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ABSTRACT

This dissertation is to address product design optiminaticluding reliability-
based design optimization (RBDO) and robust design witktepiic uncertainty. It

is divided into four major components as outlined below.

Firstly, a comprehensive study of uncertainties is perganmn which sources
of uncertainty are listed, categorized and the impacts iamigsed. Epistemic un-
certainty is of interest, which is due to lack of knowledgel @an be reduced by
taking more observations. In particular, the strategiesdidress epistemic uncer-

tainties due to implicit constraint function are discussed

Secondly, a sequential sampling strategy to improve RBD@eumplicit
constraint function is developed. In modern engineerirgijgte an RBDO task is
often performed by a computer simulation program, whichlzatreated as a black
box, as its analytical function is implicit. An efficient sptimg strategy on learning
the probabilistic constraint function under the designiroation framework is
presented. The method is a sequential experimentatiomarthe approximate
most probable point (MPP) at each step of optimization geck is compared with
the methods of MPP-based sampling, lifted surrogate fancand non-sequential

random sampling.

Thirdly, a particle splitting-based reliability analysipproach is developed
in design optimization. In reliability analysis, traditial simulation methods such
as Monte Carlo simulation may provide accurate resultsai®ibften accompanied
with high computational cost. To increase the efficiencytiple splitting is inte-
grated into RBDO. Itis an improvement of subset simulatidthwultiple particles
to enhance the diversity and stability of simulation sarmpléhis method is further

extended to address problems with multiple probabilistitstraints and compared



with the MPP-based methods.

Finally, a reliability-based robust design optimizati®@BRDO) framework
is provided to integrate the consideration of design réltgland design robustness
simultaneously. The quality loss objective in robust desicpnsidered together
with the production cost in RBDO, are used formulate a nfijiective optimiza-
tion problem. With the epistemic uncertainty from implipgrformance function,
the sequential sampling strategy is extended to RBRDO, acmiréined meta-
model is proposed to tackle both controllable variablesiarwbntrollable variables.

The solution is a Pareto frontier, compared with a singléagitsolution in RBDO.



ACKNOWLEDGEMENTS

As | come to the accomplishment of my four-year doctoral wtindAri-
zona State University, | would like to give my sincere grad# to faculties, friends
and my family members. Without their support and help, mytai@ study and

dissertation would not have been possible.

| especially would like to thank my advisor Dr. Rong Pan fos patient
guidance and assistance throughout my four-year doctudy.sDr. Pan not only
gave me mentoring and coaching during the research andtdisse writing pro-
cess, but also encouraged me to keep a good attitude to fficelties and chal-

lenges in future.

| would like to thank other committee members Drs. MuhongrighaXi-
aoping Du and Douglas C. Montgomery. To Dr. Zhang, | apptedier help in
my optimization algorithm improvement. To Dr. Du, thanks fos guidance in
my research direction especially in my third journal papis. Dr. Montgomery,
thanks for his suggestions in the experiment selection andetconstruction in

my dissertation.

My doctoral study would not have been the same without my s sup-
port. | appreciate the help of my lab-mates Jinsuk Lee, Ermide, Luis Mejia
Sanchez in my research and job hunting guidance. | woulddikkank my friend
Zhun Han and Liangjie Xue in learning the Latex syntax usefdtmat my disser-
tation. | also would like to thank my friends Mengqi Hu, JuariCheng, Mingjun
Xia, Tao Yang, Houtao Deng, Ning Wang, Hairong Xie, Min Zhafipeng Xu,
Huying Liu and Lizhi Wang. Thanks for their time, support gratience over the
years. | would like to express my gratitude to the faculty atadf of the Industrial

Engineering department for their assistance during myssoaf study.



Finally, I wish to acknowledge all of my friends and family mbers. Thanks
for their encouragement and support through my four-yearsmas doctoral study.
| wish to especially thank my parents, who provided me newveling love and

always stood behind me no matter what happened.



TABLE OF CONTENTS

Page
LISTOFTABLES . . . . . . . . iX
LISTOFFIGURES . . . . . . . . . e X
CHAPTER
1 INTRODUCTION . . . . . . e e e e 1
1.1 Background . . . .. .. .. ... 1
1.2 Motivation . . . . . . . .. 5

1.3
1.4

Deterministic Design Optimization vs. Reliability-Bas@dsign

Optimization . . . .. .. .. ... .. ... ... ... 5
Aleatory Uncertainty vs. Epistemic Uncertainty . . . . . .. .. 5
Metamodel-Based Approach & Simulation-Based Approach ... .6
Reliability & Robustness . . . . . .. ... ... ... ....... 7
Dissertation Organization . . . . . . .. .. ... ... ....... 7
Literature Review . . . . . . . . .. ... ... 9
RBDO Approaches . . . .. ... .. .. ... ... ... ..... 9
Reliability Analysis Approaches . . . . . . .. ... ... ..... 10
Reliability and Robustness Integration . . . . ... ... ... .. 11

2 EPISTEMIC UNCERTAINTY IN PRODUCT DESIGN OPTIMIZATION 12

2.1 Introduction . . . . . . . .. 12
2.2 Reliability-Based Design Optimization . . . . .. .. ... ... 12
2.3 Epistemic UncertaintyinRBDO . . . . ... ... .. ....... 14
Sources of Uncertainties . . . . . . . ... ... ... L. 14
Categorizing Epistemic Uncertainty . . . . .. .. ... ...... 16
Impacts of Epistemic UncertaintyonRBDO . . . . ... ... ... 16
2.4 Epistemic Uncertainty Strategy inRBDO . . . . ... ... ... 19



CHAPTER Page

Implicit Constraint Function . . . .. .. ... ........... 19
Unknown Random Variable Distribution . . . . . . . ... ... .. 21
25 |-BeamExample . .. .. .. ... ... . ... .. ... 22
Effects of Implicit Constraint Functions . . . . .. ... ... .. 24
Effects of Unknown Random Variable Distributions . . . . . . . . 25
26 Conclusion . . . ... . 25

3 ASEQUENTIAL SAMPLING STRATEGY TO IMPROVE RELIABILITY-
BASED DESIGN OPTIMIZATION WITH IMPLICIT CONSTRAINT
FUNCTIONS. . . . . . e 27
3.1 Introduction . . . . . . . ... 27
3.2 Reliability AnalysisinRBDO . . . . . ... ... .......... 29

First-Order Reliability Analysisin RIAand PMA . . . . ... .. 29
Sequential Optimization and Reliability Analysis (SORA) . . . . 31
Metamodeling Techniques and Comparisons . . . . . . .. .. ... 32
3.3 Sequential Expected Improvement Sampling . . . . . ... ...34
Initial Latin Hypercube Sampling . . . . . .. .. ... ... .... 34
Expected Improvement Criterion . . . . . .. ... ... ...... 34

RBDO Solution Using Sequential ERI-Based Sampling Stsateg 36

OtherMethods . . . . . . .. . ... ... . .. ... ... . ..., 42
3.4 |-Beam Performance Comparison. . . . . . .. .. .. ... .... 43
Solution with the True Constraint Function . . . . . . . .. .. .. 43
Solution with the Sequential ERI-Based Sampling Strategy. .. . 44
Solutions by Other Methods . . . . . . ... ... ... ...... 47

Efficiency and Accuracy Comparison Between Different Meho. 51

Vi



CHAPTER Page

3.5 Applicationto A Thin Walled BoxBeam . . . . . ... .. .. ... 53
3.6 Conclusionand Future Work . . . . ... ... ... ........ 56
4 DESIGN OPTIMIZATION WITH PARTICLE SPLITTING-BASED RE-

LIABILITY ANALYSIS . . . . . . . . 60
4.1 Introduction . . . . . . . .. ... 60
4.2 Simulation-Based Reliability Analysis . . . .. .. .. .. ... 61
4.3 SORA with Patrticle Splitting-Based Reliability Anaigs . . . . . . 64
Particle Splitting . . . . . . . . .. ... 65
SORA with Particle Splitting-Based Reliability Assessmen . . . 69
Extension to RBDO with Multiple Probabilistic Constraints . . . 73
4.4 Examples . . . . ... 76
[-Beam Example . . .. .. ... .. ... ... 76
An Example with Multiple Constraints . . . . . . . . ... ... .. 78
4.5 Conclusionand Future Work . . . . . .. ... .. ... ...... 82

5 RELIABILITY-BASED ROBUST DESIGN OPTIMIZATION UNDER

IMPLICIT PERFORMANCE FUNCTIONS . . . . . . ... ... ... 84

5.1 Introduction . . . . . . . . . ... 84

5.2 Reliability-Based Robust Design Optimization. . . . . ... .. 88
RBRDO Formulation . . . . . ... ... ... ... ........ 89

Sequential Optimization and Reliability Analysis (SORA)RBRDO 90
5.3 Sequential Sampling Strategy in RBRDO Under Implicitféte

mance Function . . . . . . ... 90
Hybrid Design and Combined Metamodel in RBRDO . . . . . . .. 91
Expected Improvement Criterion . . . . . .. .. ... ....... 91

Vil



CHAPTER Page

RBRDO Solution by Sequential EI-Based Sampling Strategy. .. . 92

54 |-BeamExample . .. ... ... ... ... L 96
5.5 Conclusionand FutureWork . . ... ... .. ... ... ..., 99
6 CONCLUSION AND FUTURE RESEARCH. . . . .. ... ... .. 101
6.1 Conclusions . . . . . . . ... 101
6.2 FutureWork . . . . . . . . ... 102
REFERENCES. . . . . . . . . . 104

viii



LIST OF TABLES

Table Page

1  Approaches for Unknown Distribution . . . . . . ... ... ... ... 21
2  Epistemic Uncertainty Impacton|-BeamCase . . . . . ... ... ... 24
3  Results of SORA for I-Beam with True Constraint . . . . . . ... ... 43
4 Initial Samples by Latin Hypercube . . . . .. .. ... ... .... 6 4

5 Results of SORA for I-Beam with Sequential ERI Sampling Strategy . . 46
6  Additional Samples by Sequential ERI Sampling Strategy. .... . . . 48

7  Additional Samples by Uniform Sampling . . . . . ... ... ... .. 51
8  Results Comparison Between Methods inI-Beam Case . . . .. .. .. 52
9 Efficiency in Thin Walled Box BeamDemo . . . ... ... ...... 56
10 Initial Samples by Latin Hypercube . . . . .. .. ... ... ..... 57
11 Results of Sequential ERI Sampling of the Thin Walled Bea® . . . 59

12 Sample Size Requirement for Different Number of Subsets Whe0.1 68

13 Solution Steps by the Particle Splitting-Based Approach . . . . . . 77

14 |-Beam Accuracy Comparison . . . . . . . . . ..o 78
15 Results by the Particle Splitting-Based Approach . . . ...... . . . 80

16 Comparing Accuracy of the Solutions by Different Methods. . . . . 82

17 Initial Samples by Cross Array Design . . . . . . . . . .. ... ... 98

18 Pareto Solutions forI-BeamDesign . . . . . ... ... ... ... 99



LIST OF FIGURES

Figure Page

1 Research overallvision . . . . ... ... ... ... .. ........ 8
2 Implicit constraint function infeasible impact . . . . . ... ... ... 17
3 Implicit constraint function conservative impact . . . . . .. ... ... 18
4 Unknown random variable distributionimpact . . . . . . .. ... ... 19
5 I-beamcasestudy . . .. .. ... ... ... 23
6 Implicit constraint function impacton l-beam . . . ... ... ... .. 24
7  Unknown distributionimpacton l-beam . . . ... ... ... ..... 25
8  Max ERI sample point in design space. The initial samples are marked

10
11
12
13
14
15
16
17
18
19
20
21

by “+”, additional samples are marked by “0”, a@},;, is the latest

additional sample selected by the ERI criterion. . . . .. ... ... .. 37
Algorithmicflowchart . . . . . . . .. .. .. . o 38
Max ERI sample pointinresponsespace . . . . . .. .. .. .... 41.
3DshapeofGfunction . .. ... ... ... .. .. .......... 44
Feasible region with true G function . . . ... ... ... ... ... 45
RBDO feasible region o by sequential ERI sampling . . . . . . . .. 47
RBDO feasible regiofs function by MPP-based sampling . . . . . . . 49
RBDO feasible region by lifting response function. . . . . . . ... .. 50
RBDO feasible region o by non-sequential random sampling . . . . 51
Athin walled box beamdemo . . . . ... ... ... .. .. ... .. 53
Preprocess model in ANSYS . . . . ... ... .. ... ........ 54
Deformedshape . . . . . . . . . . . ... ... 55
Contour plotsofVon-Mises . . . . . . . .. ... ... ... ... .. 55

Sample size requirement for different coefficient of variation and num-

berofsubsets. . . . . . . ... 67



Chapter

22
23
24
25
26
27
28
29

Page
Particle splitting-based reliability assessment 70
Particle splittingsamples . . . . . . .. ... .. ... ... ..... 72
TPP location by particle splitting . . . . . .. . ... ... ... .. 73
Particle splitting samples in multiple constraints . .. ... .. .. .. 76
Particle splitting optimal solution . . . . . . . ... .. ... ..... 81
Noise variable impacts on performance function . . . . . ...... . . 88
RBRDO algorithm . . . . . . .. ... .. .. 93
RBRDO Pareto frontier . . . . . . . . . . .. ... ... 100

Xi



CHAPTER 1

INTRODUCTION
1.1 Background

Product design optimization is concerned with efficient effiective methods lead-
ing to new products. Uncertainty always exists during thecess of design and
production and may come from various sources, such as nmgdatiproximation,

imperfect manufacturing, etc. Taking from an epistemalabperspective, uncer-
tainties to be considered at the product design stage caatbgorized into objec-

tive and subjective ones ([9, 74, 41]).

Objective uncertainties are also called aleatory unagrés (AU). The word
aleatory derives from the Lati@ea which means the rolling of dice. Aleatory un-
certainty exists because of natural variation in the sygienformance. Aleatory
uncertainties can be quantified but cannot be reduced, bec¢hay are the intrin-
sic randomness of a phenomenon. Examples are environnpemgaheter such as
humidity, temperature and wind load, or material propegsameters such as stiff-

ness, yielding strength and conductivity.

Subjective uncertainties are also called epistemic uaiceigs (EU). The
word epistemic derives from the Greeki atnun, which means knowledge. Epis-
temic uncertainties exist because of lack of knowledge,thay are reducible to
aleatory uncertainty by understanding the design or byimibgamore data. For ex-
ample, the random variable’s distribution is unknown orgiistems’ performance

function is unknown or implicit due to lack of knowledge.

For the epistemic uncertainty with unknown random varigldestribution,
two typical methods are employed. One method is possilalig evidence the-

ory. A comparison of probability and possibility of designder uncertainty was



proposed in [63]; Reliability estimation based on posgibtheory was presented
in [61]; Du proposed a possibility-based design optim@atfPBDO) instead of
RBDO due to epistemic uncertainty in [20]. Zhang presentexiikad variable (ran-
dom and fuzzy variables) multidisciplinary design optiatian with the framework
of SORA in [98]. The other method is statistical inferenceraach, in which fi-
nite samples obtained from experiments are used to estiméte®wn random vari-
ables’s or performance function’s distribution by statastinference (e.g. Bayesian
inference). Strategies are developed to take more effiaigheffective samples to
update the distribution estimate based on Bayesian infere\ beta conjugate
Bayesian inference was employed in [30, 92] to deal with RBEIth incomplete
information of design variables; A Bayesian RBDO method borad with eigen-
vector dimension reduction (EDR) was proposed in [93]; Agitrg dimension re-
duction method was employed to promote efficient implenteriaf the reliability

analysis in [16].

For the epistemic uncertainty with implicit system’s penfi@nce function,
systems’ performance function is evaluated by computeratsxiich as Finite Ele-
ment Model (FEM) ([72, 67]); therefore, the true analytipalformance functions
are implicit. Metamodels, which are constructed by compexperiments, are used
to approximate this function. The two most common types ofam@dels are re-
sponse surface model (RSM) and Kriging model. A sequerdialding RSM was
proposed by [99, 89]. An RSM with prediction interval esttioa was proposed by
[40]. An RBDO using moment method and a Kriging metamodel prasided by
[39], in which a Kriging metamodel that can carry out rellapianalysis based on
the moment method was presented. Also a comparative styzbhafomial model,
Kriging model and radial basis function can be found in [8T{yhich the accuracy

of Kriging model was compared with polynomial model.

2



In order to design and manufacture high quality productsdpet design
optimization under uncertainty has been widely discusserecent years, tech-
niques are employed to control and minimize impact of uadety. Robustness
and reliability are two important aspects of design optatian based on different

design scenarios ([44]).

Robust design, firstly proposed by Taguchi, is a method wfachses on
minimizing performance variation without eliminating tb@urces of variation. Ro-
bust design is actually from the point of view of quality emggrs, who concern
with the product performance variation for a given perfoncgtarget. Taguchi
provides a three-stage robust design methodology: sysiesign, parameter de-
sign and tolerance design. The difference between robsggymeptimization and
ordinary optimization lies in the consideration for penf@nce variations due to
uncontrolled noise factors. In actual product design, twal& of variables or pa-
rameters exist: control factoxswhich are controllable and can be tuned for optimal
system performance; noise factdrswhich are uncontrollable, such as production
tolerances (e.g., length variation) and environmentatitams (e.g. humidity and
temperature). Signal-to-noise ratio (SNR), one importaeasure of quality loss,

is proposed by Taguchi as design objective in robust design:
SNR= —10l0g10(MSD) (1.1)

where maximunSNRIs desired, and1SD= %z};l(yi (x,&) — yt)?, which means
the mean square deviatioi(X, &) is the quality value of a single sample apd
is the desired target value. MSD can have other definitioosrding to differ-
ent objectives (e.g. close to zero or as large as possigB)Ris optimized by
design of experiments (DOE) in Taguchi method. Controgidrameters are

systematically changed based on a predefined lattice (amn&y). At each design

3



pointx, noise factor€ are also changed according to an outer array. Thus a set of
(Vi,...,Yk) W.r.tx is derived anSNRXx) can be calculated. Finally we can find the

x which produces the maximuBNRbased on statistical data analysis.

