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ABSTRACT  

   

Electronic devices based on various stimuli responsive polymers are anticipated 

to have great potential for applications in innovative electronics due to their inherent 

intelligence and flexibility. However, the electronic properties of these soft materials are 

poor and the applications have been limited due to their weak compatibility with 

functional materials. Therefore, the integration of stimuli responsive polymers with other 

functional materials like Silicon is strongly demanded. Here, we present successful 

strategies to integrate environmentally sensitive hydrogels with Silicon, a typical high-

performance electronic material, and demonstrate the intelligent and stretchable 

capability of this system. The goal of this project is to develop integrated smart devices 

comprising of soft stimuli responsive polymeric-substrates with conventional 

semiconductor materials such as Silicon, which can respond to various external stimuli 

like pH, temperature, light etc. Specifically, these devices combine the merits of high 

quality crystalline semiconductor materials and the mechanical flexibility/stretchability of 

polymers.  

Our innovative system consists of ultra-thin Silicon ribbons bonded to an 

intelligently stretchable substrate which is intended to interpret and exert environmental 

signals and provide the desired stress relief. As one of the specific examples, we chose as 

a substrate the standard thermo-sensitive poly(N-isopropylacrylamide) (PNIPAAm) 

hydrogel with fast response and large deformation. In order to make the surface of the 

hydrogel waterproof and smooth for high-quality Silicon transfer, we introduced an 

intermediate layer of poly(dimethylsiloxane) (PDMS) between the substrate and the 

Silicon ribbons. The optical microscope results have shown that the system enables stiff 

Silicon ribbons to become adaptive and drivable by the soft environmentally sensitive 

substrate.   
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Furthermore, we pioneered the development of complex geometries with two 

different methods: one is using stereolithography to electronically control the patterns 

and build up their profiles layer by layer; the other is integrating different multifunctional 

polymers. In this report, we have designed a bilayer structure comprising of a PNIPAAm 

hydrogel and a hybrid hydrogel of N-isopropylacrylamide (NIPAAm) and acrylic acid 

(AA). Typical variable curvatures can be obtained by the hydrogels with different 

dimensional expansion. These structures hold interesting possibilities in the design of 

electronic devices with tunable curvature.  
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 Motivation for Research 

In today’s connected world, one of the most promising devices is expected to be 

stretchable and intelligent. Stretchable devices, representing a challenging class of 

system, are of great interest for applications where electronics require to be wrapped 

conformably around complex curvilinear shapes. The first step in development of 

stretchable devices is to fabricate stretchable systems that simultaneously exhibit good 

mechanical robustness and electronic performance. Soft materials show good mechanical 

properties but poor electronic properties. Rigid and crystallized materials, on the other 

hand, usually exhibit good electronic performance but poor mechanical robustness. Thus, 

one strategy to make stretchable devices with high performance is to integrate flexible 

substrates with rigid electronic materials. To become shape adaptable, these rigid 

materials need to be implemented in ultrathin formats so that they can form into “wavy” 

or buckled geometries to release their strain change without fracturing. Recently, thin 

films of crystal semiconductors (e.g., Si) have shown potential applications in flexible 

and stretchable electronics when integrated with elastomeric substrates (e.g., 

poly(dimethylsiloxane) (PDMS)) (Khang, Jiang et al, 2006; Sun, Choi et al, 2006). Using 

this technology, diodes, transistors, logic gate circuits, and more complex devices such as 

curvy electronic eyes have been demonstrated (Choi, Song et al, 2007; Kim, Ahn et al, 

2008; Ko, Stoykovich et al, 2008). Specifically, those devices combine the merits of high 

quality crystalline semiconductor materials and the mechanical flexibility/stretchability of 

elastomers. However, those flexible substrates need extra stress to drive the electronics 

manually and intelligence that devices can be automatically tunable according to 

environment signals is not yet realized.  
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To make flexible devices intelligent, a stimuli-responsive substrate with 

stretchability is demanded. The materials for such devices usually include polymers that 

are sensitive and able to 2respond to a variety of stimuli, including light, pH, temperature, 

humidity, and electrical field (Lahann, Mitragotri et al, 2003; Lendlein, Jiang et al, 2005; 

Osada, Okuzaki et al, 1992; Richter, Paschew et al, 2008; Tian and Feng 2008). The 

above work primarily shows dynamic structural or mechanical responses when their 

ambient environment changes. Hydrogel, one of the most prominent examples of such 

responsive polymers, is able to swell and shrink in solvents (e.g., water) and has been 

found in many successful applications such as microfluidics (Beebe, Moore et al, 2000; 

Birnbaumer, Lieberzeit et al, 2009; Dong, Agarwal et al, 2006), actuators (Bassil, 

Davenas et al, 2008; Sidorenko, Krupenkin et al, 2007; Zhao, Gao et al, 2007), artificial 

muscles (Mao, Hu et al, 2005; Moschou, Madou et al, 2006; Moschou, Peteu et al, 2004), 

and precise micro/nano manipulation (Kaehr and Jason 2008; Kang, Moon et al, 2008; 

Kim, Yoon et al, 2010). The commonly investigated adaptive hydrogels, however, 

naturally offer limited functionality or design flexibility for adaptive device applications, 

compared with many other functional semiconductor materials (e.g., Si). Therefore, the 

development of environmentally sensitive electronics requires one to explore the 

feasibility of the combination of adaptive materials and functional components. The 

combination of environmental responsiveness and mechanical flexibility/stretchability 

brings broader and more fascinating applications owing to their ability to undergo abrupt 

volumetric changes in response to their surrounding environment without the requirement 

of external controls. For example, electronic eyes with stimuli tunable curvatures can be 

applied in the fields of optical imaging or medical endoscopy; in the form of flexible, 

light sensitive endoscopes can be used to maneuver into and visualize lesions in hard to 
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reach spaces such as the cavernous sinus in the brain and the knee for arthroscopic 

applications (Abuzayed, Tanriover et al, 2010; Campbell, Kenning et al, 2010). 

1.2 Stimuli-responsive Hydrogels Background 

1.2.1 Mechanism of Stimuli-responsive Hydrogels 

Hydrogels are three-dimensional polymeric networks which have the capacity to 

absorb large amount of water while maintaining their dimensional change ability. 

Stimuli-responsive hydrogels are defined as hydrogels that undergo relatively large and 

abrupt changes in their swelling behavior, network structure, permeability and 

mechanical strength in response to small environment changes, such as temperature 

(Hoffmann, Plotner et al, 1999), pH (Zhao and Moore 2001), light (Suzuki and Tanaka 

1990), magnetic (Szabo, Szeghy et al, 1998) or electric field (Tanaka, Nishio et al, 1982). 

Among the available environmentally responsive hydrogels, temperature and/or pH-

responsive hydrogels have attracted more considerable attention because of the facile 

tuning of their properties.  

Specifically, temperature responsive hydrogels are classified into negative and 

positive thermo-sensitive systems (Peppas, Bures et al, 2000; Qiu and Park 2001). 

Negative thermo-sensitive hydrogels contract upon heating above their lower critical 

solution temperature (LCST). Such hydrogels are usually made of polymer chains that 

posses moderately hydrophobic and hydrophilic segments. Poly (N-isopropylacrylamide) 

(PNIPAAm) is a typical example of a negative thermo-sensitive hydrogel. At low 

temperature, hydrogen bonding between hydrophilic segments of the polymer chain and 

water molecules are dominated, which causes the hydrogel to favorably interact with 

water and swell (expand) after absorbing water into the hydrogel network. As 

temperature increases, the hydrogen bonding is disrupted and hydrophobic property 

dominates. This causes the hydrogel to deswell and shrink as water is expelled from the 
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hydrogel network due to inter-polymer chain association through hydrophobic 

interactions. Essentially, this phase separation is a phenomenon governed by the balance 

of hydrophilic and hydrophobic moieties on the polymer chain and the free energy of 

mixing (ΔG=ΔH-TΔS) (Schild 1992): as the entropy in the two-phase polymer and water 

system where hydrophobic property dominates above LCST is greater than in the 

homogeneous polymer solution under LCST (Taylor and Cerankowski 1975), an increase 

in temperature results in a larger TΔS and the enthalpy term ΔH  is smaller with respect 

to TΔS (Lewin 1974), making ΔG negative and favoring polymer chain association. 

Therefore, positive ΔS renders the temperature increase to contribute to the trend of the 

system to aggregate. The occurrence of the phase transition is generally contributed to the 

temperature dependence of certain molecular interactions, such as hydrogen bonding and 

hydrophobic effects. On the other hand, positive thermo-sensitive hydrogels contract 

upon cooling below their upper critical solution temperature (UCST). Such hydrogels are 

mainly composed of an interpenetrating polymer network (IPN) of certain polymer 

chains, such as polyacrylamide (PAAm) and poly(acrylic acid) (PAA) or 

poly(acrylamide-co-butyl methacrylate) crosslinked with N,N´-methylenebisacrylamide 

(MBA) (Carelli, Coltelli et al, 1999). IPN can be described as crosslinked polymer chains 

held together by permanent entanglements (Bischoff and Cray 1999). At low 

temperature, the IPN hydrogels form intermolecular complexes via hydrogen bonding 

between the polymer chains; as temperature increases, the hydrogen bonds are disrupted 

due to the water molecule’s kinetic energy. Eventually the hydration bonding system 

becomes weaker than the inner opposite stress of compressed polymers chains at 

temperature above the UCST, resulting in swelling.  In general, UCST is an enthalpically 

driven effect while LCST is an entropically driven effect (Kulshreshtha and Vasile 2002). 

LCST and UCST are the respective critical temperature points below and above which 
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the polymer and solvent are completely miscible as shown in Figure 1.1 (Clark and 

Lipson 2011). 

 

Figure 1.1 Upper (UCST) and lower critical solution temperature (LCST). UCST and 

LCST-type phase diagrams are depicted as solid curves with a one phase region between. 

For pH-sensitive hydrogels, they are made of polymeric backbones with ionic pendant 

groups that can accept and/or donate protons in response to an environment pH change 

(Dwivedi, Pankaj et al, 2011). According to the acid-base property of the ionic pendant 

groups, pH-sensitive hydrogels are generally classified as anionic, cationic and 

amphiphilic hydrogels. Anionic hydrogels contain negatively charged moieties, such as 

poly(acrylic acid) (PAA) (Elliott, Macdonald et al, 2004). At low pH, the anionic 

hydrogels are relatively unswollen since the acidic groups on the gel are protonated and 

hence unionized. When the environmental pH is above the pKa of the ionizable moiety, 

the pendant acidic groups are deprotonated. As ionization increases, fixed charges are 

developed on the polymer network and there is a resultant increase in electrostatic 

repulsions between the ionized polymer chains, which results in greater swelling. Besides 

electrostatic repulsions, a large osmotic swelling force by the presence of ions also 

increases the uptake of solvent in the network. On the other side, cationic hydrogels 

contain positively charged moieties, like poly (N, N-diethylaminoethyl methacrylate) 
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(PDEAEM) (Balamuralidhara, Pramodkumar et al, 2011). Conversely, cationic hydrogels 

will swell at low pH since the ionization of the basic groups will increase with decreasing 

pH. When pH is higher, the hydrogels showed shrinkage as pendant groups of cationic 

hydrogels are un-ionized above the pKb of the polymeric network. Figure 1.2 (a) shows 

the reaction mechanism of both anionic and cationic hydrogels (Balamuralidhara, 

Pramodkumar et al, 2011). Amphiphilic hydrogels are made of both negatively and 

positively charged moieties and the mechanism of its pH response is similar as the 

anionic and cationic. Therefore, they have two phase transitions. The phase transition 

behavior of these three kinds of pH-sensitive hydrogels is shown in Figure 1.2 (b) 

(Richter, Paschew et al, 2008). 
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(b) 

Figure 1.2 (a) pH-sensitive ionization. Poly (acrylic acid) (top) and poly (N, N-

diethylaminoethyl methacrylate) (bottom). (b) Phase transition behavior of pH-sensitive 

hydrogels. Anionic (acidic) hydrogels (□) are ionized by deprotonation in basic solutions. 

