented by standard cell logic. For each way, the result is the 

read out. These are passed to the way multiplexer. The way selection generated by 

the tag hit signals decide which way to read out to the cache output. The final read 

out data leaves the cache through a set dominant latch (SDL). 

The WL decoder drives 64 WLs in a sub-bank. There are two WLs in each 

row, with 36 SRAM cells on each WL and is quite heavily loaded. There is no 

column multiplexer. Instead, a nand4-driver pull-down is used. Because of the 

cache architecture, only one of the four inputs of a nand4 gate at any given time 

asserts low. The other three inputs remain in the precharge state. This is because 

only one of banks belonging to the same way is active during a read or lookup. 

This results in fast operations. 

 SRAM Cell 3.2.1

The SRAM cell is the usual 6-transistor structure as shown in Figure 3.2. 
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Figure 3.2  Schematic of the SRAM cell. 

The fundamental SRAM cell used is an IBM foundry cell S462 which is 

used to build high performance memory arrays. The cell has an area of 0.462 um 

sq. The cell is written differentially, with one bit line (BL) and the other (BLn) at 

opposite potentials. It follows all SRAM special DRCs from the IBM 45nm SOI 

foundry process. 

Dual Word Lines

 

 Figure 3.3  Two word lines are connected alternately to cells in one row. 
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Table 3.1 AREA COMPARISON BETWEEN THE SRAM CELLS FOR 45 NM 

PROCESS 

 

PROCESS IBM 45NM SOI 

DEVICE  AREA   

(µM SQ) 

 

IBM S462 0.476  

EQUIVALENT LOGIC 

CELL 
0.753  

 

 lists the SRAM cell device sizes of all different SRAM cells in the 45 nm 

process used in the design. Note that the logic cell consumes twice the area of a 

foundry SRAM. The larger access and pull down devices in a SRAM cell provide 

high current to drive the high BL capacitance at high slew rates. The foundry cell 

is tall enough to allow two word lines to be interleaved in the layout—parity bits 

thus have twice the interleaving that would otherwise be not possible, i.e., have 

greater critical spacing. Also, this halves the access power since only every 

alternate cell is accessed when one WL is asserted (see  Figure 3.3) [47]. 

 Word Line (WL) Decoder 3.2.2

A static WL decoder is used in this cache design as opposed to the original 

dynamic decoder used in the previous design. This also helps to lower power 

dissipation. The decoder has 3 parts, namely a predecode stage, a postdecode 

stage and a clock and stage to produce the final wordline enable. The 
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combinations of the outputs from these predecoders generate 64 WLs, as shown 

in Figure 3.4.  

 

Figure 3.4  WL decoder. 

 

The WL addresses are qualified by the sub-bank clock which is active 

only in selected banks. There is no active power in unselected sub-banks. The 

overall cache power dissipation is thus reduced by using this scheme. It toggles 

only when the sub-bank is active. If a sub-bank is not active, it is kept in the 

precharge stage. The decoder outputs (wordline selects) are available before the 

clock arrives. Decoding occurs in the negative clock phase (clock = low). A 

negative latch passes the addresses arriving during the negative phase of the clock. 

Decoding takes place in the negative phase of the clock and wordline selects are 

available for ANDing with the clock when the positive edge arrives. 
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                                          Figure 3.5  WL decoder simulation results. 

 

Figure 3.5 is the simulation of the WL decoder. The longest delay from 

the rising edge of clk to WL is about 30 ps, at room temperature and at the typical 

process corner. 

 Write and Precharge Circuitry 3.2.3

As shown in Figure 3.6 [47], the BL and BLn are precharged by PMOS 

transistors. The write data is driven by static buffers and inverters. For writes, 

both BL and BLn are driven by tristate inverters controlled by the write enable 

signal (WREN). BL and BLn are precharged to VDD by PMOS transistors. To 

ensure the WL, precharge and WREN work correctly together, a self-timed circuit 

is used for the write and precharge control, respectively, as illustrated in Figure 

3.7 [47]. The timing is derived directly from the sub-bank clock. 
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Figure 3.6  Write and precharge circuitry. (After [47]) 

 

wren

precharge

sub-bank clkwl_lsb_sel

write 
enables

 

Figure 3.7  Self-timed circuits are used in WREN and precharge drivers. 

 

Both WREN and precharge are generated from the sub-bank clock. There 

are two inversions in the WREN driver and one inversion in the precharge driver. 

Although the loads on the WREN, precharge and WL are different, the driver 
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sizes have been adjusted to make the delay on these paths similar to each other. 

Figure 3.8 illustrates the simulation results on these paths. 

subbank_clk

WL

WREN

PRECHARGE

 

                   Figure 3.8  Simulation waveform of WL, WREN and precharge. 