Reliability-based design is another aspect of design apéition from the
viewpoint of mechanical engineers. In structure desigis dritical to maintain
the design feasibility (or reliability). Then the paradigfhRBDO is proposed
for design under uncertainty. RBDO typically considers iheertainties in some
design variables and uses a probabilistic constraint inmtd guarantee a system’s

reliability (i.e., performance or safety requirement). éngric formulation is given

below.
Minimize: f(d, ux, Up) (1.2)
Subject to:Prob[Gi(d,x,p) >0 >R, i=12,....m (1.3)
d- <d<d¥,py < px < pg,pb < pp < pp (1.4)

The objective function can be viewed as a production costtian of the system.
Note that the objective function above is the first-orderldagxpansion approx-
imation of the mean cost functiof[f(d,x,p)] due to the randomness &f and

P. This approximation is generally acceptable for linear alo$e-to-linear cost
function. However, we are more interested in the proballonstraint function,
which is the key difference of RBDO from other engineeringimjzations. The
function G;j(d, x,p) > 0 is the system’s performance or safety requirement, where
Gi > 0 denotes safe or successful regiGn< 0 denotes failure region, arigl =0

is defined as limit state surface which is the boundary betvgeecess and fail-
ure. The valueR; is the target probability of the constraint function. Thtlgs

probabilistic constraint guarantees the system’s rditgbi



1.2 Motivation

Deterministic Design Optimization vs. Reliability-Badeelsign Optimization

Optimization techniques have been extensively employegraniuct design and
manufacturing in order to decrease cost and augment qualiagitionally, prod-
uct design is formulated as a deterministic design optitidmrawhich assumes that
there is no model or input variable uncertainty. In produggign, however, there
exist uncertainties that can affect system performanceresut in output varia-
tion. The optimal designs obtained from deterministic maation often reach the
limit state surface of design constraints, without toleeregion for uncertainties.
Hence the deterministic optimal designs cannot satisfsitamts with small de-
viations. In other words, the optimal solutions are unteééaor too sensitive to
variation in reality. To achieve reliable designs, RBDOrigpdoyed in the presence
of uncertainties. Probabilistic constraints are used teser stochastic nature of
variables and parameters, and a mean performance measptariged subject to
probabilistic constraints. However, efficient and effeetprobabilistic constraints
evaluation is the major challenge in RBDO. It is necessadiauable, therefore,

to develop strategies to handle the problem.

Aleatory Uncertainty vs. Epistemic Uncertainty

Traditional probabilistic analysis approaches are vefgotive to handle product
and system’s inherent randomness, or we call aleatory tancees when sufficient
data is available. In other words, enough data about theuptant system is known
to construct exact performance functions or constrainttions, and quantify un-

certainties with probability distributions.



However, in many cases sufficient information assumptiamisrealistic;
insufficient data prevents correct probability distribatinference and causes er-
rors in performance function construction. For many engjiimg tasks, system’s
performance or safety criterion is evaluated by computedeat®(e.g., finite ele-
ment model). Metamodels are constructed based on the cengyieriment sam-
ple points. Ideally, the metamodel is perfectly the samehagtrue model if we
do experiments to exhaust the sample space. However, ityreainputer experi-
ments could be very expensive and time consuming, so takotgpésample points
is unaffordable. Therefore, the true probability disttibo or analytical constraint
function is unknown or implicit due to lack of knowledge oligpmic uncertainty,
and the solutions derived without considering epistemimeuainty are unreliable.

Our research focuses on the RBDO with epistemic uncertainty

Metamodel-Based Approaéh Simulation-Based Approach

Under epistemic uncertainty with implicit constraint orfjoemance functions, two
types of approach can be used. The first one is the metamadetilapproach. In
this approach, a design of experiment is implemented torgéma few initial sam-
ples so that the metamodel is constructed to replace thécitgunstraint function.

In order to reduce the metamodel prediction error betweetammadel and true
model, sequential sampling strategies are required tatsatklitional samples to
update the metamodel and improve the RBDO solution. Thisosmh takes very
few samples and is efficient for the problem in which the imipfunction evalua-

tion is very expensive.

The second one is the simulation-based approach. In threagpthe im-
plicit function is simulated as a black-box. The probakitisonstraints evaluation

is conducted by simulation directly. Traditional Monte [@asimulation can reach



high accurate results, but are often accompanied with heghpaitational cost. In-
stead, the importance simulation such as patrticle sgitdnntegrated in the prob-
abilistic constraints evaluation process. Thus the effigredramatically increases
without losing accuracy. This approach provides accuraligtisns and is useful

when the implicit function evaluation is affordable.

Reliability & Robustness

Although reliability and robustness are different aspexftslesign optimization
from mechanical engineering and quality engineering, eetyely, they are both
important attributes in design optimization. RBDO prowdbe optimum designs
in the presence of uncertainty, in which probabilistic wisttions are employed
to describe the stochastic nature of design variables araingters, and standard
deviations are typically assumed to be constant. Robugjreswidely used to im-
prove product quality. It minimizes performance variatigithout eliminating the
sources of variation. Many methods using mean and standsiidtobn of perfor-
mance have been proposed in [22] to estimate product quadisy It is necessary,
therefore, to improve robustness and reliability simwdtausly. A multi-objective
optimization problem is established to integrate robusgrend reliability, where
the quality loss due to performance variation and prodactiost are simultane-

ously minimized, subject to probabilistic constraints.
1.3 Dissertation Organization

In this research, we develop a general framework to evathatenpact of epistemic
uncertainty to design optimization including RBDO and rsfdesign. The overall
vision of research is described in Figure 1. The work of tipleases are shown as

follows:

Phase t A metamodel-based approach with sequential samplingegiya
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is developed to improve RBDO under epistemic uncertaintynglicit constraint
functions. An initial Kriging metamodel is constructed &pface the true model in
RBDO, then a sequential sampling strategy is developeddsanhples around the

approximate MPP and update metamodel. Thus the RBDO soligtimproved.

Phase II: A simulation-based approach is developed in reliabilitglgsis
in RBDO. Traditional simulation methods such as Monte Caifaulation may
provide accurate results in reliability analysis in RBD@t they often lead to high
computational cost. In order to tackle the efficiency probla particle splitting

approach is introduced and integrated into reliabilitylgsia.

Phase IlI: A framework integrating RBDO and robust design under epis-
temic uncertainty of implicit performance functions is posed. The sequential
sampling strategy in Phase | is extended to a multi-objeciptimization problem.

In order to address impacts of noise variables, a hybridgddsiimplemented and

a combined Kriging metamodel is constructed.

1.4 Literature Review

RBDO Approaches

Solving an RBDO problem demands two steps — the design ggtioin loop and
the reliability assessment loop, and two loops are nesteanyMechniques have
been developed and can be broadly classified into nestededlmap methods,
decoupled-loop methods, and single-loop methods. Thedekstuble-loop meth-
ods are the traditional approaches which require large atetipnal work. The
decoupled-loop methods are based on the elements of thergedwptimization.
A sequential optimization and reliability assessment (B{iRethod was presented
in [23], which was also employed to improve the efficiency adlbilistic struc-

tural optimization by [52]. A single-loop approach for RBD@as presented in



[78, 48, 76].

Reliability Analysis Approaches

SORA is employed in this research because of its high acguaad efficiency.
We focus on the evaluation of probabilistic constraints.c@ding to [44], the
methods of evaluating probabilistic constraints can bestied into five categories

as follows:

1. Simulation-based methedMonte Carlo simulation (MSC) ([22]) is a basic
method to evaluate probabilistic feasibility. Howeveg tomputation cost
is high especially for high target reliability (approacyih.0). Then impor-
tance sampling is employed to improve the sampling effigieAcsampling
method around the MPP was provided in [22]; The importanogpdiag in
reduced region was developed in [33, 46]; Importance samgmas also em-

ployed to improve sampling efficiency and estimation accyra [58, 42].

2. Local expansion-based methedraylor series method ([55, 31]) belongs to
this category, which could not be efficient dealing with hdiimension input
and nonlinear performance functions. Functional expanbesed method

such as the polynomial chaos expansion ([18]) is in thisgmaieas well.

3. MPP-based method This method is typically based on first-order reliability
method (FORM) ([15, 57]). Two alternative ways can be usedvauate
probabilistic constraints: The direct reliability anakysethod is reliability
index approach (RIA) ([90, 88, 91]) in which the first-ordefety reliabil-
ity index ([28, 97]) and MPP are obtained using FORM by foratimg an
optimization problem. Since the convergence efficiencyusih traditional

RIA, a modified RIA ([50]) revises the reliability index deffilon and im-

10



proves the efficiency. Also, a new approach for RIA based animrmim error
point (MEP) ([51]) was presented to minimize the error prcatliby approx-
imating performance functions. Another indirect religibnalysis method
is performance measure approach (PMA) ([90, 21]), which aserrobust
and effective than RIA. An integrated framework using PMAsvaovided

by [25] to assess probabilistic constraints.

4. Response surface approximate methoBSM builds metamodels based on
the limited number of samples to replace the true systenoresp[62]. The
accuracy of this method depends on the accuracy of RSM mddekffi-
cient global reliability analysis (EGRA) was proposed iQ][111], [12] to
effectively add samples to update metamodels. A sequesatmapling strat-
egy to improve reliability-based optimization under inggliconstraints was

proposed in [100].

5. Numerical integration based methedDimension reduction (DR) ([96, 71,
95, 94, 43]) is one common method of this category, whichglegh high

dimension numerical integration.

Reliability and Robustness Integration

Multi-objective optimization is one approach to integnagkability and robustness.
Li presented a robust multi-objective genetic algorithii@&GA) in [47], in which

a robustness index was proposed to measure robustnessel®tosrprovided a
probabilistic multi-objective optimization problem inQh where variation was ex-
pressed in terms of a percentile difference. Another ampraa [2] is to use a

weighted sum single objective optimization to improveatiiity and robustness.

11



CHAPTER 2

EPISTEMIC UNCERTAINTY IN PRODUCT DESIGN OPTIMIZATION
2.1 Introduction

RBDO considers various types of uncertainties during tloegss of product de-
sign and production. As mentioned in Chapter 1, uncer&srit be considered at a
product’s design stage can be categorized into aleatosrtaicties (AU) and epis-
temic uncertainties (EU) [41]. This chapter focuses oniimgect of EU on RBDO.
Also uncertainty sources of EU are categorized and methselsianmarized to

address two important types of EU in RBDO.

To deal with the epistemic uncertainty of unknown distnbas of design
variables, two methods are typically employed as mentionefection 1.1. One
method is the possibility and evidence theory. The othehotkis statistical in-
ference approach. For the epistemic uncertainty of unknawmplicit product’s
performance function. RSM and Kriging model are two commarsied Metamod-

els to approximate true functions.

The remaining chapter is organized as follows: Section @/iews basic
concept and formulation of RBDO. Section 2.3 proposes theenainty sources
of EU and assesses their impacts on RBDO. Section 2.4 pseseveral effective
strategies for tackling the RBDO problem with EU. Sectidh @.ovides an I-beam

case study to illustrate the effect of EU on RBDO.
2.2 Reliability-Based Design Optimization

In product design under uncertainty, RBDO is employed tontaén design feasi-
bility, which is shown in Formulation 1.2 to 1.4. The uncartees as represented
by random variables and probabilistic constraints aretatgaincertainties. In re-

ality, however, epistemic uncertainties always exist @uat¢k of knowledge of the
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variables and processes of the system. They could be rethyagwtierstanding the
design or by obtaining more relevant data. The RBDO fornmutatan be rewritten

in different form according to the type of epistemic uncertta

For the epistemic uncertainty of unknown random variabdiribution,

the RBDO formulation becomes:

Minimize: f(d, ux, ty, Up) (2.1)
Subject to:P {P«[Gi(d,x,p) >0 >R} >1—a;, i=12,...,m (2.2)
d-<d<d’uf <px <pd py <py <@ ps <pp<ps  (2.3)

wherex denotes the vector of aleatory random variables with cotaphdormation
and their distribution are known; the vecipdenotes the vector of epistemic ran-
dom variables with incomplete information and their disiition or parameters are
estimate based on limited samples. Thus a double-loop biigdter constraint is
derived, in which the inner loop is due to aleatory variabknd the outer loop is
due to epistemic variable The outer loop demands that the confidence level of the
design satisfying the reliability constraint for the givaformation of the epistemic

variable is at leastl — o;)%.

For the epistemic uncertainty of implicit constraint funat, the RBDO for-

mulation becomes:

Minimize: f(d, ux, Up) (2.4)
Subject toPs{P[Gi(d,x,p) > 0| >R} >1—aj, i=12....m (2.5)
d- <d<d¥,pf < px < pY pb < pp < pp (2.6)

whereG; is a metamodel of system performance function, which is ttoated

based on the results of computer experiments, and it is use@groximate the
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constraint function. Therefore a double-loop probabdisbnstraint is obtained, in
which the inner loop is due to aleatory uncertainty and dotgp is due to epistemic

uncertainty of modeling error.

Solving an RBDO problem requires two loops - the optimizatimop and
the reliability assessment loop. The nested loops probtardde computationally
intensive. In particular, the latter loop involves rarer@@obability evaluation. To
have a balanced trade-off between efficiency and accuraayy mpproaches such
as the double-loop methods, decoupled-loop methods agtedwop methods are
developed and applied. In this chapter we choose the SORAauethich is a
decoupled-loop method. Our focus is to evaluate the imgd€toon RBDO using
the SORA method.

2.3 Epistemic Uncertainty in RBDO

Sources of Uncertainties

Engineers have to face uncertainties from different saudeging the product de-
sign and manufacturing process. A natural distinction ketwthese AU and EU
does not always exist. Perhaps it is just a matter of time taiokenough infor-
mation about missing variables and learn model formulationsuch a world, if

uncertainty exists, it will only be aleatory.

In the context of the problem mentioned above, uncertaiotyces can be

identified as follows [41, 9]:

1. Uncertainty from material property and operating conditsochange- This
is the uncertainty inherent in material property, operagavironment, and it
can be categorized to aleatory uncertainty. Examples aterialgproperties

drift, operating temperature, pressure, humidity, etceyltan be expressed
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by random parametqy in objective or constraint function. However, when
these uncertainties cannot be fully characterized duedi dd data, they

become epistemic.

. Imprecise productior The design parameter in production and manufactur-
ing can only be achieved to a certain degree of accuracygahecision ma-
chinery naturally leads to high manufacturing expense. design engineer,
these manufacturing errors are often unknown; thus thig &fruncertainty
belongs to epistemic uncertainty. It is typically repreasenby the pertur-
bations of the design variable i.e. f = f(x+ d,p) andG = G(x+ J,p).
Note that if the manufacturing errors are adequately studrel modeled in
the design process, they will become aleatory uncertai@tsesome random

parameters.

. Uncertainties in modeling and measurementhis type of uncertainty in-
cludes modeling errors and measurement errors, which gelanepistemic
uncertainty. Modeling errors result from employing emgatimodel instead
of the true model. Measurement errors may include the emerdved in

indirect measurement. This type of uncertainty is expibgethe approxi-

mated functionf (x, p) andG(x, p).

. Uncertainty from computational errors, numerical apprm&tions or trunca-
tions— One example is the computational error in a finite elemealyars of
load effects in a high nonlinear structure [41]. Anotherrapée is the mesh

size and convergence stopping criterion settings. Theglasgory in nature.

. Uncertainty from human activities and decisioadtHuman errors, such as
unintentional errors in design, modeling and operatioresirdnerent in nature

and can be categorized as aleatory uncertainty.
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Categorizing Epistemic Uncertainty

Epistemic uncertainty typically arises from an absencafoirmation or data, which
causes vagueness in parameter definition, simplificatidrndealization in system
modeling, as well as subjection in numerical implementatidbhree categories of

epistemic are included in [32] as follows:

1. Lack of knowledge or vaguenessg. unknown random variable’s distribu-
tion type and distribution parameters due to sparse or iogEenformation

(i.e. sparse point data or interval data) regarding to ststotquantity.

2. Errors or defects in modelinge.g. systems’ performance function is implicit
or can only capture part of the real system. It includes tlealidation or
simplification due to a linearization of the model equationthe assumption

of linear model behavior, etc.

3. Subjectivity in implementatiore.g. the selection of different methods of nu-
merical evaluation by using different finite element satvand mesh refine-

ment, expert judgment about an uncertain parameter, etc.

Impacts of Epistemic Uncertainty on RBDO

In this section, we mainly discuss the first two types of epist uncertainty and

their impacts on RBDO.

Probabilistic constraint evaluation is the critical pieneRBDO. By the
SORA decoupled-loop method, once an optimal solugiors derived from the
optimization loop, the corresponding MPP [33] is calculladéed evaluated in the
reliability assessment loop. If MPP is feasiblejs the optimal solution; if MPP

is infeasible, it enters the next iteration in SORA. Howetlee derived MPP could
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Figure 2.Implicit constraint function infeasible impact

not be accurate enough under epistemic uncertainty. The&ppated MPP could

be either infeasible or too conservative.
(1) Implicit constraint function

Suppose the analytical performance function G unavaildhlé it can be
evaluated by a computer model. Then samples are taken fromputer experi-
ments and G is replaced by a metamo@elAccording to RIA in reliability anal-
ysis, MPP is the point which locates on the limit state sw@f&with the smallest
distance tou. Since G is replaced by metamod&| true MPP is replaced by ap-
proximated MPP. Therefore epistemic uncertainty of implonstraint function

will lead to either infeasible or conservative optimal saino.