Cationic (basic) hydrogels (○) swell in acidic solutions due to the ionization of their 

basic groups by protonation. Amphiphilic hydrogels (Δ) show two phase transitions. 

1.2.2 Swelling Behavior of Hydrogels 

Swelling behavior of hydrogel systems is an important parameter governing their 

applications specifically in drug delivery, tissue engineering, actuators and sensors.  

Swelling is a continuous process of transition from an unsolvated glassy or partially 

rubbery state to a relaxed rubbery region. Before swelling, a dry hydrogel remains in a 

glassy state in virtue of strong intermolecular and/or polymer-polymer interactions, such 

as hydrogen bonds and hydrophobic interactions (Yoshida, Okuyama et al, 1994).  When 

the hydrogel is placed in contact with water, water driven by chemical potential gradient 

diffuses into the hydrogel and thus the hydrogel swells. Consequently, the unsolvated 

glassy phase is separated from the rubbery hydrogel region with a moving boundary and 

the meshes of the network in the rubbery phase start expanding, allowing other water 

molecules to penetrate within the hydrogel network (Ganji, Vasheghani-Farahani et al, 
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2010). In this case, diffusion is associated with migration of water into preexisting or 

dynamically formed spaces among hydrogel chains, while swelling involves a large-scale 

segmental motion. The final water content of hydrogels depends on both kinetics and 

thermodynamics parameters.  

1.2.2.1 Kinetics of Hydrogel Swelling 

The kinetic behavior of hydrogel swelling is mainly due to diffusion, convection 

and/or capillary rise of water into the hydrogel, which is dependent on several 

physicochemical factors, particularly the sample size and the type of porous structure 

(Ganji, Vasheghani-Farahani et al, 2010). As summarized in table 1, the porous structure 

of hydrogels is classified into nonporous, microporous, macroporous and superporous. 

According to Lowman definition (Lowman 2008), nonporous hydrogels have 

macromolecular dimension in the range of 10-100 Å. In these hydrogels, the polymer 

chains are densely packed and provide strictly limited solvent transport via the diffusion 

through free volumes. Microporous hydrogels usually have pore sizes between 100 and 

1000 Å. In these hydrogels, the pores are water filled and the solvent transport occurs due 

to a combination of molecular diffusion and convection in the water filled pores. 

Macroporous hydrogels have large pores of dimension 0.1 to 1 µm and the solvent 

transport is through mechanism dependent on diffusion in the water filled pores. 

Superporous hydrogels have much larger pore size in the range of several hundred 

micrometers. In these hydrogels, most of the pores are connected to form the open 

channel system, which acts as a capillary system causing a rapid water uptake into the 

porous structure (Dorkoosh, Verhoef et al, 2002).  
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Table 1.1 Hydrogels in a viewpoint of porosity-related swelling kinetics (Ganji, 

asheghani-Farahani et al, 2010) 

Type Morphology Type of 

Absorbed Water 

Major Swelling 

Mechanism 

Swelling 

Rate 

Non-

porous 

Without network 

porosity 

Mostly bound Diffusion through 

free volumes 

Very slow, 

sample size-

dependent 

Micro-

porous 

Various porosity 

with closed-cell 

structure 

(100-1000 Å) 

Mostly bound Combination of 

molecular 

diffusion and 

convection in the 

water filled pores 

Slow, 

sample size-

dependent 

Macro-

porous 

Various porosity 

with closed-cell 

structure (0.1-

1µm) 

Mostly bound Diffusion in the 

water filled pores 

Fast, 

sample-size 

dependent 

Super-

porous 

High porosity 

with 

interconnected 

open-cell 

structure 

Mostly free Capillary forces Very fast, 

sample size-

independent 

 

To determine the mechanism of solvent transport in hydrogels, the swelling and 

shrinking behavior of hydrogels can be distinguished by the shape of the swelling curve 

with the swelling data over time intervals (Ritger and Peppas 1987).  

ntW
f Kt

W

                                                                   (1.1) 

where f is the fractional water uptake at time t; Wt and W∞ are the mass of the hydrogel at 

time t and at equilibrium swelling respectively; K is a characteristic rate constant that 
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relies on the hydrogel structure and n is the diffusion exponent that denotes the type of 

transport mechanism, indicating whether diffusion and/or network relaxation controls the 

swelling. The constant n and K can be found from the slopes and intercepts in the 

swelling curve of log f against log t. For n ≤ 0.5, corresponding to Fickian diffusion, the 

rate of diffusion is lower than the rate of relaxation of the polymer network, which means 

the swelling is diffusion controlled. For n = 1, non-Fickian diffusion, the rate of diffusion 

is faster contrary to the relaxation, so solvent transport is controlled by the rate of 

relaxation of the polymer network. For 0.5 < n < 1, anomalous diffusion, both rates 

considerably influence on the swelling rate and none of their effect can be neglected 

(Caykara, Kiper et al, 2006; Patel and Mequanint; Rathna and Chatterji 2001).  

Because the total phenomenon of swelling is the consequence of the solvent 

mixing with the polymer segments and extensive stretching of the segments, 

mathematical models for the swelling kinetics of hydrogels are varied in different types 

of transport mechanism. For diffusion controlled swelling kinetics, the diffusion 

coefficient (D) is used to describe the rate of swelling. According to Fick’s first law 

(Ritger and Peppas 1987), the flux, J, can be expressed by  

C
J D

x

 
   

 
                                                             (1.2) 

where 
C

x




 is the concentration gradient which is the driving force for diffusion. The 

concentration change in one-dimension is given by Fick’s second law (Ritger and Peppas 

1987): 

2

2

C C
D

t x

   
   

    
                                                       (1.3) 

Equation (1.3) can be solved by measuring the boundary conditions. Using the time-

dependent swelling data, the diffusion coefficient can be calculated. For relaxation of the 
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polymer chain controlled swelling kinetics, a sorption process will be affected through 

the segmental motion that occurs at approximately the same rate or slower than the 

diffusion process. Thus, the kinetic behavior of the hydrogel swelling is dependent upon 

the polymer structure and polymer composition (Patel and Mequanint). For both diffusion 

and relaxation controlled swelling kinetics, the second-order swelling kinetic theory is 

applied (Awasthi and Singhal):  

 
2dH

K H H
dt

                                               (1.4) 

Where Kr is swelling rate constant, H is the degree of swelling at time t, and H∞ is the 

degree of swelling at equilibrium. By integrating of equation (1.4), the expression of 

equilibrium swelling rate constant could be obtained:  

rK K xH                                                    (1.5) 

By applying the initial conditions, the swelling rate constant could be calculated.  

1.2.2.2 Thermodynamics of Hydrogel Swelling 

In principle, the swelling behavior of hydrogels can be evaluated from their 

thermodynamic data. In the presence of water, the hydrophilic segments and the void 

space in the polymer network allow large water absorption, proceeding toward infinite 

dilution. However, the presence of cross linking junctions resists the infinite dilution by 

the restrictive force of elasticity. The total Gibbs free energy change of the system can be 

obtained using Flory-Huggins theory that is applied to the fundamentals of the 

thermodynamics of polymer solution. In a nonionic system, the total Gibbs free energy 

change of the system, upon swelling, can be written as  (Flory 1953; Ratner, Hoffman et 

al, 2004):  

                mixture elasticG G G                                                  (1.6) 
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where mixtureG  is the free energy of mixing due to water affinity of hydrophilic 

polymers; elasticG  is the elastic free energy as a result of the network expansion. In 

order to express the chemical potential change of water in terms of elastic and mixing 

contributions at any time of swelling, differentiating equation (1.6) with respect to the 

water molecules in the system gives 

wh pw mixture elastic                                                      (1.7) 

where wh  is the chemical potential of water within the hydrogel; 
pw  is the chemical 

potential of pure water; mixture  is the change in chemical potential due to mixing; 

elastic  is the change in chemical potential as a result of the network expansion. At fixed 

temperature and pressure, a stable system has a minimum Gibbs energy. It is indicated 

from thermodynamic stability analysis that a mixture will split into two separate phases if 

this can lower its Gibbs energy.  

1.3 Bucklings in Soft and Hard Materials and Their Applications 

An important focus in the future of electronics is systems that avoid the rigid, 

brittle and planar nature of existing classes of electronics, thus enabling new applications 

(Forrest 2004; Gelinck, Huitema et al, 2004; Lee, Koo et al, 2006; Rogers 2001; Rogers, 

Bao et al, 2001). Spontaneous formation of patterns via buckling in these kinds of 

electronics provides a fascinating route for the generation of functional devices. 

Semiconductor nanoribbons with wavy geometries are of interest in part because they 

enable the production of high-performance stretchable electronic systems for potential 

applications such as intelligent rubber surgical gloves (Someya, Sekitani et al, 2004), 

conformable structural health monitors (Nathan, Park et al, 2000) and electronic eye 
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cameras (Jung, Xiao et al, 2011). The wave can be controlled and oriented by relief 

structures in the surface of the soft material. Over the last several decades, numerous 

theoretical and experimental studies of this phenomenon have been performed (Harrison, 

Stafford et al, 2004; Huang and Suo 2002; Huang, Hong et al, 2005; Khang, Jiang et al, 

2006). The behavior in this wavy configuration is consistent with nonlinear analysis of 

the initial buckled geometry in a uniform, thin, high-modulus layer on a semi-infinite 

low-modulus support. For a stiff thin film of thickness h and elastic modulus Ef on a 

stretchable soft substrate of modulus Es, compressing the substrate leads to purely 

sinusoidal displacement distribution with wavelengths of (Groenewold 2001; Huang, 

Hong et al, 2005; Jiang, Khang et al, 2007) 

1/3

0 2
3

f

s

E
h

E
 

 
  

 
                                                  (1.8) 

This equation predicts that the wavelength is dependent on the film thickness and the 

film/substrate modulus ratio. With hydrogel as the soft substrate, its modulus is 

determined by various factors including the crosslink density, the swelling ratio and the 

structure of the hydrogel. The amplitude for the buckling process is given by (Huang, 

Hong et al, 2005; Jiang, Khang et al, 2007; Sultan and Boudaoud 2008) 

