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ABSTRACT 

The Game As Life – Life As Game (GALLAG) project investigates how people might 

change their lives if they think of and/or experience their life as a game. The GALLAG 

system aims to help people reach their personal goals through the use of context-aware 

computing, and tailored games and applications. To accomplish this, the GALLAG 

system uses a combination of sensing technologies, remote audio/video feedback, 

mobile devices and an application programming interface (API) to empower users to 

create their own context-aware applications. However, the API requires programming 

through source code, a task that is too complicated and abstract for many users. This 

thesis presents GALLAG Strip, a novel approach to programming sensor-based context-

aware applications that combines the Programming With Demonstration technique and a 

mobile device to enable users to experience their applications as they program them. 

GALLAG Strip lets users create sensor-based context-aware applications in an intuitive 

and appealing way without the need of computer programming skills; instead, they 

program their applications by physically demonstrating their envisioned interactions within 

a space using the same interface that they will later use to interact with the system, that 

is, using GALLAG-compatible sensors and mobile devices. GALLAG Strip was evaluated 

through a study with end users in a real world setting, measuring their ability to program 

simple and complex applications accurately and in a timely manner. The evaluation also 

comprises a benchmark with expert GALLAG system programmers in creating the same 

applications. Data and feedback collected from the study show that GALLAG Strip 

successfully allows users to create sensor-based context-aware applications easily and 

accurately without the need of prior programming skills currently required by the GALLAG 

system and enables them to create almost all of their envisioned applications. 
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INTRODUCTION: GAME AS LIFE – LIFE AS GAME 

Game As Life – Life As Game (GALLAG), a project from the Motivational Environments 

research group at Arizona State University, investigates how people might change their 

lives if they think of and/or experience their life as a game. GALLAG aims to help people 

reach their personal goals through the use of context-aware computing, and tailored 

games and applications [6]. Finally, GALLAG also tries to enhance home life and expand 

what people think computing can do for them. 

To accomplish this, the GALLAG system uses a combination hardware and software to 

empower users to create their own context-aware applications, which we refer to as 

GALLAG applications (see figure 1). 

 

Figure 1. Components needed to create a GALLAG application 

 

The hardware is composed of wireless and wired sensing technologies, local and remote 

audio/video feedback and mobile devices. The software consists of an application 

programming interface (API) based on the AppleScript [7] programming language. 

+ = GALLAG 

Application 

GALLAG 
API 

Sensors, speakers 
and mobile devices 



 2 

One of the most important features of GALLAG is that it allows users to customize an 

already existing GALLAG application (e.g., a sample application or a template) or create 

a new one by using GALLAG’s API. 

GALLAG API 

The GALLAG team noticed that the average novice GALLAG user was not able to create 

GALLAG applications from scratch using AppleScript code. This motivated me to lead the 

team in the development of a programming library in order to address this problem, and 

this is how the GALLAG API started. 

The GALLAG API consists of a collection of AppleScript functions that abstracts 

complicated configuration and control actions so that users can more easily understand, 

create, or modify GALLAG applications by reading and writing AppleScript code.  

The main advantages of GALLAG’s API are that it significantly reduces the amount of 

code that a user needs to write when creating a GALLAG application, and that it provides 

a consistent way to configure and communicate with devices (e.g., sensors, actuators 

and mobile devices), as well as with applications (e.g., audio/video playing software, 

word processors, file and web browsers) (see figure 2). 

 

Figure 2. Example use of GALLAG’s API 

 

In the current implementation of the GALLAG API [29], we have provided support for the 

following: remote audio playing with one or more wireless speakers, database logging, 

sensing devices setup, communication with iOS mobile devices, audio/video media 
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playing, communication with iRobot, opening a web page or a file in the server machine 

or a remote computer, write to Microsoft Word, text to speech and input for voice 

commands, among others. 

Sample GALLAG applications 

The GALLAG team has also worked on creating sample GALLAG applications as a way 

to introduce novice users to the GALLAG system. These ready-to-run sample 

applications have two main objectives: first, to help users understand how the system 

works and the type of applications they can create, and second, to serve as templates 

that users can quickly test and modify to better suit their needs. 

As part of the GALLAG team, we have created sample GALLAG applications and posted 

them on the GALLAG wiki site [30] for easy user access (see figure 3). One of these 

sample applications created by Jisoo Lee, shows how to use open-closed magnetic 

sensors and play music if a sensor is opened [31]. Another example by Jisoo Lee is a 

matching game using audio and visual feedback [32]. An example that I created allows 

users to play a treasure hunt game with a GPS-enabled Apple iOS [33] device (e.g. 

iPhone, iPad) [34]. Lastly, an additional application that I created with the help of Byron 

Lahey, reminds users to keep in contact with family and friends by using a Pendaphone 

[35] and calling them through Skype [36]. 

We have also provided users with information on the wiki site about how to setup a 

GALLAG system (hardware and software) and how to get started with basic AppleScript 

programming. 

Problem statement 

As mentioned earlier, a major goal of GALLAG is to enable users to create their own 

GALLAG applications or to modify an existing one.  
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Although we have tried to make the GALLAG API as easy to use as possible, it still 

requires a fair amount of programming knowledge and poses a substantial cognitive load 

to the user, which becomes a significant barrier for users that do not know how to 

program. Additionally, the sample GALLAG applications that we have created are not 

quite at a level where users without programming experience can quickly modify to create 

customized versions of them, as a small amount of programming is necessary. 

This triggered the question of how could this barrier be lowered and make GALLAG 

programming an easier and engaging activity for novice users. 

Proposed solution 

GALLAG Strip, the system discussed in this thesis, attempts to address these issues by 

providing a Programming With Demonstration environment which enables users to create 

GALLAG applications in an intuitive and appealing way without the need of computer 

programming knowledge; instead, they program applications by physically demonstrating 

their envisioned interactions within a space. This demonstration is done using the same 

interface that will later be used to interact with the GALLAG system, that is, using 

GALLAG-compatible sensors and mobile devices to realize personalized, empowering, 

and life-changing games and applications. 

GALLAG Strip provides a novel approach to programming sensor-based applications by 

combining the technique of Programming With Demonstration with a mobile application to 

enable users to more easily experience their applications while they program (i.e., 

demonstrate) them, thus lowering the level of programming abstraction. GALLAG Strip’s 

main objective is to allow novice GALLAG users to create most of their envisioned 

applications easily and accurately. 

The proposed solution consists of a sensing and application running commercial software, 

a server application for web service communication and application code generation, and 
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a mobile application with a simple and appealing user interface based on the comic strip 

metaphor (i.e., having a strip or sequence of frames) that will help users to program their 

GALLAG applications. 

The Programming With Demonstration technique, explained in the next chapter, was 

selected because of its effectiveness when programming context-aware applications 

shown in previous research. 
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BACKGROUND: EXAMPLE-BASED PROGRAMMING 

Example-Based Programming (EBP) is a technique that simplifies the programming 

process by avoiding the need of textual notation (i.e., writing source code). With EBP, 

users are not forced to learn an unnatural, abstract programming language or standard 

computer science concepts like conditionals, loops and variables; instead, users provide 

examples of their intended actions with a specific application [8]. The main advantage of 

EBP is that the examples are demonstrated in the same environment in which users 

perform their actions, or as Dan Halbert defines it, it is like “programming in the user 

interface” [12]. 

The earliest documented reference of EBP dates back to 1969 with Teitelman’s PILOT 

system, which acted as an intermediary between users and their intended program code 

[28]. The PILOT system allowed users to provide high-level descriptions of their intended 

tasks and produce programs to accomplish them. Teitelman’s vision was to create a 

cooperative and helpful programming environment that would free users from routine 

aspects of programming so that they could be more ambitious, productive and creative.  

Types of EBP 

There are two types of EBP: Programming By Demonstration (PBD) and Programming 

With Demonstration (PWD). PBD denotes systems that infer the user’s intended program 

through a series of example inputs, actions and outputs, and creates a generalized 

program.  

 PWD PBD 

Advantages 
Simple for users to 

understand and edit. 
Provides flexibility with 
generalized programs. 

Disadvantages 
Not very flexible, 

what is demonstrated 
is what is programmed 

Hard to infer user intent.  
Difficult for users to 

understand and edit. 

 
Table 1. Comparison between PWD and PBD 
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With PWD systems, users can also program their applications with an example; however, 

they need to specify all the details, as there is no inference involved. As exemplified by 

Halbert, PWD can be described as “Do What I Did”, and PBD as “Do What I Mean” [23]. 

Table 1 shows a comparison of the advantages and disadvantages between PWD and 

PBD. 

The advantage of a PWD system is that it makes it easy for users to understand how an 

application gets created and how to modify it, as there is a direct mapping between the 

demonstration and the programmed application. With PWD, what users demonstrate is 

exactly what gets programmed; if a user demonstrates a sequence of actions, this exact 

sequence is what the application will perform. However, this makes a PWD system not 

very flexible if the user does not follow the exact sequence of actions all the time, in 

which case he/she would need to demonstrate a variation of the actions and create a 

different application for them. 

