
GALLAG Strip: A Mobile, Programming With Demonstration Environment

for Sensor-Based Context-Aware Application Programming

by

Luis Garduno Massieu

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2012 by the
Graduate Supervisory Committee:

Winslow Burleson, Chair

Eric Hekler
Sandeep Gupta

ARIZONA STATE UNIVERSITY

May 2012

© 2012 Luis Garduno Massieu

All Rights Reserved

 i

ABSTRACT

The Game As Life – Life As Game (GALLAG) project investigates how people might

change their lives if they think of and/or experience their life as a game. The GALLAG

system aims to help people reach their personal goals through the use of context-aware

computing, and tailored games and applications. To accomplish this, the GALLAG

system uses a combination of sensing technologies, remote audio/video feedback,

mobile devices and an application programming interface (API) to empower users to

create their own context-aware applications. However, the API requires programming

through source code, a task that is too complicated and abstract for many users. This

thesis presents GALLAG Strip, a novel approach to programming sensor-based context-

aware applications that combines the Programming With Demonstration technique and a

mobile device to enable users to experience their applications as they program them.

GALLAG Strip lets users create sensor-based context-aware applications in an intuitive

and appealing way without the need of computer programming skills; instead, they

program their applications by physically demonstrating their envisioned interactions within

a space using the same interface that they will later use to interact with the system, that

is, using GALLAG-compatible sensors and mobile devices. GALLAG Strip was evaluated

through a study with end users in a real world setting, measuring their ability to program

simple and complex applications accurately and in a timely manner. The evaluation also

comprises a benchmark with expert GALLAG system programmers in creating the same

applications. Data and feedback collected from the study show that GALLAG Strip

successfully allows users to create sensor-based context-aware applications easily and

accurately without the need of prior programming skills currently required by the GALLAG

system and enables them to create almost all of their envisioned applications.

 ii

DEDICATION

To my parents and my sister, for their endless love, support and understanding.

 iii

ACKNOWLEDGEMENTS

I would first like to thank my advisor, Dr. Winslow Burleson, for his guidance and for

giving me the opportunity to be part of his research group. And to the rest of my

committee: Dr. Eric Hekler for his valuable input and to Dr. Sandeep Gupta for his

support.

I also want to thank the members of the Motivational Environments research group;

everyone helped me in some way or another. Special thanks to Jisoo Lee for all her help

during the user study and to Erin Walker for her mentoring. Also thanks to Cecil Lozano,

Ryan Brotman, Helen Chavez and Javier Gonzalez for their input.

Thanks to Ana Enciso and all my friends who either helped me with their participation

during the study or just by being there when I needed them.

Finally, thanks to Consejo Nacional de Ciencia y Tecnologia (CONACYT) for their

financial support throughout my studies.

 iv

TABLE OF CONTENTS

Page

LIST OF TABLES .. vii

LIST OF FIGURES... viii

INTRODUCTION: GAME AS LIFE – LIFE AS GAME ... 1

GALLAG API .. 2

Sample GALLAG applications .. 3

Problem statement ... 3

Proposed solution... 4

BACKGROUND: EXAMPLE-BASED PROGRAMMING .. 6

Types of EBP ... 6

EBP for sensor-based context-aware applications .. 7

Motivation... 10

GALLAG STRIP ..12

User experience ... 12

Physical interaction sensing ...13

Mobile PWD user interface ...15

User customization...21

Enabling, disabling, and resetting applications22

Technical implementation ... 24

Indigo server ..25

GALLAG Strip server ...25

GALLAG Strip mobile application ...28

Concurrency and resource confilcts ..30

USABILITY EXAMINATION ..31

Cognitive dimensions usability analysis .. 31

 v

Page

Procedure .. 31

Results ... 32

Parts of the system ..32

Sub-devices ...33

Dimensions of the main notation ..34

EXPLORATORY USER SESSIONS ..37

Procedure .. 37

Results ... 38

VALIDATION: USER STUDY ..40

Subjects ... 40

Setting.. 41

Application categories .. 43

Procedure .. 43

Tutorial ..44

Program generation ...45

Survey ...48

Results ... 49

Survey ...53

Application themes ...55

DISCUSSION ...59

CONCLUSION ..60

REFERENCES ...62

APPENDIX

 A GALLAG APPLICATION XML FORMAT ...65

 vi

Page

 B MOBILE APPLICATION CLASSES AND ENUMERATIONS67

 C CDN QUESTIONNAIRE ...70

 D USER STUDY CONSENT FORM ...73

 E IRB APPROVAL ...77

 vii

LIST OF TABLES

Table Page

1. Comparison between PWD and PBD ... 6

2. Feedback gathered from exploratory user sessions ...38

3. Application category examples ..43

 viii

LIST OF FIGURES

Figure Page

1. Components needed to create a GALLAG application .. 1

2. Example use of GALLAG’s API .. 2

3. Initial mobile application sketches ..12

4. Sketch of the comic strip-based demonstration screen ..13

5. X10 magnetic sensors attached to drawer and remote ...14

6. X10 motion sensors on bookshelf and table ...14

7. LampLinc and SynchroLinc modules ...15

8. Main and application list screens ...16

9. Adding action frame in recording mode..17

10. Demonstration screen while in edit mode...17

11. Adding a response frame to the application strip ..18

12. Action frames with default text label and image ...19

13. Response frames ..20

14. Time and date frames ...20

15. Customizing text and image of action frame ..21

16. Taking a picture with the phone’s camera ..22

17. Action frame after being customized ..22

18. Editing an application: enabling, disabling and resetting...23

 ix

Figure Page

19. GALLAG Strip system components and connections ...24

20. Class diagrams and enumerations for the GALLAG Strip server application.26

21. Class diagrams and enumerations for the GALLAG Strip mobile application29

22. Programming experience level for user study participants ..41

23. Living room setting and placement of sensors (yellow circles)42

24. Placement of sensors for user study ..42

25. Application requirements for first task ..46

26. Application requirements for second task...46

27. Application requirements for third task ...47

28. Percentage of implemented requirements for participants ..50

29. Average and std. dev. of requirements for participants ...51

30. Average and std. dev. of errors for participants ..51

31. Average and std. dev. of time required for participants ...52

32. Average and std. dev. of requirements for experts ...53

33. Post-session questionnaire showing average and std. dev.......................................54

34. Major themes for free-form applications ...55

35. Social subthemes for free-form applications ..56

36. Behavior change subthemes for free-form applications ..56

 x

Figure Page

37. Typical actions used on free-form applications ...57

38. Types of GALLAG Strip elements used on free-form app ...57

 1

INTRODUCTION: GAME AS LIFE – LIFE AS GAME

Game As Life – Life As Game (GALLAG), a project from the Motivational Environments

research group at Arizona State University, investigates how people might change their

lives if they think of and/or experience their life as a game. GALLAG aims to help people

reach their personal goals through the use of context-aware computing, and tailored

games and applications [6]. Finally, GALLAG also tries to enhance home life and expand

what people think computing can do for them.

To accomplish this, the GALLAG system uses a combination hardware and software to

empower users to create their own context-aware applications, which we refer to as

GALLAG applications (see figure 1).

Figure 1. Components needed to create a GALLAG application

The hardware is composed of wireless and wired sensing technologies, local and remote

audio/video feedback and mobile devices. The software consists of an application

programming interface (API) based on the AppleScript [7] programming language.

+ = GALLAG

Application

GALLAG
API

Sensors, speakers
and mobile devices

 2

One of the most important features of GALLAG is that it allows users to customize an

already existing GALLAG application (e.g., a sample application or a template) or create

a new one by using GALLAG’s API.

GALLAG API

The GALLAG team noticed that the average novice GALLAG user was not able to create

GALLAG applications from scratch using AppleScript code. This motivated me to lead the

team in the development of a programming library in order to address this problem, and

this is how the GALLAG API started.

The GALLAG API consists of a collection of AppleScript functions that abstracts

complicated configuration and control actions so that users can more easily understand,

create, or modify GALLAG applications by reading and writing AppleScript code.

The main advantages of GALLAG’s API are that it significantly reduces the amount of

code that a user needs to write when creating a GALLAG application, and that it provides

a consistent way to configure and communicate with devices (e.g., sensors, actuators

and mobile devices), as well as with applications (e.g., audio/video playing software,

word processors, file and web browsers) (see figure 2).

Figure 2. Example use of GALLAG’s API

In the current implementation of the GALLAG API [29], we have provided support for the

following: remote audio playing with one or more wireless speakers, database logging,

sensing devices setup, communication with iOS mobile devices, audio/video media

 3

playing, communication with iRobot, opening a web page or a file in the server machine

or a remote computer, write to Microsoft Word, text to speech and input for voice

commands, among others.

Sample GALLAG applications

The GALLAG team has also worked on creating sample GALLAG applications as a way

to introduce novice users to the GALLAG system. These ready-to-run sample

applications have two main objectives: first, to help users understand how the system

works and the type of applications they can create, and second, to serve as templates

that users can quickly test and modify to better suit their needs.

As part of the GALLAG team, we have created sample GALLAG applications and posted

them on the GALLAG wiki site [30] for easy user access (see figure 3). One of these

sample applications created by Jisoo Lee, shows how to use open-closed magnetic

sensors and play music if a sensor is opened [31]. Another example by Jisoo Lee is a

matching game using audio and visual feedback [32]. An example that I created allows

users to play a treasure hunt game with a GPS-enabled Apple iOS [33] device (e.g.

iPhone, iPad) [34]. Lastly, an additional application that I created with the help of Byron

Lahey, reminds users to keep in contact with family and friends by using a Pendaphone

[35] and calling them through Skype [36].