  0 1
c

A h



                                                       (1.9) 

where   is the residual strain; c  is the compressive strain. Equation (1.9) indicates that 

the amplitude of the buckled structure is a function of the residual/compressive strain 

ratio besides the thickness of the stiff film. For soft hydrogels integrated with Silicon 
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ribbons, residual and compressive strains are generated during shrinking/swelling of 

hydrogels. Consequently, important factors in the patterns of buckling of the hydrogel 

integrated with Silicon ribbons system are the deformation under stimuli and modulus of 

the hydrogel which are related to various properties of hydrogels, such as crosslink 

density and their rate of swelling, besides the thickness of the Silicon ribbons. Generally, 

larger shrinking of the hydrogels will result in larger amplitude as well as smaller 

wavelength. On the other side, thicker stiff film will also result in larger amplitude and 

larger wavelength. 
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CHAPTER 2 

THERMORESPONSIVENESS OF INTEGRATED ULTRA-THIN SILICON WITH 

POLY(N-ISOPROPYLACRYLAMIDE) HYDROGELS 

2.1 Introduction 

As reviewed in Section 1.1, novel materials based on various environmentally 

sensitive polymers hold important implications for the development of flexible and 

intelligent devices. Environment-sensitive hydrogels that can autonomously transduce 

ambient signals constitute optimal candidate for use as the stretchable and intelligent 

materials. However, the functionality of these materials alone is limited. Thus, the 

integration of these with other functional materials like Silicon is strongly desired. The 

main challenge in developing these kinds of devices is to make strong interconnections 

between the soft and rigid components. Although Rogers et al. succeeded in applying the 

soft material poly(dimethylsiloxane) (PDMS) to drive the stiff thin film Silicon buckled 

in developing stretchable electronics (Khang, Jiang et al, 2006; Sun, Choi et al, 2006), the 

hydrogels instead of PDMS as the soft substrate are much more challenging: the 

interconnecting porous structure of hydrogels is not smooth for Silicon transfer; the 

interface between Silicon and hydrogels will be exposed to water coming from the 

hydrogels in the transfer process. Thus, the challenge for environmentally sensitive 

electronics is their adaptability to the presence of such complicated boundary constraints, 

such as mounting with rough surfaces. 

We here select the waterproof material PDMS as an intermediate layer to resolve 

the bonding problem between hydrogels and Silicon and avoid water damaging to 

electronics. With this approach, we have successfully developed thermoresponsive ultra-

thin Silicon nanostructures as shown in Figure 2.1 (a), in which several hundred 

nanometer thick Silicon ribbons are integrated with hydrogels and able to change their 
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mechanical configurations rapidly by altering the ambient temperature. Ultra-thin Silicon 

ribbons become adaptive and can be reversibly driven to be flat and “wavy” according to 

the cyclic change of the temperature. Figure 2.1 (b) schematically shows the cyclic 

behavior of the Silicon nanoribbons on thermally sensitive hydrogels. This work of the 

integrated hydrogels (representing the environmentally sensitive materials) and Silicon (a 

type of widely-used functional materials), as an example, represents a new class of 

combination between soft and hard materials, and opens ways for future environmentally 

sensitive electronics.  

2.2 Experimental 

2.2.1 Materials 

N-isopropylacrylamide (NIPAAm), N,N’-methylenebis(acrylamide) (BAA), 

tetramethoxylsilane (TMOS), ammonium peroxodisulfate (APS), N,N,N’,N’-

tetramethylethylenediamine (TEMED) and deionized (DI) water were used in the 

polymerization of the PNIPAAm-based hydrogel. Sylgard 184 Silicone elastomer base 

and curing agent were used in the preparation of poly(dimethylsiloxane) (PDMS) layer. 

Silicon-on-insulator (SOI) wafer, hydrofluoric (HF) acid were used in the fabrication of 

ultra-thin Silicon ribbons. Alexa Fluor 488 was used to label the PNIPAAm-based 

hydrogel for confocal microscopy characterization. 

2.2.2 Sample Preparation 

2.2.2.1 Preparation of Poly (N-isopropylacrylamide) (PNIPAAm)-based Hydrogel 

The PNIPAAm-based hydrogel was prepared as described in our published paper 

(Yu, Pan et al, ): 
 
300 mg NIPAAm was initially mixed with 6.3 mg BAA in 2677 mg 

deionized (DI) water, and purged with nitrogen. When the solution was constant at 15 
o
C, 

8.9 mg (11.5 µL) TEMED and 104 mg (104 µL) TMOS were added and mixed. After 10 

min, 542 µL APS 1% aqueous solution was added in the mixture and nitrogen was 
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removed (still keeping the container sealed). After another 3 min, the pre-gel solution 

was cooled down to the polymerization temperature of -18 
o
C for 24 hours. Upon 

finishing polymerization, the frozen sample was taken out of the container and immersed 

in DI water to extract un-polymerized (or remaining) monomers at room temperature 

around 23 
o
C, and meanwhile the hydrogel network swelled up to equilibrium. Then 

desired shape of hydrogel was achieved by using a blade. 

2.2.2.2 Preparation of Ultra-thin Silicon Ribbons 

The Silicon ribbons (50 μm wide, 5,000 μm long and 100 nm thick) were 

fabricated using the established process (Khang, Jiang et al, 2006; Yu, Wang et al, 2009): 

Silicon (Si) elements from Silicon-on-insulator (SOI) wafers were first fabricated. 

Following, the elements were picked up using a mediate stamp and finally printed them 

onto the cured PDMS surface. Using standard micro-fabrication techniques, 100 nm thin 

layer Si elements of different geometries were physically separated from the thick Silicon 

substrate by removing the SiO2 layer in concentrated hydrofluoric (HF) acid. Followed 

by air drying the Silicon elements, a PDMS stamp (base and curing agent at the ratio of 

10:1) was brought into conformal contact with the Si elements thus physically adhered to 

the Si elements. Quick peeling off the stamp against the Si substrate resulted in the 

elements attached with the stamp rather than stay on the substrate yielding a successful 

transfer process. 

2.2.2.3 Preparation of the PNIPAAm-based Hydrogel Integrated with the Silicon Ribbons 

After the hydrogel was synthesized and reached equilibrium in fresh water, a 

mixture of Sylgard 184 Silicone elastomer base and curing agent (with a ratio of 30:1) was 

spread on the top surface of the swollen hydrogel slab. The uncured PDMS spontaneously 

spread out and formed a continuous thin layer with smooth surface in a few minutes due to 

the flow driven by surface tension. After the PDMS was solidified, the sample was 
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exposed to ultraviolet light with atomic oxygen (UVO) for 150 seconds to generate 

hydroxyl (–OH) groups on the top surface of the PDMS layer, which is essential for 

transfer printing Si thin films. The Silicon ribbons were then transferred to the 

hydrogel/PDMS system.  

2.2.3 Characterization of PNIPAAm-based  Hydrogel 

The elemental composition and the associated chemical bonding states of the 

PNIPAAm hydrogel were analyzed with VG ESCALAB 220i-XL X-ray photoelectron 

spectroscopy (XPS). The XPS was carried out with a monochromated Al K-alpha 

(linewidth 0.8 eV) X-ray source on dried gel. The hydrogel was completely dried in a 

vacuum drying oven before the measurement.  

The swelling rate of the hydrogel was tested by measuring the total weight of the 

hydrogel in water for every minute with a weighing machine. Before the hydrogel in 

contact with water, it is fully dry. The pore size of the dried hydrogel was characterized 

with Leica TCS SP 5 confocal microscopy. The hydrogel was firstly immersed in Fluor 

488 nm solution overnight to impregnate the network of the hydrogel, and then dried out 

in a vacuum oven before the measurement. The confocal microscopy was carried out with 

the Argon 488 nm laser. The results of the pore size combined with its swelling kinetics 

were utilized to study the swelling mechanism of the hydrogel.  

Its lower critical solution temperature (LCST) was measured in water by using an 

AR-G2 rheometer (TA instruments) equipped with a solvent trap. All of the rheological 

tests were performed using the parallel plates with 8 mm diameter. The linear viscoelastic 

region was determined by the dynamic strain sweep at frequency of 1 rad/s and a rapid 

decreasing in G' starts at around 10% strain. The temperature was ramped up from 25 to 

50 °C at 0.5 °C/min with controlled stain amplitude of 0.5% and frequency of 1 rad/s.  



19 

The dry sample was also characterized with Dynamic Mechanical Analysis 

(DMA) with a TA instruments model Q800 in the multifrequency mode using a film 

tensile clamp. The method is temperature ramp with heating rate of 5⁰C/min in the range 

from 25⁰C to 300⁰C. The fixed frequency and strain are 1 Hz and 0.1%, respectively. 

2.2.4 Testing of Environmental Responsiveness 

The environmental responsiveness of the hydrogel/PDMS/Si system was studied 

by exploring the Si buckling patterns at different temperatures. During the experiments, 

the system was immersed in hot water in a Petri dish, allowing it to be heated and cooled. 

The morphology of the Si nanoribbon arrays in different temperatures was observed 

under an optical microscope (Nikon L-DIHC) and the corresponding wavelength was 

measured by using Image J. 

2.3 Results and Discussion 

2.3.1 Integrated Mechanism of the Hydrogel/PDMS/Si System  

As shown in Figure 2.1 (a), the system consists of three components, the 

PNIPAAm-based hydrogel, the PDMS layer and Silicon ribbons.  

 

 

(b) 

(a) 
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Figure 2.1 (a) Layer-assembled structure of the PNIPAAm/PDMS integrated with Silicon 

nanoribbons. (b) Schematics of the hydrogel swelling/shrinking drivable Silicon thin 

ribbons. 

Here, the PDMS layer was used to make the interconnecting porous structure of the 

hydrogel smooth and waterproof for the following high-yield transferring steps. In order 

to promote the bonding between the PNIPAAm hydrogel and the PDMS layer, TMOS 

was incorporated into the hydrogel synthesis. Specifically, the silica network produced 

from TMOS and water during the hydrogel synthesis interpenetrates in the PNIPAAm 

network and has residual Si-OH groups. The residual Si-OH group attached on the silica 

network distributed inside the PNIPAAm gel network from TMOS is expected to bond 

with hydroxyl-terminated PDMS through condensation reaction (Kim, Lee et al, 1999; 

Strachotova, Strachota et al, 2007). In order to understand the bonding properties 

between the hydrogel and the PDMS layer, the reaction mechanisms of the hydrogel were 

explored. As reported, the hdyrogel was prepared by simultaneous crosslinking radical 

copolymerization of the NIPAAm/BAA monomers and hydrolytic polycondensataion of 

TMOS (Strachotova, Strachota et al, 2007). To demonstrate the formation, XPS was 

utilized to study the elemental composition and the associated chemical bonding states of 

the hydrogel, as shown in figure 2.2 (a).  
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Figure 2.2 (a) XPS spectra of the PNIPAAm-based hydrogel. The exact value of binding 

energies and their chemical state of the corresponding elements at each peak are 

labelled. The inset is core-level spectrum of the C in (a) (Blue line is from the raw data); 

(b) Formation of PNIPAAm-based gel integrated with TMOS. (c) Bonding between the 

gel and PDMS: (1) hydrolysis of TMOS; (2) condensation reaction between PDMS and 

hydrolyzed TMOS. 