In contrast, the advantage of a PBD system is that it has the ability to infer what the user 

wants to program through a series of demonstrations; if a user demonstrates a sequence 

of actions in his first demonstration and then demonstrates a variation of these actions for 

the same application, the system will create a generalized application that reacts to these 

two sequence of actions. The disadvantage of this inference capability of PBD systems is 

that sometimes is hard for the system to create a generalized application from 

demonstrations that are very different, and it also makes it hard for users to understand 

what exactly the generalized application will react to and how to modify it, as these 

applications are created based on several demonstrations. 

EBP for sensor-based context-aware applications 

Although EBP has been used for general computer programming in some projects like 

Teitelman’s [28] and others like APE [27], most have focused on automating repetitive 

tasks in a domain-constrained graphical user interface environment like CAD automation 
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[11], graphical editing in Chimera [18] and Mondrian [19], and user interface creation in 

Peridot [24]. Another example is Modugno’s Pursuit [21], which provided a graphical 

representation of programs in a demonstrational visual shell. An interesting feature in 

Pursuit is the comic strip metaphor (i.e., showing the before and after states in a 

sequence of frames) used on desktop icons to represent users’ actions on real data files. 

I was inspired by this representation of user actions as it makes it easier to visually 

understand an application based on actions and events along time. 

Recently, PBD has been used for context-aware, ubiquitous and physical applications. 

Anind Dey et al. developed “a CAPpella”, a PBD system to help users develop context-

aware applications [10]. Their approach consisted on letting users demonstrate a specific 

behavior using several sensors and then review the gathered data by marking the 

relevant parts of the demonstration as well as the desired actions. A CAPpella’s user 

interface was a PC desktop application showing continuous streams of sensor data and 

event information in a graph that the user later had to analyze and determine which part 

to keep and which to ignore. Although their evaluations were successful, they mentioned 

that users had difficulty when selecting relevant parts of the data streams and marking 

events. In contrast to a CAPpella, my vision is to provide users with an interface that 

does not require them to analyze streams of raw data but rather concrete events and 

actions that they can easily understand.  

An example of a context-aware PWD programming system for end users is iCap by 

Anind Dey et al. [9]. They developed a visual, rule-based, environment in which users 

could prototype context-aware applications without writing code. In their system, users 

first define the objects, the activities, the locations, the people and the time they want to 

use in their programs and are then able to drag and drop them into panels to create rules 

with associated actions. They performed a user study to identify the kind of context-

aware programs that users were interested in and found that most of their programs were 
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specified using simple if- then rules (79%). They also noticed that the rules were fairly 

simple, with an average of 2.5 elements used in each rule, where an element could be an 

activity, object, location, time, person or state. Their findings support my belief that most 

sensor-based user applications can be defined using simple if-then rules and that they 

employ a small number of rule elements. 

Papier-M ch  by Klemmer and Landay [16] introduced a modular, event-based 

architecture to support tangible user interface programming. By employing high-level 

input abstractions, their developer-focused API lowers the difficulty threshold to work with 

physical (i.e., sensor) input and makes it easier for applications to switch to different input 

technology.  Although GALLAG Strip differs in that it is intended for end users and not 

developers, I liked their mixed-methods approach for evaluating the usability of their 

system, as there are no best practices for emerging areas like ubiquitous and physical 

computing.  

A successful PWD project that used the Papier-M ch  architecture was SiteView [1,16], 

a rule-based physical programming interface for a home automation system. SiteView 

employed a ceiling-mounted camera that locates physical icons over a floor plan 

representing the environment, RFID (Radio Frequency ID) tags and readers for rule 

creation and editing, a rule display showing the rules in text, and an environment display 

to preview the rules in action. They argue that lowering the programming difficulty 

threshold for novice users does not necessarily mean that the system will require 

machine learning techniques or complex inference methods [1]. I agree with their 

argument and I believe that the programming threshold can be lowered with a good user 

interaction experience, which has proven true for several other PBD systems [8]. 

Finally, just last year, a Kickstarter project called Twine [37] is working on bringing to 

market user-programmable wireless modules with embedded sensors for temperature 

and vibration, and an expansion connector for additional sensors. Their PWD approach is 
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a visual, rule-based web editor that lets users create if-then rules to program their sensor 

modules. Having raised more than half a million dollars just over a month to fund their 

project is a good indicator of the current demand for sensor-based context-aware end-

user programming and it provides additional evidence that an if-then rule based 

programming model is (or at least appears to be) effective for end-users. 

Motivation 

Today, most of the applications are programmed not by professional software developers, 

but by people with diverse backgrounds working towards goals supported by computation 

[17]. These people, which are also end users, know better how to describe the tasks they 

are interested in programming, however, programming can be a daunting task for them; 

traditional development tools to create interactive applications require extensive 

programming knowledge and can be difficult even for experienced programmers [20].  

The API for GALLAG (described in the preceding chapter) is not at the level of users 

without programming experience, as it requires them to write scripts, which is still 

programming and the hurdle to learn a scripting language is simply too high for the 

average computer user [8]. 

The research projects described in the previous section have shown the potential of PBD 

and PWD systems to enable end users to program sensor-based context-aware 

applications. However, although they effectively lowered the programming difficulty level 

for users, they do not address the issue of detachment from real world actions. This issue 

causes two main problems: one is that users need to move away from the environment 

where they are acting on in order to use the programming system (e.g., a desktop PC-

based system), and the second is that they need to spend time understanding the 

abstract representation of their actions after they performed them.  
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GALLAG Strip differs from previous research efforts in that it provides a simple, mobile 

rule-based programming interface that allows users to see their actions in real time, thus 

reducing their detachment from the world. 

GALLAG Strip was built as a visual programming system, as it has been proved that a 

visual representation of a program’s code is easier to understand than in text form, 

especially if they are short [21,23]. Additionally, most end user-created programs are 

small and do not contain nested loops or nested conditionals [22], therefore being 

relatively easy to represent visually. GALLAG Strip’s if-then rule visual programming 

interface was based on the comic strip metaphor (see figure 4), similar to the one in 

Pursuit [21].  

The decision to build GALLAG Strip as a PWD system (instead of PBD) was based on 

previous research showing that it is easier for users to understand, use and modify 

applications using a PWD system than a PBD one [23]. Also, because GALLAG Strip 

was designed to be used by a single user, the assumption is that the demonstrated user 

actions will not vary much and thus a PWD system will suffice. 

Although I recognize that being able to create generalized applications with a PBD 

system could provide some flexibility while creating applications, such an environment 

would have demanded considerably more time to develop and to test with users because 

of the required inference engine. However, the current implementation of GALLAG Strip 

can be modified later to include an inference engine, converting it into a PWD system 

with more flexibility.  
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GALLAG STRIP 

There were two major challenges while developing GALLAG Strip. First, there was the 

challenge of creating an appealing user experience that would make it easy for users to 

create GALLAG applications through demonstration. The second challenge was to 

implement it using a medley of technologies that were not used together before on the 

GALLAG project. The following sections describe how these challenges were tackled. 

User experience 

The design of the user experience was an iterative approach and had elements of 

participatory design. It started with a series of low-fidelity prototypes on paper which, after 

a round of iterations, were transformed into medium-fidelity, interactive prototypes using 

Microsoft Expression Blend and SketchFlow [38] (see figure 3 and 4).  

 

Figure 3. Initial mobile application sketches 
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Figure 4. Sketch of the comic strip-based demonstration screen 

 

These interactive prototypes were shown to some members of the Motivational 

Environments research group for feedback and underwent a couple of refining iterations. 

The final user experience design for GALLAG Strip consists of three main components: 

physical interaction sensing, a mobile PWD user interface and user customization. 

PHYSICAL INTERACTION SENSING 

An important part of GALLAG Strip is its ability to sense user interactions with objects 

and spaces. Users are expected to interact with sensed objects and spaces both when 

programming their GALLAG application, as well as when “running” or testing the 

application. 

Currently, GALLAG Strip supports four types of sensors: X10 [39] open/closed magnetic 

sensors, X10 motion sensors, Insteon [40] LampLinc modules and Insteon SynchroLinc 

modules. The X10 open/closed sensor (also called Door/Window sensor) is probably the 

most versatile, as it communicates through radio-frequency (RF) and can be installed on 

a wide variety of objects, like drawers, doors, or any other object for which we can 

change its position or location (see figure 5). 
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Figure 5. X10 magnetic sensors attached to drawer and remote 

 

X10 motion sensors (MS16A and MS14A) also communicate through RF and they detect 

motion through changes in infrared heat; therefore, they are used to detect presence (or 

lack of) in a specific space. They are also very useful in situations where you do not want 

to attach an open/closed sensor to an object, like detecting when you reach to grab a 

book or an object beneath a table (see figure 6). 

 

Figure 6. X10 motion sensors on bookshelf and table   
 

Insteon LampLinc modules (see figure 7) allow both detecting when a lamp is manually 

turned on/off, and turning it on/off via a command sent through the AC power lines. 

