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ABSTRACT

This dissertation is to address product design optimization including reliability-

based design optimization (RBDO) and robust design with epistemic uncertainty. It

is divided into four major components as outlined below.

Firstly, a comprehensive study of uncertainties is performed, in which sources

of uncertainty are listed, categorized and the impacts are discussed. Epistemic un-

certainty is of interest, which is due to lack of knowledge and can be reduced by

taking more observations. In particular, the strategies toaddress epistemic uncer-

tainties due to implicit constraint function are discussed.

Secondly, a sequential sampling strategy to improve RBDO under implicit

constraint function is developed. In modern engineering design, an RBDO task is

often performed by a computer simulation program, which canbe treated as a black

box, as its analytical function is implicit. An efficient sampling strategy on learning

the probabilistic constraint function under the design optimization framework is

presented. The method is a sequential experimentation around the approximate

most probable point (MPP) at each step of optimization process. It is compared with

the methods of MPP-based sampling, lifted surrogate function, and non-sequential

random sampling.

Thirdly, a particle splitting-based reliability analysisapproach is developed

in design optimization. In reliability analysis, traditional simulation methods such

as Monte Carlo simulation may provide accurate results, butare often accompanied

with high computational cost. To increase the efficiency, particle splitting is inte-

grated into RBDO. It is an improvement of subset simulation with multiple particles

to enhance the diversity and stability of simulation samples. This method is further

extended to address problems with multiple probabilistic constraints and compared
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with the MPP-based methods.

Finally, a reliability-based robust design optimization (RBRDO) framework

is provided to integrate the consideration of design reliability and design robustness

simultaneously. The quality loss objective in robust design, considered together

with the production cost in RBDO, are used formulate a multi-objective optimiza-

tion problem. With the epistemic uncertainty from implicitperformance function,

the sequential sampling strategy is extended to RBRDO, and acombined meta-

model is proposed to tackle both controllable variables anduncontrollable variables.

The solution is a Pareto frontier, compared with a single optimal solution in RBDO.
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CHAPTER 1

INTRODUCTION

1.1 Background

Product design optimization is concerned with efficient andeffective methods lead-

ing to new products. Uncertainty always exists during the process of design and

production and may come from various sources, such as modeling approximation,

imperfect manufacturing, etc. Taking from an epistemological perspective, uncer-

tainties to be considered at the product design stage can be categorized into objec-

tive and subjective ones ([9, 74, 41]).

Objective uncertainties are also called aleatory uncertainties (AU). The word

aleatory derives from the Latinalea, which means the rolling of dice. Aleatory un-

certainty exists because of natural variation in the systemperformance. Aleatory

uncertainties can be quantified but cannot be reduced, because they are the intrin-

sic randomness of a phenomenon. Examples are environmentalparameter such as

humidity, temperature and wind load, or material property parameters such as stiff-

ness, yielding strength and conductivity.

Subjective uncertainties are also called epistemic uncertainties (EU). The

word epistemic derives from the Greekεπιστηµη, which means knowledge. Epis-

temic uncertainties exist because of lack of knowledge, andthey are reducible to

aleatory uncertainty by understanding the design or by obtaining more data. For ex-

ample, the random variable’s distribution is unknown or thesystems’ performance

function is unknown or implicit due to lack of knowledge.

For the epistemic uncertainty with unknown random variable’s distribution,

two typical methods are employed. One method is possibilityand evidence the-

ory. A comparison of probability and possibility of design under uncertainty was
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proposed in [63]; Reliability estimation based on possibility theory was presented

in [61]; Du proposed a possibility-based design optimization (PBDO) instead of

RBDO due to epistemic uncertainty in [20]. Zhang presented amixed variable (ran-

dom and fuzzy variables) multidisciplinary design optimization with the framework

of SORA in [98]. The other method is statistical inference approach, in which fi-

nite samples obtained from experiments are used to estimateunknown random vari-

ables’s or performance function’s distribution by statistical inference (e.g. Bayesian

inference). Strategies are developed to take more efficientand effective samples to

update the distribution estimate based on Bayesian inference. A beta conjugate

Bayesian inference was employed in [30, 92] to deal with RBDOwith incomplete

information of design variables; A Bayesian RBDO method combined with eigen-

vector dimension reduction (EDR) was proposed in [93]; A Kriging dimension re-

duction method was employed to promote efficient implementation of the reliability

analysis in [16].

For the epistemic uncertainty with implicit system’s performance function,

systems’ performance function is evaluated by computer models such as Finite Ele-

ment Model (FEM) ([72, 67]); therefore, the true analyticalperformance functions

are implicit. Metamodels, which are constructed by computer experiments, are used

to approximate this function. The two most common types of metamodels are re-

sponse surface model (RSM) and Kriging model. A sequential sampling RSM was

proposed by [99, 89]. An RSM with prediction interval estimation was proposed by

[40]. An RBDO using moment method and a Kriging metamodel wasprovided by

[39], in which a Kriging metamodel that can carry out reliability analysis based on

the moment method was presented. Also a comparative study ofpolynomial model,

Kriging model and radial basis function can be found in [37],in which the accuracy

of Kriging model was compared with polynomial model.
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In order to design and manufacture high quality products, product design

optimization under uncertainty has been widely discussed in recent years, tech-

niques are employed to control and minimize impact of uncertainty. Robustness

and reliability are two important aspects of design optimization based on different

design scenarios ([44]).

Robust design, firstly proposed by Taguchi, is a method whichfocuses on

minimizing performance variation without eliminating thesources of variation. Ro-

bust design is actually from the point of view of quality engineers, who concern

with the product performance variation for a given performance target. Taguchi

provides a three-stage robust design methodology: systemsdesign, parameter de-

sign and tolerance design. The difference between robust design optimization and

ordinary optimization lies in the consideration for performance variations due to

uncontrolled noise factors. In actual product design, two kinds of variables or pa-

rameters exist: control factorsx, which are controllable and can be tuned for optimal

system performance; noise factorsξ , which are uncontrollable, such as production

tolerances (e.g., length variation) and environmental conditions (e.g. humidity and

temperature). Signal-to-noise ratio (SNR), one importantmeasure of quality loss,

is proposed by Taguchi as design objective in robust design:

SNR:=−10log10(MSD) (1.1)

where maximumSNRis desired, andMSD= 1
k ∑k

i=1(yi(x,ξi)−yt)
2, which means

the mean square deviation.yi(x,ξi) is the quality value of a single sample andyt

is the desired target value. MSD can have other definitions according to differ-

ent objectives (e.g. close to zero or as large as possible).SNRis optimized by

design of experiments (DOE) in Taguchi method. Controllable parametersx are

systematically changed based on a predefined lattice (innerarray). At each design
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point x, noise factorsξ are also changed according to an outer array. Thus a set of

(yi , . . . ,yk) w.r.t x is derived andSNR(x) can be calculated. Finally we can find the

x which produces the maximumSNRbased on statistical data analysis.

Reliability-based design is another aspect of design optimization from the

viewpoint of mechanical engineers. In structure design, itis critical to maintain

the design feasibility (or reliability). Then the paradigmof RBDO is proposed

for design under uncertainty. RBDO typically considers theuncertainties in some

design variables and uses a probabilistic constraint function to guarantee a system’s

reliability (i.e., performance or safety requirement). A generic formulation is given

below.

Minimize: f (d,µX,µP) (1.2)

Subject to:Prob[Gi(d,x,p)≥ 0]≥ Ri , i = 1,2, . . . ,m (1.3)

dL ≤ d ≤ dU,µL
X ≤ µX ≤ µU

X ,µ
L
P ≤ µP ≤ µU

P (1.4)

The objective function can be viewed as a production cost function of the system.

Note that the objective function above is the first-order Taylor expansion approx-

imation of the mean cost functionE[ f (d,x,p)] due to the randomness ofX and

P. This approximation is generally acceptable for linear andclose-to-linear cost

function. However, we are more interested in the probabilistic constraint function,

which is the key difference of RBDO from other engineering optimizations. The

functionGi(d,x,p) > 0 is the system’s performance or safety requirement, where

Gi > 0 denotes safe or successful region,Gi < 0 denotes failure region, andGi = 0

is defined as limit state surface which is the boundary between success and fail-

ure. The valueRi is the target probability of the constraint function. Thus,this

probabilistic constraint guarantees the system’s reliability.
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1.2 Motivation

Deterministic Design Optimization vs. Reliability-BasedDesign Optimization

Optimization techniques have been extensively employed inproduct design and

manufacturing in order to decrease cost and augment quality. Traditionally, prod-

uct design is formulated as a deterministic design optimization, which assumes that

there is no model or input variable uncertainty. In product design, however, there

exist uncertainties that can affect system performance andresult in output varia-

tion. The optimal designs obtained from deterministic optimization often reach the

limit state surface of design constraints, without tolerance region for uncertainties.

Hence the deterministic optimal designs cannot satisfy constraints with small de-

viations. In other words, the optimal solutions are unreliable or too sensitive to

variation in reality. To achieve reliable designs, RBDO is employed in the presence

of uncertainties. Probabilistic constraints are used to consider stochastic nature of

variables and parameters, and a mean performance measure isoptimized subject to

probabilistic constraints. However, efficient and effective probabilistic constraints

evaluation is the major challenge in RBDO. It is necessary and valuable, therefore,

to develop strategies to handle the problem.

Aleatory Uncertainty vs. Epistemic Uncertainty

Traditional probabilistic analysis approaches are very effective to handle product

and system’s inherent randomness, or we call aleatory uncertainties when sufficient

data is available. In other words, enough data about the product or system is known

to construct exact performance functions or constraint functions, and quantify un-

certainties with probability distributions.
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However, in many cases sufficient information assumption isnot realistic;

insufficient data prevents correct probability distribution inference and causes er-

rors in performance function construction. For many engineering tasks, system’s

performance or safety criterion is evaluated by computer models (e.g., finite ele-

ment model). Metamodels are constructed based on the computer experiment sam-

ple points. Ideally, the metamodel is perfectly the same as the true model if we

do experiments to exhaust the sample space. However, in reality computer experi-

ments could be very expensive and time consuming, so taking alot of sample points

is unaffordable. Therefore, the true probability distribution or analytical constraint

function is unknown or implicit due to lack of knowledge or epistemic uncertainty,

and the solutions derived without considering epistemic uncertainty are unreliable.

Our research focuses on the RBDO with epistemic uncertainty.

Metamodel-Based Approach& Simulation-Based Approach

Under epistemic uncertainty with implicit constraint or performance functions, two

types of approach can be used. The first one is the metamodel-based approach. In

this approach, a design of experiment is implemented to generate a few initial sam-

ples so that the metamodel is constructed to replace the implicit constraint function.

In order to reduce the metamodel prediction error between metamodel and true

model, sequential sampling strategies are required to select additional samples to

update the metamodel and improve the RBDO solution. This approach takes very

few samples and is efficient for the problem in which the implicit function evalua-

tion is very expensive.

The second one is the simulation-based approach. In this approach the im-

plicit function is simulated as a black-box. The probabilistic constraints evaluation

is conducted by simulation directly. Traditional Monte Carlo simulation can reach

6



high accurate results, but are often accompanied with high computational cost. In-

stead, the importance simulation such as particle splitting is integrated in the prob-

abilistic constraints evaluation process. Thus the efficiency dramatically increases

without losing accuracy. This approach provides accurate solutions and is useful

when the implicit function evaluation is affordable.

Reliability& Robustness

Although reliability and robustness are different aspectsof design optimization

from mechanical engineering and quality engineering, respectively, they are both

important attributes in design optimization. RBDO provides the optimum designs

in the presence of uncertainty, in which probabilistic distributions are employed

to describe the stochastic nature of design variables and parameters, and standard

deviations are typically assumed to be constant. Robust design is widely used to im-

prove product quality. It minimizes performance variationwithout eliminating the

sources of variation. Many methods using mean and standard deviation of perfor-

mance have been proposed in [22] to estimate product qualityloss. It is necessary,

therefore, to improve robustness and reliability simultaneously. A multi-objective

optimization problem is established to integrate robustness and reliability, where

the quality loss due to performance variation and production cost are simultane-

ously minimized, subject to probabilistic constraints.

1.3 Dissertation Organization

In this research, we develop a general framework to evaluatethe impact of epistemic

uncertainty to design optimization including RBDO and robust design. The overall

vision of research is described in Figure 1. The work of threephases are shown as

follows:

Phase I: A metamodel-based approach with sequential sampling strategy

7
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is developed to improve RBDO under epistemic uncertainty ofimplicit constraint

functions. An initial Kriging metamodel is constructed to replace the true model in

RBDO, then a sequential sampling strategy is developed to add samples around the

approximate MPP and update metamodel. Thus the RBDO solution is improved.

Phase II: A simulation-based approach is developed in reliability analysis

in RBDO. Traditional simulation methods such as Monte Carlosimulation may

provide accurate results in reliability analysis in RBDO, but they often lead to high

computational cost. In order to tackle the efficiency problem, a particle splitting

approach is introduced and integrated into reliability analysis.

Phase III: A framework integrating RBDO and robust design under epis-

temic uncertainty of implicit performance functions is proposed. The sequential

sampling strategy in Phase I is extended to a multi-objective optimization problem.

In order to address impacts of noise variables, a hybrid design is implemented and

a combined Kriging metamodel is constructed.

1.4 Literature Review

RBDO Approaches

Solving an RBDO problem demands two steps – the design optimization loop and

the reliability assessment loop, and two loops are nested. Many techniques have

been developed and can be broadly classified into nested double-loop methods,

decoupled-loop methods, and single-loop methods. The nested double-loop meth-

ods are the traditional approaches which require large computational work. The

decoupled-loop methods are based on the elements of the sequential optimization.

A sequential optimization and reliability assessment (SORA) method was presented

in [23], which was also employed to improve the efficiency of probabilistic struc-

tural optimization by [52]. A single-loop approach for RBDOwas presented in

9



[78, 48, 76].

Reliability Analysis Approaches

SORA is employed in this research because of its high accuracy and efficiency.

We focus on the evaluation of probabilistic constraints. According to [44], the

methods of evaluating probabilistic constraints can be classified into five categories

as follows:

1. Simulation-based method– Monte Carlo simulation (MSC) ([22]) is a basic

method to evaluate probabilistic feasibility. However, the computation cost

is high especially for high target reliability (approaching 1.0). Then impor-

tance sampling is employed to improve the sampling efficiency. A sampling

method around the MPP was provided in [22]; The importance sampling in

reduced region was developed in [33, 46]; Importance sampling was also em-

ployed to improve sampling efficiency and estimation accuracy in [58, 42].

2. Local expansion-based method– Taylor series method ([55, 31]) belongs to

this category, which could not be efficient dealing with highdimension input

and nonlinear performance functions. Functional expansion based method

such as the polynomial chaos expansion ([18]) is in this category as well.

3. MPP-based method– This method is typically based on first-order reliability

method (FORM) ([15, 57]). Two alternative ways can be used toevaluate

probabilistic constraints: The direct reliability analysis method is reliability

index approach (RIA) ([90, 88, 91]) in which the first-order safety reliabil-

ity index ([28, 97]) and MPP are obtained using FORM by formulating an

optimization problem. Since the convergence efficiency is low in traditional

RIA, a modified RIA ([50]) revises the reliability index definition and im-
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proves the efficiency. Also, a new approach for RIA based on minimum error

point (MEP) ([51]) was presented to minimize the error produced by approx-

imating performance functions. Another indirect reliability analysis method

is performance measure approach (PMA) ([90, 21]), which is more robust

and effective than RIA. An integrated framework using PMA was provided

by [25] to assess probabilistic constraints.

4. Response surface approximate method– RSM builds metamodels based on

the limited number of samples to replace the true system response [62]. The

accuracy of this method depends on the accuracy of RSM model.An effi-

cient global reliability analysis (EGRA) was proposed in [10], [11], [12] to

effectively add samples to update metamodels. A sequentialsampling strat-

egy to improve reliability-based optimization under implicit constraints was

proposed in [100].