In the spectra, the peak whose binding energy locates at 151 eV is Si2s line, normally 

XPS artifacts, and is not used for analysis. The C1s spectrum can be curve-fitted with 

three peak components (see the inset image in figure 2.2 (a)): with binding energy at 

284.99 eV for CH3 species, at 287.96 eV for C=O species and at 286.22 eV for the C-N 

species (Beamson and Briggs 1992). The peak position of N1s at 399.8 eV, matches very 

well with  –CONH- species(Khang, Jiang et al, 2006; Sun, Choi et al, 2006). The binding 

energy of 102.2 eV corresponds to Silicon bound to two oxygens, -O-Si-O-, which is 

considered to be photoemission from SiO2 (Brookes, Fraser et al, 2001; Chiba and 

Takenaka 2008; Sellmer, Prins et al, 1997). The O1s spectrum in the sample is at 531.8 

eV which is nearly identical to that in silicate, 531.9 eV (Wang, Nabatame et al, 2005), 

especially considering that the acceptable error of the  technique is ± 0.7eV. Thus, we 

speculate that the state of both Si and O are similar as silica, which is in agreement with 

the reaction mechanism (shown in figure 2.2 (b)) (Strachotova, Strachota et al, 2007).  

After the hydrogel formation, the silica network was dispersed in PNIPAAm network. 
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Meanwhile, some of the Si-OH groups formed in hydrolysis-TMOS are probably inside 

the network and may be sterically hindered for further condensation. In the further 

experiment, the residual Si-OH group would tend to be bonded with hydroxyl-terminated 

PDMS via condensation reaction (see figure 2.2 (c). Exposed to UVO, the residual 

methyl from the PDMS would be changed into hydroxy groups which can be bonded 

with Si by condensation reaction (similarly as the reaction between hydrolysis-TMOS 

and PDMS). 

2.3.2 Mechanical Characterization and Swelling Kinetic Studies of the PNIPAAm-based 

Hydrogel 

2.3.2.1 Mechanical Characterization of the Dry PNIPAAm-based Hydrogel 

The glass transition temperature and mechanical properties of hydrogels directly 

affect their utility and performance. These properties of the dry PNIPAAm-based 

hydrogel here were measured by dynamic mechanical analysis (DMA), as shown in 

figure 2.3.  
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Figure 2.3 Dynamic mechanical testing of the dry PNIPAAm-based hydrogel.G’ and G’’ 

represent storage modulus and loss modulus, respectively. Tan delta is the ratio of G’’ to 

G’. 

In DMA, the measured storage modulus G’ is related to materials stiffness or resistance 

to deformation and the loss modulus G’’ is related to materials viscosity (Wicks, Jones et 

al, 1999). Figure 2.3 shows that at low temperature, the dry hydrogel is very hard (high 

G’). The polymer is glassy and the storage modulus G’ is in an unrelaxed state. Both the 

storage modulus G’ and the loss modulus G’’ change are little dependent on temperature. 

As the temperature keeps increasing, a transition region in G’ and G’’ is observed and the 

both G’ and G’’ are dramatically decreased right after the transition point. At still higher 

temperature, another plateau in G’ and G’’ occurs as the polymer is in a relaxed, rubbery 

state. The glass transition temperature is taken as the temperature at which the maximum 

in the damping factor (Tan delta) curve is observed (Anseth, Bowman et al, 1996). Figure 

2.3 shows the glass transition temperature of the PNIPAAm-based hydrogel is around 

180 ⁰C. 

2.3.2.2 Swelling Mechanism of the PNIPAAm-based Hydrogel 

 In the result of the swelling experiment shown in figure 2.4, the uptake rate of 

water by the hydrogel was relatively slow during the initial one minute, and then increase 

during the second minute, and decrease again during the third minute close to be in 

equilibrium.  
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Figure 2.4 The increased weight of the hydrogel swelling in water in series of time. 

Initially, the hydrogel was completely dry before being immersed in water. 

Before the swelling in the dry hydrogel, there are strong intermolecular and/or polymer-

polymer interactions, such as hydrogen bonds and hydrophobic interactions, which 

remain in a glassy state as the DMA result shows in Section 2.3.2.1 (Yoshida, Okuyama 

et al, 1994). The great G’ of this dry PNIPAAm-based hydrogel at room temperature 

shown figure 2.3 suggests that a glassy inner core might exist in the dry hydrogel having 

a high crosslinking level (Caykara, Kiper et al, 2006) which would lead to a significant 

reduction in the rate of water absorb. To accommodate these penetrating water molecules, 

a finite number of the interactions between chain segments will be broken (Rathna and 

Chatterji 2001). The resultant unfolding and stretching of the crumbled segments will 

allow water penetrating in their network much easier, which leads to increasing swelling 

rate,  as shown in the second portion of the swelling rate in figure 2.4 (during first and 

second minute). When the hydrogel is close to being in equilibrium, the chemical 

potential gradient in the polymer network is reduced so the driving force of water 

penetrating is decreased. Consequently, the uptake rate of water is getting slow, as shown 

in the third section in figure 2.4 (during second and third minute). 
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As above mentioned in Section 1.2.2.1, the swelling mechanism of hydrogels is 

determined by its porous structure. Figure 2.5 shows the morphology of this dry hydrogel 

at confocal microcopy.  

 

Figure 2.5 Confocal microscopy image of the dry PNIPAAm-based hydrogel. For 

encapsulation of a fluorescent dye, the hydrogel was initially swelling in Fluor (488 nm) 

which is excited at 488 nm of light.  

In order to identify the solid and void texture of the hydrogel, a fluorescent dye was used 

to label the hydrogel before the measurement. The dye used in the experiment, Fluor 488, 

can be excited by 488-nm light and thus are suited for use with Argon laser (488 nm). 

Under confocal microscopy, the strong fluorescence of Fluor in the hydrogel was 

observed as a result of Fluor conjugated to the hydrogel components through the α-amino 

group. Therefore, the green area in figure 2.5 represents the solid texture of the hydrogel 

while the black region corresponds to the void space of the hydrogel. As shown in this 

figure, the pore size of the hydrogel is in the range of 50-70 µm. Compared with the 

reference in table 1.1 in Section 1.2.2.1, it is identified that these sizes are super porous 

and its swelling mechanism is governed by capillary forces, which is very fast and 

sample size-independent. This result is consistent with the swelling kinetic studies of the 

PNIPAAm-based hydrogel.  
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2.3.3 Thermo Responsiveness of the System 

The synthesized hydrogel was examined for its lower critical solution transition 

temperature (LCST), which represents one of the essential characteristics for the response 

of the devices upon temperature change (see figure 2.1 (b)). The rheology testing reveals 

that the LCST (defined as the peak of the tan delta) for the synthesized hydrogel is 

around 32 
o
C (figure 2.6 (a)). Tan delta is the ratio of loss modulus to storage modulus.  

 

Figure 2.6 (a) Rheology testing of the synthesized hydrogels. (b) An optical image clearly 

showing out-of-plane buckling of thin Si nanoribbons on the PDMS/hydrogel when 

immersed in hot water. 

The storage modulus G' is much greater than the loss modulus G" over the entire 

temperature range, suggesting that the hydrogel behaves more solid-like. The decreased 

storage modulus G’ from room temperature to its LCST may be caused by some of the 

silica networks in the polymer chain dissolving in water with thermal expansion. The 

storage modulus G' increases right after the volume phase transition temperature, which 

indicates that the hydrogel becomes more elastic due to the deswelling of the hydrogel 

above 32 
o
C. The mechanism of the temperature responsiveness is the following. As the 

ambient temperature is above the transition temperature, the network of the hydrogel 

becomes hydrophobic thus expels water out and shrinks, which is a typical lower critical 
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solution temperature (LCST) phenomenon. For this sample, the dimension changes from 

19 mm to 14 mm, i.e., 26.3% linear strain or equivalently 60% volumetric change, when 

the ambient temperature exceeds the transition temperature. 

We expect that the constraint from the thin Si layers (100 nm thick) and soft/thin 

PDMS (0.2 MPa modulus and about 500 μm thick) is insufficient to influence or prevent 

the dimensional change of the hydrogel upon temperature variation. 100-nm Si ribbons 

are initially transferred and printed onto flat fully swollen hydrogel/PDMS surfaces in 

room temperature. When the transition temperature (e.g., 32
o
C here) is reached, the 

PNIPAAm hydrogel shrinks and buckles the initially flat Si nanoribbons to periodic 

sinusoidal shapes. The out-of-plane buckling of Si ribbons results from the compression 

load on stiff/soft materials, where soft materials can undergo shrinking while stiff 

materials have to buckle up to release the compressive strain, which has been reported 

elsewhere (Bowden, Brittain et al, 1998; Bowden and Huck 1999; Efimenko, Rackaitis et 

al, 2005; Genzer and Groenewold 2006; Khang, Jiang et al, 2006). Figure 2.6 (b) shows 

the optical image of a tilted view of the buckled Si nanoribbons on mediate layer PDMS 

when immersed in 45
o
C water. The buckling wavelength is around 29 μm. We notice that 

the Si buckling patterns are one-dimensional although the deswelling of hydrogels is two 

dimensional and isotropic. The explanation is that the width of Si nanoribbons, 50 μm, is 

comparable to the buckling wavelength (29 μm); thus the two dimensional buckling 

patterns (such as herringbone) would not appear for such narrow ribbons but are expected 

to present when the ribbon width is much greater than the buckling wavelength. 

The evolution of the Si buckling patterns upon temperature change was studied. 

The temperature change is realized by varying the ambient temperature of the solvent. 

Figure 2.7 (a) provides a series of optical images showing the evolution of buckling 

morphology of the Si nanoribbons.  
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Figure 2.7 (a) Buckling morphology evolution of the Silicon thin ribbons. i) After transfer 

printing; ii) 2 minutes after immersed into hot water (45 
o
C); iii) 4 minutes; iv) 6 

minutes; v) 8 minutes; vi) 10 minutes; vii) 12 minutes. (b) The wavelength of ii) to vii) in 

(a) increases during cooling down of the ambient temperature while the hydrogel 

substrate swells. 

During the experiments, the hydrogel/PDMS/Si was immersed into hot water in a Petri 

dish, allowing it to be heated up and cooled down. Image (i) shows the flat Si nanoribbon 
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arrays bonded with hydrogel/PDMS after transfer printing. Image (ii) shows the 

morphology of hydrogel/PDMS/Si after immersed into 45 
o
C water for 2 minutes, in 

which the buckling patterns appear. We actually observed that the buckling patterns 

became obvious once hydrogel/PDMS/Si is immersed into 45 
o
C water for less than 10 

seconds. This fast response (< 10 s) depends on various reasons, including the 

monomers’ temperature sensitivity, structure of the gel and more importantly the 

dimension of the PNIPAAm hydrogel slab because both the heat and mass transfer are 

related to the size of the media. Specifically, both heat conduction and mass diffusion 

timescales are of the order of L
2
/k and L

2
/D, where L is the characteristic length of the 

media, and k and D are thermal conductivity and mass diffusivity, respectively. 

Therefore, by decreasing the size of the hydrogel slab, the responsiveness timescale can 

be significantly reduced. However, there also exists a constraint that the hydrogel slab 

must be larger enough to store sufficient elastic energy from the swelling/shrinking to 

drive the deformation of PDMS/Si nanoribbons. Therefore, an optimum hydrogel 

dimension exists, which should be studied further. 