 

 Techniques to Achieve SEE Radiation Hardness 3.2.4

This section focuses on the various techniques used in the data array to 

achieve radiation hardness by design. The detect-invalidation-reload scheme is 

used for cache SEE protection. It involves both architectural and circuit level 

techniques. The cache is write-through and we always have a copy of the data 

stored in the lower level memory. This scheme exploits this very nature of the 

cache. The whole cache is invalidated when there is a SEE-induced error. The 

processor is restored to a valid state over time after the SEE. The valid 

architectural state may be retrieved from an external protected memory source 

that resides outside of the processor system.  This design makes use of parity 

protection, interleaved layouts, dual redundancy and special error checking 

circuits to mitigate SEE errors and MBU.  
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Layout spacing plays a major role in reducing errors due to MBU which 

cannot be detected using parity bits. SRAM bits form different parity groups are 

interleaved with each other. The bits belonging to the same group are separated by 

a width equivalent to 7 SRAM cells. This reduces the chances of MBU affecting 

all the bits in a single group. Within each group single-bit-upsets can be detected 

by their respective parity bits.  

This cache design employs clever error detection circuits to monitor the 

cache operation in case of a SEE. They are implemented in the architecture such 

that in the event of a SEE, they report the errors before the data is read out and 

used in the pipeline. The error circuits can themselves be victims of SEE. In such 

a case, there might be false alarms. The entire cache is invalidated if such a 

scenario occurs. Figure 3.9 shows the detection circuits implemented in the data 

array. All inputs to the data array are dual redundant at the boundary. The dual 

redundant signals are compared before the signals enter the data array to check for 

any errors. A list of possible errors and corresponding detection techniques are 

described below.  
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                                Figure 3.9  The error detection scheme of data array. (After [47]) 

 

When one or more SRAM bits are flipped, owing to the layout spacing 

between bits in the same group, the parity checks catch them as they all get 

converted to single-bit errors. 

In another case of SEE error, the write enable signal may get asserted 

incorrectly. The write enable signals are made dual redundant, indicated as write 

enable A and B in Figure 3.9. The path A is used in the data array. The write 

enable driver controls the write circuits for individual SRAM columns. The 

WRENs are encoded back and compared to the WREN from path B. An error is 

flagged if there is a comparison mismatch. There can be a case of an undetected 
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error that occurs in the write circuit of a single SRAM column. The parity checker 

will duly catch this error, when the data is read out since it is a single-bit upset.  

The address driver or WL decoder can give incorrect outputs in case of a 

SET. The address input protection also involves similar measures as the write 

enables. There are dual redundant paths for address inputs. One path is fed into 

the data array WL decoder. An encoder within each bank regenerates the address 

signals from WLs. If there is an error in the address decoding path, there will be a 

mismatch between the regenerated address and the redundant address flagging an 

error.  

The BL precharge can be asserted or de-asserted incorrectly, due to an 

SET. There are BL precharge checkers to detect any error that occurs in the 

precharge control logic.  

The BLs or BLns could be wrong during a write or read cycle due to a 

control signal error or WL SET induced error. A BL read-checker can report 

errors if either BL or BLn fail to develop fully during a read phase. The BL write 

checker reports an error based on the event that a special dummy SRAM cell is 

not written correctly during a write phase.  

Finally all the errors signals from the checking circuits are ORed together 

in the error checking logic outside of the cache. Any error from the data array will 

lead to the cache being invalidated and is reported for test purposes. The errors 

can also be logged, so that we can determine their relative frequency and cross-
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section vs. LET. The following sections describe the design details of each 

checker.  

In the data array, the detection circuits comprise roughly about 15% of the 

total area. The detection circuit impact is similar in the tag array. Therefore, it can 

be concluded that the overall cache area penalty of using the detection circuits is 

around 15%. This is a small yet significant area penalty for achieving radiation 

hardness for the design. 

 Error Checking Circuitry 3.2.4.1

The checkers should be designed such that they catch any error that occurs 

instantly and not just the one that occurs during a clock edge. Static checking 

circuits thus become inappropriate for this purpose. All of the error checkers are 

based on the same dynamic logic design. The basic dynamic error checker is 

illustrated in Figure 3.10. It detects an error when the checked signal is high 

(checking window). At all other times, node A is precharged to VDD. The error 

signal is combined with error signals from all the other banks, in the error control 

logic. Some error flags propagate into a latch or flip-flop directly because they 

may get updated with a new value in the next check cycle. The checking circuits 

implemented for the WLs, write enables, BL precharge, bit line read and write 

follow the same approach. 
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Figure 3.10  The basic dynamic error checking circuit (after [42]). 

 

3.2.4.1.1 WL Encoders and NOR Checker 

A WL error during a write, can lead to a missed write operation or data 

being written to the wrong row. As the parity is stored at the same time, therefore 

the parity checker cannot detect this error, leading to MBU. This is commonly 

referred to as a silent data corruption which is fatal. If such an error happens to 

WL during a read, a wrong row or multiple rows can be read. The dynamic WL 

encoder regenerates the address based on WL(s) actually asserted. The 

regenerated address is compared with the input address to the WL decoder. A 

comparison mismatch indicates a WL error. The scheme and structure are shown 

in Figure 3.11 and Figure 3.12. 
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                                  Figure 3.11  The WL encode scheme [47]. 