In Fig. 2, the approximated MPP leads to a reliability in(ﬁaxzvhich is
evaluated to be greater thffarget Thus the SORA algorithm stops and currgnt

is selected as the optimal solution. However, the truelviiip index is proved to
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less tharBiarges Which means the currept is actually an infeasible solution.

In Fig. 3, current approximated MPP leads to a reliabilitgie'nﬁ which
is evaluated to be less thgilrger Thus SORA enters next iteration to resolve
the optimization loop and obtain a more conservative smtutiActually the true
reIiabiIityB is proved to be greater thgirges and current optimal solutiop is a
feasible optimal solution. In this case, epistemic undetydeads to a conservative

solution.
(2) Unknown random variable distribution

Suppose we can assume the design varialftdlows normal distribution
with unknown parametes. Then a set of samples are taken to derive a parameter

estimated. Based on the first-order Taylor expansiongan be derived.

According to the definition of reliability indeg = g—g In reliability index
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analysis method, the safety constraint is satisfig ¥ Barget However, under
unknown variable distribution@ = g—g may not be accurate enough. It could be

either infeasible or conservative.

As shown in Fig. 4, an optimal solutiqn is derived with the reliability in-
dex = Barget Thus it is a feasible RBDO optimal solution. However, sitive
estimated is less than true parameter the true is smaller tharﬁ. Thus the opti-
mal solution derived here is actually infeasible. On theottand, if the estimate
is greater than true parametertrue3 is greater thalﬁf. Thus the optimal solution

derived is too conservative comparing with the true optisadition.

2.4 Epistemic Uncertainty Strategy in RBDO

Implicit Constraint Function

To address epistemic uncertainty of implicit constraimtdiion, a typical two-step

strategy is developed: First, metamodels are constru@sedoon the initial sam-
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ples given by computer experiments. Then additional sasngte selected and
added to update the metamodel step by step until the accstagging criterion is

satisfied.

In metamodel selection, three typical metamodels are greglopolyno-
mial model, radial basis function model and Kriging modeblyl@omial model is
a widely employed parametric model since it is easy to imeletnBetter perfor-
mance is expected for low order response functions. Howé&s efficiency and
large computation work are expected when it is applied tdleras with highly
non-linear and irregular performance functions. Radiagisv&unction (RBF) is a
commonly used nonparametric model. It is a real-valuedtfanovhose value
depends only on the distance from some other point c, callednger, so that
@(x,c) = @(|[x —cl|). Kriging model is a semi-parametric model which allows
much more flexibility than parametric models since no speaifodel structure is
used. It contains a linear regression part (parametric)aandn-parametric part
considered as the realization of a random process. Thugigrgodel can capture

the nonlinear and irregular function shape well and regueaer sample points.

Typically RBDO accuracy largely depends on whether the ikKggnodel
can capture the general tendencies of the design behawioorder to enhance
the metamodel accuracy, additional samples are seleapdbgtstep to update the
metamodel. The procedure ends until a stopping criterigaisfied. Many ac-
curacy metrics and algorithm criteria are proposed, fongdas, R square metric,
rooted mean square error (RMSE), relative absolute max €R@ME), maximum

absolute error (MAXERR), etc.
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Table 1.Approaches for Unknown Distribution

Epistemic uncertainty with unknown distribution
Fit distribution Do not fit distribution
Bayesian  Assumb(u,0?) Interval Decision
approach with unknowo  variables framework
Youn (2008)  Picheny (2007) Du (2005) Samson (2009)

Unknown Random Variable Distribution

Some distribution fitting is typically used to charactetize unknown random vari-
able distribution. The goodness of fit largely depends omjtiadity of the available

data of the variable.

To address RBDO with unknown variable distribution, therapphes ap-

peared in literature are summarized in Table 1:
The first category of approach is to fit a distribution of eisic variable:

(1) A Bayesian inference approach is employed in [93]. Solis&ibution
parameter® are unknown under epistemic uncertainty, Bayes’ theoremses! to

estimate parameters as:
f(0|x)=f(x|0)f(6)/c (2.7)

wheref(0]|x) is the posterior PDF of conditional on the observed dataf (x|0)

is the likelihood of observed dataconditional onf, and f () is the prior PDF of
6. Under unknown parameters, the failure probability P aalglity R becomes
a random variable which is bounded between 0 and 1. Thusrumidisstribution
is selected as the prior distribution of P, and the postddistribution is a Beta

distribution.
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(2) Another approach is to assume normal distribution, atidh@te param-

eter based on the provided data. In [70], an empirical CDFgsluilt as:

0, for x > Xq;
Fx(X) =q (k—=0.5)/n, forx < X< X1, (2.8)
1, for x, < x.

An RMSE criterion is employed to calculate the unknown pataro by

solving the following optimization problem:

Minimize: \/% S [F(xk)— — (2.9)

k=1

The second category is to treat epistemic variable as @lteariables or
constants instead of fitting distributions, which is usethicase of very few data.
In [26] epistemic variables are treated as interval vaealvithout assuming any
probability distribution. Under the worst case combinatad interval variables,
RBDO is solved with only aleatory variables. In [74] contius epistemic uncer-
tainty intervals are first discretized intoscenarios, then a decision framework is

proposed to the best scenario with only aleatory unceytaint
2.5 |-Beam Example

To design an I-beam [75], two design variablgsandX, are geometric parameters
of the cross-section as shown in Fig. 5. Due to manufactwamngbility, we treat
these two variables as random variables and assume theprmally distributed
with gp = 2.025 ando, = 0.225. The beam is loaded by the mutually independent
vertical and lateral loads paramet&s- N(600, 10)KN andQ ~ N(50,1)KN. The
maximum bending stress of the beanwis= 16kn/cn¥, the target reliability index

B =3(R=99.87%).
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The objective is the production cost which is the weight & bleam. As-
suming the beam length and the material density are cosstamhimizing this
function is equivalent to minimizing the cross-sectioreaféx) = 2x3X2 + X2(X1 —
2x2). Sincex; andxp are random variables, the cost functibéfu) = 2u; s +
Mo (U —2p) = 3ug o — 2;122 is derived. The single probabilistic constraint is given
asP(G(xg,%2) > 0) > R, whereG(x1,x2) is the bending threshold subtracted by
actual bending stress, €(x1,%2) > 0 denotes the feasible region. The analytical

G function is available as

M M
G(x1,%2) = 0 — (o + =) (2.10)
Zy  Zz
w & B 0.3pxq
y 2z X2 (X1 — 2X2)3 + 2X1X2(4X% + 3X% — BX1X2)
(2.11)
0.3gx

(X]_ — 2X2)X§ + 2X2X:]3_

For the purpose of simplicity, the random paramekendQ and equal to
their mean values, respectively. The effects of the two sypleepistemic uncer-

tainty on the RBDO solution in this example are discussetafollowing.
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Table 2.Epistemic Uncertainty Impact on I-Beam Case

(U1, U42) Obijective
True Gando (49.7275,0.9173) 135.1594
Kriging model (52.8422,1.0603) 168.8332
Estimated (53.8285, 0.9599) 153.1716

Effects of Implicit Constraint Functions

For the purpose of comparison, true G function is assumed implicit. A Latin
hypercube design is employed to select 29 sample pointsrstruet the Kriging
model, which is used to approximate the true model. The coisgabetween true
model and Kriging model is shown in Fig. 6. Then RBDO is solwégth both
true constraint function and Kriging model, and results parson is in Table 2.
From Table 2 we conclude that the optimal solution under ikggnodel is too

conservative comparing with true optimal solution.
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Effects of Unknown Random Variable Distributions

For the purpose of comparison, design variable’s distidious assumed to be un-
known. Taken from the existing I-beam designs, 29 sampkesealected above to

estimateo; ando, based on the RMSE criterion.

The results ar@; = 3.380 andd, = 0.312, respectively. Then RBDO is
solved with both the truer and the estimaté&, and their optimal solutions are
compared in Table 2. The comparison between true distabwnd estimate dis-
tribution at optimal solution is shown in Fig. 7. Thus we cae $hat the optimal

solution under estimat& is more conservative than true optimal solution.
2.6 Conclusion

In this chapter, epistemic uncertainties and their impaot®BDO are discussed.
We first review the generic formulation of RBDO, then extentbitake into ac-

count of epistemic uncertainties due to unknown randonatégidistributions and
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implicit constraint functions.

Secondly, the sources of epistemic uncertainties are iegalaand their
impacts on the RBDO solution are discussed. Comparing Vghttue RBDO
optimal solution, the solution for the problem where epigteuncertainty exists
can be either infeasible or too conservative. To addresstiues with epistemic

uncertainties, we summarize several approaches in literat

Finally, an I-beam example is used to illustrate the effefthe two types

of epistemic uncertainty on RBDO solution.
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CHAPTER 3

A SEQUENTIAL SAMPLING STRATEGY TO IMPROVE
RELIABILITY-BASED DESIGN OPTIMIZATION WITH IMPLICIT

CONSTRAINT FUNCTIONS
3.1 Introduction

As mentioned in Section 1.4, to trade off between the effayemnd accuracy of the
solution to an RBDO problem, many approaches such as thdedtadp method
[13], decoupled-loop method [23] and single-loop methael developed [78, 48,
76]. However, all these approaches are based on the assuartipdit the constraint
functions,G;j’s, are given analytically. Our focus in this chapter is tovelep a
decoupled-loop RBDO approach with implicit constraintdtians, i.e., black-box

constraints.

In this chapter we employ the Kriging method as the metamioglehethod
for the implicit constraint function. Consequentially, weed to consider how to
take efficient samples to fit and update the metamodel, asctheacy of meta-
model largely depends on the choice of sample points. The sanples we have,
in general, the more accurate model can be derived. Howeverality computer
experiments could be very expensive and time-consumintaksog a lot of sam-
ple points is unaffordable. Some common sampling methods as Latin Hy-
percube experimental design, uniform experimental desambeen employed in
RBDO for implicit constraints. For examples, in [39] a maxim mean square
sampling technique was employed; [45] provided a condt@nndary sampling
strategy to enhance accuracy and efficiency of metamodeldbas the RIA in
RBDO; [10, 11, 12] proposed the efficient global reliabilggalysis (EGRA), in
which an expected feasibility function criterion was use@dd samples to obtain

an accurate limit state function, then the reliability is&d was implemented by im-
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portance simulation; in [8, 5, 6, 7] DOE was performed to gateeinitial samples
and support vector machine (SVM) algorithm was employedeiavd the failure
domain boundary; and in [3] SVM was also used to calculatariprobabilities
in RBDO. In addition, to better approximate the limit statedtion, methods such
as polynomial chaos expansion (PCE, [85]), adaptive-s@&E ([34]), asymmet-
ric dimension-adaptive tensor-product (ADATP, [35]) apaise grid interpolation

(SGI, [86]) have been developed for stochastic responsacsur

In this chapter, we propose a sequential maximum expectptbirament
sampling strategy based on the PMA. In the PMA, the religbédssessment step
is replaced by a process of minimizing the R-percentilev@erfrom the constraint
function. Since the true constraint function is implicitleaametamodel is used, we
employ an expected improvement criterion to propose auttditisampling points

So as to update the metamodel and to locate the global miniRvypercentile.

Our research contributions include: First, an integratdeese of the de-
coupled loop approach and the sequential sampling of imglnstraints is pro-
posed. Our method is different from other existing methaodbat we use the PMA
for reliability assessment and our sequential sampliregesgly focuses on the MPP
approximation instead of the entire limit state functiorttue whole response sur-
face of the constraint function. Secondly, we extend outhiméto handle multiple
implicit constraints, and compare the efficiency and aauod several competitive

methods.

The rest of the chapter is organized as follows: Section Btdduces
SORA method and the metamodeling technique employed in libpter. Sec-
tion 3.3 proposes a sequential maximum expected improvesaempling strategy

and compare with other strategies to update Kriging modetti& 3.4 presents
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an I-beam case study to illustrate the efficiency and acgwbproposed methods.
Section 3.5 provides another engineering demo to show teesiwn of our method
to the RBDO problem with multiple probabilistic constran€inally, Section 3.6

gives the discussion and conclusion.
3.2 Reliability Analysis in RBDO

It is well known that uncertainty is inevitable in enginegyidesign. Traditional
RBDO deals with this type of uncertainty. That is, it trieftimize designs when
some design variables are random with assumed distritsuti@pistemic uncer-
tainty deals with lack of knowledge. For example, the rand@amable’s distribu-
tion is unknown [64] or the system’s performance functioimslicit due to lack
of knowledge. In this chapter, we study the latter case, @/kiggre is not an ana-
lytical function to explicitly describe system’s perfornez, i.e., thes function in
Formulation 1.3 is unknown, so we construct a metamd@8ehased on computer

experiments.

In this section we briefly review the approaches to solving®Boroblems
with known constraint functions. Due to the existence ofeartainty, a design
solution based on the deterministic approach could be tasarwative. Ref. [22]

summarized some reliability analysis approaches.

First-Order Reliability Analysis in RIA and PMA

RIA and PMA are two common reliability assessment approsachieese approaches
employ the concepts of the reliability index ([28, 97]) ahd MPP ([33]). Assum-
ing the output of performance functid® follows normal distribution, the proba-

bilistic constraint function can be characterized by th@ulative distribution func-

29



tion Fg, (0) and the target reliability indef; as follows:

1(g| OGHGi )z]d(gi ;GHGi )

Prob[G;i(d,x,p) > 0] = /\/L_
0
—/—GX[(——'[) t (3.1)

—®(-Bi) =P(B)
wheret = g';—:IG' andg = g—g Here,3; is defined as the safety index or reliability
index of thei" constraint, anqug, = Biog, indicates that a reliability index mea-
sures the distance between the mean margin and the linetsidgtce, as we may
considerog, as a constant scale parameter. For simplicity, we will regrtbe index
i and consider only the deterministic vectband random design vectarin our

later discussion.

In the Hasofer and Lind approach [33], the original randorateex is
transformed into an independent and standardized normdbra vectou. MPP
becomes a point on the limit state surface in the U-spacehiésthe minimum
distance to the origin, anf@ is this minimum distance. MPP represents the worst
case on the limit state surface; i.e., if MPP can satisfy dogiired reliability level,
so does any other point on the limit state surface. Theretbegprobabilistic con-
straint evaluation can be converted to an optimization leratio find the MPP and
the reliability index. The probabilistic constraint candgressed through inverse
transformation in two alternative ways, leading to two eliéint optimization prob-

lems.

In the RIA([53, 29, 84]), the reliability assessment becsertiee reliability

index assessment such as

B = —qu(FG(o)) > ﬁtarget (3-2)
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In the U-space, the following optimization problem is sal\e find the MPP and
B:

Minimize || u ||
(3.3)
Subject toG(u) =0

where the optimal solution on the limit state surfaG€y) = 0) is the MPP in the

U-space ang =|| u ||mpp.

In the PMA([84, 17, 24]), the reliability assessment is canwd to the R-

percentile assessment such as
GR = Fc;l(q)(—Btarget)) >0 (3.4)

whereGR is the R-percentile o6(d,x) andP(G(d,x) > GR) = R. In the U-space,
an optimization problem is employed to find the most probgamt of inverse

reliability (MPPIR) [25] and the minimum R-percentile,.i.e

Minimize G(u) 35)

Subject to|| u |[|= Brarget

where the optimal solution on the targeted reliability aod is the MPPIR. MP-
PIR is the point on the target reliability level which has #meallest performance

function value in the U-space, a@R = G(uwppiRr).

Sequential Optimization and Reliability Analysis (SORA)

Du [24] developed the SORA method for efficiently solving RBIPproblems, in
which the nested-loop of optimization and reliability ass®aent steps are replaced
by two decoupled-loop steps. SORA employs a series of cyafleptimization
and reliability assessment. In each cycle an equivalemstrohistic optimization

problem is solved first, and a design variapleis proposed. Then the X-space is
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transformed to the U-space basedignandoy, and the MPP(or MPPIR) is found
by the PMA optimization method. Next, the current MPP is ¢leelcagainst the
R-percentile constraints of each performance fundBonf GiR = Gj(d,xvpp) >0,
design variablely is feasible and it is the final solution; otherwise, a shiftuector

is derived to modify the current decision variable.

For the deterministic optimization in the first cycle, thes@o information
about the MPP, so the values »fipp are conveniently set as the means of the

random variable. The deterministic optimization modehae ftirst cycle becomes

Minimize f(d, ux)
(3.6)
Subject toGi(d,ux) >0 i=1,2,....m
The solution of 3.6 is fed into 3.5 to find the MPP. lsedenote the shifting

vector, the new constraint in the deterministic optimizatin next cycle is refor-

mulated as

Gi(d,ux —s?)>0 i=1,2,...,m (3.7)

wheres? = @ —x(!) _ The process will continue until the R-percentB8(d,

Xmpp) > 0.

Metamodeling Techniques and Comparisons
When the performance functi@his a computer model, we sample it by conducting
computer experiments and repla@ey a metamode. Due to limited sampling

points, it is critical to select a good surrogate functiofittoomputer outputs. Poly-

nomial model and Kriging model are presented and compartdsisection.

As mentioned in [37], polynomial functions are widely emy#d as meta-

models. The sample size is suggested to be two or three timaesimber of model
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parameters. However, the number of parameters of the paiianodel will in-
crease dramatically as the order of the model increases.tdine cost and com-
putation limitation, quadratic and cubic polynomial maate typically suggested.
In many engineering design problems, however, high noafitbeand twisting may
happen such that even the cubic polynomial model cannotiagte performance

variation well. In addition, polynomial models are not rebto outliers.