Insteon SynchroLinc modules are designed to be used with bigger appliances than lamps 

(e.g., TV, washing machine) and are similar to LampLinc modules in the sense that they 
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can detect an appliance being manually turned on/off, however they cannot receive 

commands to turn the appliance on/off. 

 

Figure 7. LampLinc and SynchroLinc modules   

 

MOBILE PWD USER INTERFACE 

The most important feature of GALLAG Strip is its mobile PWD user interface, which 

enables users to create, review and edit their GALLAG applications. By being a mobile 

programming interface, it allows users to move freely through the sensed space and to 

demonstrate their actions in a natural way.  

GALLAG Strip’s mobile PWD interface has three core elements, the main screen, the 

demonstration screen and the application frames. 

The main screen is what the user is shown when the mobile application starts. If there 

are no previously saved GALLAG applications, the main screen will show the information 

page, where the user can learn how to create a new application, learn about the different 

application frames that he/she will be able to use, go to GALLAG’s website for more 

information and get general details about the GALLAG Strip mobile application. If 

GALLAG applications have been previously saved, the system application list page is 

shown where the user can see which applications are currently enabled and disabled 

(see figure 8).  
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Figure 8. Main and application list screens 

  

The demonstration screen is where users demonstrate what they want to program. It has 

two modes: a recording mode and an edit mode. In recording mode, the system listens 

for sensor events triggered by user actions and it appends them at the end of the 

application (see figure 9). 

When the user touches the pause button while in recording mode, the demonstration 

screen goes into edit mode. In this mode, the user can review the application being 

created by scrolling up and down, and can also edit it by modifying or deleting existing 

frames and by adding new ones (see figures 10 and 11). 
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Figure 9. Adding action frame in recording mode 

 

Figure 10. Demonstration screen while in edit mode 
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Figure 11. Adding a response frame to the application strip 

 

When the user finishes creating his/her GALLAG application, he/she then touches the 

save button, the application information is sent to the server and the system configures 

itself to do what the user just programmed. After the application has been saved, the 

application is ready to be run and can be tested simply by performing the actions 

previously defined in the application. 

A GALLAG application is represented in the demonstration screen through a sequence of 

application frames. This sequence of frames is called the application strip and can have 

three types of frames: action, response and time-date. 

Action frames represent the user’s actions within the sensed space and are shown as 

blue frames in the application strip. These frames have a default text label and image 

depending on the type of sensor. Actions involving open/closed and motion sensors have 

a description based on the sensor ID and type of action, as well a generic image 

depending on the type of sensor. Actions related with the LampLinc module show a text 

label referring to the lamp being turned on/off and have a generic image of a light bulb. 
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Finally, actions associated with the SynchroLinc module show a text label referring to the 

TV being turned on/off and have a generic image of a TV (see figure 12).  

 

Figure 12. Action frames with default text label and image 

 

Response frames represent actions that the system will perform and are set by the user. 

This type of frames is shown in orange and have a text label and image related to the 

type of response selected. Response frames can also have an additional parameter that 

is displayed in text above the frame’s image (see figure 13).  
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Figure 13. Response frames 

 

Time-date frames are conditions set by the user and they constrain the application’s 

execution to a particular time and/or date. These frames are shown in green and show 

the selected date or time as their text label. Time frames additionally have a parameter to 

show the selected days of the week (see figure 14). Time and date frames can be 

combined to create conditions based both on a date and a time; that is, an application 

can have up to two, date and time frames. 

 

Figure 14. Time and date frames 
 

The programming model for GALLAG Strip is a linear, if-then, rule-based one, and it is 

read from left to right and from top to bottom. This means that preceding actions or 

responses need to occur in the same sequence as they appear before the current one 
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can execute. Similarly, the time and/or date condition frames need to evaluate to true in 

order for the rest of the application to execute. 

USER CUSTOMIZATION 

User customization is an important feature that allows users to define the relationships 

between their actions and the sensors. As mentioned above, action frames are displayed 

with a default text label and image depending on the sensor being activated. Users can 

customize them by changing the text and by taking a picture with the phone’s built-in 

camera (see figure 15, 16 and 17). 

The ability to customize action frames makes the GALLAG application being 

programmed much easier to read and to debug, and makes the programming process 

more enjoyable. 

 

Figure 15. Customizing text and image of action frame 
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Figure 16. Taking a picture with the phone’s camera 
 

 

Figure 17. Action frame after being customized 

 

ENABLING, DISABLING, AND RESETTING APPLICATIONS 

GALLAG Strip also lets users disable, enable and reset a GALLAG application. Because 

the system allows users to have one or more active applications at the same time, the 

ability to enable and disable applications was implemented to avoid the need of deleting 
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a certain application that the user do not wants to be active at the moment. Additionally, 

because the current implementation of GALLAG Strip does not provide feedback as to 

the current state of an application, users can reset a particular application to its initial 

state (see figure 18). 

 

Figure 18. Editing an application: enabling, disabling and resetting 

 

This combination of physical sensing and a user-customizable mobile PWD interface is 

what comprises the user experience for GALLAG Strip. The following section describes 

the implementation details. 
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Technical implementation 

Several technical challenges were faced during the implementation of the 

aforementioned user experience. Some of these challenges and some of the 

implementation decisions are discussed in this section. 

The system has three main components: the Indigo server, the GALLAG Strip server 

application and the GALLAG Strip mobile application, the last two being the contributions 

of this work. Figure 19 shows these components and how they communicate with each 

other. 

 

Figure 19. GALLAG Strip system components and connections 
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INDIGO SERVER 

Perceptive Automation’s Indigo [41] is a commercial home automation software that runs 

on Apple’s OSX and is used both for communication with X10 and Insteon hardware, as 

well as a running platform for GALLAG applications. 

Indigo receives information from X10 and Insteon devices (e.g., open/closed magnetic 

sensors, motion sensors, LampLinc and SynchroLinc modules) either through RF or 

through AC power lines, and can send commands to these devices using these same 

channels.  

In addition, Indigo is capable of running AppleScript code based on configurable events, 

making it the backbone for GALLAG application execution, as it can continuously monitor 

X10 and Insteon devices and execute what the user defined in their application using 

GALLAG Strip. 

Indigo also has the ability to log event information from devices into a SQLite or 

PostgreSQL database, a feature used by the GALLAG Strip server to provide sensor 

event information to the mobile application, which is explained in further detail below. 

GALLAG STRIP SERVER 

The GALLAG Strip server was developed as a console C# application and has three 

main features: serve as a sensor event provider to the mobile application, provide the 

ability to read, update and delete the list of saved GALLAG applications, and to create 

the Indigo setup script for a particular GALLAG application. The class diagrams for the 

server application, exposed web service methods, event class, event and device type 

enumerations are shown in figure 20. 
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Figure 20. Class diagrams and enumerations for the GALLAG Strip server application. 

 

The GALLAG Strip server provides the mobile application with information about the 

events detected by Indigo through the exposed web service methods (see 

IGALLAGService interface in figure 20). When the user touches the record button on the 

mobile application, the phone sends a request to the GALLAG Strip server to get the 

latest X10, RF and Insteon device events using the GetEvents web service method. The 

server application then connects to Indigo’s PostgreSQL database, gets the latest logged 
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device event information and responds the web service call with a list of device events in 

XML format. 

Another feature of the GALLAG Strip server is to facilitate basic persistent storage 

functions for the list of GALLAG applications, that is, it provides a way to read, update 

and delete a GALLAG application from the list of saved applications. This is also done 

through web service methods and the list of saved GALLAG applications is stored as an 

XML file on the server machine (see appendix A for an example of a saved GALLAG 

application XML structure). 

When the GALLAG Strip server receives a web service request to save a GALLAG 

application from the mobile device, it creates the AppleScript setup file that will be run to 

configure Indigo. This setup script is created with the help of the GALLAG API and it is 

then saved and run on the server machine using Apple’s OSX Folder Actions. The setup 

script file is then run and creates the necessary variables, triggers and action groups to 

do what was defined in the GALLAG application. After Indigo is configured, the GALLAG 

application can be tested. 

The previous section explained how GALLAG Strip server lets users disable and enable 

a GALLAG application. When a user disables an application, the server creates and runs 

an AppleScript file to disable all triggers in Indigo for that particular application. Similarly, 

the server enables all the related triggers when an application is enabled. 

The execution state of a previously saved GALLAG application is managed through state 

variables in Indigo. When a user wants to reset a certain application, the GALLAG Strip 

server creates and runs an AppleScript file to reset all the state variables in Indigo for that 

application. 

The choice of using C# to develop the GALLAG Strip server application was based on my 

experience with the programming language. The decision of using XML-based web 
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service methods for communication was based on the advantage of having a platform 

and language-free that can enable the implementation of the mobile application on a 

different mobile operating system (e.g., Android [42], iOS). 

GALLAG STRIP MOBILE APPLICATION 

As mentioned in the previous chapter, it was decided to develop the user interface on a 

mobile platform; this makes it easier for users to experience the demonstration process, 

as they need to physically move around and interact with the sensors to demonstrate 

their application. The mobile application was developed to run on the Windows Phone 

[43] mobile operating system (version 7.5 Mango) and was programmed using the C# 

language, this again because of my experience with C# and the .Net framework. Figure 

21 shows a class diagram and the enumerations used for the Windows Phone application. 