 

 

Figure 3.12  The WL encoder structure [47]. 

 

Incorrectly asserted WLs can also cause timing errors. A separate circuit, 

NOR checker, checks for WLs asserted during the precharge stage. The WL NOR 

checkers are active even in banks that are not active. 
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           Note: there are keepers on each vertical line although they are not shown. 

                                 Figure 3.13 WL encoder and NOR checker (after [47]). 

 

The encoder employs dynamic circuits as shown in Figure 3.13. It is fast 

and relatively compact. The structure is divided into part A and B. The part A 

reconstructs the address and part B generates the complementary value. The 

reason to have both polarities is that a single dynamic encoder cannot detect 

multiple WL errors [47]. The dual encoder can also detect multiple WLs asserted 

at the same time.   

In the layout for the encoder, there are six columns of NMOS transistors 

for both part A and B. There is no open space between these columns.  

A dual dynamic 64 to 6 encoder is used in the scheme. Table 3.2 (after 

[47]) shows the truth table of the encoder. 
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Table 3.2 THE TRUTH TABLE OF WL ENCODER PART A AND PART B 

WL asserted Output of part A Output of part B 

WL0 0B000000 0B111111 

WL1 0B000001 0B111110 

WL2 0B000010  

… … … 

WL63 0B111111 0B000000 

No WL is asserted 0B111111 0B111111 

 

 

3.2.4.1.2 Wren Encoder and NOR Checker 

The design of the WREN encoder and NOR checker are similar to that of 

the WL encoder and NOR checker. No encoding is used and there is no need for 

complementary circuits owing to the fact that there are very few signals. WREN 

NOR checker detects errors if any WREN is asserted during a precharge phase. 

The worst case is when a bad write creeps through when the WL is asserted. 

Figure 3.14 shows the schematic diagram of the WREN encoder and NOR 

checker.  
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                      Figure 3.14  The WREN encoder and NOR checker (after [47]). 

 

3.2.4.1.3 BL Precharge Checker 

The BL precharge checker as shown in Figure 3.15 monitors the columns 

connected to even/odd WLs, from the top or bottom sub-bank. When at least one 

of the four pairs of signals is low during the precharge phase, the checker sets the 

error flag and a local bit line precharge error is reported. An error detected by BL 

precharge checker is simulated and illustrated in Figure 3.16. 
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                  Figure 3.15  BL precharge suppression detection. 

 

In case of an unintended precharge during a read or write, it may cause 

some contention between the precharge and read or write circuits. If it happens in 

a write, the write driver is strong enough to overcome the precharge. If it happens 

in a read, the design ensures that the precharge is stronger and all the outputs are 

high and thus detectable by the parity checker. Consequently, a checker for 

unintended BL precharge is not needed. 
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          Figure 3.16  Simulation of an error detected on BL precharge. 

 

3.2.4.1.4 BL Read Checker 

The BL read checker detects a BL or BLn error caused by a suppressed 

WL or an asserted precharge signal during a read. A dummy column of special 

SRAM cells is used and the BL/BLn is monitored. The BL and BLn in the 

dummy column have almost the same load and precharge driver as the normal 

columns to duplicate the development of BL and BLn. The value in the SRAM 

cell is always set to high. During a read, the BL is high and BLn is low. If both 

are high an error flag is set by the BL read checker.  
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Figure 3.17  Bit line read checker (after [47]). 

 

Multiple SET errors can prevent the BLs from developing completely. For 

example, the BL precharge can spike or the case when the WL development is 

delayed. Such an irregularity can cause an incomplete or incorrect read. The read 

checkers reside in each sub-bank. The error flags from each bank are combined 

similarly to the BL precharge suppression detection in Figure 3.15. The bit line 

read checker is shown in Figure 3.17. Its simulated function is illustrated in 

Figure 3.18. 
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               Figure 3.18  Simulation of an error detected on BL during a read.  

 

3.2.4.1.5 Write Checker 

The write checker constitutes a column of dummy cells. The cells in the 

column are connected to a grounded WL. There are 31 dummy cells and one 

special SRAM cell at the very bottom of the column. In a precharge stage, the 

special cell is written with logic “0” and during every write stage, logic “1” is 

written to the special cell. An inside node is monitored for a low state after the 

write operation. If the node is not low, the write error flag is set. There is a write 

checker (see Figure 3.19) in each sub-bank. The error flags from all sub-banks are 

combined in the same way as for the read checker.  
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Figure 3.19  Write checker. (After [47]) 

 

Figure 3.20 shows simulation waveforms of this checker. A wrong 

precharge causes both BL and Bln high during a write reporting a write error. 



 

70 

 

Error detected

Bit-Lines stay high due to incorrect 
assertion of precharge

 

                                    Figure 3.20  Simulation of an error detected during a write. 

