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ABSTRACT 
 

As we migrate into an era of personalized medicine, understanding how 

bio-molecules interact with one another to form cellular systems is one of the key 

focus areas of systems biology. Several challenges such as the dynamic nature of 

cellular systems, uncertainty due to environmental influences, and the 

heterogeneity between individual patients render this a difficult task. In the last 

decade, several algorithms have been proposed to elucidate cellular systems from 

data, resulting in numerous data-driven hypotheses. However, due to the large 

number of variables involved in the process, many of which are unknown or not 

measurable, such computational approaches often lead to a high proportion of 

false positives. This renders interpretation of the data-driven hypotheses 

extremely difficult. Consequently, a dismal proportion of these hypotheses are 

subject to further experimental validation, eventually limiting their potential to 

augment existing biological knowledge. 

This dissertation develops a framework of computational methods for the 

analysis of such data-driven hypotheses leveraging existing biological knowledge. 

Specifically, I show how biological knowledge can be mapped onto these 

hypotheses and subsequently augmented through novel hypotheses. Biological 

hypotheses are learnt in three levels of abstraction -- individual interactions, 

functional modules and relationships between pathways, corresponding to three 

complementary aspects of biological systems. The computational methods 

developed in this dissertation are applied to high throughput cancer data, resulting 

in novel hypotheses with potentially significant biological impact. 
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Chapter 1

INTRODUCTION

Based on cancer incidence and mortality rates until 2007, the American Cancer

Society predicted that, in 2012, in the US alone [1], a total of 577,190 patients would

die due to cancer and 1,638,910 new occurrences of cancer would be diagnosed. This

indicates that although molecular biology has seen progress in the last decade, we are

still far from completely understanding the biological processes underlying disease.

The key causes for this, include, underestimating the complexity of biological

processes, heterogeneity among individual organisms, and the value of the genome

being limited by its annotation.

The complexity of biological processes arises from the coordinated activity of

biomolecules such as genes, proteins or complexes; heterogeneity, arises from

differences across individuals in the activity of these biomolecules; and limitations

of the genome arise from their functional diversity. Consequently, studying biological

processes, benefits from a systems approach. For example, the PI3K pathway [2], an

important pathway in cancer, regulates the signaling of multiple biological processes

including apoptosis, cell proliferation, and cell growth. Being up regulated in cancer,

this pathway is a promising target for therapy, as it is easier to inhibit activation

than suppress tumor function [2]. However, the pathway functions through the

interplay of biological interactions among several functionally diverse elements,

each of which is regulated differently in distinct individuals. Clearly, a traditional

reductionist approach which dissects this pathway into its constituent parts alone,

would have difficulty in elucidating how it is regulated [3]. Instead it is important to

adopt a systems approach to understand this pathway completely.

Systems biology views biological processes as an integrated network of genes,
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proteins, and biomolecular interactions in continuous flux. Computational, statistical

and mathematical methods play an important role in this paradigm by facilitating

formal representations of complex biological systems. Additionally, they allow for

the automated inference of models from experimental data that is frequently too

large to manually analyze.

Recently, the popularity of high-throughput technology has led to not only a large

amount of experimental data but also the growth of biological knowledge reposito-

ries. Such knowledge repositories (for example, Gene Ontology [4, 5] or Pathway

Commons [6]) store facts about the functions of biomolecules and their interactions.

In most cases, the facts are manually curated and associated with literature citations.

This dissertation develops a framework of computational methods to aid in hy-

pothesis generation in systems biology using such available biological knowledge.

Specifically, it focuses on hypotheses generated about one of the core problems of

systems biology: how biomolecules interact in normal and diseased cellular systems.

The rest of this chapter is organized in a top-down manner. First, I place this

dissertation within the broad context of research in systems biology. Subsequently, I

provide an overview of the methods developed in this work. Finally, I outline the

rest of the document.

1.1 Knowledge Discovery in Systems Biology

Before describing the framework developed in this dissertation, I first discuss the

role of this dissertation in the workflows for scientific knowledge discovery. The

two modes of scientific knowledge discovery, hypothesis-driven research and data-

driven research, are illustrated in Figure 1.1. The structural components within

these workflows are data and knowledge, two distinct yet complementary sources

2



Figure 1.1: Knowledge discovery in systems biology.(a) Workflows for both
hypothesis-driven research (indicated by blue arrows) and data-driven research
(indicated by red arrows). (b) The role of knowledge integration (the focus of this
dissertation) in the workflow for data-driven research.
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of information. Data represents the collection of observations or the results of

experiments, usually influenced by environmental factors. Data is collected either

from focused individual experiments or from high-throughput experiments, shown

in Figure 1.1. Examples of biological data include, gene expression profiles, copy

number variations, and methylation data. Knowledge, on the other hand, represents

validated facts about biological systems. Knowledge is usually manually curated

with the help of several experts. Examples of biological knowledge bases include

pathway repositories and drug target databases.

Traditionally, biological hypotheses are validated by a hypothesis-driven approach,

through focused experiments, studying each hypothesis individually using experi-

mental wet-lab techniques. Such hypotheses, usually formulated by domain experts,

could take several forms, such as whether an interaction occurs between a pair of

biomolecules or the biological processes that characterize disease sub-types. Vali-

dation of the hypothesis involves focused experiments, gathering of biological data

and analysis of the data. Findings are usually disseminated through publications and,

later, curated into biological knowledge repositories.

In contrast, over the last decade, the widespread availability of large amounts of

high-throughput data has led to computational methods for inferring biological

hypotheses directly from the data, as shown in Figure 1.1, by the red arrows.

Such methods use an underlying mathematical framework, for example, a Bayesian

network framework, to learn hypotheses from various kinds of biological data. In

contrast to the hypotheses produced by domain experts, such hypotheses tend to

be of the order of a few hundred to a few thousand in number. Additionally, since

these hypotheses are derived by applying computational methods to high-throughput

data (which is often noise-ridden), not all hypotheses are necessarily biologically

plausible. Ideally, all data-driven hypotheses would be verified through further
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biological experimentation. However, wet-lab experiments are expensive and time-

consuming. Consequently, biologists need to manually sift through these hypotheses

to determine which ones are plausible for focused experimental validation. Such

manual analysis is a cumbersome process due to which only a handful of these

hypotheses are validated and the rest are discarded.

In this dissertation, I develop a systematic framework to automatically prioritize such

data-driven hypotheses using available biological knowledge. Biological knowledge

allows for better interpretation of the data-driven hypotheses by first mapping them

to what is currently known about biology and then augmenting what is known with

plausible novel hypotheses. I focus on three different levels of biological organization

– individual interactions, functional modules, and relationships between functional

modules.

1.2 Problem Definition

Now I turn to the computational framework developed in this work (shown in Figure

1.2). This dissertation develops methods for refining data-driven hypotheses using

existing biological knowledge at three layers of abstraction: individual interactions

(described in Chapter 3), functional modules (described in Chapter 4), and rela-

tionships between biological processes (described in Chapter 5). The input and

output of the framework are illustrated in Figure 1.2. Such hypotheses can then be

validated by a focused hypothesis-driven experiment. The three levels of abstraction

correspond to three complementary aspects of understanding biological systems,

which, when put together, provide a global understanding of a biological system.

In this dissertation, the three levels are treated as independent classes of problems.

While this work focuses primarily on hypotheses learned from high throughput data,

in theory, the hypotheses could be from any source.

5



Figure 1.2: Computational framework for knowledge integration (developed in this
dissertation).

Individual Interactions

I begin by focusing on hypotheses at the finest level of granularity - individual

interactions. Chapter 3 develops methods to score the constituent interactions

within a data-driven network to rank the most plausible interactions for further

biological validation. This chapter focuses on hypotheses that take the form of

data-driven interactions. Using literature-verified biological pathways and additional

functional knowledge, the interactions are scored for further validation. High-scoring

interactions can be immediately validated as they correspond directly to biological

interactions.
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Functional Modules

At the second level of granularity, functional modules constitute a set of biomolecular

interactions that work towards a common biological purpose [7]. Such modules

constitute an important level of biological organization, often corresponding to

pathways. In Chapter 4, I focus on identifying functional modules within data-driven

networks, using existing biological knowledge. As in the previous chapter, the

input hypotheses take the form of data-driven networks of biomolecular interactions.

Using sets of genes with pre-defined biological roles, the data-driven networks

are partitioned into functional modules. Additionally, this chapter also overlays

drug information in the form of therapeutic targets. Functional modules identified

here can be used to understand the key biological processes that are active in

a given set of samples. Although these functional modules cannot be directly

experimentally validated, they provide a mechanism for biologists to focus on

a specific set of biological hypotheses, where each hypothesis corresponds to a

biomolecular interaction.

Relationships between Biological Processes

In contrast to the previous levels of granularity, at the third level of granularity, the

hypotheses take the form of biological processes or functions. In Chapter 5, I use

lists of co-regulated genes to identify the biological functions that are active within

the data and their relationships across sub-sets of the data. Additionally, knowledge

of existing relationships between the biological functions guides the process. While

this chapter also provides biologists with specific sets of biological hypotheses to

focus on, each hypothesis corresponds to a biological process that is active within

the data. Hence, this chapter allows for identifying novel co-occurrence relationships
7



between biological processes.

Figure 1.3: Overall inputs and outputs for the knowledge integration framework.

1.3 Dissertation Overview

The rest of this document provide the details of the methods for knowledge integra-

tion in the analysis of data-driven networks. Chapter 2 describes related research in

this field. Chapter 3 describes methods for scoring individual interactions against

a literature-verified database. Chapter 4 describes the methods proposed for the

identification of functional modules from data-driven networks using biological gene

sets. Chapter 5 focuses upon methods for learning relationships between biological

processes active in the high-throughput data. Chapter 6 describes an example focused

hypothesis-driven experiment, illustrating how the output of Chapters 3 - 5 could be

validated. Finally, Chapter 7 concludes with a summary of the main contributions of

the dissertation and directions for future research.
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Chapter 2

RELATED RESEARCH

Cellular systems are complex biological processes and identifying the constituent

interactions of such systems is one of the core problems of systems biology. As

described in Chapter 1, solving this problem could use either a hypothesis-driven or

a data-driven approach. However, both approaches rely on the experimental observa-

tion of biological processes for either formulation or validation of the hypotheses (in

this case, the existence of specific interactions). Technological advances in the last

decade allow for diverse experiments which shed light on the different aspects of

biological processes. In this chapter, I describe the different kinds of biological data

that are currently available. Following this, I outline existing research in methods for

generating hypotheses from the data - specifically the inference of gene regulatory

networks (used as the input to chapters 3 and 4) from data. Subsequently, I describe

the different biological knowledge sources currently available. Finally, I provide an

overview of existing work in knowledge integration.

2.1 Biological Data

Most biological experiments rely on the central dogma of molecular biology -

the process by which cells control biological processes. Cells store hereditary

information within their nucleus, in the form of strands of deoxyribonucleic acid

(DNA). Strands of DNA are organized into genes - a molecular unit of heredity that

codes for a specific function. While the process by which hereditary instructions are

converted into cellular signals is complex, the core of this conversion occurs through

two key steps called transcription and translation. In eukaryotes, DNA is converted

into messenger ribonucleic acid (or mRNA) through a process called transcription;

and mature mRNA is converted into proteins through a process called translation.

9



Figure 2.1: Biological data and knowledge in the context of a eukaryotic cell.
Green rectangles indicate biological data while blue rectangles indicate biological
knowledge.

Proteins then carry out the different functions required for maintaining the cell.

Since a normal individual contains specified amounts of each protein, variations in

the amounts of proteins across different individuals could shed light on differences

across individuals. As it is relatively easier to gather measurements of mRNA levels

over protein levels, mRNA measurements are used in lieu of proteins. They are

used to provide information about the role of genes (or proteins) within the cell

including their functions, their location, and their relationships with other genes

(or proteins) under different phenotypic conditions. Such measurements are called

gene expression measurements. Traditionally, gene expression measurements are

made by Northern blot experiments. However, recent developments in array-based

technology allows the simultaneous hybridization of mRNA to a large number of

DNA sequences.

Hybridization is usually measured through fluorescence; hence, a typical microarray

experiment results in images which need to be analyzed to identify the arrayed
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spots and measure relative fluorescences for each element [8]. Raw gene expression

measurements are usually obtained as a ratio of the fluorescences of the target sample

to a control. Continuous gene expression measurements can be discretized to fall

into three categories – up-regulated (when the expression of the target is higher than

the control), down-regulated (when the expression of the target is lower than the

control) and neutral (when the expression of the target equals the control).

Abnormal gene expression could be attributed to several reasons and alterations in the

DNA copy number is one such reason [9]. Comparative genomic hybridization [10]

was the first method developed to measure copy number variations (CNV). Typically,

the total genomic DNA is isolated from both a target and a reference population,

differentially labelled and hybridized to metaphase chromosomes [9]. Recently,

DNA microarrays have been used to achieve comparative genomic hybridization on

a genome-wide scale. CNVs represent alterations of fragments of DNA resulting

in an abnormal number of copies of the same fragment. With around 12 % of the

human genome being susceptible to CNVs [11], CNVs play an important role in

the differences between individuals, and thus, also in determining the biological

mechanisms behind diseases.

Due to variations in equipments and measurement technologies, high-throughput

data is typically pre-processed before any computational analysis. Quackenbush et.

al. provides a review of the methods popularly used to pre-process high-throughput

data [8].

2.2 Inferring Regulatory Networks from High-throughput Data

The large amount of biological data being currently generated has paved the way

for several data-driven methods for inferring regulatory networks from this data

(reviewed in [12, 13, 14]). These methods differ on the basis of the computational

11



definition of a biological interaction. The simplest regulatory model - the Boolean

network represents genes as discrete ON/OFF switches [15, 16] with regulation

modeled as a combination of logical operations. Liang et. al. [17] introduced RE-

VEAL, which uses information-theoretic principles to reduce the search space and

constructs a large-scale Boolean network from data. Following this, several varia-

tions of algorithms [18, 19, 20] have been proposed for inferring Boolean networks

from data. Although Boolean networks provide a simple model for regulation, and

are useful to understand steady states and network robustness, Boolean networks are

known to possess several drawbacks including failing to cope with the dynamics and

uncertainty inherent in biological regulation.