Kriging model (also called Gaussian process, or GP, modied}ly pro-
posed by a South African geo-statistician Krige [73], is giadile model for mod-
eling computer experiments. In a Kriging model, the respatsa certain sample
point not only depends on the settings of the design paras)dtet is also affected
by the points in its neighborhood. The spatial correlatietwieen design points is
considered. A Kriging model combines a polynomial functionthe output means

and a random process for the output variance, and it is gisdollaws ([54]):

k
y="PBo+ ) Bifi(x)+2(x (3.8)
=1

where By + z'j‘zlﬁj fj(xj) is the polynomial component arf(x) is the random
process. Typically, the polynomial component is reduce@gtoand the random
processZ(X) is assumed to have a zero mean and a spatial covarianceofuncti

betweerZ(x;) andZ(x;) is

CovZ(x), Z(x))] = E[Z(x)Z(xj)] — E[Z(x)]E[Z(x;)]

= 02R(8,%,%j)

(3.9)

whereo? is the process variance amdo, x,x;) is the correlation model with pa-

rametersd. The correlation model may have one of several differemdieiunc-
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tions. For details, refer to, e.g., [73, 54].

In a Kriging model, the number of parameter can be reduceldetaimen-
sion of input vector, which is much fewer than the cubic polyrial model, so
fewer samples are needed for building a robust Kriging mddedddition, Kriging
model is suitable for modeling high nonlinearity and twikgcause of the flexibil-
ity of the correlation function. Hence, Kriging modet"f3o + Z(X) is selected in

this chapter.
3.3 Sequential Expected Improvement Sampling

The sampling strategy for deriving the metamo@Geheeds to be carefully con-
structed, as in RBDO we must consider the additional epistentertainty brought
by the constraint function estimation; otherwise, thergtisolution obtained may
be actually infeasible becau&®is not the true function. As we know, reliabil-
ity assessment in the RBDO solution is equivalent to the MptRmization, thus
our strategy is to deploy more samples subject to the MPPtreamisso that the
metamodel becomes more accurate in the area of the mosttamperto RBDO. In
this section, we present a sequential sampling strateggdbas a criterion called

expected improvement (El).

Initial Latin Hypercube Sampling

The statistical method of Latin hypercube sampling (LH®nployed in this chap-
ter for initial sampling to build a Kriging model. LHS was firdescribed in [56],
and was further elaborated in [36]. LHS is particularly gémdsampling a complex

computer model that is computationally demanding and esigen

Expected Improvement Criterion

A metamodelG is constructed based on initial samples. If the input spaasen-

tirely sampled, the surface would get close enough to the true surface; however,
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as only a few samples are obtained in real@ysurface is different from the true
surface. In addition, the prediction error Byis different from area to area on the
metamodel surface. Some areas have larger predictiorsdhan others because
they have fewer sample points in the neighborhood. Thezetbe area with large
prediction error has the potential of containing the trueRViRstead of the current
minimum point. In other words, the area with large predic&oror is less explored
and may bring bigger improvement to the metamodel if adad#isamples are taken

in this area. Thus, we use the El as the criterion for addiagéxt sampling point.

The EI criterion proposed by [38] is computed as follows. [Bge there
aren initial samples, an&Y, ..., G(™ are the outputs by the computer model. Let
Gmin = min(GW, ..., G") be the current minimum. The improvement at a paint
towards the global minimum igx) = maxGnin — G(x), 0), whereG(x) follows a
normal distributionN(G(x),s%(x)), andG ands denote the Kriging predictor and

its standard error. The expected improvement is

E[l (x)] = E[maxX(Gmin — G, 0)] (3.10)

In RBDO, we often need to consider more than one constrainterder
to compare Els from different constraints and to select ttbtnal sample point
with the maximum EI, we propose an expected relative impre criterion as

follows:

. CTITD) .
Let Rl = max %z2=C,0), whereG, = [GZ1+-+GT  The expected relative

improvement (ERI) is

E[RI(X)] = E[max(%p)] (3.11)
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After applying integrations, we have

_ 1 . A Gmin - é Gmin — é
E[RI(x)] = G_a[(Gmln—G)q)<T) +sqo(T)] (3.12)
where®(-) andg(-) denote the cumulative distribution function and the pralitgb

density function of standard normal distribution, respedty.

The definition of ERI indicates that both the Kriging predicG and its
standard erros can affect the ERI value. Taking the derivative of ERI witepect

to G ands, we can derive the following properties:

GERI] 1 _/Guin—G
= = G—aqa(T><o (3.13)
JERI] 1 /Gmn—G
- _G—ago(is )>o (3.14)

Due to the monotonicity, we conclude that a larger standenat €s) or a
larger difference between the current minimum and the ptiedi (G, — é) will

lead to a larger expected relative improvement value.

RBDO Solution Using Sequential ERI-Based Sampling Styateg

Based on the PMA mentioned above, Formula 3.5 is used to fensl P and check
the R-percentile, which is equivalent to reliability asseent. In this chapter, we
maximize the ERI to find new sample points because they ailgetstfor searching
for G's minimum value when the true function &f is unknown or implicit. Note
that the optimization Formula 3.5 is a constrained optitmza where the feasible

u points are located on a circle with its center at the origirthef U-space and
its radius agBiarget (For visualization, we assume a two-dimensional case.here
This corresponds to an ellipsis on the X-space as shown in8Fifn essence, the
additional samples are taken from this ellipsis, so onlycallarea of th& surface

around the current RBDO solution will be mostly improvedisTis in contrast with
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Figure 8.Max ERI sample point in design space. The initiedgl@s are marked by
“+”, additional samples are marked by “0”, a@},;, is the latest additional sample
selected by the ERI criterion.

random sampling on the whole X-space or on the limit statetfan. Our purpose
is not to obtain a better overall estimation of the constrainction or the limit state
function, but rather to find an accurate MPP; therefore rg@sonable to sample an
area that is close to the region of limit state function thwattains the true MPP. The

SORA procedure of RBDO with implicit constraint functiorssautlined in Fig. 9.
We detail our sequential sampling strategy in the follonsteps:

1). After the initial sampling, a Kriging metamod@lis built. A determin-
istic optimization is then solved for decision vectatgndpx. Note that in the first

cycle, the shifting vectos, equalsD.

Minimize f(d, ux)
(3.15)
Subject toGi(d,ux —s) >0 i=12....m

2). Givenpux andoy, the X-space can be transformed to the standardized
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Initial Samples by LHS
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Figure 9.Algorithmic flowchart
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U-space. Following PMA, the reliability analysis optimiian is as follows:

Minimize G(u)
(3.16)
Subject to|| u [|= Brarget

However,G is only a metamodel based on initial samples and the MPP de-
rived by Formula 3.16 may not be accurate enough. TheretoeeRI criterion is
employed to find additional sample points that can make lexpected improve-
ment on the objective function. In order to find global minimun the design space,
the above optimization problem is first transformed to anoastrained optimiza-
tion problem by using a polar coordinate system. For examyien there are three
variables, setl; = Biarge€0S 0), U2 = BrargeSiN(0)cog o), Uz = PrargeSiN(B)sin(a),

then the optimization becomes:

Minimize G(6, a) (3.17)

After solving this unconstrained optimization, the optirealution (6, a)
will be transformed back to the X-space and evaluated bydhgpater experiment,
and it becomes the current minimu@@gn. If there are multiple constraints, each

constraint will produce &; min.

3). To find an additional sampling point, which has the pogtiid maxi-
mize the relative improvement on tl&function estimation, we solve the following

maximization problem to locate the next sampling point.

o1 A in—G
MaX|m|zeG—[(Gmm—G)CD(M

a

Jrsp(CmC) (318)

If there is only one constraint, the point with the maximuml ERould be

evaluated by experiment and then added into the sample pdilk if there are
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multiple constraints, the point associated with the largesximum ERI is added

into the sample pool.

The optimal solution of Equation 3.18 is a point located om ¢hcle cen-
tered at the origin and with radius Bgrgetin the U-space. This point is supposed to
bring the maximum improvement to tlé&function estimation subject to the MPP
constraint. The corresponding point in the X-space is degim Fig. 8. The curve
in Fig. 8 represents the current limit state surfé&e- 0, and the areas @ > 0
and G < 0 denote the successful region and the failure region, ctisps. The
plus marks represent the initial sample points, and thetgpin 1) is the optimal
solution obtained from deterministic optimization in S{&p. As the current MPP
may not be accurate enough due to the prediction error ofmustal G, the ERI
criterion is employed to find a new sampling point (denotedh@ysquare mark) on
the ellipsis. Then the Kriging metamodel is reconstructed the prediction error

in the neighborhood of MPP will decrease.

Plotting along the angle coordinate, the solid curve on theeu panel of
Fig. 10 is the metamodel predictor for t&efunction; while the dotted curve is the
updated response curve after a new sample point is added. tReolower panel of
Fig. 10 we can see that the response prediction error desrdaamatically around
the new sample area after the new sample point is added. tetwvesample point
is evaluated to be smaller than the current minimum, it walddoser to global

minimum and it is a more accurate candidate for MPP.

Repeat Step (3) to select the maximum ERI among constrginotgs! the
maximum ERI is less than a small number (stopping rule), wmeans the predic-
tion error ofG around its global minimum is very small, so the current mimimof

G shall be closer to the true global minimum.
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Figure 10.Max ERI sample point in response space

4). The metamode$ is updated with all samples and the MPPs for all
constraints are derived. If m’ii’Mpp >0,i=1,...,m thend anduy are the desired
solution of RBDO and the algorithm stops. If any Constrf@ﬂﬁ/mp < 0, a shift
vector is computed based on curregtandxypp. Then return to Step (1) with the

modified shift vectos.

In the first cycle of sequential ERI, since there is no infaioraabout the
MPPs,xwvpp is set asux and the shifting vectos is 0. Step (1) to Step (4) are
repeated in each cycle to solve decision vectors, updagir§rimetamodel and
locate accurate MPPs until Q,Mpp > 0, which means all probabilistic constraints

are feasible.

Comparing with the traditional SORA algorithm with expticonstraint
functions, sequential ERI has one more loop in Step (3) sscaithe epistemic un-
certainty associated with implicit constraint functioii®at is, in each cycle, due to
the prediction error of the estimated constraint functiencannot decide whether
or not the constraint is feasible simply by the MPP calcaateStep (2). Instead,

Step (3) is employed to add new sample points until there@raare allowable po-
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tential improvement on the estimation of constraint fumetiso the updated Kriging
metamodel is closer to the true model in the area of interEsgtally, the new MPP

calculated in Step (4) is used to assess the feasibilityaifadvilistic constraint.

Other Methods

For the purpose of comparison, three other methods dealittg RBDO under

implicit constraints are listed below.

RBDO Solution Using Sequential MPP-Based Sampling Styateghis
method is to add each MPP point to the sample pool withoutideriag additional
sampling points based on ERI. As at Step (2) MPPs are evaligteomputer
experiments at each iteration, it is natural to add them ttatgpthe estimation of
functionG. This method is similar to the sequential ERI-based sargtrategy,

but remove Step (3).

RBDO Solution Using Lifted Metamodel Functienin order to guaran-
tee the optimal solution given b@ function is feasible, a conservative approach
is to replaceG function by a predicted lower bound function. Sin@efunction
approximately follows a normal distribution, the liftedsponse function i€ —

A

ta/2n—py/Var(G). Then the RBDO formulation becomes:

Minimize f(d, ux) (3.19)
Subject toProb[G(d, X) —ty /2n_py/Var(G(d,x)) > 0] > R (3.20)
d- <d<d” pg <px < py (3.21)

where,/Var(G(d,x)) is the standard error of prediction. It is expected thatithe t

function value will fall in the prediction intervaG(d, x) —ta/2n-p Var(G(d,x)),

G(d,X) +tq/2n_py/Var(G(d,x))] at the(1— a)% confidence level. This method
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is very conservative. It requires large initial sample $aaeducing the prediction

error. Typicallyty 2 n—py /Var(G) O % , Where c is a constant.

RBDO Solution Based on Non-sequential Random Samplinte§yra As
mentioned in Section 3.3, LHS is used to construct initiedgke pool. Latin hyper-
cube sampling or any other random sampling method can algsdazbsubsequently
to add more samples to upde(%efunction. The result will be compared with the
sequential ERI-based sampling and the MPP-based samplatgges in the fol-

lowing example.
3.4 |-Beam Performance Comparison

In the I-beam example mentioned in Section 2.5, as the trum@ibn is known, we
can use it to evaluate the fitness of metam@lehd to compare different sampling

strategies for improving the MPP estimation. The RBDO peabis formulated as:

Minimize: 3y o — 23 (3.22)
Subject to:Prob[G(x1, x2) > 0] > 99.87% (3.23)
10< 13 < 80,09< <5 (3.24)

Solution with the True Constraint Function

Following the SORA procedure, we obtain the following smntusing genetic

algorithm (GA) with 100 initial population and 5 iteratians

Table 3.Results of SORA for I-Beam with True Constraint

Optimization Constraint
Cycle 1 o Obj MPP, MPR GR
1 49.94 0.91 120.44 38.85 0.91 -0.004
2 49.73 0.92 135.16 43.63 0.92 0.0003
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Figure 11.3D shape of G function

From Table 3 we can see that after two cycles the decisioaMar(i49.73,
0.92) can satisfy the probabilistic constraint with the R-petiteiGR = 0.0003> 0.
The objective value of RBDO is 138 based on the true constraint function. The
3-D graph ofG function is shown in Fig. 11. If we cut 3-D G function with pkan
G = 0, the feasible region of the deterministic constraint byR&Jthe dark blue
dot) and the shifted constraint region by SORA (the ligheldtar) in the X-space

are shown in Fig. 12.

Solution with the Sequential ERI-Based Sampling Strategy

In this section, the sequential ERI-based sampling styategmployed as we treat
the constraint function as implicit. First, 20 initial sal®points are generated by
LHS as shown in Table 4. These sample points are evaluateklebé tfunction,

which we assume to be a black box. A Kriging moeis built with these initial
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Figure 12.Feasible region with true G function

20 samples. We set the stopping criterion of the sequen®&isBmpling strategy

to be maERI < 0.005 and obtain the results as in Table 5.

Similar to the results in Table 3, after two cycles our methbthins a fea-
sible solution(51.31,0.91) with the value of the cost function to be 138. The
additional sample points needed in each cycle are providd@ble 6. The fea-
sible region in the X-space is shown in Fig. 13. The blackedbtirea is the true
feasible region of deterministic constrai@{u) > 0 by SORA, and it is partially
overlapped by the star area. The light blue star area is tiftecgHieasible region
of G(u —s) > 0 when the sequential ERI sampling is applied; while the déulke
x-mark area is the shifted feasible regionGfu — s) > 0 by SORA when the true
constraint function is known. The red circle denotes the@amated optimal so-

lution (u1, 42) = (51.31,0.91), and the red pentagram represents the approximated
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Table 4.Initial Samples by Latin Hypercube

X1 X2 G
32.11 2.63 0.004
24.74 0.90 -0.036
65.26 2.19 0.013
10.00 3.71 -0.173
61.58 3.27 0.014
50.53 5.00 0.013
54.21 4.14 0.013
72.63 3.92 0.015
35.79 3.49 0.008
10 57.89 1.12 0.009
11 80.00 3.06 0.015
12 28.42 1.76 -0.006
13 39.47 435 0.011
14 21.05 4.57 -0.007
15 76.32 1.33 0.013
16 68.95 4.78 -0.015
17 13.68 1.55 -0.106
18 43.16 1.98 0.008
19 46.84 2.84 0.011
20 17.37 2.41 -0.036

@ooxlmmbwmn—\g-
(72}

Table 5.Results of SORA for I-Beam with Sequential ERI Sangp&trategy

Optimization Constraint
Cycle Lo Obj MPP, MPR GR
1 40.92 0.95 115.35 34.83 0.92 -0.009
2 51.31 0.91 138.32 45.21 0.91 0.001

MPP (45.21,0.91). One can see that the approximated MPP is in the true feasible
region. For the purpose of comparisqgnand MPP given by the true G function
are also shown in Fig. 13. The additional sample points tedduy the sequential
ERI sampling strategy are represented by diamonds. Weatbiat these additional

samples appear in both feasible and infeasible regionsthaydcluster around the
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optimal solution of (11, o). In consequence, the estimated shifted limit state func-
tion, G(u —s) = 0, is more accurate in the area around the true optimal saluti
In fact, the dark blue (the true shifted feasible region byrR&Pand light blue (the
estimated shifted feasible region) regions are quite idiffein the upper part of the
graph, but almost identical in the lower part of the graphichs the area of the

most importance to RBDO.

Solutions by Other Methods

RBDO Solution using Sequential MPP-Based Sampling Stratddie MPP-based
sampling strategy is employed to deal with the I-beam examijith implicit con-
straint function. The initial sample points are the samena&able 4. After two
cycles an approximated optimal solutio49.21 0.90) is obtained with the objec-

tive value of 13166. Note that the objective value is smaller than the valuergby
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Table 6.Additional Samples by Sequential ERI Samplingt&gy

Obs X1 X2 G

21 34.8290 0.9226 -0.0088
22 47.0108 0.9198 0.0026
23 46.0796 1.3158 0.0060
24 34.8294 0.9216 -0.0088
25 45.2150 0.9427 0.0018
26 53.6512 1.5349 0.0097
27 57.4040 0.9050 0.0070
28 50.1729 1.5752 0.0089
29 45.2076 0.9108 0.0014

the true function, but an evaluation of the obtained sotut#9.21,0.90) shows that

it is indeed an infeasible solution to the probabilistic sivaint 3.23. The reason
is that the current MPIP55.31,0.92) is obtained by thes function instead of the
true G function and th& function is not accurate enough to locate the true MPP.
We see that the prediction errors are high at the area ardwencutrrent MPP. The

feasible region is shown in Fig. 14.