 

3.2.4.1.6  SRAM cells used in Read/Write Checkers 

                 The SRAM cells used as dummy for the read and write circuitry are not 

the standard IBM foundry cells used throughout the design. This was a sort of 

shortcoming as foundry cells cannot be modified. So the smallest logic cell with 

the same beta ratio as the IBM foundry cell used was designed and used. Though 

this may not track exactly the foundry SRAM cells but this is the closest we can 

get. There is roughly 2 times area overhead from the foundry cell. This is due to 

the non SRAM DRC rules which are used for the logic cell.  
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                                          Figure 3.21  Layout of the Logic SRAM cell 

 

      

Table 3.3 TRANSISTOR SIZES USED FOR THE LOGIC SRAM CELL  

PROCESS IBM 45NM SOI 

DEVICE WIDTH 

(µM) 

LENGTH 

(µM) 

ACCESS NFET 0.209 0.40 

PULL DOWN NFET 0.361 0.40 

LOAD PFET 0.152 0.40 

 

Table 3.3 lists the SRAM cell device sizes of all transistors in the 45 nm process. 

Table 3.4  READ MARGIN FOR THE DUMMY SRAM CELL FOR 45 NM 

PROCESS 

PROCESS (TYPICAL & 

WORST CASE (FS) 

IBM 45NM SOI 

    VDD(V) TEMP(C) SNM(V) 

0.9 85 0.093 

0.72 125 0.054 
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Table 3.4 gives us the typical and worst case read margins for the custom cell. 

Figure 3.23 and Figure 3.22 shows the worst case monte-carlo read and write 

margins (0.38V) respectively for the logic cell. The worst condition for write is a 

slow NMOS and a fast PMOS. The worst case for read is a fast NMOS and slow 

PMOS.  

 

                     Figure 3.22 Monte Carlo simulations for worst case read SNM analysis 
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                       Figure 3.23  Worst case write margin of the Logic SRAM cell 

 

3.3  Tag Array Design Details 

The tag is comprised of four ways, with four banks in each way and two 

sub-banks (top and bottom sub-bank) in each bank. Each way has dual redundant 

tag comparison and hit generation logic, so that SETs on them can be detected. 

There are 32 rows and 28 columns in a sub-bank. The components of each way 

are shown in Figure 3.24. The tag rows use interleaved layout.  
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                           Figure 3.24  Basic diagram of tag. 

  Tag Array Circuits 3.3.1

The tag array contains the address pertaining to each line in the cache. It 

should be faster than the data array, since it compares the stored address and 

selects the appropriate way in the data array. This happens in parallel with the 

data read. The tag array has WL decoders, SRAM cells columns, precharge for 

BL, and write circuits which are the same as those used in the data array. In each 

sub-bank, there are 32 rows and 28 columns of SRAM cells. Unlike the 90nm 

design the bit lines are not split into 2 having 16 cells each. The bit lines have 32 

cells connected to them as shown above. This was done as the 45nm process is on 
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SOI and has low parasitics compared to a bulk process and there would be 

minimal penalty on bit line development. This allowed the use of a faster 2 input 

nand single ended sense (19 ps from bit line discharge to nand sense output) 

instead of a 4 input nand (22 ps from bit line discharge to nand sense output). This 

results in lower capacitance on the sense amplifier side allowing for faster speeds 

and lower power consumption. This simplified the layout and increased array 

efficiency. The data array still uses the 4-input nand sense owing to the dual 

redundancy nature of the architecture. The critical path in the cache is the hit 

generation, so a faster BL development sense is necessary to speed up the way 

selection signals generation.  
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                              Figure 3.25  Schematic of the tag critical path. 

 

The following sections focus on the circuits that are different from the data 

array. 
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 Hit Generation 3.3.2

The tag address read from SRAM cells is compared to the physical 

address in the hit generation circuits, as shown in Figure 3.25. The XNOR gate 

that takes differential inputs, implemented as a complex CMOS OAI (Or-And-

invert) gate, compares one of the 20 bits in the address. The OAI outputs thus 

generated are ANDed to generate the way hit signal which then goes to the hit 

read drivers to generate the way selects to the data array. 

 Error Checking Circuits 3.3.3

The error checking circuits in the tag are similar to those in the data array. 

The BL precharge, read and write checkers have the same structure as that in the 

data array. Error flags from the 16 banks are ORed together through static gates 

and a static NAND gate. When compared to the original 90 nm design, there are 2 

pins less in this design as the bit lines have 32 cells instead of 16 cells. 

  Write and precharge circuitry 3.3.4

The precharge and write enable signals are generated from the subbank 

clock. The delays are adjusted by sizing the gates in the logic path much like the 

data array circuits. The logic is shown in Figure 3.26. The non-segregation of the 

SRAM cells on the bit lines have reduced and simplified the driver circuitry 

considerably in the tag part.  
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                            Figure 3.26  Schematic of the precharge and wren circuitry. 