We have also provided users with information on the wiki site about how to setup a

GALLAG system (hardware and software) and how to get started with basic AppleScript

programming.

Problem statement

As mentioned earlier, a major goal of GALLAG is to enable users to create their own

GALLAG applications or to modify an existing one.

 4

Although we have tried to make the GALLAG API as easy to use as possible, it still

requires a fair amount of programming knowledge and poses a substantial cognitive load

to the user, which becomes a significant barrier for users that do not know how to

program. Additionally, the sample GALLAG applications that we have created are not

quite at a level where users without programming experience can quickly modify to create

customized versions of them, as a small amount of programming is necessary.

This triggered the question of how could this barrier be lowered and make GALLAG

programming an easier and engaging activity for novice users.

Proposed solution

GALLAG Strip, the system discussed in this thesis, attempts to address these issues by

providing a Programming With Demonstration environment which enables users to create

GALLAG applications in an intuitive and appealing way without the need of computer

programming knowledge; instead, they program applications by physically demonstrating

their envisioned interactions within a space. This demonstration is done using the same

interface that will later be used to interact with the GALLAG system, that is, using

GALLAG-compatible sensors and mobile devices to realize personalized, empowering,

and life-changing games and applications.

GALLAG Strip provides a novel approach to programming sensor-based applications by

combining the technique of Programming With Demonstration with a mobile application to

enable users to more easily experience their applications while they program (i.e.,

demonstrate) them, thus lowering the level of programming abstraction. GALLAG Strip’s

main objective is to allow novice GALLAG users to create most of their envisioned

applications easily and accurately.

The proposed solution consists of a sensing and application running commercial software,

a server application for web service communication and application code generation, and

 5

a mobile application with a simple and appealing user interface based on the comic strip

metaphor (i.e., having a strip or sequence of frames) that will help users to program their

GALLAG applications.

The Programming With Demonstration technique, explained in the next chapter, was

selected because of its effectiveness when programming context-aware applications

shown in previous research.

 6

BACKGROUND: EXAMPLE-BASED PROGRAMMING

Example-Based Programming (EBP) is a technique that simplifies the programming

process by avoiding the need of textual notation (i.e., writing source code). With EBP,

users are not forced to learn an unnatural, abstract programming language or standard

computer science concepts like conditionals, loops and variables; instead, users provide

examples of their intended actions with a specific application [8]. The main advantage of

EBP is that the examples are demonstrated in the same environment in which users

perform their actions, or as Dan Halbert defines it, it is like “programming in the user

interface” [12].

The earliest documented reference of EBP dates back to 1969 with Teitelman’s PILOT

system, which acted as an intermediary between users and their intended program code

[28]. The PILOT system allowed users to provide high-level descriptions of their intended

tasks and produce programs to accomplish them. Teitelman’s vision was to create a

cooperative and helpful programming environment that would free users from routine

aspects of programming so that they could be more ambitious, productive and creative.

Types of EBP

There are two types of EBP: Programming By Demonstration (PBD) and Programming

With Demonstration (PWD). PBD denotes systems that infer the user’s intended program

through a series of example inputs, actions and outputs, and creates a generalized

program.

 PWD PBD

Advantages
Simple for users to

understand and edit.
Provides flexibility with
generalized programs.

Disadvantages
Not very flexible,

what is demonstrated
is what is programmed

Hard to infer user intent.
Difficult for users to

understand and edit.

Table 1. Comparison between PWD and PBD

 7

With PWD systems, users can also program their applications with an example; however,

they need to specify all the details, as there is no inference involved. As exemplified by

Halbert, PWD can be described as “Do What I Did”, and PBD as “Do What I Mean” [23].

Table 1 shows a comparison of the advantages and disadvantages between PWD and

PBD.

The advantage of a PWD system is that it makes it easy for users to understand how an

application gets created and how to modify it, as there is a direct mapping between the

demonstration and the programmed application. With PWD, what users demonstrate is

exactly what gets programmed; if a user demonstrates a sequence of actions, this exact

sequence is what the application will perform. However, this makes a PWD system not

very flexible if the user does not follow the exact sequence of actions all the time, in

which case he/she would need to demonstrate a variation of the actions and create a

different application for them.

In contrast, the advantage of a PBD system is that it has the ability to infer what the user

wants to program through a series of demonstrations; if a user demonstrates a sequence

of actions in his first demonstration and then demonstrates a variation of these actions for

the same application, the system will create a generalized application that reacts to these

two sequence of actions. The disadvantage of this inference capability of PBD systems is

that sometimes is hard for the system to create a generalized application from

demonstrations that are very different, and it also makes it hard for users to understand

what exactly the generalized application will react to and how to modify it, as these

applications are created based on several demonstrations.

EBP for sensor-based context-aware applications

Although EBP has been used for general computer programming in some projects like

Teitelman’s [28] and others like APE [27], most have focused on automating repetitive

tasks in a domain-constrained graphical user interface environment like CAD automation

 8

[11], graphical editing in Chimera [18] and Mondrian [19], and user interface creation in

Peridot [24]. Another example is Modugno’s Pursuit [21], which provided a graphical

representation of programs in a demonstrational visual shell. An interesting feature in

Pursuit is the comic strip metaphor (i.e., showing the before and after states in a

sequence of frames) used on desktop icons to represent users’ actions on real data files.

I was inspired by this representation of user actions as it makes it easier to visually

understand an application based on actions and events along time.

Recently, PBD has been used for context-aware, ubiquitous and physical applications.

Anind Dey et al. developed “a CAPpella”, a PBD system to help users develop context-

aware applications [10]. Their approach consisted on letting users demonstrate a specific

behavior using several sensors and then review the gathered data by marking the

relevant parts of the demonstration as well as the desired actions. A CAPpella’s user

interface was a PC desktop application showing continuous streams of sensor data and

event information in a graph that the user later had to analyze and determine which part

to keep and which to ignore. Although their evaluations were successful, they mentioned

that users had difficulty when selecting relevant parts of the data streams and marking

events. In contrast to a CAPpella, my vision is to provide users with an interface that

does not require them to analyze streams of raw data but rather concrete events and

actions that they can easily understand.

An example of a context-aware PWD programming system for end users is iCap by

Anind Dey et al. [9]. They developed a visual, rule-based, environment in which users

could prototype context-aware applications without writing code. In their system, users

first define the objects, the activities, the locations, the people and the time they want to

use in their programs and are then able to drag and drop them into panels to create rules

with associated actions. They performed a user study to identify the kind of context-

aware programs that users were interested in and found that most of their programs were

 9

specified using simple if- then rules (79%). They also noticed that the rules were fairly

simple, with an average of 2.5 elements used in each rule, where an element could be an

activity, object, location, time, person or state. Their findings support my belief that most

sensor-based user applications can be defined using simple if-then rules and that they

employ a small number of rule elements.

Papier-M ch by Klemmer and Landay [16] introduced a modular, event-based

architecture to support tangible user interface programming. By employing high-level

input abstractions, their developer-focused API lowers the difficulty threshold to work with

physical (i.e., sensor) input and makes it easier for applications to switch to different input

technology. Although GALLAG Strip differs in that it is intended for end users and not

developers, I liked their mixed-methods approach for evaluating the usability of their

system, as there are no best practices for emerging areas like ubiquitous and physical

computing.

A successful PWD project that used the Papier-M ch architecture was SiteView [1,16],

a rule-based physical programming interface for a home automation system. SiteView

employed a ceiling-mounted camera that locates physical icons over a floor plan

representing the environment, RFID (Radio Frequency ID) tags and readers for rule

creation and editing, a rule display showing the rules in text, and an environment display

to preview the rules in action. They argue that lowering the programming difficulty

threshold for novice users does not necessarily mean that the system will require

machine learning techniques or complex inference methods [1]. I agree with their

argument and I believe that the programming threshold can be lowered with a good user

interaction experience, which has proven true for several other PBD systems [8].

Finally, just last year, a Kickstarter project called Twine [37] is working on bringing to

market user-programmable wireless modules with embedded sensors for temperature

and vibration, and an expansion connector for additional sensors. Their PWD approach is

 10

a visual, rule-based web editor that lets users create if-then rules to program their sensor

modules. Having raised more than half a million dollars just over a month to fund their

project is a good indicator of the current demand for sensor-based context-aware end-

user programming and it provides additional evidence that an if-then rule based

programming model is (or at least appears to be) effective for end-users.

Motivation

Today, most of the applications are programmed not by professional software developers,

but by people with diverse backgrounds working towards goals supported by computation

[17]. These people, which are also end users, know better how to describe the tasks they

are interested in programming, however, programming can be a daunting task for them;

traditional development tools to create interactive applications require extensive

programming knowledge and can be difficult even for experienced programmers [20].

The API for GALLAG (described in the preceding chapter) is not at the level of users

without programming experience, as it requires them to write scripts, which is still

programming and the hurdle to learn a scripting language is simply too high for the

average computer user [8].

The research projects described in the previous section have shown the potential of PBD

and PWD systems to enable end users to program sensor-based context-aware

applications. However, although they effectively lowered the programming difficulty level

for users, they do not address the issue of detachment from real world actions. This issue

causes two main problems: one is that users need to move away from the environment

where they are acting on in order to use the programming system (e.g., a desktop PC-

based system), and the second is that they need to spend time understanding the

abstract representation of their actions after they performed them.

 11

GALLAG Strip differs from previous research efforts in that it provides a simple, mobile

rule-based programming interface that allows users to see their actions in real time, thus

reducing their detachment from the world.

GALLAG Strip was built as a visual programming system, as it has been proved that a

visual representation of a program’s code is easier to understand than in text form,

especially if they are short [21,23]. Additionally, most end user-created programs are

small and do not contain nested loops or nested conditionals [22], therefore being

relatively easy to represent visually. GALLAG Strip’s if-then rule visual programming

interface was based on the comic strip metaphor (see figure 4), similar to the one in

Pursuit [21].