All of the communication between the mobile application and the rest of the system is 

done through web service calls. Additionally, the only information stored on the mobile 

application related to GALLAG applications are the customized text labels and images for 

the action frames, the rest of the information about the GALLAG applications is stored in 

an XML file on the server machine, as explained in the previous section. 

The mobile application was designed with future improvements in mind. Separate classes 

were created for the application frames, the supported sensors and devices, the 

predefined sounds and music streams, and the available phone carriers among others. 

Figure 21 shows the classes and enumerations used on the GALLAG Strip mobile 

application (see appendix B for more details on the main classes and enumerations). 
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    Figure 21. Class diagrams and enumerations for the GALLAG Strip mobile application 
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CONCURRENCY AND RESOURCE CONFILCTS 

Currently, GALLAG Strip only supports one user, meaning that conflicts could occur 

when having multiple concurrent users. Design for multiple users was out of the scope of 

the initial implementation of GALLAG Strip, since a method for user identification (e.g., 

facial recognition, RFID, location tracking) is necessary to create multiple-user 

applications. 

Additionally, there could be resource (e.g., sensors, devices, sound, and music) conflicts 

when having multiple active GALLAG applications. To illustrate a conflict with using the 

same sensor, imagine that a user creates an application that will detect if the front door of 

the house is opened when arriving home and play a welcome sound afterwards. The user 

then creates another application that will detect if he/she turns the AC on and then opens 

the front door to leave the house; if this happens, he/she wants the application to play a 

reminder sound. If both applications are saved and enabled, when the user turns on the 

AC and then opens the door, both applications will be activated and both sounds will be 

played consecutively, with one of them only being played a fraction of a second. One way 

to avoid this particular conflict could be by using a motion sensor outside of the house to 

detect the user entering his/her home. Other ways to avoid these resource conflicts is for 

users to restrict the execution of their applications to a certain time or date using time-

date conditions, and also to enable or disable applications according to their current 

needs. I acknowledge that this does not solve the problem completely, but it helps to 

avoid many of these conflicts. 
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USABILITY EXAMINATION 

Before testing the system with users, an examination of GALLAG Strip by applying the 

Cognitive Dimensions of Notations (CDN) framework [2] was performed to analyze its 

usability and design tradeoffs as a PWD environment. 

Cognitive dimensions usability analysis 

The purpose of using the CDN framework is to perform a quick, low cost examination by 

experts of potential usability problems before running a more expensive user study.  

The CDN framework is one of several techniques used in the Human Computer 

Interaction (HCI) community, which provides a broad-brush evaluation of a system’s form 

and structure [21]. It was conceived as a framework to describe notational systems and 

information artifacts, considering in particular the novel graphical interfaces and visual 

grammars of complex products like visual programming languages and ubiquitous 

computing platforms [3], making it a suitable evaluation method for sensor-based and 

visual programming projects [13]. 

The CDN framework is similar to heuristic evaluation methods like Jakob Nielsen’s list of 

user interface heuristics [25,26] in the sense that it provides a list of usability issues. 

However, CDN also provides a vocabulary that designers can use to discuss the effects 

of their design. These effects are normally expressed as trade-offs between dimensions, 

as an adjustment in a dimension might affect one or more dimensions of a notation or 

artifact [3,15]. 

Procedure 

To perform the design examination of GALLAG Strip, the CDN questionnaire by Green 

and Blackwell [2] was followed. The activities allowed by GALLAG Strip’s mobile 

application were taken into account while answering the CDN questionnaire: 

 Addition. Adding further information without altering the structure in any way. 
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 Modification. Changing the existing structure, possibly without adding new 

content. 

 Exploratory design.  Combining addition and modification, with the distinction that 

the desired end state is not known in advance. 

These activities were then analyzed across the 13 cognitive dimensions (see appendix C 

for details about the CDN questionnaire that was used). 

Results 

The examination starts by defining the main notation and estimating the time spent while 

performing the task or activity being examined, which in this case is creating a GALLAG 

application using GALLAG Strip. 

PARTS OF THE SYSTEM 

GALLAG Strip’s main notation is a visual representation of sensor events with user-

defined responses and conditions, that is, the application strip. After a few trials with the 

system, the following are the time estimates while creating GALLAG applications: 

5% Searching for information within the notation (visually examining the application 

strip, reading text labels on application frames) 

20% Translating substantial amounts of information from some other source into the 

system (demonstration, translating physical interactions into action frames) 

25% Adding small bits of information to a description that you previously created 

(adding response and time-date frames, changing text label and image to 

frames) 

20% Reorganizing and restructuring descriptions that you have previously created 

(deleting application frames to add new ones) 



 33 

30% Playing around with new ideas in the notation, without being sure what will result 

(exploration, adding application frames and possibly testing them) 

These time estimates can be compared to the ones reported in the evaluation of 

Exemplar, a PBD tool for rapid sensor-based interaction prototyping [13]. Because 

Exemplar requires users to read live sensor data (i.e., sensor data graphs), they report 

that users spend 30% of the time searching for information within the main notation 

(analyzing sensor signals); in comparison, users in GALLAG Strip spend only around 5% 

of the time searching for information when analyzing the main notation (examining the 

application strip). They also show that users spend 10% of the time while demonstrating 

their application in their 2D desktop user interface; in GALLAG Strip, users spend around 

20% of the time in the demonstration phase, as users need to physically move around to 

demonstrate their applications. The last major difference is the time needed to reorganize 

a previous demonstration, where they report that it takes users around 10% of the time to 

change analysis types and redefine events; in comparison, users in GALLAG Strip take 

around 20% of the time to reorganize their demonstrated application, this is likely 

because application frame reordering is not currently available. Finally, one thing in 

common between Exemplar and GALLAG Strip is that users spend a fair amount of time 

(30%) trying out new ideas without knowing what will be the end result, which highlights 

the importance of exploration for users in both systems. 

SUB-DEVICES 

Helper and redefinition devices are system sub-devices that help with a specific part of 

the activity. In GALLAG Strip, the X10 and Insteon sensors were considered helper 

devices, and the phone’s camera was considered a redefinition device. 
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DIMENSIONS OF THE MAIN NOTATION 

1. Viscosity (ease or difficulty of editing previous work). It was easy to change 

parameters or details to previously added response frames, as well as deleting 

unwanted frames. 

2. Visibility (ability to view components easily). The elements of the notation (i.e., 

application strip) were easy to view, with the only limitation being that if a GALLAG 

application requires more than six frames, scrolling is needed to view the entire 

application strip. 

3. Premature commitment (constraints in the order of doing things). Due to the 

sequential nature of the current version of GALLAG Strip, the level of premature 

commitment is quite high; if you decide to insert a frame in the middle or beginning of 

the application, it requires you to first delete all subsequent frames, as new action 

and response frames are always added at the end of the application strip. On the 

other hand, the ability to delete frames decreases the cost of commitment in some 

way. Nonetheless, adding a feature to reorder frames would eliminate this problem. 

4. Hidden dependencies (important links between entities are not visible). The only 

dependency difficult to see is that the X10/Insteon sensors and devices used were 

tightly coupled to the system, meaning that they were previously configured and that 

adding a new one requires updating the system. 

5. Role-expressiveness (purpose of a component is easily inferred). This was not a 

particular concern with GALLAG Strip, as all components are easy to understand. 

6. Error-proneness (the notation invites mistakes and the system give little protection). 

The inability to reorder application frames was the only type of error that occurred 

repeatedly, which was a significant problem with long applications. Again, adding the 

feature to reorder frames should alleviate this issue. Other types of errors were due 

to the lack of enough user input validations on text fields. 
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7. Abstraction. The level of abstraction can be considerable if you do not customize the 

action frames, as you are translating physical actions into a sequential strip of 

frames; however, the ability to customize the text labels and images on the 

application frames lowers the level of abstraction substantially and makes it much 

more understandable. 

8. Closeness of mapping (closeness of representation to domain). The notation (i.e., the 

application strip) is directly mapped to the created application, as the application will 

be executed in the same sequence as it was demonstrated. 

9. Consistency (similar semantics are expressed in similar syntactic forms). The only 

consistency issue found was that the time-date frames are always at the beginning of 

the application, in contrast with the action and response frames which are always 

added at the end. However, because timers are not currently supported, having time-

date frames in the middle would not make more sense than at the beginning of the 

application, so this should not be a significant issue. 

10. Diffuseness (verbosity of language). Applications created with GALLAG Strip are 

fairly succinct; the notation directly represents the actions and responses that you 

want to program. 

11. Hard mental operations. The biggest mental effort needed while creating an 

application occurs when adding time-date frames, as you need to make decisions on 

whether to add a time or date frame, a combination of both, and what value or range 

of values to select for the date and/or time. However, this is not considered a hard 

mental operation. 