 

 Dual Redundant Hit Generation 3.3.5

 

Figure 3.27   Dual match generation of tag (after [47]). 
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To detect a SEE-induced error in the hit generation circuits, the hit 

generation logic is designed as dual redundant in each way, named Match A and 

Match B as illustrated in Figure 3.27. The way select signals from the dual 

redundant hit generation circuits can be checked against each other. If there is a 

mismatch, an error is flagged. The checkers for these comparisons lie outside of 

the whole cache and are not part of the cache design. The dual hit generation 

circuits are connected to each half of the data array. The load on the way selection 

circuits is halved than what it would otherwise be. Therefore the drivers of the 

way selection circuits are sized smaller. The area overhead of the dual hit 

generation circuits would be less than 30% larger than its single hit generation 

circuit counterpart, with similar load and performance specifications. 
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 ARRAY LAYOUT Chapter 4. 
 

4.1 Tag Bank Layout 

The Tag Bank is the smallest macro in the Tag Array design. It consists of 

a top sub-bank and a bottom sub-bank. It consists of all the SRAM arrays and 

checker circuits along with the drivers integrated all together. The tag bank is 

done full custom layout. The layout snapshot of the tag bank is shown in Figure 

4.1. All the checkers as well as the sense amplifiers lie in between the whole 

bank. There is also sufficient area as and when modifications are desired.  

SRAM columns X 14 SRAM columns X 145X32 Decoder

Valid  SRAM bit cells

Write checker

Read checkerA
rr

ay
 c

ir
cu

it
s

WLNOR checker WREN checker  

                          Figure 4.1  Snapshot of the tag bank of the tag array 

 

  Layout Interleaving 4.1.1

The tag consists of 28 bits in a row. This includes 20 address bits, four 

status bits, and four parity bits. They are divided into four parity groups. The 

distance between bits of the same parity group is the width of three cells or 

3.72µm. 
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There are two dual redundant valid bits such that they could be protected 

from SEE. They are cleared independently from other bits in the tag, during 

power up initialization or global cache invalidation operation. The dual valid bits 

are output at the same time as and when the cache does a read operation. If either 

of the valid bits is low, the output is invalid. The distance between the dual valid 

bits are separated by three SRAM cells. The distance between them is lesser than 

that was for the previous 90nm design. This is owing to the smaller foundry cells 

but may be good enough to withstand a particle strike without affecting both the 

bits.  

4.2  Data Bank Layout 

The Data Bank like the Tag Bank is the smallest macro in the Data Array 

design. It also consists of a top and a bottom sub-bank. It consists of all the 

SRAM arrays and checker circuits along with the drivers integrated all together. 

The data bank is done full custom layout. The layout snapshot of the data bank is 

shown in Figure 4.2. All the checkers as well as the sense amplifiers lie in 

between the whole bank. The data bank SRAMs have dual word lines for 

interleaved layout between the even and odd data bytes. There is also sufficient 

area as and when modifications are desired. 
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                           Figure 4.2  Snapshot of the data bank of the data array 

 Interleaved Layout and Parity Protection 4.2.1

Each row in the left or right half data array contains 72 bits. They are 

divided into parity groups of eight. There are eight data bits and one parity bit in 

each group. The eight data bits in the same parity group belong to the same way, 

WL and byte [47]. Thus bits belonging to different parity groups are interleaved 

in layout. The distance between bits of the same parity group is same as the width 

of seven cells or 8.68µm wide. The parity checker checks for any single upset 

within a parity group. In the data array, alternating even and odd parity is 

computed for consecutive bytes within each word.  

4.3 Layout Techniques  

One of the most effective layout technique to achieve SEE hardness is to 

maintain the necessary critical node spacing between cells signals, or blocks that 

belong to the same parity group or redundant to each other, as emphasized before. 

The cells in each column are interleaved to maintain this distance. All connections 

to the cells stay in the same column as the cells. Therefore, all the related circuits 

also maintain the same critical node distance as the SRAM cells. All redundant 
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signals, such as the tag hit signals from the tag, maintain the same or greater 

distance in the layout. The more the spacing, the less susceptible the design is to 

MBUs. A larger logic SRAM cell is a great advantage in this regard. 

4.4 Techniques to Reduce Power 

Low power is another goal in the cache design. There are a lot of 

techniques used widely to reduce power dissipation. One of them is to gate clocks 

to reduce the activity factor of each sub-bank. Another one is to reduce wire 

lengths and hence the signaling power dissipation by optimizing the floor plan. 

We can make use of static CMOS logic wherever possible to reduce power 

trading a little bit on performance. Also it depends on the micro-architecture of 

the system. If the architecture is sub-optimal, any number of optimizations would 

be of no use and would still lead to a poor design or product. 

Gated clocks are used to generate each sub-bank clock, as indicated in 

Figure 4.3. Only banks that are active would receive the clocks. For other sub-

banks, the clocks are inactive.  
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                  Figure 4.3  Gated clock in the generation of sub-bank clock (after [47]). 