The decision to build GALLAG Strip as a PWD system (instead of PBD) was based on

previous research showing that it is easier for users to understand, use and modify

applications using a PWD system than a PBD one [23]. Also, because GALLAG Strip

was designed to be used by a single user, the assumption is that the demonstrated user

actions will not vary much and thus a PWD system will suffice.

Although I recognize that being able to create generalized applications with a PBD

system could provide some flexibility while creating applications, such an environment

would have demanded considerably more time to develop and to test with users because

of the required inference engine. However, the current implementation of GALLAG Strip

can be modified later to include an inference engine, converting it into a PWD system

with more flexibility.

 12

GALLAG STRIP

There were two major challenges while developing GALLAG Strip. First, there was the

challenge of creating an appealing user experience that would make it easy for users to

create GALLAG applications through demonstration. The second challenge was to

implement it using a medley of technologies that were not used together before on the

GALLAG project. The following sections describe how these challenges were tackled.

User experience

The design of the user experience was an iterative approach and had elements of

participatory design. It started with a series of low-fidelity prototypes on paper which, after

a round of iterations, were transformed into medium-fidelity, interactive prototypes using

Microsoft Expression Blend and SketchFlow [38] (see figure 3 and 4).

Figure 3. Initial mobile application sketches

 13

Figure 4. Sketch of the comic strip-based demonstration screen

These interactive prototypes were shown to some members of the Motivational

Environments research group for feedback and underwent a couple of refining iterations.

The final user experience design for GALLAG Strip consists of three main components:

physical interaction sensing, a mobile PWD user interface and user customization.

PHYSICAL INTERACTION SENSING

An important part of GALLAG Strip is its ability to sense user interactions with objects

and spaces. Users are expected to interact with sensed objects and spaces both when

programming their GALLAG application, as well as when “running” or testing the

application.

Currently, GALLAG Strip supports four types of sensors: X10 [39] open/closed magnetic

sensors, X10 motion sensors, Insteon [40] LampLinc modules and Insteon SynchroLinc

modules. The X10 open/closed sensor (also called Door/Window sensor) is probably the

most versatile, as it communicates through radio-frequency (RF) and can be installed on

a wide variety of objects, like drawers, doors, or any other object for which we can

change its position or location (see figure 5).

 14

Figure 5. X10 magnetic sensors attached to drawer and remote

X10 motion sensors (MS16A and MS14A) also communicate through RF and they detect

motion through changes in infrared heat; therefore, they are used to detect presence (or

lack of) in a specific space. They are also very useful in situations where you do not want

to attach an open/closed sensor to an object, like detecting when you reach to grab a

book or an object beneath a table (see figure 6).

Figure 6. X10 motion sensors on bookshelf and table

Insteon LampLinc modules (see figure 7) allow both detecting when a lamp is manually

turned on/off, and turning it on/off via a command sent through the AC power lines.

Insteon SynchroLinc modules are designed to be used with bigger appliances than lamps

(e.g., TV, washing machine) and are similar to LampLinc modules in the sense that they

 15

can detect an appliance being manually turned on/off, however they cannot receive

commands to turn the appliance on/off.

Figure 7. LampLinc and SynchroLinc modules

MOBILE PWD USER INTERFACE

The most important feature of GALLAG Strip is its mobile PWD user interface, which

enables users to create, review and edit their GALLAG applications. By being a mobile

programming interface, it allows users to move freely through the sensed space and to

demonstrate their actions in a natural way.

GALLAG Strip’s mobile PWD interface has three core elements, the main screen, the

demonstration screen and the application frames.

The main screen is what the user is shown when the mobile application starts. If there

are no previously saved GALLAG applications, the main screen will show the information

page, where the user can learn how to create a new application, learn about the different

application frames that he/she will be able to use, go to GALLAG’s website for more

information and get general details about the GALLAG Strip mobile application. If

GALLAG applications have been previously saved, the system application list page is

shown where the user can see which applications are currently enabled and disabled

(see figure 8).

 16

Figure 8. Main and application list screens

The demonstration screen is where users demonstrate what they want to program. It has

two modes: a recording mode and an edit mode. In recording mode, the system listens

for sensor events triggered by user actions and it appends them at the end of the

application (see figure 9).

When the user touches the pause button while in recording mode, the demonstration

screen goes into edit mode. In this mode, the user can review the application being

created by scrolling up and down, and can also edit it by modifying or deleting existing

frames and by adding new ones (see figures 10 and 11).

 17

Figure 9. Adding action frame in recording mode

Figure 10. Demonstration screen while in edit mode

 18

Figure 11. Adding a response frame to the application strip

When the user finishes creating his/her GALLAG application, he/she then touches the

save button, the application information is sent to the server and the system configures

itself to do what the user just programmed. After the application has been saved, the

application is ready to be run and can be tested simply by performing the actions

previously defined in the application.

A GALLAG application is represented in the demonstration screen through a sequence of

application frames. This sequence of frames is called the application strip and can have

three types of frames: action, response and time-date.

Action frames represent the user’s actions within the sensed space and are shown as

blue frames in the application strip. These frames have a default text label and image

depending on the type of sensor. Actions involving open/closed and motion sensors have

a description based on the sensor ID and type of action, as well a generic image

depending on the type of sensor. Actions related with the LampLinc module show a text

label referring to the lamp being turned on/off and have a generic image of a light bulb.

 19

Finally, actions associated with the SynchroLinc module show a text label referring to the

TV being turned on/off and have a generic image of a TV (see figure 12).

Figure 12. Action frames with default text label and image

Response frames represent actions that the system will perform and are set by the user.

This type of frames is shown in orange and have a text label and image related to the

type of response selected. Response frames can also have an additional parameter that

is displayed in text above the frame’s image (see figure 13).

 20

Figure 13. Response frames

Time-date frames are conditions set by the user and they constrain the application’s

execution to a particular time and/or date. These frames are shown in green and show

the selected date or time as their text label. Time frames additionally have a parameter to

show the selected days of the week (see figure 14). Time and date frames can be

combined to create conditions based both on a date and a time; that is, an application

can have up to two, date and time frames.

Figure 14. Time and date frames

The programming model for GALLAG Strip is a linear, if-then, rule-based one, and it is

read from left to right and from top to bottom. This means that preceding actions or

responses need to occur in the same sequence as they appear before the current one

 21

can execute. Similarly, the time and/or date condition frames need to evaluate to true in

order for the rest of the application to execute.

USER CUSTOMIZATION

User customization is an important feature that allows users to define the relationships

between their actions and the sensors. As mentioned above, action frames are displayed

with a default text label and image depending on the sensor being activated. Users can

customize them by changing the text and by taking a picture with the phone’s built-in

camera (see figure 15, 16 and 17).

The ability to customize action frames makes the GALLAG application being

programmed much easier to read and to debug, and makes the programming process

more enjoyable.

Figure 15. Customizing text and image of action frame

 22

Figure 16. Taking a picture with the phone’s camera

Figure 17. Action frame after being customized

ENABLING, DISABLING, AND RESETTING APPLICATIONS

GALLAG Strip also lets users disable, enable and reset a GALLAG application. Because

the system allows users to have one or more active applications at the same time, the

ability to enable and disable applications was implemented to avoid the need of deleting

 23

a certain application that the user do not wants to be active at the moment. Additionally,

because the current implementation of GALLAG Strip does not provide feedback as to

the current state of an application, users can reset a particular application to its initial

state (see figure 18).

Figure 18. Editing an application: enabling, disabling and resetting

This combination of physical sensing and a user-customizable mobile PWD interface is

what comprises the user experience for GALLAG Strip. The following section describes

the implementation details.

 24

Technical implementation

Several technical challenges were faced during the implementation of the

aforementioned user experience. Some of these challenges and some of the

implementation decisions are discussed in this section.

The system has three main components: the Indigo server, the GALLAG Strip server

application and the GALLAG Strip mobile application, the last two being the contributions

of this work. Figure 19 shows these components and how they communicate with each

other.

Figure 19. GALLAG Strip system components and connections

Server machine

GALLAG
Strip

server

Indigo
server

Postgre
database

SynchroLinc

LampLinc

ActiveEye
Motion sensor

Open/closed
magnetic sensor

Indigo setup
script

GALLAG
apps list

RF

AC power line

Web service
/ XML

GALLAG Strip
mobile application Speakers

 25

INDIGO SERVER

Perceptive Automation’s Indigo [41] is a commercial home automation software that runs

on Apple’s OSX and is used both for communication with X10 and Insteon hardware, as

well as a running platform for GALLAG applications.

Indigo receives information from X10 and Insteon devices (e.g., open/closed magnetic

sensors, motion sensors, LampLinc and SynchroLinc modules) either through RF or

through AC power lines, and can send commands to these devices using these same

channels.

In addition, Indigo is capable of running AppleScript code based on configurable events,

making it the backbone for GALLAG application execution, as it can continuously monitor

X10 and Insteon devices and execute what the user defined in their application using

GALLAG Strip.

Indigo also has the ability to log event information from devices into a SQLite or

PostgreSQL database, a feature used by the GALLAG Strip server to provide sensor

event information to the mobile application, which is explained in further detail below.

GALLAG STRIP SERVER

The GALLAG Strip server was developed as a console C# application and has three

main features: serve as a sensor event provider to the mobile application, provide the

ability to read, update and delete the list of saved GALLAG applications, and to create

the Indigo setup script for a particular GALLAG application. The class diagrams for the

server application, exposed web service methods, event class, event and device type

enumerations are shown in figure 20.