In Fig. 14, the star area is the feasible regioré@ﬂ —s) > 0 given by the
MPP-based sampling strategy. Same as before, the dotidsatee true feasible
region ofG(u) > 0 and the x-mark area is the feasible regioGoft —s) > 0. The
red circle denotes optimal solution given by the sequeMiBP-based sampling
strategy, and the red pentagram represents the approxii&B. One can see that

the approximated MPP falls out of deterministic feasiblgos.

RBDO Solution using the Lifted Response Functiodsing the method

provided in Section 3.3, a lifted response function is erygibto replacé. Hence
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Figure 14.RBDO feasible regid@ function by MPP-based sampling

the RBDO formulation becomes

Minimize: 3uy o — 22 (3.25)
Subject toP[G(X1, %) —ta/2n_p\/Var(G(x,, X)) > 0] > 99.87%  (3.26)

10< 1 < 80,0.9< pp <5 (3.27)

wheren is equal to 20, which is the initial sample sizeis equal to 3 since there
are one parameter for the linear term and two parametersiéocdrrelation term
in the Kriging model. In this case no additional samples alded and the SORA

converges after 12 cycles. The feasible region is showngnls.

In Fig. 15, the dotted area is the true feasible regioB(@f) > 0, the x-mark
area is the feasible region &f(u —s) > 0, and star area is the feasible region by
prediction lower bound functio®(x) —tq 2.n_py/Var(G(x)) > 0. The red circle

denotes the approximated optimal solutign, t2) = (52.74,1.04) given by the
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Figure 15.RBDO feasible region by lifting response funetio

lifting response function, and the red pentagram repregaetapproximated MPP
(46.76,0.90). One can see that although the approximated MPP falls ineths-f
ble region, its corresponding soluti@nis too conservative and far from the true

optimum.

RBDO Solution using Random Additional Sampleg compare with the
sequential ERI-sampling strategy, we uniformly take 9 tddal sample points.
These additional sample points are shown in Table 7. A Kggimodel is con-
structed based on the total 29 samples, and the RBDO regyiltaa by SORA.
In the X-space, the feasible region is shown in Fig. 16. One sie that the
approximated feasible region and the true feasible regrenqaite different in
the lower part of the graph. This causes that the approxanepeimal solution

(U1, 42) = (52.84,1.06), denoted by the red circle, and the approximated MPP
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Table 7.Additional Samples by Uniform Sampling

Obs X1 X2 G

21 13.8889 2.9500 -0.0658
22 28.6680 4.3240 0.0049
23 68.3334 1.5833 0.0123
24 443002 1.1289 0.0035
25 21.5410 1.9975 -0.0201
26 37.4270 3.8430 0.0096
27 75.8626 3.4424 0.0145
28 53.4068 4.7577 0.0136
29 60.2463 2.5064 0.0128

(46.86,0.93), denoted by the red pentagram, are far from their true optimu

Efficiency and Accuracy Comparison Between Different Migho

We summarize the results of the I-beam example solved bgrdiit methods in

Table 8 and compare their merits. The column of functionscalldefined as the
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number of optimization function calls including the detéristic optimization, the
ERI optimization and MPP optimization. It takes 2 cyclesdtve RBDO with true
model in SORA, thus there are 2 deterministic optimizatiallscand 2 MPP opti-
mization calls. Similarly, the MPP-based sampling stratagd the non-sequential
random sampling strategy take 2 cycles to achieve theimgbtsolutions, so 4
function calls are needed. It takes 2 cycles in the sequdeR&based sampling
strategy, and there are 2 function calls in Step (1), 2 in &gb in Step (3) and 2
Step (4); hence, the ERI-based strategy takes 11 functinicdotal. In the lifted
metamodel function approach, 24 optimization calls areebezl since it takes 12
cycles to achieve the optimal solution. The columng&af o) is the approximated

optimal solution and the last column is the obtained mininalmective value.

Table 8.Results Comparison Between Methods in I-Beam Case

Method Cycles Function New (ui,2) Obj
calls pts

True 2 4 NA (49.7,0.92) 135.16
ERI 2 11 Yes (51.3,0.91) 138.32
MPP 2 4 Yes (49.2,0.90) 131.66
infeasible
Lifted 12 24 No (52.7,1.04) 162.08
Random 2 4 Yes (52.8,1.06) 165.83

First, we can see that the sequential ERI-sampling straiemydes a good
approximated optimal solution that is close to the trueroptisolution, but it needs
to take additional samples. Second, the MPP-based samphygalso provide a
near optimal solution with even fewer function calls; hoeewas mentioned above,
the feasible region derived from the MPP-based samplingoigaal to be infeasible
in this example, because the metamo@ehround the MPP area is not accurate

enough. Third, although the RBDO solution using the liftedponse function
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Figure 17.A thin walled box beam demo

needs no additional samples, thus it has lower sampling tastquires a larger
number of function calls to converge to an optimal solutiwertany other methods.
Furthermore, the solution it provided is far from the trugimom. Finally, the
non-sequential random sampling method cannot give an atecaptimal solution
because the additional samples are not taken from the MRP Brsummary, the
sequential ERI-based sampling strategy provides the roostate optimal solution

when the constraint function of RBDO is a black box.
3.5 Application to A Thin Walled Box Beam

In this section we demonstrate the applicability of the segial ERI-based sam-
pling strategy for multiple constraints using a thin walleak beam example. As
shown in Fig. 17, the beam is clamped at one end and loadec atpttof the
other end. The objective is to minimize the weight of the twalled box beam
under both the vertical and lateral loads. Since the beagthén= 100cmis kept
as a constant and the material is assumed to be isotropigniping the beam
weight is equivalent to minimizing the cross-section areaur random variables
X1, X2, X3, X4 describe the cross-section area, and they follow norméildligsions
as Xy ~ N(py,0.225), Xp ~ N(pp,0.225), X3 ~ N(p3,0.03?), X4 ~ N(pig,0.03?).

The vertical load Y is equal to 10@0I and the horizontal load Z is equal to 300

There are two implicit black box constraints — the bendingmant con-
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Figure 18.Preprocess model in ANSYS

straint and the displacement constraint. As shown in FigtHe’vertical and hori-
zontal loads are applied on the free end of the beam, thustidifig moment stress
is not uniform on the beam and the maximum value takes platieeoclamped left
end. To satisfy the yield bending moment threshmid= 2400kN/cn?, the max-
imum a? should be less or equal t*. The displacement constraint requires the
maximum displacement of the beam, which happens at the fréete be less or

equal too?, wherea? = 1.6cmis the displacement threshold.

The demo is ran in ANSYS 10.0, in which the material’s elastadulus is
set asE = 2.9 x 10’ psi, and Poisson’s ratio is.B. The size element edge length
is set to be &émin finite element analysis. The finite element model in ANS¥S i
shown in Fig. 18. After finite element analysis (FEA), theatafed shape and the

contour plots of Von-Mises are shown in Fig. 19 and Fig. 28peetively.
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Figure 19.Deformed shape

Figure 20.Contour plots of Von-Mises
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The 20 initial Latin Hypercube samples are evaluated by Bd Eomputer
experiment, which are listed in Table 10. Following the sayial ERI-sampling
strategy with multiple constraints as described in Sec8®) we set the stopping
criterion as 0.1, then 23 additional samples are taken.eTapkovides the number
of function calls, FEM evaluation and additional samplegureed for solving this
box beam RBDO problem. The details of each iteration arenginelable 11. In
summary, there are 3 deterministic optimization calls, 8 Bptimization calls
and 6 MPP optimization calls in the three cycles. The colufEN No.” denotes
the number of finite element analysis. There are 43 FEM mofielthe 20 original
samples and 23 additional samples, evaluated in this cdta.tAree SORA cycles

the MPPs of the two constraints become feasible.

Table 9.Efficiency in Thin Walled Box Beam Demo

Method Function FEM  New (U1, U2, U3, Ug) Ob;j.
calls No. samples
ERI 37 43 23 (4.02,4.00,0.53,0.59) 7.75

3.6 Conclusion and Future Work

In this chapter, an RBDO problem under implicit constraumdtion is discussed.
Metamodels are used to approximate the true constraintifurscin RBDO. We
discuss and compare two different metamodels — polynomalaihand Kriging
model, and Kriging model is selected as our empirical metietsoin RBDO be-
cause it not only requires fewer parameter estimations Isotfas well for high
nonlinear functions. Based on Kriging model, we proposecaesetial ERI-based
sampling strategy to improve the solution of RBDO, and comtawith the meth-
ods of the MPP-based sampling, lifted response functionrmmdsequential ran-

dom sampling. Among all of them, the sequential ERI-basedpsag provides
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Table 10.Initial Samples by Latin Hypercube

Obs X1 X5 X3 Xa Gy Gy
1 358 374 0.73 0.71 5704 0.68
2 421 500 058 0.73 12948 1.19
3 437 311 09 0.77 5998 0.53
4 232 326 082 0.79 -9070 -0.57
5 295 216 0.54 0.63 -25286 -2.23
6 342 232 0.67 0.84 -12013 -1.03
7 216 342 0.71 0.58 -11569 -0.66
8 389 295 0.69 0.52 -2067 0.04
9 484 3.89 0.86 0.56 10860 0.98

10 453 2.00 0.75 0.67 -977/0 -1.58
11 263 421 05 0.65 -544 0.35
12 3.74 437 0.84 0.88 10920 1.02
13 405 453 061 05 9040 1.00
14 5.00 3.58 0.63 0.86 10853 0.94
15 247 484 0.77 0.75 5444 0.70
16 2.00 2.79 0.56 0.82 -26039 -1.88
17 3.11 4.68 0.79 0.54 8005 0.90
18 3.26 2.63 0.88 0.61 -7846 -0.58
19 279 405 065 09 3666 0.52
20 4.68 247 052 0.69 -127 -0.07

more reliable optimal solution than the MPP-based sampliathod, and more ac-
curate solution than the lifting response function and émelom sampling methods.
The strength of our proposed method lies on that it will addgas around the cur-
rent RBDO solution to maximally improve the MPP estimatiohjle ignore other

areas of the constraint function that are not importantédRBDO solution.

As mentioned in Section 3.2, implicit constraint functisrjust one type of
epistemic uncertainty due to lack of knowledge. Unknownritigtions of random
variables, for example, is another type of epistemic uagasgt and it is not dis-
cussed in this chapter. In future the sampling strategydcbealdeveloped to make

an accurate inference of random variable distributions.r@ethod can also be ex-
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tended and applied on more complex problems, such as the RBBidem with

multiple objectives. In addition, since reliability andosstness are two important
attributes of product design optimization, robust desigthmad, which focuses on
minimizing performance variation without eliminating tbeurces of variation, can

be combined with RBDO.
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Table 11.Results of Sequential ERI Sampling of the Thin ¥éaBox Beam

Cycle 1
Ha, U2, U3, Ha Objective Value
3.21,3.77,0.52,0.50 6.09
X1, X2, X3, X4 ERl,  ERl, Gy Gy
3.06, 3.11,0.52,0.51 -7631
2.83,3.22,0.52,0.52 -0.337
2.61, 3.47,0.51, 0.50 0.083¢ -8101 -0.289
MPP, MPB,, MPPR;, MPP, Gy Gy
2.75,3.28,0.51, 0.51 -9258(0)
2.77,3.26,0.52,0.51 (infeasible) -0.3460)
Cycle 2
U1, U2, U3, Ug Objective Value
2.76,4.82,0.57,0.50 7.14
X1, X2, X3, X4 ERl,  ERl, G G,
2.15,4.67,0.55,0.53 -2158
2.21,4.45, 0.55, 0.50 0.081
3.17,4.91, 0.50, 0.52 0.590 6672 0.844
2.46,4.98, 0.51, 0.56 0.112 2542 0.517
2.17,4.50, 0.58, 0.50 0.094¢ -3135 0.075
MPP,, MPB,, MPR;, MPPR, G1 Gy
2.21,4.43,0.56, 0.51 -2789(0)
2.11, 4.65, 0.56, 0.50 (infeasible) 0.0510Q)
Cycle 3
U1, U2, U3, Ua Objective Value
4.02, 4.00, 0.53, 0.59 7.75
X1, X2, X3, X4 ERIs, ERIgs, G1 Gy
3.85, 3.35,0.53, 0.58 2164
3.71, 3.40, 0.53, 0.59 0.415
3.41,4.06, 0.51, 0.55 1.689 3431 0.666
4.64,4.27,0.52,0.59 1.068 10481 1.037
3.61, 3.66, 0.51, 0.54 0.407 1636 0.516
3.44,4.33,0.52,0.59 0.327 5780 0.795
4.04, 3.95, 0.52, 0.50 0.289 5654 0.774
3.46, 3.74, 0.50, 0.61 0.200 2261 0.540
3.53, 3.63, 0.56, 0.56 0.096¢ 1748 0.493
MPP,, MPB,, MPR;, MPPR, G1 Gy
3.55, 3.55, 0.52, 0.56 91%(0)
3.60, 3.49, 0.52, 0.58 (feasible)  0.4230)
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CHAPTER 4

DESIGN OPTIMIZATION WITH PARTICLE SPLITTING-BASED

RELIABILITY ANALYSIS
4.1 Introduction

The simulation-based method is the rudimentary methods#sssng a probability
function in RBDO. However, it is also the most accurate métifithe sample size
is large enough. The computation burden is typically labge jt can be greatly re-
duced by some advanced sampling methods as discussedatehgdctions of this
chapter. In this chapter, our approach replaces the MP&dlralability assessment
step by a new simulation-based reliability assessmentadethparticle splitting.
Therefore, the probabilistic constraint is not longer aagtd by the worst case sce-
nario, but by the whole feasible design space. We introdoeedncept of target
probable point (TPP), which is derived from the desirabl@@ag points from
simulation directly. The mean performance measure isliéadi TPP can satisfy
the constraint. Our approach takes the advantages of betméhit of efficiency
from the sequential loop method and the merit of accuracy ftile simulation-

based reliability assessment method.

Our research contributions are: First, the rare-event Isition technique
(i.e., subset simulation and particle splitting) is integgd into RBDO. However,
different from the typical rare-event simulation applioatthat aims to evaluate
probabilistic constraints, we employ the rare-event satiah in an optimization
aiming to find optimal random properties under a target poditya Secondly, par-
ticle splitting is proposed as an improvement of subset kitian in rare-event
simulation, and the trade-off balance among number of ¢spsenulation sam-
ple size and coefficient of variation is investigated, whicbvides a guidance for

determining the simulation process. Finally, we extendpauticle splitting-based
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reliability analysis approach to address multiple comstsawithout significantly

increasing simulation efforts.

The remaining part of the chapter is organized as followsSéation 4.2
we specify the simulation-based sequential optimizatedialility assessment ap-
proach employed in the chapter. A particle splitting-basti@bility analysis ap-
proach is proposed in Section 4.3. In Section 4.4 we providélzeam case to
illustrate the proposed method and a mathematical examplerhonstrate the ex-
tension of our algorithm on handling the problem with muéiprobabilistic con-

straints. Finally, we draw the conclusion and propose auréwork in Section 4.5.
4.2 Simulation-Based Reliability Analysis

Monte Carlo simulation (MCS) with large sample size gengmaovides high ac-
curacy in estimating the probability of an event; howevergquires tremendous
amount of event evaluation, when the event probability ry genall (a rare event),
in order to get lower estimation error. This computatiosalie has been addressed
recently by applying other simulation methods, such as mapce sampling, sub-
set sampling and line sampling. A sampling method around M&®provided in
[22]; Reduced region importance sampling was develope®h [46]; Quasi MCS
techniques were developed in [66], in which sampling wasedarthe important
regions that include the region in the failure domain thattabuted significantly
to the probability of failure. Importance sampling was atsoployed to improve
sampling efficiency and estimation accuracy in [58], [42libSet simulation was
used in [27], in which an RBDO problem with surrogate modeswalved by a
double-loop approach; A three-step approach was proposaite RBDO in [14],
in which reliability constraint was transformed into noapabilistic one by esti-

mating the failure probability function and the confidenn&ivals using subset
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simulation. A line sampling approach proposed in [101] esyed lines instead of

random points to probe the failure domain of interested.

As mentioned before the SORA method solves two optimizgiiablems

sequentially. The first optimization problem is as follows:

Minimizey ;,, f(d, ux)
P (4.1)
SubjecttoGi(d,ux —s) >0 i=12...,n
wheres denotes the shifting vector derived from the reliabilitg@ssment step, and
sis set to0 in the first cycle. The random parameter vector is ignoretiénatbove

formulation for simplicity.

Based on the optimum and ik, the reliability assessment is implemented

as.
Prob(Gi(d,X) > 0] = / f (G)dG > R 4.2)
0

wherefg, (Gi) is the probability density function (pdf) &;(d,x). For low dimen-
sion and simple constraint function formulation, the pdGpfd, x) can be derived.
However, it is typically very difficult to obtairfg, (G;i) in highly nonlinear case.