 

Interconnects contribute to the majority of the dynamic power dissipation 

in the arrays. So reducing the length of interconnects is a necessary part to reduce 

dynamic power loss. The floor plan for the design is such that the wires are 

shorter, since the tag arrays are located in the middle of two half parts of the data 

array, so the hit signals travel a smaller distance. In the data array, the way 

multiplexers are placed in the center of the array to minimize the delays due to 

longer wires. 

 

 

 

 

 

 

 



 

84 

 

 FULL CACHE LAYOUT Chapter 5. 
 

Custom Circuit design has always thrown questions with regards to 

reliability, resource availability and more importantly the time to design and 

market such designs. On the other hand ASIC methodologies fall short of the 

performance mark when compared to custom methodologies while giving better 

time to market. Achieving custom performance using ASIC techniques is a big 

challenge for the chip making industry. The blend of the two techniques where the 

ease of circuit design using standard cells with appropriate sizing and optimal 

logic implementation, along with the ease of  placement and routing of the 

standard cells, seems to be a captivating solution [53]. This allows better 

productivity while not compromising much on circuit performance and also leads 

to lower power and area. One another advantage is the ease of portability from 

one technology node to another. The full cache is designed using both the 

methodologies to get the desired performance without much complexity. The 

proposed methodology used to complete the full cache was actually conceived by 

Satendra Kumar Maurya as part of his PhD thesis [53]. 

5.1  The structured methodology flow 

One requires a thorough knowledge and analysis of the design architecture 

to gain maximum custom circuit performance. Figure 5.1 shows the proposed 

flow. The first step in custom circuit design is to implement the circuit design on a 

schematic editor using macro and/or standard cells. Special custom standard cells 

required are also added to the libraries. Design analysis across multiple corners is 
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subsequently carried out for timing verification using timing tools like Synopsys 

Prime Time. At this point, the design is not routed, and the wire parasitics are not 

included. However, the timing tool checks for the proper drive strengths of 

standard cells by analyzing the transitions at every node in the critical path and 

gives an optimistic result which gives us an idea of delays post route.  

 

                              Figure 5.1  Structured methodology flow (after [53]). 

 

Once design at the schematic level is finalized, the floor-planning of these 

standard cells is carried out. This is done by placing the cells in a spreadsheet, 

each cell of which corresponds to each instantiation of the standard cell in the 

design. Since global wires between physical modules are a dominant portion of 
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the total path delay, proper placement of the standard cells and their drivers make 

the path delay within the design limit, thus achieving high speed. The spreadsheet 

is then read by Perl scripts that convert it into a placement file readable by the 

Cadence Encounter routing tool for actual placement of the standard cells in its 

floor-plan. The floor-plan in the Cadence Encounter can be analyzed and the 

standard cells can be replaced to obtain better area. By simply swapping or 

shifting the placed cells in the spreadsheet and re-running the Perl scripts to 

obtain the new placements, the task is productive and allows designer flexibility 

of moving the cells across for area and delay optimization [53]. 

As soon as the Encounter floor-plan is settled, the routing of all the cells is 

carried out using the Encounter auto-route tool. This is the step where the ASIC 

design methodology is used. Since the algorithms for routing are reasonably 

optimal and regular, they can give similar results as manual routing but at far less 

effort. The netlist and the timing information (that captures the estimated wire 

delays) from the routed block can then be extracted. The timing tool then re-

analyzes the block but this time with estimated wire RC delays. Changes, if 

required, can be carried out in the spreadsheet for placement changes or in the 

schematic for better drive strengths in case the cell is driving long wire. Since 

these steps are fast and require less effort, the proposed methodology generates a 

design with better performance, regularity, repeatability, and ease of portability. 

The main work for the designer is to develop the micro-architecture of the design 

and circuit design as represented by the schematic. 
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  Steps involved in the structured flow 5.1.1

The steps involved in the flow are mentioned below [53]. 

1. Create the flattened netlist file using the Verilog-XL simulator in 

Cadence Virtuoso. 

2. Parse all the necessary Library Exchange Format (LEF) files 

required for the design. They contain physical information for the 

standard as well as the macro cells. They are generated for custom 

specific cells using Cadence Abstractgen tool. 

3. Plan the layout floorplan using excel sheet and generate the layout 

information using perl scripts. It contains a list of all cells in their 

hierarchical as well as location mapping. 

4. Finally get the placement information file which can be zipped and 

loaded into Cadence Encounter tool for placement. It also gives 

you a rough estimate of the block width and height. 

  Characterizing macro blocks 5.1.2

To integrate custom design into the structured flow methodology, the tag 

bank and the data bank which form the smallest macro at the array level were 

characterized to get the respective .lib files. These library files contain timing 

information for the macro blocks. The tool used was Synopsys Nanotime which is 

a transistor level characterization tool. The characterization was performed on the 

post extracted netlist (extracted using Calibre PEX from IBM). Additionally 
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HSPICE simulations were performed on the post layout netlist to validate the 

timings.  