 26

Figure 20. Class diagrams and enumerations for the GALLAG Strip server application.

The GALLAG Strip server provides the mobile application with information about the

events detected by Indigo through the exposed web service methods (see

IGALLAGService interface in figure 20). When the user touches the record button on the

mobile application, the phone sends a request to the GALLAG Strip server to get the

latest X10, RF and Insteon device events using the GetEvents web service method. The

server application then connects to Indigo’s PostgreSQL database, gets the latest logged

 27

device event information and responds the web service call with a list of device events in

XML format.

Another feature of the GALLAG Strip server is to facilitate basic persistent storage

functions for the list of GALLAG applications, that is, it provides a way to read, update

and delete a GALLAG application from the list of saved applications. This is also done

through web service methods and the list of saved GALLAG applications is stored as an

XML file on the server machine (see appendix A for an example of a saved GALLAG

application XML structure).

When the GALLAG Strip server receives a web service request to save a GALLAG

application from the mobile device, it creates the AppleScript setup file that will be run to

configure Indigo. This setup script is created with the help of the GALLAG API and it is

then saved and run on the server machine using Apple’s OSX Folder Actions. The setup

script file is then run and creates the necessary variables, triggers and action groups to

do what was defined in the GALLAG application. After Indigo is configured, the GALLAG

application can be tested.

The previous section explained how GALLAG Strip server lets users disable and enable

a GALLAG application. When a user disables an application, the server creates and runs

an AppleScript file to disable all triggers in Indigo for that particular application. Similarly,

the server enables all the related triggers when an application is enabled.

The execution state of a previously saved GALLAG application is managed through state

variables in Indigo. When a user wants to reset a certain application, the GALLAG Strip

server creates and runs an AppleScript file to reset all the state variables in Indigo for that

application.

The choice of using C# to develop the GALLAG Strip server application was based on my

experience with the programming language. The decision of using XML-based web

 28

service methods for communication was based on the advantage of having a platform

and language-free that can enable the implementation of the mobile application on a

different mobile operating system (e.g., Android [42], iOS).

GALLAG STRIP MOBILE APPLICATION

As mentioned in the previous chapter, it was decided to develop the user interface on a

mobile platform; this makes it easier for users to experience the demonstration process,

as they need to physically move around and interact with the sensors to demonstrate

their application. The mobile application was developed to run on the Windows Phone

[43] mobile operating system (version 7.5 Mango) and was programmed using the C#

language, this again because of my experience with C# and the .Net framework. Figure

21 shows a class diagram and the enumerations used for the Windows Phone application.

All of the communication between the mobile application and the rest of the system is

done through web service calls. Additionally, the only information stored on the mobile

application related to GALLAG applications are the customized text labels and images for

the action frames, the rest of the information about the GALLAG applications is stored in

an XML file on the server machine, as explained in the previous section.

The mobile application was designed with future improvements in mind. Separate classes

were created for the application frames, the supported sensors and devices, the

predefined sounds and music streams, and the available phone carriers among others.

Figure 21 shows the classes and enumerations used on the GALLAG Strip mobile

application (see appendix B for more details on the main classes and enumerations).

 29

 Figure 21. Class diagrams and enumerations for the GALLAG Strip mobile application

 30

CONCURRENCY AND RESOURCE CONFILCTS

Currently, GALLAG Strip only supports one user, meaning that conflicts could occur

when having multiple concurrent users. Design for multiple users was out of the scope of

the initial implementation of GALLAG Strip, since a method for user identification (e.g.,

facial recognition, RFID, location tracking) is necessary to create multiple-user

applications.

Additionally, there could be resource (e.g., sensors, devices, sound, and music) conflicts

when having multiple active GALLAG applications. To illustrate a conflict with using the

same sensor, imagine that a user creates an application that will detect if the front door of

the house is opened when arriving home and play a welcome sound afterwards. The user

then creates another application that will detect if he/she turns the AC on and then opens

the front door to leave the house; if this happens, he/she wants the application to play a

reminder sound. If both applications are saved and enabled, when the user turns on the

AC and then opens the door, both applications will be activated and both sounds will be

played consecutively, with one of them only being played a fraction of a second. One way

to avoid this particular conflict could be by using a motion sensor outside of the house to

detect the user entering his/her home. Other ways to avoid these resource conflicts is for

users to restrict the execution of their applications to a certain time or date using time-

date conditions, and also to enable or disable applications according to their current

needs. I acknowledge that this does not solve the problem completely, but it helps to

avoid many of these conflicts.

 31

USABILITY EXAMINATION

Before testing the system with users, an examination of GALLAG Strip by applying the

Cognitive Dimensions of Notations (CDN) framework [2] was performed to analyze its

usability and design tradeoffs as a PWD environment.

Cognitive dimensions usability analysis

The purpose of using the CDN framework is to perform a quick, low cost examination by

experts of potential usability problems before running a more expensive user study.

The CDN framework is one of several techniques used in the Human Computer

Interaction (HCI) community, which provides a broad-brush evaluation of a system’s form

and structure [21]. It was conceived as a framework to describe notational systems and

information artifacts, considering in particular the novel graphical interfaces and visual

grammars of complex products like visual programming languages and ubiquitous

computing platforms [3], making it a suitable evaluation method for sensor-based and

visual programming projects [13].

The CDN framework is similar to heuristic evaluation methods like Jakob Nielsen’s list of

user interface heuristics [25,26] in the sense that it provides a list of usability issues.

However, CDN also provides a vocabulary that designers can use to discuss the effects

of their design. These effects are normally expressed as trade-offs between dimensions,

as an adjustment in a dimension might affect one or more dimensions of a notation or

artifact [3,15].

Procedure

To perform the design examination of GALLAG Strip, the CDN questionnaire by Green

and Blackwell [2] was followed. The activities allowed by GALLAG Strip’s mobile

application were taken into account while answering the CDN questionnaire:

 Addition. Adding further information without altering the structure in any way.

 32

 Modification. Changing the existing structure, possibly without adding new

content.

 Exploratory design. Combining addition and modification, with the distinction that

the desired end state is not known in advance.

These activities were then analyzed across the 13 cognitive dimensions (see appendix C

for details about the CDN questionnaire that was used).

Results

The examination starts by defining the main notation and estimating the time spent while

performing the task or activity being examined, which in this case is creating a GALLAG

application using GALLAG Strip.

PARTS OF THE SYSTEM

GALLAG Strip’s main notation is a visual representation of sensor events with user-

defined responses and conditions, that is, the application strip. After a few trials with the

system, the following are the time estimates while creating GALLAG applications:

5% Searching for information within the notation (visually examining the application

strip, reading text labels on application frames)

20% Translating substantial amounts of information from some other source into the

system (demonstration, translating physical interactions into action frames)

25% Adding small bits of information to a description that you previously created

(adding response and time-date frames, changing text label and image to

frames)

20% Reorganizing and restructuring descriptions that you have previously created

(deleting application frames to add new ones)

 33

30% Playing around with new ideas in the notation, without being sure what will result

(exploration, adding application frames and possibly testing them)

These time estimates can be compared to the ones reported in the evaluation of

Exemplar, a PBD tool for rapid sensor-based interaction prototyping [13]. Because

Exemplar requires users to read live sensor data (i.e., sensor data graphs), they report

that users spend 30% of the time searching for information within the main notation

(analyzing sensor signals); in comparison, users in GALLAG Strip spend only around 5%

of the time searching for information when analyzing the main notation (examining the

application strip). They also show that users spend 10% of the time while demonstrating

their application in their 2D desktop user interface; in GALLAG Strip, users spend around

20% of the time in the demonstration phase, as users need to physically move around to

demonstrate their applications. The last major difference is the time needed to reorganize

a previous demonstration, where they report that it takes users around 10% of the time to

change analysis types and redefine events; in comparison, users in GALLAG Strip take

around 20% of the time to reorganize their demonstrated application, this is likely

because application frame reordering is not currently available. Finally, one thing in

common between Exemplar and GALLAG Strip is that users spend a fair amount of time

(30%) trying out new ideas without knowing what will be the end result, which highlights

the importance of exploration for users in both systems.

SUB-DEVICES

Helper and redefinition devices are system sub-devices that help with a specific part of

the activity. In GALLAG Strip, the X10 and Insteon sensors were considered helper

devices, and the phone’s camera was considered a redefinition device.

 34

DIMENSIONS OF THE MAIN NOTATION

1. Viscosity (ease or difficulty of editing previous work). It was easy to change

parameters or details to previously added response frames, as well as deleting

unwanted frames.

2. Visibility (ability to view components easily). The elements of the notation (i.e.,

application strip) were easy to view, with the only limitation being that if a GALLAG

application requires more than six frames, scrolling is needed to view the entire

application strip.

3. Premature commitment (constraints in the order of doing things). Due to the

sequential nature of the current version of GALLAG Strip, the level of premature

commitment is quite high; if you decide to insert a frame in the middle or beginning of

the application, it requires you to first delete all subsequent frames, as new action

and response frames are always added at the end of the application strip. On the

other hand, the ability to delete frames decreases the cost of commitment in some

way. Nonetheless, adding a feature to reorder frames would eliminate this problem.

4. Hidden dependencies (important links between entities are not visible). The only

dependency difficult to see is that the X10/Insteon sensors and devices used were

tightly coupled to the system, meaning that they were previously configured and that

adding a new one requires updating the system.

5. Role-expressiveness (purpose of a component is easily inferred). This was not a

particular concern with GALLAG Strip, as all components are easy to understand.

6. Error-proneness (the notation invites mistakes and the system give little protection).

The inability to reorder application frames was the only type of error that occurred

repeatedly, which was a significant problem with long applications. Again, adding the

feature to reorder frames should alleviate this issue. Other types of errors were due

to the lack of enough user input validations on text fields.