Then a multi-dimensional integration is derived as:

Prob|Gi(d, x) > 0] — / f (X)dx > R 4.3)
Gi(d,x)>0

wherefx (x) is the joint pdf of random vectoX, andG;(d, x) > 0 is the integration
region. Since the computational work for direct multi-dim@nal integration in re-
liability assessment is unaffordable, a variety of appratie reliability assessment
methods have been proposed in literature. SORA employs ®#ie-based reliabil-
ity analysis method, in which the probabilistic constrawmaluation is converted to

an MPP optimization problem based on the concept of MPP diabiléy index.
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By the inverse reliability PMA, this optimization problemas

Minimize, G(u)
(4.4)
Subject to || u ||= Brarget

where the optimal solutiomppr, is called the most probable point of inverse re-

liability (MPPIR) [25]. MPPIR is the point on the target raiility level which has

the smallest performance function value in the U-space.eQine MPPIR is ob-

tained,GR = G(umppir) = G(Xmppir) is called the target probabilistic performance

measure [84]. IGR > 0, itindicates that the performan@éx) > 0 for all the points

within target reliability level. IfGR < 0, it indicates that the target reliability level
th cycle is not satisfied, a shifting vecter! = px' —xi,op g is derived in the

original X-space.

The design optimum from the first deterministic optimizati@s high prob-
ability of violating design constraints, as it does not édasuncertainties. If so, a
shifting vector which starts from MPPIR and points to designableLiy is derived
to compensate the gap between actual reliability and taggjability. Then the al-
gorithm enters a new cycle and the constraint in deterniinilgisign optimization
is revised by the shifting vector. Uncertainties are comi®d adaptively in each

cycle until the decision variable vectgy satisfies the target reliability level.

In this chapter, simulation methods are employed in thelbdity assess-
ment step because it can provide a more accurate probadsiityiation than the
MPP-based method and also because it can handle generabaurfsinctions, no
matter they are linear or nonlinear, explicit or implicibfttions. The probabilistic

constraint evaluation by MCS can be expressed as

N— o N

PF:/IF(x)fx(x)dx:E(l (X)) = lim —ZIF X) (4.5)
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whereN is the simulation sample size, argis the sample distributed with the pdf

fx (x). Ig(x) is an indicator function

1 ifxeF
IF(X) = and F ={x|Gi(d,x) <0} (4.6)
0, ifx¢F

whereF represents the failure domain corresponding to the prolaefimition.

When the sample size i, the failure probability can be replaced by the estimator

A

P as

B =Bl () = £ 3 ¢ () (@.7)

The expectation and variation of tRe are

(1—Pe)R:

E(Fr) =P, Var(Fr) =

(4.8)

The confidence interval for the failure probability® —z4 21/ %, P:
+2q/2 %], which does not depend on the dimension of the input varpable
When the failure probability: is extremely small, however, the MCS approach
is not longer feasible as the required sample size becontiesredy large. In this
chapter, particle splitting, which is an improved sequai¥lonte Carlo simulation
method [19], is employed for reliability assessment anglimiegrated with the first

optimization step of RBDO.

4.3 SORA with Particle Splitting-Based Reliability Anaiys
To assess the extremely small but important probabilittesi@ events, such as
the structural failure probability, subset simulation bagn developed in literature
[4]. We will show how to integrate this technique with RBDOthis section. As
the ultimate purpose of RBDO is to find the optimal settingedign variables, the

rare-event simulation is only one step, but an importarg, stethe optimization
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process. In the SORA algorithm, the reliability assessnemerformed by an
MPP optimization, which is to evaluate the worst case seendsystem reliability.
Here, we replace it with the simulation-based reliabilgg@ssment method so that
the reliability analysis would not be too conservative. @a bther hand, similar
to SORA which employs MPP points to find the shifting vectorirtgprove the
RBDO solution iteratively, we utilize the statistical peapy of sample points from
simulation to find the target probability point (TPP) to defthe shifting vector. As
such, the rare-event simulation implemented in RBDO isedgifit from its typical

applications.

Particle Splitting

Particle splitting method extends the subset simulatioddploying multiple par-
ticles (multiple Markov chain Monte Carlo sampling path&s)enhance sample
diversity. Subset simulation was first proposed in [4] to pate small failure prob-
abilities encountered in reliability analysis of engiriegrsystems. It was consid-
ered for improving the efficiency of MCS in [101]; an innoweimethod called
stochastic simulation optimization and sensitivity asaéywas proposed in [81],

[82];

The main idea of subset simulation is to formulate the snadllife event
probability as a product of larger conditional failure pabilities by introducing
intermediate events. Suppose we need to evaluate a snhadefarobabilityF =
{x: G(x) < G} by simulation, subset simulation derives a sequence oftegerch
thatF; D F--- D Fny=F. Then a series of limit values are generate®Gas- G, >

--- > Gy corresponding to the event sequence. The original failtwbability can
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be expressed as a product of conditional probabilities as

Pe = P(Fn) = P(Fm|Fn-1)P(Fn-1|Fm-2) . . .P(F2|F1)P(Fy)
m-1 (4.9)
= P(Fy) I] P(F+1|F)

wherem denotes the number of subsets. The probaliitys determined by esti-
matingP(F;) and the partial failure probabilitie¥ F_1|F) in two steps: In the first
step, the probability?; = P(F1) = Prob[G(x) < G3] is evaluated by a direct MCS,

SO

s 1%
PlzN—lklepl(xk ) (4.10)

wherelg, (x) is an indicator function which is equal to 1xfe F; and 0 ifx ¢ F.
In the second step, the conditional probabilit®$5.1|F) are evaluated by the
Markov chain Monte Carlo (MCMC) simulation in conjunctiontkv Metropolis-
Hastings algorithm. The conditional probabilRy.; = P(F1|F) = Prob[G(x) <

Gi+1|G(x) < Gj] is estimated by

1 Nit1

P1 Ik, () (4.11)

B Nit1 K=1
where the conditional probability density functié(x|F) needs to be evaluated by

MCMC.
Some specific concerns are:

(1) The starting sample point of subset 1 is from the samples that are in
subset but lie in the failure regiofi. In particle splitting, instead of using a single
starting sample point, multiple starting points of subsefl. are defined as a set of
sample points locating in the failure region of sulis&ach element of the starting
point sample set is referred as a particle and a samplinggpgtnerated from each
particle by MCMC. Multiple particles and paths can enhanomutation diversity

and lead to more stable simulation results.
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Figure 21.Sample size requirement for different coefficedivariation and number
of subsets.

(2) The variation of estimatd#: is evaluated by the approximated coeffi-
cient of variationd = z{il 5|2, i=2,...,m whered = %, P andN; are the
coefficient of variation, partial failure probability anket sample size af" subset,
respectively. For convenience we may sefatb be equal, s® = /R under the

target failure probabilityg, wheremis the number of subsets.

A plot of ¢ versusN; for differentm's or B’s is shown in Fig. 21. Suppose
we would like to achievé® = 0.1, then the partial probabilit} and sample sizh|;
are shown in Table 12, wheM= N; x mis the total sample size. One can see that

the sample size is minimal when four subsets are deployed.

The theoretical minimum sample size can be derived as suchd A

,/% andN; = (1;1?2)“1, we have the total sample size to Ke= N x m= (%l —
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Table 12.Sample Size Requirement for Different Number dfs@ts Wherd = 0.1

m R N N

2 0.0316 61246 12248
3 0.1 2700 8100
4
5

0.1778 1849 7396
0.2512 1491 7455

1)%‘22. Since allP, are the same, i.eB = ¥R, we obtain the following formula,
N = mth”% — P (4.12)
Taking the derivativ%’\r‘1 and set it to be zero, we have
2m—2mPt”%+InF} =0 (4.13)

whenR = 0.001, the solution of above equatiomis= 4.3346~ 4, which matches

the result obtained in Table 12.

Typically once partial failure probabilit,i = 1,..., mare predefined, the
corresponding limit value&;,i = 1,...,m are determined adaptively during the
simulation according to the target partial failure prolibiR. The method men-
tioned above provides only a reference for selecBngince it has some assump-
tions such as equal partial failure probability and setertioefficient of variation
as accuracy measure. In addition, other consideratiorsasithe burn-in duration
and the acceptance rate of MCMC should be included to deterthe number of
subsets. A longer MCMC chain will generally reduce the buratfect and guaran-
tee samples are generated from the target distributiorrefdre, the final selection
of B should be from a comprehensive evaluation of all criterid @mputational

burdens based on specific problems.
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SORA with Particle Splitting-Based Reliability Assesdmen

In this section we introduce the concept of TPP, which, liIKeRIR, is used to con-

structing the shifting vector for improving the SORA soturtito decision variables.

TPP is defined as the sample point that can separate all siarusamples
into successful ones and failure ones, where the ratio loféones to total samples
is equal to the target probability. For example, 1000 sample simulated and
listed in an ascending ordeti, . .., X1000 by their performance values. Then we can
find the 18" sample to be TPP when the target probability i810 Thus the first
10 samples are in failure region since their performanceeghre less or equal
to the TPP measure. The ratio of failure sample%%, which is equal to target
probability level. To enhance the robustness, TPP is defaseithe centroid of a
set of points located between the upper bound and lower bofhe performance
value G, whereGy, is the limit value ofm" subset probability and is the target
probabilistic performance measure. By applying the plarsplitting method, we
evaluate the probabilistic constraint in RBDO by finding gusence ofG; values.

If G, > 0, then the probabilistic constraint is satisfied.

TPP is different from MPP in the following aspects: First, MR an analyt-
ical function-based point. MPP could not be accurate iféhsra large prediction
error in approximated constraint function. TPP is a simatabased point, which
does not need analytical function. As long as the targetagbibiby is given, we
can find the TPP from all simulation sample points. Second?4Rhe worst case
point derived by optimization, it ignores the region thatig of target probability
level but still feasible. TPP can be simulated in any regiod eeflects the target

probability requirement, so it is not as conservative as MPP
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Figure 22.Particle splitting-base

G4 ={G,li=int(Y IV, )}

. ={G,i=imt(p v,)}

d reliability assessime

The flowchart shown in Fig. 22 depicts the algorithm of SOR&wpiarticle

splitting-based reliability assessment. It is explainebbty:

(1) A deterministic optimization problem with constrai@t(d, ux) > 0 is

solved and the solutiopt>((0) is typically obtained on the deterministic boundary

Gi(d,ux) =0.
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(2) As no uncertainties are considered in the determinigtionization, the
current reliability performance qﬂ&o) can be evaluated by direct MSC because it
is relative large comparing with the target failure protigpiN; samples are simu-
lated to obtain the estimated failure probabilityRas= Nil ZEil Ir(Xk). The upper
bound and lower bound of target failure probability &€= R + Zg/2 %

andPt'- —R ~Z42 = H)H

, respectively.

In order to satisfyProb(G < GY) = PY, we find the valuecY = {Gj|i =
int(PY -Nyp)} in the sequencéGy, Gy, ... Gy, ), whereGy < Gy < ... < Gy, Similar
logic can be applied to obtain the val@. A set of samplegx;|G- < G(xj) <
GY,i=1,...,n} are collected betweeB- andGY. Then the TPP is derived as the

centroid of(xi,...,Xn).

(3) Based on the TPP, a shifting vectty = Ux — X-(l-F),PIS derived to mod-
ify the decision variableiyx, so that the TPP is moved at least onto the deterministic

boundary to ensure the feasibility.

(4) Solve the updated deterministic optimization problefthveonstraint

G(d, ux —s®) > 0 and derive the solutiop" .

(5) Given u)((k), the particle splitting process with predefined equ&llgan
be implemented in Fig. 23, wheR&¥ (F;) is evaluated by MCS ar¥ (R |Fy), . . .,
P (Fn|Fn_1) are evaluated by MCMC adaptively.

Based on the samples in thé" subset, we can find the limit valu@y, =
{Gi|i =int(Pn-Nm)}. If Gm > 0, it can be concluded th&lt&k) [G < 0] < R because
P ® G < Gm] = R andGy, > 0. Thus the optimal solutiop&k) is feasible and the
algorithm converges. 16, < 0, it means the actual failure probability is greater

than target failure probabiliti and the current optimal solution is infeasible.
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Figure 23.Particle splitting samples

(6) To derive TPP and moving vector, the upper bound and |deend
of P are derived a®y = Pn+ 242 % and Py, = Pn— Zg 2 %,
respectively. Then the limit valuegy, = {Gj|i = int(PY - Np)} andGk, = {Gi|i =
int(Pk-Nm)} are obtained in the ascending seque@ge< Gy < ... < Gy,,. In
Fig. 23, two dotted curves}y, and Gk, are used to represent the upper and lower

bound ofG(x) = Gy, respectively.

(7) A set of samplegx|Gk, < G(xj) < G, | = 1,...,n} are collected,
which are represented by solid points in Fig. 23. Then aisbiftectors*b =
px &) — x(TkF),P is derived, whereppis the centroid of samples collected above. The
probability of the sequential partial failure events andtsiy vector are depicted
in Fig. 24. The process is continued ur@igl'i) is greater than zero, then the RBDO

optimal solution based on particle splitting is obtained.

Comparing to other RBDO solutions, the proposed SORA wittiigla
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Figure 24. TPP location by particle splitting

splitting approach has the following advantages: Firs,gbquential optimization
method is more computationally efficient than the doublplonethods such as
[27], while it is more accurate than the single-loop methedsh as [48], [76].
Second, the particle splitting-based reliability anadyisia simulation approach to
the probabilistic constraint assessment, which is morerate than the MPP-based
method; at the same time, the particle splitting method awgs the efficiency of
random sampling in the design space. In addition, this amtr@an be easily ex-
tended to handle RBDO problems with multiple constraintghauit significantly
increasing computation burden. Lastly, this approach diegible to implicit con-
straint functions, e.g. a black-box computer model foreaahg product reliability,

as long as the constraint function evaluation is affordable

Extension to RBDO with Multiple Probabilistic Constraints

Simulation-based reliability assessment methods aregmeigl, dimensional free,
but they require a large number of samples in the design $pastimate the prob-
ability. Engineering problems often encounter more thae probabilistic con-
straints. In this section, we discuss the extension of thiacpe splitting-based

approach to the RBDO problem with multiple constraints. Rt taking addi-
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tional samples to assess more constraints, we share thdesaampong multiple
constraints by combining multiple constraints into onestaaint. Thus the compu-
tation of a complex RBDO problem with multiple constrainted not significantly

increase comparing with the problem with a single constrain

Suppose we have an RBDO problem with two probabilistic qansisP =
Prob|G;(x) < 0] < R, andP = Prob|G,(x) < 0] < R,, whereR, andR, are target
failure probabilities, respectively, to the two consttainMe can obtain the optimal

solutionuy by iteratively solving following deterministic optimizah problem,
Minimize f(d, ux)
Subject toG; (d, ux —s1) >0 (4.14)

Ga(d, ux —s2) >0

The patrticle splitting method is applied on evaluating tbenbination of
two probabilistic constraints. SuppoBeob[G1(X) < 0] = P(A) andProb[Gy(x) <
0] = P(B), then the joint probability oAB s given byP(AB) = P(A)P(B|A), which
is the same aBr = Prob[G; < 0,G; < 0] = Prob[G; < 0]Prob[G; < 0|G; < 0].
We apply the particle splitting method on assessing the jmiabability and the
probability of the first constraint. IP- assessed to be less thBp x R, while
guarantee the probability of the first constraint less thguown targefrob[G; <
0] < R,, then the probability of the second constraéfmob{G, < 0|G1 < 0] <R,
will be automatically satisfied. In RBD@; andG; are two performance functions
to describe two different aspects of the product or systeirso AothG; < 0 and
G, < 0 are rare events, the result @b < 0 takes very little effects o1 < 0.
Thus we can assunt®; < 0 andG; < 0 to be independent, thé?rob|G; < 0] =
Prob|G; < 0|G1 < 0] < R, is satisfied.

Suppose the target joint failure probabilityfs= R, x R, andm subsets
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are employed based on the scalePof For the purpose of convenience, we set
equal partial failure probability for each subset, iB.=P,=--- =Bn= VR =
VR YR,

In the first subset, MCS is used to simulatesamples. A critical valu&i
is obtained to satisfiProb[G1(x) < Gﬂ = r\"/PT thenN;; = N; "Q/PTl samples have
the G values to be less tha@% in all N; samples. Similarly, a second critical value
G is obtained to satisfProb[G, < G3|G1 < Gi] = {/R, in all N;1 samples. Thus
the partial failure probability of the first subset®§F;) = Prob[G; < G1,G;, <
G3] = Prob[G; < Gi]Prob[G; < G}|G1 < G}] = Py. By setting the partial failure
probability and limit values in this way, we can guarantezghrticle diversity since

P1 x N1 particles are selected to generate sample paths in theuleséts

From the second subset, the conditional probabiitly . 1|F) is evaluated
by MCMC as shown in Fig. 25. When ath subsets are evaluated, we can get the
first constraint a®rob[G; < G| = Prob[G; < G}|Prob[G; < G2]---Prob[G; <
Gl = (”\’/FTl)m = R,. The joint probabilityProb/G; < GI',G, < GJY] = ({/R; -

WR,)™ =R, -R,. Thus ifG' > 0 andG}' > 0, all constraints are satisfied.
A generic conditional probability formulation if" subset is as follows:

I:)I == P(Fi“:i—l) - PrOb[Gl < Gi]_’Gz < Glan < Gln“:i—l]
= Prob|G; < G}|F_1]Prob[G; < GGy < G, F_1]

| | | (4.15)
---Prob[G, < G|Gh_1 < G,_1---G1 < Gy, F_1]

To derive the TPP of each constraint, we follow the similavgedure as
in Step (6) and (7) in Fig. 22. A set of samples are located éetwthe upper

bound and lower bound @' andG%'. As shown in Fig. 25, a set of samples for
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Figure 25.Particle splitting samples in multiple consitsii

constraintG; are represented by the solid dots and cross circle pointaaather

set of samples for constraif®, are represented by the star and cross circle point.
Thus TPPs are obtained by calculating the centroid of eatlofseamples. In
particular, the cross circle falls in failure region andsed to calculate TPP for both

constraints. If the targeted failure probabilities canmesatisfied, shifting vectors

S:(Lk+1) _ Hx(k) . X'(rkF))Pl or Sgk+1)

algorithm enters a new cycle and is continued uptdb[G; (X) < 0,G2(X) < 0] <

= pux® — X(TKF),F,2 are derived, respectively. Thus the

R, x R, andProb[G(x) < 0] < R, are satisfied.
4.4 Examples

[-Beam Example

The same I-beam RBDO problem in Section 2.5 is solved by thR/A®ith par-
ticle splitting in this section. First, the deterministiptonization loop is solved

using genetic algorithm (GA), in which the initial populatisize is 1000 and GA
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Table 13.Solution Steps by the Particle Splitting-Basegrdpch

Cyc. Method (U1, U2) Obj TPP P Event Samples
No.
1 MCS (43.26,0.92) 117.17 (38.05,0.96) 0.497 1 %10
2 PS (47.42,0.93) 130.24 (41.99,0.97) 0.0025 3 310
3 PS (48.14,0.93) 132.40 0.0009 3 310

iteration number is set to be 3. Second, the reliability ysialloop is solved by

particle splitting. Since the target failure probabilityli3 x 10~3, the failure event

is subdivided into three sequential partial failure eveimtsvhich the failure prob-

ability is predefined td? = 0.1 for each subset. In order to keep the coefficient of

variationd to be about 0, 1 samples are taken in each subset. The failure prob-

ability of the first subset is evaluated by MCS, and ¥@.1 = 100 particles used

to generate the subsequent sampling path. In the followugsubsets, MCMC

in conjunction with the Metropolis-Hastings algorithm imgloyed. Three cycles

are implemented in particle splitting-based decoupleglapproach to obtain the

RBDO optimal solution, which is shown in Table 13.

