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ABSTRACT 

 This thesis discusses the use of mass spectrometry and polymerase chain 

reaction (PCR), among other methods, to detect biomarkers of microorganisms in 

the environment. These methods can be used to detect bacteria involved in the 

degradation of environmental pollutants (bioremediation) or various single-celled 

pathogens, including those posing potential threats as bioterrorism agents. 

 The first chapter introduces the hurdles in detecting in diverse 

environmental compartments in which they could be found, a select list of single-

celled pathogens representing known or potential bioterrorism agents. These 

hurdles take the form of substances that interfere either directly or indirectly with 

the detection method. In the case of mass spectrometry-based detection, many of 

these substances (interferences) can be removed via effective sample 

pretreatment. 

 Chapters 2 through 4 highlight specific methods developed to detect 

bioremediation or bioterrorism agents in environmental matrices. These methods 

are qualitative mass spectrometry, quantitative PCR, and quantitative mass 

spectrometry, respectively. The targeted organisms in these methods include 

several bioremediation agents, e.g. Pseudomonas putida F1 and Sphingomonas 

wittichii RW1, and bioterrorism agents, e.g. norovirus and Cryptosporidium 

parvum. In Chapter 2, I identify using qualitative mass spectrometry, biomarkers 

for three bacterial species involved in bioremediation. In Chapter 3, I report on a 

new quantitative PCR method suitable for monitoring of a key gene in yet another 

bioremediation agent, Sphingomonas wittichii RW1; furthermore, I apply this 
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method to track the efficacy of bioremediation in bioaugmented environmental 

microcosms. In Chapter 4, I report on the development of new quantitative mass 

spectrometry methods for two organisms, S. wittichii RW1 and Cryptosporidium 

parvum, and evaluate two previously published methods for their applicability to 

the analysis of complex environmental samples. 

In Chapter 5, I review state-of-the-art methods for the detection of 

emerging biological contaminants, specifically viruses, in environmental samples. 

While this summary deals exclusively with viral pathogens, the advantages and 

remaining challenges identified are also applicable to all single-celled organisms 

in environmental settings. The suggestions I make at the end of this chapter are 

expected to be valid not only for future needs for emerging viruses but also for 

bacteria, eukaryotic pathogens, and prions. In general, it is advisable to continue 

the trend towards quantification and to standardize methods to facilitate 

comparison of results between studies.       
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PREFACE 

It is impossible to culture all microorganisms. The vast diversity of 

microenvironments and the intricate interactions between microorganisms and 

their environments cannot all be recreated in the lab. There are pathogens such as 

norovirus that have long resisted cell culture despite years of concerted efforts 

(Duizer et al., 2004). There are microbial consortia that perform important 

ecological functions but whose members cannot perform their roles individually 

(Ziv-El et al., 2011). Many bacteria that degrade environmental pollutants like 

dioxins have been detected by PCR but not cultured (Kimura & Kamagata, 2009). 

Even microorganisms that can be cultured may behave very differently in 

artificial laboratory conditions compared to their natural environments (Madsen, 

1991). 

 Challenges not withstanding, it is still important to study these 

microorganisms, whether for their ecological benefits or potential risks to human 

health. The impracticality of cell culture and differences between in situ and ex 

situ phenomena make it necessary to use mass spectrometric and molecular 

methods to study biological agents in environmental settings.  

 

The Good, the Bad, and the Ugly 

This work addresses variously the detection of biological agents for the 

remediation of environmental contamination and for the prevention of 

bioterrorism and protection of public health. While these ends are diametrically 

opposed, the means to achieve them are the same. In both instances, the goal is to 
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identify and quantify a single-celled microorganism, preferably revealing some 

phenotypic information, and in both cases, the challenges of identification and 

quantification are magnified by the presence of interferences from the matrix in 

which the target is located. Both applications require the selection of appropriate 

biomarkers and the development of methods suitable to a wide range of 

environmental samples. Finally, the constraints of time and cost are equally 

applicable. 

 

Genes vs. Proteins 

Cells are composed of four major classes of macromolecules: proteins, 

nucleic acids, carbohydrates, and lipids. While any of these macromolecules 

could theoretically serve as molecular targets for identification and quantification, 

the latter two are severely limited. 

Nucleic acids are by far the most commonly assayed. The polymerase 

chain reaction (PCR) is the undeniable advantage of nucleic acid-based methods, 

allowing even very low copy number targets to be amplified almost without limit. 

Nucleic acid-based methods can reveal the genetic identity (genotype) of the 

target. Targeting functional genes can also show the metabolic capability. The 

disadvantage of these assays is that genes are not necessarily expressed, and even 

the observation of mRNA transcripts does not guarantee a functional enzyme. If 

the end goal of an assay is ultimately to draw a conclusion about a phenotype, 

whether that be activity or infectivity, nucleic acid-based techniques leave a gap. 
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Proteins are more closely linked to phenotype and activity, but the 

techniques for their detection and quantification are still being refined. Also, the 

utility of these methods is highly dependent on their limit of detection or 

quantification because protein targets cannot be amplified in the same way as 

nucleic acids. Mass spectrometry-based methods offer rapid identification and 

quantification of whole cells, proteins, or peptides. Improvements in sample 

processing and instrumentation, notably the advent of tandem mass spectrometry, 

have lowered limits of detection and quantification and continue to do so. 

 

Quantification 

Quantification (or quantitation) is especially important. Whether looking 

at genes or proteins, the ability to absolutely quantify observations is crucial for 

interpretation of results and comparison across studies (Chao, Hansmeier, & 

Halden, 2010). Both PCR- and mass spectrometry-based methods can be rendered 

quantitative with minor modifications, and examples of both are highlighted later 

in this dissertation. 

 

Structure of the Dissertation 

This dissertation is divided into six chapters. The first discusses the 

difficulties presented by analyzing microorganisms and their characteristic 

biomarkers in environmental samples. While it deals specifically with mass 

spectrometry-based detection, the same principal difficulties hold true for gene-

based detection as well. Chapters 2 through 4 cover the development and 
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application of methods for the observation of various microorganisms in 

environmental settings. In Chapter 2, I describe the use of a simple separation 

technique coupled with mass spectrometry to identify biomarkers for 

biodegradation by bacteria of varying degrees of characterization. In Chapter 3, I 

describe the development of a quantitative PCR method to track a biodegradative 

gene located on a megaplasmid in Sphingomonas wittichii RW1 and use this 

method to evaluate the prevalence of the megaplasmid in environmental 

microcosms. In Chapter 4, I describe the development of quantitative mass 

spectrometry-based methods to track S. wittichii RW1 and Cryptosporidium 

parvum and show the applicability of these and other methods in environmental 

samples. In Chapter 5, I compare the merits of molecular and mass spectrometry-

based techniques in detecting viruses in food samples. By analogy, this discussion 

also applies to other target organisms. In the final chapter, I summarize the work 

contained in this dissertation and suggest future avenues of research. 

 

Publication Status of Papers Contained in This Thesis 

Chapter 1: Challenges of Detecting Bioterrorism Agents in Complex 

Matrices (Published in NATO-Science for Peace and Security-Chemistry and 

Biology Series: Detection of Biological Agents for the Prevention of Bioterrorism. 

ISBN: 9048198143, 2010) 

Chapter 2: Identification of Putative Biomarkers for Toluene-Degrading 

Burkholderia and Pseudomonads by Matrix-Assisted Laser Desorption/Ionization 
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Time-of-Flight Mass Spectrometry and Peptide Mass Fingerprinting (Published 

in: Bioscience Biotechnology and Biochemistry, 2010, 74(7), 1470-1472.) 

Chapter 3: Quantitative PCR for Tracking Megaplasmid-borne 

Biodegradation Potential of a Model Sphingomonad (Published: Applied and 
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Chapter 4: Targeted, Quantitative MALDI-TOF MS Analysis of 
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Biotechnology, 2012). Invited paper, focus issue on proteomics.
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1. Challenges of Detecting Bioterrorism Agents in Complex Matrices 

The target signal: non-target signal problem. Historically, we have used 

mass spectrometry (MS) to analyze bioterrorism agents as pure samples, but we 

are now in the position to examine them in more realistic settings, such as 

environmental or clinical samples. One major obstacle that has traditionally stood 

in the way of such analysis is what we refer to here metaphorically as the signal-

to-non-target signal (S:N) problem. Probing for peptide biomarkers in 

environmental samples equates to searching for the proverbial needle in a 

haystack, even when starting with relatively concentrated samples. These 

biomarkers must be reproducible and unique to the bioterrorism agent in question, 

and screening for biomarkers can involve the investigation of hundreds of 

candidates proteins and peptides before finding success. Matrix effects, i.e., the 

presence of legitimate, albeit undesirable signals from non-target substances in 

the sample, make it vastly more difficult to find these biomarkers in more 

complex samples. As the number of non-target peaks increases, signal from the 

target is more difficult to recognize and observe (see Fig. 1.1). 

To avoid ambiguity, it is appropriate to pause here for a few definitions. In 

this chapter, we use the term “non-target signal” to encompass both true 

background “noise” and undesirable, interfering signals from sources other than 

the biomarker(s) of the bioterrorism agent of interest. Detector response from the 

inquired-after biomarker(s) is referred to as the “target signal.” The “sample 

matrix” is comprised of everything present in the sample aside from the targets 
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themselves. 

 

Figure 1.1. A graphical representation of analytical challenges arising from 
increasing levels of sample matrix complexity. As the sample becomes more 
complex, phenomena such as ion suppression may reduce the intensity of the 
signal from a given target. At the same time, signals from non-target masses 
increase in number and intensity. The ratio of target signal to other signal sources 
(background chemical noise plus all non-target, signal producing sample 
constituents) decreases correspondingly, thereby making it progressively more 
challenging to identify and quantify the target in samples of increasing 
complexity. 
 

Throughout this chapter, we will refer to the spectrum of sample matrix 

complexity. The spectrum ranges from the simplest sample possible, a purified 

protein, to the ultimate challenge of environmental or clinical samples, bearing in 

mind that not all environmental or clinical matrices are equally complex. 

While there are many methods of overcoming the S:N problem, many of 

them involve labor- and time-intensive sample preparation. Since MS-based 
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techniques should be rapid and designed for high-throughput, these additional 

measures taken for sample purification may diminish significantly the intrinsic 

advantages of MS. In the quest for the optimal MS assay, it is therefore desirable 

to evaluate sample preparation based not only on its effectiveness but also on the 

time it requires. 

 

Potential Matrices 

A general list of potential matrices includes air/aerosols, soil, sediment, 

water, food (Pellerin, 2000; Sowell et al., 2009), as well as biological specimens 

of exhaled breath condensate, urine, saliva, blood and stool. Each of these 

matrices presents its own unique challenges, and considerable differences exist 

with respect to non-target sample content that may interfere with successful 

analysis of the target. Matrix signals result from cells and tissues of non-target 

organisms, proteins, peptides, as well as from other sample constituents including 

surfactants and/or salts (Apweiler et al., 2009). 

 

 

Potential Solutions.  

As with many obstacles, there are multiple avenues for addressing the S:N 

problem. The following discussion of potential solutions is not meant to be 

exhaustive. Rather, it highlights a few areas where progress has already been 
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made and then focuses on sample preparation techniques because these represent 

the most accessible and practical avenue in many situations. 

Instrumentation. Since the invention of soft ionization, the field of 

biopolymer MS has already seen progressive technical amelioration over many 

generations of instrumentation. In general, mass spectrometers have become less 

expensive and smaller (Griffiths, Jonsson, Liu, Rai, & Wang, 2001). At the same 

time, resolution, mass accuracy and sensitivity have all improved (Apweiler et al., 

2009; Griffiths et al., 2001). 

The main soft ionization techniques currently used are electrospray 

ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). A 

variation on ESI known as nanospray has also been developed. Nanospray grants 

favorable ionization efficiencies, lower limits of detection and enhanced signal 

intensity (Stutz, 2005). MALDI has seen a number of technical improvements as 

well. In addition to the hardware, the selection of MALDI matrix–not to be 

confused with sample matrix–also dramatically impacts the mass range and 

ionization efficiencies (Renato & Richard, 1998). 

These ionization techniques can then be coupled to a suite of MS 

detectors. MALDI is most commonly paired with a time-of-flight (TOF) detector. 

While the flight tubes for these TOFs can be quite long, reflectors and, for tandem 

MS, orthogonal systems have helped to condense these systems. Additional mass 

analyzers include linear ion traps (LTQ), triple quadrupoles, quadrupole ion traps, 
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orbitraps, Fourier-transform ion cyclotron resonance (FTICR) systems, and others 

(Cravatt, Simon, & Yates, 2007; Griffiths et al., 2001). 

The advent of tandem MS (MS/MS) has also greatly expanded the realm 

of protein investigation, making it possible to study all levels of protein structure, 

from primary to quaternary (Cravatt et al., 2007). It is now possible to determine 

many post-translational modifications and partial or full amino acid sequences by 

MS/MS (Apweiler et al., 2009). This latter development has been particularly 

beneficial for protein identification. The generation of fragment ions for analysis 

in the second MS can be as simple as post-source decay in MALDI. Here, a small 

population of ions spontaneously dissociate when induced with high energy 

during passage through the first flight tube. For more complete fragmentation and 

the formation of predictable ion series, a host of dissociation techniques, 

including collision induced dissociation, surface-induced dissociation, black-body 

infrared radioactive dissociation and electron-capture-induced dissociation 

(Griffiths et al., 2001), are available. For improved performance and other 

advantages, MS detectors can be paired in hybrid MS/MS instruments, resulting 

in mass accuracy below one part per million (Cravatt et al., 2007). 

Whereas MS/MS historically was reserved for specialists, this technique is 

now increasingly accessible (Cravatt et al., 2007; Griffiths et al., 2001). Software 

packages that take advantage of constantly increasing computing power make it 

relatively easy to analyze the thousands of spectra that are generated in an 

MS/MS run. Especially with on-line systems, where a pre-separation step such as 
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liquid chromatography (LC) is incorporated into the analysis, much of the process 

can be automated (Apweiler et al., 2009). This degree of automation goes hand in 

hand with the high-throughput capabilities of MS and MS/MS analyses of 

proteins. 

The increased capacity for proteomics studies is also spurred on by the 

ever expanding genomic databases and developments in bioinformatics (Apweiler 

et al., 2009; Griffiths et al., 2001). Without the vast genomic dataset, many of the 

techniques and studies discussed in this chapter would not be possible. 

It is also worth noting that several methods for peptide quantitation have 

been crafted, including isotope-coded affinity tags (Shiio & Aebersold, 2006) and 

stable isotope labelling (D. R. Colquhoun, 2007; Ong et al., 2002). 

Bioinformatics-based quantitation, such as Exponentially Modified Protein 

Abundance Index (emPAI) (Ishihama et al., 2005; Lippolis, Bayles, & Reinhardt, 

2009) and spectral counting (Cravatt et al., 2007; Sowell et al., 2009), are also 

being used. The ability to not only detect but also quantify targets greatly adds to 

the appeal of using MS to study protein and peptide biomarkers. 

Target Selection. One approach to detecting bioterrorism agents using 

MS is fingerprinting whole cells to obtain mass spectral “barcodes” (Von Seggern 

& Halden, 2009; Wahl et al., 2002). This technique can be very informative, 

providing identification at the sub-strain level for pure samples (Siegrist, 2007) 

and at the species level for mixtures (Wahl et al., 2002). For bacterial source 

tracking the reproducibility of MS-based techniques can surpass that of DNA 
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fingerprinting (Siegrist, 2007). MS of whole cells can be performed with minimal 

sample preparation requirements. 

However, whole cells cannot be identified without extremely pure samples 

and a library of standard spectra, a bioterrorism monitoring scenario representing 

the exception rather than the norm. The need for purity, a minimum amount of 

biomass, and dependence of the method’s outcome on growth condition 

(vegetative state) of the biomass assayed often necessitate cultivation of the 

sample. Because of the wide mass range required for whole cell fingerprinting, 

the resolution of the peaks is relatively low, and the number of reproducibly 

detectable peaks typically is limited (Wunschel et al., 2005). This results in poor 

statistical power of the identification. Ultimately, this technique is limited by the 

size of the fingerprint (microbial barcode) library. 

MS has also been combined with bioinformatics-driven proteomics. In the 

top-down approach, intact proteins are introduced first into the MS, fragmented in 

a collision cell, and the fragment ions are analyzed in the subsequent MS. This 

approach yields better peak resolution than whole cells because the mass range 

queried is smaller. The greater resolution allows for the determination of post-

translational modifications and amino acid sequence information (Zabrouskov, 

Senko, Du, Leduc, & Kelleher, 2005). This technique also includes as targets 

genetically engineered novel pathogens if the latter express a known toxin or 

virulence factor, as proteins can potentially be identified from transformed 

organisms (Shiaw-Lin, Ian, William, & Barry, 2004). 
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Top-down approaches are potentially powerful but require expensive high-

resolution instrumentation, such as an FTICR-MS, and the analysis of 

fragmentation spectra can be challenging and time-consuming because 

fragmentation patterns are complicated and few databases exist (Zabrouskov et 

al., 2005). Several improvements are required for this approach, including better 

fragmentation and faster and more reproducible methods for introducing the 

sample into the MS (Cravatt et al., 2007). Furthermore, this technique can require 

more sample preparation because cells typically have to be lysed, and the protein 

content of the cell separated from the lipids and nucleic acids. 

In contrast, the bottom-up proteomics approach is more common, easier to 

perform, and more tools and inexpensive techniques are available for performing 

such analyses (Apweiler et al., 2009). In this technique, proteins are digested to 

render multiple peptides. These peptides provide multiple reference ions, which 

boost the statistical power of target identifications. Identifications can be obtained 

using peptide mass fingerprinting (PMF), in which observed peptide masses are 

compared with theoretically generated mass values, or tandem mass spectrometry, 

in which characteristic peptides are further fragmented. 

Although the bottom-up approach confers many advantages, it can also 

involve the longest sample preparation, primarily due to digestion. Similar to the 

top-down approach, this technique is also limited by the available genomic 

dataset. 
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All of these methods are valid approaches to identifying bioterrorism 

agents. Depending on the situation, individual methods may be more or less suited 

to the task at hand than others. As previously mentioned, time is a very important 

factor in determining which methods will be used for monitoring of bioterrorism 

agents in environmental media. 

Sample Preparation. Regardless of the target selected, some sample 

preparation is necessary. Some steps may be simply required for proper 

functioning of the mass spectrometer. For example, desalting may be used to 

remove adducts that would shift the observed peaks. Other steps are more geared 

towards boosting the signal of the target relative to non-target sample 

constituents. These latter steps often are essential and thus shall be discussed 

further.  

Many different avenues of purification and signal amplification have been 

investigated, and a few will be discussed further in the next section. Commonly 

employed purification options include size fractionation by sorting, physical 

screening, chemical treatment (e.g., precipitation), concentration via affinity and 

chromatographic separation. Additional options exist but, in the interest of 

brevity, are not discussed here. Culturing may also be used to increase the 

biomass available for analysis, thereby amplifying the target mass and improving 

the target to non-target ratio within the sample matrix. However, this approach 

may not always be practical and may be time-prohibitive. 
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As with target selection, choice of sample preparation methods greatly 

impacts the time it takes to get from sample collection to identification. Some 

methods may also make the protocol prohibitively costly or difficult. It is 

therefore crucial to consider not just the efficacy of the preparation but also 

whether or not it is appropriate for the situation, i.e. routine high-throughput 

monitoring for bioterrorism agents. 

 

Overview of Non-Bioterrorism Agent Studies 

While not concentrating explicitly on the issue of bioterrorism monitoring, 

the following studies can serve to highlight the challenges of the task at hand. All 

studies discussed in this section concentrate on the identification of proteins and 

bacteria in complex sample matrices using MS. The methods used in these studies 

are also directly applicable to the monitoring for bioterrorism agents. For a brief 

comparison of these methods see Table 1.1. 

Detection of toluene dioxygenase from pseudomonas putida F1. This 

study aimed to identify the toluene dioxygenase (gi|148548093) expressed by 

Pseudomonas putida F1 as a marker for growth on toluene (Hartmann, 

Colquhoun, & Halden, 2010). 

 Previous work indicated that it is possible to identify, with almost no 

sample preparation, catabolic biomarkers for biodegradation from a pure culture 

of aerobic, biodegradative bacteria grown on minimal media supplemented with 

the substrate of interest (Halden, Colquhoun, & Wisniewski, 2005b). The 
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procedure involved the extraction and digestion of the whole soluble proteome of 

Sphingomonas wittichii RW1, a dioxin mineralizing bacterium that, for 

convenience was grown on inexpensive and readily available dibenzofuran for 

expression of the dioxin degradation pathway. This digest was then analyzed 

using MALDI-TOF MS. The dioxin dioxygenase could then be identified from 

these spectra using PMF (Halden et al., 2005b). 

