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ABSTRACT

This thesis aims to investigate the capacity and bit error rate (BER) perfor-

mance of multi-user diversity systems with random number of users and considers

its application to cognitive radio systems. Ergodic capacity, normalized capacity,

outage capacity, and average bit error rate metrics are studied.

It has been found that the randomization of the number of users will reduce

the ergodic capacity. A stochastic ordering framework is adopted to order user

distributions, for example, Laplace transform ordering. The ergodic capacity under

different user distributions will follow their corresponding Laplace transform order.

The scaling law of ergodic capacity with mean number of users under Poisson and

negative binomial user distributions are studied for large mean number of users and

these two random distributions are ordered in Laplace transform ordering sense.

The ergodic capacity per user is defined and is shown to increase when the total

number of users is randomized, which is the opposite to the case of unnormalized

ergodic capacity metric. Outage capacity under slow fading is also considered and

shown to decrease when the total number of users is randomized.

The bit error rate (BER) in a general multi-user diversity system has a com-

pletely monotonic derivative, which implies that, according to the Jensen’s inequal-

ity, the randomization of the total number of users will decrease the average BER

performance. The special case of Poisson number of users and Rayleigh fading is

studied. Combining with the knowledge of regular variation, the average BER is
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shown to achieve tightness in the Jensen’s inequality. This is followed by the exten-

sion to the negative binomial number of users, for which the BER is derived and

shown to be decreasing in the number of users.

A single primary user cognitive radio system with multi-user diversity at the

secondary users is proposed. Comparing to the general multi-user diversity system,

there exists an interference constraint between secondary and primary users, which

is independent of the secondary users’ transmission. The secondary user with high-

est transmitted SNR which also satisfies the interference constraint is selected to

communicate. The active number of secondary users is a binomial random vari-

able. This is then followed by a derivation of the scaling law of the ergodic capacity

with mean number of users and the closed form expression of average BER under

this situation. The ergodic capacity under binomial user distribution is shown to

outperform the Poisson case. Monte-Carlo simulations are used to supplement our

analytical results and compare the performance of different user distributions.
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CHAPTER 1

INTRODUCTION

1.1. Wireless Communications

With the rapid development of wireless communication techniques, wireless

networks are widely used in the world. Since Marconi and Tesla investigated ra-

dio telegram in 1890s, wireless communications have experienced several stages of

evolution, especially for mobile wireless communications [1].

Until the 1980s, Frequency Modulation (FM) technique, an analog telecommu-

nications standard, was used to ensure the reliability of voice communication, which

is termed as First Generation (1G). The first commercially automated cellular net-

work for 1G was launched in Japan by NTT (Nippon Telegraph and Telephone) in

1979, and was followed by the launch in 1983 in the United States, using Motorola

DynaTAC mobile phone [2]. First Generation devices used the analog technology

for the communication which includes Frequency Division Multiple Access (FDMA).

In 1G systems, the conversation was full duplex, meaning both the persons can talk

and listen at the same time. Since the whole technology was based on the analog

system, noise introduced into the signal during communication was a disadvantage.

Also, there was very little security as the data was transferred and the voice could

be eavesdropped by a third party. Along with other disadvantages and its limit of

usage, 1G was soon replaced by more advanced techniques.

After a decade since the appearance of 1G, with the explosion of number of

clients, Time Division Multiple Access (TDMA) and Code Division Multiple Ac-

cess (CDMA) were introduced to support more users with efficient use of spectrum.

This is called the Second Generation (2G) in wireless communications. While radio
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signals on 1G networks are analog, radio signals on 2G networks are digital. Sec-

ond Generation cellular networks were firstly commercially launched on the Global

System for Mobile Communications (GSM) standard in Finland [3]. The data was

transferred in discrete form and hence could be coded or encrypted. It offered greater

privacy, efficient data transfer with robustness to noise and implementable with less

expensive devices. Second Generation networks also introduced data services for

mobile, starting with text messages, and is still a major part in the global market

today.

In the past ten years, Third Generation (3G) tried to use broadband approach

to complete fast data transmission business [4]. Application services included wide-

area wireless voice telephone, mobile Internet access, video calls and mobile TV,

all in a mobile environment. With its killer applications of General Packet Radio

Service (GPRS), clients can download desired application. Japan’s NTT Docomo

launched world’s first 3G network in the year 2001 [5]. It is a trend that a new

generation of cellular standards has appeared approximately every tenth year since

1G systems were introduced in 1980s. Each generation is characterized by new

frequency bands, higher data rates and non backwards compatible transmission

technology.

The future of communication technology which is now coming on the hori-

zon is the Fourth Generation (4G) technologies. 4G is defined as the peak rate

requirements for service at 100 mega bits per second (Mbps) for high mobility com-

munication (such as from trains and cars) and 1 giga bit per second (Gbps) for low

mobility communication (such as pedestrians and stationary users) [6].
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1.2. History of Multi-user Diversity

No matter under which generation of communication systems, channel fading

and large number of users are always obstacles to reliable communication. System

designers employ different kinds of modulation code schemes to improve the quality

of communication in the fading scenario [7]. However, instead of avoiding fading, one

can exploits it by using Multi-user Diversity techniques to deal with these two issues

at the same time. In the system with many users with fading channels, at any time

slot, there is always the case that some users have better channels than others. By

choosing the best one or best several users to transmit, one can allocate the system

resources to good users to achieve capacity and good bit error rate performance.

Compared with single-user systems, multi-user systems not only choose which time

to transmit, but choose which user to transmit as well, so that it can get extra

diversity gain. Multi-user diversity gain depends on the dynamic range of fading

and number of users. When total number of users is large and their channels fade

rapidly, the effective channel gain is improved, so that with high probability there

is a user which has a very good channel at any given time. This is exactly how

multi-user diversity exploit fading and large number of users.

On the other hand, multi-user diversity has to face some challenges that will

influence the system performance. As we describe above, at each time slot, good

users are chosen to transmit. This raises the first critical issue, which is fairness

among users. In practical systems, not all the user channels are statistically sym-

metric, which means that not all the users experience the same fading scenario.
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A simple example is that of the non-light-of-sight cellular system, where the sig-

nal highly depends on the specific location of the base station so that the channel

quality varies significantly among users [8]. Generally speaking, users near the base

station are likely to have better channel quality than those far from the base sta-

tion [9]. This means that the near users will have more chance to communicate than

the far users. By using proportional fair scheduling strategy [10], the system can

achieve asymptotic fairness in the long term. The scheduler tracks the user’s rate

normalized by its average throughput instead of tracking the rate only, so that all

the users at their own peak can be arranged to transmit. Proportional fair schedul-

ing has also been extended to the mobile clients moving at pedestrian speeds with

multiple antennas [11], as well as OFDM systems [12]. Moreover, it has been stated

that using proper dynamic resource allocation strategies on Rayleigh fading chan-

nels can yield a remarkable power boost which can be as high as 5 or 6 dB, and

this gain will grow logarithmically with the number of users [13]. Second issue is as

we introduced before, multi-user diversity depends on the rate and dynamic range

of channel fluctuation. In other words, larger tail probability in the fading channel

distribution yields, better channel quality for selected users.

The last issue is prediction error due to the feedback quality. Performance of

a multi-user diversity system is analysed, taking into account the feedback errors

due to channel variability [14], and the trade off between the multi-user diversity

gain and feedback quality has been well established in [15]. Especially in downlink

systems, base station and users can share a strong pilot, so the prediction error

will be mainly caused by the feedback delay rather than channel estimation errors.

4



The upper bound of the achievable data rate is primarily defined by the feedback

delay and its dependency to the delay factor has been studied in [16]. All the above

points make reducing feedback delay to one of the most important challenges in

designing future wireless systems. One can reduce the delay by firstly shortening the

scheduling time slot; then setting a threshold of required rate and let all users below

this threshold remain silent to decrease the feedback frequency. As a combination of

all the issues we mentioned, different fair scheduling algorithms are compared and

also it is shown that space-time coding makes the system more robust and gives

performance gain in the case of feedback errors [17].

Capacity is one of the most important performance measures in multi-user

diversity systems. The downlink system of multi-user diversity scheme is considered

as a broadcast channel. Different types of capacity regions for fading broadcast

channels are studied and their corresponding optimal resource allocation strategies

are obtained in [18,19]. In the uplink system, multi-user diversity scheme is exactly

a multiple access channel (MAC), and its capacity region is known in [20]. For

this case, FDMA, TDMA and CDMA techniques can be exploited where CDMA

is more suitable for bursty traffic. The performance of two users with hierarchical

modulations is analysed in [21]. Both in the uplink and downlink system, by choosing

the single best user at each time slot, the Shannon capacity could be achieved [22,23].

This aroused the interest to learn how to maximize the system throughput with

respect to the number of users in a single cell [24].

Moreover, multi-user diversity can be combined with multiple antennas and

power adaptation [25, 26]. Ergodic capacity and outage capacity region of M -user
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fading MAC under the assumption that both transmitter and receiver have multiple

antennas. A unified capacity analysis for wireless systems with joint multi-user

scheduling and antenna diversity in Nakagami fading channels is derived in [27].

More analysis of capacity in the Rayleigh fading channel with MIMO antenna scheme

can be found in [28, 29]. Reference [30] considers a look at the throughput when

a SIMO scheme is employed. Also, adaptive modulation technique is developed to

help the system to achieve the capacity. Adaptive modulation system dramatically

enhances system robustness to multipath fading and transmission quality control

[31–33]. Adaptive modulation technique for multi-user MIMO systems with multi-

user diversity is considered in [34] and the proposed scheme maximizes the sum of

the instantaneous bit rate under a target BER constraint. One critical issue is that

this technique strongly relies on the accurate estimation of channel and a reliable

feedback path [35].

Along with capacity, bit error rate (BER) is also an important performance

metric in multi-user systems. In [36], a closed-form expression for the average BER

is derived, and how the average BER goes to zero asymptotically as the number of

users increases for a given SNR is analysed. Similarly to capacity, the influence of

feedback delay on BER performance has been well established in [37, 38]. A lot of

work has been done to investigate the BER performance when the spatial diversity

schemes like Maximum Ratio Combining (MRC), Selection Combining (SC) are

combined with multi-user diversity in MIMO system in [39–41]. It has been shown

in [42] that the antenna correlation can surprisingly improve the BER with large

number of users.
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1.3. Multi-user Diversity With Random Number of Users

Unlike the early work which is based on the deterministic number of total users,

multi-user diversity with random number of users has been studied recently, since

the number of users is randomly varying in practice. For example, the probability

of certain types of data request such as a cell phone call, stocks, weather and email

are bursty in nature leading to very short channel access times. This implies that

the number of users actively competing for channel access is a random variable

across time. Additionally, schemes like cognitive radio system in which a user needs

to follow instructions from the base station to request channel access, only if its

transmitting SNR is larger than a predefined threshold, also leads to a random

number of users across time. This scheme will be discussed in Chapter IV.

Ergodic capacity performance under multi-user diversity system with random

number of users is studied in reference [43], in which all users are assumed to have

symmetric independent Rayleigh fading channels and only single user with highest

instantaneous SNR is picked to transmit at each time slot. The general instan-

taneous SNR distribution of the best user is derived for arbitrary fading and user

distributions, which can be expressed in the form of the probability generation func-

tion of the user distribution. The ergodic capacity of the multi-user diversity system

with deterministic number of users is shown to have a completely monotonic deriva-

tive with respect to number of user. Based on this, by using Jensen’s Inequality,

it is proved that randomization of number of users will decrease the ergodic capac-

ity. Moreover, different user distributions can be compared with and ordered in the
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Laplace Transform ordering sense, which means that we can compare the ergodic

capacity under a variety of user distributions. At last, for a special case when the

number of users is Poisson distribution and user channel is Rayleigh fading, a closed

form expression of the ergodic capacity is given in [43].