In each cycle, a shifting vectar= u — xypp is derived if the failure prob-

ability is greater than the target failure probability. &fthree cycles, the optimal

solution(48.14,0.93) with the objective value of 1320 is obtained.

The accuracy and efficiency of the particle splitting-baapg@roach are

compared with the MCS-based method (ground truth) and the-kdsed method

in Table 14. It is indicated that the optimal solution givengarticle splitting is

very close to the ground truth by MCS. Particle splittingyotalkes 3x 10° samples

to evaluate the target failure probability0013 in one cycle unde¥ = 0.1, while

MCS needs to take about18amples to evaluate the same target failure probability
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Table 14.1-Beam Accuracy Comparison

Method 1 U>  Objective
MCS(ground truth) 4858 0.92 132.14
Particle splitting 48.14 0.93 132.40
Decoupled-loop (SORA) 49.73 0.92 135.16

underd = 0.1. Thus the efficiency of particle splitting is much highettwsimilar

accuracy.

SORA is an MPP-based method. Table 14 shows that the optohaian
given by the particle splitting algorithm is closer to the@gnd truth comparing to
the SORA solution. The efficiency of particle splitting-bdsapproach and SORA
can be compared by their sample sizes and computation tim&ORA, the reli-
ability analysis step is converted to an optimization by PNtAemploys GA with
3 iterations, where 1000 initial samples are taken in eagfatibn. 9000 samples
are taken in three SORA cycles, and the computation time isn2tes in Matlab
2010B. In the particle splitting-based method, each sufesptires 1000 samples
as shown in Table 13. There are 7000 samples being takeneia tiycles and the

computation time is 5 minutes in Matlab 2010B.

An Example with Multiple Constraints

In order to show the application of the particle splittingskd reliability analysis
approach on multiple probabilistic constraints, a widedgdinumerical example in
[76], [65], [39], [45], [40] is employed here. It has two rad variables and three
probabilistic constraints. The results are compared Viighground truth and other
existing approaches, including SORA, double-loop meth@svl) with PMA,

traditional approximation method (TAM), single loop siaglariable (SLSV), mean
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value method (MVM), and two-level approximation method A)LThe problem

formulation is:

Minimize: f(u) = iy + o

2
Subject to:Prob[G1(x) = % -1>0 >Ry
)2 e 19)2
ProblGy(x) — XX =51 (=X =197 . 55 o
80 '
Prob[Gs(x) = —————-1>0 >R
[3(> X%+8X2+5 _]_3

0<p1<100< <10
X1 ~ N(H1,0.3%), X5 ~ N(p12,0.3?)

where three reliability leveR; = R, = Rz = 0.9987, thus the target failure proba-
bility is 0.0013.

Table 15 shows the solution when the particle splittingeblagliability as-
sessment method is applied on this example. The first cyaedkiated by 19
MCS samples since the target failure probability is apprated to be &. The
second and third cycles are evaluated by patrticle splitfifige coefficient of vari-
ation o is selected as the estimator accuracy criterion as in [4BjceShe target
failure probability is 00013, we will have three subsets if we set the partial fail-
ure probabilityP(F;) = P, =~ 0.11, P(R|F1) = P, = 0.11, P(Rs|R) = P3 =~ 0.11
and P(F)P(F|F1)P(Fs|F2) ~ 0.0013. Under the level 06 = 0.1, 1G* samples
are taken to estimate the target probabilitf 10 According to the result from
the first cycle, the constraimrob[Gs(x) > 0] ~ 0 since the decision variable
is far from the constraint oGz as shown in Fig. 26. Thus the constraint@4
can be dropped and we only need to consider constrain® @nd G,. We set
Prob[G, < 0|G; < 0] ~ 1/0.11 = 0.33 andProb[G; < 0] ~ 0.33, so thaP(F;) =

Prob[G; < 0|G; < O]Prob[G; < 0] ~ 0.11. After three cycles, the optimal solution
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Table 15.Results by the Particle Splitting-Based Approach

Cycle (U1, U2) Objective Method Events Event Target samples
probability
1 (3.1068,2.1008) 5.2076 MCS 1 0.5 310
2 (3.3185,3.2192) 6.7064 PS 6 0.33 x 60°
3 (3.4374,3.2719) 6.7093 PS 6 0.33 x 603

achieveq3.4374 3.2719 with the minimum objective §093.

In Fig. 26, the optimal solution of the particle splittingg®ed reliability as-
sessment approach is denoted as a cross sign from Cycle thIyEach optimal
solution has a circle region where .89% samples are located. If the current op-
timal solution is feasible, the circle region should be irgd in the deterministic
feasible region byz; > 0, G, > 0 andGz > 0. From Fig. 26 we can see the circle
of Mu Cycle 3 is completely included in the deterministicSdde region, thus the

optimal solution in Cycle 3 is feasible.

The true solutiony = (3.4106 3.1577), with the objective value of 6683

is obtained by the double-loop Monte Carlo simulation applo From Table 16 we
can see that particle splitting-based approach can giveamnate optimal solution
which is very close to ground truth. There are® 8dmples taken to estimate the
each partial event target probability33, and totally 13 x 10* samples are taken

in three cycles. In MCS, Fasamples are required to estimate the target probability
1.3x 10~2in Cycle 2 and Cycle 3 under thie= 0.1 level, and the total sample size
could be over 2 10°. Thus the efficiency of particle splitting-based approach i

much higher than MCS.

In Table 16, the particle splitting-based approach is caegbavith other
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Figure 26.Particle splitting optimal solution

existing popular RBDO methods [65]. It is indicated that tdpgimal solutions by
DLM, SLSV, TAM, TLA, MVM, SORA and SLM are more conservativean the
optimal solution by particle splitting-based approache@nportant reason is that
these methods make approximations of constraint functionsliability assess-
ment. For examples, SORA has a first-order reliability met(f@ORM) approxi-
mation in reliability assessment; TLA uses a reduced secodédr approximation
in the first level and uses a linear approximation in the sédewel. In reality, the
true constraint function can be highly nonlinear, so loweleo approximation can-
not capture the irregular function shape very well. Thegg@pmations usually
lead to inaccurate optimal solutions, either conservainiafeasible. The solution
given by patrticle splitting-based approach is the closest to the ground truth.
However, the particle splitting-based approach is a sitraianethod, so its com-

putational efficiency is lower than other methods.
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Table 16.Comparing Accuracy of the Solutions by Differerdgthbds

Method Objective Overall constraint evaluations Itenasio

PS 6.709 1.310° 3
DLM 6.737 636 5
MVM 7.148 72 5
SLSV 6.729 156 5
TAM 6.733 372 5
TLA 6.732 60 4
SORA  6.732 455 5

4.5 Conclusion and Future Work

In this chapter, a new simulation-based reliability anialygpproach, the particle
splitting method, is introduced to be integrated with traglitional sequential opti-
mization method to solve RBDO problems. The simulationeldgsrobability esti-
mation is typically more accurate than the worst case arsadygsin the MPP-based
solutions, but it is more computationally intensive. Inertb reduce computational
burden and to enhance efficiency, we propose to use thelpampiitting rare-event
simulation method to replace MCS. Comparing to other rassesimulation meth-
ods, particle splitting uses multiple particles to enhaheesimulation diversity and
consistency. In addition, this approach can be extendeddceas problems with
multiple constraints without significantly increasing gdensize. The strength of
our proposed method lies on that we combine the merits of S@fRAsimulation-
based reliability assessment such that it can provide abadbsolution, which is as
accurate as the Monte Carlo simulation method, but withttyreaduced number

of samples.

As mentioned in Section 4.3, the total sample size in parsglitting is

equal to the product of number of subsets, number of pastatel the length of
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MCMC chain. Typically, the more subsets we have, the fewensas are required
in each subset evaluation since the partial probabilitygbér; the more particles
in one subset we have, the larger simulation diversity it bel the longer MCMC
chain is, the closer it will get to the target distributiorh€eltrade-offs among these
three factors should be further investigated, especiallycobmplex RBDO prob-
lems, e.g., RBDO with multiple objectives and/or multiptastraints. In addition,
as mentioned in Section 4.2, subset simulation is one typrefevent simulations.
In future work, other rare-event simulation methods suchressampling can be

employed in reliability analysis in RBDO.
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CHAPTER 5

RELIABILITY-BASED ROBUST DESIGN OPTIMIZATION UNDER

IMPLICIT PERFORMANCE FUNCTIONS
5.1 Introduction

At the stage of product design and development, RBDO is usaddress various
uncertainties and improve product quality and reliahiliyom the point of view
of mechanical engineering, the main task of RBDO is to keeppttoduct design
safe or reliable under the minimum production cost. Howetraditional RBDO
formulation and method have two drawbacks: First, most RBD&hods do not
consider the impacts of noise variables in solving the bl Although the ran-
dom parameters or noise variablesre formulated in the performance function,
they are often replaced by their mean values or ignored pthpose of simplic-
ity. Actually, two main issues can be considered based ondise variables [69]:
One is the design feasibility since the effect of variatiolig to noise variables
will lead to feasible region shrinkage. The other one is thedmitted variation of
performance function due to noise variables. Second, tiectie cost function
in RBDO only considers the production cost. However, thadnaitted perfor-
mance variation will cause the potential cost due to quédisg, which is the cost
of quality-related efforts and deficiencies. In order tordase the impacts of noise
variables on both quality cost and design feasibility, sibdesign is introduced
to address both feasibility robustness and objective toless. Thus a reliability-
based robust design optimization (RBRDO) problem is predas product design

under implicit performance functions.

Robust design, first proposed by Taguchi, is an approacmiprdving the
quality of a product by minimizing the effect of the causesariation without elim-

inating the sources of variation [22]. Taguchi said robesthwas the state where
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the product or process performance was minimally sengit&ctors causing vari-
ability [68]. The key reason why impacts from uncontrol&hbise variables could
be minimized lies in the existence of interactions betwemntrollable design vari-
ables and uncontrollable noise variables. Thus the okgeofi robust design is to
select design variables to minimize the variability imppodduced by the noise

variables, and make the objective performance response tddhe target value.

To encompass noise variables in robust design, one methtwdassign
probabilistic distributions to noise variables. Apley 2] [assigned normal dis-
tributionsN ~ (Lp, OFZ,) to noise variables, then the performance response was also
viewed as probabilistic; Tang in [83] assigned probahdigistributions to noise
variables and derived a robustness index measure. Therotthod is to employ
non-probabilistic methods such as worst case analysisgB®moment matching
method [22]. Xu in [87] employed worst case analysis of maximdesign pa-
rameter deviatiod\p, and proposed the robust design model based on maximum
variation estimation. Under the consideration of noisealdes, three typical ro-

bust design theories were proposed [68, 69]:

1. Taguchi method- In the early design stage, Taguchi provided a three-stage
design: system design, parameter design and toleranagnd&$i in which
parameter design was the most important and used to deriirealesign
parameters to satisfy the quality requirement. Compariitly @rdinary op-
timization, Taguchi’s method accounts for the performavargations due to
noise factors. Suppogs;(x,p;i) is the performance function, whereand
pi are controllable variables and noise variables, respaygtiVA signal-to-
noise ratio (SNR) is proposed to measure quality loss in dlaigmethod as

in Equation 1.1. In order to maximize SNR, design of expentagDOE)
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techniques are employed to assign the control factors ta@erenental ma-
trix. By evaluating different designs, the best conditiam de selected from
the full combinations of control factors. However, the ogbnal array and
design variables in Taguchi method are defined in discreteespnd difficult
to be extended to wide design range. Also it is not efficientaftarge size
problem since the full combinations are costly. In additiargeneral prod-
uct design may have many design constraints which may noblved by
Taguchi method. To overcome the above disadvantages,troptisization

is proposed.

. Robust optimizatior- Robust optimization (RD) approach explores the in-
herent nonlinear relationship among the design variahlase variables and
product performance. By introducing a well-developedmptation model,
RD achieves the objective of optimizing the performancemsa minimiz-
ing the performance variation. It is a cost effective andcedfit method to
reduce the transmitted performance variation without ielating the varia-
tion sources and suffer smaller quality loss. A generic foffRD model is

given as follows:

Minimize Var[G;(d,x,p)]
Subject toE[Gi(d,x,p)] > Ty i=1,2,...,m (5.1)
d- <d<d’, uy <px < pg.up < pp < pp
whereG;i(d, x, p) is theit" product performance function, aN@r[G;(d,x, p)]
represents its variance and can be considered as quaktyrieasureT; is
the given target performance for tff8 performance function. The robust

design objective, quality loss function, can be measurethbgy methods,

for examples, a performance percentile difference methasl pvoposed in
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[60], in which the performance variation was expressed lysitread of its
PDF; a robust index derived from the acceptable performaadation was

proposed in [47]; a coefficient of variation measure was &y in [1].

3. Robust design with axiomatic approaef he axiomatic design was first pro-
posed by Suh in [79, 80]. Two fundamental axioms were praVidethe
framework for robust design: The independence axiom wad tsenain-
tain the independence of functional requirements; thamédion axiom was
used to minimize the information content in a design. Angré¢ion design
optimization framework of robust design, axiomatic desagd reliability-
based design was proposed in [77]. A review of robust desigaxiomatic

design was given in [68].

Our research contributions are: Firstly, the quality losgctive of robust
design is integrated into RBDO to formulate an RBRDO probl&acondly, dif-
ferent from traditional RBDO problems with explicit perfoance functions, we
consider implicit performance functions in formulatingdesolving RBRDO prob-
lems. The metamodels are used and updated by a sequentiatdtibn-based
sampling approach. Finally, we extend the sequential Sagplpproach to ad-
dress both random variables and random parameters (orvasiables) in order to

improve RBRDO solutions.

The remaining part of the chapter is organized as followscti&e 5.2
presents an RBRDO formulation with implicit performancedtions. Section 5.3
proposes a sequential sampling approach to improve batdbilély and robust-
ness in RBRDO problem. Section 5.4 illustrates the proposethod by I-beam

example. Section 5.5 presents the conclusion and futurk. wor
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Figure 27.Noise variable impacts on performance function

5.2 Reliability-Based Robust Design Optimization

As mentioned in Section 5.1, RBDO concentrates to guardhtedesign feasibil-
ity by probabilistic constraints under the existence ofl@n variables. The design
objective is to minimize the production cost, but it does at¢mpt to minimize
the performance variation transmitted from the noise We® A comparison be-
tween optimization solution and robust optimization siolois shown in Fig. 27, in
which both decision variablgs; andpg can achieve the same performance value.
However, the performance value derivedigyis insensitive to the fluctuation from
noise variablg. Thus the goal of robust design is to find a set of decisiorattes
d, ux, in which mean performance value can satisfy target réliglvsequirement
and the variability produced by the noise variables can bemized. It is our be-
lief to consider two major paradigms reliability and romests together in a united

RBRDO formulation.

88



RBRDO Formulation
In order to integrate robustness and reliability, a formakais proposed as follows:

Minimize E[f(d,x,p)]
Minimize Var[G;i(d,x,p)]

(5.2)
Subject toP[Gj(d,x,p) >0 >R i=1,2,....m

d- <d <d' pk < px < py ps <pp < pd
whereE[f(d,X,p)] is the expectation production cost objectivkar(G;(d, x,p)] is
transmitted performance variation produced by noise kgaand is employed to

represent quality loss objective. In this chapter, Deltdhoe [69, 68] is used to
estimatevar[G;i(d,x,p)] as

Var(Gi] = (ZGJ 0x,>2+ z (ZGJ 0p,>2

[G/ (kx;)]?0%, + z G (k)05

]

(5.3)

i

HMQ HM

whereVar[G;] is a function ofuyx and is denoted a€(ux). nx andnp are the
number of random variables and noise variables, respéctiiiis expression does

not assume underlying distribution feandp.

Under the formulation of multi-objectives, the optimalsobn of RBRDO
is known as a Pareto set or Pareto frontier, which denotesrdide-off between

production cost and quality loss.