Successful detection of a defined target protein in bacterial whole cell 

extracts by PMF is extraordinary because bacteria express hundreds, if not 

thousands, of proteins at any given point in time. That a single protein can be 

identified from the whole soluble proteome without any sort of separation implies 

that this protein is very highly expressed, yields tryptic peptides in the mass range 

examined, and ionizes favorably using the chosen ionization technique, in this 

case MALDI. Indeed, when the protocol was applied to other bacteria grown on 

other toxic substrates for expression of distinct catabolic enzymes other than the 

dioxin dioxygenase, their signals, while present were drowned out by non-target 

proteins (Hartmann et al., 2010).  
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Table 1.1. Comparison of case study methods. Mass spectrometry (MS), sodium 
dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE), strong cation 
exchange (SCX), solid phase extraction (SPE), reverse-phase high-performance 
(RP-HP) liquid chromatography (LC), matrix-assisted laser desorption/ionization 
(MALDI), time-of-flight (TOF), quadrupole (Q), electrospray (ESI), linear ion 
trap (LTQ), peptide mass fingerprinting (PMF), tandem mass spectrometry 
(MS/MS), National Center for Biotechnology Information non-redundant protein 
sequence database (NCBInr), environmental protein coding sequences (eCDs)  

Matrix Bacterial Cell Bovine Milk Sargasso 
Seawater Human Stool 

Target Toluene 
dioxygenase E. coli proteins SAR11 

proteins 

Norovirus 
capsid 

proteins 
Chemical 
Treatment    Vertrel XF 

Separation 
from Matrix Centrifugation 

Sucrose 
gradient 

centrifugation 
Filtration Filtration 

(2X) 

Protein 
Separation SDS-PAGE    

Peptide 
Separation 

#1 
 SCX SPE or SCX  

Peptide 
Separation 

#2 
 RP-HPLC LC  

MS MALDI-TOF Nanospray-Q-
TOF ESI-LTQ Nanospray-

Q-TOF 
Analysis 
Software MASCOT PMF MASCOT 

MS/MS SEQUEST MASCOT 
MS/MS 

Database NCBInr SWISSPROT 
[E. coli] 

In-house 
eCDs NCBInr 

Time 
Estimate 9 hours 20 hours 12 hours 8 hours 
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The problem of competing signals from other proteins within the organism 

is the first increment in the spectrum of sample matrix complexity from purified 

protein to environmental samples. To reduce the sample complexity, the whole 

cell lysates were separated using SDS PAGE, and individual bands were excised 

for MALDI-TOF MS analysis (Hartmann et al., 2010). This simple step was 

enough to allow for the identification of several proteins–including the target 

enzyme for P. putida F1 (Hartmann et al., 2010). However, the additional time 

required to run the gel, stain it, excise the bands, destain them, and extract the 

sample from the gel amounted to about four hours. The gel-based step also 

theoretically raises the limit of detection (Link et al., 1999), although quantitative 

work was not done. 

Although these disadvantages make the technique undesirable for the 

detection of bioterrorism agents, the results demonstrate that it is possible to get 

meaningful identifications from pure cultures with a single separation step. More 

rapid separation steps that result in less sample loss would be more amenable to 

counterterrorism work. 

Characterization of mastitic Escherichia coli in bovine milk. The goal 

of this study was to determine if growth on milk, as opposed to Luria-Bertani 

(LB) broth, influenced the expression of proteins linked with pathogenicity in 

Escherichia coli (Lippolis et al., 2009). To that end, the researchers cultured E. 

coli on both bovine milk and LB broth. They collected two fractions of the 

proteome, cytosolic and membrane-associated (Lippolis et al., 2009). 
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To separate the targets from interfering proteins from the media, especially 

caseins, the researchers washed the harvested cells twice with cold Dulbecco’s 

Phosphate Buffered Saline, centrifuged twice in a sucrose gradient, and then 

washed six more times. Although Western blots indicated that the caseins were 

removed from the E. coli cultures, proteins of bovine origin were still identified 

(Lippolis et al., 2009). 

Prior to MS analysis, samples were further fractionated using strong cation 

exchange (SCX) followed by reverse-phase high performance (RP-HP) liquid 

chromatography (LC). These steps are useful to separate proteins from within the 

target organism, as was seen in the previous example. The researchers 

successfully identified identified 633 proteins from E. coli, several of which had 

biologically relevant functions for growth in milk and some may be involved in 

pathogenesis. However, they also identified 25 bovine proteins. Using emPAI, 

they determined that there were over 100 bacterial proteins that were more 

abundant than the most abundant bovine protein identified in the cytosolic 

fraction. However, the most abundant bovine protein in the membrane-associated 

fraction was the 24th most abundant protein identified in that fraction (Lippolis et 

al., 2009). 

Returning to the spectrum of sample matrix complexity, we have added 

interfering signals from the matrix, i.e., bovine proteins, as well as signals from 

endogenous proteins. This procedure takes an estimated 20 h from sample 

collection to protein identification, excluding the substantial time required for 
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microbial cultivation. It would therefore take roughly 3 days for an analyst to 

perform this protocol. Much of the time involved in this protocol is devoted to the 

column-based SCX and RP-HPLC separations. The most interesting step, in terms 

of overcoming challenges presented by a complex matrix, is the additional 

centrifugation steps to remove milk proteins, which take approximately 160 

minutes. These results demonstrate that, for relatively simple liquid sample 

matrices, centrifugation is sufficient to remove enough interferences to enable 

successful identification of the biological agent of interest. 

Metaproteomics of bacteria in the Sargasso Sea. The purpose of this 

study was to observe proteins expressed by SAR11, a clade (phylogenetically 

related group) of abundant marine bacteria (Sowell et al., 2009). Samples were 

taken from the Sargasso Sea, where bacterial growth is often nutrient-limited. 

These samples contain interferences from the medium, i.e., seawater, and from 

other bacteria, especially of the Synechococcus and Prochlorococcus genera. The 

presence of multiple SAR11 proteins also confounds the analysis because the 

multiple targets must be unequivocally identified, and some peptides are not 

unique to a single protein (Sowell et al., 2009). As such, this study used a true 

environmental sample, one towards the far extreme of the spectrum of sample 

matrix complexity and target-to-non-target ratios.  

To separate and concentrate the bacterial biomass, samples were passed 

through tandem Millipore Pellicon systems with 30 kDa regenerated cellulose 

filters (Sowell et al., 2009). No attempt was made to separate bacterial species 
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prior to MS analysis. Cells were lysed and their contents digested. Resultant 

peptides were processed using either solid phase extraction (SPE) or SCX and 

then separated using LC coupled to ESI-MS/MS (Sowell et al., 2009). This 

procedure takes approximately 12 h, excluding sample collection. 

To identify proteins from the SAR11 clade, the investigators constructed a 

database of environmental protein coding sequences (eCDSs). One problem that 

they encountered is that not all of these eCDSs were unique to SAR11. To test the 

specificity, they queried the observed SAR11 peptides against similarly 

constructed databases for Synechococcus and Prochlorococcus as well as a 

database compiled from the rest of the metagenomic data from the Sargasso Sea. 

Of the total 2,215 peptides they used to identify SAR11 proteins, 24 overlapped 

with the Synechococcus eCDSs, 20 with the Prochlorococcus eCDSs, and 1,226 

with the remaining Sargasso Sea eCDSs. Despite this overlap, the investigators 

were able to confidently identify 236 proteins of SAR11 origin (Sowell et al., 

2009). 

Again, we see the use of column-based techniques to separate out both 

peptides from within the target organism and those from without. In contrast with 

the previous study, additional signals from the media were removed by filtration, 

as opposed to centrifugation. To deal with the additional species, the investigators 

added a bioinformatics component to the analysis. The results of this study 

demonstrate how bioinformatics, when used in complement with sample 

preparation, can be used to compensate for sample matrix complexity. 
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Case Study: Norovirus Detection in Stool 

This is a landmark study because it tackles both an extremely difficult 

target and an extremely difficult sample matrix. Notable here is the simplicity of 

the method, which is also very rapid and enabled detection at clinically relevant 

copy numbers of the bioterrorism agent. Because of the relevance of the target 

and the speed of the method, this study highlights the possibilities and current 

limitations of MS-based monitoring of bioterrorism agents in complex samples. 

Norovirus refers to the Norovirus genus of viruses that cause acute 

gastroenteritis ("Noroviruses," 2006). The CDC has classified norovirus as a 

Class B bioterrorism agent, meaning that it is “moderately easy to disseminate” 

with “moderate morbidity rates” and necessitates “specific enhancements of 

CDC’s diagnostic capacity and enhanced disease surveillance” (Onisko et al., 

2007). It is estimated that as few as ten virus particles can cause an infection, 

although clinical virus titers in stool range from 100 to 1,000 fmol/ml 

("Noroviruses," 2006). 

One of the difficulties of working with norovirus is that it cannot be 

cultured outside of human hosts. This limitation rules out culturing of samples to 

increase the amount of target copies. On the upside, norovirus capsids are 

assembled from a single protein that occurs at a high copy number. To protect 

analysts from infection, this study made use of virus-like particles (VLPs) 

consisting of 180 identical capsid proteins which are identical to the bioterrorism 
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agent except for the fact that they are devoid of any viral, infectious RNA. Capsid 

proteins comprising virus capsids were attractive targets for protein-based 

detection methods because they frequently occur in multiple copies per virus 

particle. In the case of the human norovirus the sequence of the protein 

(gi|34223984) already had been determined and entered into online genomic 

databases. An in silico tryptic digest showed 15 possible fragments, equating to a 

potential sequence coverage of up to 58.8% in the 500 to 5,000 m/z range (D. R. 

Colquhoun, K. J. Schwab, R. N. Cole, and R. U. Halden, 2006). 

In terms of sample matrix composition, stool is localized at the far side of 

extreme complexity (Oleksiewicz, Kjeldal, & Klenø, 2005). In addition to the 

target, stool samples may contain host (human) cells, animal and plant (food) 

cells, microbial cells from the gut community (Oleksiewicz et al., 2005), and non-

proteinaceous organic and inorganic chemicals (Rang & Dale, 1991). 

Before attempting to identify the VLPs in samples of increasing 

complexity, the investigators examined the pure intact protein using 1D MS (D. 

R. Colquhoun, K. J. Schwab, R. N. Cole, and R. U. Halden, 2006). With this 

method, monomers and dimers of the capsid protein were detectable at 60 pmoles. 

This relatively high detection limit was due to the aggregation of the capsid 

proteins. Nevertheless, the resultant spectra demonstrated the purity of the 

synthesized VLPs (D. R. Colquhoun, K. J. Schwab, R. N. Cole, and R. U. Halden, 

2006). 
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Using the PMF approach with trypsin digestion, the investigators next 

assayed dilutions of the VLP standard and confidently detected the capsid protein 

down to levels of 50 fmoles. Detection at 100 fmoles was highly reproducible (D. 

R. Colquhoun, K. J. Schwab, R. N. Cole, and R. U. Halden, 2006). These 

detection limits are comparable to the clinically relevant range in which norovirus 

may occur in watery stool of acutely ill individuals. 

The investigators then applied PMF to VLPs spiked into processed human 

stool extract (D. R. Colquhoun, K. J. Schwab, R. N. Cole, and R. U. Halden, 

2006). As could be expected, the S:N ratio was unfavorable and effectively 

prevented identification of the target. However, a putative peak of m/z 1,495.8 

was consistently observable in norovirus-fortified samples. To capitalize on this 

finding, sample splits were introduced into a nano-ESI-MS/MS instrument to 

force fragmentation and identification of the putative 1495.8 Da target peptide. In 

the nanospray single MS spectrum, the peptide was observable at m/z 748.4 as the 

double charged ion. The investigators therefore selected this peak for collision 

induced dissociation using MS/MS. Analysis of the VLP-fortified stool extract 

with this approach produced a nano-ESI-MS/MS spectrum showing 16 fragments 

corresponding to eight of the 12 y ion series fragments of the capsid protein 

peptide of sequence TLPDTIEVPLEDVR (D. R. Colquhoun, K. J. Schwab, R. N. 

Cole, and R. U. Halden, 2006). 

This MS/MS-based method gives a detection limit of 3 • 108 viruses per 

sample. This detection limit translates to a sample volume requirement of 
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approximately 125 µl of stool to enable successful analysis using this approach 

(D. R. Colquhoun, K. J. Schwab, R. N. Cole, and R. U. Halden, 2006). 

The entire would take about 8 h to complete when leveraging rapid 

digestion techniques. As performed, the sample processing scheme involved 

dilution in ammonium bicarbonate buffer, extraction with Vertrel XF to remove 

lipids, passage through a 0.22 µm filter followed by a 100 kDa MW cutoff filter, 

and concentration down to 100 µl in the final sample volume (D. R. Colquhoun, 

K. J. Schwab, R. N. Cole, and R. U. Halden, 2006). For the purposes of this study, 

samples were digested overnight with trypsin (D. R. Colquhoun, K. J. Schwab, R. 

N. Cole, and R. U. Halden, 2006). More rapid digestion procedures, such as 

immobilized trypsin columns, could easily be substituted for the overnight 

digestion. This would allow for a significant reduction in prep time, thereby 

facilitating execution of the analysis in a single work shift, taking no longer than 8 

h.  

The approach taken here for increasing S:N ratios differs from the 

aforementioned studies. The investigators did not rely of gels or LC-separation to 

concentrate their target and remove undesirable sample constituents. Instead, they 

reduced chemical interferences by treating with Vertrel XF and they concentrated 

their target by employing a physical screening approach involving size 

fractionation by sequential filtration. In the two-step filtration process, the first 

step serves to remove unwanted, large cells from the sample. The second step 

served to separate the VLPs but not the smaller dissolved molecules stemming 
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from stool and cell debris. Finally, MS/MS and bioinformatics tools were used to 

cope with other endogenous and exogenous proteins present. 

As an extension of this method, the investigators also developed a 

quantitative method using stable isotope-labeled standards and single reaction 

monitoring. They were able to detect their target at 500 attomoles (D. R. 

Colquhoun, 2007). However, this method was not tested in environmental 

samples and thus remains to be proven as a viable method for the detection of 

norovirus in stool. 

 

Conclusions 

During monitoring of environmental samples for bioterrorism agents, the 

concentration of the target and the complexity of the sample vary widely. Best-

case scenarios of samples to be analyzed involve pure or semi-pure powders of 

dry microbial spores or vegetative cells. In these instances, traditional methods 

including mass spectral “barcoding” of samples may be sufficient to enable 

successful analysis. More likely, however, is that the analyst is challenged with 

the detection of minute target quantities in relatively dilute samples of great 

complexity. In this situation, sophisticated MS equipment and sample preparation 

techniques may still allow to determine a given biological agent reproducibly and 

with confidence. The successful detection of norovirus particles in stool at 

clinically relevant concentrations served to illustrate the applicability of MS 

approaches even in these extremely unfavorable conditions. 
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However, the analysis of dilute environmental samples for bioterrorism 

agents is still in its infancy. More work will be required in future years to abridge 

existing sample preparation protocols and to introduce new ones to advance the 

field. Insights can be gained from reviewing medical and environmental studies 

that do not fall into the domain of monitoring for bioterrorism agents. Alongside 

with the development of streamlined sample processing techniques, advances in 

instrument development, bioinformatics and computing power will be critical to 

propel the research field of bioterrorism monitoring forward. 
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Transition 1 
 
 In Chapter 1, we learned about the various difficulties impeding the 

identification of markers indicating the presence of microorganisms (biomarkers) 

in environmental samples. The chief problem is that biomarkers may be present at 

very low levels, so the target signal can be masked by interferences from the 

sample. This problem can largely be overcome by separation techniques 

implemented prior to detection, but at the cost of time, limit of detection, and 

money. 

 In both bioterrorism preparedness and bioremediation work, it is 

imperative to arrive at a positive identification as quickly as possible. At the same 

time, the limit of detection cannot be sacrificed; a limit of detection that is higher 

than relevant levels of the bioagent in question is not diagnostically useful. 

Furthermore, the ideal assay should not be cost-prohibitive. 

 One of the studies cited in the Introduction showed the use of a relatively 

simple, time- and cost-effective separation technique, sodium dodecyl sulfate 

(SDS) polyarcrylimide gel electrophoresis. In Chapter 2, we examine this 

technique more in depth and see how successful this minimal sample preparation 

protocol can be when seeking to track bacteria of importance for the 

bioremediation of toluene, namely Pseudomonas putida F1, P. mendocina KR1, 

and Burkholderia sp. JS150. 

 One challenge of working with environmental samples is that full genome 

sequences are not available for all organisms. It is therefore of interest to examine 
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an effective analysis method not only for well characterized bioagents but also for 

ones that have been only partially described. In the following chapter, three 

bioremediation agents of differing degrees of characterization are analyzed using 

a combination of sodium dodecyl sulfate polyacrylimide gel electrophoresis and 

mass spectrometry to identify protein biomarkers of biodegradative activity. 
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2. Identification of Putative Biomarkers for Toluene Degrading 

Burkholderia and Pseudomonads by MALDI-TOF MS and PMF 

Matrix-assisted laser desorption/ionization time-of-flight mass 

spectrometry (MALDI-TOF MS) can be used to identify certain bacterial strains 

that have applications in the field of bioremediation (Halden et al., 2005b). This 

technique is promising because it is faster than other, traditional methods (C. 

Fenselau & Demirev, 2001; Lay Jr & Liyanage, 2005), such as 16S rRNA 

analysis and the measurement of relative substrate concentrations or 

chromatographic analysis of proteins, and because it can implicate both the 

presence and the efficacy of the biological agent in a single step. Ideally, the 

catabolic proteins involved in pollutant degradation both identify the bacterium 

and implicate it in degradation. 

Peptide mass fingerprinting (PMF) can easily reveal the phenotype of the 

bacterium, but it is yet undetermined whether PMF can be used on a variety of 

strains and can distinguish between different bacterial strains grown using the 

same substrate. 

MALDI-TOF/TOF MS can be used with isobaric tags for relative and 

absolute quantitation (iTRAQ) to yield quantitative data (C. Fenselau, 2007), 

Quantitative evaluation of catabolic enzymes was used in this study to corroborate 

qualitative findings from MALDI-TOF MS. 
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This study attempted to use PMF and MALDI-TOF MS to identify 

Pseudomonas putida F1, Burkholderia sp. JS150, and P. mendocina KR1 grown 

using toluene as the sole carbon and energy source. All of the strains assayed had 

been identified as capable of toluene degradation and their degradative pathways 

characterized (Johnson & Olsen, 1997; Parales, Parales, Pelletier, & Ditty, 2008). 

Amino acid sequences corresponding to known toluene degradation genes 

represent the most attractive targets for mass spectrometric analysis because of 

their implications for bioremediation. P. putida F1 was selected as the study 

organism for MALDI-TOF/TOF MS analysis because it is the only strain to have 

been fully characterized (NC 009512). 

P. putida F1, Burkholderia sp. JS150, and P. mendocina KR1 were kindly 

provided by Dr. Rebecca E. Parales, Microbiology, UC Davis; Dr. Jim Spain, 

School of Civil and Environmental Engineering, Georgia Institute of Technology; 

and Dr. Paul Hatzinger, the Shaw Group, Inc., respectively. Selective medium 

consisted of 50 ml of ATCC medium: 1898 (0.5 g NH4Cl, 670.0 mg 

Na2HPO4•7H2O, 340.0 mg KH2PO4, 112.0 mg MgSO4•7H2O, 14.0 mg CaCl2, 5.0 

mg ZnSO4•7H2O, 2.5 mg Na2MoO4•2H2O, and 0.13 mg FeCl3 per liter) 

supplemented with 40 µl of high performance liquid chromatography (LC) grade 

toluene. Toluene cultures were sealed with a rubber stopper to prevent substrate 

volatilization and human health risk from inhalation. Cultures were incubated at 

30˚C with shaking at 250 rpm for 23 h. All bacteria were grown in 50 ml of Luria-
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Bertani (LB) liquid medium (Sambrook, Fritsh, & Maniatis, 1989) as negative 

controls for the inducible toluene degradation pathway. 

Nine ml of each culture was harvested by centrifugation (10,000 x g, 25ºC, 

10 minutes). Samples were then prepared as the whole-cell extract fraction and 

were analyzed by MALDI-TOF MS, as described previously (Halden et al., 

2005b). 

Spectra were analyzed using Data Explorer software (Applied Biosystems, 

Foster City, CA). Peaks within 2 standard deviations of the background noise 

were removed using the Noise Filter/Smooth tool. The remaining peaks were 

deisotoped to generate monoisotopic spectra. The 100 most intense peaks were 

searched against all taxa in the NCBInr database (16 November 2007; 5,633,163 

entries) using the Mascot PMF software (http://www.matrixscience.com/). A 

peptide error tolerance of ± 150 ppm but no missed cleavages were allowed. The 

variable oxidation of methionine was accounted for. 

The mass spectra obtained for whole-cell extracts of the three toluene-

grown bacterial cultures were distinct from those resulting from the corresponding 

control biomass grown on rich medium. However, attempts to match detected 

peaks to predicted peptide masses yielded no positive identifications (p < 0.05, 

Mascot score > 81). 

To simplify the sample, whole-cell extracts were separated by SDS PAGE 

(4-12% bis-tris ReadyGel, Bio-Rad, Hercules, CA) run at 150 V for 90 min, and 

stained using SimplyBlue SafeStain (Invitrogen, Carlsbad, CA). Distinct protein 
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banding patterns were observed between the toluene-grown and rich-medium 

cultures. 