1.4. Cognitive Radio System

It is a fact that most radio frequency spectrum is inefficiently utilized, and that

spectrum utilization depends strongly on time and place [44, 45]. The concept of

cognitive radio was first proposed by Joseph Mitola in a seminar at KTH, the Royal

Institute of Technology in Stockholm, in 1998, and has become very popular since

it is considered as an ideal way to use spectrum resources. Basically, cognitive radio

is an opportunistic spectrum usage solution, in which the frequency bands are not

used only by their licensed users (primary users), who own the right to get access to

the channel in an arbitrary time as needed. Many unlicensed users (secondary users)

continuously monitor the available spectrum holes and the activities of the primary

users. Once the primary user is silent, the secondary users are allowed to transmit.

By doing that the spectrum resources can be shared by large number of users and

the primary users also get rid of the interference issue from secondary users [46]. In

this approach, secondary users have to satisfy a strict interference constraint and

its transmission power should be below a certain threshold at all times [47].

In the literature, a widely used way to solve the interference constraint is to

treat it as an optimization problem using beamforming techniques [48]. The aim is
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to maximize the transmit SNR of the secondary users and meanwhile minimize the

interference to the primary users. Publications describing the underlying cognitive

radio systems with antenna beamforming can be found in [49–51]. In [49], an al-

gorithm which computes the power control values and the beamforming weights in

turn, is proposed to minimize the total transmission power of the CR system and

to satisfy the signal-to-interference plus noise power ratio (SINR) requirement for

both the primary and secondary users. In [50], the problem of joint power control

and beamforming is studied to achieve the same goal, subject to the constraints that

interference power to the primary user is below a threshold and SINR of the sec-

ondary users is above an acceptable value. In addition, a zero-forcing beamforming

scheme incorporated with a user selection algorithm is proposed in [51] to maximize

the sum rate, while satisfying the SINR requirements for the secondary users as well

as the limited interference power to the primary users.

Another way to overcome the interference constraint is to incorporate relay

techniques to increase their area of coverage. There exist various techniques and

protocols for relaying a signal in cooperative networks among which amplify and

forward (AF) is the most popular one due to its simplicity [52]. A general advantage

of relaying is to improve diversity order by using multiple relays in the system

[53,54]. Recently, few papers studied selective relaying in cognitive networks. A relay

selection scheme for cognitive networks is described in [55]. A relay selection and

power allocation scheme with limited interference to the primary users is proposed

in [51]. A modified relay selection criterion is proposed in [56] which takes into

account the interference constraint and the relays in the network are assumed to

9



be operating in decode and forward (DF) mode. Main contribution in [56] is the

derivation of the outage probability.

In cognitive radio communications, there are several major issues:

• Spectrum Sensing. Secondary users monitor the available spectrum re-

sources and share the knowledge with limited interference with other peer

users. In the literature, it is considered to have an allocated control chan-

nel to transmit this information [57]. In some works, it is proposed to have

a centralized controller that gathers this information, determines spectrum

availability, and allocates distinct bands to different cognitive users [58].

• Spectrum Management. Suitable spectrum holes are captured to meet

unlicensed (secondary) user communication requirements while not creating

harmful interference to licensed (primary) users. Cognitive radios should de-

cide on the best spectrum band to meet the Quality of Service (QoS) require-

ments over all available spectrum bands. This process is what we are interested

in and will be discussed in the Chapter IV.

• Spectrum Mobility. This is defined as the process when a secondary user

exchanges its frequency of communications with time. Since the radio termi-

nals always operated in the best frequency band, the cognitive radio networks

target to use the spectrum in a dynamic manner.

• Spectrum Sharing. Since their exists multiple secondary users, like all the

multi-user system, a proper spectrum scheduling method should be provided

to ensure the fairness among all secondary users.
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In our thesis, we will mainly focus on the cognitive radio system with multiple

secondary users under both single and multiple primary users case, which will be

detailed in Chapter IV. In the secondary users system, the multi-user diversity

technique will be applied. A literature review of cognitive radio system with multi-

user diversity scheme will be given in Chapter IV.

1.5. Contributions of this Thesis

In wireless communication systems, capacity and average BER are always two

important metric to measure the system performance. In reference [43], the well

known Shannon capacity, or ergodic capacity, of the multi-user diversity with ran-

dom number of users is studied. In this thesis, we study three kinds of capacity

metric and examines BER performance based on the result in [43] in single-selected-

user multi-user diversity system with random number of users. Different kinds of

discrete random variables for the user distribution are analysed. These random

variables are compared in the Laplace transform ordering sense, which is a method

of stochastic ordering to order different random variables. Hence, the contributions

towards research in the area are categorized and summarized below.

1.5.1. Capacity Metric

1. Considering a multi-user diversity system with a large number of users and

each user is active with a small probability, the distribution of the users is Pois-

son. Some properties of ergodic capacity under Poisson distributed users are
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studied. Moreover, the ergodic capacity under negative binomial distribution,

as an example of compound Poisson distribution, is studied.

2. Ergodic capacity for Poisson user distribution is compared with negative bino-

mial user distribution in the Laplace transform ordering sense and the former

outperforms the latter.

3. Outage probability is studied when the channel experiences slow fading sce-

nario. Randomization of number of users will also reduce the performance of

outage probability. Outage capacity is also studied in Rayleigh fading scenario.

4. In practical multi-user diversity systems, each user has a minimal rate re-

quirement for reliable communications. To study how this rate get influenced

by the number of users, a new metric named capacity per user, which is the

ergodic capacity normalized by the number of users, is developed. The ca-

pacity per user performs better in the random number of users case than the

deterministic number of users case.

1.5.2. BER Metric

1. In single-selected-user case, BER metric for Poisson user distributions is com-

pared with negative binomial user distributions in the Laplace transform or-

dering sense and the former outperforms the latter.

2. Closed form expression of BER in negative binomial case is derived.

12



1.5.3. Cognitive Radio with Multi-user Diversity

1. Multi-user diversity with random number of users is combined with cognitive

radio system with multiple secondary users, which is a practical and promising

application.

2. Both single primary user and multiple primary users cases are considered and

the performance analysis has been studied. With independent interference

constraint to the primary receiver and choosing the best user to communicate,

the secondary users transmission is exactly the multi-user diversity system

with binomial distributed number of users.

3. Comparison between the ergodic capacity under Poisson and binomial dis-

tributed number of users are discussed and simulated in Matlab.

1.6. Outline of the Thesis

The remainder of this thesis is organized as follows. Chapter II begins with

a system model for a mulit-user diversity system and some useful mathematical

preliminaries including Laplace transform ordering and regular variation. Later in

the chapter, ergodic capacity metric in different user distributions is discussed ana-

lytically in the single-selected-user case. Performance of other metrics like ergodic

capacity per user and outage probability are also included in this chapter. This is

followed by simulation results and a summary of the chapter. In Chapter III, still in

the single-selected-user scenario, a closed form expression of average BER when N

13



is negative binomial distribution is derived and compared with Poisson N . Chapter

IV discusses the multi-user diversity scheme in the cognitive radio system, which

can be considered as an integrated application of the preceding chapters.
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CHAPTER 2

CAPACITY PERFORMANCE IN MULTI-USER DIVERSITY SYSTEMS

2.1. System Model and Channel Distribution

This thesis extends the work done in [43], so we follow its system model. As

shown in Figure 2.1, an uplink multi-user diversity system with one base station

(BS) is considered. Both BS and users have only a single antenna.

User1

User1

UserN

1
x

11
xhr

1
w

2
w

Nw

22
xhr

NN xhr

2
x

Nx

1
y

2
y

Ny

BASE

STATION

Figure 2.1. System Model of Multi-user Diversity System

The received signal at the BS from the nth user can be expressed as,

yn =
√
ρhnxn + wn, n = 0, 1, . . . ,N , (2.1)

where the number of users N is a a discrete non-negative integer random variable.

When addressing the deterministic number of users case, N is set to be N , where

N is a realization of the random variable N . The average received power ρ at BS

is identical so that this multi-user diversity system is homogeneous. hn denotes the

channel coefficient, xn the transmitted symbol, wn the additive white Gaussian noise

(AWGN) corresponding to the nth user and γ∗ the channel. The channel is assumed
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to satisfy E[|hn|2] = 1 for all n and to be independent and identically distributed

(i.i.d.) across all users. The transmitted symbols satisfy E[|xn|2] = 1. The channel

gain of the nth user at the BS can be expressed as γn = |hn|2. In the single user

selected case, its channel gain is denoted by γ∗ = |h∗|2, where |h∗|2 = maxn{|hn|2}.

Define Fγ(x) as the cumulative distribution function (CDF) of the channel gain

of the i.i.d. fading channels across all users. Recalling that the total number of users

N is a random variable, the CDF of the channel gain of the best user, conditioned

on N = N , can be written as:

Fγ∗(x|N = N) = FN
γ (x), (2.2)

where the N th power is obtained due to the i.i.d. Assumption of theN user channels.

According to the total probability theorem, the CDF of the channel gain of the best

user selected from a random set of users can be obtained by averaging (2.2) with

respect to the distribution of N :

Fγ∗(x) = EN
[

FN
γ (x)

]

=
∞
∑

k=0

Pr [N = k]F k
γ (x) = UN (Fγ(x)) (2.3)

where UN (t) =
∑∞

k=0 Pr [N = k] tk, 0 ≤ t ≤ 1, is the probability generating function

(PGF) of random variable N . From (2.3) it can be seen that for any fading channel

distribution and any non-negative integer distribution on the number of users, the

CDF of the best user’s channel gain at the BS can be easily obtained.

2.2. Mathematical Preliminaries

In this section, we introduce some mathematical preliminaries that will be

useful throughout the thesis.
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2.2.1. Completely Monotonic Functions

A function τ(x) : R+ → R is completely monotonic (c.m.) if its derivatives

alternate in sign [59], i.e.,

(−1)k
dkτ(x)

dxk
≥ 0, ∀x, k = 0, 1, 2, . . . , (2.4)

where d0τ(x)/dx0 = τ(x) by definition. We are also interested in the functions whose

first-order derivatives satisfy (2.4), which are said to have a completely monotonic

derivative (c.m.d.). In practical systems, variable x denotes the number of user which

is an integer, which are nothing but sequences obtained by sampling functions as

defined by (2.4). Consequently, we will primarily study the asymptotic properties

of τ(x). Due to the theorem by Bernstein [59], an equivalent representation for c.m.

is that:

τ(x) =

∫ ∞

0
e−sxdψ(s) (2.5)

for some non-decreasing function ψ(s). It has been proved in [59] that, for all

function f of x that have a completely monotonic derivative, f(x)
x is a completely

monotonic function. This property will be useful in Section 2.4.