5. Numerical integration based method– Dimension reduction (DR) ([96, 71,

95, 94, 43]) is one common method of this category, which deals with high

dimension numerical integration.

Reliability and Robustness Integration

Multi-objective optimization is one approach to integratereliability and robustness.

Li presented a robust multi-objective genetic algorithm (RMOGA) in [47], in which

a robustness index was proposed to measure robustness; Mourelatos provided a

probabilistic multi-objective optimization problem in [60], where variation was ex-

pressed in terms of a percentile difference. Another approach in [2] is to use a

weighted sum single objective optimization to improve reliability and robustness.
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CHAPTER 2

EPISTEMIC UNCERTAINTY IN PRODUCT DESIGN OPTIMIZATION

2.1 Introduction

RBDO considers various types of uncertainties during the process of product de-

sign and production. As mentioned in Chapter 1, uncertainties to be considered at a

product’s design stage can be categorized into aleatory uncertainties (AU) and epis-

temic uncertainties (EU) [41]. This chapter focuses on the impact of EU on RBDO.

Also uncertainty sources of EU are categorized and methods are summarized to

address two important types of EU in RBDO.

To deal with the epistemic uncertainty of unknown distributions of design

variables, two methods are typically employed as mentionedin Section 1.1. One

method is the possibility and evidence theory. The other method is statistical in-

ference approach. For the epistemic uncertainty of unknownor implicit product’s

performance function. RSM and Kriging model are two commonly used Metamod-

els to approximate true functions.

The remaining chapter is organized as follows: Section 2.2 reviews basic

concept and formulation of RBDO. Section 2.3 proposes the uncertainty sources

of EU and assesses their impacts on RBDO. Section 2.4 presents several effective

strategies for tackling the RBDO problem with EU. Section 2.5 provides an I-beam

case study to illustrate the effect of EU on RBDO.

2.2 Reliability-Based Design Optimization

In product design under uncertainty, RBDO is employed to maintain design feasi-

bility, which is shown in Formulation 1.2 to 1.4. The uncertainties as represented

by random variables and probabilistic constraints are aleatory uncertainties. In re-

ality, however, epistemic uncertainties always exist due to lack of knowledge of the
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variables and processes of the system. They could be reducedby understanding the

design or by obtaining more relevant data. The RBDO formulation can be rewritten

in different form according to the type of epistemic uncertainty.

For the epistemic uncertainty of unknown random variable’sdistribution,

the RBDO formulation becomes:

Minimize: f (d,µX ,µY ,µP) (2.1)

Subject to:PŶ{PX[Gi(d,x,p)≥ 0]≥ Ri} ≥ 1−αi , i = 1,2, . . . ,m (2.2)

dL ≤ d ≤ dU,µL
X ≤ µX ≤ µU

X ,µ
L
Y ≤ µY ≤ µU

Y ,µ
L
P ≤ µP ≤ µU

P (2.3)

wherex denotes the vector of aleatory random variables with complete information

and their distribution are known; the vectorŷ denotes the vector of epistemic ran-

dom variables with incomplete information and their distribution or parameters are

estimate based on limited samples. Thus a double-loop probabilistic constraint is

derived, in which the inner loop is due to aleatory variablex and the outer loop is

due to epistemic variablêy. The outer loop demands that the confidence level of the

design satisfying the reliability constraint for the giveninformation of the epistemic

variable is at least(1−αi)%.

For the epistemic uncertainty of implicit constraint function, the RBDO for-

mulation becomes:

Minimize: f (d,µX,µP) (2.4)

Subject to:PĜ{PX[Ĝi(d,x,p)≥ 0]≥ Ri} ≥ 1−αi , i = 1,2, . . . ,m (2.5)

dL ≤ d ≤ dU,µL
X ≤ µX ≤ µU

X ,µ
L
P ≤ µP ≤ µU

P (2.6)

whereĜi is a metamodel of system performance function, which is constructed

based on the results of computer experiments, and it is used to approximate the
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constraint function. Therefore a double-loop probabilistic constraint is obtained, in

which the inner loop is due to aleatory uncertainty and outerloop is due to epistemic

uncertainty of modeling error.

Solving an RBDO problem requires two loops - the optimization loop and

the reliability assessment loop. The nested loops problem could be computationally

intensive. In particular, the latter loop involves rare event probability evaluation. To

have a balanced trade-off between efficiency and accuracy, many approaches such

as the double-loop methods, decoupled-loop methods and single-loop methods are

developed and applied. In this chapter we choose the SORA method which is a

decoupled-loop method. Our focus is to evaluate the impact of EU on RBDO using

the SORA method.

2.3 Epistemic Uncertainty in RBDO

Sources of Uncertainties

Engineers have to face uncertainties from different sources during the product de-

sign and manufacturing process. A natural distinction between these AU and EU

does not always exist. Perhaps it is just a matter of time to obtain enough infor-

mation about missing variables and learn model formulation. In such a world, if

uncertainty exists, it will only be aleatory.

In the context of the problem mentioned above, uncertainty sources can be

identified as follows [41, 9]:

1. Uncertainty from material property and operating conditions change– This

is the uncertainty inherent in material property, operation environment, and it

can be categorized to aleatory uncertainty. Examples are material properties

drift, operating temperature, pressure, humidity, etc. They can be expressed
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by random parameterp in objective or constraint function. However, when

these uncertainties cannot be fully characterized due to lack of data, they

become epistemic.

2. Imprecise production– The design parameter in production and manufactur-

ing can only be achieved to a certain degree of accuracy, as high precision ma-

chinery naturally leads to high manufacturing expense. To adesign engineer,

these manufacturing errors are often unknown; thus this kind of uncertainty

belongs to epistemic uncertainty. It is typically represented by the pertur-

bations of the design variablex, i.e. f = f (x+ δ ,p) andG = G(x+ δ ,p).

Note that if the manufacturing errors are adequately studied and modeled in

the design process, they will become aleatory uncertainties as some random

parameters.

3. Uncertainties in modeling and measurement– This type of uncertainty in-

cludes modeling errors and measurement errors, which belongs to epistemic

uncertainty. Modeling errors result from employing empirical model instead

of the true model. Measurement errors may include the errorsinvolved in

indirect measurement. This type of uncertainty is expressed by the approxi-

mated functionf̂ (x,p) andĜ(x,p).

4. Uncertainty from computational errors, numerical approximations or trunca-

tions– One example is the computational error in a finite element analysis of

load effects in a high nonlinear structure [41]. Another example is the mesh

size and convergence stopping criterion settings. They arealeatory in nature.

5. Uncertainty from human activities and decisions– Human errors, such as

unintentional errors in design, modeling and operations, are inherent in nature

and can be categorized as aleatory uncertainty.
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Categorizing Epistemic Uncertainty

Epistemic uncertainty typically arises from an absence of information or data, which

causes vagueness in parameter definition, simplification and idealization in system

modeling, as well as subjection in numerical implementation. Three categories of

epistemic are included in [32] as follows:

1. Lack of knowledge or vagueness, e.g. unknown random variable’s distribu-

tion type and distribution parameters due to sparse or imprecise information

(i.e. sparse point data or interval data) regarding to stochastic quantity.

2. Errors or defects in modeling, e.g. systems’ performance function is implicit

or can only capture part of the real system. It includes the idealization or

simplification due to a linearization of the model equationsor the assumption

of linear model behavior, etc.

3. Subjectivity in implementation, e.g. the selection of different methods of nu-

merical evaluation by using different finite element solvers and mesh refine-

ment, expert judgment about an uncertain parameter, etc.

Impacts of Epistemic Uncertainty on RBDO

In this section, we mainly discuss the first two types of epistemic uncertainty and

their impacts on RBDO.

Probabilistic constraint evaluation is the critical piecein RBDO. By the

SORA decoupled-loop method, once an optimal solutionµ is derived from the

optimization loop, the corresponding MPP [33] is calculated and evaluated in the

reliability assessment loop. If MPP is feasible,µ is the optimal solution; if MPP

is infeasible, it enters the next iteration in SORA. However, the derived MPP could
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Figure 2.Implicit constraint function infeasible impact

not be accurate enough under epistemic uncertainty. The approximated MPP could

be either infeasible or too conservative.

(1) Implicit constraint function

Suppose the analytical performance function G unavailable, but it can be

evaluated by a computer model. Then samples are taken from computer experi-

ments and G is replaced by a metamodelĜ. According to RIA in reliability anal-

ysis, MPP is the point which locates on the limit state surface G with the smallest

distance toµ. Since G is replaced by metamodelĜ, true MPP is replaced by ap-

proximated MPP. Therefore epistemic uncertainty of implicit constraint function

will lead to either infeasible or conservative optimal solution.

In Fig. 2, the approximated MPP leads to a reliability indexβ̂ which is

evaluated to be greater thanβtarget. Thus the SORA algorithm stops and currentµ

is selected as the optimal solution. However, the true reliability index is proved to
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Figure 3.Implicit constraint function conservative impact

less thanβtarget, which means the currentµ is actually an infeasible solution.

In Fig. 3, current approximated MPP leads to a reliability index β̂ which

is evaluated to be less thanβtarget. Thus SORA enters next iteration to resolve

the optimization loop and obtain a more conservative solution. Actually the true

reliability β̂ is proved to be greater thanβtarget, and current optimal solutionµ is a

feasible optimal solution. In this case, epistemic uncertainty leads to a conservative

solution.

(2) Unknown random variable distribution

Suppose we can assume the design variablex follows normal distribution

with unknown parameterσ . Then a set of samples are taken to derive a parameter

estimateσ̂ . Based on the first-order Taylor expansion,σ̂ can be derived.

According to the definition of reliability indexβ = µG
σG

. In reliability index
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Figure 4.Unknown random variable distribution impact

analysis method, the safety constraint is satisfied ifβ ≥ βtarget. However, under

unknown variable distribution,̂β = µG
σG

may not be accurate enough. It could be

either infeasible or conservative.

As shown in Fig. 4, an optimal solutionµ is derived with the reliability in-

dex β = βtarget. Thus it is a feasible RBDO optimal solution. However, sincethe

estimateσ̂ is less than true parameterσ , the trueβ is smaller than̂β . Thus the opti-

mal solution derived here is actually infeasible. On the other hand, if the estimatêσ

is greater than true parameterσ , trueβ is greater than̂β . Thus the optimal solution

derived is too conservative comparing with the true optimalsolution.

2.4 Epistemic Uncertainty Strategy in RBDO

Implicit Constraint Function

To address epistemic uncertainty of implicit constraint function, a typical two-step

strategy is developed: First, metamodels are constructed based on the initial sam-
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ples given by computer experiments. Then additional samples are selected and

added to update the metamodel step by step until the accuracystopping criterion is

satisfied.

In metamodel selection, three typical metamodels are employed: polyno-

mial model, radial basis function model and Kriging model. Polynomial model is

a widely employed parametric model since it is easy to implement. Better perfor-

mance is expected for low order response functions. However, less efficiency and

large computation work are expected when it is applied to problems with highly

non-linear and irregular performance functions. Radial basis function (RBF) is a

commonly used nonparametric model. It is a real-valued function whose value

depends only on the distance from some other point c, called acenter, so that

φ(x,c) = φ(‖x− c‖). Kriging model is a semi-parametric model which allows

much more flexibility than parametric models since no specific model structure is

used. It contains a linear regression part (parametric) anda non-parametric part

considered as the realization of a random process. Thus Kriging model can capture

the nonlinear and irregular function shape well and requires fewer sample points.

Typically RBDO accuracy largely depends on whether the Kriging model

can capture the general tendencies of the design behavior. In order to enhance

the metamodel accuracy, additional samples are selected step by step to update the

metamodel. The procedure ends until a stopping criterion issatisfied. Many ac-

curacy metrics and algorithm criteria are proposed, for examples, R square metric,

rooted mean square error (RMSE), relative absolute max error (RAME), maximum

absolute error (MAXERR), etc.
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Table 1.Approaches for Unknown Distribution

Epistemic uncertainty with unknown distribution
Fit distribution Do not fit distribution

Bayesian AssumeN(µ,σ2) Interval Decision
approach with unknownσ variables framework

Youn (2008) Picheny (2007) Du (2005) Samson (2009)

Unknown Random Variable Distribution

Some distribution fitting is typically used to characterizethe unknown random vari-

able distribution. The goodness of fit largely depends on thequality of the available

data of the variable.

To address RBDO with unknown variable distribution, the approaches ap-

peared in literature are summarized in Table 1:

The first category of approach is to fit a distribution of epistemic variable:

(1) A Bayesian inference approach is employed in [93]. Sincedistribution

parametersθ are unknown under epistemic uncertainty, Bayes’ theorem isused to

estimate parameters as:

f (θ |x) = f (x|θ) f (θ)/c (2.7)

where f (θ |x) is the posterior PDF ofθ conditional on the observed datax, f (x|θ)

is the likelihood of observed datax conditional onθ , and f (θ) is the prior PDF of

θ . Under unknown parameters, the failure probability P or reliability R becomes

a random variable which is bounded between 0 and 1. Thus uniform distribution

is selected as the prior distribution of P, and the posteriordistribution is a Beta

distribution.
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(2) Another approach is to assume normal distribution, and estimate param-

eter based on the provided data. In [70], an empirical CDF is first built as:

FX(x) =























0, for x≥ x1;

(k−0.5)/n, for xk ≤ x≤ xk+1;

1, for xn ≤ x.

(2.8)

An RMSE criterion is employed to calculate the unknown parameterσ by

solving the following optimization problem:

Minimize:

√

1
n

n

∑
k=1

[

F(xk)−
k−0.5

n

]2
(2.9)

The second category is to treat epistemic variable as interval variables or

constants instead of fitting distributions, which is used inthe case of very few data.

In [26] epistemic variables are treated as interval variables without assuming any

probability distribution. Under the worst case combination of interval variables,

RBDO is solved with only aleatory variables. In [74] continuous epistemic uncer-

tainty intervals are first discretized inton scenarios, then a decision framework is

proposed to the best scenario with only aleatory uncertainty.

2.5 I-Beam Example

To design an I-beam [75], two design variablesX1 andX2 are geometric parameters

of the cross-section as shown in Fig. 5. Due to manufacturingvariability, we treat

these two variables as random variables and assume they are normally distributed

with σ1 = 2.025 andσ2 = 0.225. The beam is loaded by the mutually independent

vertical and lateral loads parametersP∼ N(600,10)KN andQ∼ N(50,1)KN. The

maximum bending stress of the beam isσ = 16kn/cm2, the target reliability index

β = 3(R= 99.87%).
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The objective is the production cost which is the weight of the beam. As-

suming the beam length and the material density are constants, minimizing this

function is equivalent to minimizing the cross-section area, f (x) = 2x1x2+x2(x1−

2x2). Sincex1 and x2 are random variables, the cost functionf (µ) = 2µ1µ2 +

µ2(µ1−2µ2) = 3µ1µ2−2µ2
2 is derived. The single probabilistic constraint is given

as P(G(x1,x2) ≥ 0) ≥ R, whereG(x1,x2) is the bending threshold subtracted by

actual bending stress, soG(x1,x2) ≥ 0 denotes the feasible region. The analytical

G function is available as

G(x1,x2) = σ − (
MY

ZY
+

MZ

ZZ
) (2.10)

MY

ZY
+

MZ

ZZ
=

0.3px1

x2(x1−2x2)3+2x1x2(4x2
2+3x2

1−6x1x2)

+
0.3qx1

(x1−2x2)x3
2+2x2x3

1

(2.11)

For the purpose of simplicity, the random parametersP andQ and equal to

their mean values, respectively. The effects of the two types of epistemic uncer-

tainty on the RBDO solution in this example are discussed in the following.
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Figure 6.Implicit constraint function impact on I-beam

Table 2.Epistemic Uncertainty Impact on I-Beam Case

(µ1,µ2) Objective
True G andσ (49.7275, 0.9173) 135.1594
Kriging model (52.8422, 1.0603) 168.8332

Estimateσ̂ (53.8285, 0.9599) 153.1716

Effects of Implicit Constraint Functions

For the purpose of comparison, true G function is assumed to be implicit. A Latin

hypercube design is employed to select 29 sample points to construct the Kriging

model, which is used to approximate the true model. The comparison between true

model and Kriging model is shown in Fig. 6. Then RBDO is solvedwith both

true constraint function and Kriging model, and results comparison is in Table 2.