The SDS PAGE gels of Burkholderia sp. JS150 (two biological replicates) 

contained fewer than 20 bands, whereas the gels from the other cultures contained 

at least 30. Three bands present in the toluene cultures and absent in the rich 

medium cultures (approximate molecular weights, 58, 25, and 20 kDa) were 

identified by MALDI-TOF MS and PMF as components of a chlorobenzene 

dioxygenase sequenced from Pandoraea pnomenusa. 

Several differences in banding appeared between the toluene and the rich 

medium P. mendocina KR1 cultures, but only two (approximate molecular 

weights, 55 and 30 kDa) might have been identified. The low number of 

identifications were due to the lack of sequence data. The bands that could be 

positively identified, however, were strain-specific components of the toluene-4-

monooxygenase system. 

These bands were produced by all three cultures, and a statistically 

significant identification (p < 0.05, Mascot score > 81) was obtained for one of 

the three biological replicates. Toluene-4-monooxygenase proteins were found in 

the top 10 Mascot hits regardless of significance, but these results were not 

significant at the 95% confidence level. It is uncertain why significant scores were 

not obtained for all samples, but it might have been due at least in part to the 

number of queries used in the Mascot search, fewer than 100 masses, because no 

more than 100 masses were observed from these bands. In cases resulting in 
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significant scores, fewer than 55 queries were submitted. Conversely, cases with 

more than or exactly 55 queries did not yield significant scores, although the same 

protein identification was produced. 

For P. putida F1, seven bands (corresponding to approximate molecular 

weights of 182, 90, 72, 69, 57, 29, and 22 kDa) appeared to be more intense in the 

toluene cultures than in the rich-medium cultures (Fig. 2.1). MALDI-TOF MS 

and PMF revealed two dehydrogenases, a TonB-dependent/ligand-gated channel, 

heat shock proteins, a growth factor, and the toluene dioxygenase β subunit 

(gi|148548093) (Table 2.1). Neither the α subunit nor a meta-cleavage enzyme 

were identified, possibly as a result of unfavorable ionization tendencies with 

MALDI. This finding mirrors results of prior work in which the β subunit of the 

dioxin dioxygenase was known to be present but was not detected (Halden et al., 

2005b). 

The heat-shock proteins found were Hsp90, DnaK, and GroEL, which are 

also induced by growth on benzoate in P. putida P8 (Cao & Loh, 2008). Other 

bands produced Pseudomonas-specific identifications of constitutive proteins, 

e.g., DNA-directed RNA polymerase (data not shown). Still other bands appeared 

more highly expressed in the induced sample, but either could not be excised 

precisely or could not be identified. While positive identification of the strain- 
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Figure 2.1. SDS PAGE Gel Comparison of the Soluble Proteome of 
Pseudomonas putida F1 Grown on Toluene and on Rich Media (LB). Standard 
masses are given in kDa. Highlighted bands were identified using Mascot. The 
results are shown in Table 2.1.  
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Table 2.1. Identification of Bands Excised from SDS PAGE Gels of 
Pseudomonas putida F1, Showing Ranges of Mascot Scores, Percent Coverage 
and Number of Matched Peptides. Approximate molecular weights reflect the 
nominal masses of the identified proteins, to the nearest kDa. 

Approx. mol.  
weight (kDa) 

ID 
Mascot score 
% coverage 
matched peptides 

182 
NAD-glutamate 
dehydrogenase 
Pseudomonas putida F1 

100 - 118 

11 - 14% 

(24 - 28) 

90 
TonB-dependent siderophore 
receptor 
Pseudomonas putida F1 

84 - 255 

25 - 43% 

(13 - 31) 

72 
heat shock protein 90 
Pseudomonas putida F1 

96 - 156 

26 - 35% 

(16 - 22) 

69 
Pyrrolo-quinoline quinone 
Pseudomonas putida F1 

111 - 163 

27 - 38% 

(17 - 22) 

57 
chaperonin GroEL 
Pseudomonas putida 

96 - 130 

20 - 39% 

(19 - 10) 

29 

2,3-dihydroxy-2,3-
dihydrophenylpropionate 
dehydrogenase Pseudomonas 
putida F1 

100 - 146 

40 - 61% 

(11 - 15) 

22 
toluene dioxygenase 
Pseudomonas putida F1 

84 - 94 

32 - 40% 

(6 - 7) 
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specific catabolic target, toluene dioxygenase, was produced from only one of the 

three biological replicates, the corresponding band was observed in all three 

cultures. 

Two toluene-grown samples and two controls of the P. putida F1 cultures 

were prepared as described above for quantitative proteomic analysis. An iTRAQ 

(Applied Biosystems, Foster City, CA) labeling protocol was conducted following 

the manufacturer’s directions. LC spotting and MALDI-TOF/TOF analysis were 

performed following the manufacturer’s recommendations using a Tempo spotter 

and AB 4800 respectively (Applied Biosystems). 

Spectra were analyzed using a customized off-line database for P. putida 

F1 generated from the NCBI GenBank file. Peptides were searched against this 

database using the Mascot PMF software with an error tolerance setting of ± 50 

ppm; no missed cleavages were allowed. The variable oxidation of methionine 

was accounted for, as well as iTRAQ8plex modifications on N-termini, lysine, 

and tyrosine residues. Confidence intervals (95%) and p-values were obtained 

with ProteinPilot (Applied Biosystems) for each iTRAQ reagent ratio comparison. 

Only those proteins demonstrating significant (p < 0.05) quantitative differences 

in all four pairwise comparisons were considered to be modulated. 

Quantitative analysis of the toluene dioxygenase revealed that expression 

increased between 5.7- and 2.0-fold (95% confidence). Similarly, the ring 

hydroxylating α subunit (gi|148548093) was also more highly expressed in the 

toluene-grown cultures, by a factor between 4.0 and 2.7. These results corroborate 
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the observations by the 1D MS technique, and support the postulate that toluene 

dioxygenase is a suitable biomarker for F1. 

The results for P. putida F1 and P. mendocina KR1 indicate the potential 

use of PMF and MALDI-TOF MS for strain-specific identification and 

characterization of biodegradative bacteria. The results for Burkholderia sp. 

JS150 suggest that this technique may also provide valuable insight for 

determining homology and identifying evolutionary pathways. Although the 

enzyme identified in the Burkholderia sp. JS150 culture was not the expected 

metabolic biomarker, it is a metabolic enzyme with a function similar to the 

expected target, and might therefore be related. 

It is plausible that a chlorobenzene dioxygenase might have functional 

homology to a toluene dioxygenase due to the structural similarities of their 

respective substrates. Furthermore, in this study, the 2,3-dihydroxy-2,3-

dihydrophenylpropionate dehydrogenase from P. putida F1 was identified in 

tandem with a chlorobenzene dioxygenase (gi|61394236). In a genetic study 

exploring a potential mechanism for the evolution of the chlorobenzene 

degradation pathway in Ralstonia sp. JS705, 90% sequence homology was found 

between the mcbAa gene, thought to encode a terminal oxygenase, and the todC1 

gene from P. putida F1 (Muller, Werlen, Spain, & van der Meer, 2003), which 

encodes the α subunit of the oxygenase component of the toluene dioxygenase 

(Zylstra & Gibson, 1991). 
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The use of MS-based proteomics in the field of biodegradation is 

expanding, but it is still primarily limited to methods including two-dimensional 

separation and chromatography techniques (Seung, Choi, & Kahng, 2007). The 

present study indicates that simple MALDI-TOF MS can provide meaningful 

results with a minimal amount of sample preparation for multiple bacterial strains 

of varying degrees of characterization. This technique can also be useful in 

screening for the presence of degradative enzymes and in suggesting possible 

genes of interest. 
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Transition 2 

The previous chapter showed the utility of a relatively simple sample 

process stream to identify biomarkers for the presence and efficacy of several 

organisms of importance to bioremediation. The combination of mass 

spectrometry and peptide mass fingerprinting was used to identify key 

degradative enzymes that could serve as biomarkers for the use of Pseudomonas 

putida F1, P. mendocina KR1, and Burkholderia sp. JS150 in the biodegradation 

of toluene. 

This work was based on a similar approach taken to investigate another 

organism, Sphingomonas wittichii RW1 (Halden et al., 2005b), wherein similar 

techniques were used to identify the dioxin dioxygenase as a biomarker for dioxin 

biodegradation. In this study, the sodium dodecyl sulfate polyacrylimide gel 

electrophoresis was obviated because the target enzyme is so highly expressed 

that the investigators were able to identify it from the cellular background without 

any additional separation. 

While these studies have demonstrated the advantages of such mass 

spectrometry-based methods for the field of environmental engineering and 

specifically bioremediation, their use is far from mainstream. In the next chapter, 

a biomarker discovered using mass spectrometry is translated to a more mature, 

widely accepted technique: quantitative PCR. 

 Chapter 3 describes the development of a quantitative PCR method for the 

gene encoding the large subunit of the dioxin dioxygenase, dxnA1. This method is 
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then used to examine the plasmid copy number relative to the population size of 

S. wittichii RW1 in landfill leachate microcosms.  
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3. Quantitative PCR for Tracking Megaplasmid-borne Biodegradation 

Potential of a Model Sphingomonad 

The genus Sphingomonas is an unusual group of α-proteobacteria known 

for their extraordinary ability to degrade recalcitrant environmental pollutants 

(White, Sutton, & Ringelberg, 1996). A survey of 18 sphingomonads showed that 

almost all strains carried 2 to 5 different, large (50 to 500 kb) megaplasmids 

(Basta, Keck, Klein, & Stolz, 2004a). Their biodegradative genes are often 

extrachromosomally encoded (Basta et al., 2004a), but they may not be organized 

in traditional operons or located on the same plasmid (Tabata et al., 2011). The 

frequency with which biodegradative sphingomonads are discovered, coupled 

with their unique genetic structure and reluctance to share plasmids amongst other 

genera, suggests that these megaplasmid-harboring organisms have an adaptive 

advantage to metabolize anthropogenic environmental pollutants (Stolz, 2009). 

S. wittichii RW1 is the first identified aerobic bacterium that can degrade 

mono- through hexa-chlorinated dioxins (Halden, Halden, & Dwyer, 1999b; 

Hong, Chang, Nam, Fortnagel, & Schmidt, 2002; Nam, Kim, Schmidt, & Chang, 

2006) and use dibenzo-p-dioxin or dibenzofuran as a sole source for carbon and 

energy (Sakaki & Munetsuna, 2010). Polychlorinated dibenzo-p-dioxins are 

ubiquitous environmental pollutants from various sources, including waste 

incineration (Hays & Aylward, 2003). S. wittichii RW1 has been investigated as a 

bioremediation agent and shows promise (Nam et al., 2005; Nam et al., 2006). It 

is also a model sphingomonad, thanks to its high degree of characterization and 
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the complete sequencing of its genome and two megaplasmids (Miller et al., 

2010). 

Dibenzo-p-dioxin degradation proceeds through the dioxin dioxygenase, 

which is encoded by the genes dxnA1 and dxnA2, together denoted dxnA1A2, on 

the 220-kb plasmid, pSWIT02 (GI:148550845) (Miller et al., 2010). This enzyme 

catalyzes the initial dihydroxylation of the aromatic ring (Sakaki & Munetsuna, 

2010), leading to its spontaneous cleavage into 2,2’,3-trihydroxybiphenyl, which 

is dihydroxlyated by a second enzyme into 2-hydroxy-6-oxo-6-phenylhexa-2,4-

dienoate and then hydrolyzed to form salicylic acid (Seah et al., 2007). These 

downstream metabolites can then be funneled into the citric acid cycle and used 

for carbon and energy. The dioxin dioxygenase also transforms chlorinated 

congeners of dibenzo-p-dioxin, resulting in the formation of chlorinated 

salicylates (Seah et al., 2007). This initial transformation destroys and detoxifies 

the planar structure of the molecule (Nojiri & Omori, 2002), but the resultant 

chlorinated intermediates typically do not support growth. 

Due to its crucial role in dioxin degradation, the dioxin dioxygenase is 

therefore a promising candidate biomarker (Halden et al., 2005b). A protein-based 

detection method for the dioxin dioxygenase exists (Halden et al., 2005b), and 

standard PCR primers have been published for the study of the dxnA1A2 cistron 

(Armengaud, Happe, & Timmis, 1998a; Basta et al., 2004a) and for ring-

hydroxylating dioxygenases in general (Kimura & Kamagata, 2009). However, 

due to the amplicon length or lack of specificity, these primers are not appropriate 



39 
 

for quantitation, which is important in linking microbial activity with chemical 

transformations to track bioremediation (van der Zaan et al., 2010). 

In the present study, we developed quantitative polymerase chain reaction 

(qPCR) primers to detect the dxnA1 gene with sufficient sensitivity and specificity 

for use in environmental samples. We then used this method to determine the 

copy number of the pSWIT02 megaplasmid and monitor S. wittichii RW1 in 

bioaugmented landfill leachate.  

S. wittichii RW1 was routinely grown in pure culture in minimal medium 

supplemented with dibenzofuran as previously described (Halden et al., 2005b). 

Plasmid DNA was extracted using a BACMAX DNA Purification Kit 

(EPICENTRE, Madison, WI). The dxnA1A2 gene cluster was amplified as 

previously (Basta et al., 2004a). To generate a positive control, the product was 

treated with the QiaQuick PCR Purification Kit (Qiagen, Valencia, CA), cloned 

into the pCR®4-TOPO® plasmid using the TOPO TA Cloning Kit for Sequencing 

(Invitrogen, Carlsbad, CA), and sequenced using an Applied Biosystems 3730 

capillary sequencer. A Basic Local Alignment Search Tool (BLAST; 

http://www.ncbi.nlm.nih.gov/) search of the sequence of the cloned product 

showed 99.95% identity to dxnA1 (GI:4007779) with 0% gaps and complete 

coverage.  

The qPCR primers for dxnA1were designed using the Primer3 software 

v1.1.4 (Rozen & Skaletsky, 2002) and evaluated for secondary structures using 

NetPrimer (PREMIER Biosoft International, http://www.premierbiosoft.com/). 
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The specificity of the primers was checked in silico using Primer-BLAST, which 

found no non-specific amplification for the selected primer pair (product size 

between 60 and 300 base pairs, minimum of 6 mismatches to ignore targets). 

Optimized qPCR conditions were as follows: 95˚C for 2 min; 40 cycles of 

95˚C for 10 s, 58˚C for 20 s, and 68˚C for 30 s, and a melting curve generated at 

the end of the last cycle. Primers were supplied at a concentration of 300 nM. The 

qPCR procedure was performed using 5 PRIME RealMasterMix for SYBR Green 

(Fisher Scientific, Pittsburgh, PA) on a Mastercycler ep realplex (Eppendorf, 

Hamburg, Germany). qPCRs contained 4 µl of template DNA in a final reaction 

volume of 10 µl. 

The primer pair 321-451 (Table 3.1) produced a standard curve using 

tenfold serial dilutions of our dxnA1 control plasmids with a slope of 3.33, 

indicating a near ideal amplification efficiency of 1.01, linearity over 8 orders of 

magnitude, and a limit of quantification of 62 copies (Figure 1). The 

corresponding melting curve showed only one peak, indicating a unique product. 

To evaluate primer specificity, DNA extracted from S. wittichii RW1 was 

introduced at concentrations ranging from 1 ng/µl to 0.001 ng/µl (106 to 102 

copies), into a background of DNA extracted from an activated sludge sample 

Table 3.1. Primer Locations and Sequences 

Primer 5’ Base 3’ Base Sequence (5’ – 3’) 

dxnA1fwd321 321 341 TCATG GCTGG GTGTT CAATA 

dxnA1rev451 431 451 CGAAA ATCAG CCCCT TGTAG 
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from the aeration tank of the Mesa Northwest Wastewater Reclamation Project or 

agricultural soil (Walters, McClellan, & Halden, 2010) (Figure 3.1). Extractions 

from environmental samples were performed with the NucleoSpin Soil kit 

(Macherey-Nagel, Düren, Germany). The total concentration of target and 

background DNA added to the PCR reaction was always 1 ng/µl for a total of 4 

ng DNA/reaction.  

Amplification of target DNA was linear over 4 orders of magnitude, from 

102 to 106 copies (R2 = 0.99); fluorescence signal from the background samples 

was similar to that of the non-template controls. This performance is similar to 

that of other methods used for 16S rDNA (linearity from 102 to 107 target cells, 

with each cell containing between 1 and 15 copies of the 16S rDNA gene, against 

a background of DNA from 7 non-target bacteria) (Maeda et al., 2003) and the 

benzylsuccinate synthase gene bssA (linearity from 102 to 106 genome copies 

against a background of 3 non-target bacteria) (Beller, Kane, Legler, & Alvarez, 

2002). Probe-based, as opposed to SYBR-based, qPCR methods can achieve 

detection limits an order of magnitude lower (Ritalahti et al., 2006). 
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Figure 3.1. Correlation of observed copy number and concentration of 
template DNA from pure culture and samples spiked with genetic background. 
Genomic DNA from pure culture was diluted in water (RW1) or in DNA 
extracted from sludge (RW1 + sludge) or soil (RW1 + soil). Copy numbers 
calculated from the unspiked sludge and soil samples were less than the limit of 
quantitation. Data are shown on a log-log plot for ease of visualization. Each 
point is an average of three replicates; error bars representing the standard error 
may be smaller than the marker. Insets show the slopes of the respective dilutions 
and the qPCR standard curve for the designed primer set (321fwd-451rev). 
Standard curves were generated using a recombinant plasmid containing the gene 
encoding for the dioxin dioxygenase. Results shown here are typical of several 
qPCR runs. 
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To determine the copy number of the pSWIT02 megaplasmid, qPCR was 

also performed targeting the 16S rDNA (Maeda et al., 2003). There are two 

copies of this gene on the chromosome and none on either megaplasmid (Miller et 

al., 2010). A comparison of dxnA1 to 16S rDNA copy number in S. wittichii RW1 

grown on dibenzofuran showed a ratio of 1.0 ± 0.1 (average ± standard error, 

n=19), implying a 2.0 ± 0.2 ratio of pSWIT02 to chromosome.  

Microcosms were created to test the survival of S. wittichii RW1 in landfill 

leachate. The leachate was known to contain acetone, benzene, 2-butanone, 1,4-

dichlorobenzene, dichloroethane, dichloroethene, dichloropropane, ethylbenzene, 

methylene chloride, 4-methyl-2-pentanone, tetrachloroethene, toluene, 

trichloroethene, vinyl chloride, and xylenes in the µg/L range. Dibenzofuran from 

a methanol stock solution was added to sterile test tubes to a final concentration of 

0.5 mg/ml. Landfill leachate was pasteurized to inactivate endogenous 

microorganisms by heating to 65˚C for one hour in a water bath in sealed 

containers to prevent evaporative compound losses, and added to the test tubes 

after cooling to room temperature. Microcosms were inoculated with 50 µl of a 

pure culture of S. wittichii RW1, resulting in an approximate density of 107 

CFU/ml, which is comparable to previous studies (Halden, Halden, et al., 1999b). 

This high inoculum is necessary because the population declines as the 

contaminant is transformed (Halden, Halden, et al., 1999b; Nam et al., 2005), 

likely because the chlorinated metabolites, especially chlorocatechols, can inhibit 

enzymes in this and other catabolic pathways (Halden, Halden, et al., 1999b; Seah 
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et al., 2007). The tubes were incubated horizontally at room temperature without 

agitation and sampled daily with triplicates taken 3, 6, 9, 12, and 14 days post 

inoculation. Colony counts were performed by spreading dilutions on Luria broth 

(LB) agar plates. DNA was extracted with the NucleoSpin Soil kit and diluted 

1:10 in water for qPCR. Fluorescence signal from uninoculated leachate was not 

significantly different from the non-template control. 

Total DNA, dxnA1 copy numbers, and colony counts all showed a similar 

trend (Fig. 3.2), indicating that the population of S. wittichii RW1 increased 

initially and then was stable. Results from the qPCR assay showed less variation 

than colony counts because of the greater specificity of the non-culture based 

assay that was insensitive to a background of leachate-endogenous 

microorganisms that survived pasteurization and persisted at levels at one or more 

orders of magnitude less than S. wittichii RW1. 
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Figure 3.2. Measurement of total DNA, dxnA1 copy number, and colony 
counts from Sphingomonas wittichii RW1-bioaugmented landfill leachate 
microcosms. Days 3, 6, 9, 12, and 14 are the average of biological triplicates; 
error bars show the standard error. All other measurements are single data points. 
Measurements are normalized per ml of culture. 

 
In the leachate microcosms, there were 0.5 ± 0.1 (average ± standard error; 

n=13) dxnA1 copies per CFU, which is lower than the pure culture copy number, 

suggesting that a part of the RW1 community is making use of C-sources in 

leachate other than dibenzofuran. The correlation between colony count and 

dxnA1 was poor (R2 = 0.26). Other studies have also noted discrepancies between 

colony counts and qPCR assays (Ludwig & Schleifer, 2000). That dxnA1 is on a 

megaplasmid may contribute to the lack of correlation, as not every cell contains 

the plasmid. While the percentage of the population carrying the plasmid varies, it 

is unlikely to be transferred to other organisms, even in the presence of a selective 

advantage (Basta et al., 2004a). 