 35

7. Abstraction. The level of abstraction can be considerable if you do not customize the

action frames, as you are translating physical actions into a sequential strip of

frames; however, the ability to customize the text labels and images on the

application frames lowers the level of abstraction substantially and makes it much

more understandable.

8. Closeness of mapping (closeness of representation to domain). The notation (i.e., the

application strip) is directly mapped to the created application, as the application will

be executed in the same sequence as it was demonstrated.

9. Consistency (similar semantics are expressed in similar syntactic forms). The only

consistency issue found was that the time-date frames are always at the beginning of

the application, in contrast with the action and response frames which are always

added at the end. However, because timers are not currently supported, having time-

date frames in the middle would not make more sense than at the beginning of the

application, so this should not be a significant issue.

10. Diffuseness (verbosity of language). Applications created with GALLAG Strip are

fairly succinct; the notation directly represents the actions and responses that you

want to program.

11. Hard mental operations. The biggest mental effort needed while creating an

application occurs when adding time-date frames, as you need to make decisions on

whether to add a time or date frame, a combination of both, and what value or range

of values to select for the date and/or time. However, this is not considered a hard

mental operation.

12. Provisionality (degree of commitment to actions). Because you are able to edit your

application before saving it and because you can test your application before

finishing it, the level of commitment is low and it enables you to try out new ideas.

 36

13. Progressive evaluation (work-to-date can be checked at any time). GALLAG Strip

allows to easily review the current state of the application being programmed; if the

application is long, it can be reviewed by scrolling the application strip up and down.

In summary, GALLAG Strip performs well regarding viscosity, abstraction, role-

expressiveness, closeness of mapping, consistency, diffuseness, hard mental operations,

provisionality and progressive evaluation. The issues found with visibility, premature

commitment, hidden dependencies and error-proneness are related to the fact that

GALLAG Strip currently does not support reordering of frames, that the amount of

application frames visible at the same time is limited (i.e., up to six frames) to the size of

the phone’s screen, that not enough validations exist for user input and that the devices

and sensors used are tightly coupled (i.e., preconfigured) with the system. Another issue

found after performing the examination is that the fact that GALLAG Strip only allowed for

one active application can be quite limiting; having multiple active applications can enable

users to create a much more complex application based on two or more simpler

applications.

Based on these results, changes to GALLAG Strip’s design were made to improve it in

the areas that were identified as most problematic and that were able to be implemented

within time constraints. The changes made were two, more user input validations and

being able to have more than one active GALLAG application at the same time.

Also relevant to note is that, in addition to being able to spot deficiencies in our initial

design, this examination will facilitate the comparison of the current version of GALLAG

Strip with future ones, and with other systems.

 37

EXPLORATORY USER SESSIONS

After updating GALLAG Strip according to what was found on the CDN examination, a

set of exploratory user sessions were performed to determine the system’s intuitiveness,

to get user feedback and to update the system accordingly before running the final user

study.

The thinking aloud method was used to get a better sense of what users think while using

the system. Think aloud sessions are a well-known usability-engineering method that

helps to understand how users view a system and to identify any major end user

misconception [14].

These sessions took place in the Motivational Environments laboratory at Arizona State

University and had the participation of four users. None of them knew about the project,

two had prior programming experience and the other two did not.

Procedure

At the beginning of the session, a very short description of the system was given. They

were just told that the system enabled them to program sensor-based applications with

the use of a mobile phone; they were then told about all the sensors that they could

interact with.

After the introduction, participants were asked to program a simple, previously defined

scenario and to think aloud while doing it. They were also explained that my role would

be of active listener, making it clear that the objective was to evaluate GALLAG Strip, not

them. While the session was in course, participants were reminded to continue thinking

aloud with simple acknowledgement tokens throughout the programming task to avoid

any additional cognitive load, as proposed by Boren and Ramey [4].

 38

Finally, they were asked to try to complete the programming task on their own and figure

out how to use the system themselves, although they were told that they would receive

help if they could not continue at all.

The following is the text description of the task that we asked them to program:

if you enter the living room then

 play alarm sound

 end if

Results

Some issues with GALLAG Strip were raised by the participants and some of them were

selected to improve upon before continuing with the final user study.

Table 2 shows the things that participants pointed out, their occurrence and the action

taken.

Occurrence Comment Action taken

2 Want to have music playing as a response option. Response added

2 Play button is not intuitive to add user actions. Changed button

2 Improve help messages in demonstration screen. Improved messages

2 Add sensor to digital portrait, TV remote control
and AC thermostat.

Sensors added

2 Difference between events and actions confusing. Changed naming

2 Want to reorder frames in application strip. None

1 Add timer functionality. None

1 Ability to duplicate a saved application. None

1 Ability for system to turn on/off the AC and TV. None

1 Have feedback when testing a saved application. None

Table 2. Feedback gathered from exploratory user sessions

 39

From the user comments and changes made on the above table, it is relevant to note that

the version of GALLAG Strip used in these sessions referred to user actions as events

(e.g., event frames) and system responses as actions (e.g., action frames), we changed

the naming to be more user-friendly, therefore “event” frames where changed to “action”

frames and “action” frames where changed to “response” frames. Also, the button to add

user actions was changed from a play button to a record button, making it clearer that the

system was in fact recording user’s actions.

The functionality to reorder frames, to have timers, to duplicate applications and to have

feedback when testing a saved application was not implemented due to their complexity

and time constraints. The ability to turn on/off the AC and TV was not possible at the time

due to Insteon hardware limitations.

 40

VALIDATION: USER STUDY

The preceding chapters described the motivations, design, implementation, usability

examination and preliminary user testing. Although this iterative process yielded a refined

system to some extent, it was still necessary to determine how effective it is as a PWD

environment for novice GALLAG users. This chapter presents the procedure followed to

validate GALLAG Strip by answering the following questions:

 Can users with none or little programming experience use GALLAG Strip to

create sensor-based context-aware applications easily and accurately?

 Does GALLAG Strip support the creation of the majority of the applications

envisioned by users?

A user study was conducted in a setting that closely resembles a living room and a post-

session questionnaire was administered to get the users’ overall feedback on their

experience. The study took place at the Motivational Environments laboratory at Arizona

State University over a period of 6 days and the sessions were video-recorded using a

head-mounted camera wore by the participants.

Subjects

A total of 13 subjects volunteered to participate in this study. They were recruited through

flyers posted around campus through specific email distribution lists at Arizona State

University. Ages ranged from 21 to 49, six male and seven female, four undergraduates

and nine graduates. Participants had a variety of backgrounds: educational technology,

distance education, graphic design, architecture, civil engineering, material science,

computer science, electrical engineering and chemical engineering.

Participants were required to have prior exposure to smartphones and none or little

programming experience. However, four of them actually had some, considerable or

extensive programming experience (see figure 19); although they did not meet the initial

 41

requirement, it was decided to include them in the study due to our difficulty in getting

enough participants and because their performance was almost the same as the

participants with none or little programming experience.

Figure 22. Programming experience level for user study participants

In addition to the 13 study participants, two members of the Motivational Environments

research group volunteered to participate as GALLAG experts. They helped with the

gathering of benchmark data to compare the performance between novice GALLAG

users creating applications with GALLAG Strip and expert GALLAG users programming

the same applications through the use of AppleScript code and Indigo elements.

Setting

As mentioned earlier, the sessions were held in a laboratory that simulates a common

scenario of a living room, with sensors placed around the space. In particular, X10

magnetic sensors were placed on: the laboratory’s front door, the TV remote, a plant’s

vase, two drawers, a digital portrait and the AC’s thermostat. X10 motion sensors were

placed: on top of the TV to detected presence in the living room, below the table to detect

if the user reached for the dumbbells and on the bookshelf to detect if the user reached

for a book. The lamp was connected to an Insteon LampLinc module to be able to sense

and control it turning on/off. The TV was connected to an Insteon SynchroLinc module to

sense when it was turned on/off (see figures 20 and 21).

0

1

2

3

4

5

6

none little some considerable extensive

 42

Figure 23. Living room setting and placement of sensors (yellow circles)

Figure 24. Placement of sensors for user study

 43

Application categories

For this study’s purpose, applications were divided into two categories: simple and

complex. A simple application consists of a single if-then rule with two conditions and two

actions that will execute if the condition is met. A complex application consists of a date-

time condition and two, nested if-then conditions with actions inside both of them (see

table 3).

Category Application

1 Simple if you enter the living room and you turn the TV on then
 play reminder sound
 make system say “Remember to take pills"
end if

2 Simple if you open the top drawer and you open the box with pills then
 play achievement sound
 send an email to let someone know that you just took your pills
end if

3 Complex if time is after 9am and you turn the AC on and you open the front door then
 play alarm sound
 make system say “Turn off the AC”
 if you close the front door then
 send an SMS to your phone to remind you to turn the AC off
 end if
end if

Table 3. Application category examples

The rationale behind dividing applications in these two categories was to determine if

GALLAG Strip is an effective PWD environment for both simple and complex applications.

Procedure

The individual, one-hour user sessions consisted of an initial tutorial and walk-through

(approximately 20 minutes) about GALLAG Strip, followed by the application

programming tasks. After completing the programming tasks, participants were then

asked to fill an online questionnaire to obtain feedback about their overall experience with

the system.

 44

During the study, the measures evaluated were the following:

 Completeness. The number of implemented application requirements.

 Accuracy. The number of errors in the implemented application (deviations from

what was expected, missing requirements are not counted here).

 Duration. The time in minutes required to program the application.

TUTORIAL

The first part of the session was a tutorial to introduce the participants to GALLAG Strip’s

capabilities, components and user interface.