Probabilistic Boolean networks (PBN), introduced by Shmulevich et. al. [21]

incorporates uncertainty and incomplete evidence in the gene regulatory network

model by representing each regulatory relationship with several logical functions,

each of which is associated with a probability based on data. PBNs have been used

in several applications, including constructing a 15 gene sub-network inferred from

human glioma expression data [22, 23]. Bayesian networks [24] represent another

important class of probabilistic graphical models used in modeling gene regulatory

networks and have been extensively applied in genomics [25, 26, 27, 28]. Key

strengths of the Bayesian approach include its ability to handle incomplete data,

avoid over-fitting, infer causal relationships and encode domain knowledge into the

learning framework.

Besides regulatory models, several association-based methods have recently gained

popularity in the inference of gene regulatory networks from data. Correlation

measures are used to capture the strength of association between two genes, and

consequently learn an interaction network [29]. Mutual information is another

popular measure extensively used in learning gene interactions [30, 31, 32, 33].

12



However, while these methods have made progress in providing mechanisms for

learning gene regulatory networks from data, they still fail to cope with the hetero-

geneity inherent in biological data. Several methods have been recently developed

to identify sub-type specific modules from heterogeneous data [33, 34, 35, 36, 37].

COALEASCE [35] integrates both gene expression and sequence data to discover

regulatory motifs. On the other hand, CONEXIC [36] uses genes with copy number

aberrations as putative drivers of gene expression to identify modules. Mukherjee et.

al. [37] have developes a network clustering approach based on the theory of sparse

Gaussian Markov Random Fields, to identify subtypes differing in terms of network

phenotype. The concept of a regulatory module (analogous to a bicluster [38] – a

sub-set of consistently regulated genes within a sub-set of samples or conditions)

was first introduced by Ihmels et. al. [39] who has proposed an algorithm which

uses a set of seed genes to extract tightly regulated transcription modules from

biomedical data. The notion of learning regulatory modules with associated experi-

mental conditions has been introduced by Segal et. al. in module networks [40]. A

module network [41] is a probabilistic model consisting of modules of co-regulated

genes and corresponding regulatory programs. Module networks have been shown

to extract regulatory relationships in several biological applications [42, 43, 44].

Similarly, integrative Bayesian network approaches have also been developed in

order to learn regulatory networks from data [35] as well as identify driver muta-

tions and the biological processes [36]. Context-specific gene regulatory networks

[45, 46] provide a mechanism to learn regulatory relationships between genes using

probabilistic measures of consistency.

While these approaches deal with the heterogeneity of the data, as described in

chapter 1, the size of these data-driven networks tends to be of the order of several

thousand interactions, rendering manual interpretation and biological experimen-

13



tation for each interaction nearly impossible. Most existing methods focus on the

evaluation of a few interactions, resulting in a large number of underutilized hypothe-

ses. Table 2.1 shows some of the popular methods for inferring gene regulatory

networks from data and the extent to which the proposed hypotheses (interactions)

have been validated. As seen in the table, the field lacks a systematic approach for

using biological knowledge in determining plausible biological interactions.

2.3 Biological Knowledge

I now describe the different sources of biological knowledge that could be used in

analysis of data-driven networks. Biological knowledge consists of validated facts

about biological processes and is typically either manually curated or automatically

curated and then manually verified.

Gene Ontology

I begin with one of the most popular knowledge sources - the Gene Ontology (GO).

The Gene Ontology(GO) Consortium [4, 5] provides a structured, common, con-

trolled vocabulary for defining the roles of genes and gene products in any organism.

The roles of genes and gene products are organized through three independent

ontologies : biological process, molecular function and cellular component.

An ontology term is categorized as a biological process when it represents a biologi-

cal objective to which a gene or gene product contributes (e.g., ‘translation’); as a

molecular function, when it represents the biochemical activity of a gene product

(e.g., ‘enzyme’) and as a cellular component, when it represents the place in the cell

where the gene product is active (e.g., ‘ribosome’).

The Gene Ontology Annotation (GOA) database [47] provides electronic and manual

14



Table 2.1: Existing approaches for knowledge integration in interpreting data-driven
networks.

Publication Method Dataset Network Scale Knowledge Inte-
gration

Friedman et. al.
(2000)

Bayesian
Networks

Saccharomyces
cerevisiae (76
expression mea-
surements; 6177
ORFs)

800 genes; 250
genes used for
robustness analy-
sis

Literature valida-
tion of few genes
selected by a net-
work property.

Ong et. al.
(2002)

Dynamic
Bayesian
Networks

E.coli, time
series gene
expression data
(12 data points)

169 genes Prior knowledge
through operons.
Literature valida-
tion of a few
genes.

Hartemik et. al.
(2002)

Bayesian
Networks

Saccharomyces
cerevisiae (320
samples)

32 genes + 1 ex-
tra variable

Literature valida-
tion of a few rel-
evant genes.

Lahdesmaki et.
al. (2003)

Boolean net-
works

Saccharomyces
cerevisiae gene
expression
time-series

733 genes; 5
genes studies

Literature valida-
tion of a few rel-
evant genes.

Shmulevich et.
al. (2003)

Probabilistic
Boolean net-
works

Human glioma 15 genes Literature valida-
tion of a few rel-
evant genes.

Lee et. al.
(2006); Li et. al.
(2007)

Module
networks,
Bayesian
likelihood
score

Saccharomyces
cerevisiae (320
samples)

466 candidate
regulators, 2355
genes from gene
expression,

GO, MIPS,
KEGG, TRANS-
FAC

Kim et. al.
(2007); Sen et.
al (2009)

Context-
specific
GRN

Target Now
Data(17085
probes, 146
samples)

1,790 vertices,
9566 edges

Literature valida-
tion of a few rel-
evant genes.
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annotations corresponding to each protein in the UniProt Knowledgebase. A GO

annotation is a specific association between a GO term identifier and a gene or protein

and has a distinct evidence source that supports the association. Each gene product

can be annotated to multiple GO terms at different levels of the GO hierarchy.

Pathway Databases

While the Gene Ontology provides information on the functions and locations of

biomolecules within the cell, often it is useful to integrate knowledge on their

interactions. Biological pathway databases are a popular mechanism for storing in-

formation on interactions between biomolecules. Pathguide [48] lists 298 biological

pathway resources including protein-protein interactions, metabolic pathways, sig-

naling pathways, pathway diagrams, transcription factors, gene regulatory networks,

protein-compound interactions, genetic interaction networks, and protein-sequence

focused resources. This dissertation uses Pathway Commons [6] as well the as

the the pathway component of the Molecular Signature Database (MSigDB) [49].

Pathway Commons consists of nine different pathway databases. Table 2.3 provides

a description of these pathway databases along with the benefits and shortcomings

of each resource.

From 2.3, three main aspects are identified that could limit the application of these

databases to data-driven networks - species and reliability.

In terms of species, most of the databases consist of well-documented yeast interac-

tions. Human interaction databases mainly consist of Cancer Cell Map, HumanCyc,

Human Protein Reference Database and IMID. For the remaining databases the

proportion of human interactions within the total database varies between 10% and

50%. Given the relatively low overlap between human and yeast interactions (both

orthologs and number of interactions), applicability of yeast interactions to validate
16
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interactions from human datasets is limited. Further differences include the total pos-

sible interactions in each of the species. For instance, the full yeast protein-protein

interaction network contain 37,800-75,500 interactions and the full human network

154,000-369,000, but owing to a high false-positive rate, maps (as of 2006) are

roughly only 50% and 10% complete, respectively [59]. Thus, in this dissertation, a

sub-set of the database corresponding to human interactions alone was used.

In terms of reliability, interactions within the databases are obtained using several

sources - biological experimentation including yeast two-hybrid (Y2H) experiments,

tandem affinity purification, as well as computational methods. In general, the

interactions which have been verified through manual biological experimentation are

known to be more reliable than data-driven interactions. However, even amongst the

biological interactions, interactions derived using high-throughput methods such as

Y2H screening are characterized by a large number of false positives. For instance,

the reliability of Y2H screening mechanisms has been shown to be ≈ 50 % [60]

using cellular localization and cellular role properties. Amongst the databases,

both MINT and BioGrid contain a large proportion of high-throughput interactions

(explicitly specified), while Cancer Cell Map and the Human Protein Reference

Database contain interactions verified by Y2H screening, which again could be

unreliable. However, in this dissertation, interactions were not filtered based on the

reliability of the experimental detection method, instead, reliability (through the

number of publication counts) is used to weight interactions, since the number of

human interactions currently available for use is already limited.

Finally, it is also important to acknowledge the multiple types of interactions within

the databases. Methods for the inference of biological interactions from high-

throughput data usually derive co-expression based interactions. Such interactions

could be attributed to multiple reasons, including protein-protein interactions as well
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as transcription factors or regulatory interactions. While this dissertation focuses on

protein-protein interactions as a possible explanation, multiple other explanations

are possible (including transcription factors) and are beyond the scope of this work.

Chromosomal Location

Genes which are located close to one another tend to share functions making chro-

mosomal location a useful resource for understanding the role of genes within the

cell. Chromosomal location information was extracted from the Molecular Signa-

tures Database (MSigDB) [49]. Such information is helpful in identifying effects

pertaining to chromosomal amplifications or deletions, and epigenetic silencing. For

instance, cytogenetic abnormalities have been attributed to diseases such as leukemia

[61]. Similarly, chromosomal location is particularly appropriate in the context of

copy number variations.

Drug Databases

Finally, one of the important aspects of understanding the biology behind disease is

understanding the role of therapeutic agents. To this end, the publicly available drug

database Drugbank [62] is used. Drugbank is a publicly available database consisting

of information on the nomenclature, ontology, chemistry, structure, function, action,

pharmacology, pharmacokinetics, metabolism and pharmaceutical properties of both

small molecule and large molecule drugs, along with target diseases, proteins, genes

and organisms on which these drugs act. Layering drug information allows for the

ability to identify drug targets from the data.
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2.4 Techniques for Knowledge Integration

I now describe the techniques which use these knowledge sources in the analysis of

data-driven hypotheses. The methods can be broadly categorized on the basis of the

data-driven hypotheses they use as input.

The first category of techniques is devoted to the annotation of interesting gene

lists (results from the analysis of a high throughput dataset) with relevant biological

processes. The key characteristic of gene set annotation approaches is that knowledge

is usually used in the form of gene sets. Such methods [63, 64, 65, 66, 67, 49, 68,

66, 67, 49, 69] tend to use statistical hypothesis testing in the extraction of relevant

biological functions. Typically, the output takes the form of a list of overrepresented

biological functions. However, such methods have limited application as they can be

applied to simply gene lists, where the connectivity between the genes is ignored.

The second category of techniques focuses on data-driven networks and are relatively

few in number. In most cases, manual verification is still used, as shown in Table

2.1. Manual verification has been used in validating Bayesian networks learnt from

yeast [70], mutual-information based networks derived from human B cells [32],

in analyzing relevance networks learnt from cancer cell lines [31] and in validating

context-specific networks learnt from both a melanoma dataset [45] and a refractory

cancer dataset [46]. However, manually extracting relevant supporting literature for

the validation of networks derived from high-throughput data is cumbersome. Fur-

ther, given the scale of the data-driven networks, only a small number of interactions

can be manually validated, even though validating the entire network could yield

several novel hypotheses on biological interactions.

In contrast, a few systems have been developed for the automatic validation of data-
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driven hypotheses. For example, Bayesian networks derived from yeast have been

validated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) [71]. Bader

et. al. [72] have compared data-driven interaction networks against experimentally-

derived networks using a global approach. However, most data-driven networks

learnt from high-throughput data require validation at a finer level of granularity

as validation is with the view of prioritizing interactions for further experimental

verification. To achieve this, Hanalyzer [73] builds knowledge networks based upon

multiple sources of interaction evidence (e.g., protein-protein interaction databases)

and uses a noisy-OR approach to validate networks derived from experimental

data against knowledge networks. Interactions are then scored based on available

knowledge and thus, Hanalyzer facilitates the development of novel hypotheses using

the combined analysis of knowledge and data, though applications are currently

limited to mice.

Techniques devised for yeast and mice are not always applicable to humans as

described in the previous section. Additionally, one of the main characteristics of

data-driven interactions is that they capture associational relationships – thus the

underlying biological interactions that they map onto could be a single interaction or

in most cases, a series of interactions.

2.5 Summary

Thus, this chapter provides the background required for the rest of this dissertation. I

have described the different kinds of biomedical data used, the methods used to infer

regulatory networks from this data, limitations of these methods, biological knowl-

edge sources and approaches for using biological knowledge in the interpretation of

data-driven hypotheses. In the next chapter, I move to the approach developed for

validating data-driven networks at the individual interaction level of granularity.
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Chapter 3

EVALUATING INDIVIDUAL INTERACTIONS

One of the first steps in understanding data-driven interactions is understanding how

they map on to known biological pathways. As described in Chapter 2, existing

methods for automatically scoring data-driven interactions using biological knowl-

edge are few. Here I discuss the motivation for scoring data-driven interactions,

relevant work in this area, the methodology developed in this dissertation and its

application to data-driven networks inferred from gene expression data for cancer

patients.

3.1 Motivation

Data-driven interactions provide a mechanism to hypothesize regulatory interactions

that occur in a specific experimental condition, reflected in the data. However,

not all data-driven interactions necessarily correspond to regulatory interactions

due to the presence of experimental noise within the data. Instead, data-driven

interactions can comprise three types of interactions – known biological interactions,

novel biological interactions and false interactions. Consequently, it is necessary to

identify these three categories within the data-driven network to effectively utilize

these interactions.