The dxnA1 qPCR results were consistently lower than the colony counts, 

which is expected if plasmid copy number is less than one. This observation 
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suggests that biodegradative genes can be lost, so culture-based assays or methods 

targeting chromosomal genes, e.g. 16S rDNA, may overestimate biodegradative 

capability when the necessary genes are plasmid-based, as is often the case with 

sphingomonads (Basta et al., 2004a). Similar observations have been made in the 

anaerobic world concerning vinyl chloride reductase genes in Dehalococcoides 

(van der Zaan et al., 2010), which are flanked by insertion sequences 

(Krajmalnik-Brown, Saunders, Ritalahti, & Löffler, 2007) and therefore also 

subject to loss in the absence of positive pressure (Futagami, Goto, & Furukawa, 

2008). 

Previous studies looking at S. wittichii RW1 activity in contaminated 

environments have been hampered by a lack of molecular tools to adequately 

evaluate the bacterial population. Instead, they rely on dioxin removal rates as a 

proxy for bacterial activity and survival (Halden, Halden, et al., 1999b; Nam et 

al., 2005). The actual population levels are therefore unknown. We believe this 

qPCR method will help answer questions about population levels in the face of 

inhibitory metabolites and the retention of biodegradative capability despite the 

availability of other carbon sources. We have already provided evidence that 

biodegradative capability can be lost in a complex medium containing multiple 

carbon sources by comparing dxnA1 copy number to colony counts in landfill 

leachate microcosms. For in situ studies where it is impractical to perform colony 

counts due to the presence of other microorganisms, quantification of dxnA1 
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could be combined with general or Sphingomonas-specific 16S rDNA assays to 

compare population levels and biodegradative capability. 

We created a qPCR method for dxnA1, the gene encoding for dioxin 

dioxygenase, an important enzyme in the dioxin degradation pathway of S. 

wittichii RW1. This qPCR method is accurate over 8 orders of magnitude and has 

a limit of quantitation of 62 copies per reaction. We have demonstrated the 

specificity of the primers over 4 orders of magnitude, down to 102 copies/reaction 

against environmental DNA backgrounds. Finally, we have used this method to 

quantify dxnA1 in environmental samples and, for the first time, showed growth 

of S. wittichii RW1 in landfill leachate, suggesting that the organism could be 

used to remediate dioxins in contaminated leachates. Our findings indicate that 

loss of megaplasmids occurs in S. wittichii RW1 populations under the conditions 

tested. This underscores the value of the present method for tracking the 

biodegradation potential of S. wittichii RW1 cells released into contaminated 

environments for remediation purposes. The method illustrated here may be 

adapted for targeting biodegradative, plasmid-based genes extant in other 

sphingomonads to accurately gauge their bioremediation potential. 

The authors would like to acknowledge Drs. Nicole Hansmeier, Benny 

Pycke, and He-Ping Zhao for their assistance. This project was supported in part 

by Award Number R01ES015445 from the National Institute of Environmental 

Health Sciences (NIEHS). The content is solely the responsibility of the authors 
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Transition 3 

In Chapter 3, a quantitative PCR method was created for a biomarker that 

was originally identified using mass spectrometry. That method was then vetted in 

landfill leachate microcosms, showing its utility in environmental settings. While 

this gene-based method is immediately useful, it is based on more conventional 

technology and subject to limitations regarding the inference of phenotype. 

In Chapter 4, I return to mass spectrometry and, with the help of my co-

workers, develop a method using an absolute quantitation technique known as 

AQUA for the same biomarker discussed in Chapter 3, the dioxin dioxygenase, 

and for several others, including the norovirus capsid protein and the pathogenic 

prion protein. The use of AQUA to detect an enzyme of importance for 

bioremediation is groundbreaking. No such methods have previously been 

developed for use in the detection of bioremediation agents. 

These AQUA methods are tested against a background of potential 

environmental interferences for all of the assayed targets. The AQUA peptide 

biomarkers are also tested using two forms of mass spectrometry: electrospray 

ionization triple quadrupole tandem mass spectrometry and the less conventional 

matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. This 

latter instrument is uncommonly used for AQUA, but its robustness is desirable 

when dealing with potentially dirty environmental samples.  
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4. Targeted, Quantitative MALDI-TOF MS Analysis of Biological 

Agents from Multiple Kingdoms in Environmental Samples 

 With the growing availability of sequence data, the feasibility and 

advantages of mass spectrometric (MS) protein-based detection are becoming 

ever more apparent. Such methods can be directed at a wide variety of targets, 

spanning all kingdoms, and are of use in several scientific disciplines. Pathogenic 

bacteria (Holland et al., 2000), viruses (D. R. Colquhoun, K. J. Schwab, R. N. 

Cole, and R. U. Halden, 2006), and prion proteins (Silva et al., 2011) can all be 

detected via protein-based methods in the biomedical and public health domains; 

beneficial bacteria (Halden et al., 2005b) are likewise targeted in environmental 

engineering applications, such as bioremediation (i.e., the use of bioagents to 

detoxify chemical pollutants). Such MS-based methods may be preferred over 

their gene-based counterparts because they impart phenotypic information and 

can give more insight into traits like infectivity or biodegradative activity. 

 Protein-based qualitative detection methods can be taken to the next 

logical and practical level by transforming them into quantitative tools, thereby 

enabling, for example, risk assessment or an evaluation of bioremediation 

efficacy. Absolute quantitation represents the ultimate goal, as it allows for a 

comparison of results across samples and across studies for maximal utility of the 

findings (Chao et al., 2010). This quantitation can be achieved through the 

inclusion of stable heavy-isotope labeled standards, sometimes referred to as 

AQUA peptides. 
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 Electrospray ionization-quadrupole mass spectrometers or ESI-MS 

instrumentation has been historically favored for use in absolute quantitation of 

biomolecules. However, this technique is highly sophisticated and sensitive, 

making it less than ideal for widespread analysis of environmental samples that 

may contain components adversely affecting instrument performance. Matrix-

assisted laser desorption/ionization (MALDI) instruments, often followed by 

time-of-flight (TOF) or tandem TOF mass spectrometers, provide an alternative to 

electrospray-based techniques and are much more robust and therefore potentially 

better suited for detecting targets in complex environmental matrixes.  For some 

types of samples, the analysis can even be performed without the elimination of 

environmental background. For example, MALDI-TOF MS-based semi-

quantitative analysis of tissues has been successfully used to measure peptide 

hormones (Lippolis et al., 2009). In a comparison test using isobaric tags 

(iTRAQ) to measure Escherichia coli tryptic digests, MALDI and ESI 

instruments performed comparably well, and samples could be archived on the 

MALDI target plates.(Kuzyk et al., 2009)  For these practical reasons, MALDI-

based quantitation should receive more attention. 

 Electrospray systems are usually coupled to a liquid chromatography (LC) 

separation, which adds another dimension that can be used to identify a target 

(retention time) (Anderson et al., 2012) but often represent the main bottleneck in 

rapid sample throughput due to well established problems with clogging and 

leakage. Alternative methodological approaches include liquid chromatography-
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MALDI systems and MALDI-based detection following immunocapture in lieu of 

LC (Anderson et al., 2012; R. W. Nelson & Borges, 2011). The latter approach is 

excellent for concentrating target peptides from complex samples, but relies on 

antibodies whose availability is limited and requires further method optimization 

for antibody binding, thereby precluding some applications for practical or 

economical reasons. Immunocapture-based assays coupled with MALDI-TOF MS 

quantitation have, however, been successfully employed for a variety of synthetic 

peptides of human origin (Anderson et al., 2012), 11 diabetes-related proteins 

(Borges et al., 2011), and allelic variants specific to the sheep prion protein 

(Morel, Andreoletti, Grassi, & Clement, 2007). 

 In situations where antibodies are not available, relatively simple sample 

preparation, such as filtration (D. R. Colquhoun, K. J. Schwab, R. N. Cole, and R. 

U. Halden, 2006) or one-dimensional gel electrophoresis (Hartmann et al., 2010), 

may suffice. These minimal separation techniques do not require highly skilled 

operators or expensive and toxic solvents, nor do they require the time- and cost-

intensive development of antibodies. Similar to LC, these separation methods, 

including immunoseparation, can provide some information to corroborate the 

identity of the target. In tandem mass spectrometry (e.g., TOF/TOF) systems, the 

identity of the target and standard peptides can also be confirmed in the second 

MS. Fragmentation patterns, along with particle size, molecular weight, or 

antibody-binding affinity, can compensate for information lost by excluding 

liquid chromatography from the workflow (e.g., retention time).  
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 While the principles of MALDI-based quantitation using heavy-isotope 

labeled standards have been demonstrated, applications outside of the biomedical 

field are rare. In the present study, we examined the use of heavy-isotope labeled 

standards for the MALDI-TOF MS-based quantitation of proteins from several 

model systems in challenging environmental sample matrixes representing real-

world complexities. From eukaryotic systems, we chose the prion protein, an 

agent widely associated with scrapie in sheep and bovine spongiform encephalitis. 

The target peptide is conserved for ovine, bovine, and cervine versions of the 

pathogenic, misfolded protein (e.g., GI:34733623, GI:37576785, GI:4235624). As 

a representative virus, we chose norovirus, a member of the calicivirus family and 

the causative agent of the majority of waterborne illness in the United States. 

Norovirus is also a class B bioterrorism agent. The target peptide used in this 

study comes from the capsid protein (GI:34223984), which protects the viral 

genetic material from environmental degradation and plays a role in the infection 

process. From the bacterial kingdom, we chose Sphingomonas wittichii RW1, an 

α-proteobacterium valued for its ability to transform polychlorinated aromatic 

compounds (dioxins). The target peptides come from the dioxin dioxygenase 

(GI:3426122), the initial enzyme in the dioxin degradation pathway. This 

workflow was also attempted for oocysts of Cryptosporidium parvum, a single-

celled eukaryotic parasite that was responsible for the largest waterborne disease 

outbreak in recorded U.S. history. The goal of this study was to determine the 
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range of targets and different environmental matrices amenable to analysis by 

MALDI-TOF MS for absolute quantitation. 

 

Experimental 

 Peptides. Peptide standards (Table 4.1) were synthesized by AnaSpec 

(Fremont, CA) to be > 95% purity and include one 13C6,
15N-leucine or 13C5,

15N-

valine residue. Lyophilized peptides were resuspended in 0.1% trifluoroacetic 

acid (TFA). 

 Samples. The prion peptide was synthesized by AnaSpec to be >95% 

purity and handled as the heavy-labeled peptide standards. Norovirus-like 

particles were kindly provided by the laboratory of Dr. Mary Estes. Particle 

quantity was determined by bicichoninic acid (BCA) assay (Pierce, Rockford, IL), 

quality by transmission electron microscopy with negative staining, and purity by 

sodium dodecylsulfate polyacrylimide gel electrophoresis (SDS PAGE). The 

dioxin dioxygenase was produced by culturing S. wittichii RW1 on minimal 

medium supplemented with dibenzofuran (Halden et al., 2005b) and partially 

purified by SDS PAGE. Heat-inactivated Cryptosporidium oocysts (Sterling 

Parisitology Laboratory, Tucson, AZ) were washed twice and resuspended in 50 

mM ammonium bicarbonate. 

 Environmental samples. Groundwater from a perchlorate-contaminated 

well in Mesa, AZ was collected using a bailer, transported in a cooler, and stored 

at -20˚C until analysis. Aliquots of 5 ml were thawed, filtered and concentrated to 
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<500 µl using a filter with a cutoff value of 5,000 nominal molecular weight 

(Agilent, Santa Clara, CA). 

 Fresh produce samples, consisting of strawberries and green leaf lettuce, 

were obtained from a local retail outlet. Samples were processed based on 

methods described by Tahk et al. (Tahk et al., 2012). Strawberries and lettuce 

were cut to produce 5 g aliquots, which were washed with approximately 50 ml 

0.25 M threonine-0.3 M NaCl on a rotary shaker for 5 h. The elution was then 

concentrated to <500 µl using Vivaspin20 filters featuring a 100,000 nominal 

molecular weight cutoff value (Sartorius Stedim North America, Bohemia, NY). 

 Non-homogenized, organic whole milk was obtained from a local retail 

outlet and stored at -80˚C. Samples were processed as in Lippolis, et al.(Lippolis 

et al., 2009): 5 ml aliquots of milk were thawed and centrifuged at 10,000 × g for 

20 min at 4˚C. The resulting pellets were washed twice and resuspended in 25 ml 

chilled Dulbecco’s Phosphate Buffered Saline (DPBS) without calcium or 

magnesium (0.2 g/l KCl, 0.2 g/l KH2PO4, 0.8 g/l NaCl, 1.15 g/l NaH2PO4; pH = 

7.4). Resuspensions were twice overlaid with 15 ml 45% sucrose and centrifuged 

at 10,000 × g for 40 min at 4˚C. Finally, pellets were washed 6 times with 45 ml 

DPBS and resuspended in 1 ml of 50-mM ammonium bicarbonate. 

 Agricultural soil samples from Baltimore, MD(Walters et al., 2010) were 

processed using the direct soil protein extraction method described by Chourey et 

al. (Chourey et al., 2010). Briefly, 5 g aliquots of frozen soil were mixed with 10 

ml Alkaline-SDS buffer and heated in a boiling water bath for 10 min. The 
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mixture was then cooled and centrifuged at 2095 × g for 10 min. Proteins were 

concentrated from the supernatant via a TCA-acetone precipitation and 

resuspended in 1 ml of 50-mM ammonium bicarbonate. 

 Protein extraction. Cells in environmental elutions or concentrations 

were lysed by sonication on ice with a SONIFIER (Branson, Danbury, CT) using 

5 bursts of 10 s each with 10 s rests in between at a power setting of 30% max. 

Lysates were centrifuged at 21,000 x g for 15 min to separate soluble proteins 

from cell debris. Protein concentrations were determined using the BCA assay; 

produce samples were analyzed directly with SDS PAGE because the presence of 

threonine in the sample buffer was incompatible with the BCA assay. 

 SDS PAGE. Sample aliquots were mixed 1:1 (v:v) with Laemmeli sample 

buffer (Bio-Rad, Hercules, CA) containing 5% ß-mercaptoethanol and heated at 

95˚C for 5 min. After cooling to room temperature, samples were loaded onto 4-

20% TGX gels (Bio-Rad, Hercules, CA) and run at 200 V for 35 min. Gels were 

stained for qualitative analysis using SimplyBlue SafeStain coomassie reagent 

(Bio-Rad, Hercules, CA) or for mass spectrometry using the Flamingo fluorescent 

stain (Bio-Rad, Hercules, CA). Fluorescent stained gels were visualized using a 

UV light box. Bands at 57 kD, 49 kD, and 27 – 30 kD, corresponding to the 

norovirus capsid protein, the dioxin dioxygenase, and the diagnostic core of the 

prion protein, respectively, were excised using a razor blade and dried using a 

SpeedVac for in-gel digestion. 
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 MALDI-TOF/TOF MS. Gel bands were digested overnight at 37˚C in a 

solution containing 10 ng sequencing-grade modified trypsin (Promega, Madison, 

WI) in 20 µl of 50-mM ammonium bicarbonate. Norovirus capsid protein 

standards were digested in a solution containing 1:100 trypsin:norovirus and ≥35 

µl of 50-mM ammonium bicarbonate. Approximately 106 washed C. parvum 

oocysts were digested with 500 ng trypsin. After digestion, large particles were 

removed by centrifugation at 5,000 × g for 5 min. Digests were cooled to room 

temperature and adjusted to 0.1% TFA. For standard curves, digests of target 

samples were diluted in 0.1% TFA; to evaluate environmental influences, digests 

of target samples were diluted in digests of environmental samples, except for the 

dioxin dioxygenase, which was mixed with the environmental samples prior to 

SDS PAGE. Standard peptides were added to the acidified digests, and the 

mixtures were concentrated and desalted using Omix C18 ZipTips (Varian, Palo 

Alto, CA) and directly eluted with α-cyano-4-hydroxycinnamic acid (LaserBio 

Labs, Sophia-Antipolis, France) onto a 384-well stainless steel target plate 

(AB/Sciex, Framingham, MA). 

 Samples were analyzed using a 4800 MALDI-TOF/TOF MS (AB/Sciex, 

Framingham, MA). For quantitation, spectra were acquired in positive reflector 

mode with a fixed laser intensity between 2800 and 3500 arbitrary units. To 

confirm the identity of the target peaks, MS/MS spectra were acquired in positive 

mode using post-source decay for fragmentation. 
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 Data analysis. Spectra were acquired using 4000 Explorer software and 

exported to Data Explorer (AB/Sciex, Framingham, MA). Mass calibration was 

performed using internal trypsin autolysis peaks or external calibrants (Sigma, St. 

Louis, MO). Peaks with a signal-to-noise ratio greater than 3 or isotope clusters 

with a combined signal-to-noise ratio greater than 10 in the relevant mass ranges 

were exported to Excel (Microsoft) for quantitative analysis. 

 

Results and Discussion 

 We evaluated the use of MALDI-TOF/TOF MS for the targeted, 

quantitative analysis of a variety of analytes as model systems of relevance for 

public health and environmental engineering. Targets representing multiple 

kingdoms (Fig. 4.1A-D) were chosen based on tryptic peptides from pre-

determined biomarkers, where available. For the prion protein, the target peptide 

is a fragment from the proteinase K-resistant diagnostic core of the misfolded, 

pathogenic protein (Fig. 4.1A). For norovirus (Fig. 4.1B), the target peptide 

comes from the capsid protein, without which the viral RNA is no longer 

infectious and subject to environmental degradation. For S. wittichii RW1 (Fig. 

4.1C), four potential peptides from the dioxin dioxygenase, the first enzyme in the 

dioxin degradation pathway, were evaluated. The initial work needed to determine 

these biomarkers should not be underestimated. For example, this workflow was 

extended to the sporulated, infective stage of the eukaryote C. parvum (Fig. 4.1D) 

but no representative peptides were identified, presumably due to the oocyst’s  



 

 

Figure 4.1. Spectra of the diagnostic prion peptide, VVEQMCITQYQR (m/z = 1497.8), and its heavy-labeled standard, 
VV*EQMCITQYQR (m/z = 1503.8) (A); the norovirus peptide, TLDPIEVPLEDVR (m/z = 1495.8), and its heavy-labeled 
standard, TLDPIEVPLEDV*R (m/z = 1501.8) (B); and the dioxin dioxygenase, GVSEGYIAR (m/z = 951.5), and its heavy-
labeled standard, GV*SEGYIAR (m/z = 957.5) (C). Insets (A-C) show MS/MS of the target peptide (top) and the standard 
(bottom). The y-series ions are labeled. A spectrum of digested C. parvum oocysts and MS/MS of the m/z = 1851.3 peak are 
also shown (D); * indicates a trypsin autolysis peak (m/z = 842.5).   
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recalcitrant, heavily glycosylated cell wall. Whereas an unidentified ion 

reproducibly yielded a characteristic peak at m/z 1,851.3 for C. parvum oocysts, 

its diagnostic value could not be examined further due to a lack of a stable 

isotope-labeled analog for use as a quantitative standard. 

 For all other bioagents, each analyte was quantified by normalizing the 

observed peak height in the first MS to that of a heavy-isotope labeled standard 

(Table 4.1). Quantitation was evaluated as a function of the limit of detection, 

robustness with respect to sample interference from different environmental 

compartments, and tolerance to differences in the relative amounts of analytes and 

standards. 

 Mass spectrometry has already been used to detect the prion protein in 

tissue samples (Morel et al., 2007; Onisko et al., 2007) and biodiesel (Douma, 

Kerr, Brown, Keller, & Oleschuk, 2008). In the present study, we evaluated the  

use of a biomarker previously determined to perform well in nanoLC-MS/MS 

systems (Silva et al., 2011). In our MALDI system, the limit of detection for this 

prion peptide was 1 fmol for the pure standard. The detection of this peptide is 

complicated by the presence of a methionine residue, which can be oxidized 

during processing. A peak shift of 16 Da, indicative of the incorporation of an 

oxygen molecule, was observed for both the labeled and unlabeled peptides. The 

limit of detection for this peptide using LC-MS/MS was reported to be on the 

order of 100 amol (Silva et al., 2011). The order-of-magnitude discrepancy 

between the previously reported limit of detection and the one found in this study 

(1 fmol) may be attributable to differences in the ionization behavior of the 
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Table 4.1. Peptides used for quantitation. 

Peptide 
Monoisotopic 
Mass (Da) 

Labeled Monoisotopic 
Mass (Da) 

Prion Protein 

VV*EQMCITQYQR 1497.0 1503.0 

Norovirus Capsid Protein 

TLDPIEVPLEDV*R 1495.8 1501.8 

Sphingomonas wittichii RW1 Dioxin Dioxygenase 

GV*SEGYIAR 951.5 957.5 

GL*IFGNWR 962.5 969.5 

L*GHASSGFFK 1050.5 1057.5 

SWL*FLGHESQIPK 1541.8 1548.8 

* = heavy-isotope labeled residue 

  

peptide during the differing ionization techniques. One of the pitfalls of mass 

spectrometry-based detection is that methods optimized for one type of 

instrumentation (e.g., ESI) may not translate to another (e.g., MALDI).  