The tutorial was provided verbally and a script was followed to be consistent with all

participants. It started with an introduction to what GALLAG Strip is about and continued

with a demonstration of how to program a GALLAG application. The demonstration

showed how to program an application that would do the following:

if you enter the laboratory then

 play music

 if you enter the living room then

 stop audio

 turn on the lamp

 end if

end if

GALLAG Strip’s user interface (i.e., the mobile application UI) was explained while

demonstrating how to program the application. After finishing with the application demo,

participants were told about all the available sensors in the living room that they were

able to use and how they worked.

 45

Finally, participants were reminded that they were not the subject being tested, but the

system. Also, they were asked to talk aloud while programming their applications and that

they might be reminded to do so if they went silent for a while.

PROGRAM GENERATION

After the tutorial, participants were asked to complete four programming tasks. The first

three programming tasks are the same as the ones described in Table 3 above, two

simple and one complex, and the last one was a free-form application with no restrictions

other than a 15-minute time limit. After finishing each programming task, participants

were encouraged to test them.

For the three first applications, a text description and a graphical representation were

shown to the participants on a computer monitor, both representing the same application

requirements. The graphical representation used a similar notation as the one they would

see while programming it with GALLAG Strip (see figures 22, 23 and 24).

 46

Figure 25. Application requirements for first task

Figure 26. Application requirements for second task

 47

Figure 27. Application requirements for third task

The idea behind the first and second application is to test how much do participants

improve when asked to program an application of the same complexity as the one they

just programmed. Because of this, the first and second applications were intentionally

alternated between participants.

For the last application, the time limited free-form, participants were first asked to think

about an application they would like to have at home or that they were interested in

programming. They were also asked to describe it verbally before starting to program it,

so that it could be determined whether they were able to program all of their initial

requirements or not.

Finally, the expert GALLAG users were shown where all the sensors were placed and

were then asked to program the first three applications using AppleScript code and Indigo

 48

elements, showing them the same textual and graphical application requirements as the

rest of the study participants.

SURVEY

After the programming tasks, participants were asked to answer a web-based

questionnaire about their experience with GALLAG Strip. The objective of the

questionnaire was to get their subjective satisfaction and/or possible anxieties while using

the system.

The questionnaire was based on the System Usability Scale (SUS) developed by John

Brooke [5], which has been an industry standard for usability and has also been used in

several research projects. SUS is a simple, ten-item questionnaire measuring usability in

terms of effectiveness, efficiency and satisfaction. The possible answers are presented

using a Likert scale with 5 possible answers ranging from “strongly disagree” to “strongly

agree”.

In addition to the SUS standard questions, participants were asked if they felt limited by

the kind of applications that they could develop with GALLAG Strip and if they felt that

they needed to learn a considerable amount of things before being able to use it. They

were also asked to describe things that they would like to see in a future version, and

finally, questions to ascertain specific characteristics about them, like age, gender,

educational background and programming experience. The following are the questions

that were asked:

Please answer the following questions based on the experience you have just had

with GALLAG Strip:

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

 49

4. I think that I would need the support of a technical person to be able to use this

system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I felt limited by the kind of applications that could be created.

11. I needed to learn a lot of things before I could get going with this system.

12. I think that I would be able to program the majority of the applications that I would

like to build.

13. What did you like the most about the system?

14. What did you like the least about the system?

15. What would you like to see in a future version of the system?

16. Are you male or female?

17. What is your age?

18. What is the highest level of school you have completed or the highest degree you

have received?

19. What is your major? (If applicable)

20. How much programming experience do you have?

Results

First, a within-subject comparison with the 13 study participants is performed. Not

surprisingly, almost all were able to program all the requirements for the first three

applications (see figure 25), with the exception of three participants that missed one

requirement. However, these three participants mentioned that the reason was that they

were not careful in reading the requirements in detail. For the free-form application, three

 50

participants failed to implement one requirement each; one of them forgot a requirement

that he described before implementing his application, another realized that he would

have had to delete several frames in order to implement the requirement and decided not

to do it, and the last one wanted to add a timer to his application, which is not currently

supported.

Figure 28. Percentage of implemented requirements for participants

Although it was expected to see a high value for application completeness, it is good to

see that participants were also able to implement almost all of the requirements for their

free-form applications.

Figure 26 shows the average number of requirements for each application, with the free-

form application varying considerably as anticipated. It is important to mention that the

complexity level for 12 of the 13 free-form applications was equal or higher than the third

application.

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

101.00%

Im
p
le

m
e
n
te

d

R
e
q
u
ir

e
m

e
n
ts

Applications

First App

Second App

Third App

Free-form App

 51

Figure 29. Average and std. dev. of requirements for participants

The average number of errors was low for all applications and went down after the first

application (see figure 27). Similarly to the missing application requirements, most of the

errors were due to lack of user attention to the requirements, as many of them selected

the wrong sound to play or left additional action frames that were not needed. Two errors

were caused by confusion with the action of a user turning the lamp on/off and a system

response to turn it on/off. Lastly, one error was due to an unknown bug in the mobile

application that caused a response frame not to be saved correctly.

Figure 30. Average and std. dev. of errors for participants

0

2

4

6

8

10

12

14

N
u
m

b
e
r

o
f
R

e
q
u
ir

e
m

e
n
ts

Applications

First App

Second App

Third App

Free-form App

0

0.2

0.4

0.6

0.8

1

N
u
m

b
e
r

o
f
E

rr
o
rs

Applications

First App

Second App

Third App

Free-form App

 52

All participants completed the applications in a reasonable amount of time and an

improvement was evident for the second application (see figure 28). Another interesting

finding is that, even though the average number of requirements (and complexity) for the

free-form application was higher than the third one, the average time to program them

was lower; this shows that GALLAG Strip has a low learning curve, as participants were

able to program applications of increasing complexity in a shorter amount of time.

Figure 31. Average and std. dev. of time required for participants

Regarding the two expert GALLAG participants, both were able to program all the

application requirements, except for the second application in which one expert was not

able to use the TV because its setup was modified by an external individual without

previous notice, thus only the data from one expert is available for the second application.

Although both had to debug their applications to make sure they worked, none of them

had errors in their final applications.

About the time spent, also as expected, the second application took less time than the

first (see figure 29); however, it is interesting to note that the average time they required

for the third and more complex application was almost double (16.3 minutes) than the

average time that the study participants needed (8.5 minutes). This is a positive finding,

because it demonstrates that users without knowledge about how to program a GALLAG

0

2

4

6

8

10

12

T
im

e
 (
m

in
u
te

s
)

Applications

First App

Second App

Third App

Free-form App

 53

application are able to program them with GALLAG Strip faster than expert GALLAG

programmers using traditional tools.

Figure 32. Average and std. dev. of requirements for experts

It is also important to highlight that the expert GALLAG participants had one or more

years of exposure to the GALLAG system and were proficient in AppleScript

programming.

SURVEY

In the post-session survey results (see figure 30), participants graded GALLAG Strip

highly for its ease to use (average=4.45 on a 5-point Likert scale, σ=0.52), and for

making them think that people would be able to learn how to use the system quickly

(average=4.08, σ=0.51). Results were not as decisive (σ>1) on making them feel

confident in using the system (average=4.0, σ=1.1); on making them feel that they would

be able to program the majority of the applications that they would envision (average=4.0,

σ=1.41) and on feeling limited by the kind of applications that could be created

(average=3.1, σ=1.1).

0

5

10

15

20

T
im

e
 (
m

in
u
te

s
)

Applications

First App

Second App

Third App

 54

Figure 33. Post-session questionnaire showing average and std. dev.

Regarding the open questions, participants said the following about what they liked the

most about GALLAG Strip:

 “Fun, intuitive, easy, connection to mail and SMS”

“The fact that you can create your strip with out know nothing about how to

program the sensors.”

“I liked that applications can be created easily.”

The following are some responses about what participants liked the least about GALLAG

Strip:

 “Hang in middle... not ease to swipe the activities order”

“The fact that you can not re-order the frames on the strip and the fact that you

have to remember the exact order of the frames to have the system reacts as

expected.”

“I didn't like that frames cannot be reordered in a different way. Also, time and

date frames cannot be placed either in the middle or at the end.”

 55

APPLICATION THEMES

Although it was not part of the initial research agenda, I was interested in determining

what type of applications were users interested in programming with GALLAG Strip, as

well as the system elements that were used the most. This was done after the user study

by reviewing the video recorded from the sessions.

The verbal descriptions of the free-form applications given by the participants were

analyzed and three major application themes were noticed: behavior change, home

automation and social. Figure 31 shows the free-form applications classified under these

themes, with some applications encompassing more than one theme.

Figure 34. Major themes for free-form applications

From these three major themes, two were then subdivided into more specific ones. For

the social theme, subthemes were observed for celebration, information sharing and play

(see figure 32). The applications that fell under the social theme were probably the most

creative: one participant created an application to cheer up her husband on his birthday

by making the system say something, playing a sound, and making the lamp blink

repeatedly; another participant programmed an application to make the teddy bear speak

and invite her to watch TV together. Finally, a participant wanted to let a friend know that

he was doing exercise, since they were competing to lose weight.

0
2
4
6
8

10
12
14

Behavior
change

Home
automation

Social

C
o
u
n
t

 56

Figure 35. Social subthemes for free-form applications

The behavior change theme was subdivided into subthemes about exercise, energy

consumption, diet, medication, TV watching and cleanliness. Figure 33 shows how many

applications followed these subthemes.

Figure 36. Behavior change subthemes for free-form applications

The home automation theme was not subdivided as all of the applications were fairly

similar, participants either wanted to automate turning the lamp on/off or to play music

according to a specific trigger.