5.2  Cache layout 

  The data array layout 5.2.1

The layout of the data array was carried out in two steps. First, the banks 

were built independently full custom and then the banks, along with standard cells 

were put together, to complete the layout. All the 16 banks used in the design are 

identical. Each of the data banks consists of two sub-banks: top and bottom sub-

bank. The custom design achieves a highly compact design. Moreover, there is 

dynamic logic in the bank, which is best laid out manually. The fully laid out 

bank was then characterized to generate the library characterization file (i.e., .lib) 

for the bank. The rest of the cache layout was carried out by placing the banks and 

the standard cells in the structured flow mentioned before. The banks were treated 

as macro blocks and their placement was defined in the spreadsheet. Precautions 

were taken to ensure the RHBD required bit interleaving and maintenance of the 

spatial distance between traversing signals. Figure 5.2 shows the placement 

details of the data array. The standard cells are placed in between every two 

banks. This reduces the wire run for the signals and hence reduces the excessive 

loading of standard cells. The standard cells are placed in a manner to maintain a 

laminar flow of the signals to and from the banks. Since the banks maintain the 

proper bit interleaving and spatial separation between the SEE susceptible signals, 
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this way of placing the standard cells automatically ensures the radiation 

hardening criteria. 

Once the placement of the standard cells and the banks are finalized in the 

Encounter floorplan, the design is routed using the Nanoroute feature of 

Encounter. The design is saved in gdsII format and is then imported back into the 

Cadence Virtuoso environment. The complete layout of the data array is shown in 

Figure 5.3. The layout is compact, regular and also since it is generated through 

the script, any modifications can be applied to the design with reasonable design 

and characterization effort. 
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                      Figure 5.2 Data banks and standard cell placement 

 

 

                     Figure 5.3 Fully routed data array 
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 The tag array layout 5.2.2

The complete layout of the tag array was carried out similar to the data 

array layout, in two steps. First banks were independently built full custom and 

then banks along with standard cells were put together to get the complete layout. 

All the 16 banks used in the design are similar. first these banks were fully custom 

built. Each of the tag banks consists of two sub-banks: top and bottom sub-banks. 

The custom design lets to achieve highly compact design and also because there 

are dynamic logics in the bank which are best laid out manually. Once the layout 

of the bank is finalized, it was characterized to generate the library 

characterization file for the bank. Once the banks are ready, the rest of the layout 

was carried out by placing the banks and the standard cells into the spreadsheet. 

The banks were treated as macro blocks and their placement was defined in the 

spreadsheet as per their instance names. Precaution was taken to ensure bit 

interleaving and spatial distance between the signals traversing from these banks 

into the standard cells. This spreadsheet is read by the Perl script that generates 

the Encounter compatible placement file. Figure 5.4 and Figure 5.5 shows the 

placement details and complete layout of the tag array respectively. The standard 

cells are placed as strips in a 2-4-2-2-4-2 fashion between the banks. This reduces 

the wire run for the signals and hence reduces the excessive loading of standard 

cells. The standard cells are placed in a manner to maintain a laminar flow of the 

signals to and from the banks. Since the banks maintain the proper bit interleaving 
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and spatial separation between the SEE susceptible signals, this way of placing 

the standard cells automatically ensure the radiation hardening criteria. 
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                           Figure 5.4 Tag banks and standard cell placement 

 

                            Figure 5.5 Fully routed tag array 

 

 Full cache layout 5.2.3

Once the tag and data arrays are fully laid out, Synopsys Primetime is run 

on the extracted netlist from Encounter to characterize the arrays and to get the 

.lib file which has all the timing information. To build the entire cache the 

structured methodology described before is again applied. There will be 1 

placement for the tag array and 2 placements for the data arrays which reflect the 

right and left half data arrays. The floorplan of the entire cache is shown in Figure 

5.6. The LEFs for both the completed tag and data arrays are extracted using 

Abstractgen. The placement information is again generated using scripts and fed 

into Encounter. Nanoroute is used for routing the entire cache. Once routed, the 

entire design is extracted and fed as an input to Primetime for timing analysis. 

The Primetime results are matched to the HSPICE simulation results.   
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                                                   Figure 5.6 Floorplan of the cache 

 

 

 

                                                   Figure 5.7 The routed entire Cache 



 

93 

 

 

398 ps

427 ps

347 ps

clk

WL

precharge

BL disharge

Nand_sense_out

Comparator out

Way hit

Way select

Data_read

 

                     Figure 5.8 HSPICE simulation showing the Cache critical path 

 

Figure 5.7 shows the complete layout of the whole cache. Figure 5.8 gives 

a simulation waveform snapshot of the critical path of the Cache design. The 

worst case path delay is around 398 ps guaranteeing that the cache design can 

work above 2 GHz. Table 5.1, Table 5.2 and Table 5.3 show the delay and area, 

average power and energy consumed respectively for the 45 nm and 90 nm cache 

designs. 