From Table 2 we conclude that the optimal solution under Kriging model is too

conservative comparing with true optimal solution.
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Effects of Unknown Random Variable Distributions

For the purpose of comparison, design variable’s distribution is assumed to be un-

known. Taken from the existing I-beam designs, 29 samples are selected above to

estimateσ1 andσ2 based on the RMSE criterion.

The results arêσ1 = 3.380 andσ̂2 = 0.312, respectively. Then RBDO is

solved with both the trueσ and the estimatêσ , and their optimal solutions are

compared in Table 2. The comparison between true distribution and estimate dis-

tribution at optimal solution is shown in Fig. 7. Thus we can see that the optimal

solution under estimatêσ is more conservative than true optimal solution.

2.6 Conclusion

In this chapter, epistemic uncertainties and their impactson RBDO are discussed.

We first review the generic formulation of RBDO, then extend it to take into ac-

count of epistemic uncertainties due to unknown random variable distributions and
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implicit constraint functions.

Secondly, the sources of epistemic uncertainties are explained, and their

impacts on the RBDO solution are discussed. Comparing with the true RBDO

optimal solution, the solution for the problem where epistemic uncertainty exists

can be either infeasible or too conservative. To address theissues with epistemic

uncertainties, we summarize several approaches in literature.

Finally, an I-beam example is used to illustrate the effectsof the two types

of epistemic uncertainty on RBDO solution.
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CHAPTER 3

A SEQUENTIAL SAMPLING STRATEGY TO IMPROVE

RELIABILITY-BASED DESIGN OPTIMIZATION WITH IMPLICIT

CONSTRAINT FUNCTIONS

3.1 Introduction

As mentioned in Section 1.4, to trade off between the efficiency and accuracy of the

solution to an RBDO problem, many approaches such as the double-loop method

[13], decoupled-loop method [23] and single-loop method are developed [78, 48,

76]. However, all these approaches are based on the assumption that the constraint

functions,Gi ’s, are given analytically. Our focus in this chapter is to develop a

decoupled-loop RBDO approach with implicit constraint functions, i.e., black-box

constraints.

In this chapter we employ the Kriging method as the metamodeling method

for the implicit constraint function. Consequentially, weneed to consider how to

take efficient samples to fit and update the metamodel, as the accuracy of meta-

model largely depends on the choice of sample points. The more samples we have,

in general, the more accurate model can be derived. However,in reality computer

experiments could be very expensive and time-consuming, sotaking a lot of sam-

ple points is unaffordable. Some common sampling methods such as Latin Hy-

percube experimental design, uniform experimental designhas been employed in

RBDO for implicit constraints. For examples, in [39] a maximum mean square

sampling technique was employed; [45] provided a constraint boundary sampling

strategy to enhance accuracy and efficiency of metamodel based on the RIA in

RBDO; [10, 11, 12] proposed the efficient global reliabilityanalysis (EGRA), in

which an expected feasibility function criterion was used to add samples to obtain

an accurate limit state function, then the reliability analysis was implemented by im-
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portance simulation; in [8, 5, 6, 7] DOE was performed to generate initial samples

and support vector machine (SVM) algorithm was employed to derive the failure

domain boundary; and in [3] SVM was also used to calculate failure probabilities

in RBDO. In addition, to better approximate the limit state function, methods such

as polynomial chaos expansion (PCE, [85]), adaptive-sparse PCE ([34]), asymmet-

ric dimension-adaptive tensor-product (ADATP, [35]) and sparse grid interpolation

(SGI, [86]) have been developed for stochastic response surface.

In this chapter, we propose a sequential maximum expected improvement

sampling strategy based on the PMA. In the PMA, the reliability assessment step

is replaced by a process of minimizing the R-percentile derived from the constraint

function. Since the true constraint function is implicit and a metamodel is used, we

employ an expected improvement criterion to propose additional sampling points

so as to update the metamodel and to locate the global minimumR-percentile.

Our research contributions include: First, an integrated scheme of the de-

coupled loop approach and the sequential sampling of implicit constraints is pro-

posed. Our method is different from other existing methods in that we use the PMA

for reliability assessment and our sequential sampling strategy focuses on the MPP

approximation instead of the entire limit state function orthe whole response sur-

face of the constraint function. Secondly, we extend our method to handle multiple

implicit constraints, and compare the efficiency and accuracy of several competitive

methods.

The rest of the chapter is organized as follows: Section 3.2 introduces

SORA method and the metamodeling technique employed in the chapter. Sec-

tion 3.3 proposes a sequential maximum expected improvement sampling strategy

and compare with other strategies to update Kriging model. Section 3.4 presents
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an I-beam case study to illustrate the efficiency and accuracy of proposed methods.

Section 3.5 provides another engineering demo to show the extension of our method

to the RBDO problem with multiple probabilistic constraints. Finally, Section 3.6

gives the discussion and conclusion.

3.2 Reliability Analysis in RBDO

It is well known that uncertainty is inevitable in engineering design. Traditional

RBDO deals with this type of uncertainty. That is, it tries tooptimize designs when

some design variables are random with assumed distributions. Epistemic uncer-

tainty deals with lack of knowledge. For example, the randomvariable’s distribu-

tion is unknown [64] or the system’s performance function isimplicit due to lack

of knowledge. In this chapter, we study the latter case, where there is not an ana-

lytical function to explicitly describe system’s performance, i.e., theG function in

Formulation 1.3 is unknown, so we construct a metamodel,Ĝ, based on computer

experiments.

In this section we briefly review the approaches to solving RBDO problems

with known constraint functions. Due to the existence of uncertainty, a design

solution based on the deterministic approach could be too conservative. Ref. [22]

summarized some reliability analysis approaches.

First-Order Reliability Analysis in RIA and PMA

RIA and PMA are two common reliability assessment approaches. These approaches

employ the concepts of the reliability index ([28, 97]) and the MPP ([33]). Assum-

ing the output of performance functionGi follows normal distribution, the proba-

bilistic constraint function can be characterized by the cumulative distribution func-
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tion FGi(0) and the target reliability indexβi as follows:

Prob[Gi(d,x,p)≥ 0] =

∞
∫

0

1√
2π

exp[−1
2
(
gi −µGi

σGi

)2]d(
gi −µGi

σGi

)

=

∞
∫

−βi

1√
2π

exp(−1
2

t2)dt

= 1−Φ(−βi) = Φ(βi)

(3.1)

wheret =
gi−µGi

σGi
andβi =

µGi
σGi

. Here,βi is defined as the safety index or reliability

index of theith constraint, andµGi = βiσGi indicates that a reliability index mea-

sures the distance between the mean margin and the limit state surface, as we may

considerσGi as a constant scale parameter. For simplicity, we will remove the index

i and consider only the deterministic vectord and random design vectorx in our

later discussion.

In the Hasofer and Lind approach [33], the original random vector x is

transformed into an independent and standardized normal random vectoru. MPP

becomes a point on the limit state surface in the U-space thathas the minimum

distance to the origin, andβ is this minimum distance. MPP represents the worst

case on the limit state surface; i.e., if MPP can satisfy the required reliability level,

so does any other point on the limit state surface. Therefore, the probabilistic con-

straint evaluation can be converted to an optimization problem to find the MPP and

the reliability index. The probabilistic constraint can beexpressed through inverse

transformation in two alternative ways, leading to two different optimization prob-

lems.

In the RIA([53, 29, 84]), the reliability assessment becomes the reliability

index assessment such as

β =−Φ−1(FG(0))≥ βtarget (3.2)
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In the U-space, the following optimization problem is solved to find the MPP and

β :

Minimize ‖ u ‖

Subject toG(u) = 0
(3.3)

where the optimal solution on the limit state surface (G(u) = 0) is the MPP in the

U-space andβ =‖ u ‖MPP.

In the PMA([84, 17, 24]), the reliability assessment is converted to the R-

percentile assessment such as

GR = F−1
G (Φ(−βtarget))≥ 0 (3.4)

whereGR is the R-percentile ofG(d,x) andP(G(d,x)≥ GR) = R. In the U-space,

an optimization problem is employed to find the most probablepoint of inverse

reliability (MPPIR) [25] and the minimum R-percentile, i.e.,

Minimize G(u)

Subject to‖ u ‖= βtarget

(3.5)

where the optimal solution on the targeted reliability surface is the MPPIR. MP-

PIR is the point on the target reliability level which has thesmallest performance

function value in the U-space, andGR = G(uMPPIR).

Sequential Optimization and Reliability Analysis (SORA)

Du [24] developed the SORA method for efficiently solving RBDO problems, in

which the nested-loop of optimization and reliability assessment steps are replaced

by two decoupled-loop steps. SORA employs a series of cyclesof optimization

and reliability assessment. In each cycle an equivalent deterministic optimization

problem is solved first, and a design variableµX is proposed. Then the X-space is
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transformed to the U-space based onµX andσX, and the MPP(or MPPIR) is found

by the PMA optimization method. Next, the current MPP is checked against the

R-percentile constraints of each performance functionGi . If GR
i = Gi(d,xMPP)≥ 0,

design variableµX is feasible and it is the final solution; otherwise, a shifting vector

is derived to modify the current decision variable.

For the deterministic optimization in the first cycle, thereis no information

about the MPP, so the values ofxMPP are conveniently set as the means of the

random variable. The deterministic optimization model in the first cycle becomes

Minimize f (d,µX)

Subject toGi(d,µX)≥ 0 i = 1,2, . . . ,m
(3.6)

The solution of 3.6 is fed into 3.5 to find the MPP. Lets denote the shifting

vector, the new constraint in the deterministic optimization in next cycle is refor-

mulated as

Gi(d,µX −s(2))≥ 0 i = 1,2, . . . ,m (3.7)

wheres(2) = µX
(1)−x(1)MPP. The process will continue until the R-percentileGR(d,

xMPP)≥ 0.

Metamodeling Techniques and Comparisons

When the performance functionG is a computer model, we sample it by conducting

computer experiments and replaceG by a metamodel̂G. Due to limited sampling

points, it is critical to select a good surrogate function tofit computer outputs. Poly-

nomial model and Kriging model are presented and compared inthis section.

As mentioned in [37], polynomial functions are widely employed as meta-

models. The sample size is suggested to be two or three times the number of model
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parameters. However, the number of parameters of the polynomial model will in-

crease dramatically as the order of the model increases. Dueto the cost and com-

putation limitation, quadratic and cubic polynomial models are typically suggested.

In many engineering design problems, however, high nonlinearity and twisting may

happen such that even the cubic polynomial model cannot capture the performance

variation well. In addition, polynomial models are not robust to outliers.

Kriging model (also called Gaussian process, or GP, model),firstly pro-

posed by a South African geo-statistician Krige [73], is a suitable model for mod-

eling computer experiments. In a Kriging model, the response at a certain sample

point not only depends on the settings of the design parameters, but is also affected

by the points in its neighborhood. The spatial correlation between design points is

considered. A Kriging model combines a polynomial functionfor the output means

and a random process for the output variance, and it is given as follows ([54]):

ŷ= β0+
k

∑
j=1

β j f j(x j)+Z(x) (3.8)

whereβ0 +∑k
j=1 β j f j(x j) is the polynomial component andZ(x) is the random

process. Typically, the polynomial component is reduced toβ0, and the random

processZ(x) is assumed to have a zero mean and a spatial covariance function

betweenZ(xi) andZ(x j) is

Cov[Z(xi),Z(x j)] = E[Z(xi)Z(x j)]−E[Z(xi)]E[Z(x j)]

= σ2R(θ ,xi,x j)

(3.9)

whereσ2 is the process variance andR(θ ,xi ,x j) is the correlation model with pa-

rametersθ . The correlation model may have one of several different kernel func-
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tions. For details, refer to, e.g., [73, 54].

In a Kriging model, the number of parameter can be reduced to the dimen-

sion of input vector, which is much fewer than the cubic polynomial model, so

fewer samples are needed for building a robust Kriging model. In addition, Kriging

model is suitable for modeling high nonlinearity and twistybecause of the flexibil-

ity of the correlation function. Hence, Kriging model ˆy= β0+Z(x) is selected in

this chapter.

3.3 Sequential Expected Improvement Sampling

The sampling strategy for deriving the metamodelĜ needs to be carefully con-

structed, as in RBDO we must consider the additional epistemic uncertainty brought

by the constraint function estimation; otherwise, the optimal solution obtained may

be actually infeasible becausêG is not the true function. As we know, reliabil-

ity assessment in the RBDO solution is equivalent to the MPP optimization, thus

our strategy is to deploy more samples subject to the MPP constraint so that the

metamodel becomes more accurate in the area of the most importance to RBDO. In

this section, we present a sequential sampling strategy based on a criterion called

expected improvement (EI).

Initial Latin Hypercube Sampling

The statistical method of Latin hypercube sampling (LHS) isemployed in this chap-

ter for initial sampling to build a Kriging model. LHS was first described in [56],

and was further elaborated in [36]. LHS is particularly goodfor sampling a complex

computer model that is computationally demanding and expensive.

Expected Improvement Criterion

A metamodelĜ is constructed based on initial samples. If the input space was en-

tirely sampled, then̂G surface would get close enough to the true surface; however,
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as only a few samples are obtained in reality,Ĝ surface is different from the true

surface. In addition, the prediction error byĜ is different from area to area on the

metamodel surface. Some areas have larger prediction errors than others because

they have fewer sample points in the neighborhood. Therefore, the area with large

prediction error has the potential of containing the true MPP, instead of the current

minimum point. In other words, the area with large prediction error is less explored

and may bring bigger improvement to the metamodel if additional samples are taken

in this area. Thus, we use the EI as the criterion for adding the next sampling point.

The EI criterion proposed by [38] is computed as follows. Suppose there

aren initial samples, andG(1), . . . ,G(n) are the outputs by the computer model. Let

Gmin = min(G(1), . . . ,G(n)) be the current minimum. The improvement at a pointx

towards the global minimum isI(x) = max(Gmin−G(x),0), whereG(x) follows a

normal distribution,N(Ĝ(x),s2(x)), andĜ ands denote the Kriging predictor and

its standard error. The expected improvement is

E[I(x)] = E[max(Gmin−G,0)] (3.10)

In RBDO, we often need to consider more than one constraints.In order

to compare EIs from different constraints and to select the additional sample point

with the maximum EI, we propose an expected relative improvement criterion as

follows:

Let RI = max(Gmin−G
Ga

,0), whereGa =
|G(1)|+···+|G(n)|

n . The expected relative

improvement (ERI) is

E[RI(x)] = E[max
(Gmin−G

Ga
,0
)

] (3.11)
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After applying integrations, we have

E[RI(x)] =
1

Ga
[(Gmin− Ĝ)Φ

(Gmin− Ĝ
s

)

+sφ
(Gmin− Ĝ

s

)

] (3.12)

whereΦ(·) andφ(·) denote the cumulative distribution function and the probability

density function of standard normal distribution, respectively.