Images (iii), (iv), (v), (vi), and (vii) show the evolution of the buckling patterns at 

4, 6, 8, 10, and 12 minutes, respectively. As time passed, the ambient temperature drops 

from 45 
o
C to room temperature; thus the hydrogel network becomes hydrophilic again 

and swells, which fades out the wrinkle patterns. Figure 2.7 (b) shows that with passing 

time, the buckling wavelength (read from figure 2.7 (a)) monotonically increases with an 

almost linear fashion, which indicates the linear dimension change of hydrogel as a result 

of temperature cooling down. The observed bucking shape evolution obeys the 

mechanics of finite deformation of non-linear buckled stiff thin films on compliant 

substrates 
[48]

. When the temperature reaches room temperature, the hydrogel becomes 

fully swollen again and the buckling disappears driven by the temperature change. We 
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also conducted cyclic heating and cooling experiment and found a very reliable 

repeatability of such thermoresponsiveness of hydrogel/PDMS/Si nanoribbons systems. 

The buckling of the Si/PDMS/hydrogel system was qualitatively simulated using 

a commercial finite element analysis package ABAQUS to verify that the shrinking of 

hydrogels is able to buckle nanoscale thin films. The finite element model consists of a 

100-nm thick Si thin film and a 500-µm thick PDMS layer which were modeled as elastic 

materials, and a 500-µm thick gel layer. The three layers had the same length, 500 µm. 

The elastic modulus (E) and Poisson’s ratio (υ) for Si and PDMS are ESi = 130 GPa, υSi 

= 0.3(INSPEC 1988), and EPDMS = 0.2 MPa, υPDMS = 0.49, respectively. The hydrogel was 

modeled by Flory and Rehner model (Flory and Rehner 1943) that has been recently used 

to develop a field theory with coupled large deformation and diffusion (Hong, Zhao et al, 

2008; Zhang, Zhao et al, 2009). The shear modulus of dry PNIPAAm gel was measured 

by dynamic mechanical analyzer as 40 MPa. The temperature sensitivity of the 

PNIPAAm hydrogel was characterized by Flory’s dimensionless parameter χ which 

describes the hydrophilicity of the polymer. Specifically, χ changes from 0.09 to 0.46 to 

describe the shrinking of a hydrogel from swelling ratio of 1.2 to 1.15, i.e., a 4% 

compressive strain is applied to the Si/PDMS/hydrogel system. The finite element 

analysis obtains a buckling wavelength of 36.6 µm. It is noticed that the strain used in the 

finite element simulation (4%) is smaller than that in the experiments, which qualitatively 

explains the discrepancy in wavelength between modeling and experiments. However, 

the most important message has been verified by numerical simulations, i.e., the 

shrinking of the hydrogels can buckle hard materials with nanometer thickness.  

In addition to aforementioned one-dimensional Si nanoribbons, ultra-thin Si 

based network structures were integrated with hydrogels and their thermoresponsiveness 

has also been demonstrated. Following the same experiment procedure for Si 



32 

nanoribbons, diamond-shaped Si network structure of 100 nm thick and 400 μm long of 

each side becomes buckled when the hydrogel shrinks upon exceeding the transition 

temperature (figure 2.8).  

 

Figure 2.8 Demonstration of thin Si could be directly transferred onto the PEGDA gel 

and becomes buckled when the gel substrate deswells.  

The diamond-shaped network retained its shape during the dynamic buckling and 

recovery process because of the isotropic swelling and shrinking of the PNIPAAm 

hydrogel, which indicates more complex devices are possible. 

2.4 Conclusions 

In summary, we have validated thermoresponsive ultra-thin Si driven by 

hydrogels. When the transition temperature of hydrogels is reached, the swelling or 

shrinking of the hydrogels drives the deformation of the Si elements by means of 

generating buckling patterns. Integration of such a new class of environmentally sensitive 

hydrogels with functional electronics materials provides important capabilities of the 

development of inorganic environmentally sensitive electronics. Areas for future work 

include various stimuli responsive inorganic functional devices and autonomous adaptive 

biomedical systems such as electronics eyes with environmentally tunable focuses. 
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CHAPTER 3 

THERMO-RESPONSIVE CURVILINEAR HYDROGELS INTEGRATED WITH 

ULTRA-THIN SILICON RIBBONS 

3.1 Introduction 

In many flexible electronics and biomedical devices, their applications have been 

limited by complex geometries and dynamic structures. In the vast majority of structural 

designs, three-dimensional (3D) curved shape is desired for high-performance devices, 

like electronic eyes (Jung, Xiao et al, 2011; Ko, Stoykovich et al, 2008). Their 

performance can be improved in several ways, including focal plane arrays as well as 

shaped displays. In details, curvilinear electronic eyes with adjustable curvature will have 

large-range zoom capabilities and wide viewing angles compared to conventional planar 

cameras. The development of implementing electronics on non-planar surfaces is of great 

interests not only in hemispherical cameras, but also in other classes of bio-inspired 

systems as monitoring devices (Grayson 2002; Kim, Viventi et al, 2010). However, most 

of the existing device systems have been developed only on flat substrates and these 

planar substrates cannot be bent into 3D curved shape even though they are flexible. 

Presently, there are two main approaches to make 3D curvilinear shape of stretchable 

materials: one is by stretching two-dimensional (2D) compressed configurations (Jung, 

Xiao et al, 2011; Ko, Stoykovich et al, 2008); the other is simply using a cut and bend 

approach (Street, Wong et al, 2009). Nevertheless, the diversity of the curvilinear 

structure is very limited due to intrinsically planar nature of established fabrication 

techniques, and these flexible materials are environmentally inert, not sensitive to 

external stimuli. In this case, their operation needs external control, which largely limits 

their applications.   
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Here, we introduce a simple strategy to design and “print” profile-controllably 

3D objects with photopolymerization and present the capability to directly implant stiff 

electronic components in the curvilinear substrates. In the example presented here, we 

made bowl-shape hydrogels with simple stereolithography setup and integrated the 

typical semiconductor material Silicon nanoribbons in the hydrogels. With this method, 

the profile of hydrogels can be exactly controlled to meet various applications in different 

atmosphere. Moreover, the hydrogels can be intelligent under environmental control by 

introducing stimuli-responsive materials. When combined with imaging optics, such 

system is desirable to make as environmentally-adaptive variable-focus electronic eyes 

with tunable curvatures actuated by stimuli-responsive hydrogels.   

3.2 Experimental 

3.2.1 Materials 

Poly(ethylene glycol) diacrylate with average molecular weight (Mw)  575 

(PEGDA 575), poly(ethylene glycol) with Mw 200 (PEG 200), phenylbis(2,4,6-

trimethylbenzoyl)phosphine oxide (Irgacure 819) and sudan I were used in the 

photopolymerization of PEGDA-based gel. Sodium dodecyl sulfate (SDS) served as 

surfactant in synthesizing PNIPAAm gel particles. The other materials are the same as 

those in Section 2.2.1 

3.2.2 Sample Preparation 

3.2.2.1 Preparation of Curvilinear PEGDA-based Hydrogel 

We chose PEGDA-based hydrogels mainly because it can be polymerized within 

short time in visible light. The PEGDA hydrogel was made with the following solution: 

PEGDA 575 was mixed with PEG 200 at the ratio of 2:1 by weight; 2% (wt.%) Irgacure 

819 of PEGDA 575, 0.05% Sudan I and 5% TMOS were added in the mixture. When the 

solution was mixed well, it was photopolymerized in our stereolithography fabrication.  
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3.2.2.2 Preparation of PNIPAAm Hydrogel Particles 

1.5% (w/v %) NIPAAm, 0.03% BIS and 0.044 % SDS were dissolved in a 

certain amount of distilled water and stirred under nitrogen purge for 20 min at room 

temperature. PNIPAAm hydrogel particles were formulated in aqueous dispersions by 

adding 0.06% APS, and the emulsion polymerization occurred for 4 h under nitrogen at a 

temperature of 70 ºC. 

3.2.2.3 Preparation of Curvilinear PEGDA/PNIPAAm Hydrogel 

To make the hydrogel “smart” in response to environmental signal, PNIPAAm 

swollen hydrogel particles (Khang, Jiang et al, 2006; Sun, Choi et al, 2006) were used to 

disperse in the above PEGDA prepolymerized solution (20%w/v). The other 

experimental condition and procedures are the same as the PEGDA hydrogel synthesis.  

3.2.2.4 Preparation of Curvilinear PEGDA/PNIPAAm Hydrogel Integrated with Silicon 

Ribbons 

After the hydrogel was synthesized, it was immersed in water to remove the 

unreacted chemicals and swelling to reach equilibrium. The curved hydrogel became 

more flat as it was swelling. To integrate the hydrogel with Silicon nanoribbons, a PDMS 

layer is also needed. For the experiments of incorporating a PDMS layer and integrating 

the hydrogel/PDMS with Silicon nanoribbons, the procedure is the same as Section 

2.2.2.3. 

3.2.3 Characterization of the Curvilinear Hydrogel 

The morphology and its curvature of the curvilinear hydrogel integrated with Si 

were measured by using a three-dimensional (3D) laser scanning (Nextengine). After 

Silicon was transferred onto the hydrogel/PDMS, the sample was kept in a Petri dish 

(without water) at room temperature for several days before scanning. To explore the Si 
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buckling patterns as the curvature changes, the sample was observed with an optical 

microscope. 

3.2.4 Thermo-responsive PEGDA/PNIPAAm Hydrogel with Tunable Curvature 

  Temperature-sensitivity of the PNIPAAm gel particles was detected using a 

Brookhaven 90Plus Particle Size Analyzer with the dynamic light scattering (DLS) 

technique. The temperature was run from 25 °C to 40 °C. The gel particles were further 

dispersed to appropriate concentrations with water before measurements.  

3.3 Results and Discussion 

3.3.1 Stereolithography Setup  

Being served as soft substrates in complex devices, various shapes of hydrogels 

are demanded to achieve improved performance.  For example, a 3D curved-shape 

substrate in optoelectronic systems has large-range and adjustable zoom capabilities 

compared to planar substrates(Abuzayed, Tanriover et al, ; Campbell, Kenning et al, ). In 

experiment, a simple stereolithography setup, called 3D printer, was chosen to 

photopolymerize desirable shapes of hydrogels. figure 3.1 (a) schematically shows the 

setup for the profile-controllable synthesis 
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Figure 3.1 (a) Schematics for profile-controllable synthesis set up.  (b) An image clearly 

showing the corresponding hydrogels with specific shape as patterns shown in figure 3.1 

(a). 

In the synthesis, a computer creates an image and sends data to a projector. The projected 

image is then refocused by a concave lens and reflected off a mirror angled at 45˚, 

shining light down into a container filled with a photoactive solution. Consequently, the 

solution is polymerized wherever exposed to light and a layer of our 3D object is formed. 

The object is then lowered into the container to allow fresh photoactive solution to flow 

over the top to form the next layers. Repeatedly, successive layers are made and a 

desirable 3D object will be built. This fabrication technique utilizes a computer to 

electronically control design patterns instead of using physical masks, which avoids 

alignment in making the next layer and overcomes the limitation in making only very flat 

objects compared to traditional lithography. Figure 3.1 (b) is a sample made with specific 

shape as patterns shown in the computer of figure 3.1 (a). In the computer, the white area 

generates white light which is projected onto the solution area to initiate polymerization, 

while there is no light from the black background in the computer and the solution will 

not be solidified in the area. Therefore, the solidified shape is consistent with the white 

pattern shown in the computer. With this method, various shapes of hydrogels can be 

made to meet the needs of complicated soft substrates in complex electronics to widen 

and improve their performance (Abuzayed, Tanriover et al, ; Campbell, Kenning et al, ). 