0

1

2

Celebrate
(Birthday)

Play (Teddy
bear)

Share
information

C
o
u
n
t

0

1

2

3

4

Exercise Energy
consumption

Diet Medication TV watching Cleanliness

C
o
u
n
t

 57

Additionally, it was noticed that there were some recurring actions that participants

referred to on several free-form aplications, which are shown in figure 34.

Figure 37. Typical actions used on free-form applications

Finally, in order to determine which GALLAG Strip elements were used the most, a

simple break down of the type of application frames used during the free-form

programming task is shown in figure 35.

Figure 38. Types of GALLAG Strip elements used on free-form app

Not surprisingly, magnetic, motion sensors, TV and playing music were the most used

(13, 11, 9 and 9 respectively). However, it is interesting to note that no one used the

0

2

4

6

8

10

12

Remind Reward Motivate Automate
(device, music)

Play Communicate
(email, sms,

audio)

C
o
u
n
t

0

2

4

6

8

10

12

14

C
o
u
n
t

 58

email feature, and that the SMS, date and time features were seldom used. The reason

might be that they were a little more complicated to test during the session than the rest.

The feature to change the text on action frames was not used much either; although this

was pointed out not to be necessary at that time, as they were able to understand what

sensors they were using and did not feel the need to customize the text labels. Finally,

only one user was interested in redefining the purpose of one of the motion sensors (the

one below the table) to detect a teddy bear instead of the dumbbells.

 59

DISCUSSION

I decided to follow a mixed-methods approach (i.e., CDN, think aloud sessions, user

study, questionnaire) to evaluate GALLAG Strip because these are common practices in

the Human-Computer Interaction field and there is really no established way to do this in

emerging areas like physical and context-aware computing. I want, however, to mention

some limitations in the methodology.

For the design examination using the CDN framework, the recommended procedure is

that several design experts do it; because no one else is involved in the system’s design

or is knowledgeable on how to perform the CDN analysis, I decided to do it myself.

Regarding the think aloud and user study sessions, since I was who decided where to

place the sensors, it might have limited or influenced participants’ creativity when

envisioning their applications for the free-form task in some way. Similarly, the fact that

they were shown a demo application at the beginning of the session and that they were

asked to program three previously defined applications, might have also influenced their

decisions when thinking about their free-form application. The only way to answer this

would be to run another study and ask them to define their envisioned application(s) at

the beginning of the session.

For the user study sessions, the goal was to have at least 20 participants; unfortunately,

this was not possible, as it was far more difficult to recruit people than I thought. I believe

that my inability (because it was not approved by IRB) to pay participants limited me

substantially in reaching this goal; if I were to do the study again, I would make sure I can

pay them. Even though 13 participants may be a small sample to draw strong

conclusions, I think it still provided solid feedback to answer the research questions.

 60

CONCLUSION

This thesis presented the design, implementation and evaluation of a PWD environment

to create sensor-based applications. By combining the PWD technique with a mobile

application, a novel approach in the way users program sensor-based applications is

provided, allowing them to experience what they are programming in real-time.

According to the data and feedback gathered from the user study, it can be concluded

that GALLAG Strip effectively lowers the barrier for novice users and allows them to

program GALLAG applications easily, accurately and without the need of prior

programming experience. Even with its current limitations, GALLAG Strip enabled users

to create almost all of their envisioned applications during the user study. It is necessary,

however, to compare it with another authoring system to be able to tell if it is a better

approach to programming sensor-based context-aware applications or not, something

which I am planning on working on shortly.

I acknowledge that the current programming interface might not allow the creation of

more complex applications; however, the initial goal was for users to be able to program

simple, if-then rule-based GALLAG applications. This could be solved in two ways: one

could be by adding more options to the current if-then rules, like the ability to have else

statements and OR conditions; another option could be to enable GALLAG Strip to learn

from a series of user demonstrations by implementing an inference engine, thus making

GALLAG Strip a PBD environment that creates generalized applications.

Future improvements should allow users to reorder frames in the application strip, as it

causes a major burden when the user needs to add a frame in the middle or beginning of

the application. Another feature that should be added is the ability to have timers, not

only initial date-time conditions. Also, there should be some kind of feedback when

testing a saved application, as it is difficult to understand if an application is being

activated or not.

 61

It should also be considered that the current implementation of GALLAG Strip only

supports a single user; a way to distinguish different users will need to be implemented

for the system to allow multiple users with different preferences.

Finally, the current design for GALLAG Strip should allow the mobile application to be

ported to other mobile platforms like a Windows 8 tablet, iOS or Android fairly easily, as

the communication with the server application is done through platform-agnostic web

services and XML.

 62

REFERENCES

1. Beckmann, C. and Dey, A.K. SiteView : Tangibly Programming Active
Environments with Predictive Visualization. Berkeley, CA, 2003.

2. Blackwell, A. and Green, T. A Cognitive Dimensions Questionnaire.
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDquestionnaire.pdf.

3. Blackwell, A. and Green, T. Notational Systems – the Cognitive Dimensions of
Notations framework. HCI Models, Theories and Frameworks: Toward, December

(2002), 1-21.

4. Boren, T. and Ramey, J. Thinking aloud: Reconciling theory and practice.
Professional Communication, IEEE Transactions on 43, 3 (2000), 261–278.

5. Brooke, J. SUS-A quick and dirty usability scale. Usability evaluation in industry,

(1996), 189–194.

6. Burleson, W., Ruffenach, C., Jensen, C., Bandaru, U.K., and Muldner, K. Game
as life --- life as game. Proceedings of the 8th International Conference on
Interaction Design and Children - IDC ’09, (2009), 272.

7. Cook, W.R. AppleScript. SIGPLAN conference on History of programming
languages (HOPL III), ACM (2007), 1-21.

8. Cypher, A. Bringing Programming to End Users. In A. Cypher, ed., Watch What I
Do: Programming by Demonstration. MIT Press, Cambridge, MA, 1993, 2-11.

9. Dey, A., Sohn, T., Streng, S., and Kodama, J. iCAP: Interactive prototyping of
context-aware applications. Pervasive Computing, (2006), 254–271.

10. Dey, A.K., Hamid, R., Beckmann, C., Li, I., and Hsu, D. a CAPpella: programming
by demonstration of context-aware applications. Proceedings of the SIGCHI
conference on Human factors in computing systems, ACM (2004), 33–40.

11. Girard, P. Bringing Programming by Demonstration to CAD Users. In Your Wish is
My Command: Programming by Example. Morgan Kaufmann, 2000, 135-162.

12. Halbert, D.C. SmallStar: Programming by Demonstration in the Desktop
Metaphor. In Watch What I Do: Programming by Demonstration. MIT Press,

Cambridge, MA, 1993, 103-124.

13. Hartmann, B., Abdulla, L., Mittal, M., and Klemmer, S.R. Authoring Sensor-based
Interactions by Demonstration with Direct Manipulation and Pattern Recognition.
Proceedings of the SIGCHI conference on Human factors in computing systems,

ACM (2007), 145–154.

 63

14. Holzinger, A. Usability Engineering Methods for Software Developers.
Communications of the ACM 48, 1, 71-74.

15. Kauhanen, M. and Biddle, R. Cognitive dimensions of a game scripting tool.
Proceedings of the 2007 conference on Future Play - Future Play ’07, (2007), 97.

16. Klemmer, S. and Landay, J. Toolkit Support for Integrating Physical and Digital
Interactions. Human-Computer Interaction 24, 3 (2009), 315-366.

17. Ko, A.J., Myers, B., Rosson, M.B., et al. The state of the art in end-user software
engineering. ACM Computing Surveys 43, 3 (2011), 1-44.

18. Kurlander, D. Chimera: Example-Based Graphical Editing. In Watch What I Do:
Programming by Demonstration. MIT Press, Cambridge, MA, 1993, 271-292.

19. Lieberman, H. Mondrian: A Teachable Graphical Editor. In Watch What I Do:
Programming by Demonstration. MIT Press, Cambridge, MA, 1993, 341-360.

20. McDaniel, R.G. and Myers, B.A. Getting more out of programming-by-
demonstration. Proceedings of the SIGCHI conference on Human factors in
computing systems the CHI is the limit - CHI ’99, (1999), 442-449.

21. Modugno, F., Corbett, A.T., and Myers, B. a. Graphical representation of
programs in a demonstrational visual shell---an empirical evaluation. ACM
Transactions on Computer-Human Interaction 4, 3 (1997), 276-308.

22. Modugno, F. and Myers, B.A. Graphical Representation and Feedback in a PBD
System. In Watch What I Do: Programming by Demonstration. MIT Press,

Cambridge, MA, 1993, 415-422.

23. Myers, B.A. Taxonomies of Visual Programming and Program Visualization.
Journal of Visual Languages & Computing 1, 1 (1990), 97–123.

24. Myers, B.A. Peridot: Creating User Interfaces by Demonstration. In Watch What I
Do: Programming by Demonstration. MIT Press, 1993, 125-154.

25. Nielsen, J. and Molich, R. Heuristic Evaluation of User Interfaces. Proceedings of
the SIGCHI conference on Human factors in computing systems: Empowering
people, ACM (1990), 249–256.

26. Nielsen, J. Ten Usability Heuristics.
http://www.useit.com/papers/heuristic/heuristic_list.html.

27. Ruvini, J.-D. and Dony, C. Learning Users’ Habits to Automate Repetitive Tasks.
In Your Wish is My Command: Programming by Example. Morgan Kaufmann,

Cambridge, MA, 2000, 271-296.

28. Teitelman, W. Toward a Programming Laboratory. International Joint Conference
on Artificial Intelligence, Bolt Beranek and Newman Inc. (1969), 1–8.