 Furthermore, the limit of detection observed for one particular peptide 

may not be reproducible using a different instrument even when employing the 

very same ionization technique and operational settings. For example, in the 

current study the norovirus peptide could be detected at levels as low as 100 amol 

for the pure standard. This limit of detection is 3 orders of magnitude lower than 

previously reported (D. R. Colquhoun, K. J. Schwab, R. N. Cole, and R. U. 

Halden, 2006). The differences can likely be attributed to the eschewal of 
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probability-based peptide mass fingerprinting, which relies on the detection of 

multiple peptides, but it can also be linked to improvements in instrumentation. 

 A comparable limit of detection (500 amol) for other characteristic 

norovirus capsid protein peptides was observed in prior work using LC-MS/MS 

(D. R. Colquhoun, 2007). The detection of 100 – 500 amol of the target peptide 

implies the presence of 105 – 106 virus particles. While these limits are still 

several orders of magnitude above those of gene-based detection methods, they 

show a dramatic improvement over other protein-based detection methods 

(Hartmann & Halden, 2012). 

 Of the 4 peptides analyzed from the S. wittichii RW1 dioxin dioxygenase, 

the most reliable were GVSEGYIAR and GLIFGNWR. Detection of the 

remaining two peptides was unreliable. In mixtures where the standards were all 

present at equimolar concentrations, the GVSEGYIAR and GLIFGNWR peaks 

were consistently higher than the LGHASSGFFK or SWLFLGHESQIPK peaks. 

This observation may reflect differences in ionization, a property that is hard to 

predict. Because the dioxin dioxygenase was purified using SDS PAGE, the limits 

of detection for these peptides were constrained by those of the protein stain. 

These limits of detection corresponded to approximately 100 and 10 fmol for 

GVSEGYIAR and GLIFGNWR, respectively. 

 Quantitation using mass spectrometry is most successful when the 

amounts of target analyte and standard are within the dynamic range of the 

instrument and also reasonably close to each other. To test the dynamic range of 

the instrument, serial 10-fold dilutions of the target analyte were mixed with 
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parallel dilutions of standard peptides and analyzed (Fig. 4.2). Dilutions were 

performed in 0.1% TFA or in a background of environmental extractions. In the 

ideal scenario, the height ratio of the target peak and the standard peak should 

remain constant regardless of the amount of target and standard added. Deviations 

from this constant ratio indicate the limit of detection at the lower end and 

detector saturation at the upper end.  

 Transmission of prion-mediated diseases is primarily a concern in edible 

products and animal feed, although other byproducts of the meat industry have 

also been investigated (Douma et al., 2008). We tested the prion protein 

biomarkers against a background of foods (lettuce, strawberry, and milk) as well 

as soil, which could serve as an environmental reservoir. Norovirus, the leading 

cause of food- and waterborne illness, can often be spread via uncooked foods or 

through contact with contaminated media (e.g., soil or water) (Hartmann & 

Halden, 2012). We therefore tested the norovirus biomarker in the context of 

lettuce, strawberry, milk, soil, and groundwater. S. wittichii RW1 was isolated 

from a river (Wittich, Wilkes, Sinnwell, Francke, & Fortnagel, 1992b) and has 

been used to remediate dioxin-contaminated soil (Halden, Halden, et al., 1999b), 

among other media. We therefore tested the dioxin dioxygenase biomarker in soil 

and contaminated groundwater. 
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Figure 4.2. To test the dynamic range of the method, serial 10-fold dilutions of 
target analytes with parallel dilutions of standard peptides in a variety of 
environmental backgrounds. Controls were diluted in 0.1% trifluoroacetic acid for 
the prion protein (A) and norovirus capsid protein (B) or 50 mM ammonium 
bicarbonate for the dioxin dioxygenase (C). Values are presented as averaged 
ratios, normalized to the average measurement for the control (n = 3 to 12). Error 
bars represent the standard deviation; for clarity, only positive error bars are 
shown. The dashed line shows the ideal scenario where all calculated ratios are 
equal, regardless of the presence of environmental background. 
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 For the prion protein, the inclusion of an environmental background, 

regardless of its source, increased the limit of detection to 50 fmol (Fig. 4.2A). 

While the possible oxidation of methionine may influence the limit of detection, it 

does not appear to affect the accuracy, indicating that the target and isotopically 

labeled peptides are oxidized at the same rate. For the norovirus capsid protein the 

limit of detection against an environmental background was 1 fmol (Fig. 4.2B). 

The limit of detection for the dioxin dioxygenase, being largely determined by the 

dynamic range of the upstream preparation, was not affected by the inclusion of 

an environmental background (Fig. 4.2C). Significant differences were observed 

between samples diluted in the various environmental backgrounds, but regardless 

of the inclusion of a background, the results are consistent within an order of 

magnitude and, in most cases, a factor of 3. 

 In the ideal scenario for quantitation based on heavy-isotope labeled 

standards, the standard and the analyte would be present at relatively similar 

(equimolar) amounts. The ratios of peaks from analytes with the same sequence 

have been shown to deviate from the ideal predicted value as the ratio of the 

amount of analyte deviates from 1 in both ESI- and MALDI-based systems 

(Kuzyk et al., 2009). However, sample availability or other constraints may 

preclude the optimization necessary to determine the proper ratio of analyte to 

standard. To test the tolerance of this method to differences in target and standard 

amounts, we analyzed 10-fold serial dilutions of the standards mixed with a 

constant amount, approximately 50 fmol for the prion protein and norovirus 

capsid protein and 500 fmol for the dioxin dioxygenase (Fig. 5.3). Ideally, the  
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Figure 4.3. To test the tolerance of the method to differences in the relative 
amounts of target and standard, serial 10-fold dilutions of standards were mixed 
with a constant amount, approximately 50 fmol for the prion protein (A) and 
norovirus capsid protein (B) and 500 fmol for the dioxin dioxygenase (C), of 
target. Values are presented as averaged ratios (n = 3 to 5). Error bars represent 
the standard deviation. The dotted line represents the ideal ratio predicted from 
the best estimate of the actual target mass. 
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ratio of the height of the target peak to the height of the standard peak should vary 

linearly with the amount of standard added. Deviations from linearity indicate 

peak suppression, which is an inherent limitation of MALDI-TOF MS, or 

competition for binding sites in the extraction process directly preceding the MS 

analysis. While none of the curves follow the ideal exactly, this analysis shows 

that it is possible to roughly quantify an unknown agent by targeting a specific 

peptide to within an order of magnitude even with a 2-order of magnitude 

difference between the amounts of the analyte and the standard present.  

 

Conclusions 

 The use of heavy-isotope labeled standards combined with MALDI-TOF 

MS is rich with untapped potential for absolute quantitation of targets ranging 

across multiple biological kingdoms. Using this technique, we have demonstrated 

detection limits as low as 1 fmol against an environmental background, and 

improvements in upstream sample cleanup could lower the limit of detection to 

100 amol, the limit achieved for pure standards. This method has lenient 

requirements for the analyte-to-standard ratio, an important characteristic for 

applications where sample or standard availability are limited. Due to the rapid 

processing time and applicability to a wide range of targets (prions, viruses, and 

bacteria) and environmental sample types (food, soil, and groundwater), this 

method of quantitation has a strong potential for use in public health and 

environmental sciences. 
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Transition 4 

Chapters 2 through 4 covered the development of various detection 

methods for bacteria, viruses, and single-celled eukaryotes. Chapter 2 describes a 

qualitative mass spectrometry-based method to quickly and easily identify protein 

biomarkers. Chapter 3 shows the design and implementation of a quantitative 

PCR-based method to track a functional, plasmid-encoded genetic biomarker in 

bioaugmented landfill leachate. Chapter 4 delves into the use of quantitative mass 

spectrometry to detect protein biomarkers in environmental samples, including 

soil, food, and groundwater. 

In this dissertation, I have thus covered a variety of possible techniques for 

detecting biomarkers of single-celled organisms in the environment. However, the 

full range of possible methods is much wider. The concluding chapter is intended 

as an objective comparison of these and other methods in the context of viruses in 

food. Although this chapter focuses exclusively on virus detection methods, these 

methods share many qualities with methods for detecting bacteria. The desired 

outcome is always to detect a target within a complex background of non-target 

signals and ideally to extract some sort of phenotypic information from the 

results, whether its biodegradative activity or infectivity. As can be seen from 

Chapter 4, the same methods can be tailored to detect bacteria, viruses, and prion 

proteins. The lessons learned from virus detection methods are therefore also 

applicable to the field of bioremediation and any other discipline that may involve 

environmental detection of biomarkers. 
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In this fifth chapter, I review gene- and protein-based detection methods 

for four types of viruses found on the third Contaminant Candidate List issued by 

the U.S. Environmental Protection Agency. Based on the advantages and 

disadvantages of the available technologies, I make suggestions for future 

research and development in the area of the detection of biological agents in 

environmental compartments. These recommendations, which are also valid for 

the detection of bacteria in bioremediation, are that we should continue the trend 

towards quantification, standardize methods to facilitate inter-study comparisons, 

and pursue detection methods whose outcomes can be directly linked to 

infectivity or biodegradation. 
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5. Analytical Methods for the Detection of Viruses in Food by Example 

of CCL-3 Bioagents 

The U.S. Environmental Protection Agency released its third Contaminant 

Candidate List (CCL-3) in September 2009 (Richardson, 2010). The CCL-3 

features over 100 chemicals, but it also includes 12 microbiological contaminants. 

Among these emerging biocontaminants are three groups of viruses: 

adenoviruses, caliciviruses, and enteroviruses. It also includes hepatitis A virus, 

which is a picornavirus. Owing to their potential impact on food and water safety, 

these viruses can also be considered class B bioterrorism agents, according to the 

Centers for Disease Control and Prevention (CDC) ("Bioterrorism 

Agents/Diseases,"). In daily life, the majority of these viruses are spread through 

the fecal-oral route and cause gastrointestinal or respiratory illness, with the 

exception of hepatitis A, which causes liver disease and jaundice. At the national 

level, hepatitis A is the most commonly detected CCL-3 virus (European Centre 

for Disease Prevention and Control, 2011; Scallan et al., 2011). However, 

norovirus is estimated to be responsible for the majority of foodborne illnesses 

(Scallan et al., 2011). When an illness affects two or more people, the CDC 

defines that event as an outbreak. However, outbreaks are not reported to the 

CDC unless they affect people in multiple states; outbreaks confined to a single 

state are the domain of local and state health authorities ("Surveillance for 

Norovirus Outbreaks,"). Outbreaks of viral gastroenteritis, such as are caused by 

the CCL-3 viruses, are rarely reported to the federal agency. CCL-3 virus families 

and other pertinent information are given in Table 5.1. 
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 For adenoviruses and caliciviruses, no standardized methods for culturing 

or detection exist (United States Environmental Protection Agency, 2008). There 

are standardized and validated procedures for culturable coxsackieviruses and 

echoviruses, both members of the enterovirus family (United States 

Environmental Protection Agency, 2008). However, these methods are not 

capable of distinguishing between virus types and are not applicable for all 

enteroviruses. Detection is challenging for several reasons. Viruses have a 

relatively high mutation rate, so a variety of genera, species, genotypes, and 

serotypes are contained within these four virus groups. Not all of these viruses are 

culturable, and those that are culturable do not necessarily propagate in the same 

cell type; and even culturable viruses may be difficult to cultivate or unreliable at 

producing cytopathic effects (Duizer et al., 2004; M. Kim, Lim, & Ko, 2010; 

Konduru & Kaplan, 2006; Straub et al., 2011; T. M. Straub et al., 2007; Timothy 

M. Straub et al., 2007; Zoll et al., 1992). Finally, while the infectious dose is not 

known for all CCL-3 viruses, it is generally thought to be between one and 10 

virions (Bosch et al., 2011; Koopmans & Duizer, 2004).  



 

Table 5.1. Viruses on the third Contaminant Candidate List. 

Virus* Symptoms Chromosome Culture 
Method 

Reference 

Adenovirus 
type 40 

type 41 

gastroenteritis, 
respiratory 

disease 
dsDNA 

293, A549, 
PLC/PRF5, 

Caco-2 
(M. Kim et al., 2010) 

Calicivirus 
norovirus 

sapovirus 
gastroenteritis ssRNA 

3-dimensional 
Caco-2 

(Duizer et al., 2004; Straub et al., 
2011; T. M. Straub et al., 2007; 
Timothy M. Straub et al., 2007) 

Enterovirus 
coxsackievirus 
echovirus 

poliovirus 

various ssRNA 
BGM, RD, 

HEL  
(Zoll et al., 1992) 

Hepatitis A virus 

hepatitis ssRNA 

HeLa, FRhK-4, 
GL37, Vero, 
CHO, MMH-

D3, Huh7  

(Konduru & Kaplan, 2006) 

 
293, human embryonic kidney; A549, human lung epithelium; PLC/PRF5, human hepatoma; Caco-2, human epithelial 
colorectal adenocarcinoma; BGM, buffalo green monkey kidney; RD, rhabdomyosarcoma; HEL, human embryonal lung 
fibroblasts; HeLa, human cervix epithelium; FRhK-4, fetal rhesus monkey kidney; GL37, Vero, African green monkey kidney; 
CHO, Chinese hamster ovary; MMH-D3, murine hepatocytes; Huh7, Human hepatoma. 

* Important subtypes that are common causes of food borne illness are also listed. 
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 Naturally, much research has concentrated on the detection and 

quantification of these CCL-3 viruses in water (Bae & Schwab, 2008; Blaise-

Boisseau, Hennechart-Collette, Guillier, & Perelle, 2010; Bosch et al., 2011; 

Gibson & Schwab, 2011a; Hamza, Jurzik, Überla, & Wilhelm, 2011; Schwab, 

DeLeon, & Sobsey, 1996; Seitz et al., 2011). However, transmission can also 

occur via food, which can become contaminated by unclean irrigation water 

(Bosch et al., 2011) or directly from infected food handlers (Koopmans & Duizer, 

2004). Subsequent treatment may be insufficient to decontaminate many ready-to-

eat products, and these viruses are remarkably stable. Norovirus, a member of the 

calicivirus family, can be detected in water after three years of storage and can 

cause infection in humans after 61 days in water (Seitz et al., 2011). Products of 

chief concern are leafy vegetables (Diez-Valcarce, Cook, Hernandez, & 

Rodriguez-Lazaro, 2011; Safaa Lamhoujeb, Fliss, Ngazoa, & Jean, 2008; Kirsten 

Mattison & Bidawid, 2009), soft fruits (Diez-Valcarce et al., 2011; Kirsten 

Mattison & Bidawid, 2009; Park, Cho, Jee, & Ko, 2008), and shellfish (Diez-

Valcarce et al., 2011; Greening & Hewitt, 2008; Kou, Wu, Zhang, & Fan, 2006; 

Kirsten Mattison & Bidawid, 2009; Nappier, Graczyk, Tamang, & Schwab, 2010; 

Schwab, Neill, Estes, Metcalf, & Atmar, 1998), but the full range is much larger 

and includes, for example, deli meats (Safaa Lamhoujeb et al., 2008; Kirsten 

Mattison & Bidawid, 2009; Schwab et al., 2000). While the exact rates of 

contamination are unknown, norovirus infections are commonly acquired from 

uncooked vegetables, fruits, and shellfish ("Surveillance for Norovirus 

Outbreaks,"). The majority of all known foodborne outbreaks, including those of 
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bacterial origin, in Europe were attributed to eggs, buffet meals, and juices 

(European Food Safety Authority, 2012). 

 In the present review, we summarize the state of sample acquisition, 

processing, and detection methods for these viruses in food with emphasis on 

recently developed strategies or technologies. Concentration methods discussed 

include precipitation, heat release, antibody-based concentration, and filtration; 

detection methods span microscopy, polymerase chain reaction (PCR), nucleic 

acid sequence-based amplification, and mass spectrometry. Finally, suggestions 

are made as to where methods could be combined or improved to advance the 

field of virus detection in food. 

 For clarity, virus names written without a species qualifier refer to the 

strain affecting humans. 

 

Sample Acquisition 

The detection of emerging contaminant viruses in food raises interesting 

questions regarding sampling frequency, methods, and volumes. As previously 

mentioned, foods that may need to be screened for viruses include all manner of 

leafy vegetables, soft fruits, shellfish, and processed ready-to-eat foods. These 

foods can become contaminated at several points. For example, fecally impacted 

water can contaminate vegetables and fruits if it is used for irrigation (Bosch et 

al., 2011). Shellfish can become exposed if the water in their habitat is 

contaminated. And any food can become contaminated at any point if it is handled 
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by a person who is shedding virus, whether that person shows symptoms of viral 

infection (Koopmans & Duizer, 2004). 

 Briefly, viruses are collected from leafy vegetables and soft fruits by 

elution, and digestive organs are excised for virus collection from shellfish. 

Because of the enormous potential for contamination and the wide variety of food 

types, it is difficult to stipulate exactly how and when a particular food needs to 

be sampled and how much of it constitutes a representative fraction. There are no 

definitive answers to these questions and regulations are lacking. The details of 

this area of concern for quality control and monitoring purposes fall outside the 

scope of this review, but they have been adequately discussed elsewhere (Bosch 

et al., 2011; Koopmans & Duizer, 2004).  

 

Sample Processing 

Once the sample has been acquired, it is in the form of some sort of eluent, 

homogenate, or tissue. From this point on, two things must be achieved: the 

viruses, which are likely to be present at very low levels, must be concentrated, 

and any interfering substances need to be removed or diluted. Many strategies 

have been developed to fulfill these needs. We limit our discussion to 

polyethylene glycol (PEG) precipitation, antibody-based concentration, and 

filtration. We have compared these strategies based on recovery efficiency and 

time (Table 6.2), although other factors–such as sample and detection 

compatibility, availability of materials (especially antibodies), and cost–may 

come into play. 
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Any sample processing will result in sample loss. In contrast to clinical 

samples, wherein viruses are shed at remarkably high titers, viruses may be 

present at levels near their respective limit of detection for the various methods, 

and low recovery rates may result in false negative results. Recovery efficiency 

can be calculated using known quantities of virus or a sample process control (see 

Interpretation), although the exact efficiency will depend on the analyte as well as 

the type of food from which it is being extracted. For this reason, we present a 

range of published sample recovery efficiencies. 

 For ease of implementation, all methods should ideally be rapid, 

automatable, and high-throughput. Engineering innovations can likely help with 

the latter two qualities, but for some processing methods, the time required may 

be unavoidable and prohibitive. Sample processing times have been approximated 

for all of the methods discussed here, and actual times may vary. 

 To help reduce false positive signals resulting from damaged, 

nonfunctional virions, samples may be subjected to enzymatic digestions with 

proteases, ribonucleases (RNases), or a combination of both. We present some 

information on the effectiveness of this practice and its potential impacts on 

processing time and sample recovery. 

 



 

 Table 5.2. Virus concentration methods.     

Concentration method 
Recovery 
efficiency 

Time Compatibility References 

PEG 8.5 - 85% 6 - 21 h NA & protein (Park et al., 2008; Tahk et al., 2012) 

Immunoconcentration 15 - 30% 5 - 35 h NA & protein 
(Casas & Sunen, 2002; Park et al., 

2008; Schwab et al., 1996; Tahk et al., 
2012) 

Filtration 15 - 84% 1 h NA & protein 

(D. R. Colquhoun, K. J. Schwab, R. 
N. Cole, and R. U. Halden, 2006; 

Gibson & Schwab, 2011a; Tahk et al., 
2012) 

Proteinase K digestion 37 - 66% 2 h NA (Greening & Hewitt, 2008) 
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 Finally, nucleic acids or proteins must be extracted from the processed 

sample. A plethora of commercial kits are available for the extraction of nucleic 

acids, generally based on the same principles. Protein extraction methods tend to 

be custom tailored to specific targets. Because individual research groups use 

extraction methods based on their own preferences, and recovery efficiencies are 

usually reported for the method as a whole and not for each individual step, it is 

difficult to distinguish between analyte loss due to processing and efficiency 

losses associated with the extraction of nucleic acids or proteins. For that reason, 

extraction efficiencies are not discussed separately here, although the choice of 

reagents can surely affect the recovery efficiency of the entire procedure. 

Polyethylene glycol (PEG) precipitation. The addition of PEG to a 

solution causes the viruses therein to flocculate, allowing them to be collected by 

centrifugation. This standard method for virus isolation is widely used because it 

works with any virus type and is inexpensive. However, PEG precipitation is 

extremely time-consuming, as samples must be incubated for extended periods of 

time. Furthermore, sample recovery is not uniform for all food matrices. For 

example, it has been found that PEG precipitation is ineffective for some leafy 

vegetables (Tahk et al., 2012). Recovery also varies with the elution buffer used 

to wash the sample. One study using strawberries had an average recovery 

efficiency of 85% when the berries were washed with 3% Bacto beef extract, 

whereas performance dropped to 8.5% when fruits were washed with 100 mM 

Tris-HCl or 50 mM glycine-50 mM MgCl2 (Park et al., 2008). While this method 
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is appropriate for experiments focusing on downstream detection, it is highly 

impractical for widespread use in food quality control. 