2.2.2. Laplace Transform Ordering

In this section we introduce Laplace transform (LT) ordering, a tool to compare

how different user distributions affect the error rate, and ergodic capacity averaged

across user and channel distributions. LT ordering, as a special case of stochastic

ordering, deals with partial ordering of random variables.
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Let X and Y be non-negative random variables. X is said to be less than Y in

the LT order (written X ≤Lt Y), if E[e−sX ] ≥ E[e−sY ] for all s > 0. An important

theorem found in [59], and [60] is given next:

Theorem 1. Let X and Y be two random variables. If X ≤Lt Y, then, E [ψ(X )] ≥

E [ψ(Y)] for all c.m. functions ψ(·), provided the expectation exists. Moreover, the

reverse inequality E[ψ(X )] ≤ E[ψ(Y)] holds for all ψ(·) with a completely monotone

derivative, provided the expectation exists.

This theorem implies that if the number of users is from a distribution that

can be ordered in the LT sense, then both the average error rate and capacity can

be ordered at every value of SNR ρ.

We will use another equivalent representation of LT ordering of discrete random

variables to analyse the user distribution in terms of the ordering of their PGFs. By

defining t := e−s, one can rewrite E
[

e−sX ] ≥ E
[

e−sY] for s ≥ 0 as E
[

tX
]

≥ E
[

tY
]

for 0 ≤ t ≤ 1, which is the same as UX (t) ≥ UY(t), 0 ≤ t ≤ 1, where we recall that

UX (t) = E[tX ] represents the PGF of the discrete random variable X .

2.2.3. Regular Variation

A function ψ(s) is regularly varying with exponent µ 6= 0 at s = ∞ if it can be

expressed as ψ(s) = sµl(s) where l(s) is slowly varying and by definition satisfies

lims→∞ l(κs)/l(s) = 1 for κ > 0. Regular (slow) variation of ψ(s) at s = 0 is

equivalent to regular (slow) variation of ψ(1/s) at ∞. The Tauberian theorem for

Laplace transforms, whose proof can be found in [61], applies to c.m. functions of
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the form (2.5) and states that τ(x) is regularly varying at x = ∞ if and only if ψ(s)

is regularly varying at s = 0.

Theorem 2. If a non-decreasing function ψ(s) ≥ 0 defined on s ≥ 0 has Laplace

transform τ(x) =
∫∞
0 e−sxdψ(s) for x ≥ 0, and l(s) is slowly varying at s = 0

(or s = ∞), then ψ(s) having variation exponent µ at ∞ (or 0) and τ(x) having

variation exponent −µ at 0 (or ∞) imply each other.

In this chapter, we are interested in the performance of capacities averaged

across both the channel distribution, and the number of users. The expression

C(ρ,N) represents the capacity of a multi-user diversity system with a determin-

istic N , that is averaged with respect to the distribution of the fading channel.

The expression EN
[

C(ρ,N )
]

represents the average error rate of a multi-user di-

versity system with a random number of users, which is averaged with respect to

the distribution of the number of users and the fading channels.

2.3. Poisson and Negative Binomial Distributed Number of Users

In reference [43], a multi-user diversity system when N is Poisson distributed

with parameter λ in i.i.d Rayleigh fading channel has been well studied. It has been

stated that if the system contains a large number of users, and each user is active

with a small probability independent of user numbers, the user distribution will

be Poisson. Furthermore, parameter of Poisson distribution could be also random,

which arises as compound Poisson distributions. This randomization could make the

performance either better or worse than Poisson case. In this section, we will study
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negative binomial distribution as an example of compound Poisson distribution,

where the mixing distribution of the Poisson rate is a gamma distribution. In this

thesis, we denote Poisson distribution as Pois(λ) where λ is the mean value of

Poisson distribution. The details will be discussed in Section 2.3.1. Later in the

chapter, we will show that the randomization of N will reduce the ergodic capacity

performance.

2.3.1. Ergodic Capacity

Generally there are two scenarios in fading channel: 1)the channel remains

constant over the transmission duration of the codeword, it is in slow fading scenario;

2)the codeword length spans many coherence periods, channel is in the so-called fast

fading regime. Modelling by using the idea of parallel channel, the outage probability

of the time diversity channel is

pout(R) = P{ 1
L

L
∑

l=1

log(1 + |hl|2ρ) < R} (2.6)

when l = 1, . . . , L represents a coherence period of symbols, and R is a rate with

reliable communication. For fast fading channels, the ergodic capacity is a critical

and important performance metric. In this scenario, as L → ∞, the law of large

numbers tells that

1

L

L
∑

l=1

log(1 + |hl|2ρ) → E[log(1 + |h|2)] (2.7)

Now we can average over many independent fades of the channel by coding over a

large number of coherence time intervals and a reliable rate of communication of
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(2.7) can be achieved and defined as the ergodic capacity, or Shannon Capacity, to

a fast fading channel.

Considering the single-user-selected multi-user system, the asymptotic average

capacity and its scaling law with respect to λ has been derived in [43]. The approach

is to first derive some useful properties of the ergodic capacity with deterministic

users, and then see what is the influence when N is randomized.

The ergodic capacity for the deterministic number of users system can be

expressed as,

C(ρ,N) =

∫ ∞

0
log (1 + ρx) dFN

γ (x) = ρ

∫ ∞

0

1− FN
γ (x)

1 + ρx
dx. (2.8)

where we use integration by parts, and assume that Fγ(x) satisfies limx→∞ log(1 +

ρx)(1 − FN
γ (x)) = 0, for all N ≥ 0. It can be seen that C(ρ,N) has a completely

monotonic derivative since

∂k+1C(ρ,N)

∂Nk+1
= −ρ

∫ ∞

0

FN
γ (x) [log (Fγ(x))]

k+1

1 + ρx
dx. (2.9)

alternates in sign as k is incremented. This implies that C(ρ,N) is a concave

increasing function of N . Applying the well-known Jensen’s inequality for concave

functions, we have

EN
[

C(ρ,N )
]

≤ C(ρ, λ). (2.10)

Therefore, randomization of N will always deteriorate the average ergodic capacity

of a multi-user diversity system.

A special case when users experience i.i.d Rayleigh fading channels and N

is Poisson distributed is studied in [43]. First the distribution of channel gain is
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derived. For this case, the CDF of the channel gain of the best user chosen from

the a Poisson random set of users in (2.3) can be expressed as,

Fγ∗(x) = exp
(

−λe−x
)

for x ≥ 0. (2.11)

The channel gain of the best user in (2.11) is identical to a truncated and shifted

version of Gumbel distribution, which was seen in its untruncated form in [62].

Notice that for x = 0, (2.11) gives e−λ. For x > 0, (2.11) has the form of the

Gumbel distribution with αλ = 1 and bλ = log(λ) corresponding to the parameters

in [63]. The distribution in (2.11) is therefore of mixed type, mass of e−λ at the origin

and the rest of the distribution has the form of a truncated Gumbel distribution.

After knowing all the knowledge above, the asymptotic average capacity and

its scaling law with respect to λ can be derived. Using (2.8), the ergodic capacity

averaged across the user distribution can be expressed as,

EN
[

C(ρ,N )
]

= Eγ∗ [log(1 + ργ∗)] = ρ

∫ ∞

0

1− e−λe−x

1 + ρx
dx

= log (1 + ρ log(λ)) +O(1/
√

log(λ)), (2.12)

as λ→ ∞.

For a multi-user diversity system with deterministic number of users, it has

been shown in [10] that the ergodic capacity grows as log (log(N)). From (2.12)

it is seen that for a multi-user diversity system with random number users with

mean value λ, the ergodic capacity grows as log (log(λ)). This implies that when

average number of users λ is equal to N of the deterministic number of users case,

the ergodic capacity for both cases grow identically.
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Furthermore, as we discussed at the beginning of Section 2.3, when λ is random,

N could become a compound Poisson version, negative binomial distribution for

instance. There are two representations of negative binomial distribution:

1. Suppose there is a sequence of independent Bernoulli trials, each trial having

two potential outcomes called “success” and “failure”. In each trial the prob-

ability of success is p and of failure is 1 − p. We are observing this sequence

until a predefined number r of failures has occurred. Then the random num-

ber of successes we have seen, X , will have the negative binomial (or Pascal)

distribution and can be denoted as NB(r, p).

2. First we denote gamma distribution as Gamma(k, θ) with a shape parameter

k and a scale parameter θ. Then negative binomial distribution arises as a con-

tinuous mixture of Poisson distributions (i.e. a compound probability distribu-

tion) where the mixing distribution of the Poisson rate is a gamma distribution.

That is, we can view the negative binomial as a Pois(λ) distribution, where

λ itself is a random variable, distributed according to Gamma(r, p/(1 − p)).

We can easily observe a negative binomial distribution by simply randomizing λ

yielding the gamma distribution. Suppose that X is a negative binomial random

variable, the probability mass function (PMF) of X is

Px[k] =

∫ ∞

0
e−λλ

k

k!
λ(r−1) exp(−λ(1 − p)/p)

( p
1−p)

rΓ(r)
dx

=
Γ(r + k)

Γ(r)k!
(1− p)rpk (2.13)

where Γ(n) is the gamma function, and when n is integer, it reduces to Γ(n) =
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(n − 1)!. To study the behaviour of the ergodic capacity, we will first derive the

CDF of the channel of the best user selected from a negative binomial random set

of users, by simply taking an expectation of Fγ∗(x) with respect to the distribution

of λ:

Fγ∗(x) =

∫ ∞

0
exp(−λe−x)f(λ)dλ

=

∫ ∞

0
exp(−λe−x)λr−1 e

−λ/u

Γ(r)
dλ

=
1

(1 + e−xu)r
, (2.14)

where where u = p/(1− p), ru = λ and f(λ) is the PDF of gamma distribution we

have introduced with parameter r and p/(1 − p). Recall that we can also obtain

Fγ∗(x) by plugging the PGF of negative binomial distribution into (2.3), which will

give us exactly the same answer as (2.14). Following the methods of (2.12) we have

the following theorem:

Theorem 3. For negative binomial distributed N with mean λ and Rayleigh faded

channels, as λ→ ∞, we have

EN
[

C(ρ,N )
]

= log (1 + ρ log(λ)) +O(1/ log(λ)). (2.15)

Proof. By substituting (2.14) into (2.8) and defining e−x = y, the ergodic capacity

of negative binomial N can be expressed as:

EN [C(ρ,N )] =

∫ ∞

0
log (1 + ρx) dEN [FN

γ (x)] = ρ

∫ ∞

0

1− Fγ∗(x)

1 + ρx
dx

=

∫ 1/λ

0

1− (1 + uy)−r

1− ρ log(y)

(

ρ

y

)

dy +

∫ ∞

1/λ

1− (1 + uy)−r

1− ρ log(y)

(

ρ

y

)

dy

(2.16)
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For the first term after the second equality in (2.16), we have

0 <

∫ 1/λ

0

1− (1 + uy)−r

1− ρ log(y)

(

ρ

y

)

dy <

∫ 1/λ

0

ruy

1 + ρ log(λ)

(

ρ

y

)

dy

=
λρ

1 + ρ log(λ)

(

1

λ

)

(2.17)

by replacing the numerator of the integrand with its upper bound and the denom-

inator of the integrand with its lower limit. It can be seen that the upper bound

after the equality in (2.17) yields O(1/ log(λ)) and has limit 0 as λ→ ∞, implying

that the first term should have limit 0. The second term in (2.16) has the bounds

given by,

∫ 1

1/λ

1−
(

1 + u
λ

)−λ
u

(1− ρ log(y))

(

ρ

y

)

dy <

∫ 1

1/λ

(1 + uy)−r

(1− ρ log(y))

(

ρ

y

)

dy <

∫ 1

1/λ

1− (1 + u)−
λ
u

y(1− ρ log(y))
dy

(2.18)

in which the lower and upper bounds are obtained by bounding the numerator,

and they turn out to be
∫ 1/λ
0

1
1−ρ log(y)

(

ρ
y

)

dλ = log(1 + ρ log(λ)). Consequently,

combining the two upper bounds of two terms in (2.16), we prove the result of

(2.15).