3.3.2 PEGDA/PDMS/Si System  

In the stereolithography setup, the color model of our projector is RGB (red, 

green, blue) and only visible light can pass through. As published, many monomers (eg. 

NIPAAm) were photopolymerized with UV light (Hou, Matthews et al, 2008; Ramanan, 

Chellamuthu et al, 2006; Singh, Kuckling et al, 2006). Even though some can be initiated 
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under visible light in our trial experiments, the polymerization lasted much longer (over 2 

min) compared to UV light source. Solution on some solidified area would be volatilized 

so that the pattern of each layer is not uniform. However, with Irgacure 819 

photoinitiator, the PEGDA solution here could be polymerized within 15 seconds under 

white light. In order to increase the swollen ratio and decrease the stiffness of the 

PEGDA hydrogel, poly(ethylene glycol) (PEG) was added into the gel synthesis. 

Specifically, the PEGDA molecules react and form a crosslinked network, initiated by 

Irgacure 819, whereas the PEG molecules cannot be polymerized but occupy 

intermolecular space in the hydrogel network. Therefore, the crosslink density of the 

hydrogel was decreased as the concentration of PEG increases, resulting in larger swollen 

ratio and getting softer. Since the transfer of ultra-thin Si ribbons requires a flat surface, it 

is necessary to an optimum curvature of the gel whose surface is relatively flat enough 

for transfer in fully swollen state and the curved shape has to appear when it is 

deswelling. Here, curvilinear (bowl-shape) PEGDA hydrogel was synthesized to 

demonstrate the feasibility. In our experiment, the bowl-shape hydrogel was made layer 

by layer by slicing the 3D image (shown in figure 3.3 (b)) along its x direction, and each 

layer was exposure for 15 seconds. Figure 3.2 (a) shows that the Silicon arrays over large 

area on the gel could be uniformly focused and there is no macroscopic fracture after 

transfer.  
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Figure 3.2 Demonstration of thin Si could be directly transferred onto the PEGDA gels 

and becomes buckled when the substrate deswells. (a) Silicon ribbons on fully swollen 

PEGDA/PDMS system. (b) The morphology of Si ribbon arrays in the core center of the 

system when the PEGDA hydrogel gets deswelled; the inset image is also about the 

morphology of the same system but in area close to the edge of the “bowl”.  

As the hydrogel deswells, the substrate shrinks and Si buckles (see figure 1.2 (b)). Unlike 

uniform buckling in the rectangular PNIPAAm-based hydrogels in Chapter 2, the 

wavelength in different area of the gel varies (see the inset image in figure 1.2 (b)).  In 

order to clearly see whether the bowl shape appears in the hydrogel/PDMS/Si system or 

not, a 3D laser was used to scan the morphology of the deswelled system. In figure 3.3 

(a), the curvature is obvious and a bowl shape was generated in the deswelled state.  
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Figure 3.3 (a) 3D laser scanning of the deswelled PEGDA hydrogel with Si ribbons to 

indicate the bowl shape morphology. i) Vertical scanning; ii) Horizontal scanning; (b) 

The image used to control the patterns of 3D bowl-shape hydrogels. 

Besides the deformation as well as the modulus of hydrogels, the degree of curvature 

change could be even controlled by the design patterns which are used to build the 

“bowl”. Figure 3.3 (b) is the corresponding 3D view of patterns in making the bowl-

shape PEGDA hydrogels of the system shown in figure 3.3 (a). This 3D object was made 

from the following two functions with Mathematica. 

 2 2 2A x y nz Ad                                                      (3.1) 

 2 2 2B x y nz Bd                                                      (3.2) 

where B>A>0; 

2Ad

n
 is the inner diameter of the “bowl”; 

2Bd

n
 is its outer diameter. In 

our experiment, A=0.2, B=0.4, n=9, d=9. Curvature of the gel is essentially determined 

by the variation of A and B value. In turn, the curvature could be controlled by the two 

input equations in Mathematica. 

3.3.3 Thermoresponsive PEGDA/PNIPAAm Hydrogels with Tunable Curvature 

To make the hydrogel intelligent in response to environmental signal, the 

temperature sensitive hydrogel PNIPAAm was chosen. Since the synthesis of PNIPAAm 

usually needs UV light in the process of polymerization, it is not feasible to make bulk 

PNIPAAm with complicated design shape by using the lithography technique. One way 

to make hydrogels thermoresponsive is to incorporate the already-prepared PNIPAAm 

hydrogel particles in the matrix of PEGDA hydrogels. Thermo sensitivity of the 

hydrogels is mainly dependent on the deformation of the PNIPAAm fraction. Figure 3.4 

shows dimension change of the PNIPAAm hydrogel particles in different temperatures. 
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Figure 3.4 The dependence of average diameter of PNIPAAm gel particles on 

temperature. The error bars show standard deviatons of particles made in three different 

batches.  

The hydrodynamic sizes of the hydrogel particles decreases as the temperature increased. 

The figure suggests that the deformation of the hydrogel particles could reach about 56% 

in diameter while the linear strain change of the whole PEGDA/PNIPAAm (4:3 by 

weight) hydrogel in high temperature above its LCST is around 12.5% (not shown here). 

The deformation of the whole hydrogel depends on many factors, including the 

dimension change of the PNIPAAm hydrogel particles, the concentration of PNIPAAm 

in the PEGDA/PNIPAAm hydrogel, the stiffness of the hydrogel and the curvature value 

of the design shape. Our future work is to integrate the thermo-sensitive bowl-shaped gel 

with Silicon nanoribbons to make environmental-adaptive variable-focus electronic eyes 

with smart tunable curvatures actuated by the stimuli-responsive hydrogels. 

3.4 Conclusions 

In summary, we have developed a fascinating route to make three-dimensional 

curvilinear hydrogel integrated with Silicon ribbons to render devices incompatible with 

changes in nonplanar surfaces. This strategy offers important opportunities to efficiently 
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implement electronics on nonplanar surfaces. Future work will be focused on developing 

various environment-adaptively inorganic functional devices and autonomous adaptive 

biomedical systems such as electronic eyes with intelligent tunable curvatures. 
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CHAPTER 4 

PH/THERMO RESPONSIVE HYDROGELS WITH TUNABLE CURVATURES 

4.1 Introduction 

As discussed in Chapter 3, curvilinear structure offers important opportunities in 

many applications like optical imaging (Camou, Fujita et al, 2003) and medical 

diagnostics (Burns, Johnson et al, 1998). In particular, focus-tunable electronic eyes, 

which eliminate the need for external mechanical alignment, are considered possessing 

great potential to extend the intelligent/automatic capability and applications along with 

widely tunable focal length (zoom capability) and large view of field (Cheng, Chang et 

al, 2006; Chronis, Liu et al, 2003; Hongwen, Yi-Hsin et al, 2006).  

In Chapter 3, we report a state-of-the-art strategy of making 3D curved substrates 

for electronics using stereolithography technique. Here, we develop an alternative 

approach to make curvilinear substrates with tunable curvatures. In the particular study, 

we designed a bilayer structure comprising of poly(N-isopropylacrylamide) (PNIPAAm) 

hydrogel and a hybrid hydrogel of (N-isopropylacrylamide) (NIPAAm) and acrylic acid 

(AA). Typical variable curvatures can be obtained by the hydrogels with different 

swelling ratios. Due to the diverse physical responses to different stimuli, it is expected 

that the structure to be multi-stimuli sensitive to temperature and pH. The former 

hydrogel pure PNIPAAm is an established temperature-sensitive hydrogel with a lower 

solution critical temperature (Yu, Pan et al, ), where as the latter is a pH-sensitive 

hydrogel and also quite importantly has a higher swelling ratio in water compared to the 

former.  Due to the inherent difference in swelling ratios and adequate bonding between 

the two layers, a distinctive curvilinear (bowl like) structure is obtained with the lower 

expanding PNIPAAm hydrogel at the top and the higher expanding hybrid hydrogel at 

the bottom. Followed by this idea, we have successfully developed temperature and pH 
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dual sensitive hydrogels with multilayers and widely controlled its curvature as a 

substrate for Silicon.  These shapes are able to drive changes in the onboard stiffer 

electronic when exposed to varied kind of stimuli changes, e.g pH and temperature.  

4.2 Experimental 

4.2.1 Materials 

N-isopropylacrylamide (NIPAAm), acrylic acid (AA), N,N’-

methylenebis(acrylamide) (BAA), ammonium peroxodisulfate (APS), N,N,N’,N’-

tetramethylethylenediamine (TEMED) and deionized (DI) water were used in the 

synthesis of the poly(N-isopropylacrylamide)/poly(acrylic acid) (PNIPAAm/PAA) hybrid 

hydrogel. Various buffering solutions with different pH values were used to measure the 

pH sensitivity of the samples. The other materials are the same as those in Section 2.2.1. 

The experimental condition of synthesizing the poly(N-isopropylacrylamide) 

(PNIPAAm) hydrogel here is a little different from the one in Chapter 2.  

4.2.2 Sample Preparation 

4.2.2.1 Preparation of PNIPAAm Hydrogel 

600 mg NIPAAm was initially mixed with 12.6 mg BAA in 5354 mg deionized 

(DI) water. A vortex mixer was used to mix the above solution for 10 minutes, after 

which it was kept in an ice water bath and degassed at low pressure nitrogen for 

approximately 10 minutes. During this process, 8.9 mg (11.5 µL) of the accelerator 

TEMED was added and mixed. After 10 min, 1084 µL of 1% APS aqueous solution 

(initiator) was added in the mixture. Following, appropriate amount of the polymer 

solution was added in a mold to obtain the desired structures.  

4.2.2.2 Preparation of PNIPAAm/PAA Hybrid Hydrogel 

600 mg NIPAAm, 375 µL AA and 12.6 mg BAA were added to 5354 mg DI 

water. The mixture was mixed well in a vortex mixer for 10 minutes, after which nitrogen 
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gas was bubbled through it to degass for 20 minutes. To the above mixture 230 µL 

TEMED was added along with 1084 µL of 1% APS aqueous solution. Certain amount of 

this hybrid-polymer solution was added on top of the initial NIPAAm layer which has 

started gelation. After that, the mold was kept in an oven at 50 ⁰C for 1 hour for the 

polymerization to complete. Finally, the bi-layer hydrogel composing of PNIPAAm and 

PNIPAAm/PAA hydrogels was obtained. 

4.2.2.3 Preparation of Curvilinear Bilayer Hydrogel Integrated with Silicon Ribbons 

After the hydrogel was synthesized, it was flat. To integrate the hydrogel with 

Silicon nanoribbons, a poly(dimethylsiloxane) (PDMS) layer is also needed. In order to 

link the hydrogel with PDMS, tetramethoxylsilane (TMOS) was added to the surface of 

the hydrogel to generate Si-OH groups. For the experiments of incorporating a PDMS 

layer and integrating the hydrogel/PDMS with Silicon nanoribbons, the procedure is the 

same as Section 2.2.2.3. 