12. Provisionality (degree of commitment to actions). Because you are able to edit your 

application before saving it and because you can test your application before 

finishing it, the level of commitment is low and it enables you to try out new ideas. 
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13. Progressive evaluation (work-to-date can be checked at any time). GALLAG Strip 

allows to easily review the current state of the application being programmed; if the 

application is long, it can be reviewed by scrolling the application strip up and down. 

In summary, GALLAG Strip performs well regarding viscosity, abstraction, role-

expressiveness, closeness of mapping, consistency, diffuseness, hard mental operations, 

provisionality and progressive evaluation. The issues found with visibility, premature 

commitment, hidden dependencies and error-proneness are related to the fact that 

GALLAG Strip currently does not support reordering of frames, that the amount of 

application frames visible at the same time is limited (i.e., up to six frames) to the size of 

the phone’s screen, that not enough validations exist for user input and that the devices 

and sensors used are tightly coupled (i.e., preconfigured) with the system. Another issue 

found after performing the examination is that the fact that GALLAG Strip only allowed for 

one active application can be quite limiting; having multiple active applications can enable 

users to create a much more complex application based on two or more simpler 

applications. 

Based on these results, changes to GALLAG Strip’s design were made to improve it in 

the areas that were identified as most problematic and that were able to be implemented 

within time constraints. The changes made were two, more user input validations and 

being able to have more than one active GALLAG application at the same time. 

Also relevant to note is that, in addition to being able to spot deficiencies in our initial 

design, this examination will facilitate the comparison of the current version of GALLAG 

Strip with future ones, and with other systems. 
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EXPLORATORY USER SESSIONS 

After updating GALLAG Strip according to what was found on the CDN examination, a 

set of exploratory user sessions were performed to determine the system’s intuitiveness, 

to get user feedback and to update the system accordingly before running the final user 

study. 

The thinking aloud method was used to get a better sense of what users think while using 

the system. Think aloud sessions are a well-known usability-engineering method that 

helps to understand how users view a system and to identify any major end user 

misconception [14].  

These sessions took place in the Motivational Environments laboratory at Arizona State 

University and had the participation of four users. None of them knew about the project, 

two had prior programming experience and the other two did not. 

Procedure 

At the beginning of the session, a very short description of the system was given. They 

were just told that the system enabled them to program sensor-based applications with 

the use of a mobile phone; they were then told about all the sensors that they could 

interact with. 

After the introduction, participants were asked to program a simple, previously defined 

scenario and to think aloud while doing it. They were also explained that my role would 

be of active listener, making it clear that the objective was to evaluate GALLAG Strip, not 

them. While the session was in course, participants were reminded to continue thinking 

aloud with simple acknowledgement tokens throughout the programming task to avoid 

any additional cognitive load, as proposed by Boren and Ramey [4]. 
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Finally, they were asked to try to complete the programming task on their own and figure 

out how to use the system themselves, although they were told that they would receive 

help if they could not continue at all. 

The following is the text description of the task that we asked them to program: 

if you enter the living room then 

  play alarm sound 

 end if 

Results 

Some issues with GALLAG Strip were raised by the participants and some of them were 

selected to improve upon before continuing with the final user study. 

Table 2 shows the things that participants pointed out, their occurrence and the action 

taken. 

Occurrence Comment Action taken 

2 Want to have music playing as a response option. Response added  

2 Play button is not intuitive to add user actions. Changed button 

2 Improve help messages in demonstration screen. Improved messages 

2 Add sensor to digital portrait, TV remote control 
and AC thermostat. 

Sensors added 

2 Difference between events and actions confusing. Changed naming 

2 Want to reorder frames in application strip. None 

1 Add timer functionality. None 

1 Ability to duplicate a saved application. None 

1 Ability for system to turn on/off the AC and TV. None 

1 Have feedback when testing a saved application. None 

 
Table 2. Feedback gathered from exploratory user sessions 



 39 

From the user comments and changes made on the above table, it is relevant to note that 

the version of GALLAG Strip used in these sessions referred to user actions as events 

(e.g., event frames) and system responses as actions (e.g., action frames), we changed 

the naming to be more user-friendly, therefore “event” frames where changed to “action” 

frames and “action” frames where changed to “response” frames. Also, the button to add 

user actions was changed from a play button to a record button, making it clearer that the 

system was in fact recording user’s actions. 

The functionality to reorder frames, to have timers, to duplicate applications and to have 

feedback when testing a saved application was not implemented due to their complexity 

and time constraints. The ability to turn on/off the AC and TV was not possible at the time 

due to Insteon hardware limitations. 
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VALIDATION: USER STUDY 

The preceding chapters described the motivations, design, implementation, usability 

examination and preliminary user testing. Although this iterative process yielded a refined 

system to some extent, it was still necessary to determine how effective it is as a PWD 

environment for novice GALLAG users. This chapter presents the procedure followed to 

validate GALLAG Strip by answering the following questions: 

 Can users with none or little programming experience use GALLAG Strip to 

create sensor-based context-aware applications easily and accurately? 

 Does GALLAG Strip support the creation of the majority of the applications 

envisioned by users? 

A user study was conducted in a setting that closely resembles a living room and a post-

session questionnaire was administered to get the users’ overall feedback on their 

experience. The study took place at the Motivational Environments laboratory at Arizona 

State University over a period of 6 days and the sessions were video-recorded using a 

head-mounted camera wore by the participants. 

Subjects 

A total of 13 subjects volunteered to participate in this study. They were recruited through 

flyers posted around campus through specific email distribution lists at Arizona State 

University. Ages ranged from 21 to 49, six male and seven female, four undergraduates 

and nine graduates. Participants had a variety of backgrounds: educational technology, 

distance education, graphic design, architecture, civil engineering, material science, 

computer science, electrical engineering and chemical engineering. 

Participants were required to have prior exposure to smartphones and none or little 

programming experience. However, four of them actually had some, considerable or 

extensive programming experience (see figure 19); although they did not meet the initial 
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requirement, it was decided to include them in the study due to our difficulty in getting 

enough participants and because their performance was almost the same as the 

participants with none or little programming experience. 

 

Figure 22. Programming experience level for user study participants 

 

In addition to the 13 study participants, two members of the Motivational Environments 

research group volunteered to participate as GALLAG experts. They helped with the 

gathering of benchmark data to compare the performance between novice GALLAG 

users creating applications with GALLAG Strip and expert GALLAG users programming 

the same applications through the use of AppleScript code and Indigo elements. 

Setting 

As mentioned earlier, the sessions were held in a laboratory that simulates a common 

scenario of a living room, with sensors placed around the space. In particular, X10 

magnetic sensors were placed on: the laboratory’s front door, the TV remote, a plant’s 

vase, two drawers, a digital portrait and the AC’s thermostat. X10 motion sensors were 

placed: on top of the TV to detected presence in the living room, below the table to detect 

if the user reached for the dumbbells and on the bookshelf to detect if the user reached 

for a book. The lamp was connected to an Insteon LampLinc module to be able to sense 

and control it turning on/off. The TV was connected to an Insteon SynchroLinc module to 

sense when it was turned on/off (see figures 20 and 21). 
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Figure 23. Living room setting and placement of sensors (yellow circles) 

 

   

   

   

Figure 24. Placement of sensors for user study 
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Application categories 

For this study’s purpose, applications were divided into two categories: simple and 

complex. A simple application consists of a single if-then rule with two conditions and two 

actions that will execute if the condition is met. A complex application consists of a date-

time condition and two, nested if-then conditions with actions inside both of them (see 

table 3). 

Category Application 

1 Simple if you enter the living room and you turn the TV on then 
    play reminder sound 
    make system say “Remember to take pills" 
end if 

2 Simple if you open the top drawer and you open the box with pills then 
    play achievement sound  
    send an email to let someone know that you just took your pills 
end if 

3 Complex if time is after 9am and you turn the AC on and you open the front door then 
    play alarm sound 
    make system say “Turn off the AC” 
    if you close the front door then 
        send an SMS to your phone to remind you to turn the AC off 
    end if 
end if 

 
Table 3. Application category examples 

 

The rationale behind dividing applications in these two categories was to determine if 

GALLAG Strip is an effective PWD environment for both simple and complex applications. 

Procedure 

The individual, one-hour user sessions consisted of an initial tutorial and walk-through 

(approximately 20 minutes) about GALLAG Strip, followed by the application 

programming tasks. After completing the programming tasks, participants were then 

asked to fill an online questionnaire to obtain feedback about their overall experience with 

the system. 
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During the study, the measures evaluated were the following:  

 Completeness. The number of implemented application requirements. 

 Accuracy. The number of errors in the implemented application (deviations from 

what was expected, missing requirements are not counted here). 

 Duration. The time in minutes required to program the application. 

TUTORIAL 

The first part of the session was a tutorial to introduce the participants to GALLAG Strip’s 

capabilities, components and user interface. 