89



Sequential Optimization and Reliability Analysis (SORARBRDO

In this chapter, SORA is extended to solve an RBRDO problegtetarministic

optimization loop is first solved as follows:
Minimize f(d, ux)
Minimize V (px) (5.4)

Subject toG;i(d, ux,up) >0 i=12,...,m

Based on the design varialliy and givenoy, the X-space is transformed
to U-space. Then another optimization loop in Formulatidh i8 solved in U-
space by PMA, the optimal solution is the inverse MRIRHp) locating on the
targeted reliability surface. Then we can find the R-peite@® = G(uypp). If
GR = G(umpp) > 0, design variablgiy is feasible and it is the final optimal so-
lution; otherwise, a shifting vectas® = ux® — x\L. derived in Formulation
3.7, is used to modify the current decision variable. Thewtlgm continues until

GR(d,xmpp) > 0 in some iteration.

In this chapter, RBRDO is solved with implicit performanesétion and
metamodel-based approach is used. Thus performancednis replaced by a
Kriging metamodel(3, which is constructed based on samples by conducting com-

puter experiments.

5.3 Sequential Sampling Strategy in RBRDO Under Implicifé¥enance
Function
In order to obtain an RBRDO solution, a multi-objective optiation needs to be
solved, in which probabilistic constraints evaluation nteyminate the computa-
tional effort. The decoupled-loop methods such as SORA Isageepted because

of the high efficiency and good accuracy. However, traddld@ORA only deals
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with problems with explicit performance (constraint) ftinas. Also the transmit-
ted variation of performance function due to noise varigligenot considered. In
this section, a sequential sampling approach is proposadblieess epistemic uncer-

tainty due to implicit performance function and improve wdution of RBRDO.

Hybrid Design and Combined Metamodel in RBRDO

A hybrid design is proposed in this chapter to build a Krigmgdel to consider
both random variables and noise variables. In particulagtan hypercube sam-
pling (LHS) [56, 36] is employed for controllable variablggice it is efficient for
a complex computer model. A factorial design [59] is emptbf@ noise variables

or random parameters, since it can highlight the impact cfenzariables.

Due to the existence of noise variables, the approximatddnpeance model
in this chapter is a combined metamodel of several Krigingle®under different
design levels of noise variables. For the purpose of sintpligne noise variabl@
with two levels—1 and+1 is considered in this chapter, then we have the combined

metamodel as:

. 1—D -~
G(x,p) = =26 () +

6. (x) (5.5)

where é_(x) is the Kriging model built on the Latin hypercube samplesamnd
p=-1, andé+(x) is the Kriging model built on the Latin hypercube samples
underp = +1. Herep= —1 andp = +1 represent the valugs — op andip + op,

respectivelyup is the value of the center poipt= 0.

Expected Improvement Criterion

A Kriging model is constructed based on the samples from yheith design. The-
oretically, the more samples are taken, the closer the ikgighodel would get to

the true model. In reality, the metamod&has prediction errors since only limited
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samples are available due to cost or computation effort.pFediction errors ofs

are different from area to area. Areas with more samples taadler prediction
errors and areas with fewer samples have larger predictionse Thus areas with
fewer samples have the potential of containing true MPReatsbf current mini-
mum point. The EI criterion in Section 3.3 is extended in #@stion to tackle a

multi-objective RBRDO problem with implicit performancerictions.

RBRDO Solution by Sequential ElI-Based Sampling Strategy

Based on the performance variation measure mentioned to8déc2, Formula-

tion 5.3 is used to represent the quality loss. A weighted appmoach is employed
to consider production cost and quality loss simultangoushen a pareto fron-
tier is generated by different weight combinations. To adersthe impact of noise
variables, the combined metamodel is proposed and Eliorités used to add new
samples to update the combined metamodel. The detailedsggjLEl-based sam-

pling RBRDO strategy in Fig. 28 is as follows:

(1) Assignm different weight combinationsi and 1— wgp to production
cost objective and quality loss objective, respectivelynder eachwg value, an

optimization problem with weighted sum objective is solved

(2) Similar as in SORA, an optimization problem is first salweith deter-

ministic constraints as:

Minimize wo f (d, tx ) + (1 —wo)V (Ux)
(5.6)

Subject toG¥(d,x, p) > 0

where GX = 12PGK (x) 4 12PEX (x) is the combined metamodel K\ iteration.
P<1a

Since 0< ;2 1P nd%P 4+ 1P =1, GXis a linear combination o and

GK. ThenGX > 0 is guaranteed iGX > 0 andGK > 0. Thus we can reformulate

92



Initial Samples by Cross
Array Design

Pareto number

— - _ — 0
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Min w,f(d,p)+(1- wO)Var(Gk)
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Gl(d,py =s.)20
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Min G*(0)

G

vy min

[ dw ]

m+1

Figure 28.RBRDO algorithm
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the optimization problem as follows:
Minimize wo f (d, tx ) + (1 —wo)V (Ux)
Subject toG¥ (d, ux —s_) >0 (5.7)

G (d,ux —s:) >0

According to Equation 5.3, the quality loss representedéysmitted per-

formance variation is:

Var(G) = (g—(j>2|ux7upaxz+ (g—(s)szwag

1-ps 14pas 12 1. 1. 12

:[ 5 G+ = G/+] |ux,upaxz+[§G+—§Gf} wcwop 8
_ 1"/ 1"/ 2 2 1. 1. 2 2

= [561 () + 58 ()] "ox?+ [564 (ux) — 56- ()] o2

Two constraints are considered, in whiéh andG_. are built on the Latin
hypercube array samples wheis on low level and high level in the factorial array,

respectively. The optimal solution is a vector of decisianableLiy .

(3) Givenuyx andoy, the original X-space can be transformed into the stan-
dardized U-space. To derive inverse MPP, PMA is employeterfdllowing opti-

mization problem as:

Minimize G_ (u)
(5.9)
Subject to|| u |[|= Brarget

where two parallel optimization problems are solved in Rdation 5.9 under mod-
elsG_ andG; in this step, respectively. Two MPRypp_ andxypp, are derived
from the respective optimization problems under andG,. However,G_ and
G.. are only constructed based on the initial hybrid design aag mot be accurate
enough. Then El criterion is employed to locate additioaatgles which make the

largest expected improvement around current MRE->_ andxypp, , respectively.
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Similar as in [100], in order to achieve the global minimunpodar coordinate sys-
tem is employed so that the above two optimization probleragransformed to

two unconstrained optimization problems as:

Minimize G__ () (5.10)

The optimal solution®ypp_ and Bypp, are transformed back to bgpp_
andxvpp, in X-space and evaluated by computer experiment, then tinerdumini-
mumGyjin andé,\,.in+ are obtained and added to the original sample pool to update

the Kriging metamodel&_ andG., respectively.

(4) In order to find additional sampling points and decreaseprrediction
error in the neighborhood of current MPRnd MPR_, two maximization problems
are solved to locate the samples which make largest expeofgdvement orG_

andG, function estimation.

A

. Gmin_ . —G_ Gmin . —G_
Maximize Grsn G- oSGty o p(Cmn—Cu)
’ ’ Sf7+ Sf7+

(5.11)

After solving the two optimization problems in Formulatiéril, the max-
imized EI sampling points are added into the original hyliédign sampling pool
and used to update the respective metamo@eland G,. Step (4) is repeated
until the maximum Els 06_ andé+ are both less than a stopping criterion, which
means that the prediction errors 6f. and G around the global minimum are
small enough, so the current minimum®f andG,. are closer to the true global

minimum.

(5) MPPs are derived based on the updated metam@detsdG... If both

Gupep. >0 andGMpp+ > 0, thend and ux are the desired optimal solution under
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current weightwy. If any of Gupp  and Gupp_ is less than zero, the respective
shifting vectors_ = Lx —Xmpp_ Or Sy = LUx — Xvpp, are derived to modify the

deterministic constrair_ andG, in Step (2).

(6) As mentioned in Step (1)n weight combinationsvp and 1— wp are
proposed, thusn optimal solutions are derived with different productiorstob-
jective and quality loss objective values. In particuldre optimal solution in
ith i = 1,...,m iteration is compared and added into pareto solution setig i
proved to be a non-dominated optimal solution. Finally,rah-dominated opti-
mal solutions considering both reliability and robustnassin the pareto solution

set.
5.4 I-Beam Example

The I-beam example in Section 3.4 is used in this section pdadment the RBRDO
formulation under implicit performance (constraint) eépiaic uncertainty. In order
to consider robust design, the vertical IoRds considered to be a noise variable
which follows normal distribution withup = 60kN and op = 10kN. The lateral

loadQ is assumed to be constant0for the purpose of convenience.

Two objectives are considered in the I-beam example. Theofxjgctive is
to minimize the beam material cost, which is derivedf §3) = 21 o + p2(H1 —
2Up) =3y — 2u22. The second objective is to minimize the quality loss of perf
mance function. An implicit bending stress performancecfiom is considered in
this example, thus a hybrid design is used to obtain iniiaigles including a Latin
hyper cube design of; and X, and a factorial design with low levél = 570 and

high levelP = 630. Based on the initial sampling points, a combined metkt®
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is constructed as follows:

_630-ps p—570 4

G(x,p) = —55= G- (¥ +—5—G+(X) (5.12)

where é,(x) is the Kriging model built on the Latin hypercube samplesamd
p =570, andé+(x) is the Kriging model built on the Latin hypercube samples
underp = 630. In the objective function, quality loss from transexitperformance
variation is considered as the functionof, u, and up and represented by Delta

method as follows:

V() =Var(©) = (22100) "+ (Sl snr)’

B 630—p 4, p—570~, 12 2 1. 1. 12 2
_[ 50 G_L + 60 GJJ | i, p1p O +[@G+ @G—] | i kp TP
_1"/ ] 1A/_2_2 1 A _ 14 _22
= [56L () + 564 (w)] 0+ [ 6. () — £56- ()] 0B

(5.13)

wherei = 1,2 respective to random variablegsandxo.

One probabilistic constraint is considered in the examplB[&(x1,X2) >
0] > R, whereG(x1,X2) is the implicit performance which denotes the threshold
o = 0.016N/cn? deducted by the actual bending stress. Then the formulafion

RBRDO becomes:
Minimize: (i, to) = 3piplz — 2445
Minimize: V (U1, U2)
] (5.14)
Subject to:Prob[G(x1,X2) > 0] > 99.87%

10<p; <80,09< p <5
Following the procedure in Fig. 28, a set of weighisand 1— wg are as-

signed to combine the two objective into a weighted sum siofljective, where

the pareto number is set to be 100 in this example. A hybritchdes employed
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Table 17.Initial Samples by Hybrid Design

LHS Factorial LHS Factorial

X1 X2 G_ (CT No. X X2 G_ (CT
32.11 2.63 0.0046 0.003411 80.00 3.06 0.0146 0.0145
24.74 090 -0.0332 -0.038412 28.42 1.76 -0.0045 -0.0066
65.26 2.19 0.0131 0.012813 39.47 4.35 0.0111 0.0106
10.00 3.71 -0.1643 -0.182514 21.05 4.57 -0.0062 -0.0084
61.58 3.27 0.0137 0.013615 76.32 1.33 0.0127 0.0123
50.53 5.00 0.0135 0.013216 68.95 4.78 0.0147 0.0146
5421 4.14 0.0135 0.0132 17 13.68 1.55 -0.1002 -0.1121
72.63 3.92 0.0146 0.014518 43.16 1.98 0.0084 0.0077
35.79 3.49 0.0088 0.008019 46.84 2.84 0.0113 0.0109
57.89 1.12 0.0091 0.014520 17.37 2.41 -0.0338 -0.0388

- pd

and 40 samples are generated in Table 17 to build the metar@odEhen a de-
terministic optimization is solved by using GA with 100 iaitpopulation and 10
iterations, and a vector of decision varialple and i, is derived. The reliability
analysis is implemented for the implicit performance fims of G_ and G in,
respectively. We set the stopping criterion of sequentidddsed sampling strategy
to be maximunkl < 0.05. Once both MPP and MPR. are satisfied, the optimal
solution(p1, Up) is considered as a Pareto optimal solution candidate aralgbe
rithm enters the next iteration with a new set of weights. fdeo to achieve the
trade-off between material cost and quality loss, the gublss objective is multi-
plied by 1& to keep two objectives in similar scale level in this examjilee final
Pareto solution set is shown in Table 18, in which the two cbje values and the

corresponding weighty are indicated.

Comparing with the traditional RBDO with implicit performee function,
the optimal solution in RBRDO is a Pareto frontier not a sengbtimal solution in

Fig. 29. As indicated in Table 18, when weighg is equal to 100, the robustness
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Table 18.Pareto Solutions for I-Beam Design

Wo 1 U2  Material cost Increase% Quality loss Decrease%

1.00 50.24 0.91 136.10 - 1.88 -

0.69 49.94 0.93 138.09 1.46% 0.52 72.34%
0.65 51.41 0.91 138.37 1.67% 0.48 74.47%
0.63 49.77 0.94 138.87 2.04% 0.45 76.06%
0.43 51.86 0.91 139.37 2.40% 0.39 79.26%
0.19 48.45 1.02 145.90 7.20% 0.38 79.79%
0.13 54.33 0.93 149.44 9.80% 0.33 82.45%
0.05 53.07 0.98 154.67 13.64% 0.23 87.77%
0.02 47.86 1.29 182.98 34.45% 0.14 92.55%
0.00 36.96 2.47 261.62 92.23% 0.09 95.21%

objective is ignored. Thus the traditional RBDO optimalutimn is (50.24,0.91)
with material cost 134.0 and quality loss.88. When we change the weight, other
non-dominated solutions are derived, in which the mateoat is increased and
guality loss is decreased. Although the absolute value dénah cost increase
and quality loss decrease cannot be compared due to diffemererical scales, the
increase and decrease percentages compared with tratiR&DO solution are
listed in Table 18. Based on the trade-off between mateoist increase and qual-
ity loss decrease, the optimal soluti@1.86,0.91) is the desired solution that con-
siders both reliability and robustness simultaneouslwhich a maximum 7@85%
decrease is obtained totally withd®% material cost increase and.Z8% quality

loss decrease.
5.5 Conclusion and Future Work

In this chapter, an RBRDO problem is proposed in produciphesith implicit per-
formance function. The quality loss objective is integdateto traditional RBDO
problem to add performance robustness consideration.dier o evaluate the im-

pacts of noise variables, we employ the hybrid design andtoact a combined
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Figure 29.RBRDO Pareto frontier

Kriging metamodel. Then a sequential sampling approacm@®&yed to update
the metamodel and improve RBRDO solutions. Finally a Pasekation frontier is
derived to make a trade-off between production cost of RBD@ guality loss of

robust design.

The RBRDO formulation in this chapter only handles one penmce
function, but there are typical multiple performance fums in realistic engineer-
ing design. In future work, multiple quality characteristiare required to measure
different product performances, and the interactions betvithem should be further

developed.
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CHAPTER 6

CONCLUSION AND FUTURE RESEARCH
6.1 Conclusions

This dissertation proposes methods and formulations afymodesign optimiza-
tion under epistemic uncertainty. Two major aspects of pecodesign optimiza-
tion, reliability and robustness, are addressed by RBDOrabdst design, respec-
tively. A comprehensive review of uncertainty includingatiory uncertainty and
epistemic uncertainty is proposed in Chapter 2. The maitribortions of the dis-
sertation are the metamodel-based approximation methwdisienulation-based
methods in solving RBDO under epistemic uncertainty of isiptonstraint func-
tions. By extending the metamodel approximation methdustabust design is in-
tegrated with RBDO to formulate an RBRDO problem under igipperformance

functions.

In Chapter 3, a sequential sampling strategy is proposedidoeas the
RBDO problem under implicit constraint function. Based e Kriging meta-
model, an ERI criterion is proposed to select additionalamand improve the
solution of RBDO. The sampling strategy focuses on the rmghood of current
RBDO solution and maximally improves the MPP estimationis Iproved to be
more reliable and accurate than other methods such as M$delsampling, lifted

response function and non-sequential random sampling.

In Chapter 4, a new simulation-based reliability analygigraach, the par-
ticle splitting method, is introduced to be integrated wvitth traditional sequential
optimization method to solve RBDO problems. The proposeatesyy combines
the merits of SORA and particle splitting reliability asseent method, which

not only can provide more accurate solutions than worst aaaéysis as in MPP-
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based method, but also is more efficient than traditional tél@arlo simulation
and enhances the simulation diversity by using multipl¢igas. In addition, the
approach can be extended to address problems with muligpistr@ints without

significantly increasing sample size.

In Chapter 5, a reliability-based robust design optimaats formulated to
consider RBDO and robust design simultaneously. A tradldabince between
production cost objective of RBDO and quality loss objestaf robust design
is obtained in a multi-objective optimization problem undeplicit performance
function epistemic uncertainty. The sequential sampliregasgy in Chapter 3 is ex-
tended to address noise variables and tackle a multi-axgeagptimization problem.

A Pareto frontier is derived which includes all non-domethsolutions.
6.2 Future Work

This research has highlighted the algorithms and fornadatio address product

design optimization under epistemic uncertainty. Somerestons of work include:

e Implicit constraint (performance) function in Chapter Just one type of
epistemic uncertainty due to lack of knowledge. Stratetpeother types
such as unknown random variables distribution could beldpee in future

work;

e In particle splitting method, the trade-offs among numbiesubsets, num-
ber of particles and the length of MCMC chain could be furtteveloped.
Different combinations could lead to different simulataiversity, efficiency

and accuracy;

e Subset simulation in Chapter 4 is one type of rare-eventlsitions. Other

rare-event simulation methods such as line sampling camipéoged in re-
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liability analysis in future work;

e The RBRDO formulation in Chapter 5 could be extended to tlse cdmulti-
ple performance functions. Metrics could be developed poasgent the total

guality loss among different product performance fundion
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