The definition of ERI indicates that both the Kriging predictor Ĝ and its

standard errors can affect the ERI value. Taking the derivative of ERI with respect

to Ĝ ands, we can derive the following properties:

∂E[RI]

∂ Ĝ
=− 1

Ga
Φ
(Gmin− Ĝ

s

)

< 0 (3.13)

∂E[RI]
∂s

=
1

Ga
φ
(Gmin− Ĝ

s

)

> 0 (3.14)

Due to the monotonicity, we conclude that a larger standard error (s) or a

larger difference between the current minimum and the prediction (Gmin− Ĝ) will

lead to a larger expected relative improvement value.

RBDO Solution Using Sequential ERI-Based Sampling Strategy

Based on the PMA mentioned above, Formula 3.5 is used to find the MPP and check

the R-percentile, which is equivalent to reliability assessment. In this chapter, we

maximize the ERI to find new sample points because they are thebest for searching

for G’s minimum value when the true function ofG is unknown or implicit. Note

that the optimization Formula 3.5 is a constrained optimization, where the feasible

u points are located on a circle with its center at the origin ofthe U-space and

its radius asβtarget. (For visualization, we assume a two-dimensional case here.)

This corresponds to an ellipsis on the X-space as shown in Fig. 8. In essence, the

additional samples are taken from this ellipsis, so only a local area of theG surface

around the current RBDO solution will be mostly improved. This is in contrast with
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Figure 8.Max ERI sample point in design space. The initial samples are marked by
“+”, additional samples are marked by “o”, andG′

min is the latest additional sample
selected by the ERI criterion.

random sampling on the whole X-space or on the limit state function. Our purpose

is not to obtain a better overall estimation of the constraint function or the limit state

function, but rather to find an accurate MPP; therefore, it isreasonable to sample an

area that is close to the region of limit state function that contains the true MPP. The

SORA procedure of RBDO with implicit constraint functions is outlined in Fig. 9.

We detail our sequential sampling strategy in the followingsteps:

1). After the initial sampling, a Kriging metamodelĜ is built. A determin-

istic optimization is then solved for decision vectors,d andµX . Note that in the first

cycle, the shifting vector,s, equals0.

Minimize f (d,µX)

Subject toĜi(d,µX −s)≥ 0 i = 1,2, . . . ,m
(3.15)

2). GivenµX andσX, the X-space can be transformed to the standardized
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Figure 9.Algorithmic flowchart
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U-space. Following PMA, the reliability analysis optimization is as follows:

Minimize Ĝ(u)

Subject to‖ u ‖= βtarget

(3.16)

However,Ĝ is only a metamodel based on initial samples and the MPP de-

rived by Formula 3.16 may not be accurate enough. Therefore,the ERI criterion is

employed to find additional sample points that can make largeexpected improve-

ment on the objective function. In order to find global minimum in the design space,

the above optimization problem is first transformed to an unconstrained optimiza-

tion problem by using a polar coordinate system. For example, when there are three

variables, setu1 = βtargetcos(θ),u2 = βtargetsin(θ)cos(α),u3 = βtargetsin(θ)sin(α),

then the optimization becomes:

Minimize Ĝ(θ ,α) (3.17)

After solving this unconstrained optimization, the optimal solution (θ ,α)

will be transformed back to the X-space and evaluated by the computer experiment,

and it becomes the current minimum,Gmin. If there are multiple constraints, each

constraint will produce aGi, min.

3). To find an additional sampling point, which has the potential to maxi-

mize the relative improvement on theG function estimation, we solve the following

maximization problem to locate the next sampling point.

Maximize
1

Ga
[(Gmin− Ĝ)Φ(

Gmin− Ĝ
s

)+sφ(
Gmin− Ĝ

s
)] (3.18)

If there is only one constraint, the point with the maximum ERI should be

evaluated by experiment and then added into the sample pool;while if there are
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multiple constraints, the point associated with the largest maximum ERI is added

into the sample pool.

The optimal solution of Equation 3.18 is a point located on the circle cen-

tered at the origin and with radius asβtargetin the U-space. This point is supposed to

bring the maximum improvement to theG function estimation subject to the MPP

constraint. The corresponding point in the X-space is depicted in Fig. 8. The curve

in Fig. 8 represents the current limit state surfaceĜ = 0, and the areas of̂G > 0

and Ĝ < 0 denote the successful region and the failure region, respectively. The

plus marks represent the initial sample points, and the point (µ1,µ2) is the optimal

solution obtained from deterministic optimization in Step(1). As the current MPP

may not be accurate enough due to the prediction error of metamodelĜ, the ERI

criterion is employed to find a new sampling point (denoted bythe square mark) on

the ellipsis. Then the Kriging metamodel is reconstructed and the prediction error

in the neighborhood of MPP will decrease.

Plotting along the angle coordinate, the solid curve on the upper panel of

Fig. 10 is the metamodel predictor for theĜ function; while the dotted curve is the

updated response curve after a new sample point is added. From the lower panel of

Fig. 10 we can see that the response prediction error decreases dramatically around

the new sample area after the new sample point is added. If thenew sample point

is evaluated to be smaller than the current minimum, it will be closer to global

minimum and it is a more accurate candidate for MPP.

Repeat Step (3) to select the maximum ERI among constraint(s), until the

maximum ERI is less than a small number (stopping rule), which means the predic-

tion error ofĜ around its global minimum is very small, so the current minimum of

Ĝ shall be closer to the true global minimum.
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Figure 10.Max ERI sample point in response space

4). The metamodel̂G is updated with all samples and the MPPs for all

constraints are derived. If all̂Gi,MPP≥ 0, i = 1, . . . ,m, thend andµX are the desired

solution of RBDO and the algorithm stops. If any constraintĜi,MPP < 0, a shift

vector is computed based on currentµX andxMPP. Then return to Step (1) with the

modified shift vectors.

In the first cycle of sequential ERI, since there is no information about the

MPPs,xMPP is set asµX and the shifting vectors is 0. Step (1) to Step (4) are

repeated in each cycle to solve decision vectors, update Kriging metamodel and

locate accurate MPPs until allĜi,MPP≥ 0, which means all probabilistic constraints

are feasible.

Comparing with the traditional SORA algorithm with explicit constraint

functions, sequential ERI has one more loop in Step (3) because of the epistemic un-

certainty associated with implicit constraint functions.That is, in each cycle, due to

the prediction error of the estimated constraint function we cannot decide whether

or not the constraint is feasible simply by the MPP calculated in Step (2). Instead,

Step (3) is employed to add new sample points until there are no more allowable po-
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tential improvement on the estimation of constraint function, so the updated Kriging

metamodel is closer to the true model in the area of interests. Finally, the new MPP

calculated in Step (4) is used to assess the feasibility of probabilistic constraint.

Other Methods

For the purpose of comparison, three other methods dealing with RBDO under

implicit constraints are listed below.

RBDO Solution Using Sequential MPP-Based Sampling Strategy – This

method is to add each MPP point to the sample pool without considering additional

sampling points based on ERI. As at Step (2) MPPs are evaluated by computer

experiments at each iteration, it is natural to add them to update the estimation of

functionG. This method is similar to the sequential ERI-based sampling strategy,

but remove Step (3).

RBDO Solution Using Lifted Metamodel Function– In order to guaran-

tee the optimal solution given bŷG function is feasible, a conservative approach

is to replaceĜ function by a predicted lower bound function. SinceĜ function

approximately follows a normal distribution, the lifted response function isĜ−

tα/2,n−p

√

Var(Ĝ). Then the RBDO formulation becomes:

Minimize f (d,µX) (3.19)

Subject toProb[Ĝ(d,x)− tα/2,n−p

√

Var(Ĝ(d,x))≥ 0]≥ R (3.20)

dL ≤ d ≤ dU,µL
X ≤ µX ≤ µU

X (3.21)

where
√

Var(Ĝ(d,x)) is the standard error of prediction. It is expected that the true

function value will fall in the prediction interval[Ĝ(d,x)− tα/2,n−p

√

Var(Ĝ(d,x)),

Ĝ(d,x)+ tα/2,n−p

√

Var(Ĝ(d,x))] at the(1−α)% confidence level. This method
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is very conservative. It requires large initial sample sizefor reducing the prediction

error. Typicallytα/2,n−p

√

Var(Ĝ) ∝ c√
n , where c is a constant.

RBDO Solution Based on Non-sequential Random Sampling Strategy– As

mentioned in Section 3.3, LHS is used to construct initial sample pool. Latin hyper-

cube sampling or any other random sampling method can also beused subsequently

to add more samples to updateĜ function. The result will be compared with the

sequential ERI-based sampling and the MPP-based sampling strategies in the fol-

lowing example.

3.4 I-Beam Performance Comparison

In the I-beam example mentioned in Section 2.5, as the true G function is known, we

can use it to evaluate the fitness of metamodelĜ and to compare different sampling

strategies for improving the MPP estimation. The RBDO problem is formulated as:

Minimize: 3µ1µ2−2µ2
2 (3.22)

Subject to:Prob[Ĝ(x1,x2)≥ 0]≥ 99.87% (3.23)

10≤ µ1 ≤ 80,0.9≤ µ2 ≤ 5 (3.24)

Solution with the True Constraint Function

Following the SORA procedure, we obtain the following solution using genetic

algorithm (GA) with 100 initial population and 5 iterations.

Table 3.Results of SORA for I-Beam with True Constraint

Optimization Constraint
Cycle µ1 µ2 Obj MPP1 MPP2 GR

1 49.94 0.91 120.44 38.85 0.91 -0.004
2 49.73 0.92 135.16 43.63 0.92 0.0003
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From Table 3 we can see that after two cycles the decision variable(49.73,

0.92) can satisfy the probabilistic constraint with the R-percentile GR= 0.0003> 0.

The objective value of RBDO is 135.16 based on the true constraint function. The

3-D graph ofG function is shown in Fig. 11. If we cut 3-D G function with plane

G = 0, the feasible region of the deterministic constraint by SORA (the dark blue

dot) and the shifted constraint region by SORA (the light blue star) in the X-space

are shown in Fig. 12.

Solution with the Sequential ERI-Based Sampling Strategy

In this section, the sequential ERI-based sampling strategy is employed as we treat

the constraint function as implicit. First, 20 initial sample points are generated by

LHS as shown in Table 4. These sample points are evaluated by the G function,

which we assume to be a black box. A Kriging modelĜ is built with these initial
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20 samples. We set the stopping criterion of the sequential ERI-sampling strategy

to be maxERI< 0.005 and obtain the results as in Table 5.

Similar to the results in Table 3, after two cycles our methodobtains a fea-

sible solution(51.31,0.91) with the value of the cost function to be 138.32. The

additional sample points needed in each cycle are provided in Table 6. The fea-

sible region in the X-space is shown in Fig. 13. The black dotted area is the true

feasible region of deterministic constraintG(µ) ≥ 0 by SORA, and it is partially

overlapped by the star area. The light blue star area is the shifted feasible region

of Ĝ(µ −s) ≥ 0 when the sequential ERI sampling is applied; while the darkblue

x-mark area is the shifted feasible region ofG(µ −s) ≥ 0 by SORA when the true

constraint function is known. The red circle denotes the approximated optimal so-

lution (µ1,µ2) = (51.31,0.91), and the red pentagram represents the approximated

45



Table 4.Initial Samples by Latin Hypercube

Obs X1 X2 G
1 32.11 2.63 0.004
2 24.74 0.90 -0.036
3 65.26 2.19 0.013
4 10.00 3.71 -0.173
5 61.58 3.27 0.014
6 50.53 5.00 0.013
7 54.21 4.14 0.013
8 72.63 3.92 0.015
9 35.79 3.49 0.008
10 57.89 1.12 0.009
11 80.00 3.06 0.015
12 28.42 1.76 -0.006
13 39.47 4.35 0.011
14 21.05 4.57 -0.007
15 76.32 1.33 0.013
16 68.95 4.78 -0.015
17 13.68 1.55 -0.106
18 43.16 1.98 0.008
19 46.84 2.84 0.011
20 17.37 2.41 -0.036

Table 5.Results of SORA for I-Beam with Sequential ERI Sampling Strategy

Optimization Constraint
Cycle µ1 µ2 Obj MPP1 MPP2 GR

1 40.92 0.95 115.35 34.83 0.92 -0.009
2 51.31 0.91 138.32 45.21 0.91 0.001

MPP(45.21,0.91). One can see that the approximated MPP is in the true feasible

region. For the purpose of comparison,µ and MPP given by the true G function

are also shown in Fig. 13. The additional sample points selected by the sequential

ERI sampling strategy are represented by diamonds. We notice that these additional

samples appear in both feasible and infeasible regions, andthey cluster around the
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optimal solution of (µ1, µ2). In consequence, the estimated shifted limit state func-

tion, Ĝ(µ −s) = 0, is more accurate in the area around the true optimal solution.

In fact, the dark blue (the true shifted feasible region by SORA) and light blue (the

estimated shifted feasible region) regions are quite different in the upper part of the

graph, but almost identical in the lower part of the graph, which is the area of the

most importance to RBDO.

Solutions by Other Methods

RBDO Solution using Sequential MPP-Based Sampling Strategy – The MPP-based

sampling strategy is employed to deal with the I-beam example with implicit con-

straint function. The initial sample points are the same as in Table 4. After two

cycles an approximated optimal solution(49.21,0.90) is obtained with the objec-

tive value of 131.66. Note that the objective value is smaller than the value given by
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Table 6.Additional Samples by Sequential ERI Sampling Strategy

Obs X1 X2 G
21 34.8290 0.9226 -0.0088
22 47.0108 0.9198 0.0026
23 46.0796 1.3158 0.0060
24 34.8294 0.9216 -0.0088
25 45.2150 0.9427 0.0018
26 53.6512 1.5349 0.0097
27 57.4040 0.9050 0.0070
28 50.1729 1.5752 0.0089
29 45.2076 0.9108 0.0014

the true function, but an evaluation of the obtained solution (49.21,0.90) shows that

it is indeed an infeasible solution to the probabilistic constraint 3.23. The reason

is that the current MPP(55.31,0.92) is obtained by theĜ function instead of the

true G function and thêG function is not accurate enough to locate the true MPP.

We see that the prediction errors are high at the area around the current MPP. The

feasible region is shown in Fig. 14.

In Fig. 14, the star area is the feasible region ofĜ(µ −s) ≥ 0 given by the

MPP-based sampling strategy. Same as before, the dotted area is the true feasible

region ofG(µ)≥ 0 and the x-mark area is the feasible region ofG(µ −s)≥ 0. The

red circle denotes optimal solution given by the sequentialMPP-based sampling

strategy, and the red pentagram represents the approximated MPP. One can see that

the approximated MPP falls out of deterministic feasible region.

RBDO Solution using the Lifted Response Function– Using the method

provided in Section 3.3, a lifted response function is employed to replaceĜ. Hence
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Figure 14.RBDO feasible region̂G function by MPP-based sampling

the RBDO formulation becomes

Minimize: 3µ1µ2−2µ2
2 (3.25)

Subject to:P[Ĝ(x1,x2)− tα/2,n−p

√

Var(Ĝ(x1,x2))≥ 0]≥ 99.87% (3.26)

10≤ µ1 ≤ 80,0.9≤ µ2 ≤ 5 (3.27)

wheren is equal to 20, which is the initial sample size;p is equal to 3 since there

are one parameter for the linear term and two parameters for the correlation term

in the Kriging model. In this case no additional samples are added and the SORA

converges after 12 cycles. The feasible region is shown in Fig. 15.

In Fig. 15, the dotted area is the true feasible region ofG(µ)≥ 0, the x-mark

area is the feasible region ofG(µ −s) ≥ 0, and star area is the feasible region by

prediction lower bound function̂G(x)− tα/2,n−p

√

Var(Ĝ(x)) ≥ 0. The red circle

denotes the approximated optimal solution(µ1,µ2) = (52.74,1.04) given by the
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Figure 15.RBDO feasible region by lifting response function

lifting response function, and the red pentagram represents the approximated MPP

(46.76,0.90). One can see that although the approximated MPP falls in the feasi-

ble region, its corresponding solutionµ is too conservative and far from the true

optimum.