The tutorial was provided verbally and a script was followed to be consistent with all 

participants. It started with an introduction to what GALLAG Strip is about and continued 

with a demonstration of how to program a GALLAG application. The demonstration 

showed how to program an application that would do the following: 

if you enter the laboratory then 

 play music 

 if you enter the living room then 

  stop audio 

  turn on the lamp 

 end if 

end if 

GALLAG Strip’s user interface (i.e., the mobile application UI) was explained while 

demonstrating how to program the application. After finishing with the application demo, 

participants were told about all the available sensors in the living room that they were 

able to use and how they worked. 
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Finally, participants were reminded that they were not the subject being tested, but the 

system. Also, they were asked to talk aloud while programming their applications and that 

they might be reminded to do so if they went silent for a while. 

PROGRAM GENERATION 

After the tutorial, participants were asked to complete four programming tasks. The first 

three programming tasks are the same as the ones described in Table 3 above, two 

simple and one complex, and the last one was a free-form application with no restrictions 

other than a 15-minute time limit. After finishing each programming task, participants 

were encouraged to test them. 

For the three first applications, a text description and a graphical representation were 

shown to the participants on a computer monitor, both representing the same application 

requirements. The graphical representation used a similar notation as the one they would 

see while programming it with GALLAG Strip (see figures 22, 23 and 24).  
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Figure 25. Application requirements for first task 
 
 

 

Figure 26. Application requirements for second task 
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Figure 27. Application requirements for third task 

 

The idea behind the first and second application is to test how much do participants 

improve when asked to program an application of the same complexity as the one they 

just programmed. Because of this, the first and second applications were intentionally 

alternated between participants. 

For the last application, the time limited free-form, participants were first asked to think 

about an application they would like to have at home or that they were interested in 

programming. They were also asked to describe it verbally before starting to program it, 

so that it could be determined whether they were able to program all of their initial 

requirements or not. 

Finally, the expert GALLAG users were shown where all the sensors were placed and 

were then asked to program the first three applications using AppleScript code and Indigo 
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elements, showing them the same textual and graphical application requirements as the 

rest of the study participants. 

SURVEY 

After the programming tasks, participants were asked to answer a web-based 

questionnaire about their experience with GALLAG Strip. The objective of the 

questionnaire was to get their subjective satisfaction and/or possible anxieties while using 

the system.   

The questionnaire was based on the System Usability Scale (SUS) developed by John 

Brooke [5], which has been an industry standard for usability and has also been used in 

several research projects. SUS is a simple, ten-item questionnaire measuring usability in 

terms of effectiveness, efficiency and satisfaction. The possible answers are presented 

using a Likert scale with 5 possible answers ranging from “strongly disagree” to “strongly 

agree”.  

In addition to the SUS standard questions, participants were asked if they felt limited by 

the kind of applications that they could develop with GALLAG Strip and if they felt that 

they needed to learn a considerable amount of things before being able to use it. They 

were also asked to describe things that they would like to see in a future version, and 

finally, questions to ascertain specific characteristics about them, like age, gender, 

educational background and programming experience. The following are the questions 

that were asked: 

Please answer the following questions based on the experience you have just had 

with GALLAG Strip: 

1. I think that I would like to use this system frequently. 

2. I found the system unnecessarily complex. 

3. I thought the system was easy to use. 
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4. I think that I would need the support of a technical person to be able to use this 

system. 

5. I found the various functions in this system were well integrated. 

6. I thought there was too much inconsistency in this system. 

7. I would imagine that most people would learn to use this system very quickly. 

8. I found the system very cumbersome to use. 

9. I felt very confident using the system. 

10. I felt limited by the kind of applications that could be created. 

11. I needed to learn a lot of things before I could get going with this system. 

12. I think that I would be able to program the majority of the applications that I would 

like to build. 

13. What did you like the most about the system? 

14. What did you like the least about the system? 

15. What would you like to see in a future version of the system? 

16. Are you male or female? 

17. What is your age? 

18. What is the highest level of school you have completed or the highest degree you 

have received? 

19. What is your major? (If applicable) 

20. How much programming experience do you have? 

Results 

First, a within-subject comparison with the 13 study participants is performed. Not 

surprisingly, almost all were able to program all the requirements for the first three 

applications (see figure 25), with the exception of three participants that missed one 

requirement. However, these three participants mentioned that the reason was that they 

were not careful in reading the requirements in detail. For the free-form application, three 
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participants failed to implement one requirement each; one of them forgot a requirement 

that he described before implementing his application, another realized that he would 

have had to delete several frames in order to implement the requirement and decided not 

to do it, and the last one wanted to add a timer to his application, which is not currently 

supported.  

 

Figure 28. Percentage of implemented requirements for participants 
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free-form applications.  
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form application varying considerably as anticipated. It is important to mention that the 
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Figure 29. Average and std. dev. of requirements for participants 

 

The average number of errors was low for all applications and went down after the first 

application (see figure 27). Similarly to the missing application requirements, most of the 

errors were due to lack of user attention to the requirements, as many of them selected 

the wrong sound to play or left additional action frames that were not needed. Two errors 

were caused by confusion with the action of a user turning the lamp on/off and a system 

response to turn it on/off. Lastly, one error was due to an unknown bug in the mobile 

application that caused a response frame not to be saved correctly. 

 

Figure 30. Average and std. dev. of errors for participants 
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All participants completed the applications in a reasonable amount of time and an 

improvement was evident for the second application (see figure 28). Another interesting 

finding is that, even though the average number of requirements (and complexity) for the 

free-form application was higher than the third one, the average time to program them 

was lower; this shows that GALLAG Strip has a low learning curve, as participants were 

able to program applications of increasing complexity in a shorter amount of time. 

 

Figure 31. Average and std. dev. of time required for participants 
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application are able to program them with GALLAG Strip faster than expert GALLAG 

programmers using traditional tools. 

 

Figure 32. Average and std. dev. of requirements for experts 

 

It is also important to highlight that the expert GALLAG participants had one or more 

years of exposure to the GALLAG system and were proficient in AppleScript 

programming. 
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Figure 33. Post-session questionnaire showing average and std. dev. 

 

Regarding the open questions, participants said the following about what they liked the 

most about GALLAG Strip: 

 “Fun, intuitive, easy, connection to mail and SMS” 

“The fact that you can create your strip with out know nothing about how to 

program the sensors.” 

“I liked that applications can be created easily.” 

The following are some responses about what participants liked the least about GALLAG 

Strip: 

 “Hang in middle... not ease to swipe the activities order” 

“The fact that you can not re-order the frames on the strip and the fact that you 

have to remember the exact order of the frames to have the system reacts as 

expected.” 

“I didn't like that frames cannot be reordered in a different way. Also, time and 

date frames cannot be placed either in the middle or at the end.” 
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APPLICATION THEMES 

Although it was not part of the initial research agenda, I was interested in determining 

what type of applications were users interested in programming with GALLAG Strip, as 

well as the system elements that were used the most. This was done after the user study 

by reviewing the video recorded from the sessions. 

The verbal descriptions of the free-form applications given by the participants were 

analyzed and three major application themes were noticed: behavior change, home 

automation and social. Figure 31 shows the free-form applications classified under these 

themes, with some applications encompassing more than one theme. 

 

Figure 34. Major themes for free-form applications 
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by making the system say something, playing a sound, and making the lamp blink 

repeatedly; another participant programmed an application to make the teddy bear speak 

and invite her to watch TV together. Finally, a participant wanted to let a friend know that 

he was doing exercise, since they were competing to lose weight. 
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Figure 35. Social subthemes for free-form applications 

 

The behavior change theme was subdivided into subthemes about exercise, energy 

consumption, diet, medication, TV watching and cleanliness. Figure 33 shows how many 

applications followed these subthemes. 

 

Figure 36. Behavior change subthemes for free-form applications 
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Additionally, it was noticed that there were some recurring actions that participants 

referred to on several free-form aplications, which are shown in figure 34. 

 

Figure 37. Typical actions used on free-form applications 

 

Finally, in order to determine which GALLAG Strip elements were used the most, a 

simple break down of the type of application frames used during the free-form 

programming task is shown in figure 35. 

 

Figure 38. Types of GALLAG Strip elements used on free-form app 
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email feature, and that the SMS, date and time features were seldom used. The reason 

might be that they were a little more complicated to test during the session than the rest. 

The feature to change the text on action frames was not used much either; although this 

was pointed out not to be necessary at that time, as they were able to understand what 

sensors they were using and did not feel the need to customize the text labels. Finally, 

only one user was interested in redefining the purpose of one of the motion sensors (the 

one below the table) to detect a teddy bear instead of the dumbbells. 
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DISCUSSION 

I decided to follow a mixed-methods approach (i.e., CDN, think aloud sessions, user 

study, questionnaire) to evaluate GALLAG Strip because these are common practices in 

the Human-Computer Interaction field and there is really no established way to do this in 

emerging areas like physical and context-aware computing. I want, however, to mention 

some limitations in the methodology. 

For the design examination using the CDN framework, the recommended procedure is 

that several design experts do it; because no one else is involved in the system’s design 

or is knowledgeable on how to perform the CDN analysis, I decided to do it myself.  