It can be seen that the first term in (2.16) is log log(λ), i.e.,

lim
λ→∞

EN
[

C(ρ,N )
]

log(log(λ))
= 1.

This implies that the growing rate of ergodic capacity is maintained when N change

from Poisson distribution to negative binomial distribution as λ→ ∞. Moreover, as

λ→ ∞, the gap between the ergodic capacity averaged across the user distribution

and the ergodic capacity at the average number of users vanishes. On the other

hand, the second term in (2.15) can not be the evidence of Poisson N outperforming
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negative binomial N under the same mean value since the O notation stands for an

approximation so that it is actually a very lose bound. The capacity under Poisson

and negative binomial distribution N will be ordered from the perspective of LT

ordering in the next section.

2.3.2. Comparison of Poisson and Negative Binomial Number of Users

In Section 2.3.1, we observed that Poisson distributed N performs better than

negative binomial N when ergodic capacity is taken into account. In this section, we

will use a general approach of stochastic ordering to compare two random variables.

As we discussed in Theorem 1, since EN
[

C(ρ,N )
]

has a completely monotonic

derivative with respect to N , once the distribution of N is ordered, EN
[

C(ρ,N )
]

will follow the same order of N . To compare two random variables, it is straight

forward to use the equivalent interpretation of LT ordering in terms of the PGFs,

by noting that exp(λ(t− 1)) is the PGF of Poisson distribution [64] while
(

1−p
1−pt

)r

is the PGF of negative binomial distribution where 0 ≤ t ≤ 1. Since we compare

them under the save mean value, then pr
1−p = λ. Consequently, we have the following

theorem:

Theorem 4. Let X denotes a Poisson random variable with parameter λ and Y de-

notes a negative binomial random variable with mean value rp/(1−p). By assuming

that rp/(1− p) = λ, we have UX (t) ≤ UY(t), or equivalently,

X ≥Lt Y (2.19)
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Proof. To show UX (t) ≤ UY(t) first we take logarithm to UX (t) and UY(t) and we

get

log(UX (t))− log(UY(t)) =
pr

1− p
(t− 1)− r log

(

1− p

1− pt

)

. (2.20)

By shuffling the terms we rewrite the problem as comparing p
1−p − log(1 − p) +

log(1− pt) with 0. Taking the 1st derivative with respect to t we get

∂
(

p
1−p − log(1− p) + log(1− pt)

)

∂t
=

p

1− p
− p

1− pt
≥ 0 (2.21)

for all 0 ≤ t ≤ 1. This implies that (2.20) is an monotonically increasing function of

t with the maximum value 0 at t = 1. Hence, we have UX (t) ≤Lt UY(t), completing

the proof.

From Theorem 1 and Theorem 4 we know that the Poisson N outperforms

negative binomial N when considering the ergodic capacity. Moreover, (2.21) tells

us the relationship between these two distributions. Specifically, considering a neg-

ative binomial distribution, the stopping parameter r goes to infinity, whereas the

probability of success in each trial, p, goes to zero in such a way as to keep the mean

of the distribution constant [65]. By doing that a negative binomial distribution

can get closer to a Poisson distribution. In other words, the negative binomial N

performance can be improved but never exceeds the Poisson N case. This fact can

be justified by the simulation results in Section 2.6.
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2.4. Ergodic Capacity Per User

In Section 2.3, we study the ergodic capacity when N is Poisson and negative

binomial distributed respectively. Intuitively speaking, multi-user diversity systems

aim to improve the sum rate of the system by increasing N . Apparently, one can

not increase the total number of users to an unreasonable large number, since it

will ruin the Quality of Service (QoS) of a single user in the system. In practical

systems, designers of wireless communication systems are often required to design

the system that have a certain rate constraint for individual user, in other words a

lower bound, to ensure the reliability for each user in multi-user systems. In this

section, we will take a look at the ergodic capacity per user in multi-user diversity

systems with single-user-selected case.

2.4.1. Tightness In Jensen’s Inequality

Define a new metric Cnorm(ρ,N) = C(ρ,N)/N as the ergodic capacity per user,

which is simply the average ergodic capacity normalized by the total number of user

N . Obviously Cnorm(ρ,N) is an decreasing function of N , that’s why N can not be

arbitrarily increased. We are interested in how Cnorm(ρ,N) grows as N increases

and how randomization of N affects the system. Following the method we study

ergodic capacity, we first check its monotonicity. Unfortunately, it is mathemati-

cally untrackable to directly take the nth derivative of Cnorm(ρ,N). Thanks to the

celebrated properties of c.m. function [66], we can show that it is a c.m. function.

It has been shown in (2.9) that C(ρ,N) has a completely monotonic derivative
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with respect to N . According to the property of c.m. function, Cnorm(ρ,N) is a

completely monotonic function of N . This implies that Cnorm(ρ,N) is a convex

decreasing function of N . Applying Jensen’s inequality for convex functions, we

have

EN
[

Cnorm(ρ,N )
]

≥ Cnorm(ρ, λ). (2.22)

where λ is the mean value of random variable N . Therefore, unlike the ergodic

capacity metric, randomization of N will always help the average ergodic capacity

per user of a multi-user system. To find out how much the normalized capacity

under random N outperforms it under deterministic N , we will use the following

theorem which has been proved in [67].

Theorem 5. Let f(x) be c.m. and regularly varying at x = ∞ and consider

EX [f(X )], where X is a Poisson distributed random variable with mean λ. Then,

EX [f(X )] = f(λ) +O (f(λ)/λ) (2.23)

as λ→ ∞.

This theorem is also referred as tightness in the Jensen’s inequality. Since

Cnorm(ρ,N) is c.m., by using Theorem 5, EN
[

Cnorm(ρ,N )
]

achieves tightness in

the Jensen’s inequality when N is Poisson distributed. Consequently, we have,

EN
[

Cnorm(ρ,N )
]

= Cnorm(ρ, λ) +O
(

Cnorm(ρ, λ)/λ
)

, (2.24)

as λ→ ∞
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Similar to ergodic capacity, (2.24) shows that the difference between the capac-

ity per user averaged across the user distribution and its value at the mean of the

users vanishes as λ tends to ∞.

To apply Theorem 5 we require Cnorm(ρ,N) to be c.m. and regularly varying.

We have already shown that it is always a completely monotonic function in N .

Next we will show that Cnorm(ρ,N) also satisfies regularly varying condition. To do

this, we first rewrite Cnorm(ρ,N) expression as,

Cnorm(ρ,N) =

∫ ∞

0

log(1 + ρx)

N
dFN

γ (x)

=
log(1 + ρx)FN

γ (x)

N

∣

∣

∣

∣

∣

x=∞

x=0

−
∫ ∞

0

ρ

(1 + ρx)N
FN
γ (x)dx (2.25)

and define B(ρx) = − ρ
(1+ρx)N . Now setting u = − log(Fγ(x)), and integrating by

substitution we have,

Cnorm(ρ,N) =
log(1 + ρx)FN

γ (x)

N

∣

∣

∣

∣

∣

x=∞

x=0

+ ρ

∫ ∞

0
B(ρx)eN log(FN

γ (x))dx

=
log(1 + ρx)FN

γ (x)

N

∣

∣

∣

∣

∣

x=∞

x=0

+

∫ ∞

0
ρ
B(ρF−1

γ (e−u))

fγ(F
−1
γ (e−u))

e−uNdu (2.26)

The first term in (2.26) obviously regularly vary at 0. For the second term, under

Rayleigh fading channel, Fγ(x) = 1− e−x. Then we have,

t(u) =
B(ρF−1

γ (e−u))

fγ(F
−1
γ (e−u))

=
ρ−u

N [1− ρ log(1− e−u)](1 − e−u)
(2.27)

which satisfy limu→0 t(ku)/t(u) = k−2, therefore proving the regular variation of

t(u) near its origin. It can been seen that Cnorm(ρ,N) can be represented as the

Laplace transform of t(u). Using Theorem 2, Cnorm(ρ,N) can be shown to be a

regularly varying function of N as N → ∞. To sum up, Cnorm(ρ,N) is both c.m.

and regularly varying at ∞, then its Jensen’s inequality is tight.

30



2.4.2. Optimal Distribution of Number of Users

Since we have shown that the ergodic capacity for different distributions of N

can be also ordered and follow the same order of N , it is possible to find a proper

user distribution under which Cnorm(ρ,N) can be improved. Assuming that N is an

arbitrary non-negative discrete random variable over an interval [a, b] and the mean

value λ is known, we have the following theorem:

Theorem 6. In LT ordering sense, the PDF of N that has the smallest order has

only two values at a and b, which is termed as the optimal PDF.

Proof. To prove the theorem is equivalent to solve the following optimization prob-

lem:

maximize
b

∑

i=a

tipi

subject to
b

∑

i=a

ipi = λ

b
∑

i=a

pi = 1

Here we apply the equivalent interpretation of LT ordering in terms of PGF of

different distributions. Assuming that the optimal PDF have two probability value

p1 and p2, we have:

p1 + p2 = 1

ap1 + bp2 = λ (2.28)

Assuming that a general discrete probability distribution have probability values qi,
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i ∈ {a, a + 1, . . . , b}, we have:

b
∑

i=a

qi = 1

b
∑

i=a

iqi = λ (2.29)

From (2.28), we substitute p1 = 1− p2 into the second equation and get

a(1− p2) + bp2 = λ =⇒ (b− a)p2 = λ− 1. (2.30)

Similarly we substitute qa = 1−∑b
i=a+1 qi into the second equation and get

a(1−
b

∑

i=a+1

qi) +

b
∑

i=a+1

iqi = λ =⇒
b

∑

a+1

(i− a)qi = λ− 1. (2.31)

By substituting p1 and qa, the PGFs of the optimal PDF and the general case can

be expressed respectively as:

ta(1− p1) + tbp2 = (tb − ta)p2 + ta (2.32)

ta(1−
b

∑

i=a+1

qi) +
b

∑

i=a+1

tiqi =
b

∑

i=a+1

(ti − ta)qi + ta (2.33)

Since (2.30) is equal to (2.31), we have:

(b− a)p2 =

b
∑

i=a+1

(i− a)qi =⇒ p2 =

∑b
i=a+1(i− a)qi

b− a
(2.34)

Now the problem is equivalent to compare (tb − ta)p2 + ta −∑b
i=a+1(t

i − ta)qi − ta

with 0. Substituting (2.34) into the (2.32) and (2.33) we have:

(tb− ta)p2+ ta−
b

∑

i=a+1

(ti− ta)qi− ta =⇒ (tb− ta)

∑b
i=a+1(i− a)qi

b− a
−

b
∑

i=a+1

(ti− ta)qi.

(2.35)

We expand (2.35) into b−a+1 terms and pick up an arbitrary pair of counter terms

from them:

tb − ta

b− a
(i− a)− (ti − ta) =

i− a

b− a
− ti − ta

tb − ta
(2.36)
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Since b− i > tb − ti and i < b, from basic fraction knowledge we know

i− a

b− a
− ti − ta

tb − ta
< 0 (2.37)

This shows that the PGF of the optimal PDF we proposed is larger than any gen-

eral discrete random variable over the interval [a, b] with the same mean value λ,

which implies that the “two-value” PDF is the optimal PDF in LT ordering sense,

completing the proof.