Antibody-based concentration. Concentration methods involving 

antibody-capture of intact virus particles have been developed for enteroviruses, 

norovirus, and hepatitis A. These methods have been tested for a variety of 

foodstuffs, including fresh vegetables, soft fruits, and shellfish (Kirsten Mattison 

& Bidawid, 2009; Park et al., 2008; Tahk et al., 2012). Proponents of 

immunological concentration postulate that these methods will help eliminate 

false-positive detections due to noninfectious, uncontained nucleic acids because 

only intact viruses with correctly expressed antigens will be collected (Casas & 

Sunen, 2002; Schwab et al., 1996). Indeed, heat inactivation of viruses resulted in 

a decreased recovery using immunocapture when compared to heat release 

(Schwab et al., 1996). 

 However, direct correlations between samples prepared using 

immunological concentration and culture-based infectivity assays have been 

inconsistent (Casas & Sunen, 2002; Hwang, Leong, Chen, & Yates, 2007; 

Rodriguez, Pepper, & Gerba, 2009; Schwab et al., 1996). A novel detection 

method, that was based on antibody binding of the target, was tested on 

bacteriophages and yielded detection values that were three orders of magnitude 

lower than those obtained on identical samples when using the infectivity plaque 

assay (Shirale et al., 2010). This finding underscores that antigenicity is not 

conclusive proof of infectivity. 
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 Concern also exists regarding the specificity of these methods. Critics 

warn that not all strains of a given enteric virus will present the same antigens, so 

antibody-based concentration methods may exclude a subset of viruses (Hamza et 

al., 2011; Kirsten Mattison & Bidawid, 2009). The use of polyclonal antibodies 

should address this issue, at least in part; such methods have already been used to 

concentrate simultaneously a variety of viruses or virus genogroups (Casas & 

Sunen, 2002; Park et al., 2008; Schwab et al., 1996). 

 One recent investigation using hepatitis A-specific antibodies to 

concentrate viruses from vegetables found that the method had a poor recovery 

efficiency compared to PEG precipitation and ultrafiltration (Tahk et al., 2012). 

Similarly, a study investigating the recovery of norovirus from strawberries had a 

recovery efficiency of 15 to 30% using immunomagnetic separation with 

polyclonal antibodies against norovirus capsid protein, compared to 85% using 

PEG precipitation (Park et al., 2008). In both studies, viruses were detected only 

by a PCR-based method, and infectivity was not considered, so the observed 

lower recovery efficiency may be due to the exclusion of noninfectious genetic 

material. Such results would be expected if immunoconcentration does in fact 

decrease the rate of false-positive PCR results; investigators therefore should keep 

this in mind when evaluating antibody-based methods. 

 Immunoconcentration methods take between approximately 5 and 35 

hours from start to finish; this broad range is largely due to the length of the 

incubation period (Casas & Sunen, 2002; Park et al., 2008; Schwab et al., 1996). 



81 

Recovery efficiency and specificity are affected by changes in incubation time, 

among other factors (Park et al., 2008). 

Filtration. Physical separation methods, such as filtration, can be used to 

concentrate viruses and bacteria simultaneously. For example, tangential flow 

ultrafiltration, wherein the sample flows parallel to the membrane, was used to 

collect bacteriophages (MS2 and PRD1), murine norovirus, poliovirus, and 

several bacterial species from surface and drinking waters (Gibson & Schwab, 

2011a). Recovery efficiencies ranged from 15.7 to 83.7% depending on the 

species in question and the original seeded concentration. 

 Ultrafiltration was also used to recover hepatitis A from various leafy 

vegetables (Tahk et al., 2012). This method takes approximately 6 hours, but the 

bulk of that time is devoted to eluting the virus from the food; filtration takes only 

10 to 40 minutes. In said study, ultrafiltration outperformed immunomagnetic 

separation and PEG precipitation, but was more effective for Chinese cabbage 

than sesame leaf or lettuce (Tahk et al., 2012). 

 Filtration methods do not necessarily need specialized equipment. One 

method using only a degreasing step followed by passage through a 0.22-µm 

syringe filter had a recovery efficiency of 72% for bacteriophage MS2 in stool 

samples and could be completed in under three hours (D. R. Colquhoun, K. J. 

Schwab, R. N. Cole, and R. U. Halden, 2006). 

 Short processing times make filtration an attractive method for routine 

assessments, but extreme variability of the recovery efficiencies makes it 

especially important to use process controls (see Interpretation). Attention should 
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be paid to the relative recovery efficiencies of different viruses and surrogates to 

compensate for that variability, if possible. 

Enzymatic digestion. Treatment with proteases or nucleases is one way to 

reduce the rate of false-positive detections caused by noninfectious materials. It is 

assumed that enzymatic digestion will affect damaged capsids or unprotected 

genetic material. For this reason, signals observed following enzymatic digestion 

are said to be from "putatively" infectious viruses (S. Lamhoujeb, Fliss, Ngazoa, 

& Jean, 2009). Treatments may use simultaneous protease and RNase 

(Nuanualsuwan & Cliver, 2002), sequential protease and RNase (S. Lamhoujeb et 

al., 2009), or RNase only (Seitz et al., 2011). 

 Several studies evaluating the efficacy of disinfection protocols or virus 

survival have used enzymatic treatment to eliminate inactivated virions. 

Simultaneous proteinase K and RNase digestion eliminated positive signals from 

hepatitis A, poliovirus type 1, and feline calicivirus inactivated with UV, 

hypochlorite, and thermal treatments (Nuanualsuwan & Cliver, 2002). 

Sequential proteinase K and RNase digestion was used to determine 

infectious norovirus survival on lettuce and deli turkey (Safaa Lamhoujeb et al., 

2008). Heat inactivated norovirus was tested both with and without enzymatic 

digestion, and only the samples treated with enzyme produced negative results. 

RNase treatment was used to eliminate unencapsulated RNA from samples in a 

study regarding the long-term survival of norovirus in water (Seitz et al., 2011). 

The authors observed significantly lower virus titers following RNase treatment, 

suggesting that the treatment did in fact help eliminate noninfectious material. 
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 However, enzymatic digestion may not be effective at degrading all 

noninfectious viruses or a particular virus inactivated by all methods (Cliver, 

2009; Nuanualsuwan & Cliver, 2002). Different enzymes or digestion conditions 

may be more appropriate for certain types of samples. For example, in one study 

higher concentrations of both proteinase K and RNase were needed to eliminate 

false positives from heat-killed norovirus than for feline calicivirus (Safaa 

Lamhoujeb et al., 2008). It is possible to tailor these treatments to the sample, but 

that requires a priori knowledge of the target and the inactivation method, which 

of course are unavailable when screening samples of unknown content. 

Furthermore, additional modifications will increase the processing time. For 

example, sequential treatment with proteinase K and RNase adds 2.5 hours of 

incubation time (S. Lamhoujeb et al., 2009). Finally, prolonged exposure to 

elevated temperatures required for functional enzymes may inactivate some 

viruses (Rodriguez et al., 2009). Such effects would produce artifacts, leading to 

underestimation of the infectious virus titer. 

 Protease digestion can also be used to extract viruses from oysters 

(Greening & Hewitt, 2008). Because mollusks are filter feeders, they naturally 

concentrate viruses from the surrounding water in their digestive tissue. This 

obviates the need for additional virus concentration in the sample preparation. 

Proteinase K digestion yields a recovery efficiency of about 50% (Greening & 

Hewitt, 2008). It is important to note that the addition of a digestion step to any 

protocol will affect the recovery efficiency. Furthermore, the use of proteases may 

affect detection methods directed at the capsid. 
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Detection 

Virus detection methods can be largely grouped into three categories: 

visual inspection (microscopy), gene-based, or protein-based. For some viruses, 

infectivity assays can be performed on cell lines that are then examined for 

cytopathic effects. However, cell culture systems do not necessarily exist for all of 

the viruses in question. Furthermore, methods that rely on cell culture tend to be 

labor- and time-intensive and therefore not suitable for routine monitoring 

applications. 

 In the absence of rapid, robust infectivity assays, several molecular 

methods have been developed. In the creation of most of these methods, the chief 

concerns have been sensitivity and specificity, the latter being especially 

important for epidemiological source tracking. As a consequence, some methods 

will detect genetic material or proteins that are not associated with intact or 

functional virions. Thus, they are prone to giving false-positive results, in the 

sense that they will react positively even if the sample is not infectious. 

 We review electron microscopy, PCR, nucleic acid sequence-based 

amplification, PCR-electrospray ionization-mass spectrometry, Western blots, and 

mass spectrometry-based detection of proteins. These methods are compared on 

the basis of sensitivity and specificity, but also on their amenability to 

multiplexing and their ability to distinguish infectious from non-infectious 

materials. Results from a critical review of the peer-reviewed literature are 

presented in Table 5.3. 
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Electron microscopy (EM). EM, first used to diagnose the early cases of 

norovirus, remains a useful tool in the clinical setting for a variety of viruses. 

However, similar to enzyme-linked immunosorbent assays (ELISAs), which are 

also used primarily in the clinical setting, EM has been largely dismissed for 

environmental applications and food, samples because of its inherent lack of 

sensitivity (Kirsten Mattison & Bidawid, 2009). 

Polymerase chain reaction (PCR). This molecular method has become 

the most widely researched way to detect enteric viruses in environmental 

samples. For the RNA viruses, it is coupled with reverse transcription (RT-PCR). 

RT-PCR can be performed either by first reverse-transcribing the RNA and then 

doing traditional PCR to detect the target or as a one-step procedure (Scipioni, 

Bourgot, et al., 2008; Scipioni, Mauroy, Ziant, Saegerman, & Thiry, 2008). The 

one-step option has the advantage of reducing material use and risk of introducing 

foreign RNA during sample handling. In traditional PCR, amplified products are 

visualized on an agarose gel. Sensitivity can be determined by dot-blotting (Fig. 

5.1A).  

 



 

 Table 5.3. Virus detection methods. 

Method Quantitative/ 
Qualitative 

LOD/ 
LOQ 

(copies) 

Specificity/ 
Multiplexing 

Determine 
Infectivity? 

References 

EM 
Qualitative 105 - No 

(Kou et al., 2006; Kirsten Mattison & 
Bidawid, 2009) 

Real time RT-PCR 
Quantitative 1-20 Multiplexing No 

(Park et al., 2008; Scipioni, Mauroy, et 
al., 2008; Seitz et al., 2011) 

RT-PCR-Luminex 
Quantitative 10 

Multiplexing 
(AdV, NVGI, 
NVGII, SV) 

No (J. Liu et al., 2011) 

NASBA 
Semi-

quantitative 
1.2 × 1030 

Multiplexing 
(NVGI, 

NVGII, HAV) 
No 

(Gracias & McKillip, 2007; Kou et al., 
2006; S. Lamhoujeb et al., 2009) 

PCR-ESI-MS 
Quantitative < 100 

Multiplexing 
(AdV) 

No (Blyn et al., 2008) 

Western blot 
Quantitative 

1.5 × 1010  
/ 3 × 1010 

Unknown No (Q. W. Liu et al., 2011) 

MS 

Qualitative 6 × 1010 NV Yes 

(D. R. Colquhoun, K. J. Schwab, R. N. 
Cole, and R. U. Halden, 2006; 

Wigginton, Menin, Montoya, & Kohn, 
2010) 

 
AdV, adenovirus; NVGI, norovirus genogroup I; NVGII, norovirus genogroup II; SV, sapovirus; HAV, hepatitis A. 
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Figure 5.1. Examples of the raw data output from various methods of virus detection. A) Agarose gel electrophoresis and dot-
blotting can be used with PCR, RT-PCR, and NASBA . B) Fluorescence curves for a series of standards are generated using 
real-time or quantitative PCR. C) Internal positive controls and sample amplicons generated using PCR are detected and 
quantified using mass spectrometry in PCR-ESI-MS (Blyn et al., 2008). D) The effects of oxidation on virus capsid proteins 
can be observed through the detection of a shift in the mass-to-charge ratio of peaks in mass spectrometry (Wigginton et al., 
2010). 
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 Methods can also be quantitative (real-time or qPCR) through the use of 

SYBR, TaqMan probes, or molecular beacons. Primers are directed against genes 

coding for capsid proteins or nonstructural proteins or noncoding regions 

(Rodriguez et al., 2009). Fluorescent probes bind the DNA targets. The intensity 

of the fluorescence increases with copy number. To quantify, the cycle number, n, 

at which the curve crosses the threshold, Ct, is plotted against standards of known 

copy number (Fig. 1B). Sensitivity and specificity depend on the exact protocol, 

but the most sensitive methods have a limit of detection of one to 10 genome 

copies (Butot et al., 2010). In general, real time methods are more sensitive than 

conventional methods. For example, a comparison of real time and conventional 

RT-PCR for norovirus detection found that the real time method had a limit of 

detection three to 5 times lower than the conventional method (Park et al., 2008). 

Regardless of the particular details, primers, probes, or reagents used, these 

methods all face similar challenges, namely the presence of inhibitors and the 

inability to distinguish between infectious and noninfectious viruses. 

 To address the issue of infectivity, primers can also be designed to amplify 

the entire viral genome (Rodriguez et al., 2009). Targeting the ends or longer 

fragments of the genome has been found to correlate better with infectivity than 

direct PCR, although these methods show decreased sensitivity and may not be 

indicative of loss of infectivity from all modes of inactivation (Rodriguez et al., 

2009). One such long-range RT-PCR method for the detection of murine and 

human norovirus had a limit of detection of 10 murine norovirus plaque forming 

units/ml (Wolf, Rivera-Aban, & Greening, 2009). In this study, the authors used 
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murine norovirus to evaluate the performance of both short- and long-range real-

time RT-PCR to detect infectivity following inactivation by heat and UV 

treatment. They observed poor correlation between both of the PCR-based 

methods and the infectivity assay following heat treatment; the long-range assay, 

but not the short-range assay, showed a similar trend to that of the infectivity 

assay following UV irradiation (Wolf et al., 2009). 

 PCR methods can also be multiplexed to detect several viruses or 

genogroups at the same time. For example, a combination of primers and probes 

was used to simultaneously detect three genogroups of norovirus (Wolf et al., 

2007). The multiplexed assay performed similarly to singleplexed assays for 

norovirus GI and GII and had a limit of detection under 10 copies. 

 PCR products can also be detected using DNA microarrays. The use of 

DNA microarrays allows for the simultaneous detection of multiple targets, 

whether viral or bacterial. Several microarrays have been designed to detect 

norovirus GI and GII (K. Mattison et al., 2011; Seyrig et al., 2011). 

However, hybridization can take up to 16 hours (K. Mattison et al., 2011). 

Nucleic acid sequence-based amplification (NASBA). To overcome 

many of the complications of RT-PCR, a one-tube, isothermal amplification 

method that combines transcription and reverse transcription was created (Gracias 

& McKillip, 2007; Rodriguez-Lazaro, Hernandez, D'Agostino, & Cook, 2006). 

As this technique is exclusively for RNA amplification, it is not applicable for 

adenoviruses, which are DNA viruses. NASBA is reportedly more sensitive than 

RT-PCR while requiring less preparation because RNA fragments can be 
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amplified in the presence of double-stranded DNA (Rodriguez-Lazaro et al., 

2006). Amplified products can then be detected much as RT-PCR products, e.g. 

on a gel or using a fluorescence detector for real time results (Fig. 1A-B). As with 

RT-PCR, NASBA reactions can be multiplexed (Rodriguez-Lazaro et al., 2006) 

and semi-quantitative (S. Lamhoujeb et al., 2009). NASBA-based techniques 

have been used to detect norovirus GI and GII, and hepatitis A (Kou et al., 2006; 

Safaa Lamhoujeb et al., 2008; S. Lamhoujeb et al., 2009; Rodriguez-Lazaro et al., 

2006) in lettuce (Safaa Lamhoujeb et al., 2008), deli turkey (Safaa Lamhoujeb et 

al., 2008), and oysters (Kou et al., 2006). 

 NASBA has a theoretical limit of detection of one copy per reaction, and 

in practice limits of detection under 10 copies have been observed (Rodriguez-

Lazaro et al., 2006). Actual reported limits of detection for virus methods are 

somewhat lacking. One method for norovirus detection identifies the total amount 

of RNA needed to give a positive signal from fecal samples and shellfish, 

respectively, at 5 and 100 pg (Kou et al., 2006; Rodriguez-Lazaro et al., 2006). 

However it is impossible to deduce the corresponding number of virions from the 

total RNA extracted. Another norovirus detection method, which coupled 

NASBA to real-time measurement, had a limit of quantitation of one NASBA 

particle unit (Safaa Lamhoujeb et al., 2008). While a direct unit conversion is not 

given, the authors report that the limit of detection of the NASBA-based method 

was 100-fold lower than that of the equivalent RT-PCR method. 

 Although less commonly used to detect viruses than RT-PCR, NASBA is 

a mature technology that has certain advantages with regard to analysis time and 
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robustness. Commercial kits are available, as are services and guides to design 

primers for novel applications (Gracias & McKillip, 2007). 

Polymerase chain reaction-electrospray ionization-mass spectrometry 

(PCR-ESI-MS). This hybrid technology combines PCR with mass spectrometry 

to rapidly and quantitatively detect a range of genetic targets. It is capable of 

simultaneously detecting and identifying multiple serotypes of the same virus 

(Blyn et al., 2008), multiple serotypes of different viruses (Sampath et al., 2007), 

and an internal positive control (see Interpretation) (Blyn et al., 2008; Ecker et al., 

2008; Sampath et al., 2007). Redundant primer pairs target the RNA-dependent 

RNA polymerase (Ecker et al., 2008) as well as other areas of the viral genome 

(Sampath et al., 2007). The sequence composition of the amplicons is then 

determined using mass spectrometry to triangulate the identity of the 

contaminating microorganisms. The internal positive control is also used to 

determine the absolute abundance of the target sequence, a method which is 

accurate within a factor of 4 (Ecker et al., 2008). This quantification is 

accomplished by measuring the ratio of the peak height of the internal positive 

control vs. that of the sample (Fig. 5.1C).  

 Quantification is based on a single internal calibrant, a common practice in 

mass spectrometry, so the analyte and internal calibrant must be present at 

relatively close abundances to allow detection of both peaks (Blyn et al., 2008). 

The amount of internal calibrant may need to be optimized for each sample. 

While mass spectrometry is extremely rapid, the entire method is still limited by 

the thermocycling step. Even so, an identification can be obtained in 4 to 6 hours 



92 

(Ecker et al., 2008; Sampath et al., 2007). Because the underlying principles are 

based on PCR, this technology is still subject to the traditional problems of 

inhibition (Ecker et al., 2008). This innovative technology combines the best of 

PCR and mass spectrometry, but it also inherits the weaknesses of both 

technologies, namely extended analytical time, sensitivity to inhibitors, and 

limited dynamic range. 

Capsid protein detection. Viruses are enclosed within a capsid, which 

serves both to protect the genetic material and initiate infection. For the enteric 

viruses discussed here, the capsid is composed of one to 13 structural proteins 

(Cliver, 2009; Catherine Fenselau, Laine, & Swatkoski, 2011) repeated 60 

(Cliver, 2009) to 180 (D. R. Colquhoun, K. J. Schwab, R. N. Cole, and R. U. 

Halden, 2006) times per virion. The capsid is altered during inactivation, the 

effects of which are evident through changes in antigenicity (Cliver, 2009; 

Schwab et al., 1996). The effects of UV and singlet oxygen inactivation on capsid 

proteins are also measurable using mass spectrometry (Wigginton et al., 2010). 

 Antibody-based detection methods include ELISA and Western blots; 

ELISAs are used in the clinical setting, but they are largely thought to be too 

insensitive for environmental or food samples. One Western blot analysis of 

coxsackievirus A using polyclonal antibodies achieved a limit of detection of 1 

ng, or approximately 25 femtomoles, of VP0, a protein precursor that forms a 

component of the coxsackievirus A capsid (Q. W. Liu et al., 2011). The same 

method has a linear range suitable for quantitation of between 2 and 6 ng of VP0. 

Assuming one VP0 per capsid protein and 60 capsid protein copies per virion 
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(Cliver, 2009), the limit of detection corresponds to 2.5 × 1011 virions and a linear 

range of 5 to 15 × 1011 virions. However, the specificity of these antibodies has 

not been evaluated. Also the antisera reacted positively with heat-killed virus, 

thereby rendering inconclusive when evaluating infectivity. 

 Mass spectrometry can be used to identify compounds based on a 

characteristic mass-to-charge ratio (m/z). Analysis can be performed on whole 

cells, intact proteins, or peptides. In addition to identification, shifts in the mass-

to-charge ratio can be used to deduce modifications, such as the incorporation of 

an oxygen molecule during oxidative inactivation of viruses (Wigginton et al., 

2010). The effects of this treatment translate into a shift equivalent to 16 Da (the 

mass of a single oxygen atom) in the observed peak (Fig. 5.1D). 