Mapping data-driven interactions to known biological interactions allows a biologist

to associate the network with a measure of credibility. For instance, when faced

with needing to choose between two data-driven networks, the one which has a

higher number of edges with reliable explanations would be more likely to augment

biological knowledge than the one with fewer edges having less reliable explanations.

This measure serves as an indication to how well the network is able to capture
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biological interactions which are already known.

However, the true contributions of data-driven networks stem from their ability to

hypothesize novel interactions. Hence, a second scoring metric is developed which

assigns to each edge the likelihood of that edge being a novel biological interaction.

High-scoring interactions subsequently serve as candidate hypotheses for wet-lab

experimentation.

3.2 Relevant Work

While Chapter 2 provides an overview of the approaches which motivated this

dissertation, here I focus on literature relevant to scoring biological interactions.

Most existing literature is devoted to protein-protein interactions and could be

categorized into two – methods which score individual protein-protein interactions

and methods for extracting pathway structures from protein interactions.

Scoring protein-protein interactions is usually achieved using either biological knowl-

edge or network properties or both. Several kinds of biological knowledge are used

for scoring interactions including protein structure information [74], GO annota-

tions [74], expression information [75], sequence homology [74] and the existence

of paralog interactions [75]. Methods that use network properties can be categorized

based on whether they use local properties, global properties or both. Examples of

local properties include proportions of shared neighbors [76, 77] and the extent to

which a candidate interaction’s neighbors are connected [78]. On the contrary, Saito

et. al. [79] propose a global approach to rank interactions by classifying interactions

into specific categories and using the proportions of interactions in each category

to assign reliability scores. Both local and global properties have been combined

and used by Liu et. al. [80]. Additionally, methods have also used shortest-path

approaches [81] as well as Bayesian evidence combination in determining the
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reliability of interactions [82].

A few automatic systems have been developed for the the inference of regulatory

pathways from protein-protein interaction networks. For instance, Herrgård et.

al. [83] have evaluated data-driven measurements (not necessarily interactions)

in Escherischia coli and yeast, using metrics designed to measure the consistency

between expression measurements and literature-derived interactions. Similarly,

NetSearch [84] has been developed to enumerate and rank linear pathways using

gene expression profiles of pathway members. Extending this concept to higher order

structures (trees and parallel paths), Scott. et. al. [85] have developed a color-coding

technique to identify pathways within protein interaction networks. This has been

extended to generalized sub-structures by Lu. et. al. [86] using a randomized divide-

and-conquer scheme. PathFinder [87] uses a combination of knowledge integration

and association rule mining to elucidate pathways from protein interactions. Finally,

Gitter et. al. [88] develop a method to elucidate pathways from protein interaction

networks by formulating the problem as an edge orientation problem and focusing

on directionality as an important aspect of pathways.

While the approaches developed for protein interaction networks are comparable,

such approaches cannot be directly applied to data-driven networks. Protein-protein

interactions are the results of direct measurements of protein concentrations, whereas,

gene expression is measured at the mRNA level (described in Chapter 2). Hence,

data-driven networks inferred from gene expression data tend to represent associ-

ational relationships, which could correspond to a direct relationship between the

genes (and/or proteins) or, as in most cases, an indirect relationship between the

genes (and/or proteins) involved.

In this dissertation, I develop a method to map data-driven interactions onto literature-

derived pathways and subsequently score the unmapped interactions using other
25



biological knowledge sources. The methods developed in this chapter make sev-

eral contributions to the analysis of data-driven interactions. Firstly, the methods

developed here allow for direct interpretation of the data-driven interactions that

do map onto biological knowledge. Secondly, the reliability of literature-derived

pathways is taken into account while mapping data-driven edges. Thirdly, the scoring

method for unmapped interactions allows for the extraction of the best candidate

hypotheses from the data-driven interactions which could be validated with wet-lab

experiments. Finally, these methods allow for comparisons between different kinds

of data-driven networks to determine which one is better at identifying biologically

plausible hypotheses.

3.3 Problem Formulation

In this section, I mathematically formulate the problem of assessing data-driven

interactions using existing knowledge. Let the data-driven network be represented

as Gd = (Vd,Ed) where Vd is the set of genes within the network, Ed is the set of

interactions between these genes and associated with each edge is a non-negative

edge-weight wg : Ed → R+ denoting the strength of relationship between the two

genes.

Let biological knowledge be represented in the two forms

(a) biological pathways represented as a network Gb = (Vb,Eb) where Vb is the set

of genes within the network, Eb is the set of interactions between these genes

and associated with each edge (ub,vb) is a set of distinct literature citations

C(ub,vb) = {c1
uv,c

2
uv, · · ·cm

uv} that report the interaction and,

(b) functional annotations T (u)= {t1, t2, · · · tr}, a set of functional terms or pathways

associated with the gene u.
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The goal of this work is to identify for every edge (ud,vd) ∈ Ed ,

1. when there is a mapping of the edge to literature-derived pathways, the score

α → R+ quantifying the extent to which the edge could be reliably mapped

onto existing literature-derived pathways, and

2. when there is no mapping of the edge to literature-derived pathways, β →

[0,1], a score quantifying the extent to which the edge is likely to be a novel

biological interaction.

3.4 Identifying Biological Explanations

The first step in assessing data-driven interactions is understanding how they map

onto literature-verified pathways [89].

Methodology

Literature-derived pathways are composed of different interactions, each of which

could be reliable based on the extent to which it has been studied and experimentally

validated. Hence, I first need to define what a reliable interaction is in a literature-

derived pathway [89]. As described above, each literature-derived edge (ub,vb) is

associated with a set of distinct literature citations C(ub,vb) = {c1
uv,c

2
uv, · · ·cm

uv} that

report the interaction. The higher the number of citations, the more reliable an

interaction is as it implies that several independent groups have been successful in

experimentally confirming the interaction.

Definition 1 (Citation Weight). The citation weight, w(ub,vb) is the reliability

associated with a single literature-derived interaction.
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Given an edge (ub,vb), with distinct literature citations C(ub,vb) = {c1
uv,c

2
uv, · · ·cm

uv},

where m = |C(ub,vb)| the citation weight is defined as

w(ub,vb) =


4 if m = 0

2 if m = 1

1
log2(m) otherwise

(3.1)

Using equation 3.1, interactions with lower values of w(ub,vb) are more reliable

and interactions with higher values of w(ub,vb) are less reliable. When m is greater

than 1, I take the log-transform to appropriately scale larger number of citations, as

after reaching a certain number of citations, more evidence is not necessarily better.

When m = 1, I assign a weight of 2 to indicate this is equivalent to being half as

good as an interaction with 2 citations and similarly assign a weight of 4 for the case

when m = 0.

After reliability values have been assigned to every edge within the literature-derived

network Gb = (Vb,Eb), Djikstra’s shortest-path algorithm [90] is applied to every

edge within the data-driven network Gd = (Vd,Ed).

Definition 2 (Literature Path Reliability). The literature path reliability, α is

the reliability associated with the literature path corresponding to a data-driven

interaction (ud,vd). This is computed as

α =

 ∑(a,b)∈S w(a,b) when S 6= /0

inf when S = /0
(3.2)

where S is the set of edges in the shortest-path connecting ud with vd in Gb. The

distribution of α is useful in comparing different data-driven networks and the
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following sub-section examines how data-driven networks of a biological data set

evaluate against literature-derived pathways.

Application: Glioblastoma Multiforme (TCGA)

In order to demonstrate the application of the methods developed in this chapter, I

used the Cancer Genome Atlas (TCGA) - Glioblastoma Multiforme (GBM) data

[91]. 301 samples were extracted from the TCGA Portal after screening out samples

from cell lines and replicates. 10 normal samples were used as the reference to

convert GBM expression values to z-score values by comparing the expression

values from GBM samples to the distribution of normal samples. Genes with a low

variance across the tumors were filtered out leaving a total of 4166 genes.

While Chapter 2 discusses several existing methods for inferring data-driven net-

works, in this chapter, I choose three of the algorithms as representatives of three

classes of methods – Bayesian networks (directed, probabilistic), ARACNE (undi-

rected, mutual information based) and context-specific networks (directed, incorpo-

rates context-specificity).

In the case of the Bayesian networks and the context-specific networks, the ex-

pression data was quantized into one of three discretized values (+1,0,−1) by

thresholding the z-score at 1.65 corresponding to 95% significance, while in the case

of ARACNE, the continuous values were used as is.

Bayesian Networks : I use the Bayesian networks learnt using the algorithm BANJO,

an algorithm which uses a structured iterative learning strategy to find the best

possible network given an initial network [92]. The Java implementation on BANJO

2.0 [92] was used to learn the Bayesian network after discretizing the transformed

data to three levels. BANJO uses simulated annealing to heuristically search for

initial networks. A posterior averaged weighted ‘consensus’ network was generated.
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Context Specific Networks : Context specific gene regulatory networks used here are

learnt from gene expression data using the cellular context mining algorithm [46].

Unlike conventional gene regulatory networks, edges in context-specific GRNs rep-

resent the interaction conditioned on a subset of samples, i.e. their biological context,

thus lending adaptability to the model of biological regulation. The parameters for

learning the network were set at a maximum crosstalk of 0.3, conditioning of 0.1

and a corrected p-value of 0.05 for extracting context motifs. Subsequently the

context-specific gene regulatory network was created using a statistical significance

threshold of a corrected p-value of 0.005.

ARACNE : I use the ARACNE algorithm [32] to learn gene regulatory networks.

ARACNE learns biological networks from high-throughput data using mutual infor-

mation between pairs of genes to estimate the strength of the relationship between

every pair of genes. ARACNE was also applied to this data using the recommended

parameters – a Data Processing Inequality (DPI) threshold of 0.15, a significance p-

value of 1×e−7 along with a mutual information threshold of 0.65. Since ARACNE

produces an undirected network, the edges yielded by ARACNE were converted

to directed edges; for instance an undirected edge (u,v) would correspond to the

directed edges (u,v) and (v,u).

Statistical parameters in all three cases were set to obtain a similar number of

interactions in all three networks.

Comparing Data-driven Networks Against Literature-derived Pathways

The first set of experiments was to compare how well the data-driven networks

constructed from three different algorithms are supported by existing literature-

derived pathways. The pathway resources discussed in Chapter 2 were used as a
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repository for literature-derived pathways. the shortest-path algorithm was applied

to all three networks and the distribution of scores (α) is shown in Table 3.1.

Table 3.1: Evaluating data-driven networks against literature (GBM). The table
indicates the number of total annotated edges from the TCGA GBM networks as
well as the distribution of the edges across α in comparisons against literature-
validated interactions. The total number of annotated edges was computed as the
number of edges of the network where both vertices existed in the literature-derived
database.

Category ARACNE Bayesian Context
Mining

Total Annotated Edges 4154 3051 6157
α = inf 26.6% 28.7% 39.8%
0≤ α < 2 13.7% 5.2% 1.9%
2≤ α < 4 27.5% 24.1% 17.6%
4≤ α < 6 23.5% 30.3% 28.9%
6≤ α < 8 7.7% 10.0% 9.8%
8≤ α 1.0% 1.7% 2.1%

Table 3.1 shows the results obtained from evaluating the three networks using

literature-derived pathways. From this table it is interesting to see that, with networks

of the order of ≈ 3000-6000 genes, all three networks have similar proportions of

evaluated interactions. Additionally the median α value, excluding α = inf, was

found to be 3.69 in the case of ARACNE, 4.42 in the case of the Bayesian network

and 4.7 in the case of the context-specific network. Using these statistics we note

that ARACNE has the largest portion of mapped interactions while context-specific

networks have the smallest portion of mapped interactions.

Comparing Data-driven Networks Against Random Networks

An interesting question is to understand whether these statistics are random. Specifi-

cally, if I had a random network with the same nodes as the data-driven network but

a different topology, how would this network evaluate against a biological network
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? To achieve this, random networks were generated corresponding to each of the

three networks by maintaining the connectivity of each network but re-shuffling

the node identifiers (gene names) in each case. Figure 3.4 shows how the three

networks compare against random networks in terms of the proportion of edges with

literature-derived paths. It is interesting to note that these random networks have

similar proportions of literature-validated paths. Figure 3.4 shows the distribution

of α across the data-driven networks and the random networks. Again, interest-

ingly, random networks have similar median α scores when compared to data-driven

networks.

Figure 3.1: Comparing proportions of interactions with literature-verified paths
against random networks generated across 1000 permutations. Green dots indicate
the proportion of interactions with a literature-verified path.

These performances could be attributed to either the utility of existing data-driven

networks, properties of biological networks or, the incompleteness of biological

knowledge.
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Figure 3.2: Comparing amount of literature evidence (α) for random networks
against data-driven networks. Green dots indicate the median values of α for the
TCGA data-driven networks.

Number of Knowledge Sources Required for Validation

Finally, I also looked into the number of distinct databases that composed the

literature-derived paths corresponding to each data-driven interaction. I observed

that, of the edges that were validated, 77.1 % in the case of ARACNE, 84.7 % in the

case of the context-specific network and 82.6 % in the case of the Bayesian network

required a combination of more than one knowledge source for their evaluation. This

indicates that the integration of multiple sources is vital in such validation efforts.

Although evaluation of the data-driven interactions is insightful in determining

whether the data-driven interactions are useful, plausible novel hypotheses tend to be

those data-driven interactions which cannot be explained by literature-derived paths.
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Hence, I now proceed to assess the data-driven interactions using other knowledge

sources.

3.5 Assessing Data-driven Interactions

Data-driven interactions which do not map onto existing literature-verified pathways

are ideal candidates for possible novel hypotheses. However, prior to wet-lab

experimentation it is critical to determine which of the interactions are plausible

hypotheses and which ones are likely to be false discoveries.

Methodology

Given a data-driven interaction (ud,vd), several factors contribute to whether the

interaction is a true biological interaction, including both network properties (such

as the connectivity or topology) as well as functional annotations. In this scoring

scheme, the likelihood of an interaction between the nodes connected by a data-

driven edge, is computed as a combination of several factors. While I specifically

address four specific factors, additional evidence could be easily incorporated, if

desired.