 64

29. GaLLaG Library. http://hci.asu.edu/GALLAG/Library/Documentation/files/AirFoil-
applescript.html.

30. GaLLaG Wiki. http://gallag.wikispaces.asu.edu/.

31. GaLLaG - Play Music While Exercising.
http://gallag.wikispaces.asu.edu/Play+Music+While+Exercising.

32. GaLLaG - Matching Game. http://gallag.wikispaces.asu.edu/Matching+Game.

33. Apple - iOS. http://www.apple.com/ios/.

34. GaLLaG - Treasure Hunt Game.
http://gallag.wikispaces.asu.edu/Treasure+Hunt+Game.

35. Pendaphonics. http://www.pendaphonics.com/.

36. GaLLaG - Call Contacts. http://gallag.wikispaces.asu.edu/Call+Contacts.

37. Twine. http://www.kickstarter.com/projects/supermechanical/twine-listen-to-your-
world-talk-to-the-internet.

38. SketchFlow.
http://www.microsoft.com/expression/products/sketchflow_overview.aspx.

39. X10.com - Security Cameras, X10 Home Security, Wireless Camera, Home
Automation, Electronics and More! http://www.x10.com/homepage.htm.

40. INSTEON - Wireless Home Control Solutions for Lighting, Security, HVAC, and
A/V Systems. http://www.insteon.net/.

41. Indigo: Macintosh Home Automation and Control Server.
http://www.perceptiveautomation.com/indigo/index.html.

42. Google Android. http://www.android.com/.

43. Microsoft Windows Phone. http://www.microsoft.com/windowsphone/en-
us/default.aspx.

 65

APPENDIX A

GALLAG APPLICATION XML FORMAT

 66

<?xml version="1.0" encoding="utf-8"?>
<GALLAGApps>
 <GALLAGApp name="Read" desc="Read more" enabled="true">
 <Frame type="Event" deviceID="TV" deviceType="Lamp" event="On" action="None"
param1="" param2="" param3="" param4="" />
 <Frame type="Action" deviceID="" deviceType="DoorWindow" event="None"
action="PlaySound" param1="Reminder sound" param2="reminder.mp3" param3=""
param4="" />
 <Frame type="Action" deviceID="" deviceType="DoorWindow" event="None"
action="TextToSpeech" param1="You should read instead of watching TV!" param2=""
param3="" param4="" />
 <Frame type="Event" deviceID="TV" deviceType="Lamp" event="Off" action="None"
param1="" param2="" param3="" param4="" />
 <Frame type="Action" deviceID="" deviceType="DoorWindow" event="None"
action="PlaySound" param1="Achievement sound" param2="achievement.mp3"
param3="" param4="" />
 <Frame type="Event" deviceID="A5" deviceType="Motion" event="MotionDetected"
action="None" param1="" param2="" param3="" param4="" />
 <Frame type="Action" deviceID="" deviceType="DoorWindow" event="None"
action="TurnDeviceOn" param1="Lamp" param2="Lamp" param3="" param4="" />
 <Frame type="Action" deviceID="" deviceType="DoorWindow" event="None"
action="PlayStream" param1="Paris Cafe"
param2="http://u17.jazzradio.com:80/jr_pariscafe_aacplus" param3="" param4="" />
 </GALLAGApp>
</GALLAGApps>

 67

APPENDIX B

MOBILE APPLICATION CLASSES AND ENUMERATIONS

 68

 69

 70

APPENDIX C

CDN QUESTIONNAIRE

 71

CDN Questionnaire used for usability examination.

1. Viscosity: Resistance to change.

How much effort is required to perform a single change?

2. Visibility: Ability to view components easily.

Is every part of the code simultaneously visible or is it at least possible to

juxtapose any two parts side-by-side at will? If the code is dispersed, is it at least

possible to know in what order to read it?

3. Premature Commitment: Constraints in the order of doing things.

Do users have to make decisions before they have the information they need?

4. Hidden Dependencies: Important links between entities are not visible.

Is every dependency overtly indicated in both directions? Is the indication

perceptual or only symbolic?

5. Role-Expressiveness: The purpose of an entity is readily inferred.

Can the user see how each component of the application being programmed

relates to a whole?

6. Error-Proneness: The notation invites mistakes and the system give little

protection.

Does the design of the notation induce “careless mistakes”?

7. Abstraction: Types and availability of abstraction mechanisms.

What are the minimum and maximum levels of abstraction? Can fragments be

encapsulated?

8. Closeness of Mapping: Closeness of representation to domain.

What “programming nuances” need to be learned?

 72

9. Consistency: Similar semantics are expressed in similar syntactic forms.

When some of the language has been learned, how much of the rest can be

inferred?

10. Diffuseness: Verbosity of language.

How many symbols or graphic entities are required to express a meaning?

11. Hard Mental Operations: High demand on cognitive resources.

Are there places where the user needs to resort to penciled annotation to keep

track of what’s happening?

12. Provisionality: Degree of commitment to actions or marks.

Does the system allow for prototyping to try out new ideas or provisional actions?

13. Progressive Evaluation: Work-to-date can be checked at any time.

Can a partially complete program be executed to obtain feedback on “How am I

doing”?

 73

APPENDIX D

USER STUDY CONSENT FORM

 74

Consent Form

GaLLaG: Game as Life – Life as Game

INTRODUCTION

The purposes of this form are to provide you (as a prospective research study participant)

information that may affect your decision as to whether or not to participate in this

research and to record the consent of those who agree to be involved in the study.

RESEARCHERS

Winslow Burleson, assistant professor School of Computing, Informatics, and Decision

Systems Engineering, along with other researchers (Ryan Brotman, Camilla Jensen,

Byron Lahey, Jisoo Lee, Shawn ORourke, Luis Garduno, Naomi Newman) have invited

your participation in a research study.

STUDY PURPOSE

The purpose of the research is to investigate the efficiency of interactive technology in

guiding subjects toward achieving desired goals.

DESCRIPTION OF RESEARCH STUDY

If you decide to participate, then you will join a study funded by NFS grant, and we will

ask you to initially select a goal to achieve from a panel of possibilities. Once selected, a

script will be designed to stimulate and aid the subject in achieving the particular goal.

The scriptwriter may be either the experimenter, another subject with whom you have

already been paired with, or you may write the script yourself. Script merely refers to the

actions and processes utilized by the environmental technology to aid you in

accomplishing your goal.

The technology being utilized may include a Macintosh laptop, an iPhone, iTouch, and

may also include speakers located around a house or a television capable of turning off

after a certain length of time. In addition, we will record some physiological data such as

body temperature, facial expression, and interaction patterns while you are working on

the assigned project. The sensors that are used in the study are a form of ‘wearable

computing’ just like your cellphone. They capture digital information about your location,

interactive environment, and activity patterns. These patterns will help us in creating

future scripts.

The progress of the game will be recorded and evaluated in order to assess the efficacy

of the script. The actual effectiveness of these scripts greatly varies depending upon the

scriptwriter and particular goal to be achieved.

RISKS

There are no known risks from taking part in this study, but in any research, there is

some possibility that you may be subject to risks that have not yet been identified.

BENEFITS

 75

The benefits of your participation in the research are to obtain a higher level of motivation

for achieving desired goals. In addition, you will be helping to advance the research

community’s understanding of directing motivation by means of interactive technology.

CONFIDENTIALITY

All information obtained in this study is strictly confidential. The results of this research

study may be used in reports, presentations, and publications, but the researchers will

not identify you.

WITHDRAWAL PRIVILEGE

Participation in this study is completely voluntary. It is ok for you to say no. Even if you

say yes now, you are free to say no later, and withdraw from the study at any time. Your

decision will not affect your relationship with Arizona State University and any other

institution or otherwise cause a loss of benefits to which you might otherwise be entitled.

This includes your grades as a student or employment status, treatment, care etc.

COSTS AND PAYMENTS

The researchers want your decision about participating in the study to be absolutely

voluntary. There is no payment for your participation in the study.

VOLUNTARY CONSENT

Any questions you have concerning the research study or your participation in the study,

before or after your consent, will be answered by Dr Winslow Burleson, School of

Computing, Informatics, and Decision Systems Engineering, at (480) 965-9253.

If you have questions about your rights as a subject/participant in this research, or if you

feel you have been placed at risk; you can contact the Chair of the Human Subjects

Institutional Review Board, through the ASU Office of Research Integrity and Assurance,

at (480) 965-6788.

This form explains the nature, demands, benefits and any risk of the project. By signing

this form you agree knowingly to assume any risks involved. Remember, your

participation is voluntary. You may choose not to participate or to withdraw your consent

and discontinue participation at any time without penalty or loss of benefit. In signing this

consent form, you are not waiving any legal claims, rights, or remedies. A copy of this

consent form will be offered to you.

VIDEO RECORDING CONSENT

This study involves the video recording of your performance. Parts of the recording of the

session will be transcribed to written form, without identifying the speakers. The recording

will be erased when all data from it have been reviewed and coded.

(Please check the appropriate blank below.)

 I DO NOT agree to be video recorded.

 I DO agree to be video recorded.

 76

Your signature below indicates that you consent to participate in the above study.

___________________________ _________________________ _______

Subject's Signature Printed Name Date

INVESTIGATOR’S STATEMENT

"I certify that I have explained to the above individual the nature and purpose, the

potential benefits and possible risks associated with participation in this research study,

have answered any questions that have been raised, and have witnessed the above

signature. These elements of Informed Consent conform to the Assurance given by

Arizona State University to the Office for Human Research Protections to protect the

rights of human subjects. I have provided (offered) the subject/participant a copy of this

signed consent document."

_________________________________ _____________

Signature of Investigator Date

 77

APPENDIX E

IRB APPROVAL

 78