Regarding the think aloud and user study sessions, since I was who decided where to 

place the sensors, it might have limited or influenced participants’ creativity when 

envisioning their applications for the free-form task in some way. Similarly, the fact that 

they were shown a demo application at the beginning of the session and that they were 

asked to program three previously defined applications, might have also influenced their 

decisions when thinking about their free-form application. The only way to answer this 

would be to run another study and ask them to define their envisioned application(s) at 

the beginning of the session. 

For the user study sessions, the goal was to have at least 20 participants; unfortunately, 

this was not possible, as it was far more difficult to recruit people than I thought. I believe 

that my inability (because it was not approved by IRB) to pay participants limited me 

substantially in reaching this goal; if I were to do the study again, I would make sure I can 

pay them. Even though 13 participants may be a small sample to draw strong 

conclusions, I think it still provided solid feedback to answer the research questions. 
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CONCLUSION 

This thesis presented the design, implementation and evaluation of a PWD environment 

to create sensor-based applications. By combining the PWD technique with a mobile 

application, a novel approach in the way users program sensor-based applications is 

provided, allowing them to experience what they are programming in real-time.  

According to the data and feedback gathered from the user study, it can be concluded 

that GALLAG Strip effectively lowers the barrier for novice users and allows them to 

program GALLAG applications easily, accurately and without the need of prior 

programming experience. Even with its current limitations, GALLAG Strip enabled users 

to create almost all of their envisioned applications during the user study. It is necessary, 

however, to compare it with another authoring system to be able to tell if it is a better 

approach to programming sensor-based context-aware applications or not, something 

which I am planning on working on shortly. 

I acknowledge that the current programming interface might not allow the creation of 

more complex applications; however, the initial goal was for users to be able to program 

simple, if-then rule-based GALLAG applications. This could be solved in two ways: one 

could be by adding more options to the current if-then rules, like the ability to have else 

statements and OR conditions; another option could be to enable GALLAG Strip to learn 

from a series of user demonstrations by implementing an inference engine, thus making 

GALLAG Strip a PBD environment that creates generalized applications. 

Future improvements should allow users to reorder frames in the application strip, as it 

causes a major burden when the user needs to add a frame in the middle or beginning of 

the application. Another feature that should be added is the ability to have timers, not 

only initial date-time conditions. Also, there should be some kind of feedback when 

testing a saved application, as it is difficult to understand if an application is being 

activated or not. 
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It should also be considered that the current implementation of GALLAG Strip only 

supports a single user; a way to distinguish different users will need to be implemented 

for the system to allow multiple users with different preferences. 

Finally, the current design for GALLAG Strip should allow the mobile application to be 

ported to other mobile platforms like a Windows 8 tablet, iOS or Android fairly easily, as 

the communication with the server application is done through platform-agnostic web 

services and XML. 



 62 

REFERENCES 

1. Beckmann, C. and Dey, A.K. SiteView : Tangibly Programming Active 
Environments with Predictive Visualization. Berkeley, CA, 2003. 

2. Blackwell, A. and Green, T. A Cognitive Dimensions Questionnaire. 
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDquestionnaire.pdf. 

3. Blackwell, A. and Green, T. Notational Systems – the Cognitive Dimensions of 
Notations framework. HCI Models, Theories and Frameworks: Toward, December 

(2002), 1-21. 

4. Boren, T. and Ramey, J. Thinking aloud: Reconciling theory and practice. 
Professional Communication, IEEE Transactions on 43, 3 (2000), 261–278. 

5. Brooke, J. SUS-A quick and dirty usability scale. Usability evaluation in industry, 

(1996), 189–194. 

6. Burleson, W., Ruffenach, C., Jensen, C., Bandaru, U.K., and Muldner, K. Game 
as life --- life as game. Proceedings of the 8th International Conference on 
Interaction Design and Children - IDC  ’09, (2009), 272. 

7. Cook, W.R. AppleScript. SIGPLAN conference on History of programming 
languages (HOPL III), ACM (2007), 1-21. 

8. Cypher, A. Bringing Programming to End Users. In A. Cypher, ed., Watch What I 
Do: Programming by Demonstration. MIT Press, Cambridge, MA, 1993, 2-11. 

9. Dey, A., Sohn, T., Streng, S., and Kodama, J. iCAP: Interactive prototyping of 
context-aware applications. Pervasive Computing, (2006), 254–271. 

10. Dey, A.K., Hamid, R., Beckmann, C., Li, I., and Hsu, D. a CAPpella: programming 
by demonstration of context-aware applications. Proceedings of the SIGCHI 
conference on Human factors in computing systems, ACM (2004), 33–40. 

11. Girard, P. Bringing Programming by Demonstration to CAD Users. In Your Wish is 
My Command: Programming by Example. Morgan Kaufmann, 2000, 135-162. 

12. Halbert, D.C. SmallStar: Programming by Demonstration in the Desktop 
Metaphor. In Watch What I Do: Programming by Demonstration. MIT Press, 

Cambridge, MA, 1993, 103-124. 

13. Hartmann, B., Abdulla, L., Mittal, M., and Klemmer, S.R. Authoring Sensor-based 
Interactions by Demonstration with Direct Manipulation and Pattern Recognition. 
Proceedings of the SIGCHI conference on Human factors in computing systems, 

ACM (2007), 145–154. 



 63 

14. Holzinger, A. Usability Engineering Methods for Software Developers. 
Communications of the ACM 48, 1, 71-74. 

15. Kauhanen, M. and Biddle, R. Cognitive dimensions of a game scripting tool. 
Proceedings of the 2007 conference on Future Play - Future Play  ’07, (2007), 97. 

16. Klemmer, S. and Landay, J. Toolkit Support for Integrating Physical and Digital 
Interactions. Human-Computer Interaction 24, 3 (2009), 315-366. 

17. Ko, A.J., Myers, B., Rosson, M.B., et al. The state of the art in end-user software 
engineering. ACM Computing Surveys 43, 3 (2011), 1-44. 

18. Kurlander, D. Chimera: Example-Based Graphical Editing. In Watch What I Do: 
Programming by Demonstration. MIT Press, Cambridge, MA, 1993, 271-292. 

19. Lieberman, H. Mondrian: A Teachable Graphical Editor. In Watch What I Do: 
Programming by Demonstration. MIT Press, Cambridge, MA, 1993, 341-360. 

20. McDaniel, R.G. and Myers, B.A. Getting more out of programming-by-
demonstration. Proceedings of the SIGCHI conference on Human factors in 
computing systems the CHI is the limit - CHI  ’99, (1999), 442-449. 

21. Modugno, F., Corbett, A.T., and Myers, B. a. Graphical representation of 
programs in a demonstrational visual shell---an empirical evaluation. ACM 
Transactions on Computer-Human Interaction 4, 3 (1997), 276-308. 

22. Modugno, F. and Myers, B.A. Graphical Representation and Feedback in a PBD 
System. In Watch What I Do: Programming by Demonstration. MIT Press, 

Cambridge, MA, 1993, 415-422. 

23. Myers, B.A. Taxonomies of Visual Programming and Program Visualization. 
Journal of Visual Languages & Computing 1, 1 (1990), 97–123. 

24. Myers, B.A. Peridot: Creating User Interfaces by Demonstration. In Watch What I 
Do: Programming by Demonstration. MIT Press, 1993, 125-154. 

25. Nielsen, J. and Molich, R. Heuristic Evaluation of User Interfaces. Proceedings of 
the SIGCHI conference on Human factors in computing systems: Empowering 
people, ACM (1990), 249–256. 

26. Nielsen, J. Ten Usability Heuristics. 
http://www.useit.com/papers/heuristic/heuristic_list.html. 

27. Ruvini, J.-D. and Dony, C. Learning Users’ Habits to Automate Repetitive Tasks. 
In Your Wish is My Command: Programming by Example. Morgan Kaufmann, 

Cambridge, MA, 2000, 271-296. 

28. Teitelman, W. Toward a Programming Laboratory. International Joint Conference 
on Artificial Intelligence, Bolt Beranek and Newman Inc. (1969), 1–8. 



 64 

29. GaLLaG Library. http://hci.asu.edu/GALLAG/Library/Documentation/files/AirFoil-
applescript.html. 

30. GaLLaG Wiki. http://gallag.wikispaces.asu.edu/. 

31. GaLLaG - Play Music While Exercising. 
http://gallag.wikispaces.asu.edu/Play+Music+While+Exercising. 

32. GaLLaG - Matching Game. http://gallag.wikispaces.asu.edu/Matching+Game. 

33. Apple - iOS. http://www.apple.com/ios/. 

34. GaLLaG - Treasure Hunt Game. 
http://gallag.wikispaces.asu.edu/Treasure+Hunt+Game. 

35. Pendaphonics. http://www.pendaphonics.com/. 

36. GaLLaG - Call Contacts. http://gallag.wikispaces.asu.edu/Call+Contacts. 

37. Twine. http://www.kickstarter.com/projects/supermechanical/twine-listen-to-your-
world-talk-to-the-internet. 

38. SketchFlow. 
http://www.microsoft.com/expression/products/sketchflow_overview.aspx. 

39. X10.com - Security Cameras, X10 Home Security, Wireless Camera, Home 
Automation, Electronics and More! http://www.x10.com/homepage.htm. 