 One mass spectrometry-based method for norovirus detection was shown 

to be applicable for stool samples (D. R. Colquhoun, K. J. Schwab, R. N. Cole, 

and R. U. Halden, 2006). The authors found a limit of detection of 100 

femtomoles, which corresponds to approximately 3×108 virions. As for ELISAs 

and Western blots, this limit of detection is acceptable for clinical samples, but it 

is too high for food samples. Continued instrument and method development will 

likely result in a decrease in the limit of detection for mass spectrometry-based 

methods. 

 Another mass spectrometry-based method for the detection of human 

adenovirus type 5 has been advanced (Catherine Fenselau et al., 2011). This 

method uses microwave assisted acid cleavage to digest the capsid and other viral 

proteins from intact virions. While this method has not been tested on food 
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samples, it involves minimal processing for virus detection in cell culture. Indeed, 

the entire procedure takes less than 5 minutes. Processing of food samples will 

doubtlessly increase the time required. However, this method will still take less 

time than any PCR-based method, since most thermocycler programs require 

several hours, and even the isothermal amplification in NASBA takes 1.5 hours 

(Gracias & McKillip, 2007; Kou et al., 2006).   

 Although still a nascent methodology, mass spectrometric detection of 

proteins has several advantages. Because inactivation effects on capsid proteins 

are measurable (Wigginton et al., 2010), these methods may be able to 

differentiate between infectious and noninfectious viruses, unlike nucleic acid-

based detection. Furthermore, mass spectrometry is not subject to inhibition in the 

same way as PCR. Mass spectrometry-based methods also have the potential to be 

extremely rapid (Catherine Fenselau et al., 2011; Swatkoski, Russell, Edwards, & 

Fenselau, 2007). At present, these mass spectrometric methods for virus detection 

are qualitative (D. R. Colquhoun, K. J. Schwab, R. N. Cole, and R. U. Halden, 

2006) or semi-quantitative (Catherine Fenselau et al., 2011) only. 

 

Interpretation 

In addition to the standard positive and negative controls that are crucial to 

the interpretation of any scientific experiment, the results of virus detection are 

greatly enhanced by the incorporation of sample process controls and, where 

appropriate, controls for inhibition. We present an explanation of why these 

controls are so important and review possible options for these controls. 
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 In lieu of infectivity assays, some inferences on infectivity can be drawn 

based on the inclusion of certain steps in the procedure. We review which steps 

are informative in this regard. 

Sample process controls. Regardless of the concentration and detection 

methods used, process controls are a requirement. For quantitative measurements, 

process controls can be used to judge the overall recovery efficiency and thereby 

calculate the virus titer in the original sample material; for qualitative 

measurements, they rule out false negatives due to virus degradation during 

sample processing. Recovery efficiencies vary based on several factors, including 

the foodstuff being analyzed and the sample processing methods, so it is not 

practical to calculate theoretical recovery efficiencies. Because sample process 

controls must be different from the analyte in question, their recovery efficiency 

will by definition not be exactly the same as that of the analyte. However, they 

should be similar enough in structure and resistance to environmental factors to 

still be informative. Several candidates have been investigated to this end; we 

limit our discussion to feline calicivirus, murine norovirus and MS2 

bacteriophage. 

 All three of these candidates pose no health risk to humans and have 

established plaque assays to measure infectivity. Feline calicivirus, although once 

considered to be the best surrogate for norovirus, has been largely discounted due 

to its sensitivity to pH (Blaise-Boisseau et al., 2010; Diez-Valcarce et al., 2011), 

temperature (Bae & Schwab, 2008; Safaa Lamhoujeb et al., 2008), and other 

inactivation methods (Nuanualsuwan & Cliver, 2002). Feline calicivirus is 
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demonstrably easier to inactivate than the enteric viruses of interest, and is 

therefore inappropriate for the purpose of a sample process control because it 

would lead to significant underestimation of the recovery efficiency. 

 In contrast, murine norovirus stability is comparable to norovirus and 

poliovirus (Bae & Schwab, 2008), although it is still less thermotolerant than 

hepatitis A (Gibson & Schwab, 2011b). Murine norovirus has been used 

effectively as a process control for vegetables, soft fruits, and shellfish (Diez-

Valcarce et al., 2011). Because it is so closely related to norovirus, it is thought to 

behave similarly during sample processing. However, this similarity could also be 

an inconvenience for multiplexed detection if the method used is not specific 

enough to distinguish between the murine and human strains or if the murine 

norovirus interferes with the assay. For example, some norovirus primers cross-

react to produce nonspecific PCR products (Bae & Schwab, 2008). Murine 

norovirus seems to be an appropriate process control, provided that any 

interference with detection can be avoided. 

 The bacteriophage MS2 has also been used extensively as a surrogate for 

norovirus and shows favorable characteristics for use as a process control (Bae & 

Schwab, 2008; Blaise-Boisseau et al., 2010; J. Liu et al., 2011). In addition to 

gene-based detection methods, MS2 would also be compatible with mass 

spectrometry-based protein detection methods (Swatkoski et al., 2007; Wigginton 

et al., 2010). However, the use of this or any other process control with 

immunoconcentration and antibody-based detection methods may not be 

practical. 
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Controls for inhibition. As the vast majority of detection methods are in 

some way PCR-based, a brief discussion of controls for PCR inhibition is 

warranted. These controls are alternatively referred to as "amplification controls" 

or "internal positive controls." A cautionary note: "internal" may refer to the PCR 

(Blyn et al., 2008; Ecker et al., 2008; Sampath et al., 2007) or the sample itself 

(Bosch et al., 2011). These meanings are not the same; "external control RNA" 

originating from outside the target organism or sample matrix may be added to 

the PCR and therefore serve as an "internal positive control" to the reaction.  

 Such controls are not necessary for detection methods that are not 

similarly sensitive to interference by humic acids and other inhibitory compounds 

that might be found in food matrices. Although not subject to the same inhibitors, 

NASBA-based detection methods could also benefit from the inclusion of 

inhibition controls (Gracias & McKillip, 2007; S. Lamhoujeb et al., 2009). 

 Inhibition controls include artificial constructs containing unrelated 

sequences (Scipioni, Bourgot, et al., 2008; Scipioni, Mauroy, et al., 2008), related 

sequences of altered amplicon length (Blyn et al., 2008; Ecker et al., 2008; 

Sampath et al., 2007; Schwab, Estes, Neill, & Atmar, 1997), or RNA targets 

protected by the MS2 bacteriophage coat (Armored RNA) (Gibson & Schwab, 

2011a; Greening & Hewitt, 2008). Regardless of the particular RNA used, the 

purpose to the inhibition control is to show that the PCR has proceeded as 

expected. The use of both a process control and an inhibition control may seem 

gratuitous, but the additional information may be useful in troubleshooting should 

the process control fail to amplify. The choice of inhibition control is less critical 
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than the choice of process control, provided that the inclusion of the inhibition 

control does not interfere with the detection method.  

Infectivity. The most direct way to assess infectivity is through the 

combination of molecular methods and cell culture (Yeh, Yates, Chen, & 

Mulchandani, 2009). However, cell culture systems do not exist for all CCL-3 

viruses, and judged on current methods for other targets, tend to be cumbersome. 

Pending the discovery of robust, rapid cell culture-based methods, it is more 

practical to use indirect, molecular methods. Presence of long transcripts and 

terminal noncoding regions, ability to withstand pre-treatment digestion, 

antigenicity, and absence of damage to capsid are all lines of evidence that point 

toward a functional, infectious virion. However, none of these molecular methods 

has been demonstrated to be universally applicable to all viruses under all 

conditions. Further research is needed to refine these methods for use with 

unknown samples. Future directions could perhaps include combinations of these 

lines of evidence and quantitative results that can be used to perform risk 

assessment.  

 

Conclusions 

The detection of emerging contaminant viruses in food presents many 

difficult challenges. We have presented some of the most prominent or recent 

solutions to these challenges and highlighted their strengths and weaknesses. As 

further improvements and innovations are developed, it is important to remember 

that, while sensitivity is crucial, so is the ability to distinguish between infectious 
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and noninfectious material. The latter quality may seem to compromise the 

former, but in fact it enhances our ability to correctly assess contaminated foods 

that pose a threat to public health without needlessly wasting products that pose 

no risk. 

 Furthermore, some discretion is needed with regard to specificity. Many of 

the viruses discussed here have multiple genogroups or serotypes. While 

identifying the offending microorganism down to the strain level is essential for 

source tracking in an epidemic, it is less important for quality control purposes, 

where the operator is merely trying to ascertain whether the product is safe for 

consumption. It is certainly useful to have a very specific assay, but it is even 

more useful to have an assay capable of detecting multiple possible contaminants. 

Such assays can be based on highly conserved genes or proteins, or they can 

consist of multiplex reactions specific to a variety of pathogens. Assays based on 

conserved elements should, however, be able to differentiate virus strains that are 

not pathogenic to humans (Wolf et al., 2007). Due to the wide variety of 

pathogens of concern, it may be most expeditious to have an assay that both 

detects conserved markers for closely related viruses and multiplexes disparate 

markers for more distantly related viruses. 

 In summary, we do not currently have the capability to rapidly detect 

CCL3 viruses from the full range of pertinent foods. We may be able to make use 

of current technologies to attain this goal, but further work is needed to properly 

interpret the results for an informed risk assessment. PCR-based methods are the 

most mature and make use of more common equipment, so they are the most 
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feasible to implement. However, the inability to correlate a positive test result 

with a public health risk severely limits the informational value of the current 

DNA-based methods for the purpose of quality control and risk assessment (Baert 

et al., 2011). Future technologies should focus on quantitative measurement of 

infectivity. Standardized testing is needed to compare results across methods, 

targets, and samples. 

 The authors would like to thank Dr. Angela Jansen for her input on the 

manuscript.  
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6. Summary and Recommendations 

As can be seen in the previous chapter, method development for the 

detection and quantification of biological agents in environmental compartments 

is an ongoing process with many open avenues of research. With the help of my 

collaborators, I have contributed to the field by identifying putative protein 

biomarkers for toluene degradation by Pseudomonas putida F1, P. mendocina 

KR1, and Burkholderia. sp. JS150; developing quantitative gene- and protein-

based assays for dioxin transformation by Sphingomonas wittichii RW1; and 

developing a quantitative protein-based assay for the norovirus capsid protein. 

However, much work remains to be done, both in the realm of continued method 

development and in the realm of application in bioremediation and in the 

protection of public health. 

The method advanced in Chapter 2 combines a simple separation 

technique, gel electrophoresis, with a powerful identification tool, mass 

spectrometry. In this study, three potential biomarkers for the degradation of 

toluene are identified. Previous work in this vein identified the dioxin 

dioxygenase from S. wittichii RW1 as a potential biomarker of dioxin 

degradation. The work described in Chapters 3 and 4 capitalizes on this 

suggestion to make quantitative gene- and protein-based assays, respectively. 

Future research should be devoted to doing similar biomarker discovery for other 

organisms of interest for bioremediation. In many instances, e.g., for 

Dehalococcoides, gene-based detection methods already exist, but methods for 

the corresponding enzymes have not been created. Such methods could lend 
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credence to claims that monitored natural attenuation is occurring or that 

biostimulation or bioaugmentation strategies are successful. 

The results presented in Chapter 2 also raise questions regarding the 

evolutionary pathways that led to these enzymes of biodegradative importance. 

The identification algorithm used in this study (Mascot) consistently linked the 

target (i.e., the toluene dioxygenase) with a seemingly unrelated protein (i.e., a 

chlorobenzene dioxygenase). It was previously thought that no existing organisms 

would be able to transform many of the environmental pollutants currently 

targeted in bioremediation because of the anthropogenic origins and lack of 

naturally occurring homologs of these chemicals. Some biodegradative enzymes 

are therefore relatively recently evolved, and the circumstances preceding their 

evolution, as well as the time required for them to arise, are poorly understood. 

Research should be done to investigate how sequence homology in disparate 

enzymes can help or hinder efforts to identify biodegradative enzymes in the 

environment. Also, it may be possible to take advantage of this technique to 

identify enzymes involved in previously unobserved reactions, e.g., the 

biotransformation of perfluorinated compounds, the possibility of which has been 

speculated about but not confirmed. 

Chapters 3 and 4 involve the quantification methods for the dioxin 

dioxygenase gene and protein, respectively. The results from Chapter 3 indicate 

that S. wittichii RW1 can lose its biodegradative genes in complex growth media, 

such as would be found in the environment. Studies should be conducted to 

examine if enzyme production, as measured using the method advanced in 
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Chapter 4, follows a similar trend or if biodegradative activity is independent of 

gene copy number. Further investigations could delve into the behavior of S. 

wittichii RW1 in different situations using both quantitative PCR and mass 

spectrometry. Such studies may shed light on processes controlling the expression 

of the dioxin degradation pathway, which is likely more complex than previously 

thought, and maintenance of the degradative megaplasmids, a hallmark of 

sphingomonads. Similar methods could be developed and applied to investigate 

analogous enzymes in other sphingomonads to see if comparable regulatory 

phenomena can be observed. 

Also in Chapter 4, a mass spectrometry-based method to detect the 

norovirus capsid protein is described. While comparisons have been made 

between the sensitivity of methods targeting the capsid protein and viral RNA, it 

could be useful to do a direct comparison of capsid and RNA detection on 

samples where deductions can be made about infectivity. It might be that the 

techniques complement each other and that the combination is a better indicator 

of infectivity than either method alone. Furthermore, with this and other 

quantitative methods, it should be possible to perform risk assessment on known 

or potential norovirus-contaminated samples. Norovirus detection methods are 

often tested on artificially contaminated or clinical samples. If possible, it could 

be more useful to test this and other methods against samples that have been 

implicated in a norovirus outbreak. In short, there is much room for improvement 

in quality control methods for norovirus, as well as for other food- and waterborne 

pathogens. 



104 

Although none of the techniques used in this dissertation are new 

inventions, their levels of maturity and acceptance vary. Quantitative PCR is by 

far the most widely used technique to detect microorganisms in the fields of 

bioremediation and environmental monitoring of pathogens. While mass 

spectrometry-based techniques have been explored, their use is not commonplace. 

Before these methods can become widespread, the research community will have 

to come to consensus on instrumentation and standard operating protocols. Until 

there are accepted ways to compare results between facilities, these techniques 

will not and cannot be industry standards. 

One lesson to learn from the work in this dissertation is that there are 

many ways to measure the same information. Detection methods are often 

compared against each other, but it may be beneficial to look into whether 

different methods are complementary, contributing different lines of evidence 

towards the same phenomenon or providing unique information that cannot be 

deduced from using one method alone. Future work should take advantage of the 

potential synergy of orthogonal methods. 
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APPENDIX A. 

PROTEOMIC PROFILING OF THE DIOXIN-DEGRADING BACTERIUM 
SPHINGOMONAS WITTICHII RW1 
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 Dioxins are some of the most widely studied and prevalent anthropogenic 

environmental pollutants. Common sources include backyard burning, 

incineration of plastics, and chlorine bleaching of pulp in paper mills (Steenland 

& Deddens, 2003). Documented health effects include acute and chronic effects, 

including chloracne, various types of cancers, reproductive diseases, circulatory 

and respiratory diseases, as well as diabetes (Bertazzi et al., 2001). The traditional 

approach to environmental remediation includes a host of physical and chemical 

methods, depending on the characteristics of the polluted site and the extent of 

contamination present (Kulkarni, Crespo, & Afonso, 2007). Bioremediation, i.e., 

the use of biogenic materials and organisms for environmental cleanup, has also 

been proposed, including phytoremediation using plants (Campanella, Bock, & 

Schroder, 2002), and microbial degradation using primarily bacteria and fungi 

(Halden, Halden, & Dwyer, 1999a). Bioremediation is an attractive strategy, as it 

can destroy the pollutant rather than transferring it from one environmental 

compartment to another. It also can be less expensive than physical strategies 

(Wackett, 2001). Common bioremediation strategies include the addition of 

nutrients, degradative microorganisms or both. 

 Sphingomonas wittichii RW1 is a microorganism of great interest to the 

bioremediation community for its ability to biotransform a large number of toxic 

polychlorinated dioxins and to utilize both non-chlorinated dibenzo-p-dioxin and 

nonchlorinated dibenzofuran as a growth substrate and sole source of carbon and 

energy (Halden, Halden, et al., 1999a). 
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 One of the major challenges in bioaugmentation strategies relying on the 

addition of non-native microbes is to ensure their viability and degradative 

activity toward the target compounds. Monitoring bioremediation is critical to 

ensure the efficacy of the process and the reduction of contaminant mass to 

acceptable levels. Traditionally, the most important characteristics investigated 

for microorganisms used in bioremediation were their ability to transform the 

substrate, the rate of substrate removal, and the resulting metabolites (Halden & 

Dwyer, 1997; Halden, Tepp, Halden, & Dwyer, 1999; Wackett, 2001; Wittich, 

Wilkes, Sinnwell, Francke, & Fortnagel, 1992a). To optimize the bacterial 

degradation of pollutants, it is important to understand how these organisms 

function during growth on recalcitrant substrates and which factors influence their 

degradative abilities. This includes analyzing not only the degradative pathways 

(Armengaud, Happe, & Timmis, 1998b; Basta, Keck, Klein, & Stolz, 2004b; 

Bunz & Schmidt, 1997), but also the peripheral processes and mechanisms that 

are involved in taxis (i.e., directed motion in a chemical gradient), uptake, and 

transport during exposures to specific substrates. Analysis of DNA and RNA 

(Goncalves et al., 2006) can shed light on an organism’s metabolic potential; 

however, these measurements poorly correlate to actual protein expression 

profiles (Nie, Wu, Culley, Scholten, & Zhang, 2007). Therefore, global analyses 

of protein expression profiles may be a more informative tool for understanding 

the physiological mechanisms of biodegradation. In addition to identifying 

important degradative enzymes in a variety of important microbes (S. I. Kim, 

Song, Kim, Ho, & Oh, 2003; K. E. Nelson et al., 2002; Singh, 2006), proteomic 
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studies have opened the door to a better understanding of system-wide changes in 

response to differing substrates (Singh & Nagaraj, 2006). 

 The imperative to perform proteomic analyses is particularly true for S. 

wittichii RW1 because the enzymes in the dioxin degradation pathway are 

encoded on different loci throughout the genome (Armengaud, Happe, & Timmis, 

1998c), certain elements in the pathway are located on a plasmid (Basta et al., 

2004a), and there may be alternative pathways at work (Seah et al., 2007). The 

present study builds on previous work (Halden, Colquhoun, & Wisniewski, 

2005a) and utilized difference gel eletrophoresis (DIGE) coupled with mass 

spectrometry (MS) to exploit recently gathered RW1 genome data (Miller et al., 

2010). When used together, these tools yield information on the response of cells 

of S. wittichii RW1 to dioxin exposure, and the bacterium’s degradative activity 

toward this recalcitrant compound. 

 The aim of this study was to investigate system-wide changes in protein 

expression during growth on dibenzofuran, a non-toxic surrogate for dibenzo-p-

dioxin, as compared to non-selective growth media. Acetate was selected as the 

non-selective alternate substrate, as growth on this compound was observed to 

influence expression of select proteins, including the dioxin dioxygenase (Bunz & 

Cook, 1993b). Thus, any changes measured in response to cells grown on 

dibenzofuran should represent cell-wide effects related specifically to the growth 

substrate and not to unanticipated extraneous effects. This work constitutes the 

first global assessment of protein expression by S. wittichii RW1. 
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Materials and Methods 

 Culture maintenance. Cultures of S. wittichii strain RW1 (100 mL to 1.0 

L) were grown to mid log phase at 30°C in M9 phosphate buffered minimal 

medium (pH 7.05) supplemented with either dibenzofuran crystals or 50 mM 

acetate as growth substrates. Saturated dibenzofuran medium contained 

approximately 3 – 5 mg/L of the selective growth substrate in the dissolved phase. 

Cells were grown overnight on dibenzofuran and acetate as sole carbon sources to 

an optical density of 0.4 – 0.6 absorbance units (λ560 nm). Following biomass 

processing, protein levels in the samples were in the order of 75 – 200 µg/mL. 

Protein concentrations were normalized prior to analysis by concentration and 

resuspension in DIGE sample preparation buffer. Culture purity was confirmed by 

the streak plate method using Luria Bertani medium supplemented with 1.5% 

agar. 