4.2.3 Characterization of the PNIPAAm Hydrogel 

The lower critical solution temperature (LCST) of the hydrogel was measured in 

water by using an AR-G2 rheometer (TA instruments) equipped with a solvent trap. All 

of the rheological tests were performed using the parallel plates with 8 mm diameter. The 

temperature was ramped up from 25 to 50 °C at 1 °C/min with controlled stain amplitude 

of 1% and frequency of 1 Hz. The modulus of the hydrogel in water at room temperature 

(25 ⁰C) under frequency sweep was also measured by using the rheometer with 

controlled strain amplitude of 10% in order to obtain data for the following ABAQUS 

simulation. The fixed strain was selected from the linear viscoelastic region by the 

dynamic strain sweep at frequency of 1 Hz.  
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4.2.4 Characterization of the PNIPAAm/PAA Hydrogel 

The temperature dependence of its mechanical properties with controlled 

frequency of 1 Hz and strain amplitude of 1% was measured with the same method as the 

PNIPAAm hydrogel in Section 4.2.3. The hydrogel was surrounded by water (pH 7) 

during the measurement. Frequency sweep in the same way was also measured here for 

the following ABAQUS simulation. In the frequency sweep, the hydrogel was swollen in 

water and the strain was also fixed at 1%, within its linear region. 

The pH sensitivity of the hydrogel was studied by measuring its dimension 

change in different buffer solutions with pH values of 2, 3, 4, 5, 10, 11 and 12. The 

hydrogel has already reached equilibrium in each solution before the measurement. The 

pH sensitivity of another layer PNIPAAm hydrogel was also studied and it was found 

that this hydrogel was pH inert (data is not shown here). 

4.2.5 Characterization of the Bilayer Hydrogel 

4.2.5.1 Testing of Environmental Responsiveness   

The environmental responsiveness of both the hydrogel and the hydrogel/Si 

system was studied by exploring the curvature in solutions with different pH values. 

During the experiments, the samples were immersed in different pH solutions to reach 

equilibrium in a Petri dish. The morphology of the hydrogel in different pH values was 

observed under a digital camera. The curvature of the hydrogel and the hydrogel/Si 

system in different pH environment was measured by using Optical 3-D Profilomer 

(Zygo Zegage). 

4.2.5.2 Simulation of the Bilayer Hydrogel    

The curvilinear formation of the hydrogel from the status of after synthesis to 

being swollen was stimulated by using ABAQUS (ABAQUS 6.9-1). The shear modulus 
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of the hydrogels in each layer applied in this simulation was derived from the above 

frequency sweep in Sections 4.2.3 and 4.2.4.  

4.3 Results and Discussion 

4.3.1 Geometrical Change Mechanism of the Bilayer Hydrogel 

In order to make hydrogels having tunable curvature, the strategy that multi-layer 

hydrogel structure with exploitable differences in deformation under various 

environmental control is proposed here. As shown in figure 4.1 (a), the bilayer system is 

composed of two different kinds of hydrogels: one is the typical thermo sensitive 

PNIPAAm hydrogel; the other is the hybrid pH-sensitive hydrogel of PNIPAAm-PAA. 

The PNIPAAm component in the hybrid hydrogel here is used to decrease its swelling 

ratio in order to avoid delamination in-between layers in case that the deformation 

between the two layers is too varied. These two elements, NIPAAm and AA, are to 

impart temperature and pH-sensitive capabilities to the bilayer hydrogel, so that it can 

change its swelling property upon external simulation like temperature or/and pH.  

 

Figure 4.1 Schematics for deformation of the bilayer hydrogel in different swelling states 

(a) Layer-assembled structure of the bilayer hydrogel. (b) Curvilinear formation as the 

dimension change of each layer is dramatically varied. 

After synthesis, the hydrogel is flat, which is good for electronics transfer. When the 

bilayer hydrogel is in contact with solvents, a distinctive bowl like structure is obtained 

with the lower expanding PNIPAAm hydrogel at the top and the higher expanding hybrid 
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hydrogel at the bottom. The swelling ratio of each layer can be adjusted by controlling its 

ambient temperature and pH. For example, the curvature will be increased by increasing 

the environment temperature above the lower critical solution transition (LCST) of the 

inner layer PNIPAAm hydrogel or changing the pH value of its surrounding solution to 

make the pH-sensitive hydrogel expanding more. The curvilinear structure is expected to 

flatten out when the swelling ratio of each layer is close to each other, which can be also 

controlled by changing the pH value of the solution to induce the outer layer, pH-

sensitive hydrogel, shrinking. Therefore, the curvature of this bilayer structure is varied, 

which is expected to widely tune the focal length of lens by serving as a substrate of the 

electronics.  

4.3.2 Thermo Responsiveness of Single Layer 

In order to exam the thermo responsiveness of the hydrogels, rheological 

measurements were carried out as a function of temperature. Figure 4.2 shows the 

temperature dependence of storage modulus G’ and loss modulus G’’ for both PNIPAAm 

and PNIPAAm/PAA hydrogels. Their tan delta was calculated from the ratio of their G’’ 

to G’.  
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                         (b) 

 
 Figure 4.2 Tempearture dependence of storage modulus G’ and loss modulus G’’ of the 

synthesized hydrogels: (a) PIPAAm hydrogel in the bilayer structure; (b) PNIPAAm/PAA 

hybrid hydrogel in the bilayer structure. 

The rheology testing reveals that the transition temperature of the PINPAAm hydrogel is 

around 33.5 ⁰C (figure 4.2 (a)), while the PNIPAAm/PAA hybrid hydrogel is temperature 

inert (figure 4.2 (b)). In both of the hydrogels, the storage modulus G’ is much larger than 

the loss modulus G’’ over the entire temperature range, indicating that the hydrogel 

behave more solid-like. In figure 4.2 (a), when the temperature is lower than its LCST, 

the loss modulus G’’ decreases as the temperature increases, which is probably caused by 

thermal volume expansion of the polymer hydrogel network (Park and Hoffman 1994). 

When the temperature is right after the volume phase transition tempearture, its storage 

modulus increases, which indicates the hydrogel becomes more elastic due to water 

expelling out from the network of the PNIPAAm hydrogel above its LCST (~33.5 ⁰C). 

The tan delta plot shows the loss modulus G’’ increases much greater than its storage 

modulus, suggesting that the viscosity response governs the process. The peak of tan 

delta at around 42 °C may be due to the loss of small polymer chains. When the hydrogel 

shrinks above its LCST, some small polymer chains are squeezed out of the network. As 
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the temperature increases to a certain degree, the material tends to expand due to thermal 

expansion. The expanding space will allow these small polymers dissolved in its 

surrounding solution. Since the modulus of small polymers is always smaller than larger 

polymers, the loss of these smaller polymeric chains will cause the average modulus of 

the hydrogel increased. In figure 4.2 (b), the PNIPAAm/PAA hybrid hydrogel show 

linear “plateau” over the overall temperature range, which implies the hydrogel is not 

thermo responsive and it is stable during this temperature range.  

4.3.3 PH Responsiveness of Single Layer 

As reported, pure PNIPAAm hydrogel is only temperature sensitive, not pH 

sensitive (In experiment, we even measured the dimension change of the synthesized 

PNIPAAm hydrogel in different pH solution and found the same result that there is not 

any pH sensitivity, result not shown here). For the other layer, the PNIPAAm/PAA 

hybrid hydrogel, it may have pH responsiveness as the component PAA is a conventional 

pH-sensitive polymer (Jin, Liu et al, 2006; Lee, Kim et al, 1999; Zhang, Chu et al, 2007). 

To explore its pH responsiveness, the diameter of the cylindrical PNIPAAm/PAA hybrid 

hydrogel was measured when it reached equilibrium in different pH solutions. Figure 4.3 

shows the pH effect on equilibrium swelling in buffering solutions with various pH 

values.  
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Figure 4.3 pH dependence of the PNIPAAm/PAA hybrid hydrogel in the bilayer. 

Deformation percentage is obtained from the ratio of its diameter in various pH-value 

solutions to the one in pH 7 in equilibrium state. 

In figure 4.3, it is seen that as the pH is increased, the equilibrium dimension of the 

hybrid hydrogel gradually increases until a plateau value at a pH of 4. In the range pH 

values of 4 to 10, there is no obvious change in the equilibrium dimension. When the pH 

is higher than 10, the dimension is sharply increased as its surrounding pH increases, 

reaching around twice in pH 12 compared to in neutral solution. The effect of strain 

change of the single layer on multi-layer structure is to increase deformation differences 

from the other pH-inert layer, which will inherently generate mechanical 

tension/compression to re-shape the entire structure, such as from planar to curvilinear.  

4.3.4 PH Responsiveness of the Bilayer Hydrogel 

As discussed above, the deformation differences between layers can inherently 

drive two-dimensionally planar into three-dimensionally curvilinear structure. Such 

structure change needs large deformation discrepancy in different layers and adequate 

bonding between the layers. It is challenging to find a balance between the inherent 

differences in deformation and compliant bonding in the boundary region of the 

combined elements: too much expanding or shrinking in one of the two layers will cause 

delamination in their boundary face to release the strain change; on the other way, too 

small dimension varies cannot produce enough force to drive the geometrical change in 

dimensionality. Considering the phenomena that the swelling ratio of one of the two 

layers, the PNIPAAm/PAA layer, is greatly varied in different pH environments, it is 

easy to control the differences in swelling ratio to achieve planar and curvilinear 

geometry tunability. Figure 4.4 shows the profile of the bilayer hydrogel in different 

states and equilibrium swelling in different pH solutions. 
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Figure 4.4 Morphology of the bilayer hydrogel in different states: (a) The synthesized 

hydrogel taken out from its prepared container and before swelling in any solutions; (b) 

The hydrogel fully swollen in water (pH 7); (c) The hydrogel integrated with ultra-thin 

Silicon ribbons swelling in water; (d) The hydrogel fully swollen in pH 10 buffering 

solution; (e) The hydrogel fully swollen in pH 2 buffering solution. In these hydrogels, the 

bottom layer is the PNIPAAm/PAA hybrid hydrogel and the upper layer is the PNIPAAm 

hydrogel. 