The first factor I consider is the overlap in neighborhood of the two nodes. The

intuition behind this, is that as biological networks tend to be small-world [93],

interacting partners with a high overlap in existing neighbors would be more likely to

interact than others. This measure takes into account the topology of the data-driven

network.

Definition 3 (Neighbor Overlap). The neighbor overlap, O(ud,vd) represents the

combined likelihood of the shared neighbors between the nodes ud and vd , to interact

with another node.
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Given an interaction (ud,vd) with Nud and Nvd neighbors respectively, the neighbor

overlap is computed as

O(ud,vd) = 1− ∏
i∈(Nud∩Nvd )

(1−ai) (3.3)

where ai represents the node interaction probability, as described below. The node

interaction probability represents a normalized measure of how likely each node

is to have another interaction and derives inspiration from the HITS algorithm

for identifying authoritative nodes in social networks [94]. The node interaction

probabilities are computed by an iterative procedure (Algorithm 1), where in

each iteration the node interaction probabilities for each node are updated based

on the degree of the node and the node interaction probabilities of its immediate

neighbors. Normalizing the node interaction probabilities at each stage ensures

convergence. When the algorithm converges, each node is assigned a score which

denotes how likely it is to have an interaction, using the logic that nodes with

more connections are more likely to have an additional connection relative to nodes

with fewer connections. However, this score is computed relative to the nodes in

a network and hence depends on the size of the network. To ensure the ability to

compare node interaction probabilities across networks of different sizes, the last

transformation (lines 18-20) is made using the density of the network assuming an

undirected network. As the interaction likelihood of a given node is relative to the

rest of the network, the neighbor overlap O thus considers both local properties of

the interacting partners as well as global network properties.

Next, I consider the knowledge overlap between the two interacting partners com-

puted using biological annotations of each of the interacting partners. Biological

annotations usually tend to represent the functions or biological properties associated
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Algorithm 1 Computing the Node Interaction Probabilities
1: Input : G = (V,E)
2: Output : A = a1,a2, · · ·a|V |
3: for all i ∈V do
4: ai = 1
5: end for
6: A′ = 0
7: while (A−A′)2 > 0 do
8: A′ = A
9: for all v ∈V do

10: for all u : ((u,v) ∈ E ‖ (v,u) ∈ E) do
11: av = av +au
12: end for
13: end for
14: for all v ∈V do
15: av =

av√
∑i∈V a2

i
16: end for
17: end while
18: for all v ∈V do
19: av = av

√
(|E|/(|V |2)

20: end for

with genes, and are a useful source of evidence as interacting genes usually tend to

share common annotations. However, as the scoring method is designed to iden-

tify potential novel interactions, it is relatively less likely to find shared biological

annotations amongst the two nodes in isolation, and it is important to look at their

neighborhoods.

I now define the neighborhood for the nodes participating in a data-driven interaction.

For a given data-driven interaction (ud,vd), let (u1
d,u

2
d, · · ·u

j
d) be the set of first-

degree neighbors of ud and (v1
d,v

2
d, · · ·vl

d) be the set of first-degree neighbors of

vd . Let the neighborhood of ud be defined as the set ud ∪ (u1
d,u

2
d, · · ·u

j
d) and the

neighborhood of vd be the set vd ∪ (v1
d,v

2
d, · · ·vl

d). While in theory, it is possible to

expand and look at the neighbors of the neighbors and so on, in this dissertation I limit

the computation to the immediate neighbors. Each node within this neighborhood is
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associated with a set of biological annotations (such as GO terms or pathways).

Definition 4 (Knowledge Overlap). The knowledge overlap, K(ud,vd) represents

the combined enrichment of the shared annotations between the nodes ud and vd .

If T (ud) and T (vd) are the sets of annotation terms associated with the two neigh-

borhoods respectively, I am interested in the terms which are common to both

neighborhoods T (ud,vd) = T (ud)∩ T (vd). Let T (ud,vd) = {t1, t2, · · · tr} be the

terms common to both neighborhoods. Also let { f u
1 , f u

2 , · · · f u
r } and { f v

1 , f v
2 , · · · f v

r }

be the frequencies of the terms within the two neighborhoods.

The knowledge overlap is computed as

K(ud,vd) = 1−
r

∏
i=1

(1−

√
f u
i

( j+1)
·

f v
i

(l +1)
) (3.4)

where ( j+ 1) and (l + 1) are the sizes of the two neighborhoods of ud and vd re-

spectively. The term frequencies for each neighborhood are normalized by the total

number of nodes within the neighborhood in order to make the two frequencies

comparable. The geometric mean of the two term frequencies is considered as a

means to quantify the extent to which the term is present in both nodes. Equation

3.4 was formulated in order to capture the property that having a single overlapping

annotation between the neighborhoods is much more important than having no over-

lapping annotations. However as the number of overlapping annotations increases,

additional annotations are important only to the extent in which they are represented

within each neighborhoods. Hence, annotations which are over-represented within

the neighborhoods would dominate the score.

The knowledge overlap is computed for each biological knowledge source (such as

GO annotations, pathways, chromosomal locations) separately.
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Definition 5 (Interaction Likelihood). The interaction likelihood (β ) of a data-

driven interaction (ud,vd) represents the extent to which the interaction is likely to

be a biological interaction.

Given the neighbor overlap (O(ud,vd)) and knowledge overlap (Ki(ud,vd)) computed

for j different evidence sources, the interaction likelihood of an edge (ud,vd) is

computed as

β = 1− p

√√√√((1−O(ud,vd))p ∗
j

∏
i=1

(1−Ki(ud,vd))p) (3.5)

The formulation is such that it can be easily extended to additional sources of

evidence on the interaction between the two. Again, the noisy-OR combination

function is used in order to allow scoring components with larger values to dominate

the overall sore. In this work, the GO database (of December 2011) along with

pathway and chromosomal location information (from the MSigDB database version

3.0) are used as sources of evidence. The GO annotations were filtered based on

evidence codes to include only the experimentally verified annotations.

Performance on Gold Standard : Literature-verified Pathways

One of the first challenges in developing a scoring method for distinguishing true

data-driven interactions from false positives is in determining if the scoring method

is doing what it is supposed to do i.e., assigning high scores to true biological

interactions and low scores to false interactions. To achieve this, the first experiment

studied the performance of the scoring algorithm on literature-verified interactions

from Pathway Commons (illustrated in figure 3.5). Specifically, human interactions

with at least two literature citations were used (in order to eliminate unreliable

interactions from the gold standard). As negative examples, 10000 random pairs of
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nodes (with no path between them in Pathway Commons) were considered (case 1 in

figure 3.5). Using this, the interaction likelihood of each interaction was computed.

Also, the pathway knowledge source was not used in the simulations (however, it

was used in the application study) in order to avoid biases. Three parameters were

varied – p, the power to which each term is raised in the Noisy-OR formulation in

3.5, the threshold for the interaction likelihood to determine if an edge is true or not,

and the proportion of positive examples within the sampled data set. Precision and

recall values were computed at each data point and the results obtained are shown in

figure 3.3. As seen in the figure, in all cases, the scoring method developed in this

work is able to assign appropriate scores.

Figure 3.3: Precision-recall curve using literature-derived interactions.
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Performance on Simulated Data-driven Interactions

The next challenge was in determining if the scoring algorithm performed well in

the context of simulated data-driven interactions. While the ”gold standard” from

Pathway Commons was a good way to determine how well the scoring algorithm

performed, it still did not capture all properties of data-driven interactions. For

instance, data-driven interactions tend to measure associations which could be either

a direct biological interaction or a path of multiple biological interactions. Hence, in

order to study the performance of the scoring algorithm on data-driven interactions,

I simulated interactions as shown in figure 3.5. Specifically, I sampled 10,000

random pairs of nodes from the previously discussed gold standard database (case

2 in figure 3.5). For each such pair, I ensured that the two nodes were connected

(by a path of one or more steps) thus simulating a data-driven interaction. The

interaction likelihood was applied to these simulated data-driven interactions and the

precision-recall values were computed by varying the parameters as before. As seen

in figure 3.4, performance degrades with larger proportions of negative examples

(interactions with no path). However, as seen in 3.1, this is seldom the case while

using data-driven networks.

Performance on Simulated Data-driven Interactions - Incomplete Topology

As discussed in Chapter 2, current estimates of human protein-protein interactions

are incomplete. Hence, an important consideration in designing algorithms which

utilize such knowledge is to ensure the algorithm copes with incomplete biological

knowledge. The next experiment was designed in order to simulate incompleteness

in biological knowledge in the form of interactions that are currently not yet dis-

covered. To achieve this, for each of 10,000 random pairs (with a path) considered
40



Figure 3.4: Precision-recall curve using simulated data-driven interactions.

in the previous study, the two nodes were forcibly disconnected. The interaction

likelihood was computed after disconnection and precision-recall values were com-

puted by varying the parameters as before. As seen in figure ??, although there is a

degradation in performance, it is not very significant.

Performance on Simulated Data-driven Interactions - Incomplete Annotations

In order to further understand how the scoring algorithm performs in light of incom-

plete biological knowledge, I also studied the effects of incomplete annotations on

the interaction likelihood. To achieve this, for each knowledge source, annotations

were randomly sampled at 100%, 75%, 50% and 25% as shown in figure 3.7. The

interaction likelihood was computed in each case and precision-recall values were

computed by varying all parameters as before, except the proportion of positive
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Figure 3.5: Simulating data-driven interactions and incomplete knowledge (topol-
ogy).

examples which was set to 60% (the lowest observed using data-driven networks).

As seen in figures 3.8, 3.9, and 3.10, in all cases there is hardly any degradation

in performance, proving that the interaction likelihood copes well with the lack of

biological knowledge.

Application to Data-Driven Interactions in GBM

Finally, I examine the interaction likelihoods of the three data-driven networks.

Figure 3.11 shows the cumulative distribution of the interaction likelihoods with

and without literature-derived paths. Overall, the bayesian network has much lower

scores than Aracne or the context-specific network. Further it is interesting to note

that although 25 – 40 % of the data-driven interactions did not have literature support,

they can be explained through other biological sources. High-scoring interactions

could then be extracted and used for further wet-lab verification.
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Figure 3.6: Performance of scoring algorithm with incomplete knowledge (topol-
ogy).

3.6 Summary

In summary, I have proposed a method for both evaluating and scoring data-driven

interactions using biological knowledge. I have shown how the evaluation of the

data-driven networks could shed light on several interesting properties of biological

networks. For a given network size, the proportion of data-driven interactions

evaluated against literature-derived pathways is similar across networks learnt using

different methods. It is also interesting to note that random networks created using

the same set of nodes as the data-driven network results in comparable statistics.

Further I also find that the integration of multiple knowledge sources plays an
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Figure 3.7: Simulating incomplete biological knowledge in the form of missing
annotations.

important role in such validation efforts.

I have proposed a scoring method for assessing the likelihood of a data-driven

interaction. This metric copes with both incompleteness in biological annotations

as well as missing connections in literature-derived pathways. The interaction

likelihood has then been applied to score the data-driven networks from a glioma

dataset and identify plausible novel hypotheses.
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Figure 3.8: Effects of missing GO biological process annotations on scoring perfor-
mance.
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Figure 3.9: Effects of missing GO molecular function annotations on scoring perfor-
mance.
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Figure 3.10: Effects of missing chromosomal location annotations on scoring perfor-
mance.
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Figure 3.11: Cumulative distributions of interaction likelihood for the data-driven
interactions.
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Chapter 4

IDENTIFYING FUNCTIONAL MODULES

In the previous chapter, I have proposed a method to evaluate data-driven interactions

using existing biological knowledge, along with applications to the data-driven

networks from gene expression data derived from cancer patients. However, often

biologists are faced with the problem of selecting a sub-set of interactions to focus on.

A functional module is a distinct entity consisting of a set of molecular interactions

working towards a common biological purpose, separable from the purposes of

other modules [7, 95]. Here I discuss the motivation for identifying functional

modules within a data-driven network, relevant work in this area, the methodology

developed in this dissertation and the functional modules identified in cancer data-

driven networks.

4.1 Motivation

Within the cell, functional modules play an important role in facilitating evolu-

tion [96, 7, 97]. They represent core biological processes which are robust to

change. During evolution, changes to the ways in which functional modules are

interconnected with one another occurs, leading to different phenotypes, adapted

over time. Hence, identifying functional modules within a data-driven network

enables understanding the cell’s response to external signals [40] under different

phenotypic conditions. For instance, the PI3K/AKT pathway is a functional module

regulating cellular growth within normal cells. Within tumor cells however, several

genes within the PI3K pathway are over-expressed, above normal levels, leading to

abnormal cellular growth. This concerted activity of multiple genes is often difficult

to observe at the individual interaction level.
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The functional modules extracted from data-driven networks allow biologists to

narrow down on the key biological processes that are active within a given set

of samples. Among the thousands of interactions within the data-driven network,

functional modules provide biologists with a smaller sub-set of interactions to focus

on. This dissertation develops an approach to identify functional modules within a

data-driven network, associated with both biological processes as well as phenotypic

conditions.

4.2 Relevant Work

In this section, I address approaches that have been developed to extract functional

modules from biological networks. In chapter 2, I discussed several approaches

for identifying sub-type specific modules from data as well extending the modules

to module networks. Here I discuss approaches for identifying modules within

protein-protein interaction networks.

Biological networks are often represented as graphs (both directed and undirected)

with the nodes representing genes (or proteins) and edges representing the presence

of an interaction between the two nodes. Consequently, graph theory is often applied

to solve problems in biological networks. For instance, Perreira et. al. [98] have

applied Markov clustering to extract functional modules from networks of yeast

protein-protein interactions. Markov clustering allows for graph clustering based on

flow between nodes in a network. Subsequently, Perreira et. al. extract the functional

significance of modules using the consistency of protein classifications within each

module. MCODE, proposed by Bader et. al. [99], extracts densely connected

regions corresponding to molecular complexes from protein-protein interaction

networks derived from yeast. Their algorithm uses a vertex weighting scheme which

estimates the extent to which a neighborhood forms a clique and uses this measure
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to extract complexes from protein-protein networks. Alternately, Palla et. al. [100]

extract overlapping community structures from protein-protein interaction networks.