RBDO Solution using Random Additional Samples– To compare with the

sequential ERI-sampling strategy, we uniformly take 9 additional sample points.

These additional sample points are shown in Table 7. A Kriging model is con-

structed based on the total 29 samples, and the RBDO result isgiven by SORA.

In the X-space, the feasible region is shown in Fig. 16. One can see that the

approximated feasible region and the true feasible region are quite different in

the lower part of the graph. This causes that the approximated optimal solution

(µ1,µ2) = (52.84,1.06), denoted by the red circle, and the approximated MPP
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Figure 16.RBDO feasible region of̂G by non-sequential random sampling

Table 7.Additional Samples by Uniform Sampling

Obs X1 X2 G
21 13.8889 2.9500 -0.0658
22 28.6680 4.3240 0.0049
23 68.3334 1.5833 0.0123
24 44.3002 1.1289 0.0035
25 21.5410 1.9975 -0.0201
26 37.4270 3.8430 0.0096
27 75.8626 3.4424 0.0145
28 53.4068 4.7577 0.0136
29 60.2463 2.5064 0.0128

(46.86,0.93), denoted by the red pentagram, are far from their true optimums.

Efficiency and Accuracy Comparison Between Different Methods

We summarize the results of the I-beam example solved by different methods in

Table 8 and compare their merits. The column of function calls is defined as the
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number of optimization function calls including the deterministic optimization, the

ERI optimization and MPP optimization. It takes 2 cycles to solve RBDO with true

model in SORA, thus there are 2 deterministic optimization calls and 2 MPP opti-

mization calls. Similarly, the MPP-based sampling strategy and the non-sequential

random sampling strategy take 2 cycles to achieve their optimal solutions, so 4

function calls are needed. It takes 2 cycles in the sequential ERI-based sampling

strategy, and there are 2 function calls in Step (1), 2 in Step(2), 5 in Step (3) and 2

Step (4); hence, the ERI-based strategy takes 11 function calls in total. In the lifted

metamodel function approach, 24 optimization calls are executed since it takes 12

cycles to achieve the optimal solution. The columns of(µ1,µ2) is the approximated

optimal solution and the last column is the obtained minimumobjective value.

Table 8.Results Comparison Between Methods in I-Beam Case

Method Cycles Function New (µ1,µ2) Obj
calls pts

True 2 4 NA (49.7, 0.92) 135.16
ERI 2 11 Yes (51.3, 0.91) 138.32
MPP 2 4 Yes (49.2, 0.90) 131.66

infeasible
Lifted 12 24 No (52.7, 1.04) 162.08

Random 2 4 Yes (52.8, 1.06) 165.83

First, we can see that the sequential ERI-sampling strategyprovides a good

approximated optimal solution that is close to the true optimal solution, but it needs

to take additional samples. Second, the MPP-based samplingmay also provide a

near optimal solution with even fewer function calls; however, as mentioned above,

the feasible region derived from the MPP-based sampling is proved to be infeasible

in this example, because the metamodelĜ around the MPP area is not accurate

enough. Third, although the RBDO solution using the lifted response function
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Figure 17.A thin walled box beam demo

needs no additional samples, thus it has lower sampling cost, it requires a larger

number of function calls to converge to an optimal solution than any other methods.

Furthermore, the solution it provided is far from the true optimum. Finally, the

non-sequential random sampling method cannot give an accurate optimal solution

because the additional samples are not taken from the MPP area. In summary, the

sequential ERI-based sampling strategy provides the most accurate optimal solution

when the constraint function of RBDO is a black box.

3.5 Application to A Thin Walled Box Beam

In this section we demonstrate the applicability of the sequential ERI-based sam-

pling strategy for multiple constraints using a thin walledbox beam example. As

shown in Fig. 17, the beam is clamped at one end and loaded at the tip of the

other end. The objective is to minimize the weight of the thin-walled box beam

under both the vertical and lateral loads. Since the beam length L = 100cm is kept

as a constant and the material is assumed to be isotropic, minimizing the beam

weight is equivalent to minimizing the cross-section area.Four random variables

X1,X2,X3,X4 describe the cross-section area, and they follow normal distributions

asX1 ∼ N(µ1,0.2252),X2 ∼ N(µ2,0.2252),X3 ∼ N(µ3,0.032),X4 ∼ N(µ4,0.032).

The vertical load Y is equal to 1000kN and the horizontal load Z is equal to 500kN.

There are two implicit black box constraints – the bending moment con-
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Figure 18.Preprocess model in ANSYS

straint and the displacement constraint. As shown in Fig. 17, the vertical and hori-

zontal loads are applied on the free end of the beam, thus the bending moment stress

is not uniform on the beam and the maximum value takes place onthe clamped left

end. To satisfy the yield bending moment thresholdσ1
t = 24000kN/cm2, the max-

imum σ1 should be less or equal toσ1
t . The displacement constraint requires the

maximum displacement of the beam, which happens at the free end, to be less or

equal toσ2
t , whereσ2

t = 1.6cm is the displacement threshold.

The demo is ran in ANSYS 10.0, in which the material’s elasticmodulus is

set asE = 2.9×107psi, and Poisson’s ratio is 0.3. The size element edge length

is set to be 1cm in finite element analysis. The finite element model in ANSYS is

shown in Fig. 18. After finite element analysis (FEA), the deformed shape and the

contour plots of Von-Mises are shown in Fig. 19 and Fig. 20, respectively.
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Figure 19.Deformed shape

Figure 20.Contour plots of Von-Mises
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The 20 initial Latin Hypercube samples are evaluated by the FEM computer

experiment, which are listed in Table 10. Following the sequential ERI-sampling

strategy with multiple constraints as described in Section3.3, we set the stopping

criterion as 0.1, then 23 additional samples are taken. Table 9 provides the number

of function calls, FEM evaluation and additional samples required for solving this

box beam RBDO problem. The details of each iteration are given in Table 11. In

summary, there are 3 deterministic optimization calls, 28 ERI optimization calls

and 6 MPP optimization calls in the three cycles. The column ”FEM No.” denotes

the number of finite element analysis. There are 43 FEM models, for the 20 original

samples and 23 additional samples, evaluated in this case. After three SORA cycles

the MPPs of the two constraints become feasible.

Table 9.Efficiency in Thin Walled Box Beam Demo

Method Function FEM New (µ1,µ2,µ3,µ4) Obj.
calls No. samples

ERI 37 43 23 (4.02, 4.00, 0.53, 0.59) 7.75

3.6 Conclusion and Future Work

In this chapter, an RBDO problem under implicit constraint function is discussed.

Metamodels are used to approximate the true constraint functions in RBDO. We

discuss and compare two different metamodels – polynomial model and Kriging

model, and Kriging model is selected as our empirical metamodels in RBDO be-

cause it not only requires fewer parameter estimations but also fits well for high

nonlinear functions. Based on Kriging model, we propose a sequential ERI-based

sampling strategy to improve the solution of RBDO, and compare it with the meth-

ods of the MPP-based sampling, lifted response function andnon-sequential ran-

dom sampling. Among all of them, the sequential ERI-based sampling provides
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Table 10.Initial Samples by Latin Hypercube

Obs X1 X2 X3 X4 G1 G2

1 3.58 3.74 0.73 0.71 5704 0.68
2 4.21 5.00 0.58 0.73 12948 1.19
3 4.37 3.11 0.9 0.77 5998 0.53
4 2.32 3.26 0.82 0.79 -9070 -0.57
5 2.95 2.16 0.54 0.63 -25286 -2.23
6 3.42 2.32 0.67 0.84 -12013 -1.03
7 2.16 3.42 0.71 0.58 -11569 -0.66
8 3.89 2.95 0.69 0.52 -2067 0.04
9 4.84 3.89 0.86 0.56 10860 0.98
10 4.53 2.00 0.75 0.67 -9770 -1.58
11 2.63 4.21 0.5 0.65 -544 0.35
12 3.74 4.37 0.84 0.88 10920 1.02
13 4.05 4.53 0.61 0.5 9040 1.00
14 5.00 3.58 0.63 0.86 10853 0.94
15 2.47 4.84 0.77 0.75 5444 0.70
16 2.00 2.79 0.56 0.82 -26039 -1.88
17 3.11 4.68 0.79 0.54 8005 0.90
18 3.26 2.63 0.88 0.61 -7846 -0.58
19 2.79 4.05 0.65 0.9 3666 0.52
20 4.68 2.47 0.52 0.69 -127 -0.07

more reliable optimal solution than the MPP-based samplingmethod, and more ac-

curate solution than the lifting response function and the random sampling methods.

The strength of our proposed method lies on that it will add samples around the cur-

rent RBDO solution to maximally improve the MPP estimation,while ignore other

areas of the constraint function that are not important to the RBDO solution.

As mentioned in Section 3.2, implicit constraint function is just one type of

epistemic uncertainty due to lack of knowledge. Unknown distributions of random

variables, for example, is another type of epistemic uncertainty and it is not dis-

cussed in this chapter. In future the sampling strategy could be developed to make

an accurate inference of random variable distributions. Our method can also be ex-
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tended and applied on more complex problems, such as the RBDOproblem with

multiple objectives. In addition, since reliability and robustness are two important

attributes of product design optimization, robust design method, which focuses on

minimizing performance variation without eliminating thesources of variation, can

be combined with RBDO.
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Table 11.Results of Sequential ERI Sampling of the Thin Walled Box Beam

Cycle 1
µ1, µ2, µ3, µ4 Objective Value

3.21, 3.77, 0.52, 0.50 6.09
X1, X2, X3, X4 ERIĜ1

ERIĜ2
Ĝ1 Ĝ2

3.06, 3.11, 0.52, 0.51 -7631
2.83, 3.22, 0.52, 0.52 -0.337
2.61, 3.47, 0.51, 0.50 0.083< ε -8101 -0.289

MPP1, MPP2, MPP3, MPP4 Ĝ1 Ĝ2

2.75, 3.28, 0.51, 0.51 -9256(< 0)
2.77, 3.26, 0.52, 0.51 (infeasible) -0.346(< 0)

Cycle 2
µ1, µ2, µ3, µ4 Objective Value

2.76, 4.82, 0.57, 0.50 7.14
X1, X2, X3, X4 ERIĜ1

ERIĜ2
Ĝ1 Ĝ2

2.15, 4.67, 0.55, 0.53 -2158
2.21, 4.45, 0.55, 0.50 0.081
3.17, 4.91, 0.50, 0.52 0.590 6672 0.844
2.46, 4.98, 0.51, 0.56 0.112 2542 0.517
2.17, 4.50, 0.58, 0.50 0.094< ε -3135 0.075

MPP1, MPP2, MPP3, MPP4 Ĝ1 Ĝ2

2.21, 4.43, 0.56, 0.51 -2789(< 0)
2.11, 4.65, 0.56, 0.50 (infeasible) 0.051(< 0)

Cycle 3
µ1, µ2, µ3, µ4 Objective Value

4.02, 4.00, 0.53, 0.59 7.75
X1, X2, X3, X4 ERIĜ1

ERIĜ2
Ĝ1 Ĝ2

3.85, 3.35, 0.53, 0.58 2164
3.71, 3.40, 0.53, 0.59 0.415
3.41, 4.06, 0.51, 0.55 1.689 3431 0.666
4.64, 4.27, 0.52, 0.59 1.068 10481 1.037
3.61, 3.66, 0.51, 0.54 0.407 1636 0.516
3.44, 4.33, 0.52, 0.59 0.327 5780 0.795
4.04, 3.95, 0.52, 0.50 0.289 5654 0.774
3.46, 3.74, 0.50, 0.61 0.200 2261 0.540
3.53, 3.63, 0.56, 0.56 0.096< ε 1748 0.493

MPP1, MPP2, MPP3, MPP4 Ĝ1 Ĝ2

3.55, 3.55, 0.52, 0.56 911(> 0)
3.60, 3.49, 0.52, 0.58 (feasible) 0.423(> 0)
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CHAPTER 4

DESIGN OPTIMIZATION WITH PARTICLE SPLITTING-BASED

RELIABILITY ANALYSIS
4.1 Introduction

The simulation-based method is the rudimentary method of assessing a probability

function in RBDO. However, it is also the most accurate method if the sample size

is large enough. The computation burden is typically large,but it can be greatly re-

duced by some advanced sampling methods as discussed in the later sections of this

chapter. In this chapter, our approach replaces the MPP-based reliability assessment

step by a new simulation-based reliability assessment method – particle splitting.

Therefore, the probabilistic constraint is not longer evaluated by the worst case sce-

nario, but by the whole feasible design space. We introduce the concept of target

probable point (TPP), which is derived from the desirable sampling points from

simulation directly. The mean performance measure is feasible if TPP can satisfy

the constraint. Our approach takes the advantages of both the merit of efficiency

from the sequential loop method and the merit of accuracy from the simulation-

based reliability assessment method.

Our research contributions are: First, the rare-event simulation technique

(i.e., subset simulation and particle splitting) is integrated into RBDO. However,

different from the typical rare-event simulation application that aims to evaluate

probabilistic constraints, we employ the rare-event simulation in an optimization

aiming to find optimal random properties under a target probability. Secondly, par-

ticle splitting is proposed as an improvement of subset simulation in rare-event

simulation, and the trade-off balance among number of subsets, simulation sam-

ple size and coefficient of variation is investigated, whichprovides a guidance for

determining the simulation process. Finally, we extend ourparticle splitting-based

60



reliability analysis approach to address multiple constraints without significantly

increasing simulation efforts.

The remaining part of the chapter is organized as follows: InSection 4.2

we specify the simulation-based sequential optimization reliability assessment ap-

proach employed in the chapter. A particle splitting-basedreliability analysis ap-

proach is proposed in Section 4.3. In Section 4.4 we provide an I-beam case to

illustrate the proposed method and a mathematical example to demonstrate the ex-

tension of our algorithm on handling the problem with multiple probabilistic con-

straints. Finally, we draw the conclusion and propose our future work in Section 4.5.

4.2 Simulation-Based Reliability Analysis

Monte Carlo simulation (MCS) with large sample size generally provides high ac-

curacy in estimating the probability of an event; however, it requires tremendous

amount of event evaluation, when the event probability is very small (a rare event),

in order to get lower estimation error. This computational issue has been addressed

recently by applying other simulation methods, such as importance sampling, sub-

set sampling and line sampling. A sampling method around MPPwas provided in

[22]; Reduced region importance sampling was developed in [33], [46]; Quasi MCS

techniques were developed in [66], in which sampling was done in the important

regions that include the region in the failure domain that contributed significantly

to the probability of failure. Importance sampling was alsoemployed to improve

sampling efficiency and estimation accuracy in [58], [42]. Subset simulation was

used in [27], in which an RBDO problem with surrogate model was solved by a

double-loop approach; A three-step approach was proposed to solve RBDO in [14],

in which reliability constraint was transformed into nonprobabilistic one by esti-

mating the failure probability function and the confidence intervals using subset
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simulation. A line sampling approach proposed in [101] employed lines instead of

random points to probe the failure domain of interested.

As mentioned before the SORA method solves two optimizationproblems

sequentially. The first optimization problem is as follows:

Minimized,µX f (d,µX)

Subject toGi(d,µX −s)≥ 0 i = 1,2, . . . ,n
(4.1)

wheresdenotes the shifting vector derived from the reliability assessment step, and

s is set to0 in the first cycle. The random parameter vector is ignored in the above

formulation for simplicity.

Based on the optimumd andµX , the reliability assessment is implemented

as:

Prob[Gi(d,X)≥ 0] =

∞
∫

0

fGi(Gi)dGi ≥ Ri (4.2)

where fGi(Gi) is the probability density function (pdf) ofGi(d,x). For low dimen-

sion and simple constraint function formulation, the pdf ofGi(d,x) can be derived.