In figure 4.4 (a), after synthesis, the bilayer structure is as flat as the container where it 

was polymerized. Once the hydrogel is in contact with water, both of the components in 

different layers absorb water to expand. The swelling ratio of the PNIPAAm/PAA hybrid 

hydrogel in the bottom layer is much larger than the PNIPAAm hydrogel on the top layer, 

so that the top layer is compressed by the expanding bottom layer which is confined by 

the relatively “unswelling” top layer in turn. As a result, the initially two-dimensional 

planar layouts are stretched to become adaptively three-dimensional curvilinear 

configuration as shown in figure 4.4 (b). When the bilayer hydrogel is integrated with 
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Silicon ribbons before it swells in water, both of the expanding layers are confined by the 

stiff Silicon on their surface. The Silicon arrays here are not uniform along the x- and y-

direction of the planar, so the confined stress from the stiff material to the soft hydrogels 

is not equally distributed along the planar. As shown in figure 4.4 (c), the equilibrium 

profile of this system in water is that it is more curved in the direction of stronger 

confined stress.  This curved structure can be controlled by design of the stiff material 

arrays: with uniform arrays in the planar surface, the bowl-like structure as in figure 4.4 

(b) is to be achieved.  From the result of pH responsiveness of the single layer 

PNIPAAm/PAA hydrogel in Section 4.3.3, it is known that the swelling ratio of this layer 

is much larger when the pH value of its surrounding solution reaches 10 compared to 

water. Figure 4.4 (d) is the morphology of the bilayer hydrogel in pH 10 environment, it 

is found that the outer region in the boundary face between the PNIPAAm and the 

PNIPAAm/PAA hdyrogels is separated and some edge in the PNIPAAm/PAA hydrogel 

is broken. The separation interface is caused by too large inherent difference in swelling 

ratio as mentioned above. The broken edge is due to weak mechanical properties of the 

hydrogel resulted from too high swelling ratio. As water “drunk” in, the stiffer collapsed 

polymer network is expanding, so the modulus of the hydrogel will be decreased and get 

softer. Experimentally, there are two main factors proposed to contribute to the 

mechanical strength of a swollen hydrogel network as well as its swelling ratio: cross-

linking density and the stimuli-sensitive polymer volume fraction. Higher cross-linking 

density would lower the average molecular weight between cross-linking points, and the 

stimuli-sensitive polymer volume fraction is inversely proportional to the degree of 

swelling. In this way, the related properties of this kind of curvilinear substrates in 

electronics can be even modified by adjusting its synthesis recipe according to different 

requirements of their applications. In Section 4.3.3, it is also known that the swelling 
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ratio of the PNIPAAm/PAA hydrogel in pH 2 is less than in water. Figure 4.4 (e) shows 

the morphology of this bilayer hydrogel equilibrium swelling in pH 2 buffering solution.  

The bilayer structure flattens out due to drastically shrink of the bottom layer 

PNIPAAm/PAA hybrid hydrogel at low pH, which is in agreement with the above 

mentioned that too small deformation differences cannot produce enough force to drive 

the geometrical change in dimensionality. This flat configuration is beneficial in Silicon 

or other electronics transfer.  

Similarly, due to the temperature responsiveness of the top layer PNIPAAm 

hydrogel, the bilayer structure will curves and flatten out when the temperature is above 

or below the LCST (not shown here). Therefore, with this method, the curvature can be 

dynamically tuned in a relatively great range by controlling the surroundings.  

4.3.5 Curvature Characterization of the Bilayer Hydrogel 

An Optical 3-D Profilomer was utilized to measure the curvature change of the 

bilayer system in different states, as shown in figure 4.5. The output radius of curvature 

(ROC) is described by a radial distances at points along a body’s surface. The larger ROC 

(or the smaller absolute value of ROC), the more curved. 
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Figure 4.5 Demonstration of curvature change in different environments: (a) Part of the 

bilayer hydrogel equilibrium swelling in water (pH 7); (b) Part of the bilayer hdyrogel 

integrated with ultra-thin Silicon ribbons swelling in water; (c) The bilayer hydrogel fully 

swollen in pH 2 buffering solution. Roc in these images means radius of curvature. 

In pH 7, the size of the system is too large to be measured the whole area as the 

PNIPAAm/PAA hydrogel is expanding a lot. In the base solution, like pH 10, the size is 

larger than the one in pH 7 and there is delamination in the interface, so its curvature is 

not measured here. Compared figures 4.5 (a) and (b), we can see that ROC of the bilayer 

hydrogel is smaller than the bilayer integrated with Silicon ribbons, which means this soft 

substrate combined with stiff materials is getting more curved. This phenomenon is 

probably due to the increase confined stress from the stiff element to prevent the strain 

along the planar (x-/y-oriented) expansion. Combined figures 4.5 (a) and (c), it indicates 

that the ROC of the bilayer in pH 2 is less than in pH7, which means the curvature is 

decreased its surrounding pH decreases. The result is consistent with the morphology 

observation in Section 4.3.4.  

4.3.6 Simulation of the Bilayer Hydrogel   

The deformation process of this bi-layer structure from the status of after 

synthesis to being swollen was qualitatively simulated using a commercial finite element 

analysis package ABAQUS to verify that the deformation differences between layers can 

drive two-dimensionally planar into three-dimensionally curvilinear structure with this 

design. The finite element model consists of a 4-mm thick PNIPAAm hydrogel layer and 

a 2-mm thick hybrid hydrogel of PNIPAAm-PAA layer. The diameter of each layer is the 

same as 16 mm. In the model, all of the materials were treated as elastic. The shear 

modulus of the swollen PNIPAAm and PNIPAAm-PAA hydrogels were measured by 

rheometer as 1.1 MPa and 1 MPa, respectively. The Poisson’s ratio (υ) of these two kinds 
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of hydrogels was assumed to be equal to be 0.4  (Chippada, Yurke et al, 2010). The 

system was modeled with coupled large deformation and temperature. The total 

expansion in diameter of each hydrogel from initial to final temperature equals to the 

expansion of the hydrogels from the state after its synthesis to fully swollen in pH 7 at 

room temperature. Specifically, the diameters of the PNIPAAm and PNIPAAm-PAA 

hydrogels change from 16 to 18 and 33.5 mm, respectively.  Figure 4.6 (a) is the initial 

state after the synthesis of the bi-layer hydrogel which is in partially swelling. 

 

Figure 4.6 Simulation results of the bi-layer hydrogel in different states: (a) the shape of 

the hydorgel after systhesis; (b) the shape of hydrogel swollen in water. 

The initially built model in ABAQUS is followed the exact geometry of the synthesized 

sample in the same state, corresponding to the morphology as shown in figure 4.4 (a). It 

is completely flat. As discussed in Section 4.3.4, once the hydrogel is in contact with 

water, both of the partially swelling hydrogels in different layers expands by absorbing 

water. In this process, the expanding dimension of each layer defined in ABAQUES is 

from the measured dimension of each single layer in swollen state in water. Figure 4.6 (b) 

is the final result of the bi-layer hydrogel swollen in water, corresponding to the 

morphology in figure 4.4 (b). Being consistent with the experimental results, the 

ABAQUES simulation also reveals that this design structure can be dynamically tunable 

compliances in planar and curvilinear layouts. 
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4.4 Conclusions 

In summary, we have demonstrated the bilayer hydrogel structure self-adaptive 

to environmental pH by combining pH-responsive and pH-inert hydrogels. The pH-inert 

hydrogel here is temperature sensitive so that the system can be controlled by both 

temperature and pH. The dual stimuli-responsive system has a wide range of adjustable 

curvatures. At high pH (pH ≥10), one of the layers swells to give a more curved structure 

and drastically shrinks to flatten out the bilayer structure at low pH (pH<4). The 

curvature can be also adjustable by controlling its surrounding temperature above or 

below the LCST of the temperature-sensitive layer. The flattening out surface provides 

good opportunities for high-quality electronics transfer. The proposal on dynamically 

tunable compliances in planar and curvilinear layouts makes it intrinsically compatible 

with many envisioned systems of the future.  To combine the hydrogel with electronics, 

such kind of structure can be effectively used with appropriate on-board electronics as 

electronic eye cameras.  
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CHAPTER 5 

SUMMARY AND FUTURE WORK 

5.1 Summary 

This thesis presents a fascinating route and early work on developing flexible and 

intelligent devices by integrating stimuli-responsive soft materials with electrically 

functional stiff materials. Specifically, thermo- and/or pH-sensitive hydrogels were 

chosen as a substrate and Silicon, one of the representative high-performance 

semiconductor materials, was selected as the electronic element. A brief background on 

stimuli-responsive hydrogels and current research on bucklings in developing flexible 

devices are given in Chapter 1. Stimuli-responsive hydrogels rather than environmentally 

inert elastomeric substrates are promising in the development of high performance 

intelligent and flexible devices. 

In Chapter 2, the system of thermo-sensitive poly(N-isopropylacrylamide) 

(PNIPAAm)-based hydrogels integrated with Silicon ribbons is explored. The properties 

of the hydrogel, including its swelling behavior, mechanical change under different 

temperatures, and the bonding mechanism and environmental responsiveness to 

temperature are studied. Thermo-responsive ultra-thin Silicon driven by hydrogels has 

been validated in this chapter.  

In Chapter 3, the thermo-responsive curvilinear poly(ethylene glycol) diacrylate 

(PEGDA)/PNIPAAm hydrogel integrated with Silicon ribbons is investigated. The bowl-

like geometry served as a substrate in this system is expected to open new opportunities 

in new-generation electronic eyes. In this chapter, a simple strategy to design and “print” 

profile-controllable 3D objects was proposed. The curvature change in swelling states of 

the hydrogel and the environmental responsiveness of the system are also studied. This 
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strategy offers important opportunities to efficiently implement electronics on nonplanar 

surfaces.  

In Chapter 4, an alternative approach to creat curvilinear substrates with tunable 

curvatures was developed. The bowl-like shape was obtained from a bilayer structure 

comprising of PNIPAAm hydrogel and a hybrid hydrogel of (N-isopropylacrylamide) 

(NIPAAm) and acrylic acid (AA). In addition to their mechanical properties, the stimuli 

response of the system in both temperature and pH are also studied. This bi-layer 

structure self-adaptive to its surrounding pH has been demonstrated: At high pH (pH 

≥10), one of the layers swells to give a more curved structure. at low pH (pH<4), it 

drastically shrinks to flatten out the bi-layer structure. The flat surface is beneficial in 

high-quality electronics transfer. The dynamically tunable compliances in planar and 

curvilinear layouts are compatible with many envisioned systems of the future.  

5.2 Future Work 

The present study has proven that stimuli-sensitive polymers can be successfully 

integrated with Silicon to obtain intelligent as well as flexible structures. The use of 

diverse stimuli responsive substrates encourages one to think that this methodology can 

have great impact on next-generation devices, e.g., flexible sensors, high-performance 

bio-inspired systems, etc.  

One of the prime objectives in the future can be to obtain complex buckling 

patterns with the help of advanced lithographic techniques such as U.V masks, which 

could generate intricate patterned structure on the Silicon based on the active bonding 

sites on the polymer. This could make customized options of generating buckles (pop-

up). These structures would enhance the applicability in stretchable electronics.  

Future directions also include the use of the novel co-polymers to serve as 

substrates and these polymers could be multifunctional, i.e. respond to multiple stimuli 
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like pH, temperature, light, electric field etc. These polymers could serve as a single 

substrate replacing the bi-layer structure, thus giving us a more compact device, which 

would be able to function in different stimuli and environments.  

One of the goals in the project is to develop polymeric substrates by the use of 

stereolithographic techniques and integration of different polymers with varied swelling 

ratios to obtain structures which can serve as a smart substrate for the application in the 

electronic eyes or other novel imaging systems. To obtain a working device, the next 

logical direction would be to integrate high performance imaging circuits on the same 

substrate to obtain devices which could take advantages of a large field of view and 

conformable focal length in comparison to current imaging techniques with a limited 

field of view and the zooming capabilities. For example, microlens arrays connected with 

thin flexible bridges can be integrated onto these focus-tunable curvilinear surfaces. The 

curvilinear surfaces allow the microlens to capture light from different directions to 

achieve large field of view. Moreover, each microlen can be individually tuned by the 

stimuli responsive hydrogel actuator fabricated around it.  
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