This section illustrated the behaviour of a new performance metric, capacity

per user. Theorem 6 gives us a new perspective in wireless communication systems

design. As it is mentioned in Section 2.4 that there is a conflict between C(ρ,N)

and Cnorm(ρ,N) since one is increasing and the other is decreasing as N grows.

When the system has specific requirements of both sum rate and capacity per user,

it is capable to design the system by following two steps: 1)number of users can

be increased to improve the sum rate performance; 2)by scheduling the activities of

clients in the cell, the number of users can obey the optimal distribution to increase

the ergodic capacity per user.

2.5. Outage Capacity and Outage Probability

2.5.1. Outage Capacity

In Section 2.3.1, fast ergodic fading channel was discussed so that ergodic ca-

pacity metric has been studied. However, in practical systems, the channel might

not change rapidly enough during a coherence time, under which we can not directly
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average the capacity over the fading. In this section, we will look at the situation

when the channel gain is random but remains constant for all time. This models

the slow fading scenario where the outage capacity is considered. This is also called

the quasi-static scenario [10].

Conditional on a realization of the channel gain, this is equal to an AWGN

channel with received SNR ρ|h|2. This channel can support a reliable communication

with the maximum rate at log(1 + |h|2ρ) bits/s/Hz. This quantity is a random

variable because it is a function of the random channel gain h. According to the

channel coding theorem, if transmitter encodes data at a rate R bits/s/Hz, which

satisfy log(1 + |h|2ρ) < R, then no matter what kind of channel code used by

the transmitter, the decoding error probability cannot be arbitrarily small. In this

situation, the system is said to be in outage, and the outage probability is

pout(R) = P{log(1 + |h|2ρ) < R} (2.38)

Thus, the best that the transmitter can do is to encode the data assuming that the

channel gain is strong enough to support the desired rate R. Reliable communication

can be achieved whenever that happens, and outage occurs otherwise. So far it is

similar to the AWGN channel, but they have a conceptual difference. In the AWGN

channel, one can send data at any rate less than the channel capacity while making

the error probability as small as possible. This cannot be done for the slow fading

channel, unless the probability of the channel in deep fade is non-zero. Thus, strictly

speaking, the Shannon capacity of the slow fading channel is zero.

An alternative performance metric is the outage capacity, Cout. This is the
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highest rate one can transmit and meanwhile the outage probability is less than ε.

Solving pout(R) = ε in (2.38) we have

Cout(ρ, ε,N) = log
(

1 + ρF
−1
γ (1− ε)

)

(2.39)

where F γ is the complementary CDF of the chosen user, i.e., F γ(x) = 1 − Fγ(x).

Since we are interested in F as a function of the number of users N . So we assume

that ε is a predefined constant, and we can drop the variable ε in Cout(ρ, ε,N) and

interpret it as Cout(ρ,N).

From (2.39) we have,

Cout(ρ,N) = log
(

1 + ρ · F−1
γ (ε

1

N )
)

, (2.40)

where Fγ(x) is the CDF of i.i.d. channel gain over all users. It is mathematically

intrackable to study the complete monotonicity of Cout(ρ,N) by taking the kth

derivative. However, instead of proving the complete monotonicity of Cout(ρ,N),

we can show that outage capacity is not completely monotonic in N over the whole

range of ρ or ε. Our approach is evaluating the second order derivative of Cout(ρ,N)

with respect to N at a certain value of ε and N under a specific fading scenario.

Assuming that ε = 0.001 and fading is Rayleigh, we have,

Cout(ρ,N) = log
(

1 + ρ · log(1− ε
1

N )
)

, (2.41)
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and take the second derivative of (2.41) with respect to N we have,

d2Cout(ρ,N)

dN2

∣

∣

∣

∣

ε=0.001

=− 47.7171 × 0.0012/N

(1− 0.001)2N4(1− log(1− 0.0011/N ))2

+
47.7171 × 0.0012/N

(1− 0.001)2N4(1− log(1− 0.0011/N ))

+
47.7171 × 0.0011/N

(1− 0.001)N4(1− log(1− 0.0011/N ))

− 13.8155 × 0.0011/N

(1− 0.001)N3(1− log(1− 0.0011/N ))
. (2.42)

Equation (2.42) equals to 0.04 and -0.004 at N = 2 and N = 4 respectively. Conse-

quently, the second derivative of Cout(ρ,N) is not always positive or negative over

N for all values of ε, which implies that Cout(ρ,N) is not c.m. or has a c.m.d..

Furthermore, we can state that Cout(ρ,N) is neither convex nor concave of N , so

that randomization of N does not always increase or reduce Cout(ρ,N).

2.5.2. Outage Probability

In Section 2.5.1, we study that outage capacity is neither a c.m. function of N

nor having a c.m.d. in N . In this section, we will prove that outage probability is

a completely monotonic function of N , which will be increased by randomizing the

number of users.

From (2.38), the outage probability can be expressed,

ε(N) = P{log(1 + |h|2∗ρ) < R}

= P

{

γ∗ <
2R − 1

ρ

}

= Fγ∗

(

2R − 1

ρ

)

= FN
γ

(

2R − 1

ρ

)

(2.43)
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The kth derivative of (2.43) can be written as,

dkε(N)

dNk
= FN

γ

(

2R − 1

ρ

)

·
[

log

(

Fγ

(

2R − 1

ρ

))]k

(2.44)

In (2.44), since log
(

Fγ

(

2R−1
ρ

))

≤ 0 we have,

(−1)k
dkε(N)

dNk
≥ 0, k ≥ 0. (2.45)

which implies ε(N) is c.m..

Using (2.45) for k = 1 and k = 2, it is seen that ε(N) is convex decreasing

function of N . For when the number of users in the system is random, by applying

Jensen’s inequality for convex functions, we have,

EN [ε(N )] ≥ ε(λ), (2.46)

where λ = E(N ). Therefore, randomization of the number of users will always

reduce the outage probability performance of a multi-user diversity system since we

hope the outage probability to be as small as possible.

2.6. Simulation Results

In this section, an uplink multi-user system where both the BS and users having

a single antenna is considered. Using Monte-Carlo simulations, the ergodic capacity,

outage capacity, capacity per user and optimal PDF are simulated to corroborate

our analytical results. The wireless channel between any user and BS is assumed to

be not only Rayleigh faded but also Rician faded.
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In Figure 2.2(a), the ergodic capacity is plotted against λ for the random cases

and N = λ for the deterministic case. Following the result in Section 2.3.1, it is

seen that the capacity of the deterministic number of users system is the highest

while for all distribution of N . This also reflects the fact that all these distributions

can be ranked in the LT ordering sense. The average SNR is assumed to be 6 dB

and the Rayleigh parameter is set to be 1. In Figure 2.2(b), the ergodic capacity is

plotted against the channel gain (SNR) in dB. Similar result that ergodic capacity

performances under different distributions follow their stochastic ordering can be

observed. Average number of users λ = 10 and λ = 20 are simulated respectively

with the Rayleigh faded parameter 1.
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Figure 2.2. Ergodic Capacity under Different User Distributions (Rayleigh Fading).

In Figure 2.3(b) and 2.3(b), we also simulate the ergodic capacity over average

number of users and average SNR respectively under the Rician fading scenario.

In this figure, fading parameter K = 3 which implies that the ratio of the power
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in the Light-of-Sight (LOS) component to the power in the non-LOS components

is 3. Randomization of user number will reduce the ergodic capacity performance

in the Rician fading case, which is exactly the same as in Rayleigh fading case.

This is because the concavity of ergodic capacity as a function of the user number

doesn’t depend on the type of fading scenarios. To notice that with the same average

SNR, Rayleigh fading case outperforms Rician fading case since because of the LOS

component, the Rician fading distribution is less random and has a lighter tail than

the Rayleigh distribution.
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Figure 2.3. Ergodic Capacity under Different User Distributions (Rician Fading).

In Section 2.3, we showed that Poisson distributed random variables and neg-

ative binomial distributed random variables can be LT ordered, which would also

order there corresponding average error rate and capacity performance when aver-

aged across the user distributions. In Figure 2.4, it can be seen that ergodic capacity

metrics follow the LT order of the user distributions, and increase as the number
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of users is incremented. Since negative binomial distribution can be considered as

a compound Poisson distribution, changing the negative binomial parameter p can

control its approximation to Poisson distribution. In Figure 2.4, it can be observed

that for small value p, ergodic capacity under negative distribution is quite close to

the Poisson case.
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Figure 2.4. Ergodic Capacity under Poisson and Negative Binomial N .

In Figure 2.5(a) and 2.5(b), outage capacity under different user distributions

are simulated against mean number of users λ and SNR respectively. In Figure

2.5(a), average SNR is still 6 dB and Rayleigh faded parameter is also set to be

1. In Section 2.5.1, outage capacity is not always convex or concave function of N .

However, from the numerical results that for large value of average SNR and small
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outage probability in Rayleigh fading case, randomization of number of users will

reduce the outage capacity. Figure 2.5(a) and 2.5(b) verify our numerical analysis.
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Figure 2.5. Outage Capacity under Different User Distributions.

In Figure 2.6, outage capacity under Poisson and negative binomial distributed

users are simulated and compared with the deterministic number of users where

N = λ. In the simulate the outage capacity in a high SNR Rayleigh fading scenario.

Similar results to the ergodic capacity can be observed. Randomization of N will

deteriorate the outage capacity performance, and the outage capacity of negative

binomial user distribution get closer to the Poisson user distribution as parameter

p decreases in this case.
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Figure 2.6. Outage Capacity under Poisson and Negative Binomial N .

In Section 2.4, we investigate a new metric named ergodic capacity per user,

which is the ergodic capacity normalized by the total number of users. It is shown

that this metric is a decreasing convex function, which implies that randomization

will make it increasing. Moreover, ergodic capacity per user under different user dis-

tributions follow the opposite LT order compared with ergodic capacity. In Figure

2.7(a) and 2.7(b), ergodic capacity per user under different distributions are simu-

lated. In Figure 2.7(a), the average SNR is 6 dB and in Figure 2.7(b) the Rayleigh

faded parameter is 1.

In Figure 2.8, ergodic capacity per user under Poisson and negative binomial

distribution are simulated. Average SNR is assumed to be 6 dB and Rayleigh faded
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Figure 2.7. Ergodic Capacity Per User under Different User Distributions.

parameter is 1. Unlike the ergodic capacity, normalized capacity under negative

binomial N outperforms the Poisson case. The similarity is the smaller native

binomial parameter is, the closer the binomial performance gets to the Poisson case.
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Figure 2.8. Ergodic Capacity Per User under Poisson and Negative Binomial N .

In Section 2.4.2, with the knowledge of LT ordering and probability generating

function, we derive the optimal PDF of N for normalized capacity. Assuming that

the random variable N is in an arbitrary interval and the mean value is known,

its optimal PDF behaves like a “two-value” distribution with values at the starting

and ending point of the interval. In other words, this optimal PDF has the largest

probability generating function over the interval. In Figure 2.9, we form this problem

into an optimization problem and use CVX tool box in Matlab to solve it. N is

assumed to be distributed over [20, 50], [25, 45] and [30, 40] with mean value 30, 30

and 37 respectively. Simulation results verify our analytical derivation.
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2.7. Summary

We began this chapter by first introducing an uplink multi-user diversity, in

which each user is equipped with a single antenna. This is then followed by a review

of the properties of ergodic capacity in [43], in which it has been stated that the

randomization of the user number will reduce the ergodic capacity. The ergodic

capacity under different user distributions will follow their corresponding LT order.