Their approach relies on the definition of a community as consisting of several

complete (fully connected) sub-graphs sharing a large proportion of nodes. Using

this definition, communities in yeast protein-protein interaction networks have been

analyzed. Navlakha et. al. [101] use graph summarization to extract biologically

meaningful modules. The approach involves compressing the nodes in the original

network into supernodes (composed of a set of nodes) and has been applied to

the protein interaction networks derived from yeast. Speed and Performance in

Clustering (SPICi) [102] is another fast clustering technique which builds clusters

using a greedy approach. The algorithm starts from local seeds with a high weighted

degree to add nodes that maintain the density of the clusters and are adjacent to a

suitable fraction of nodes within them. SPICi has been applied to extract clusters

from yeast protein-protein interaction networks. However, the main shortcoming of

the existing methods is in incorporating phenotypic significance while extracting the

modules.

In this dissertation, I develop a method to identify functional modules within a

data-driven network. The methods developed here identify functional modules with

both biological significance and phenotypic significance. Hence, the methods are

focused on context-specific gene regulatory networks (GRNs) [46, 103] in order

to capture the phenotypic similarities encoded in the interactions. However, these

method could be easily applied to other data-driven networks including Bayesian

networks [104, 105] and ARACNE [32].

In addition to biological significance, drug target information is also associated with

the modules enhancing the therapeutic significance of the modules. The methods de-

veloped here are applied to two cancer gene expression datasets yielding insights on
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possible associations between tumor-types and several useful clinical implications.

Context-specific Gene Regulatory Networks

Prior to defining the problem of identifying functional modules, I describe context-

specific gene regulatory networks as they form the primary input to this work.

I begin by describing the building blocks of context-specific gene regulatory networks

– context motifs.

Context Motifs

In its simplest form, a context motif is represented as M = (G,T ) where G represents

a set of genes and T represents the set of samples under which the genes are expressed

consistently within the high throughput dataset. In order to identify context motifs,

the set of genes G is divided into driver genes (or drivers) and passenger genes (or

drivens), based upon the extent to which the genes exhibit consistent expression (i.e.,

genes with high coherency in expression are driver genes).

For a single gene, gi, assuming it is the driver gene for a given context-motif, two

probabilistic measures conditioning and crosstalk, are used, to identify passenger

genes that are coherently expressed along with gi. For simplicity, the expression

levels of all genes are assumed to be binary (ON or OFF), although the method

could be applied to more than two states. Two cases for gi are considered, namely

when the gene is ON and when the gene is OFF .

In the first case, when gi is ON, the statistic conditioning is used to measure for any

other (passenger) gene g j, the conditional probability of g j also being ON.

Definition 6 (Conditioning). Conditioning (δi j) is the extent to which contextual
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effects diminish the influence of a driver gene gi on a passenger gene g j.

P(g j = 1|gi = 1) = 1−δi j (4.1)

In the second case, when gi is OFF , the statistic crosstalk is used to measure the

probability that the state g j = 0 depends on contextual effects alone and not the

effects of drivers.

Definition 7 (Crosstalk). Crosstalk (ηi j) is the extent to which contextual effects

outside the driver gene gi activate a passenger gene g j.

P(g j = 1|gi = 0) = ηi j (4.2)

While the above definitions are provided for context motifs with a single driver genes

and binary expression levels, the definition of a context motif can be generalized to

a set of driver genes.

With this generalization, a context motif is represented as M = (D,Y,S,T ) where

D represents a set of driver genes, Y represents the state of the driver genes (e.g.,

Y ∈Qq where Q = {0,1} and q = |Yi|, for a binary quantized dataset), S represents

a set of passenger genes and T represents the set of samples under which consistent

expression is observed. The hypergeometric test [45] corrected for false discoveries

using Benjamini and Hochberg’s method [106] is used in order to assess the statistical

significance of obtaining a context motif with a given crosstalk and conditioning. A

driver gene gi at activity level yi is said to regulate a passenger gene x j when the

conditioning δi j and crosstalk ηi j values are lesser than user-specified threshold δθ

and ηθ , with a statistical significance less than the user-specified threshold pθ .
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Figure 4.1: Algorithm to learn context motifs from high-throughput data [45].

Context Motif Identification

Using the model described above, all potential context-motifs are identified from

data via a process called in-silico conditioning [45], a method designed to mimic a

biologist’s manipulation of the status of a gene in an experiment using techniques

such as ectopic expression or gene silencing. Given a gene gi, the expression of the

gene is first set to a certain state, yi, for example, ON. Then, the samples are divided

into two groups, based on the expression of the gene: the first group, Ti with all

the samples with gi = ON, and the second with all the samples with gi = OFF. The

crosstalk and the conditioning for the rest of the genes in the data are estimated to

determine which genes show consistent transcriptional activity. Note that a gene can

be set to multiple states (ON or OFF if binary), and each gene can be a driver for

multiple context motifs. In some cases, different genes can be conditioned across
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the same set of samples, leading to multiple driver genes in a context-motif. This

process is repeated for all the genes in the data to identify all potential context-motifs.

Figure 4.2 illustrates this process.

Additionally, the statistical significance of each context motif is estimated based

on its size (number of genes and samples). Given a context-motif M = (D,Y,S,T ),

the probability of obtaining a context-motif of l = |D∪S| genes or more by chance

is estimated using a permutation based approach. Specifically, the given data set

is randomly split into two groups of which one has a sample size of k = |T | and

the other has a sample size of N− k, where N is the total number of samples in

the dataset. The same set of statistics (Eqs. 4.1–4.2) are then used to identify the

number of genes filtered by the same thresholds for interference, crosstalk and

p-value. By repeating this procedure many times, Pr(L ≥ l |K = k) is estimated.

The accuracy of the estimation is based on the number of repetitions. 10,000

repetitions was used to build empirical distributions with adequate statistical power,

towards the applications described in this dissertation. The estimated probabilities for

context-motifs are subsequently corrected for false discoveries using Benjamini and

Hochberg’s procedure [106]. Using this re-sampling-based approach, the statistical

significance of identified context-motifs is found and only those with a significant

p-value are considered for further analysis.

Learning Contexts from Context Motifs

Following the identification of context motifs, the learned interactions can be chained

and cascaded to understand contextual genomic regulations. A given context motif

M = (D,Y,S,T ) defines regulatory relationships between the driver genes and the

passenger genes, i.e., gi→ g ∈ S, specific to T samples with gi (drivers) conditioned

on a specific state Y = yi. A driver g j in context C j could be driven by gi in
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another context Ci. When such relationships are added to the implicit driver-driven

relationships gi→ g j, an interesting graphical structure is obtained representing the

relationships between context motifs; this graph is called a context motif network. A

context motif network differs from other graphical representations in the fact that

context motifs connected to one another within the network differ in their sample

composition.

The context motif network represents a network of biological interactions where each

interaction is specific to a particular sub-set of samples. Typically, after filtering out

context-motifs that are statistically insignificant, this network tends to contain a few

hundred nodes and several thousand interactions. Further, while functional modules

can be seen in this network they are fairly difficult to discern visually, due to the size

of the network and the heterogeneity in the dataset, often resulting in interactions

conditioned by samples of different sub-types or clinical annotations. Therefore, it

is important to extract functional modules from the graph, by promoting regions

of strong connectivity – implying considerable overlap in sample composition and

removing edges with weaker connectivity between functional modules.

4.3 Problem Formulation

The task of identifying functional modules within data-driven networks poses several

challenges. Firstly, data-driven networks have a large number of nodes and con-

nections between the nodes, implying scalability is a desirable property. Secondly,

data-driven networks are obtained from high-throughput data which is heteroge-

neous being drawn from different samples with varying phenotypes. Consequently,

it would be relevant to identify modules which not only share a common function

but also have phenotypic similarities.

By definition, a functional module consists of set of densely connected nodes, with
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loose connections between the modules. It has input and output nodes controlling

interactions with the rest of the network. It also possesses internal nodes which do

not significantly interact with nodes outside the module [107]. Thus, regulation of

the biomolecules within a functional module is tight while the regulation between

functional modules tends to be fairly loose. Here the definition of a cut is particularly

useful.

Definition 8 (Cut). A cut is a partition of the gene network into two non-empty sets

S and V \S denoted by (S,V \S).

Usually a cut is uniquely defined by a set S, and hence any sub-set of V can be

called a cut. The cut-size is the number of edges that connects vertices in S to those

in V \S. Given this definition a clustering of the graph G into functional modules

M = (m1,m2, · · ·mk) possesses the property that the cut size between modules is

lower than the average connectivity within each module.

Definition 9 (Functional Module). A functional module mi is defined as a triplet

(Ci,Bi,Ti) where

• Ci is an induced subgraph of the graph, such that Ci = (Vc,Ec), where Vc ∈

V,Ec ∈ E; for every edge (u,v) ∈ Ec, u ∈Vc and v ∈Vc

• Bi is a set of biological processes (or pathways) significantly enriched in Ci,

and is non-empty.

• Ti is a set of clinical annotations significantly enriched in Ci, and is non-empty.

Based on the above definition, the functional modules identified within the computa-

tional gene network are mutually exclusive. However a single functional module

could be associated with multiple biological processes as well as a single biological
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process could be associated with multiple functional modules, as it is fairly common

to find individual genes participating in multiple biological processes (or pathways).

Given such a network, the task of discerning functional modules within the data-

driven network is viewed as a two-stage process. The first stage is to partition the

network into modules, where the nodes within each module are densely connected

and relatively isolated from the rest of the network. The second stage is to associate

known biological processes and clinical annotations to each module. The main

reason for doing this is in order to allow for flexibility in the biological knowledge

and clinical annotations associated with each module.

4.4 Discerning Modules

The first stage in identifying functional modules within the data-driven network is to

partition the network into modules.

Methodology

The goal of this stage is to identify modules within the data-driven network in such a

way that there are many edges within each module and relatively few edges between

modules. Although at a first glance this appears as a graph partitioning problem,

this is instead formulated as a clustering problem since balancing the sizes of the

clusters is not a key criterion in determining the modules. Further, as opposed to

conventional clustering, in this problem, similarity is expressed through whether

elements ‘share a property’ or not (such as a regulatory relationship where genes are

co-regulated), rather than the distance between the elements, steering towards graph

clustering approaches. The question ofcourse remains, as to whether to consider

supervision using a semi-supervised approach.
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Semi-supervised clustering aims to organize data points into clusters, using limited

amount of information in the form of pair-wise constraints between the data points.

Pairwise supervision is usually provided in the form of ‘must-link’ and ‘cannot-link’

constraints. A ‘must-link’ constraint indicates that the two data points in the pair

should be placed within the same cluster. A ‘cannot-link’ constraint indicates that

the two data points in the pair should belong to different clusters.

Semi-supervised clustering has successfully applied to several biological problems

[108, 109, 110, 111, 112, 113, 114]. Semi-supervised graph clustering [115] has

also been shown to be successful in clustering a gene interaction network from

yeast (with 216 genes). In the context of data-driven networks however, semi-

supervised clustering is not very desirable. Pairwise supervision could be introduced

in two dimensions - genes and samples. In the case of genes, pairwise supervision

would be by introducing ‘must-links’ between genes within the same biological

pathways or sharing biological functions. However, data-driven interactions learnt

from high-throughput data are association networks. Hence, a single computational

interaction often maps on to a path of biological interactions (as discussed in Chapter

3). This complicates the assignment of must-link constraints to the genes based on

known biological pathways. Directly using biological pathways to enforce must-link

constraints would not be applicable to data-driven networks.

Consequently, graph clustering approaches are used to discern modules from data-

driven networks . Specifically, two algorithms – Markov clustering and spectral

clustering were chosen for identifying functional modules within the data-driven

networks. Markov clustering was chosen due to its scalability and ability to auto-

matically determine the number of clusters. Spectral clustering was chosen due to

its ability to find an optimal minimum cut while creating well-balanced clusters. In

addition, previous successful applications of these algorithms in the bioinformatics

59



field have yielded promising results [116, 117, 118, 119] indicating these algorithms

could be well-suited for this application.

Markov Clustering

The Markov clustering (MCL) algorithm derives its inspiration from the notion of

random walks in graphs. If a random walk visits a certain vertex in a cluster, it would

be likely to visit several other members of the cluster before leaving the cluster. [120]

The Markov clustering algorithm simulates flow using two (alternating) algebraic

operations on matrices. Expansion (identical to matrix multiplication) represents

the homogenization of flow across different regions of the graph. Inflation, mathe-

matically equivalent to a Hadamard power followed by diagonal scaling, represents

the contraction of flow, making it thicker in regions of higher current and thinner

in regions of lower current. Intuitively, expansion corresponds to augmenting the

neighbors of a given vertex, and inflation corresponds to promoting those neigh-

bors which have a higher transition probability from a given vertex. The Markov

clustering process causes flow to spread out within natural clusters and evaporate in

between different clusters [120]. The iteration is continued until a recurrent state or

fixpoint is reached.

The exact steps are explained in Algorithm 2. The connected components of the

graph induced by the non-zero entries of M provide the required clustering. Proof of

concept, mathematical properties and analyses on the complexity and scalability of

the algorithm can be found in [121].
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Algorithm 2 Markov Clustering
Input: G = (V,E), expansion parameter e, inflation parameter r
while M is not fixpoint do

M←Me

for all u ∈V do
for all v ∈V do

Muv←Mr
uv

for all v ∈V do
Muv← Muv

∑w∈V Muw
end for

end for
end for

end while

Spectral Clustering

Spectral clustering uses the Eigen decomposition of matrix representations of a

graph to determine the optimal partitioning of the graph. Although, there has been

extensive research in the spectral clustering field, I use the algorithms developed by

Shi and Malik [122] – for symmetric clustering, and Meila and Pentney [123] – for

asymmetric clustering, because they incorporate information from the edges (in our

case, data-driven interactions) in determining the optimal clustering of a graph.