However, it is typically very difficult to obtainfGi (Gi) in highly nonlinear case.

Then a multi-dimensional integration is derived as:

Prob[Gi(d,x)≥ 0] =
∫

Gi(d,x)≥0

fX(x)dx ≥ Ri (4.3)

where fX(x) is the joint pdf of random vectorX, andGi(d,x)≥ 0 is the integration

region. Since the computational work for direct multi-dimensional integration in re-

liability assessment is unaffordable, a variety of approximate reliability assessment

methods have been proposed in literature. SORA employs the MPP-based reliabil-

ity analysis method, in which the probabilistic constraintevaluation is converted to

an MPP optimization problem based on the concept of MPP and reliability index.
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By the inverse reliability PMA, this optimization problem is as

Minimizeu G(u)

Subject to ‖ u ‖= βtarget

(4.4)

where the optimal solution,uMPPIR, is called the most probable point of inverse re-

liability (MPPIR) [25]. MPPIR is the point on the target reliability level which has

the smallest performance function value in the U-space. Once the MPPIR is ob-

tained,GR= G(uMPPIR) = G(xMPPIR) is called the target probabilistic performance

measure [84]. IfGR≥ 0, it indicates that the performanceG(x)≥ 0 for all the points

within target reliability level. IfGR < 0, it indicates that the target reliability level

in ith cycle is not satisfied, a shifting vectorsi+1 = µX
i − xi

MPPIR is derived in the

original X-space.

The design optimum from the first deterministic optimization has high prob-

ability of violating design constraints, as it does not consider uncertainties. If so, a

shifting vector which starts from MPPIR and points to designvariableµX is derived

to compensate the gap between actual reliability and targetreliability. Then the al-

gorithm enters a new cycle and the constraint in deterministic design optimization

is revised by the shifting vector. Uncertainties are considered adaptively in each

cycle until the decision variable vectorµX satisfies the target reliability level.

In this chapter, simulation methods are employed in the reliability assess-

ment step because it can provide a more accurate probabilityestimation than the

MPP-based method and also because it can handle general constraint functions, no

matter they are linear or nonlinear, explicit or implicit functions. The probabilistic

constraint evaluation by MCS can be expressed as

PF =

∫

x

IF(x) fX(x)dx = E(IF(x)) = lim
N−→∞

1
N

N

∑
k=1

IF(xk) (4.5)
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whereN is the simulation sample size, andxk is the sample distributed with the pdf

fX(x). IF(x) is an indicator function

IF(x) =











1, if x ∈ F

0, if x /∈ F
and F = {x|Gi(d,x)< 0} (4.6)

whereF represents the failure domain corresponding to the problemdefinition.

When the sample size isN, the failure probability can be replaced by the estimator

P̂F as

P̂F = Ê(IF(x)) =
1
N

N

∑
k=1

IF(xk) (4.7)

The expectation and variation of theP̂F are

E(P̂F) = PF , Var(P̂F) =
(1−PF)PF

N
(4.8)

The confidence interval for the failure probability is[PF −zα/2

√

(1−PF)PF
N ,PF

+zα/2

√

(1−PF)PF
N ], which does not depend on the dimension of the input variablex.

When the failure probabilityPF is extremely small, however, the MCS approach

is not longer feasible as the required sample size becomes extremely large. In this

chapter, particle splitting, which is an improved sequential Monte Carlo simulation

method [19], is employed for reliability assessment and it is integrated with the first

optimization step of RBDO.

4.3 SORA with Particle Splitting-Based Reliability Analysis

To assess the extremely small but important probabilities of rare events, such as

the structural failure probability, subset simulation hasbeen developed in literature

[4]. We will show how to integrate this technique with RBDO inthis section. As

the ultimate purpose of RBDO is to find the optimal setting of design variables, the

rare-event simulation is only one step, but an important step, in the optimization
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process. In the SORA algorithm, the reliability assessmentis performed by an

MPP optimization, which is to evaluate the worst case scenario of system reliability.

Here, we replace it with the simulation-based reliability assessment method so that

the reliability analysis would not be too conservative. On the other hand, similar

to SORA which employs MPP points to find the shifting vector toimprove the

RBDO solution iteratively, we utilize the statistical property of sample points from

simulation to find the target probability point (TPP) to define the shifting vector. As

such, the rare-event simulation implemented in RBDO is different from its typical

applications.

Particle Splitting

Particle splitting method extends the subset simulation bydeploying multiple par-

ticles (multiple Markov chain Monte Carlo sampling pathes)to enhance sample

diversity. Subset simulation was first proposed in [4] to compute small failure prob-

abilities encountered in reliability analysis of engineering systems. It was consid-

ered for improving the efficiency of MCS in [101]; an innovative method called

stochastic simulation optimization and sensitivity analysis was proposed in [81],

[82];

The main idea of subset simulation is to formulate the small failure event

probability as a product of larger conditional failure probabilities by introducing

intermediate events. Suppose we need to evaluate a small failure probabilityF =

{x : G(x)≤ G} by simulation, subset simulation derives a sequence of events such

thatF1 ⊃ F2 · · · ⊃ Fm= F. Then a series of limit values are generated asG1 > G2 >

· · ·> Gm corresponding to the event sequence. The original failure probability can
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be expressed as a product of conditional probabilities as

PF = P(Fm) = P(Fm|Fm−1)P(Fm−1|Fm−2) . . .P(F2|F1)P(F1)

= P(F1)
m−1

∏
i=1

P(Fi+1|Fi)
(4.9)

wherem denotes the number of subsets. The probabilityPF is determined by esti-

matingP(F1) and the partial failure probabilitiesP(Fi+1|Fi) in two steps: In the first

step, the probabilityP1 = P(F1) = Prob[G(x)≤ G1] is evaluated by a direct MCS,

so

P̂1 =
1
N1

N1

∑
k=1

IF1(x
(1)
k ) (4.10)

whereIF1(x) is an indicator function which is equal to 1 ifx ∈ F1 and 0 ifx /∈ F1.

In the second step, the conditional probabilitiesP(Fi+1|Fi) are evaluated by the

Markov chain Monte Carlo (MCMC) simulation in conjunction with Metropolis-

Hastings algorithm. The conditional probabilityPi+1 = P(Fi+1|Fi) = Prob[G(x)≤

Gi+1|G(x)≤ Gi] is estimated by

P̂i+1 =
1

Ni+1

Ni+1

∑
k=1

IFi+1(x
(i+1)
k ) (4.11)

where the conditional probability density functionf (x|Fi) needs to be evaluated by

MCMC.

Some specific concerns are:

(1) The starting sample point of subseti +1 is from the samples that are in

subseti but lie in the failure regionFi . In particle splitting, instead of using a single

starting sample point, multiple starting points of subseti +1 are defined as a set of

sample points locating in the failure region of subseti. Each element of the starting

point sample set is referred as a particle and a sampling pathis generated from each

particle by MCMC. Multiple particles and paths can enhance simulation diversity

and lead to more stable simulation results.
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Figure 21.Sample size requirement for different coefficient of variation and number
of subsets.

(2) The variation of estimator̂PF is evaluated by the approximated coeffi-

cient of variationδ =
√

∑m
i=1δ 2

i , i = 2, . . . ,m, whereδi =
√

1−Pi
PiNi

, Pi andNi are the

coefficient of variation, partial failure probability and the sample size ofith subset,

respectively. For convenience we may set allPi to be equal, soPi =
m
√

Pt under the

target failure probabilityPt , wherem is the number of subsets.

A plot of δ versusNi for differentm’s or Pi ’s is shown in Fig. 21. Suppose

we would like to achieveδ = 0.1, then the partial probabilityPi and sample sizeNi

are shown in Table 12, whereN = Ni ×m is the total sample size. One can see that

the sample size is minimal when four subsets are deployed.

The theoretical minimum sample size can be derived as such: As δi =
√

1−Pi
PiNi

andNi =
(1−Pi)m

Piδ 2 , we have the total sample size to beN = Ni ×m= ( 1
Pi
−
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Table 12.Sample Size Requirement for Different Number of Subsets Whenδ = 0.1

m Pi Ni N
2 0.0316 61246 12248
3 0.1 2700 8100
4 0.1778 1849 7396
5 0.2512 1491 7455

1)m2

δ 2 . Since allPi are the same, i.e.,Pi =
m
√

Pt , we obtain the following formula,

N = m2P
1
m

t −m2 (4.12)

Taking the derivativedN
dm and set it to be zero, we have

2m−2mP
1
m

t + lnPt = 0 (4.13)

whenPt = 0.001, the solution of above equation ism= 4.3346≈ 4, which matches

the result obtained in Table 12.

Typically once partial failure probabilityPi , i = 1, . . . ,m are predefined, the

corresponding limit valuesGi , i = 1, . . . ,m are determined adaptively during the

simulation according to the target partial failure probability Pi. The method men-

tioned above provides only a reference for selectingPi since it has some assump-

tions such as equal partial failure probability and selecting coefficient of variation

as accuracy measure. In addition, other considerations such as the burn-in duration

and the acceptance rate of MCMC should be included to determine the number of

subsets. A longer MCMC chain will generally reduce the burn-in effect and guaran-

tee samples are generated from the target distribution. Therefore, the final selection

of Pi should be from a comprehensive evaluation of all criteria and computational

burdens based on specific problems.
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SORA with Particle Splitting-Based Reliability Assessment

In this section we introduce the concept of TPP, which, like MPPIR, is used to con-

structing the shifting vector for improving the SORA solution to decision variables.

TPP is defined as the sample point that can separate all simulation samples

into successful ones and failure ones, where the ratio of failure ones to total samples

is equal to the target probability. For example, 1000 samples are simulated and

listed in an ascending orderx1, . . . ,x1000by their performance values. Then we can

find the 10th sample to be TPP when the target probability is 0.01. Thus the first

10 samples are in failure region since their performance values are less or equal

to the TPP measure. The ratio of failure samples is10
1000, which is equal to target

probability level. To enhance the robustness, TPP is definedas the centroid of a

set of points located between the upper bound and lower boundof the performance

valueGm, whereGm is the limit value ofmth subset probability and is the target

probabilistic performance measure. By applying the particle splitting method, we

evaluate the probabilistic constraint in RBDO by finding a sequence ofGi values.

If Gm ≥ 0, then the probabilistic constraint is satisfied.

TPP is different from MPP in the following aspects: First, MPP is an analyt-

ical function-based point. MPP could not be accurate if there is a large prediction

error in approximated constraint function. TPP is a simulation-based point, which

does not need analytical function. As long as the target probability is given, we

can find the TPP from all simulation sample points. Second, MPP is the worst case

point derived by optimization, it ignores the region that isout of target probability

level but still feasible. TPP can be simulated in any region and reflects the target

probability requirement, so it is not as conservative as MPP.
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Figure 22.Particle splitting-based reliability assessment

The flowchart shown in Fig. 22 depicts the algorithm of SORA with particle

splitting-based reliability assessment. It is explained below:

(1) A deterministic optimization problem with constraintGi(d,µX) ≥ 0 is

solved and the solutionµ(0)
X is typically obtained on the deterministic boundary

Gi(d,µX) = 0.

70



(2) As no uncertainties are considered in the deterministicoptimization, the

current reliability performance ofµ(0)
X can be evaluated by direct MSC because it

is relative large comparing with the target failure probability. N1 samples are simu-

lated to obtain the estimated failure probability asP̂F = 1
N1

∑N1
k=1 IF(xk). The upper

bound and lower bound of target failure probability arePU
t = Pt + zα/2

√

(1−Pt)Pt
N1

andPL
t = Pt −zα/2

√

(1−Pt)Pt
N1

, respectively.

In order to satisfyProb(G ≤ GU ) = PU
t , we find the valueGU = {Gi|i =

int(PU
t ·N1)} in the sequence(G1,G2, . . .GN1), whereG1<G2< .. . <GN1. Similar

logic can be applied to obtain the valueGL. A set of samples{xi|GL ≤ G(xi) ≤

GU , i = 1, . . . ,n} are collected betweenGL andGU . Then the TPP is derived as the

centroid of(x1, . . . ,xn).

(3) Based on the TPP, a shifting vectors(1) = µ(0)
X −x(0)TPP is derived to mod-

ify the decision variableµX, so that the TPP is moved at least onto the deterministic

boundary to ensure the feasibility.

(4) Solve the updated deterministic optimization problem with constraint

G(d,µX −s(k))≥ 0 and derive the solutionµ(k)
X .

(5) Givenµ(k)
X , the particle splitting process with predefined equallyPi can

be implemented in Fig. 23, whereP(k)(F1) is evaluated by MCS andP(k)(F2|F1), . . . ,

P(k)(Fm|Fm−1) are evaluated by MCMC adaptively.

Based on the samples in themth subset, we can find the limit valueGm =

{Gi |i = int(Pm·Nm)}. If Gm> 0, it can be concluded thatP
µ(k)

X
[G≤ 0]< Pt because

P
µ(k)

X
[G≤ Gm] = Pt andGm > 0. Thus the optimal solutionµ(k)

X is feasible and the

algorithm converges. IfGm < 0, it means the actual failure probability is greater

than target failure probabilityPt and the current optimal solution is infeasible.
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Figure 23.Particle splitting samples

(6) To derive TPP and moving vector, the upper bound and lowerbound

of Pm are derived asPU
m = Pm+ zα/2

√

(1−Pm)Pm
Nm

and PL
m = Pm− zα/2

√

(1−Pm)Pm
Nm

,

respectively. Then the limit valuesGU
m = {Gi |i = int(PU

m ·Nm)} andGL
m = {Gi|i =

int(PL
m ·Nm)} are obtained in the ascending sequenceG1 < G2 < .. . < GNm. In

Fig. 23, two dotted curveGU
m andGL

m are used to represent the upper and lower

bound ofG(x) = Gm, respectively.

(7) A set of samples{x j |GL
m ≤ G(x j) ≤ GU

m, j = 1, . . . ,n} are collected,

which are represented by solid points in Fig. 23. Then a shifting vectors(k+1) =

µX
(k)−x(k)TPP is derived, wherexTPP is the centroid of samples collected above. The

probability of the sequential partial failure events and shifting vector are depicted

in Fig. 24. The process is continued untilG(k)
m is greater than zero, then the RBDO

optimal solution based on particle splitting is obtained.

Comparing to other RBDO solutions, the proposed SORA with particle
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Figure 24.TPP location by particle splitting

splitting approach has the following advantages: First, the sequential optimization

method is more computationally efficient than the double-loop methods such as

[27], while it is more accurate than the single-loop methodssuch as [48], [76].

Second, the particle splitting-based reliability analysis is a simulation approach to

the probabilistic constraint assessment, which is more accurate than the MPP-based

method; at the same time, the particle splitting method improves the efficiency of

random sampling in the design space. In addition, this approach can be easily ex-

tended to handle RBDO problems with multiple constraints without significantly

increasing computation burden. Lastly, this approach is applicable to implicit con-

straint functions, e.g. a black-box computer model for evaluating product reliability,

as long as the constraint function evaluation is affordable.

Extension to RBDO with Multiple Probabilistic Constraints

Simulation-based reliability assessment methods are, in general, dimensional free,

but they require a large number of samples in the design spaceto estimate the prob-

ability. Engineering problems often encounter more than one probabilistic con-

straints. In this section, we discuss the extension of the particle splitting-based

approach to the RBDO problem with multiple constraints. Without taking addi-
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tional samples to assess more constraints, we share the samples among multiple

constraints by combining multiple constraints into one constraint. Thus the compu-

tation of a complex RBDO problem with multiple constraints does not significantly

increase comparing with the problem with a single constraint.