Moreover, a special case when N is Poisson was studied. The scaling law of ergodic

capacity with respect to λ in this case obeys the fact that when mean number of

users goes to infinity, the difference of the capacity between the random number

of users and deterministic users vanishes. Then the results in [43] are extended in

this chapter. The similar scaling law with λ can be observed when N is negative

binomial distributed. Then a new performance metric, the ergodic capacity per

user, was developed. Ergodic capacity per user stands for the average rate of each

user and will be increased as the number of user is randomized, which is opposite to

ergodic capacity. This contradiction should be considered when designing wireless

communication systems. More specifically, both ergodic capacity and capacity per

user can be controlled by arranging the random distribution of the number of users.
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CHAPTER 3

AVERAGE BER PERFORMANCE IN MULTI-USER DIVERSITY SYSTEMS

3.1. Background

In digital transmission, the number of bit errors is the number of received bits

of a data stream over a communication channel which is altered due to noise, inter-

ference, distortion, bit synchronization errors or other impairment of the channel.

The bit error rate or bit error ratio (BER) is defined as the number of bit errors

divided by the total number of transferred bits during a desired time interval. Aver-

age BER is a unit-less performance measure, often expressed as a percentage. Along

with the capacity, average BER is a critical measurement to judge whether a chan-

nel can offer reliable communication. By using Monte Carlo simulation, BER can

be calculated numerically through computer. If a channel model and data source

model is assumed, it can also be studied analytically.

The definition and the general mathematical expression of the average error

rate of a multi-user system with deterministic number of users N and average SNR

ρ is given by,

Pe(ρ,N) =

∫ ∞

0
Pe(ρx)dF

N
γ (x) (3.1)

where Pe(ρx) is the instantaneous error rate over an AWGN channel for an instan-

taneous SNR ρx of the best user and Pe(ρx) is the instantaneous error rate. For

example, for binary phase-shift keying (BPSK) and quadrature phase-shift keying

(QPSK) modulation scheme, Pe(ρx) yields Pe(ρx) = Q(ρx), where Q(x) is called

the right-tail probability and is defined as Q(x) =
∫∞
x

1√
2π

exp(−1
2 t

2)dt. Combining

with Q function: Q(x) ≤ (1/2)e−x2/2, instantaneous error rate is often assumed to

have the form Pe(ρx) = αe−ηρx, where α and η can be chosen to capture different
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modulations [4]. For binary differential phase-shift keying (DPSK) this is exact with

α = 0.5 and η = 1. For Gray-coded M -level quadratic amplitude modulation (M-

QAM), α = 0.2 and η = 1.5/(M − 1) yields an error rate within 1 dB for M ≥ 4 [4].

Sometimes, it is also written as Pe(ρx) = αQ(
√
ηρx). Since we are interested in

the asymptotic behaviour of BER, we chose the former approximation of Pe(ρx),

which will leads to some close form expression. We will also consider (3.1) with N

being a real number. To represent (3.1) in terms of the CDF Fγ(x), rather than

the probability density function (PDF), we expressed it in the way of a Stieltjes

integral [68] even though it can also be expressed in terms of the PDF fγ(x) using

dFN
γ (x) = NFN−1

γ (x)fγ(x).

3.2. Average Bit Error Rate

In this section, we first introduce the results in the paper [43] by proving that

the average error rate of a multi-user diversity system, with a deterministic number

of users N , is a c.m. function of N , under general conditions. This will be used to

infer the behaviour of the average error rate of the multi-user system when a random

number of users is considered in the later of this section. Then we will extend the

results from the Poisson N to negative binomial N .

3.2.1. Representation of Average BER

We begin by introducing that Pe(ρ,N) is a completely monotonic function of

N not only for Pe(ρx) in the forms of exponential function and Q function, but for
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any arbitrary form of instantaneous error rate function as well. In other words, the

only assumption of Pe(ρx) is decreasing in x for any ρ > 0. After integrating (3.1)

by parts, the kth derivative of Pe(ρ,N) can be written as,

∂kPe(ρ,N)

∂Nk
= ρ

∫ ∞

0
B(ρx)FN

γ (x) [log (Fγ(x))]
k dx. (3.2)

where we define B(x) = −dPe(x)/dx. Since Pe(ρx) is decreasing, and log (Fγ(x)) ≤

0 we see that (3.2) satisfies the definition in (2.4). In particular, Pe(ρ,N) being a

c.m. function means that (3.2) is negative for k = 1 and positive for k = 2, and

consequently Pe(ρ,N) is a convex decreasing function of N . For the case that the

number of users in the system is random, by applying Jensen’s inequality for convex

functions, we have,

EN
[

Pe(ρ,N )
]

≥ Pe(ρ, λ), (3.3)

where λ := E[N ]. Therefore, randomization of the number of users always deterio-

rates the average error rate performance of a multi-user diversity system.

The only fact we need to establish the complete monotonicity of Pe(ρ,N) as a

function of N , is that the instantaneous error rate Pe(ρx) in (3.1) is a decreasing

function of x for ρ > 0, which obviously holds for any multi-user system. Similar

to the capacity metric, this c.m. property can be used to stochastically order user

distributions as we did in Section 2.2.2.

3.2.2. Average BER for Poisson Number of Users

Following the approach in our study of the capacity metric, we have shown that

average error rate is a completely monotonic function ofN . According to Theorem 1,
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once the probability distributions of N are LT ordered, their BER performance can

also be ordered for any value of ρ. From (3.3) we saw that randomization always

deteriorates performance, however, similar to ergodic capacity, the reference [43]

states that for large average number of users it should approximately yield the same

performance as the deterministic case. This amounts to the tightness of Jensen’s

inequality for the Poisson users case. Moreover, reference [43] provides sufficient

conditions for Jensen’s inequality involving Pe(ρ, λ) to be tight. Using Theorem 5,

we have

EN
[

Pe(ρ,N )
]

= Pe(ρ, λ) +O
(

Pe(ρ, λ)/λ
)

(3.4)

as λ → ∞. Equation (3.4) shows that as λ → ∞, the gap between the error rate

averaged across the user distribution and the error rate evaluated at the average

number of users vanishes. This verifies the fact that for sufficiently large λ, the

performance of the multi-user diversity systems with random number of users will

closely approach to the performance of the multi-user diversity systems with a de-

terministic number of users with the number of users equal to λ.

Reference [43] shows that for the conclusions of (3.4) to hold (i.e., Jensen’s

inequality to be asymptotically tight), the CDF of the single-user channel Fγ(x),

and the error rate expression Pe(ρx) have to jointly satisfy the regular variation

condition given in Theorem 5. It has been examined that this condition holds for

commonly assumed instantaneous error rates Pe(ρx) with γn being exponentially

distributed (i.e., under Rayleigh faded user channels). Also, both the choices of

Pe(ρx) = αe−ηρx and Pe(ρx) = αQ(
√
ηρx) are proved regular variation as N → ∞.

Consequently, it is illustrated in [43] that when Pe(ρx) is in the form of αe−ηρx
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or αQ(
√
ηρx) and the fading is Rayleigh (i.e. channel gain is exponential), the

difference in error rate performance of a multi-user diversity system with a random

number of users averaged over the number of users distribution and of a deterministic

number users approaches zero for sufficiently large λ, as in (3.4).

3.2.3. Special Cases: Rayleigh Faded Channel

In Section 3.2.2, the average BER under Poisson N is well investigated and it

has been stated that the it achieves tightness in Jensen’s inequality. In this section,

as we discussed in the capacity chapter, we will take a look at the special case that

when the channel experiences Rayleigh fading, and under which, the closed form

of BER behaviour with negative binomial N will be derived and compared to the

Poisson case.

Reference [43] has already given the closed form of the Poisson case. In Section

2.3.1, the CDF of the channel gain of the best user chosen from random Poisson

set of users has been derived. It is important to note here that unlike the usage

of the Gumbel distribution in [42] where a deterministic but large number of users

considered, in (2.11) the parameter λ is finite and hence (2.11) is not an asymptotic

result in λ. The PDF of the channel gain of the best user chosen from a random set

of users can be expressed as,

fγ∗(x) = λe−xe−λe−x

+ δ(x)e−λ x ≥ 0. (3.5)

Assuming that the error rate has the form of Pe(ρx) = αe−ηρx as we mentioned, the
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average error rate achieved by the system across time, can be expressed as,

EN
[

Pe(ρ,N )
]

= λα

∫ ∞

0
e−ηρxe−xe−λe−x

dx+ α

∫ ∞

0
δ(x)e−λe−ηρx. (3.6)

By setting y = λe−x and integrating by substitution, it can be expressed as,

EN
[

Pe(ρ,N )
]

= α

∫ ∞

0

y

λ

ηρ
e−ydy + αe−λ

= αλ · γ(ηρ+ 1, λ) + αe−λ, (3.7)

where γ(s, x) is the lower incomplete gamma function which is defined in [68] as:

γ(s, x) =

∫ x

0
ts−1e−tdt. (3.8)

Obviously, the average error rate is a decreasing function of λ, as expected.

To observe the expression of BER for negative binomial case, we have two

methods: 1)we can use (3.6) by substituting the PDF of Poisson case into its negative

binomial version; 2)we could directly take an expectation of (3.7) with respect to λ

where λ is Gamma distribution. Because of the mathematical intractability of the

second methodf, the first choice is preferable. In Section 2.3.1, we derive the CDF

of the channel gain of the best user chosen from a negative binomial distributed set

of users by taking the expectation of (2.11). Here we take derivative with respect

to x so that the PDF of the channel gain of the best user in the negative binomial

case can be expressed as:

fγ∗(x) =
dFγ∗(x)

dx
= rue−x(1 + ue−x)−1−r, x > 0. (3.9)

where r is the parameter of the negative binomial distribution. Assuming the in-

stantaneous error rate has the form Pe(ρx) = αe−ηρx, substituting (4.10) into (3.7)
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we can get:

EN
[

Pe(ρ,N )
]

=

∫ ∞

0
αe−ηρxrue−x(1 + ue−x)−1−rdx

=
ruα

1 + ηρ
· 2F1 (1 + r, 1 + ηρ, 2 + ηρ,−u) (3.10)

where 2F1 (1 + r, 1 + ηρ, 2 + ηρ,−u) is the hyper geometric function2F1 (a, b, c, z).

According to its properties, hyper geometric function2F1 (a, b, c, z) automatically

evaluates to exact values, and also can be evaluated at arbitrarily any numerical

precision. Since it is not very intuitive to observe the complete monotonicity or

convexity by taking the kth derivative to EN
[

Pe(ρ,N )
]

, we can only state that it is

an decreasing function of r.

An alternative approach to study the hyper geometric function2F1 (a, b, c, z)

is to plot it in some mathematical software, for example Mathematica or Matlab,

to see if it is convex. One can change the parameter to check the behaviour of

EN
[

Pe(ρ,N )
]

. Moreover, although we can not plot the infinite order derivative of

EN
[

Pe(ρ,N )
]

, one can plot the second order derivative of EN
[

Pe(ρ,N )
]

to check

whether it is positive, which implies EN
[

Pe(ρ,N )
]

is convex. We have already

proved in (3.2) that average error over both fading and user distribution under

general fading assumption, rate will decrease when total number of users is random-

ized. This general assumption has no constraint of the type of user distribution.