Symmetric Cuts: In graph theory, a cut is defined as

cut(A,B) = ∑
u∈A,v∈B

wuv, (4.3)

where A and B are the clusters resulting from the cut between vertices u and v.

Finding the minimum cut for Equation 4.3 could result in singletons or clusters with

very few nodes, leading to poorly distributed clusters. Thus, there exists a need

to balance the clusters. Shi and Malik, have proposed a solution to this problem

by normalizing the cuts that create clusters [122]. The cut cost is calculated as a

fraction of the weights of the edges in the induced sub-graphs. As finding the exact
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solution to the normalized minimum cut problem is considered NP-complete, the

authors have found that using the eigenvector corresponding to the second smallest

eigenvalue of the Laplacian of an undirected graph (also known as the Fiedler vector)

could efficiently provide an approximate discrete solution [122]. The algorithm,

referred to as the normalized cut algorithm, recursively splits clusters thresholding

the Fiedler vector of the induced sub-graphs until the desired number of clusters are

reached.

Asymmetric Cuts: Meila and Pentney [123] provide for the expansion of spectral

clustering in multi-way cuts to directed graphs, as the normalized cut is applicable

only to undirected graphs. In gene regulation directionality could provide useful

information. The weighted cut algorithm, proposed by Meila and Pentney, math-

ematically transforms a directed graph (with a non-normalized Laplacian matrix,

D-A), into a symmetric Hermitian matrix [123] and finds an approximate solution to

minimizing a normalized cut. Using the k eigenvectors pertaining to the k smallest

eigenvalues of the Hermitian matrix, the weighted cut algorithm applies the k-means

algorithm to cluster the graph. In addition, the algorithm allows for user input,

balancing parameters T and T ′ , to normalize the cuts produced by the algorithm.

Thus the normalized minimum cut for directed graphs can be expressed as:

MNCut(x) = min
zk∈Rnorthon

K

∑
k=1

z∗kH(B)zk (4.4)

where B = T−
1
2 (D−A)T−

1
2 , K is the number of desired clusters and H(B) is the

Hermitian matrix of B.

In this section I describe the comparisons between the algorithms and results obtained

from applying the previously described methods to two datasets - a refractory cancer

data set and a glioma data set.
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Comparing Graph Clustering Algorithms

In our first study, three spectral clustering variants are compared – symmetric spec-

tral clustering with two variants of asymmetric spectral clustering, using different

balancing parameters (the average cut and the out-degree cut).

Performance Metrics

I use the metrics coverage and performance [124] to compare the methods.

Definition 10 (Coverage). The coverage of a partitioning M is defined as the fraction

of intra-cluster edges (qm) within the complete set of edges (q), i.e

α(M) =
qm

q
=

qm

qm +qm
(4.5)

I choose this metric as it measures the wellness of a cut in a graph by taking the

edges within the cluster(s) of a graph as a fraction of all the edges. Thus, the smaller

a cut, the better the coverage it would have. Both a graph with no clusters at all and

a graph with several disconnected components would have a coverage of 1 due to

the absence of inter-cluster edges. Sparsity of the graph would not influence the

coverage as long as the intra-connectivity is much higher than the inter-connectivity.

Definition 11 (Performance). The performance of a partitioning M is the fraction

of intra-cluster edges together with non-adjacent pairs of nodes in different clusters

within the set of all pairs of nodes.

β (M) =
qm +∑v,w/∈E,v∈mi,w∈m j,i 6= j 1

1
2n(n−1)

(4.6)
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The performance of a partitioning M counts the number of ‘correctly interpreted

pairs of nodes’ in a graph. I choose this measure as a means to assess the connectivity

within the clusters of the graph. The fewer non-edges (pairs of nodes within the same

cluster but lacking an edge between them) there are within a graph, the higher its

performance would be. Further, a graph containing several singleton nodes, as well

as a fully connected graph with a single giant cluster, would both have a performance

of 1, as the number of non-edges would be zero in both cases. The goal is to

maximize connectivity within a cluster for better performance and by maximizing

intra-connectivity (approaching the number of possible edges of a graph), one can

minimize the inter-connectivity. It is notable however, that performance will not do

well in sparsely connected large graphs even when there may be substantially fewer

edges between clusters.

The above formulae are specific to undirected graphs. Direction when available is

associated with each edge e. In the case of directed graphs, the maximum number of

edges possible is twice as many as the edges possible in undirected graphs and the

formulae are correspondingly modified.

Comparing Symmetric against Asymmetric Spectral Clustering

In the first experiment, symmetric spectral clustering is compared against asymmetric

spectral clustering. The average of performance and coverage is used as a measure

of the wellness of the clusters, and is plotted against the number of clusters produced,

shown in Figure 4.2.

Spectral clustering performed well both on undirected graphs and directed graphs. I

notice that the asymmetric algorithms peaked at a higher number of clusters than

the symmetric algorithm. This implies that the normalized cut algorithm left intact

large, well connected clusters until a certain threshold was reached. I also note that
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Figure 4.2: Performance and coverage average of spectral clustering

Table 4.1: Performance comparison of Markov and spectral clustering.

Coverage Performance
Network 1 Spectral Symmetric 0.97 0.8
(391 nodes Spectral Asymmetric 0.95 0.6
6200 edges) MCL 0.94 0.77
Network 2 Spectral Symmetric 0.97 0.93
(1,901 nodes Spectral Asymmetric 0.71 0.88
33,820 edges) MCL 0.94 0.89

using the average cut exhibits less fluctuation in performance across different cluster

sizes than using the out-degree of the nodes, explained by the fact that the average

cut uses the number of nodes as the balancing parameter. However, if in fact a gene

regulatory networks follows a scale-free topology then the average cut may not prove

to be the most useful in identifying biologically significant clusters because it does

not take into account the interactions within a cluster.
65



Comparing Spectral Clustering against Markov Clustering

In our second study, spectral clustering (symmetric and asymmetric) is compared

with Markov clustering. As seen in Table 4.1, in terms of coverage, spectral clus-

tering performed well over both directed and undirected graphs. In terms of perfor-

mance, the asymmetric case shows a lower performance value than the other two.

This indicates that incorporating directionality does not correspond with a significant

impact on the clustering, in terms of the performance metrics.

While both MCL and symmetric spectral clustering performed well on the much

larger dataset, exhibiting good scalability. However, the spectral clustering tech-

niques required the number of clusters to be pre-specified and this is often not

available in biological applications. Hence, for the biological study MCL was

applied.

4.5 Associating Biological Knowledge with Modules

Biological knowledge in the form of gene sets and the clinical categories of the

samples is used to associate functional significance to each extracted module.

Methodology

Here I describe the methods developed to identify enriched functional and clinical

annotations for each functional module.

Enriched Functional Annotations

To understand the biological relevance of the functional modules, I investigate the

functional enrichment of each module using pre-defined biologically relevant gene
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sets. The hypergeometric test is used to measure the significance of the enrichment

and the p-values are corrected for False Discovery Rate (FDR) using Benjamini and

Hochberg’s method [106]. The Molecular Signatures Database (MSigDB version

3.0) [49] and Pathway Commons (as of September 2010) [6] are used as reference

knowledge sources (described in Chapter 2).

Enriched Clinical Annotations

Context-specific gene regulatory networks [46] allow for associating samples with

each node (in this case context motifs) in the network. Based on the available clinical

annotations, I associate modules with enriched clinical associations.

Since every node has a set of samples associated with it, it is crucial to first associate

samples to the modular level based on the frequency of occurrence of samples across

the nodes within a module. The sample association score as described in [103] is

used for this association.

Definition 12 (Sample Association Score). Sample Association Score (L
(
s j ∈ mi

)
)

is the likelihood that a sample s j belongs to a module mi.

Let p be the total number of samples, si be the number of samples in a context motif

Mi; let mi be a module made of context motifs {M1,M2, . . . ,Mm} and the sample s j

is included only in a subset of mi, M ( j) ⊂ C . Then, the sample association score is

defined as:

L
(
s j ∈ C

)
=

∑s j∈Mi w(Mi)

∑i w(Mi)
.

where

w(Mi) =
K

√√√√(1−
(

ki

N

)K
)
, 1≤ K.
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Based on this definition I note that 0 ≤ L
(
s j ∈ C

)
≤ 1, where L

(
s j ∈ C

)
= 0

indicates no appearance of the sample in any context motif, while L
(
s j ∈ C

)
= 1

indicates the presence of the sample in every context motif. The parameter K controls

the context-specificity of sample membership to a given module – the higher the K,

the more context specific the sample membership. For this application I set K = 2.

Only samples that had a sample association score > 0.9 were considered to be part

of a functional module.

Similarly, the probability that the sample s j belongs to the module C can be com-

puted as:

Pr
(
s j ∈ C

)
= 1− ∑

M j∈C
p

I(s j)
j

(
1− p j

)1−I(s j)

where p j = n j/N and I
(
s j
)
= 1 if s j ∈m j, 0 otherwise. In this study, the probability

Pr
(
s j ∈ C

)
was set to 0.05.

Only samples that had a sample association score > 0.8 were considered to be part

of a module. Following this, the modules were analyzed for enrichment of specific

clinical categories using the hypergeometric test. False discovery rate correction was

applied using Benjamini and Hochberg’s correction method [106].

Survival Analysis

When survival information was available for the dataset, Kaplan-Meier survival

analysis [125] was performed on the samples belonging to each of the functional

module with respect to all other samples within the dataset. The chi-squared test

was used to identify significant differences in survival.
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Drug Annotations

Additionally, drug associations were also studied using drug target information from

Drugbank [62]. Drug targets were extracted from the Integrated Druggable list (from

Sophic Alliance 1) consisting of an integrated list of genes determined druggable.

The list contains information from four sources, of which two sources were used -

the list published by Hopkins & Groom [126] and by Wishart [62] as they were the

most reliable.

In summary, Figure 4.3 illustrates the procedure for identification of functional

modules from a data-driven network and the nature of the inputs and outputs at each

stage.

Application: Refractory Cancer (Target Now)

I now demonstrate the biological application of the methods developed in this

dissertation. I use the Target Now (TN) [127] cancer data set. The Target Now study

was conducted on refractory cancer patients who did not benefit from standard types

of treatment. Late stage cancer is frequently de-differentiated, having lost a great

deal of the specialized functions present in the tissue from which it arose. The TN

study aims to determine if the patients could derive benefit from therapy with a drug

not normally used for their particular form of cancer [127].

The Target Now gene expression profiling experiments were conducted using the

Agilent 011521 Human 1A Microarray G4110A platform. Table 4.2 shows the

number of samples corresponding to each tumor type. The study consists of 146

patients, spanning 35 different types of tumor. The dataset was filtered based on the
1http://www.sophicalliance.com/
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Figure 4.3: Flowchart for the identification of functional modules from a data-driven
network. The region enclosed within a dashed rectangle indicates the contributions
of this work.

transcription activity of each gene across samples, and reduced to 3,851 genes by

eliminating genes with a low variance across samples.

Table 4.2: Distribution of samples in the Target Now data set.

Pancreas 20 Colon 7 Brain 4 Cervical 3 Esophagus 2
Ovarian 19 Kidney 6 Lung 4 Gallbladder 3 Skin 2
Melanoma 18 Salivary 6 Adipose 3 Rectal 3 T Cell 2
Breast 16 Adrenal 5 Bladder 3 Stomach 3 Thyroid 2
Single Sample: Appendix, Cartilage, Chondrosarcoma, Prostate, Testicular,
Glioma, Gastric, Ileum, Lymphoma, Monocytes, Eccrine Adenocarcinoma,
Rhabdomyosarcoma, Synovial Cell Sarcoma, Skeletal Muscle, Uterus
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The context mining algorithm was applied using a crosstalk < 0.3, conditioning

< 0.1 and statistical significance < 0.05. Further, for each context motif (with x

genes) the probability of obtaining a context-motif of x genes or more by chance,

was computed, and context-motifs with a statistical significance greater than 0.01

were filtered out. Subsequently Markov clustering was applied using an inflation of

1.4 and a total of 28 functional modules were obtained.

Figure 4.4: Functional modules in refractory cancer (TN).

Enriched tumor types and functional annotations were identified corresponding to

these functional modules. Single sample tumors were omitted from the phenotypic

enrichment analyses and a statistical significance threshold of 0.05 was used for all

functional enrichment. Of these, functional modules with fewer than 10 genes and

fewer than 10 samples were eliminated, and the resulting functional modules are

shown in Table 4.3. As seen in the table, several interesting tumor type associations

were identified.

71



Starting with module 1, enriched with kidney and breast tumors, it is heartening to

see the Wnt/Ca2 signaling pathway enriched in this functional module, confirming

the importance of the role of this pathway in multiple tumor types. Amongst the

genes, DHFR was identified as a potential drug target, currently being targeted by the

drug methotrexate [128, 129] in multiple tumors including renal and breast tumor.

Within this functional module, I also identified four other genes to be druggable

(shown in Table 4.3). Of particular interest is the gene, PDE4C, which is targeted

by the drugs Ketotifen and Iloprost. The randomized phase II trial (NCT00084409)

studied how well Iloprost works in preventing lung cancer in patients who are at

high risk for this disease.

Module 5, enriched with pancreatic tumor contains, in addition to RRM2, the drug-

gable gene TYMS, a well-known target for several drugs (Raltitrexed, Gemcitabine,

Fluorouracil, Pemetrexed, Capecitabine) currently being used to treat the disease.

This module also contains the druggable gene PSMB1 (targeted by Bortezomib).

Within module 7, apart from the genes C1QA, C1QB and FCGR3A, currently being

targeted by several anti-neoplastic drugs, it is interesting to note the presence of the

gene ITGB2 currently being targeted by Simvastatin [130].