40. INSTEON - Wireless Home Control Solutions for Lighting, Security, HVAC, and 
A/V Systems. http://www.insteon.net/. 

41. Indigo: Macintosh Home Automation and Control Server. 
http://www.perceptiveautomation.com/indigo/index.html. 

42. Google Android. http://www.android.com/. 

43. Microsoft Windows Phone. http://www.microsoft.com/windowsphone/en-
us/default.aspx.  

 

 

  



 65 

APPENDIX A 

GALLAG APPLICATION XML FORMAT 
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<?xml version="1.0" encoding="utf-8"?> 
<GALLAGApps> 
  <GALLAGApp name="Read" desc="Read more" enabled="true"> 
    <Frame type="Event" deviceID="TV" deviceType="Lamp" event="On" action="None" 
param1="" param2="" param3="" param4="" /> 
    <Frame type="Action" deviceID="" deviceType="DoorWindow" event="None" 
action="PlaySound" param1="Reminder sound" param2="reminder.mp3" param3="" 
param4="" /> 
    <Frame type="Action" deviceID="" deviceType="DoorWindow" event="None" 
action="TextToSpeech" param1="You should read instead of watching TV!" param2="" 
param3="" param4="" /> 
    <Frame type="Event" deviceID="TV" deviceType="Lamp" event="Off" action="None" 
param1="" param2="" param3="" param4="" /> 
    <Frame type="Action" deviceID="" deviceType="DoorWindow" event="None" 
action="PlaySound" param1="Achievement sound" param2="achievement.mp3" 
param3="" param4="" /> 
    <Frame type="Event" deviceID="A5" deviceType="Motion" event="MotionDetected" 
action="None" param1="" param2="" param3="" param4="" /> 
    <Frame type="Action" deviceID="" deviceType="DoorWindow" event="None" 
action="TurnDeviceOn" param1="Lamp" param2="Lamp" param3="" param4="" /> 
    <Frame type="Action" deviceID="" deviceType="DoorWindow" event="None" 
action="PlayStream" param1="Paris Cafe" 
param2="http://u17.jazzradio.com:80/jr_pariscafe_aacplus" param3="" param4="" /> 
  </GALLAGApp> 
</GALLAGApps> 
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APPENDIX B 

MOBILE APPLICATION CLASSES AND ENUMERATIONS 
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APPENDIX C 

CDN QUESTIONNAIRE 
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CDN Questionnaire used for usability examination. 

1. Viscosity: Resistance to change.  

How much effort is required to perform a single change? 

2. Visibility: Ability to view components easily.  

Is every part of the code simultaneously visible or is it at least possible to 

juxtapose any two parts side-by-side at will? If the code is dispersed, is it at least 

possible to know in what order to read it? 

3. Premature Commitment: Constraints in the order of doing things.  

Do users have to make decisions before they have the information they need? 

4. Hidden Dependencies: Important links between entities are not visible.  

Is every dependency overtly indicated in both directions? Is the indication 

perceptual or only symbolic? 

5. Role-Expressiveness: The purpose of an entity is readily inferred.  

Can the user see how each component of the application being programmed 

relates to a whole? 

6. Error-Proneness: The notation invites mistakes and the system give little 

protection.  

Does the design of the notation induce “careless mistakes”? 

7. Abstraction: Types and availability of abstraction mechanisms.  

What are the minimum and maximum levels of abstraction? Can fragments be 

encapsulated? 

8. Closeness of Mapping: Closeness of representation to domain.  

What “programming nuances” need to be learned? 
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9. Consistency: Similar semantics are expressed in similar syntactic forms.  

When some of the language has been learned, how much of the rest can be 

inferred? 

10. Diffuseness: Verbosity of language.  

How many symbols or graphic entities are required to express a meaning? 

11. Hard Mental Operations: High demand on cognitive resources.  

Are there places where the user needs to resort to penciled annotation to keep 

track of what’s happening? 

12. Provisionality: Degree of commitment to actions or marks. 

Does the system allow for prototyping to try out new ideas or provisional actions? 

13. Progressive Evaluation: Work-to-date can be checked at any time.  

Can a partially complete program be executed to obtain feedback on “How am I 

doing”? 
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APPENDIX D 

USER STUDY CONSENT FORM 
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Consent Form 

GaLLaG: Game as Life – Life as Game 

INTRODUCTION 

The purposes of this form are to provide you (as a prospective research study participant) 

information that may affect your decision as to whether or not to participate in this 

research and to record the consent of those who agree to be involved in the study. 

 

RESEARCHERS 

Winslow Burleson, assistant professor School of Computing, Informatics, and Decision 

Systems Engineering, along with other researchers (Ryan Brotman, Camilla Jensen, 

Byron Lahey, Jisoo Lee, Shawn ORourke, Luis Garduno, Naomi Newman) have invited 

your participation in a research study. 

 

STUDY PURPOSE 

The purpose of the research is to investigate the efficiency of interactive technology in 

guiding subjects toward achieving desired goals.  

 

DESCRIPTION OF RESEARCH STUDY 

If you decide to participate, then you will join a study funded by NFS grant, and we will 

ask you to initially select a goal to achieve from a panel of possibilities. Once selected, a 

script will be designed to stimulate and aid the subject in achieving the particular goal. 

The scriptwriter may be either the experimenter, another subject with whom you have 

already been paired with, or you may write the script yourself. Script merely refers to the 

actions and processes utilized by the environmental technology to aid you in 

accomplishing your goal.  

 

The technology being utilized may include a Macintosh laptop, an iPhone, iTouch, and 

may also include speakers located around a house or a television capable of turning off 

after a certain length of time. In addition, we will record some physiological data such as 

body temperature, facial expression, and interaction patterns while you are working on 

the assigned project. The sensors that are used in the study are a form of ‘wearable 

computing’ just like your cellphone. They capture digital information about your location, 

interactive environment, and activity patterns. These patterns will help us in creating 

future scripts.  

 

The progress of the game will be recorded and evaluated in order to assess the efficacy 

of the script. The actual effectiveness of these scripts greatly varies depending upon the 

scriptwriter and particular goal to be achieved.  

RISKS 

There are no known risks from taking part in this study, but in any research, there is 

some possibility that you may be subject to risks that have not yet been identified. 

 

BENEFITS 
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The benefits of your participation in the research are to obtain a higher level of motivation 

for achieving desired goals. In addition, you will be helping to advance the research 

community’s understanding of directing motivation by means of interactive technology. 

 

CONFIDENTIALITY 

All information obtained in this study is strictly confidential. The results of this research 

study may be used in reports, presentations, and publications, but the researchers will 

not identify you. 

 

WITHDRAWAL PRIVILEGE 

Participation in this study is completely voluntary. It is ok for you to say no. Even if you 

say yes now, you are free to say no later, and withdraw from the study at any time. Your 

decision will not affect your relationship with Arizona State University and any other 

institution or otherwise cause a loss of benefits to which you might otherwise be entitled. 

This includes your grades as a student or employment status, treatment, care etc. 

 

COSTS AND PAYMENTS 

The researchers want your decision about participating in the study to be absolutely 

voluntary. There is no payment for your participation in the study. 

 

VOLUNTARY CONSENT 

Any questions you have concerning the research study or your participation in the study, 

before or after your consent, will be answered by Dr Winslow Burleson, School of 

Computing, Informatics, and Decision Systems Engineering, at (480) 965-9253. 

If you have questions about your rights as a subject/participant in this research, or if you 

feel you have been placed at risk; you can contact the Chair of the Human Subjects 

Institutional Review Board, through the ASU Office of Research Integrity and Assurance, 

at (480) 965-6788.   

  

This form explains the nature, demands, benefits and any risk of the project.  By signing 

this form you agree knowingly to assume any risks involved.  Remember, your 

participation is voluntary.  You may choose not to participate or to withdraw your consent 

and discontinue participation at any time without penalty or loss of benefit.  In signing this 

consent form, you are not waiving any legal claims, rights, or remedies.  A copy of this 

consent form will be offered to you.   

 

VIDEO RECORDING CONSENT 

This study involves the video recording of your performance. Parts of the recording of the 

session will be transcribed to written form, without identifying the speakers. The recording 

will be erased when all data from it have been reviewed and coded.  

 

(Please check the appropriate blank below.) 

          I DO NOT agree to be video recorded.  

          I DO agree to be video recorded. 
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Your signature below indicates that you consent to participate in the above study. 

 

___________________________ _________________________ _______ 

Subject's Signature       Printed Name                Date 

 

 

INVESTIGATOR’S STATEMENT 

"I certify that I have explained to the above individual the nature and purpose, the 

potential benefits and possible risks associated with participation in this research study, 

have answered any questions that have been raised, and have witnessed the above 

signature. These elements of Informed Consent conform to the Assurance given by 

Arizona State University to the Office for Human Research Protections to protect the 

rights of human subjects. I have provided (offered) the subject/participant a copy of this 

signed consent document."  

 

 

_________________________________ _____________ 

Signature of Investigator          Date 
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APPENDIX E 

IRB APPROVAL 
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