Therefore, although we still can not observe a strict analytical result, software is an

intuitive and corroborative evidence of EN
[

Pe(ρ,N )
]

’s convexity. The numerical

analysis will be discussed in the simulation section in detail.

It is important to notice that, average error rate and average capacity per user
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are all convex with respect to the number of users. This implies that the optimal

PDF of the ergodic capacity per user in Section 2.4 also applies to average error

rate. However, unlike the the normalized capacity, we hope the error rate to be as

small as possible. Consequently, the “two-value” PDF of N introduced in Section

2.4 for the capacity per user is an undesired one for the error rate.

The conflict of ergodic capacity and normalized capacity should be considered

when designing wireless communication systems. More specifically, any wireless

communication system should have certain requirements on three major metrics

as ergodic capacity, normalized capacity and bit error rate. There is a trade off

between these metrics. For example, wireless communication systems frequently

have a predefined upper bound of the average BER, equivalently an lower bound of

total number of users, to ensure the reliable communication for any individual user.

In this situation, one can increase the number of users to maximized the ergodic

capacity and meanwhile choose a proper user distribution to avoid violating the

normalized capacity, since it will decrease as the user numbers increase. This trade

off should be taken into account during the designing of the system.

3.3. Simulation Results

In Section 3.2.1, we proved that averaged error rate is a completely monotonic

function of N which implies that randomization of N will cause the increasing of

BER metric. With the knowledge of LT ordering, different random distributions

will order their respective error rate when averaged across the respective user distri-
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bution. In Figure 3.1(a) and 3.1(b), BER performance under different distributions

are simulated and compared with the case of fixed number of user. It can be seen

that error follow their corresponding ordering and average BER performance gets

improved as the number of users increases. In Figure 3.1(a), averaged SNR is 0 dB

and in both figures the Rayleigh parameter is 1.
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Figure 3.1. Average BER under Different User Distributions.

In Section 3.2.3, we showed that error rate under negative binomial and Poisson

distribution can be ordered. In Figure 3.2, error rate is plotted against λ for negative

binomial N with different parameter and Poisson N . It can be seen that for small

value of p, negative binomial distribution could be fairly close to the Poisson case,

but never exceeds it. The averaged SNR is still 0 dB and Rayleigh parameter is 1.
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3.4. Summary

We began this chapter by introducing the averaged error rate in the paper [43]

that the BER in a general multi-user diversity system has a completely monotonic

derivative, which implies that, according to the Jensen’s inequality, the randomiza-

tion of the total number of users will reduce the average BER performance. As we

did in Chapter II, the special case of Poisson user distribution and Rayleigh fading

channel was studied. Combining with the knowledge of regular variation, the aver-

age BER was shown to achieve tightness in the Jensen’s inequality. This is followed

by the extension to the negative binomial user distribution, for which the closed

form expression of average BER was derived and shown to decrease in number of

users.
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CHAPTER 4

COGNITIVE RADIO SYSTEM WITH MULTI-USER DIVERSITY

4.1. Cognitive Radio Systems With Multi-user Diversity

There have been previous studies on spectrum sharing cognitive radio where

the capacity of cognitive radio network has been analysed for Gaussian and fading

channels [69–71]. Most of these studies assume a single primary and a single cogni-

tive user. Cases where the presence of multiple primary and cognitive users are also

interested. In these case, multi-user diversity, as a fundamental property of wireless

networks, has been widely applied for opportunistic communications in cognitive

radio system, which will bring new issues related to user scheduling and medium

access control [72]. A popular form of multi-user diversity is usually exploited in a

wireless system with multiple independent fading communication links by selecting

one link with the best instantaneous channel condition to transmit at one time [73].

Multi-user diversity gains have been explored in conventional non-cooperative

wireless networks by user selection, exploiting the fluctuations of fading channels of

different users [23, 74]. In [75], authors adopt a cooperative sensing framework to

overcome low SNR and shadowing. It is shown that the average throughput of a

secondary network scales like log2 ln(N) and log2(N) under finite and infinite peak

transmit power constraints at the secondary transmitters, respectively, in [72, 73].

A scaling law of a cognitive ad hoc network is studied in [76], but it did not focus

on the multi-user diversity gain by opportunistic user selection. Channel capacity

is also studied by formulating it as a maximization problem with respect to the

channel gain and solving for the optimum solutions. Closed form capacity formulas

under different fading channels are provided where possible in [77]. Results suggest

58



that a significant spectrum access gain may be achieved in fading environments.

In [78], extending [76], authors cover cases considering a selection diversity scheme

with multiple primary users and multiple secondary receivers. More generally, unlike

non-cognitive-radio multi-user systems, the spectrum sensing reliability may degrade

the achievable multi-user diversity gain, which is studied in [79].

Fairness for the secondary users system is another popular issue considered

in [80, 81]. Fairness can be ensured among the secondary users by providing them

with the same opportunity for accessing an available spectrum band. Authors of [82]

extend results to non-independent and identically distributed (non-i.i.d.) channels

by employing fairness scheduling and show that fairness scheduling in non-i.i.d.

channels has the same asymptotic throughput characteristics as the best user selec-

tion in i.i.d. channels.

4.2. System Model

In this chapter, we consider an uplink cognitive radio system with multiple

secondary users and single primary user and one base station (BS). Both the BS

and users are assumed to have a single antenna.
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Figure 4.1. System Model of Cognitive Radio System

As shown in Figure 4.2, we consider a cognitive radio system with L secondary

users and multi-user diversity scheme is applied to the secondary user system. “SU”

in the figure stands for secondary users. A secondary user is allowed to share the

spectrum with a primary link as long as an independent interference constraint to

the primary receiver (PR) with a peak value Q is respected. Assuming that the

secondary link is not affected by the primary transmission, we aim to increase the

spectral efficiency of the secondary link by applying multi-user diversity technique.

Equivalently to the uplink of a cellular system, the L secondary users and the

secondary receiver (SR) is equipped with a single antenna. The received signal at

the base station from the ith secondary user can be expressed as,

yi =
√
ρhsixi +wi, i = 0, 1, . . . , L, (4.1)

where hsi denotes the channel coefficient from the secondary user to base station, xi

the transmitted symbol, wi the additive white Gaussian noise (AWGN) correspond-
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ing to the ith secondary user. The average received power ρ at BS is identical so

that this multi-user diversity system is homogeneous. The channel gain of the ith

secondary user at the BS can be expressed as γsi = |hsi |2. In the single user selected

case, its channel gain is denoted by γ∗ = |hs∗ |2, where |hs∗ |2 = maxi{|hsi |2}. Since

all secondary users have i.i.d. fading channel, so we can drop the subscript i when

we derive the CDF of γsi .

Using scan and wait combining (SWC) [83], the secondary user cyclically

switches between the L transmitter antennas in order to find the antenna with

highest output SNR while also satisfies the interference constraint. Whenever the

interference constraint is satisfied, the PR sends a binary ACK (Acknowledgement)

to the secondary users through a reliable feedback channel, otherwise it sends a

NACK. We also assume that there is a reliable feedback channel between the base

station and the secondary user. This channel is implemented in a discrete-time

fashion, more specifically, short guard periods are periodically inserted into the

transmitted signal. During these guard periods, the SR selects a suitable user and

the signal constellation to be used for transmission throughout the subsequent data

burst. Under the assumption of frequency flat fading, we use a block-fading model

assuming that different secondary users experience roughly the same fading con-

ditions (or equivalently the same SNR) during the data burst and its preceding

guard period. For our study, we assume that the received signal from each diver-

sity branch experiences independent identically distributed (i.i.d.) Rayleigh fading.

As such, the received SNRs from the ith user at the base station and the primary

receive, denoted by hsi and hpi respectively, (i = 1, 2, . . . , L).
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4.3. A Special Case: Binomial Number of Users and Rayleigh Fad-

ing

In Chapter II and III, we discussed how randomization of the total number

of users affects the system performance. In the system model of this chapter, due

to the interference constraint from the secondary user to the primary user, the

number of active secondary user will be randomized. In probability theory and

statistics, the binomial distribution is the discrete probability distribution of the

number of successes in a sequence of n independent Bernoulli experiments, each

of which yields success with probability p. We define N as the active number of

users, the number of users after dropping those who fail to satisfy the interference

constraints. Obviously, N is a binomial random variable. The success probability p

of this binomial random variable is a function of Q which depends on the interference

channel between secondary users and the primary receiver, which can be represented

as Fγp(Q), where Fγp(x) is the CDF of |hp|2 which is i.i.d. across all secondary users.

There are two modes of operation to pick up the desired user: 1)Choosing the

user set among L total users which satisfy the interference constraint S1 = {j ∈

1, . . . , L : γpj < Q}, then choosing the user with highest γsi from S1; 2)Choosing

the user with the highest γsi among all L users and then checking if it satisfy the

interference constraint. The value of success probability Fγp(Q) determines the

efficiency of two different modes. For large value of Fγp(Q), with high probability

that any arbitrary user will satisfy the interference constraint. In other words, a

desired user will be found in a very limited number of search. On the other hand,
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for small value of Fγp(Q), mode 1 is more proper. However, two modes result

mathematically in the same closed form expression of ergodic capacity, since at

last the user with highest γsi which also satisfy the interference constraint will be

chosen to transmit no matter which mode is applied. In this thesis, we will derive

the expression of ergodic capacity and average error rate of the secondary users

system.

4.3.1. Asymptotic Scaling of Capacity with λ

In Chapter II, we study the scaling law of the ergodic capacity in the multi-user

diversity system when the total number of users are random. It has been stated that

the ergodic capacity grows in the way of log log λ )) as the mean value of random

variable N increases. Also, when λ→ ∞, the performance gap between the random

N and deterministic N vanishes. In this chapter, we can observe the similar result

when the multi-user diversity technique is applied to the secondary users in the

cognitive radio system.