 Protein extraction and cleanup. Cultures were centrifuged at 3,000 – 

5,000 x g for 10 minutes at 4°C. Harvested biomass was washed, spun again, and 

the resultant pellet suspended in a small volume of 100 mM ammonium 

bicarbonate (pH ~7.0). This microbial suspension was then sonicated under 

cooling with ice, using a microtip sonicator (Fisher Scientific, Pittsburgh, PA) in a 

sequence of three 10-second bursts delivered in thirty second intervals. The 

sonicated cells were then immediately centrifuged at 10,000 x g for 10 minutes at 

4°C. The supernatant was collected and the protein purified by trichloroacetic acid 

(TCA)/acetone precipitation. Briefly, 8 parts of 10% TCA in acetone (-20°C) 

were added per volume of supernatant and, following mixing on a vortex, the 
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resultant dilution was incubated at -20°C overnight. Following centrifugation 

(10,000 x g, 10 minutes, 4°C), harvested biomass was washed in cold acetone for 

10 minutes at -20°C. Following a subsequent centrifugation, the pellet was 

resuspended in sample preparation buffer (7 M urea, 2 M thiourea, 2% CHAPS, 

0.2% DTT, 0.02% bromophenol blue) and stored at -20°C until analyzed. Protein 

concentrations were measured using the bicinchoninic acid assay (Pierce, 

Rockford, IL) following dilution to reduce the concentration of interfering agents.  

 DIGE Labeling. Twenty-five µg of crude cell lysates of RW1 biological 

replicates grown on dibenzofuran (n = 3) and acetate (n = 3) were labeled using 

Cy dyes (GE Healthcare) as described elsewhere (Unlu, Morgan, & Minden, 

1997). Briefly, samples were adjusted to 1 µg/µL using sample preparation buffer 

and the pH checked. Subsequently, 0.25 µL of 1 pmol/µL Cy dyes were added to 

samples for 30 minutes in the dark on ice. To stop the labeling reaction, 0.5 µL of 

10 mM lysine was added to the samples, which were mixed and incubated on ice 

for 10 minutes prior to storage at -20°C until analysis.  

 2D-DIGE. Unless stated otherwise, all procedures were carried out in the 

dark or minimal light to protect the integrity of the fluorescent dyes. Samples 

were randomized to reduce the effect of dye bias and in-gel variations. A global 

pool consisting of fractions of each sample was labeled as outlined above using 

Cy 2 and added to each sample as an internal standard. One Cy 3 and one Cy 5 

labeled sample were added to each gel, as defined by the experimental 

randomizing procedures. To each sample, an additional 175 µg of unlabeled 

sample were added; the volume was increased to a total of 450 µL using sample 
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preparation buffer. The reducing agent DTT (dithiothreitol; 1.3 mg per tube) and 

IPG (immobilized pH gradient) buffer (0.5%) were added, and the samples 

incubated and mixed in the dark at room temperature for approximately 1 h. 

Samples were then applied to 24 cm pH 4 – 7 IPG strips (GE Healthcare) and 

focused for 60 kVh using the following protocol: 12 h rehydration at 30 V; 1 h 

step and hold at 500 V; 7 hour gradient to 1,000 V; step and hold at 1,000 V for 1 

hour; gradient to 8,000 V for 3 h; step and hold at 8,000 V until 60 kVh. Strips 

were then reduced and equilibrated using 10 mg/mL DTT (15 min) followed by 

25 mg/mL iodoacetamide (15 min). The IPG strips were overlaid on 24 x 26 cm 8 

– 16% gradient Tris-HCl pH 8.8 pre-cast gels (NextGen Sciences, Ann Arbor, 

MI) cast between low fluorescing glass plates. Approximately 1 mL of agarose 

was applied to fix the gels and a Cy 2 labeled molecular weight marker was 

applied adjacent to the acidic side of the strip. The gels were then run 1 – 2 W per 

gel overnight (~22 – 24 hours) at 20°C until the marker dye ran off the gel. Gels 

were then imaged with a Typhoon 9400 scanner and processed using DeCyder 

v6.5 (GE Healthcare) BVA batch processor tool. Gels were post-stained using a 

silver stain as described previously (Shevchenko, Wilm, Vorm, & Mann, 1996). 

Images were uploaded to DeCyder (version 6.5) and spurious image objects 

(water spots, streaks and mismatches) were identified and excluded from further 

analysis. Following allocation of changed proteins, individual spots were 

manually inspected and excluded from analysis if they fell outside acceptable 

parameters for peak height, area, and slope.  
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 Gel picking and protein digestion. Pick lists were generated by selecting 

proteins whose expression was statistically changed in the two growth conditions 

(p<0.05) following digital image analysis using Decyder, and the corresponding 

spots were automatically picked using an Ettan Spot Picker (GE Healthcare) with 

Ettan Spot Pick Software v.1.1. Spots were delivered in 100 mM ammonium 

bicarbonate to a 96-well plate and digested using established protocols. Briefly, 

gel pieces were sequentially dried using three exchanges of 100% acetonitrile 

followed by a 10-minute SpeedVac (Savant) drying. Gel pieces were rehydrated 

in 40 µL of 10 ng/ µL trypsin in 100 mM NH4HCO3 on ice for 45 minutes. The 

supernatant was removed and replaced with 100 mM NH4HCO3 and digested at 

37 ˚C overnight. Peptides were then extracted using 50% acetonitrile/0.1% TFA 

(trifluoroacetic acid) for 30 minutes at 37°C. The peptides were microextracted 

using Omix C18 tips (Varian, Palo Alto CA) following the manufacturers 

instructions, and then deposited on a stainless-steel target plate in a matrix 

consisting of 10 mg/mL 2,5-dihydroxybenzoic acid.  

 MS and database searching. Mass spectra were acquired using a 

Voyager DE-STR matrix-assisted laser desorption/ionization time-of-flight MS 

(Applied Biosystems, Foster City, CA) in positive reflector mode with delayed 

extraction using the following parameters: laser energy, 1400 arbitrary units; mass 

range, 500 – 5,000 Da; 120 nsec delay, 100 laser shots per spectrum. External 

calibration was conducted using a standard peptide mixture (bradykinin, insulin B 

chain, P14R, and ACTH), and internal calibration was carried out using trypsin 

autolysis peaks. Data were processed in Data Explorer v1.1 (Applied Biosystems, 
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Foster City, CA) using noise reduction (2 standard deviations) and peak 

deisotoping. Peak masses were searched using the Mascot online search engine 

(http://www.matrixscience.com) with the following settings: Database, NCBI 

entire database (5.6 million entries); no missed cleavages; monoisotopic peaks; no 

fixed modifications; variable modification of methionine oxidation; error 

tolerance of 150 ppm. Protein identifications were mapped back to the gel using 

Decyder v6.5. Database and literature searches were used to further characterize 

and classify the proteins identified by MALDI-TOF MS. Where ambiguous 

names were encountered, BLASTp searches (Altschul et al., 1997) were used to 

identify homologous proteins from orthologous species. 

 

Results 

 Image analysis of 24 cm 2D-DIGE gels loaded with protein of S. wittichii 

RW1 cells grown on either dibenzofuran or acetate revealed 937 unique spots. 

Differential in-gel analysis of individual gels determined gel-specific parameters 

for selection criteria and allowed visual examination of changes between growth 

on the two substrates (Figure A.1). Of the 937 identified spots, 595 were matched 

between all the gels used to statistically compare the quantitative abundance of 

proteins. Statistical analysis compared triplicate biological observations for each 

condition, normalized to the internal pooled standard (Figure A.2).  

 Crude cell lysates from S. wittichii RW1 grown on dibenzofuran showed 

that, of all proteins observed, 23 proteins were modulated in response to changes 

in culture conditions. These candidate biomarkers of metabolic activity and 
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phenotype were observed in at least 6 of 9 DIGE images and were modulated as 

follows: 17 showed an apparent increase and 6 an apparent decrease (Figure A.2). 

These proteins, along with 21 proteins selected due to their high abundance in 

both growth conditions, were further analyzed and identified using mass 

spectrometry (Figure A.3). A Mascot search of the entire NCBI database using 

mass spectral data generated by peptide mass fingerprinting identified 23 of the 

44 proteins (52%). All protein identifications corresponded to the genome of S. 

wittichii strain RW1. Among the 17 proteins upregulated during growth on 

dibenzofuran, 8 were successfully identified (Table A.1). Among the 6 proteins 

downregulated during growth on dibenzofuran, 3 were successfully identified  

Figure A.1. A representative 2D-DIGE gel of RW1 showing the contrast in 
protein expression between cells grown on acetate and dibenzofuran. Proteins 
that are expressed equally for the two conditions appear white, differentially 
expressed proteins are shown in green (higher on acetate) and red (higher on 
dibenzofuran). 
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Figure A.2. Statistics and spot information for three representative spots 
from DIGE analysis of the RW1 crude cell proteome. Following visual 
examination of the spot characteristics and matching parameters, spots were 
identified as increased (A, gi|148555952 glyoxalase/bleomycin resistance 
protein/dioxygenase), decreased (B, unidentified protein) or unchanged (C, 
gi|148553776 OmpA/MotB domain protein). 
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Figure A.3. A scanned and cropped 24 cm gel showing annotations for spots 
selected for further analysis. The spots were selected due to (i) their relative 
increase or decrease during growth on the selected substrate or (ii) their high 
abundance in both samples. The spot numbers are identifiers for the quantitative 
information and identity (see Tables A.1-3). The approximate pH range 
(horizontal) is 4 – 7, and the approximate molecular weight (vertical) is 110 kDa 
to 10 kDa.  
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(Table A.2). An additional 12 proteins were identified whose expression level 

remained unchanged regardless of culture conditions (Table A.3).  

 Of the 7 identified proteins increased during growth on dibenzofuran, 3 

were directly related to the dibenzofuran degradation pathway (Figure A.4); the 

others were involved in downstream metabolic processes (catechol 1,2-

dioxygenase, adenylhomocysteinase), cell growth (elongation factor Ts) and cell 

protection (cold shock DNA-binding domain protein, alkyl hydroperoxide 

reductase). The three identified proteins whose expression was decreased 

(fumarylacetoacetate hydrolase, TonB-dependent receptor, and acyl-CoA 

dehydrogenase) are involved in biosynthesis, catabolism and transport. The 

unchanged proteins represented basic cell functions, although biosynthesis, 

catabolism and transport proteins dominated the identities.  

 

Discussion 

 DIGE and 2D electrophoresis are an accepted strategy for mining 

microbial proteomes for biomarkers related to a number of processes (Giometti, 

2006; Hufnagel & Rabus, 2006; Mazzoli et al., 2007). The complete protein 

content of S. wittichii RW1 consists of approximately 5,000 putative proteins 

from the bacterial chromosome and two megaplasmids. Using simple extraction 

and purification techniques followed by DIGE, over 500 protein spots were 

resolved on a large (24-cm) 2-dimensional gel and matched between the three 

biological replicates, representing approximately 10% of the entire protein 
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content. Of these 500 proteins, 23 were founds to be regulated in response to 

growth condition changes.  

 

Table A.1. Proteins identified as being increased in S. wittichii RW1 during 
growth on dibenzofuran when compared to growth on acetate. The spots were 
identified on a minimum of 6 gel images. 

 
Master 

Numbera 
Protein 

Accessionb 
Gene 
Locus 

Protein Name 
Average 
Ratioc T-test d 

919 148556489 Swit_3587 

Alkyl hydroperoxide 
reductase/thio specific 
antioxidant/Mal 
allergen 

1.52 0.099 

937 148550856 Swit_4897 
Dioxin dioxygenase, 
alpha subunit 

1.59 0.38 

922 148553900 Swit_0977 
Catechol 1,2-
dioxygenase 

1.8 0.078 

921 148555809 Swit_2901 
Putitative cold shock 
DNA-binding domain  

1.89 0.078 

539 148555586 Swit_2674 
Adenosylhomocysteina
se 

1.97 0.062 

418 148553385 Swit_0461 Elongation factor Ts 2.10 0.05 

934 115279619 Swit_3055 
meta-cleavage 
pathway hydrolase 

2.54 0.055 

603 148555952 Swit_3046 
Glyoxalase/Bleomycin 
resistance protein/ 
dioxygenase 

3.88 0.031 

a Arbitrary identifier for spot location (see Figure 2); b NCBI gi| number; 
c Using internal standard as 1.0, >1 is an increase and <1 is a decrease in 
abundance; d Student’s t-test comparing spot intensity for acetate vs. dibenzofuran 
grown cells  
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Table A.2. Proteins identified as decreased in S. wittichii RW1 during growth 
on dibenzofuran as compared to acetate. The spots were identified on a 
minimum of 6 gel images. 

Master 
Numbera 

Protein 
Accessionb 

Gene 

Locus 
Protein Name 

Average 
Ratioc T-test d 

821 148551036 Swit_5089 
Fumarylacetoacetate 
hydrolase 

-1.99 0.063 

470 148553574 Swit_0650 
Acyl-CoA dehydrogenase 
domain 

-1.74 0.031 

161 148550568 Swit_5129 TonB dependent receptor -1.59 0.086 

a Arbitrary identifier for spot location (see Figure A.2) 
b NCBI gi| number  
c Using internal standard as 1.0, >1 is an increase and <1 is a decrease in 
abundance 
d Student’s t-test comparing spot intensity for acetate vs. dibenzofuran grown cells 
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Table A.3. Highly abundant proteins identified as unchanged in S. wittichii RW1 
during growth on dibenzofuran or acetate. The spots were identified on a 
minimum of 6 gel images. 

Master 
Numbera 

Protein 
Accessionb 

Gene 
Locus Protein Name 

Average 
Ratioc T-test d 

916 148556048 Swit_3144 
TonB-dependent 
receptor 

-1.33 0.23 

929 148553835 Swit_0912 
4-oxalocrotonate 
decarboxylase 

-1.26 0.25 

256 148556278 Swit_3376 
Chaperonin 
GroEL 

-1.21 0.5 

453 148553821 Swit_0898 

Phenylpropionate 
dioxygenase, 
ferredoxin 
reductase subunit 

-1.17 0.5 

741 148553833 Swit_0910 
Alpha/beta 
hydrolase fold 

-1.08 0.9 

933 148555961 Swit_3055 
meta-cleavage 
product hydrolase 

-1.03 0.85 

932 148553776 Swit_0853 
OmpA/MotB 
domain 

-1.00 0.93 

749 148553834 Swit_0911 
4-oxalocrotonate 
decarboxylase 

1.09 0.3 

927 148555704 Swit_2794 

Opacity protein 
and related 
surface antigen-
like protein 

1.09 0.82 

648 148550878 Swit_4921 
3-keto-5-
aminohexanoate 
cleavage enzyme 

1.15 0.45 

177 148555643 Swit_2731 
Aconitate 
hydratase 1 

1.23 0.44 

479 148550877 Swit_4920 

FAD-dependent 
pyridine 
nucleotide-
disulphide 
oxidoreductase 

1.57 0.5 

a Arbitrary identifier for spot location (see Figure A.2); b NCBI gi| number;  
c Using internal standard as 1.0, >1 is an increase and <1 is a decrease in 
abundance; d Student’s t-test comparing spot intensity for acetate vs. dibenzofuran 
grown cells 
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Figure A.4. The dioxin (left) and dibenzofuran (right) degradation pathways. 
Enzymes catalyzing individual reactions are written in the center. Bold typeface 
indicates a protein that was found to be increased in expression. The ferredoxin 
(underlined) is located in an operon whose expression was found to be decreased. 
ClyC5 and ClyC6 represent potentially chlorinated aliphatic moieties. 

 This study identified a number of proteins that are related to 

dioxin/dibenzofuran degradation (e.g., dioxin dioxygenase, meta-cleavage product 

hydrolase, 2,3-dihydroxybiphenyl 1,2-dioxygenase). Other proteins were 

identified that showed increases in abundance but whose role was not directly 

Dioxin dioxygenase alpha & beta subunits 
Ferredoxin 
Reductase

Glyoxalase/bleomycin resistance  
protein/dioxygenase 

meta-Cleavage product hydrolase
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related to the dibenzofuran degradation pathway. The increase in the presence of 

antioxidants such as alkyl hydroperoxide reductase suggest that there is an 

increasing stress upon the bacterial cell during growth on dibenzofuran, perhaps 

due to a change in catabolism resulting in an increase in endogenous peroxide 

generation (Seaver & Imlay, 2001). Increases in a cold-shock DNA-binding 

protein may be further evidence of an increased cellular stress (Susin, Baldini, 

Gueiros-Filho, & Gomes, 2006). However, proteins of the cold shock family and 

related ones are also known to have transport and protein processing roles 

(Schiene-Fischer, Habazettl, Schmid, & Fischer, 2002).  

 Among the proteins in the dioxin degradation pathway, the most 

prominent on the gel was the meta-cleavage product hydrolase. This identification 

was produced from two adjacent spots, likely representing an artifact due to the 

protein’s extremely high expression or a reflection of the presence of multiple 

isoforms or a modified enzyme. S. wittichii RW1 has three known isoforms of this 

meta-cleavage product hydrolase (Seah et al., 2007). The one identified in the 

present study is the product of the Swit_3055 locus, a gene also known as DxnB2 

(Seah et al., 2007). Its identification in this study corroborates previous findings 

(Seah et al., 2007). Unlike the dioxin dioxygenase, this gene is found on the 

chromosome. 

 The glyoxalase/bleomycin resistance protein/dioxygenase identified in this 

study is also annotated as a 2,3-dihydroxybiphenyl-1,2-dioxygenase located on 

the chromosome at the Swit_3046 locus. Again, there are multiple isoforms of 

this enzyme found both on the chromosome and the megaplasmids. The KEGG 
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dioxin degradation pathway identifies Swit_4182 as the dihydroxybiphenyl 

dioxygenase involved in biphenyl metabolism and Swit_4902 as the 

trihydroxybiphenyl dioxygenase in both dioxin and dibenzofuran metabolism. 

These genes have all been annotated as glyoxalase/bleomycin resistance 

protein/dioxygenase. The increased expression in response to dibenzofuran 

suggests that the Swit_3046 dioxygenase plays a more important role in 

dibenzofuran degradation in vivo. 

 The high degree of redundancy in the dioxin and dibenzofuran degradation 

pathways, i.e. the presence of multiple ring-hydroxylating alpha and beta 

subunits, glyoxalase/bleomycin resistance protein/dioxygenases, and meta-

cleavage product hydrolases, remains to be explained. One possibility is that the 

various isoforms have different affinities for chlorinated metabolites that would 

result from chlorinated dioxins and furans. Further experiments are needed to 

fully distinguish the roles of these enzymes in S. wittichii RW1 degradation 

pathways. 

 Although not directly implicated in dioxin degradation, the 

fumarylacetoacetate hydrolase is also of interest because the gene encoding this 

protein (Swit_5089) flanks the ferredoxin Fdx1 (Swit_5088) that has been 

identified as part of the electron supply chain supporting dioxin dioxygenase 

activity. Of the multiple isoforms of this enzyme, Fdx1 was found to function in 

vitro with the dioxin dioxygenase (Armengaud & Timmis, 1997). The electron 

supply chain also contains two isofunctional reductases (Bunz & Cook, 1993a). 

Neither the ferredoxin itself nor the reductases could be identified. In previous 
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studies, the reductase was present as a much smaller fraction of the soluble cell 

proteome than either the ferredoxin or the dioxin dioxygenase (Bunz & Cook, 

1993a), so gel-based methods may not be sensitive enough to detect this protein. 

If transcription of the ferredoxin is linked to the other genes at that locus, as is 

predicted (Armengaud & Timmis, 1997), the decreased expression in response to 

dibenzofuran suggests that another ferredoxin is more important in the dioxin 

degradation pathway in vivo. Further studies are needed to confirm this 

hypothesis. 

 The detection of the dioxin dioxygenase alpha subunit and related 

enzymes in both acetate- and dibenzofuran-grown cells is potentially of 

importance for the field of bioremediation because it suggests an avenue of 

biostimulation. When utilizing S. wittichii RW1 as a bioremediation agent, it may 

be possible to induce the expression of the dioxin degradation pathway using 

acetate. Induction of the dioxin degradation pathway has not been observed when 

S. wittichii RW1 is grown on glucose or rich medium (Halden et al., 2005a), and 

growth in a complex environmental medium (landfill leachate) was correlated 

with a decrease in copy number of the gene encoding the dioxin dioxygenase 

alpha subunit (Hartmann, Badalamenti, Krajmalnik-Brown, & Halden, 2012). 

Previous studies using S. wittichii RW1 to transform chlorinated dioxins in soil or 

fly ash have observed a progressive decrease in degradative activity (Halden, 

Halden, et al., 1999b) or viable cells (Nam et al., 2005), respectively. The addition 

of acetate may generate sufficient relevant protein biomass to catalyze the 
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successful degradation of dioxin and dioxin-like compounds in environments 

bioaugmented with S. wittichii RW1. 

 Proteomic technology has emerged in microbiology more rapidly than in 

other fields for several reasons. The relatively small genomes code for relatively 

limited proteomes featuring no or very limited post-translational modifications 

compared to higher organisms (Gupta et al., 2007). Furthermore, microbes are 

easily controlled and manipulated in the laboratory, both during growth and gene 

expression. These factors will continue to drive biomarker discovery in microbial 

proteomes, including phenotypic biomarkers informing on the degradative 

activity of biomass produced for bioaugmentation of contaminanted 

environments. Furthermore, the field of bioremediation can benefit from methods 

suitable for monitoring microbial biomarkers in field samples to inform on 

progress in site bioremediation. This study highlights a number of proteins that 

were changed in response to dibenzofuran exposure, opens the door to a greater 

understanding of how S. wittichii RW1 performs and regulates the degradation of 

dioxins, and suggests ways to enhance the biodegradation of dioxins. 
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