Finally, in module 10, of interest are the genes C1R, C1S and PDGFRA all being

currently targeted by several anti-neoplastic drugs. Additionally, it is interesting to

note the gene PROS1, targeted by the drugs, Drotrecogin alfa (currently being inves-

tigated for treating sepsis associated with cancer [131]) and Menadione (currently

being used to treat the disease [132]).
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Application: Glioblastoma Multiforme (TCGA)

Next, I study the ability of the methods developed in this chapter to identify func-

tional modules within brain tumor. The TCGA GBM data set (described in chapter

3) was used for this purpose. The context mining algorithm was applied using a

crosstalk < 0.3, conditioning < 0.1 and statistical significance < 0.01. Further, for

each context motif (with x genes) the probability of obtaining a context-motif of

x genes or more by chance, was computed, and context-motifs with a statistical

significance greater than 0.01 were filtered out. Markov clustering was applied using

an inflation of 1.4 and extracted a total of 31 functional modules were obtained.

Enriched tumor types and functional annotations were identified corresponding

to these functional modules with a statistical significance threshold of 0.05. Of

these, functional modules with fewer than 10 genes and fewer than 10 samples were

eliminated, and the resulting functional modules are shown in Table 4.5.

Table 4.5 shows the context-specific gene regulations extracted from this data

along with enriched clinical associations, enriched functional annotations. Drug

associations for each functional module are shown in Table 4.5, showing specifically

the anti-neoplastic drugs currently used to target the genes. It is interesting to note

that C1 and C2 are enriched with NF1 and PTEN mutations respectively, previously

reported to be characteristic of the Mesenchymal subtype [133]. Additionally, C7

enriched with the Proneural subtype is also enriched with the TP53 mutation.

Further, survival analysis was performed on each of the functional modules against

the samples in the rest of the data and three functional modules were identified to

show significant survival differences (shown in Figures 4.6, 4.7 and, 4.8). Functional

module C7, enriched with the proneural subtype, shows significantly longer survival
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Figure 4.5: Functional modules in glioblastoma multiforme (TCGA).

than the rest of the patients, while the functional modules C2 and C4, enriched with

the mesenchymal subtype show significantly shorter survival differences than the

rest of the patients.

4.6 Summary

In summary, a method for the identification of functional modules in data-driven

networks has been proposed. In comparison with other clustering algorithms, Markov

clustering was found to be the most promising in identifying functional modules.

Interestingly, the direction of the interactions did not play a role in the clustering.

Functional modules were extracted from both a refractory cancer dataset and the

TCGA glioma dataset. Interesting tumor type associations and therapeutic targets

were identified for each functional module within each dataset.
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Figure 4.6: Kaplan Meier curve showing survival of C2 against the rest.
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Figure 4.7: Kaplan Meier curve showing survival of C4 against the rest.
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Figure 4.8: Kaplan Meier curve showing survival of C7 against the rest.
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Table 4.5: Drug targets for the functional modules (TCGA).

Module Drug Drugs
Targets

C1 CD33 [Up] Gemtuzumab ozogamicin;
SYK [Up] Sti-571;
ALOX5 [Up] Leflunomide;

C2 FCGR2A [Up] Cetuximab; Gemtuzumab ozogamicin; Trastuzumab;
Rituximab; Ibritumomab; Tositumomab; Alem-
tuzumab; Bevacizumab;

C6 C1QC [Up] Cetuximab; Gemtuzumab ozogamicin; Trastuzumab;
Rituximab; Ibritumomab; Tositumomab; Alem-
tuzumab; Bevacizumab;

FCGR3A [Up] Cetuximab; Gemtuzumab ozogamicin; Trastuzumab;
Rituximab; Ibritumomab; Tositumomab; Alem-
tuzumab; Bevacizumab;

C1QA [Up] Cetuximab; Gemtuzumab ozogamicin; Trastuzumab;
Rituximab; Ibritumomab; Tositumomab; Alem-
tuzumab; Bevacizumab;
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Chapter 5

LEARNING RELATIONSHIPS BETWEEN BIOLOGICAL PROCESSES

While the previous chapter dealt with identifying functional modules within a high-

throughput data set, often we are interested in a higher level of abstraction – de-

termining relationships between the biological processes that are active within a

group of patients. In this chapter, I discuss the motivation for studying relationships

between biological processes, relevant work in this area, the methodology developed

in this dissertation and the relationships between biological processes, identified

within a glioma data set.

5.1 Motivation

Biological processes, analogous to functional modules (described in the previous

chapter) represent groups of genes or proteins with a common purpose. Understand-

ing relationships between biological processes, specifically, the co-occurence of

biological processes allows biologists to focus on the broad-level pathways that are

active within a given phenotype. Additionally, it also permits discovery of potentially

novel relationships between biological processes.

This chapter develops a method to identify the biological processes that are active

within high-throughput data and understand the variations in activity across different

sub-sets of patients. While the previous chapter resulted in functional modules

for biologists to focus on, here, I develop a mechanism which allows biologists to

identify a set of co-occurring biological processes that they are interested in. Further,

the method developed here uses not only data-driven information on the activity

of a biological process but also existing semantic relationships between biological

processes.
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5.2 Relevant Work

In this section, I outline methods which use relationships between biological pro-

cesses or pathways. A few approaches have been developed for scoring pathways

over-represented in data. Such methods are similar to annotation approaches and

additionally incorporate pair-wise relationships between the genes within the path-

ways in scoring the pathways. For example, Rahnenfuhrer et. al. [134] propose a

method to rank pathways within an expression dataset using several similarity mea-

sures (correlation, covariance, dot product and cosine similarity) applied between

pathways. Gene expression data has also been used to rank pathways significantly

represented within the data [135, 136]. However, such methods identify pathways

by observing the activity of a pathway across all samples. Biological processes are

heterogeneous, implying that the same pathway could be activated in completely

different ways in different samples. Hence, it is essential to understand pathway

activity on a per-sample basis.

Pathway activity in gene expression has been studied on a per-sample basis using

signal transduction pathways [137], however the approach allows viewing the ex-

pression of individual pathways one at a time, rather than learning relationships

between pathways.

Chagoyen et. al. [138] quantify the functional coherence of Gene Ontology bio-

logical process terms using the Gene Ontology annotations of a literature-derived

protein-protein interaction network for yeast. Statistically significant functional

connections are then extracted. While this approach provides a mechanism to extract

novel functional relationships as well as analyze a literature-driven network, this

approach cannot be applied to identify relationships from high-throughput data.
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A few methods have been developed in order to study the co-occurrence of func-

tional terms. Del pozo et. al. [139] propose a method to derive functional distances

between Gene Ontology terms using the simultaneous occurrence of terms within

gene annotations using the cosine similarity metric. Similarly the QuickGO browser

1 allows for viewing similar terms based on other terms that a protein is annotated

with. However, the key limitations of such approaches is the lack of integration of

biomedical data in learning relationships between the biological processes. Conse-

quently, such methods only allow for learning the relationships between existing

biological processes. Learning novel associations between biological processes (or

pathways) is difficult to achieve.

This chapter focuses on developing a method to identify co-occurrence relation-

ships between biological processes using both existing relationships as well as the

over-representation of the biological processes within high-throughput data. Several

contributions are made in this chapter. Firstly, relationships between biological

processes are captured by exploiting the biological processes active in each sam-

ple individually, accounting for heterogeneity within the data. Secondly, existing

knowledge of relationships between biological processes is used to guide the process.

5.3 Problem Formulation

In this section, I mathematically formulate the problem of learning relationships

between biological processes. Given an n× p high throughput dataset D = (B,S)

where

• B = (b1,b2...bn) is the set of n genes (cellular/biological entities).

• S = (s1,s2...sp) is the set of p heterogeneous samples (or patients).
1htt p : //www.ebi.ac.uk/QuickGO
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• D(gi,s j) ∈ R represents the activity of gi in sample s j .

I assume biological knowledge is in the form of a set of terms P = {t1, t2, · · · , tk}

where each term t is an element in G, a directed graph. In this chapter, Gene

Ontology (GO) is considered as a biological knowledge source.

Using this, I am interested in identifying one or more sets of co-occurring bio-

logical processes Ps =
{

t(s)1 , t(s)2 , · · · , t(s)k

}
within D. Similar to functional modules

(described in chapter 4), such sets could be associated with clinical annotations.

However, unlike functional modules, these co-occurring biological processes are not

identified within a data-driven network but instead directly from the high-throughput

data.

5.4 Identifying Patient-specific Biological Processes

I now turn to the methodology used to identify co-occurring biological processes.

However, first it is essential to identify the biological processes active in a single

sample.

Given a set of x co-regulated genes for a specific sample (both up- and down-

regulated), out of a total set of X genes, I am interested in the ratio of co-regulated

genes that are annotated by the GO term(y) to the total number of genes annotated

by the GO term(Y ). The ratio y/Y is a measure of the extent to which the genes

annotated by a GO term are present within the co-regulated genes and is termed the

enrichment ratio.

The statistical significance of this ratio is assessed using the hypergeometric test.

This test is used as I sample from the data without replacement. The probability of
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randomly obtaining y or more genes enriched within a gene list is computed as

p =
x

∑
i=y

(X−y
x−i

)(y
i

)(X
x

) (5.1)

For a given sample, a set of terms P1 is found by extracting the statistically sig-

nificant terms (p-value lesser than 0.05). The set Pa comprises a set of GO terms{
t(a)1 , t(a)2 , · · · , t(a)q

}
and enrichment ratios

{
e(a)1 ,e(a)2 , · · · ,e(a)q

}
for the GO terms.

A naive approach would be to build a matrix of the activity of the GO terms across

the samples and then cluster this matrix. However, this approach fails to take

into account the existing relationships between GO terms. Hence, I move towards

developing a similarity metric between samples based on the GO terms activated in

each sample.

5.5 Quantifying the Similarity between Patients

Let P1 =
{

t(1)1 , t(1)2 , · · · , t(1)q

}
and P2 =

{
t(2)1 , t(2)2 , · · · , t(2)m

}
denote sets of GO terms

where each term t is an element in G, a directed graph.

The similarity of the two sets P1 and P2 is defined as

η(P1,P2) = κ ∗SK(P1,P2)+(1−κ)∗SD(P1,P2) (5.2)

where SK(P1,P2) is the knowledge-driven similarity between P1 and P2 obtained

from the Gene Ontology, SD(P1,P2) is the data-driven similarity between P1 and

P2 obtained from the enrichments of the terms contained in P1 and P2 within the

high-throughput data and κ is a parameter that controls the relative influence of data

and knowledge.
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Data-driven Similarity

The data-driven similarity between the two samples can be computed using the

correlation of the expression of the genes in the dataset across the two samples.

Ideally, the high-throughput data set could be filtered to focus on the most variable

genes.

Knowledge-driven Similarity

The knowledge-driven similarity between the two terms could be computed in

multiple ways – either by using the enrichment ratios of the GO terms that the two

samples are annotated with, or through the semantic similarity between the GO

terms that the two samples are annotated with.

Enrichment Similarity

One way of expressing the knowledge-driven similarity is to capture the over-

representation of the terms within the high-throughput data. For a pair of samples,

two sets of terms P1 and P2 are found by extracting the statistically significant

terms (p-value lesser than 0.05) using the method previously described. Each set

Pa is associated with a set of GO terms
{

t(a)1 , t(a)2 , · · · , t(a)q

}
and enrichment ratios{

e(a)1 ,e(a)2 , · · · ,e(a)q

}
for the GO terms.

Definition 13 (Enrichment Similarity). The enrichment similarity, E(P1,P2) rep-

resents the extent to which the two sets of terms are both over-represented within a

high-throughput data set.

The enrichment similarity is found by
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E(P1,P2) = 1− [
m

∏
i=1

(1−
√

e(i)1 ∗ e(i)1 )] (5.3)

where m = |P1∪P2|. The enrichment similarity is formulated similar to the knowl-

edge overlap used in chapter 4.

Semantic Similarity

On the contrary, the knowledge-driven similarity could also be expressed through the

semantic similarity. The semantic similarity between two sets of terms represents the

extent to which the two sets of terms are referring to the same biological concepts.

Several methods have been developed for studying the semantic similarity between

terms and extended to sets of terms. Such methods are broadly categorized into

graph-based similarity measures and information-content based methods. Graph-

based methods use the directed acyclic graph encoding of an ontology in order

to compare terms. The semantic value of a given term is computed based on the

aggregate contribution of all the terms within the DAG, such that terms that are

closer to a term t contribute more to its semantics [140]. Alternately, information-

theoretic methods of semantic similarity have been addressed in several studies

[141, 142]. The idea behind such methods is to utilize the usage of terms within

the corpus. Comparisons of the two classes of methods [143, 144] have shown that

information-theoretic methods, specifically Resnik’s method correlates with gene

sequence similarities and gene expression profile better. Hence, in this work, the

semantic similarity is derived from information theory principles.

Prior to computing the semantic similarity between two sets of terms, it is first

necessary to quantify the information contained within a single term t.

Definition 14 (Information Content). The information content (i(t))) for a Gene
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Ontology term quantifies the semantic content within the term.

For a term t in G, this is defined as

i(t) = 1− log|At |
log|∪n

k=1 Ak|
(5.4)

where At is the set of genes annotated with the term t and n is the total number of

terms in G. The idea behind this equation is that a term which annotates a high

proportion of genes would be a fairly common term and hence its semantic content

would be low [142]. On the contrary, a term which annotates few genes would be

one which is much less common and hence more meaningful.

Table 5.1: List of the annotation weights for the GO evidence codes.