Define Fγ(x) as the cumulative distribution function (CDF) of the channel

gain of the i.i.d. fading channels across all users. According to the total probability

theorem, the CDF of the channel gain of the best user selected from a binomial

random set of users can be obtained by,

Fγs∗(x) = UN (Fγ(x)) (4.2)

where UN (t) =
∑∞

k=0 Pr [N = k] tk, 0 ≤ t ≤ 1, is the probability generating function

(PGF) of the binomial random variable N . In this thesis, we use bin(L, p) to denote
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the binomial distribution with L trails and success probability p. Since N users

are chosen from L total users subjecting to an independent interference threshold

Q, the random variable N yields the distribution of bin(L,Fγp(Q)), where Fγp(x) is

the CDF of the interference channel gain from the secondary users to the primary

receiver. Consequently, the CDF of the channel gain of the desired user in our

scheme can be expressed as,

Fγs∗(x) = [1− Fγp(Q) + Fγp(Q)Fγp(x)]
L

= [1− t+ t(1− e−x)]
λ
t

= (1− te−x)
λ
t (4.3)

where t = Fγp(Q) and λ = Lt is the mean value of random variable N . Then we

can observe the scaling law of the ergodic capacity with respect to λ in our scheme:

Theorem 7. The ergodic capacity averaged across the user distribution and its

scaling law with respect to λ can be expressed as,

EN
[

Ccog(ρ,N )
]

= Eγs∗ [log(1 + ργs
∗)] = ρ

∫ ∞

0

1− (1− te−x)
λ
t

1 + ρx
dx

= log (1 + ρ log(λ)) +O(1/log(λ)), (4.4)

as λ→ ∞.
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Proof. Defining y := e−x and integrating by substitution,

EN
[

Ccog(ρ,N )
]

=

∫ 1

0

1− [1− e−xt]
λ
t

1 + ρx
dx

=

∫ 1

0

1− (1− yt)
λ
t

1− ρ log y

(

ρ

y

)

dy

=

∫ 1/λ

0

1− (1− yt)
λ
t

1− ρ log y

(

ρ

y

)

dy +

∫ 1

1/λ

1− (1− yt)
λ
t

1− ρ log y

(

ρ

y

)

dy

(4.5)

For the first term after the second equality in (4.5), we have

0 <

∫ 1/λ

0

1− (1− yt)
λ
t

1− ρ log y

(

ρ

y

)

dy <

∫ 1/λ

0

λy

1 + ρ log(λ)

(

ρ

y

)

dy (4.6)

=
ρ

1 + log(λ)
(4.7)

This is so because the numerator of the integrand is replaced with its upper

bound and the denominator of the integrand is replaced with its lower limit. It can

be seen that the upper bound after the equality in (4.7) yields O(1/ log(λ)) and has

limit 0 as λ→ ∞. This implies that the first term should have limit 0. The second

term in (4.5) has the bounds given by,

∫ 1

1/λ

ρ
(

1− (1− t
λ)

λ
t

)

y(1− ρ log(y))
dy <

∫ 1

1/λ

1− (1− yt)
λ
t

1− ρ log y

(

ρ

y

)

dy <

∫ 1

1/λ

1− (1− t)
λ
t

1− ρ log y

(

ρ

y

)

dy

(4.8)

in which the lower and upper bounds are obtained by bounding the numerator, and

they turn out to be
∫ 1/λ
0

1
1−ρ log(y)

(

ρ
y

)

dλ = log(1 + ρ log(λ)). Therefore, for a fixed

ρ, and as λ→ ∞ we can express (4.5) as (4.4). Therefore we have

EN
[

Ccog(ρ,N )
]

= log (1 + ρ log(λ)) +O(1/ log(λ)) (4.9)

as λ→ ∞.
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To notice that the first terms in (2.12), (2.15) and (4.9) are same because the

capacity metrics under Poisson, negative binomial, and binomial distribution yield

the same growing speed of log (log(λ)). On the other hand, the second terms in

(2.12), (2.15) and (4.9) are different. Since O(·) is an approximation, so that we can

not judge the growing speed of the capacity under the three distributions according

to the second term, even the three expressions of capacity scaling law with respect

to λ do have different speed of convergence. In fact, the difference of the all three

second terms is caused by the choice of the integral limit during the proof. For

example, in (4.5), if we choose another integral limit instead of 1/λ, the proof will

still work but the second term in (4.9) will end up with a different term in the form

O(·).

4.3.2. Average Error Rate

In the previous section, the BER under Poisson and negative binomial N are

well investigated and it has been stated that the it achieves tightness in the Jensen’s

inequality. In this section, we will take a look at the special case that when the

channel experiences Rayleigh fading, and under which, the closed form of BER

behaviour with binomial N will be derived.

In section 4.3.1, we derive the CDF of the channel gain of the best user chosen

from a binomial distributed random set of users. Here we take derivative of (4.2)

with respect to x so that the PDF of the channel gain of the best user in the binomial
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case can be expressed as:

fγ∗(x) =
dFγ∗(x)

dx
= λe−x(1− e−xt)

λ
t
−1 for x > 0. (4.10)

where x is the variable. Assuming the instantaneous error rate has the form

Pe(ρx) = αe−ηρx , substituting (4.10) into (3.7) we can get:

EN
[

Pe(ρ,N )
]

=

∫ ∞

0
αe−ηρxe−x(1− e−xt)

λ
t
−1dx

= αt−1−ηρλ · β
(

t, 1 + ηρ,
λ

t

)

(4.11)

where β
(

t, 1 + ηρ, λt
)

is the incomplete beta function defined as β (x, a, b) =

∫ x
0 t

a−1(1− t)b−1dt.

4.3.3. Comparison of Binomial Distribution and Poisson Distribution

From probability theorem, binomial distribution can converge to Poisson dis-

tribution as p → 0 and Lp remains constant. In this section, binomial distribution

will be proved to dominate Poisson distribution under LT ordering sense.

To compare two random variables, it is straight forward to use the equivalent

interpretation of LT ordering in terms of the PGFs, by knowing that exp(λ(t− 1))

is the PGF of Poisson distribution [64] while (1 − p + pt)L is the PGF of binomial

distribution where 0 ≤ t ≤ 1. Since we compare them under the save mean value,

then Lp = λ. Then we have the following theorem:

Theorem 8. Let X denotes a Poisson random variable with parameter λ and Y

denotes a binomial random variable with mean value Lp. By assuming that Lp = λ,
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we have UX (t) ≥ UY(t). Then we conclude that

X ≤Lt Y (4.12)

Proof. To show UX (t) ≥ UY(t) first we take logarithm to UX (t) and UY(t) and we

get

log(UX (t))− log(UY(t)) = Lp(t− 1)− L log (1− p+ pt) . (4.13)

By shuffling the terms we rewrite the problem as comparing s − log(1 + s) with 0,

where s = p(t− 1). Taking the 1st derivative with respect to s we get

∂ (s− log(1 + s))

∂s
= 1− 1

s+ 1

=
s

1 + s
≤ 0 (4.14)

for all 0 ≤ t ≤ 1. This implies that (4.13) is an monotonically decreasing function of

t with the minimum value 0 at t = 1. Hence, we have UX (t) ≥Lt UY(t), completing

the proof.

For the extreme case that p = 1, binomial user distribution converges to the

deterministic number of users, which dominates any kind of random distributions

under LT ordering sense. The numerical results will be shown in the later section.

4.3.4. Multiple Interference Constraints

In Section 4.3.1, we discussed the situation when there exists only one inter-

ference channel and the success probability of the binomial distribution is Fγp(x).
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When multiple interference channels case is considered, since the interference chan-

nels are still independent to the secondary transmission, the active number of users

still results in a binomial distribution, only the success probability changes. As-

suming that there are K interference channels between each secondary and pri-

mary receivers, by using the basic probability knowledge, the success probability

is P{x1 < Q1;x2 < Q2; . . . ;xK < QK}, where Q1, . . . , QK are K interference

constraints. When the K constraints are independent, the interference constraints

probability Fγp(x1, x2, . . . , xK) = Fγp(x1)Fγp(x2)γp(xK); when the K constraints

are non-independent, the success probability is Fγp(Q1, Q2, . . . , QK) where Fγp is

the joint CDF of the K interference channels. Consequently, all the analysis did in

the previous sections apply for this case.

4.4. Simulation Results

In Section 4.3, we proposed a cognitive radio system with multi-user diversity

scheme in the secondary users system. It has been shown that if the interference

channel is independent with the secondary transmission, the secondary users sys-

tem will be a multi-user diversity system with binomial N . Further, in 4.3.1, we

derive the similar scaling laws of ergodic capacity with respect to λ under binomial

distributed N to the Poisson case. In Figure 4.2, ergodic capacity and average BER

under the proposed cognitive radio system and multi-user diversity system with bi-

nomial N are simulated respectively. In Figure 4.2(a) and 4.2(b), averaged SNR is

6 dB and 0 dB respectively, and in both figures the Rayleigh faded parameter is 1.
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From the figure we can see that the performance of our proposed scheme fit well

with the binomial N multi-user diversity system, which verify our assumption.
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Figure 4.2. Ergodic Capacity and Average BER of Cognitive Radio System.

In Section 2.3.1, ergodic capacity performance under negative binomial and

Poisson user distributions are well established. According to the probability theory,

negative binomial distribution can converge to the Poisson distribution as the trail

probability p → 0 and stopping parameter r → ∞, which has been shown numer-

ically in Section 2.6. On the other hand, the binomial distribution also converges

towards the Poisson distribution as the number of trials goes to infinity while the

product Lp remains fixed. Consequently, as the p parameter in binomial distribution

goes to zero, performance of binomial distribution will also get close to the Poisson

case. Moreover, binomial distributed users means that all the users are checked ac-

cording to the interference, while negative binomial distributed users means that the

interference checking stops when a certain number of users satisfy the interference
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constraint. Obviously, binomial distribution should outperform negative binomial

distribution when ergodic capacity is considered. As shown in Figure 4.3, binomial

and negative binomial performance converge to Poisson case as p→ 0 and binomial

performance is always better than the negative binomial case.
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Figure 4.3. Ergodic Capacity Under Different User Distributions.
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4.5. Summary

We began this chapter by a literature review of cognitive radio technique and it

together with multi-user diversity system. We proposed a single primary user cog-

nitive radio system multi-user diversity at the secondary users. Comparing to the

general multi-user diversity system, there existed an interference constraint between

secondary and primary users, which is independent of the secondary users’ trans-

mission. The secondary user with highest transmitting SNR which also satisfies the

interference constraint is selected to communicate. Under all these assumptions,

the active number of secondary users is a binomial random variable. This was then

followed by a derivation of the scaling law of the ergodic capacity with respect to

λ and the closed form expression of average BER under this situation. What is

more, the binomial distribution was shown to dominate Poisson distribution under

LT ordering sense.
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CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

This thesis introduces the multi-user diversity when total number of users is

random and considers its application to cognitive radio system. The average er-

ror rate of multi-user systems implementing multi-user diversity is proved to be

a completely monotonic function of the number of users in the system. Further,

ergodic capacity is shown to have a completely monotonic derivative with respect

to the number of users. Using the above properties along with Jensen’s inequality,

it is shown that the ergodic capacity performance averaged across the number of

users distribution will always perform inferior to the corresponding performance of

a system with deterministic number of users. Further, an approach to compare the

performance of the system for different user distributions using Laplace transform

ordering is studied. Moreover, the results of average BER and ergodic capacity

under user distribution of Poisson are extended to negative binomial and compared

in Laplace transform ordering sense. Outage capacity and outage probability is

also been studied for the slow fading scenario. Outage probability is completely

monotonic that the randomization of total number of users will deteriorate the per-

formance. A new metric named ergodic capacity per user, which is the ergodic

capacity normalized by the total number of users, is investigated to observe the

property of individual rate in the system. It can be proved that this metric is a

completely monotonic function of N , which also implies convexity. Consequently,

the ergodic capacity per user will increase as the number of users is randomized.

With the knowledge of Laplace transform ordering, one can control the user distribu-

tion to improve the system performance by comparing their probability generating
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function. A “two-value” distribution is shown to be an optimal user distribution

when the ergodic capacity per user is taken into account when designing the system.

We also develop the multi-user diversity technique applied in the multiple

secondary user cognitive radio system. The secondary user with best transmitted

SNR, subjecting an interference constraint between the secondary users and the

primary receiver simultaneously, is selected to transmit at each time slot. This

interference constraint is assumed to be independent to the secondary users system,

which will randomize the number of active secondary users. Under this situation,

the scaling law of ergodic capacity and the closed form expression of the BER for a

special case of binomial distributed users are derived. Due to the result, interference

constraint will degrade the system performance by randomizing the number of users.

Furthermore, binomial distribution is shown to dominate Poisson distribution under

Laplace transform ordering sense.

Further work in this area can be included the following: 1) extension from the

single-user-selected multi-user diversity system to the multi-user-selected case; 2)

properties of capacity and average BER when other fading scenario is considered;

and 3) more general model of the cognitive radio system with non-independent

interference constraint and fading other than Rayleigh.
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