Suppose we have an RBDO problem with two probabilistic constraintsP=

Prob[G1(x)< 0]< Pt1 andP= Prob[G2(x)< 0] < Pt2, wherePt1 andPt2 are target

failure probabilities, respectively, to the two constraints. We can obtain the optimal

solutionµX by iteratively solving following deterministic optimization problem,

Minimize f (d,µX)

Subject toG1(d,µX −s1)≥ 0

G2(d,µX −s2)≥ 0

(4.14)

The particle splitting method is applied on evaluating the combination of

two probabilistic constraints. SupposeProb[G1(x)< 0] = P(A) andProb[G2(x)<

0] = P(B), then the joint probability ofAB is given byP(AB) = P(A)P(B|A), which

is the same asPF = Prob[G1 < 0,G2 < 0] = Prob[G1 < 0]Prob[G2 < 0|G1 < 0].

We apply the particle splitting method on assessing the joint probability and the

probability of the first constraint. IfPF assessed to be less thanPt1 ×Pt2 while

guarantee the probability of the first constraint less than its own targetProb[G1 <

0] < Pt1, then the probability of the second constraintProb[G2 < 0|G1 < 0] < Pt2

will be automatically satisfied. In RBDO,G1 andG2 are two performance functions

to describe two different aspects of the product or system. Also bothG1 < 0 and

G2 < 0 are rare events, the result ofG2 < 0 takes very little effects onG1 < 0.

Thus we can assumeG1 < 0 andG2 < 0 to be independent, thenProb[G2 < 0] =

Prob[G2 < 0|G1 < 0]< Pt2 is satisfied.

Suppose the target joint failure probability isPt = Pt1 ×Pt2 andm subsets
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are employed based on the scale ofPt. For the purpose of convenience, we set

equal partial failure probability for each subset, i.e.P1 = P2 = · · · = Pm = m
√

Pt =

m
√

Pt1
m
√

Pt2.

In the first subset, MCS is used to simulateN1 samples. A critical valueG1
1

is obtained to satisfyProb[G1(x)< G1
1] =

m
√

Pt1, thenN11= N1
m
√

Pt1 samples have

theG values to be less thanG1
1 in all N1 samples. Similarly, a second critical value

G1
2 is obtained to satisfyProb[G2 < G1

2|G1 < G1
1] =

m
√

Pt2 in all N11 samples. Thus

the partial failure probability of the first subset isP(F1) = Prob[G1 < G1
1,G2 <

G1
2] = Prob[G1 < G1

1]Prob[G2 < G1
2|G1 < G1

1] = P1. By setting the partial failure

probability and limit values in this way, we can guarantee the particle diversity since

P1×N1 particles are selected to generate sample paths in the next subset.

From the second subset, the conditional probabilityP(Fi+1|Fi) is evaluated

by MCMC as shown in Fig. 25. When allm subsets are evaluated, we can get the

first constraint asProb[G1 < Gm
1 ] = Prob[G1 < G1

1]Prob[G1 < G2
1] · · ·Prob[G1 <

Gm
1 ] = ( m

√

Pt1)
m = Pt1. The joint probabilityProb[G1 < Gm

1 ,G2 < Gm
2 ] = ( m

√

Pt1 ·
m
√

Pt2)
m= Pt1 ·Pt2. Thus ifGm

1 ≥ 0 andGm
2 ≥ 0, all constraints are satisfied.

A generic conditional probability formulation inith subset is as follows:

Pi = P(Fi|Fi−1) = Prob[G1 < Gi
1,G2 < Gi

2 · · ·Gn < Gi
n|Fi−1]

= Prob[G1 < Gi
1|Fi−1]Prob[G2 < Gi

2|G1 < Gi
1,Fi−1]

· · ·Prob[Gn < Gi
n|Gn−1 < Gi

n−1 · · ·G1 < Gi
1,Fi−1]

= m
√

Pt1
m
√

Pt2 · · · m
√

Ptn

(4.15)

To derive the TPP of each constraint, we follow the similar procedure as

in Step (6) and (7) in Fig. 22. A set of samples are located between the upper

bound and lower bound ofGm
1 andGm

2 . As shown in Fig. 25, a set of samples for
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Figure 25.Particle splitting samples in multiple constraints

constraintG1 are represented by the solid dots and cross circle point, andanother

set of samples for constraintG2 are represented by the star and cross circle point.

Thus TPPs are obtained by calculating the centroid of each set of samples. In

particular, the cross circle falls in failure region and is used to calculate TPP for both

constraints. If the targeted failure probabilities cannotbe satisfied, shifting vectors

s(k+1)
1 = µX

(k)−x(k)TPP1
or s(k+1)

2 = µX
(k)−x(k)TPP2

are derived, respectively. Thus the

algorithm enters a new cycle and is continued untilProb[G1(x)< 0,G2(x) < 0] <

Pt1 ×Pt2 andProb[G1(x)< 0]< Pt1 are satisfied.

4.4 Examples

I-Beam Example

The same I-beam RBDO problem in Section 2.5 is solved by the SORA with par-

ticle splitting in this section. First, the deterministic optimization loop is solved

using genetic algorithm (GA), in which the initial population size is 1000 and GA
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Table 13.Solution Steps by the Particle Splitting-Based Approach

Cyc. Method (µ1, µ2) Obj TPP P Event Samples
No.

1 MCS (43.26, 0.92) 117.17 (38.05, 0.96) 0.497 1 103

2 PS (47.42, 0.93) 130.24 (41.99, 0.97) 0.0025 3 103

3 PS (48.14, 0.93) 132.40 0.0009 3 103

iteration number is set to be 3. Second, the reliability analysis loop is solved by

particle splitting. Since the target failure probability is 1.3×10−3, the failure event

is subdivided into three sequential partial failure events, in which the failure prob-

ability is predefined toPi = 0.1 for each subset. In order to keep the coefficient of

variationδ to be about 0.1, 103 samples are taken in each subset. The failure prob-

ability of the first subset is evaluated by MCS, and 103×0.1= 100 particles used

to generate the subsequent sampling path. In the following two subsets, MCMC

in conjunction with the Metropolis-Hastings algorithm is employed. Three cycles

are implemented in particle splitting-based decoupled-loop approach to obtain the

RBDO optimal solution, which is shown in Table 13.

In each cycle, a shifting vectors= µ − xTPP is derived if the failure prob-

ability is greater than the target failure probability. After three cycles, the optimal

solution(48.14,0.93) with the objective value of 132.40 is obtained.

The accuracy and efficiency of the particle splitting-basedapproach are

compared with the MCS-based method (ground truth) and the MPP-based method

in Table 14. It is indicated that the optimal solution given by particle splitting is

very close to the ground truth by MCS. Particle splitting only takes 3×103 samples

to evaluate the target failure probability 0.0013 in one cycle underδ = 0.1, while

MCS needs to take about 105 samples to evaluate the same target failure probability
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Table 14.I-Beam Accuracy Comparison

Method µ1 µ2 Objective
MCS(ground truth) 48.58 0.92 132.14

Particle splitting 48.14 0.93 132.40
Decoupled-loop (SORA) 49.73 0.92 135.16

underδ = 0.1. Thus the efficiency of particle splitting is much higher with similar

accuracy.

SORA is an MPP-based method. Table 14 shows that the optimal solution

given by the particle splitting algorithm is closer to the ground truth comparing to

the SORA solution. The efficiency of particle splitting-based approach and SORA

can be compared by their sample sizes and computation times.In SORA, the reli-

ability analysis step is converted to an optimization by PMA. It employs GA with

3 iterations, where 1000 initial samples are taken in each iteration. 9000 samples

are taken in three SORA cycles, and the computation time is 2 minutes in Matlab

2010B. In the particle splitting-based method, each subsetrequires 1000 samples

as shown in Table 13. There are 7000 samples being taken in three cycles and the

computation time is 1.5 minutes in Matlab 2010B.

An Example with Multiple Constraints

In order to show the application of the particle splitting-based reliability analysis

approach on multiple probabilistic constraints, a widely used numerical example in

[76], [65], [39], [45], [40] is employed here. It has two random variables and three

probabilistic constraints. The results are compared with the ground truth and other

existing approaches, including SORA, double-loop methods(DLM) with PMA,

traditional approximation method (TAM), single loop single variable (SLSV), mean
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value method (MVM), and two-level approximation method (TLA). The problem

formulation is:

Minimize: f (µ) = µ1+µ2

Subject to:Prob[G1(x) =
x2

1x2

20
−1≥ 0]≥ R1

Prob[G2(x) =
(x1+x2−5)2

30
+

(x1−x2−12)2

120
−1≥ 0]≥ R2

Prob[G3(x) =
80

x2
1+8x2+5

−1≥ 0]≥ R3

0≤ µ1 ≤ 10,0≤ µ2 ≤ 10

X1 ∼ N(µ1,0.3
2),X2 ∼ N(µ2,0.3

2)

(4.16)

where three reliability levelR1 = R2 = R3 = 0.9987, thus the target failure proba-

bility is 0.0013.

Table 15 shows the solution when the particle splitting-based reliability as-

sessment method is applied on this example. The first cycle isevaluated by 103

MCS samples since the target failure probability is approximated to be 0.5. The

second and third cycles are evaluated by particle splitting. The coefficient of vari-

ation δ is selected as the estimator accuracy criterion as in [49]. Since the target

failure probability is 0.0013, we will have three subsets if we set the partial fail-

ure probabilityP(F1) = P1 ≈ 0.11, P(F2|F1) = P2 ≈ 0.11, P(F3|F2) = P3 ≈ 0.11

and P(F1)P(F2|F1)P(F3|F2) ≈ 0.0013. Under the level ofδ = 0.1, 103 samples

are taken to estimate the target probability 0.11. According to the result from

the first cycle, the constraintProb[G3(x) ≥ 0] ≈ 0 since the decision variableµ

is far from the constraint ofG3 as shown in Fig. 26. Thus the constraint ofG3

can be dropped and we only need to consider constraints ofG1 andG2. We set

Prob[G2 < 0|G1 < 0] ≈
√

0.11= 0.33 andProb[G1 < 0] ≈ 0.33, so thatP(F1) =

Prob[G2 < 0|G1 < 0]Prob[G1 < 0]≈ 0.11. After three cycles, the optimal solution
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Table 15.Results by the Particle Splitting-Based Approach

Cycle (µ1,µ2) Objective Method Events Event Target samples
probability

1 (3.1068,2.1008) 5.2076 MCS 1 0.5 103

2 (3.3185,3.2192) 6.7064 PS 6 0.33 6×103

3 (3.4374,3.2719) 6.7093 PS 6 0.33 6×103

achieves(3.4374,3.2719) with the minimum objective 6.7093.

In Fig. 26, the optimal solution of the particle splitting-based reliability as-

sessment approach is denoted as a cross sign from Cycle 1 to Cycle 3. Each optimal

solution has a circle region where 99.87% samples are located. If the current op-

timal solution is feasible, the circle region should be included in the deterministic

feasible region byG1 ≥ 0, G2 ≥ 0 andG3 ≥ 0. From Fig. 26 we can see the circle

of Mu Cycle 3 is completely included in the deterministic feasible region, thus the

optimal solution in Cycle 3 is feasible.

The true solution,µ = (3.4106,3.1577), with the objective value of 6.5683

is obtained by the double-loop Monte Carlo simulation approach. From Table 16 we

can see that particle splitting-based approach can give an accurate optimal solution

which is very close to ground truth. There are 103 samples taken to estimate the

each partial event target probability 0.33, and totally 1.3×104 samples are taken

in three cycles. In MCS, 105 samples are required to estimate the target probability

1.3×10−3 in Cycle 2 and Cycle 3 under theδ = 0.1 level, and the total sample size

could be over 2×105. Thus the efficiency of particle splitting-based approach is

much higher than MCS.

In Table 16, the particle splitting-based approach is compared with other
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Figure 26.Particle splitting optimal solution

existing popular RBDO methods [65]. It is indicated that theoptimal solutions by

DLM, SLSV, TAM, TLA, MVM, SORA and SLM are more conservative than the

optimal solution by particle splitting-based approach. One important reason is that

these methods make approximations of constraint functionsin reliability assess-

ment. For examples, SORA has a first-order reliability method (FORM) approxi-

mation in reliability assessment; TLA uses a reduced second-order approximation

in the first level and uses a linear approximation in the second level. In reality, the

true constraint function can be highly nonlinear, so lower order approximation can-

not capture the irregular function shape very well. These approximations usually

lead to inaccurate optimal solutions, either conservativeor infeasible. The solution

given by particle splitting-based approach is the closest one to the ground truth.

However, the particle splitting-based approach is a simulation method, so its com-

putational efficiency is lower than other methods.
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Table 16.Comparing Accuracy of the Solutions by Different Methods

Method Objective Overall constraint evaluations Iterations
PS 6.709 1.3×104 3

DLM 6.737 636 5
MVM 7.148 72 5
SLSV 6.729 156 5
TAM 6.733 372 5
TLA 6.732 60 4

SORA 6.732 455 5

4.5 Conclusion and Future Work

In this chapter, a new simulation-based reliability analysis approach, the particle

splitting method, is introduced to be integrated with the traditional sequential opti-

mization method to solve RBDO problems. The simulation-based probability esti-

mation is typically more accurate than the worst case analysis as in the MPP-based

solutions, but it is more computationally intensive. In order to reduce computational

burden and to enhance efficiency, we propose to use the particle splitting rare-event

simulation method to replace MCS. Comparing to other rare-event simulation meth-

ods, particle splitting uses multiple particles to enhancethe simulation diversity and

consistency. In addition, this approach can be extended to address problems with

multiple constraints without significantly increasing sample size. The strength of

our proposed method lies on that we combine the merits of SORAand simulation-

based reliability assessment such that it can provide a balanced solution, which is as

accurate as the Monte Carlo simulation method, but with greatly reduced number

of samples.

As mentioned in Section 4.3, the total sample size in particle splitting is

equal to the product of number of subsets, number of particles and the length of
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MCMC chain. Typically, the more subsets we have, the fewer samples are required

in each subset evaluation since the partial probability is higher; the more particles

in one subset we have, the larger simulation diversity it will be; the longer MCMC

chain is, the closer it will get to the target distribution. The trade-offs among these

three factors should be further investigated, especially for complex RBDO prob-

lems, e.g., RBDO with multiple objectives and/or multiple constraints. In addition,

as mentioned in Section 4.2, subset simulation is one type ofrare-event simulations.

In future work, other rare-event simulation methods such asline sampling can be

employed in reliability analysis in RBDO.
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CHAPTER 5

RELIABILITY-BASED ROBUST DESIGN OPTIMIZATION UNDER

IMPLICIT PERFORMANCE FUNCTIONS
5.1 Introduction

At the stage of product design and development, RBDO is used to address various

uncertainties and improve product quality and reliability. From the point of view

of mechanical engineering, the main task of RBDO is to keep the product design

safe or reliable under the minimum production cost. However, traditional RBDO

formulation and method have two drawbacks: First, most RBDOmethods do not

consider the impacts of noise variables in solving the problem. Although the ran-

dom parameters or noise variablesp are formulated in the performance function,

they are often replaced by their mean values or ignored for the purpose of simplic-

ity. Actually, two main issues can be considered based on thenoise variables [69]:

One is the design feasibility since the effect of variationsdue to noise variables

will lead to feasible region shrinkage. The other one is the transmitted variation of

performance function due to noise variables. Second, the objective cost function

in RBDO only considers the production cost. However, the transmitted perfor-

mance variation will cause the potential cost due to qualityloss, which is the cost

of quality-related efforts and deficiencies. In order to decrease the impacts of noise

variables on both quality cost and design feasibility, robust design is introduced

to address both feasibility robustness and objective robustness. Thus a reliability-

based robust design optimization (RBRDO) problem is proposed in product design

under implicit performance functions.

Robust design, first proposed by Taguchi, is an approach for improving the

quality of a product by minimizing the effect of the causes ofvariation without elim-

inating the sources of variation [22]. Taguchi said robustness was the state where
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the product or process performance was minimally sensitiveto factors causing vari-

ability [68]. The key reason why impacts from uncontrollable noise variables could

be minimized lies in the existence of interactions between controllable design vari-

ables and uncontrollable noise variables. Thus the objective of robust design is to

select design variables to minimize the variability impactproduced by the noise

variables, and make the objective performance response close to the target value.