Category Weight
Experimental :
EXP, IDA, IPI, IMP, IGI, IEP, TAS 1
Computational:
ISS, ISO, ISA, ISM, IGC, IBA, IBD, IKR, IRD, RCA 0.75
Author Statement / Automatically Assigned :
NAS, IC, ND, IEA 0.50

Gene annotations are usually curated using different methods, each with varying

reliabilities. GO uses evidence codes to assign reliabilities to each annotation and I

incorporate this in the information content. First numeric weights are assigned for

each evidence code as shown in Table 5.1. Subsequently, given At = (b1,b2, · · ·bp)

a set of p genes annotated with the term t and the reliability of each annotation

(r1,r2, · · ·rp), the size of the set At could then be modified to be computed as the

sum of the reliabilities of the terms within the set.

|At |=
p

∑
i=1

ri (5.5)
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After this, the semantic similarity between two terms is defined by tracing the path

of each term to the root of G [141].

Definition 15 (Semantic Similarity). The semantic similarity, d(t1, t2) for the Gene

Ontology terms t1 and t2 is the extent to which the two terms refer to the same

biological concept.

d(t1, t2) =
2∗maxt∈γ(t1,t2) i(t)

i(t1)+ i(t2)
(5.6)

where γ is the set of common subsumers to both terms t1 and t2. In the case of

GO, I focus on the tree corresponding to biological processes. Amongst the path

common to the two nodes, the information content of most specific term is used as

the common information content between the two nodes. Additionally, in order to

incorporate the depth of the two nodes, the information content of the two nodes

themselves are also used. The intuition behind this measure is to capture what is

common between the two terms. The common ancestor represents the information

content that is shared by the nodes.

Finally, the semantic similarity between the two sets S(P1,P2) is computed by taking

the average of the top h proportion of all pair-wise semantic similarity values. A

reasonable starting point for h would be 10 %. The intuition behind this is to capture

the most specific terms, and these are represented by the terms with a high semantic

similarity.

The similarity metric developed here (η) could then be applied to cluster data by

taking into account not only the similarity in expression and but also relationships

between the biological processes.

I now turn towards the results obtained while applying these methods to a high-

throughput cancer data. GO annotation and ontology files as of February 2012
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were used in this work. The ontology was filtered to remove all leaf nodes with no

annotated genes or proteins.

Clustering Glioblastoma Multiforme (GBM) Patients

The methods developed here were applied to the glioblastoma multiforme data set

described in [145]. This dataset consists of 181 WHO grade IV astrocytoma and

14 non-neoplastic samples from autopsy specimens of cerebral cortex from donors

with no history of brain tumor or neurological disorders obtained from the National

Neurological Research Brain Bank (Los Angeles, CA). The data was centered using

the median of all samples and quantized using a fold change of 1. Co-regulated genes

(both up- and down-regulated) were then extracted for each sample. Following this,

enriched biological processes were found for each sample using the hypergeometric

test and enriched terms were identified using a corrected p-value threshold of 0.05.

Of the 195 samples, only 160 samples had any term enrichments and these were

used in all subsequent analyses.

Clustering Samples

The first experiment involved clustering the samples using the three variants of the

similarity metric, described previously – pure data-driven similarity and knowledge-

driven similarity through the enrichment similarity as well as the semantic similarity.

Consensus k-means clustering [146] was applied for 100 iterations, varying the

number of clusters from 3 to 8. Table 5.2 shows the proportion of samples with

a positive silhouette score. As seen in the table, the best performance is achieved

when the semantic similarity is used to cluster the samples, at k = 3. Additionally, it

is also interesting to see that a purely data-driven metric performs much worse than

a knowledge-driven metric.
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Table 5.2: Proportion of samples with a positive silhouette score across varying
number of clusters (k).

Proportion of Samples With Positive Sil-
houette Score

k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

Co-expression 69% 72% 72% 69% 70% 75%
Enrichment Similarity 81% 77% 71% 67% 41% 61%
Semantic Similarity 93% 74% 69% 66% 67% 69%

Focusing on the semantic similarity as a metric for clustering, Figure 5.5 shows the

consensus heatmaps for number of clusters varying from 3 – 6. The heat map shows

the proportion of times that the two samples occupy the same cluster. From the

heatmaps, it is clear that setting k at 3 results in clear clusters. It is also interesting

to note the presence of additional sub-groups although not very clear, indicating that

the data does contain additional sub-groups, however, these sub-groups could be due

to a smaller sub set of the biological processes.

Silhouette width values were computed for each sample [147] and only samples

with a positive silhouette width were used in further analysis. Silhouette scores

reflect whether the assignment of a sample to a cluster is appropriate. Positive scores

indicate that a sample is more similar to its own cluster than neighboring clusters.

Negative scores indicate samples are assigned to the wrong cluster [147]. Figure

5.5 shows the silhouette plots obtained for k = 3–6. As seen in the figure and in

Table 5.2, setting k at 3, resulted in the fewest number of poorly clustered samples.

Hence, for all further analyses, k was set to 3 and samples with a negative silhouette

score were omitted, leaving a total of 149 samples.

Biological Significance

The obtained clusters were analyzed for enriched clinical subtypes using the chi-

squared test, after applying a p-value filter of 0.05. Additionally, survival analyses
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Figure 5.1: Consensus heat maps showing patient clusters in glioblastoma multi-
forme (GBM). Yellow indicates that the two samples have a high consensus index
while red indicates a low consensus index.

was performed on the clusters and the co-occurring biological processes were iden-

tified in each cluster by extracting the GO terms which occurred most frequently

across the samples within a cluster. Specifically, I extracted terms which occurred

in atleast 50 % of the samples within a cluster. Table 5.3 shows a summary of the

clusters. Figure 5.5 shows the Kaplan-Meier survival plots for the three clusters.

It is interesting to see that the biological significance of the clusters matches pre-
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Figure 5.2: Silhouette plots for k = 3-6 showing the ’true’ samples of each cluster.

viously reported findings. Survival curves were generated using the Kaplan-Meier

analysis and are shown in figure 5.5. Cluster 1 enriched with the proneural subtype

was found to have better prognosis, while cluster 3, enriched with the proliferative

sub-type was found to exhibit poor prognosis. Contrary to previous findings how-

ever, cluster 2, although enriched with the mesenchymal sub-type, had a median

survival of 1.17 years, due to the presence of a few long surviving proneural and

mesenchymal samples within the cluster.

Additionally, clusters 1 and 3 showed significant survival differences with a p-value

of 0.036, and clusters 2 and 3 also showed significant survival differences with a

p-value of 0.008. The findings also confirm the associations between prognosis and
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Figure 5.3: Kaplan-Meier survival curves for clusters of biological processes identi-
fied in GBM.

the different stages in neurogenesis. The better prognosis subgroup (Cluster 1) is

enriched with neurogenesis biomarkers while the poor prognosis group (Cluster

3) was enriched with cell cycle biological processes indicating tumor proliferation.

An interesting find is that the normal samples cluster with the proneural sub-type.

Further the presence of signaling biological processes within cluster 1, associated

with the proneural subtype in addition to the previously reported angiogenesis, could

provide insights onto novel characteristics of the proneural sub-type.
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Effects of Relative Proportion of Knowledge and Data on Clustering

Finally, an experiment was performed to study how varying the amount of knowledge

(against data) would affect the clusters. Equation 5.2 was applied by varying κ

between 0 and 1. When κ = 0, this represented the case when only the correlation

of expression values was used for clustering. When κ = 1, this represented the case

when only the semantic similarity was used for clustering. Again, the proportion

of samples with a positive silhouette score was used to evaluate the clusterings and

the results are shown in Table 5.4. Interestingly, as the proportion of knowledge is

increased, the clusterings with k = 3 and 4 (previously reported by [145, 133]) are

identified with greater accuracy.

Table 5.4: Proportion of samples with positive silhouette score across varying
amounts of knowledge.

Proportion of Knowledge k=3 k=4 k=5 k=6 k=7 k=8
0% 68% 72% 69% 68% 71% 70%
10% 71% 75% 68% 68% 66% 69%
20% 68% 79% 68% 68% 64% 60%
30% 71% 71% 68% 69% 71% 78%
40% 81% 83% 78% 77% 73% 72%
50% 94% 84% 78% 79% 77% 59%
60% 82% 88% 49% 77% 71% 75%
70% 83% 91% 76% 77% 69% 78%
80% 93% 94% 81% 73% 69% 61%
90% 94% 94% 83% 79% 64% 65%
100% 95% 74% 66% 72% 57% 59%

5.6 Summary

This chapter has dealt with a method to identify co-occurrence relationships between

biological processes using both known relationships between biological processes

and their over-representation within a data set. The methods developed here have
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been applied to a high-throughput glioma data set. Co-occurring biological processes

were extracted in the form of three clusters, enriched with previously identified bio-

logical sub-types. Further statistically significant survival differences were obtained.

Additionally, potentially novel relationships between biological processes were also

identified.
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Chapter 6

CONCLUSION

Identifying plausible data-driven hypotheses using existing knowledge is an impor-

tant problem in computational systems biology. In this dissertation, I have developed

methods for addressing this problem based on hypotheses which fall into three

classes – individual interactions, functional modules and relationships between bio-

logical processes. Here I summarize the key contributions of this dissertation and

directions for future research.

6.1 Contributions

Individual Interactions

In Chapter 3, I have developed a method to evaluate data-driven interactions against

literature-derived pathways. Using the data-driven networks from three sources

(ARACNE, Bayesian networks and context-specific networks), I have shown how

≈ 60-70% of the interactions within these networks map onto literature-derived

paths (refer Table 3.1). Further I have shown how the evaluation of the data-driven

networks could shed light on several interesting properties of biological networks.

For a given network size, the proportion of data-driven interactions evaluated against

literature-derived pathways is similar across networks learnt using different methods.

It is also interesting to note that random networks created using the same set of nodes

as the data-driven network results in comparable statistics (shown in Figure 3.1 and

3.2). Additionally, I have also learnt that the integration of multiple knowledge

sources plays an important role in such validation efforts, with more than 75 %

data-driven edges, in all three data-driven networks, requiring a combination of two

or more sources for their validation.
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Since a significant proportion of the data-driven interactions do not correspond

to literature-derived paths, I have developed a scoring method to use additional

knowledge sources in determining the likelihood that each of these interactions are

plausible novel biological interactions. The scoring method for unmapped interac-

tions allows for the extraction of the best candidate hypotheses from the data-driven

interactions which could be validated with wet-lab experiments. Using a simulated

data set, I have shown that the scoring metric is able to distinguish between true and

false data-driven interactions (difference in distributions is statistically significant

with a p-value of 4.61× e−24). This metric copes with both incompleteness in

biological annotations as well as missing connections in literature-derived pathways.

Finally, these methods are applied to score the data-driven interactions in a glioma

dataset and identify plausible novel hypotheses.

Functional Modules

Moving to a higher level of abstraction, in Chapter 4, I develop a method to identify

functional modules from data-driven networks using graph clustering approaches.

Amongst the graph clustering algorithms, I observe that Markov clustering has

a tendency to extract biologically significant functional modules, even when the

directionality of the data-driven interactions is ignored.

I show how the methods could be applied to a refractory cancer data set, resulting

in several interesting tumor-type associations (shown in Figure 4.3 and Table 4.3)

between Kidney and Breast tumor; Bladder, Cervical and Rectal; and Brain and

Melanoma. Several interesting drug associations were found for the functional

modules and many of the identified drug targets were shown to be associated with a

drug currently treating some type of cancer, indicating that it could be used towards

the tumor in question.

103



The methods were also applied to a the TCGA glioma data set. Functional modules

were found to be enriched with previously discovered sub-types (shown in Table

4.4). Additionally, the modules enriched with the Mesenchymal sub-types were

characterized by poor prognosis while the module enriched with the Proneural sub-

type was characterized by better prognosis (survival curves are shown in Figures 4.6

– 4.8).

Relationships between Biological Processes

At the level of the relationships between biological processes, I have developed a

method to identify co-occurrence relationships among biological processes within

a high-throughput data set, capturing the variations in pathway activity across the

samples within a given data set. Subsequently, I have developed an approach to

evaluate the similarity between samples using both data-derived metrics as well as

knowledge-derived metrics.

Interestingly, using knowledge-derived metrics for similarity proved to be more

effective than data-derived metrics in clustering biological processes. The approach

has been applied to the TCGA glioma data set to identify three sub-groups within

the data, confirming previous findings (shown in Table 5.3). The sub-groups cor-

responded to the different stages in neurogenesis, with the sub-group for better

prognosis (Cluster 1) enriched with neurogenesis biomarkers, while the sub-group

for poor prognosis (Cluster 3) was enriched with cell cycle biological processes

(shown in Figure 5.3).

The relative influences of knowledge and data on the clustering results was also stud-

ied (seen in Table 5.4), showing that overall, an increase in knowledge corresponded

with better clusters, in the cases of k = 3 and 4 (previously identified sub-groups).

This demonstrates that prior knowledge is an important aspect which could be used
104



to guide the identification of co-occurring biological processes.

6.2 Future Work

While this dissertation has developed methods for identifying plausible biological

hypotheses from data-driven hypotheses, there remain several directions for further

research.

This dissertation develops methods to refine hypotheses. Currently the approaches

are implemented as a suite of tools. An interesting question is the large-scale appli-

cation of these approaches to identify novel hypotheses from high-throughput data.

Specifically, can we create a repository of data-driven hypotheses for community to

both utilize and augment?

Secondly, the method developed in this dissertation have been developed as a set of

independent tools that could be applied to data-driven hypotheses. As a next step,

it would be interesting to study the relationships between these tools. Specifically,

could the functional modules identified in chapter 4 be used as input to methods

for scoring interactions in chapter 3 ? If so, could we compare the evaluation of

data-driven interactions across different functional modules ?

Finally, this dissertation has used existing knowledge sources such as Gene Ontology

and pathways. An interesting aspect would be extension of this dissertation to use

additional sources such as transcription factors, microRNA information to understand

the extent to which these knowledge sources could allow for identifying plausible

biological hypotheses.

In summary, this dissertation opens up several possibilities for the effective utilization

of data-driven hypotheses using existing biological knowledge, making a significant

contribution to the field of knowledge discovery in systems biology.
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