            Table 5.1 DELAY AND AREA FOR VARIOUS CACHE DESIGNS 

Cache Design  Delay (ns) Area (mm2) 

90 nm dynamic 0.930 3.422 

90 nm static 1.017 3.163 

45 nm static 0.398 0.331 
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                                        Table 5.2  AVERAGE POWER 

 45 nm Cache (mW) 90 nm Ccahe (mW) 

 Read Write Read Write 

Half data array 14 16 53 49 

Tag array 9.6 10 21 19 

Cache 37.6 42 127 117 

 

                                  Table 5.3 ENERGY PER OPERATION 

45 nm Cache Energy per operation 
(pJ) 

 Read Write 

Half data array 14 31.6 

Tag array 10.6 20 

Cache 38.6 83.2 
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 CONCLUSION Chapter 6. 
 

This thesis provides details about the design and implementation of a 

radiation hardened by design cache. The main goal is to design a radiation 

hardened cache which can boast of low power and high performance while 

keeping portability in mind. Portability refers to the time taken to port a design 

from one technology node to another in as less time as possible.  

RHBD techniques are used to mitigate errors due to SEE. Special checker 

circuits, interleaved layouts and dual redundancy approaches are employed. The 

use of IBM foundry SRAM cells leads to better array efficiency and low power 

when compared to the use of specially made logic SRAM cells which would be 

very large. Although in the perspective of TID, the smaller size would be a 

disadvantage and make the design less hard. Special logic SRAM cells were 

designed for Tag parity bits and other dummy SRAM cells used in the read and 

write checker circuits. This was mainly owing to the inability to modify the 

foundry SRAM cells. Dual WLs (wordlines) could be employed on the foundry 

cell for the purpose of interleaving even and odd data bytes on the foundry SRAM 

cells. This was especially hard due to the small size of the SRAM cells. The 

operating speeds can touch above 2GHz which is way higher than any of the 

commercial RHBD processors available commercially. This was possible due to 

the optimal use of both dynamic as well as static CMOS circuits. The cache 

achieves low power by making use of gated clocks to the subbanks. This means 

that at one time only one subbank would be active and power would be saved as 
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the rest of the 15 banks would be turned off. Also the placement of the tag array 

and the 2 halves of the data array on each side of the tag array minimizes the 

interconnect lengths and standard cells with lesser drives and thus lesser 

capacitance can be used. This actually reduces the distance between the way hit 

logic in the tag to the way-muxes in the data array. This also minimizes power. 

This cache design also makes use of single ended nand sense instead of the analog 

sense amplifiers used in traditional caches. It also does not make use of column 

multiplexers. This use of CMOS sense reduces mismatch due to variability and 

simplifies circuit design. The SOI technology allowed the use of a 2 input nand 

sense instead of the 4 input nand in the 90nm design. SOI technology has less 

transistor parasitics than bulk and allows for faster design and thus less parasitics 

on the bitlines leads to faster bitline development speed and reduced complexity 

of peripheral circuits. The original design had partitioned the bitlines into top and 

bottom bitlines to improve bitline development speed.  

The use of the structured ASIC methodology flow to build high 

performance arrays has also been exploited in this thesis. The performance of 

custom circuits along with the flexibility and time to market capability of the 

ASIC structured flow leads to the development of robust designs. The flow gives 

the designer the freedom to add more custom cells to the library as and when need 

arises. The data and tag banks as macros can be characterized and their timing 

data can be used in this flow. They are like standard .lib files which can be used in 

Encounter or Primetime for layout or timing analysis purposes. In a traditional 
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ASIC flow you would not be able to use special cells as you are restricted to only 

a certain standard cell library. The functional verification is done in a RTL model 

vs schematic model approach. Here the vectors from a behavioral model written 

in HDL is used to test the post layout extracted netlist and checked for functional 

bugs. Cadence Ultrasim tool was used for this purpose. Once the functional 

verification is done the layout is done using the spreadsheet format where the 

macros and standard cells are placed for optimum placement and cells in critical 

paths are placed such as to reduce interconnect parasitics. Once the placement is 

finalized and reiterated to get the best placement in Encounter, routing is done and 

the parasitics are extracted as a Primetime readable format. Finally static timing 

analysis is performed for violations and to determine the delay on the critical path. 

Any problems on the path like longer delays or low drives can be fixed by sizing 

the standard cells and reiterating the entire flow till optimum results are achieved. 

This can be done in considerably short amount of time unlike for a full custom 

design. Finally many novel design techniques were involved. The judicious use of 

dynamic logic and SDLs can make the design highly optimized. The uses of SDLs 

were an integral part of the design. The ported 45 nm design gives significant 

savings in terms of area and power as well as reduction in overall area when 

compared to the 90 nm design. 
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