To encompass noise variables in robust design, one method isto assign

probabilistic distributions to noise variables. Apley in [2] assigned normal dis-

tributionsN ∼ (µP,σ2
P) to noise variables, then the performance response was also

viewed as probabilistic; Tang in [83] assigned probabilistic distributions to noise

variables and derived a robustness index measure. The othermethod is to employ

non-probabilistic methods such as worst case analysis [69]and moment matching

method [22]. Xu in [87] employed worst case analysis of maximum design pa-

rameter deviation∆P, and proposed the robust design model based on maximum

variation estimation. Under the consideration of noise variables, three typical ro-

bust design theories were proposed [68, 69]:

1. Taguchi method– In the early design stage, Taguchi provided a three-stage

design: system design, parameter design and tolerance design [9], in which

parameter design was the most important and used to derive optimal design

parameters to satisfy the quality requirement. Comparing with ordinary op-

timization, Taguchi’s method accounts for the performancevariations due to

noise factors. SupposeGi(x,pi) is the performance function, wherex and

pi are controllable variables and noise variables, respectively. A signal-to-

noise ratio (SNR) is proposed to measure quality loss in Taguchi method as

in Equation 1.1. In order to maximize SNR, design of experiments (DOE)
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techniques are employed to assign the control factors to an experimental ma-

trix. By evaluating different designs, the best condition can be selected from

the full combinations of control factors. However, the orthogonal array and

design variables in Taguchi method are defined in discrete space and difficult

to be extended to wide design range. Also it is not efficient for a large size

problem since the full combinations are costly. In addition, a general prod-

uct design may have many design constraints which may not be solved by

Taguchi method. To overcome the above disadvantages, robust optimization

is proposed.

2. Robust optimization– Robust optimization (RD) approach explores the in-

herent nonlinear relationship among the design variables,noise variables and

product performance. By introducing a well-developed optimization model,

RD achieves the objective of optimizing the performance mean and minimiz-

ing the performance variation. It is a cost effective and efficient method to

reduce the transmitted performance variation without eliminating the varia-

tion sources and suffer smaller quality loss. A generic formof RD model is

given as follows:

MinimizeVar[Gi(d,x,p)]

Subject toE[Gi(d,x,p)]≥ Ti i = 1,2, . . . ,m

dL ≤ d ≤ dU,µL
X ≤ µX ≤ µU

X ,µ
L
P ≤ µP ≤ µU

P

(5.1)

whereGi(d,x,p) is theith product performance function, andVar[Gi(d,x,p)]

represents its variance and can be considered as quality loss measure.Ti is

the given target performance for theith performance function. The robust

design objective, quality loss function, can be measured bymany methods,

for examples, a performance percentile difference method was proposed in
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[60], in which the performance variation was expressed by the spread of its

PDF; a robust index derived from the acceptable performancevariation was

proposed in [47]; a coefficient of variation measure was provided in [1].

3. Robust design with axiomatic approach– The axiomatic design was first pro-

posed by Suh in [79, 80]. Two fundamental axioms were provided in the

framework for robust design: The independence axiom was used to main-

tain the independence of functional requirements; the information axiom was

used to minimize the information content in a design. An integration design

optimization framework of robust design, axiomatic designand reliability-

based design was proposed in [77]. A review of robust design in axiomatic

design was given in [68].

Our research contributions are: Firstly, the quality loss objective of robust

design is integrated into RBDO to formulate an RBRDO problem. Secondly, dif-

ferent from traditional RBDO problems with explicit performance functions, we

consider implicit performance functions in formulating and solving RBRDO prob-

lems. The metamodels are used and updated by a sequential EI criterion-based

sampling approach. Finally, we extend the sequential sampling approach to ad-

dress both random variables and random parameters (or noisevariables) in order to

improve RBRDO solutions.

The remaining part of the chapter is organized as follows: Section 5.2

presents an RBRDO formulation with implicit performance functions. Section 5.3

proposes a sequential sampling approach to improve both reliability and robust-

ness in RBRDO problem. Section 5.4 illustrates the proposedmethod by I-beam

example. Section 5.5 presents the conclusion and future work.
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Figure 27.Noise variable impacts on performance function

5.2 Reliability-Based Robust Design Optimization

As mentioned in Section 5.1, RBDO concentrates to guaranteethe design feasibil-

ity by probabilistic constraints under the existence of random variables. The design

objective is to minimize the production cost, but it does notattempt to minimize

the performance variation transmitted from the noise variables. A comparison be-

tween optimization solution and robust optimization solution is shown in Fig. 27, in

which both decision variablesµ1
X andµ2

X can achieve the same performance value.

However, the performance value derived byµ2
X is insensitive to the fluctuation from

noise variablep. Thus the goal of robust design is to find a set of decision variables

d, µX , in which mean performance value can satisfy target reliability requirement

and the variability produced by the noise variables can be minimized. It is our be-

lief to consider two major paradigms reliability and robustness together in a united

RBRDO formulation.
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RBRDO Formulation

In order to integrate robustness and reliability, a formulation is proposed as follows:

Minimize E[ f (d,x,p)]

MinimizeVar[Gi(d,x,p)]

Subject toP[Gi(d,x,p)≥ 0]≥ Ri i = 1,2, . . . ,m

dL ≤ d ≤ dU,µL
X ≤ µX ≤ µU

X ,µ
L
P ≤ µP ≤ µU

P

(5.2)

whereE[ f (d,x,p)] is the expectation production cost objective.Var[Gi(d,x,p)] is

transmitted performance variation produced by noise variables and is employed to

represent quality loss objective. In this chapter, Delta method [69, 68] is used to

estimateVar[Gi(d,x,p)] as:

Var[Gi] =
nx

∑
j=1

(∂G
∂x j

σXj

)2
+

np

∑
j=1

( ∂G
∂ p j

σPj

)2

=
nx

∑
j=1

[G′(µXj )]
2σ2

Xj
+

np

∑
j=1

[G′(µPj )]
2σ2

Pj

(5.3)

whereVar[Gi] is a function ofµX and is denoted asV(µX). nx and np are the

number of random variables and noise variables, respectively. This expression does

not assume underlying distribution forx andp.

Under the formulation of multi-objectives, the optimal solution of RBRDO

is known as a Pareto set or Pareto frontier, which denotes thetrade-off between

production cost and quality loss.
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Sequential Optimization and Reliability Analysis (SORA) in RBRDO

In this chapter, SORA is extended to solve an RBRDO problem, adeterministic

optimization loop is first solved as follows:

Minimize f (d,µX)

MinimizeV(µX)

Subject toGi(d,µX,µP)≥ 0 i = 1,2, . . . ,m

(5.4)

Based on the design variableµX and givenσX, the X-space is transformed

to U-space. Then another optimization loop in Formulation 3.5 is solved in U-

space by PMA, the optimal solution is the inverse MPP (uMPP) locating on the

targeted reliability surface. Then we can find the R-percentile GR = G(uMPP). If

GR = G(uMPP) ≥ 0, design variableµX is feasible and it is the final optimal so-

lution; otherwise, a shifting vectors(2) = µX
(1) − x(1)MPP, derived in Formulation

3.7, is used to modify the current decision variable. The algorithm continues until

GR(d,xMPP)≥ 0 in some iteration.

In this chapter, RBRDO is solved with implicit performance function and

metamodel-based approach is used. Thus performance function G is replaced by a

Kriging metamodelĜ, which is constructed based on samples by conducting com-

puter experiments.

5.3 Sequential Sampling Strategy in RBRDO Under Implicit Performance

Function

In order to obtain an RBRDO solution, a multi-objective optimization needs to be

solved, in which probabilistic constraints evaluation maydominate the computa-

tional effort. The decoupled-loop methods such as SORA is well accepted because

of the high efficiency and good accuracy. However, traditional SORA only deals
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with problems with explicit performance (constraint) functions. Also the transmit-

ted variation of performance function due to noise variables is not considered. In

this section, a sequential sampling approach is proposed toaddress epistemic uncer-

tainty due to implicit performance function and improve thesolution of RBRDO.

Hybrid Design and Combined Metamodel in RBRDO

A hybrid design is proposed in this chapter to build a Krigingmodel to consider

both random variables and noise variables. In particular, aLatin hypercube sam-

pling (LHS) [56, 36] is employed for controllable variablessince it is efficient for

a complex computer model. A factorial design [59] is employed for noise variables

or random parameters, since it can highlight the impact of noise variables.

Due to the existence of noise variables, the approximated performance model

in this chapter is a combined metamodel of several Kriging models under different

design levels of noise variables. For the purpose of simplicity, one noise variablep

with two levels−1 and+1 is considered in this chapter, then we have the combined

metamodel as:

Ĝ(x, p) =
1− p

2
Ĝ−(x)+

1+ p
2

Ĝ+(x) (5.5)

where Ĝ−(x) is the Kriging model built on the Latin hypercube samples under

p = −1, andĜ+(x) is the Kriging model built on the Latin hypercube samples

underp=+1. Herep=−1 andp=+1 represent the valuesµP−σP andµP+σP,

respectively.µP is the value of the center pointp= 0.

Expected Improvement Criterion

A Kriging model is constructed based on the samples from the hybrid design. The-

oretically, the more samples are taken, the closer the Kriging model would get to

the true model. In reality, the metamodelĜ has prediction errors since only limited
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samples are available due to cost or computation effort. Theprediction errors ofĜ

are different from area to area. Areas with more samples havesmaller prediction

errors and areas with fewer samples have larger prediction errors. Thus areas with

fewer samples have the potential of containing true MPP instead of current mini-

mum point. The EI criterion in Section 3.3 is extended in thissection to tackle a

multi-objective RBRDO problem with implicit performance functions.

RBRDO Solution by Sequential EI-Based Sampling Strategy

Based on the performance variation measure mentioned in Section 5.2, Formula-

tion 5.3 is used to represent the quality loss. A weighted sumapproach is employed

to consider production cost and quality loss simultaneously. Then a pareto fron-

tier is generated by different weight combinations. To consider the impact of noise

variables, the combined metamodel is proposed and EI criterion is used to add new

samples to update the combined metamodel. The detailed sequential EI-based sam-

pling RBRDO strategy in Fig. 28 is as follows:

(1) Assignm different weight combinationsw0 and 1−w0 to production

cost objective and quality loss objective, respectively. Under eachw0 value, an

optimization problem with weighted sum objective is solved.

(2) Similar as in SORA, an optimization problem is first solved with deter-

ministic constraints as:

Minimize w0 f (d,µX)+(1−w0)V(µX)

Subject toĜk(d,x, p)≥ 0
(5.6)

whereĜk = 1−p
2 Ĝk

−(x)+
1+p

2 Ĝk
+(x) is the combined metamodel inkth iteration.

Since 0≤ 1−p
2 , 1+p

2 ≤ 1 and1−p
2 + 1+p

2 = 1, Ĝk is a linear combination of̂Gk
− and

Ĝk
+. ThenĜk ≥ 0 is guaranteed if̂Gk

− ≥ 0 andĜk
+ ≥ 0. Thus we can reformulate
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Figure 28.RBRDO algorithm
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the optimization problem as follows:

Minimize w0 f (d,µX)+(1−w0)V(µX)

Subject toĜk
−(d,µX −s−)≥ 0

Ĝk
+(d,µX −s+)≥ 0

(5.7)

According to Equation 5.3, the quality loss represented by transmitted per-

formance variation is:

Var(Ĝ) =
(∂ Ĝ

∂x

)2
|µX ,µPσX

2+
(∂ Ĝ

∂ p

)2
|µX ,µPσ2

P

=
[1− p

2
Ĝ′
−+

1+ p
2

Ĝ′
+

]2
|µX ,µPσX

2+
[1

2
Ĝ+− 1

2
Ĝ−

]2
|µX ,µPσ2

P

=
[1

2
Ĝ′
−(µX)+

1
2

Ĝ′
+(µX)

]2
σX

2+
[1

2
Ĝ+(µX)−

1
2

Ĝ−(µX)
]2

σ2
P

(5.8)

Two constraints are considered, in whichĜ− andĜ+ are built on the Latin

hypercube array samples whenp is on low level and high level in the factorial array,

respectively. The optimal solution is a vector of decision variableµX .

(3) GivenµX andσX, the original X-space can be transformed into the stan-

dardized U-space. To derive inverse MPP, PMA is employed in the following opti-

mization problem as:

Minimize Ĝ−,+(u)

Subject to‖ u ‖= βtarget

(5.9)

where two parallel optimization problems are solved in Formulation 5.9 under mod-

els Ĝ− andĜ+ in this step, respectively. Two MPPxMPP− andxMPP+ are derived

from the respective optimization problems underĜ− andĜ+. However,Ĝ− and

Ĝ+ are only constructed based on the initial hybrid design and may not be accurate

enough. Then EI criterion is employed to locate additional samples which make the

largest expected improvement around current MPPxMPP− andxMPP+, respectively.
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Similar as in [100], in order to achieve the global minimum, apolar coordinate sys-

tem is employed so that the above two optimization problems are transformed to

two unconstrained optimization problems as:

Minimize Ĝ−,+(θ) (5.10)

The optimal solutionsθMPP− andθMPP+ are transformed back to bexMPP−

andxMPP+ in X-space and evaluated by computer experiment, then the current mini-

mumĜMin− andĜMin+ are obtained and added to the original sample pool to update

the Kriging metamodelŝG− andĜ+, respectively.

(4) In order to find additional sampling points and decrease the prediction

error in the neighborhood of current MPP− and MPP+, two maximization problems

are solved to locate the samples which make largest expectedimprovement onG−

andG+ function estimation.

Maximize(Gmin−,+ − Ĝ−,+)Φ
(Gmin−,+ − Ĝ−,+

s−,+

)

+s−,+φ
(Gmin−,+ − Ĝ−,+

s−,+

)

(5.11)

After solving the two optimization problems in Formulation5.11, the max-

imized EI sampling points are added into the original hybriddesign sampling pool

and used to update the respective metamodelsĜ− and Ĝ+. Step (4) is repeated

until the maximum EIs ofĜ− andĜ+ are both less than a stopping criterion, which

means that the prediction errors ofĜ− and Ĝ+ around the global minimum are

small enough, so the current minimum ofĜ− andĜ+ are closer to the true global

minimum.

(5) MPPs are derived based on the updated metamodelsĜ− andĜ+. If both

ĜMPP− ≥ 0 andĜMPP+ ≥ 0, thend andµX are the desired optimal solution under
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current weightw0. If any of ĜMPP− and ĜMPP− is less than zero, the respective

shifting vectors− = µX − xMPP− or s+ = µX − xMPP+ are derived to modify the

deterministic constraint̂G− andĜ+ in Step (2).

(6) As mentioned in Step (1),m weight combinationsw0 and 1−w0 are

proposed, thusm optimal solutions are derived with different production cost ob-

jective and quality loss objective values. In particular, the optimal solution in

ith, i = 1, . . . ,m iteration is compared and added into pareto solution set if it is

proved to be a non-dominated optimal solution. Finally, allnon-dominated opti-

mal solutions considering both reliability and robustnessare in the pareto solution

set.

5.4 I-Beam Example

The I-beam example in Section 3.4 is used in this section to implement the RBRDO

formulation under implicit performance (constraint) epistemic uncertainty. In order

to consider robust design, the vertical loadP is considered to be a noise variable

which follows normal distribution withµP = 600kN andσP = 10kN. The lateral

loadQ is assumed to be constant 50kN for the purpose of convenience.

Two objectives are considered in the I-beam example. The first objective is

to minimize the beam material cost, which is derived asf (µ) = 2µ1µ2+µ2(µ1−

2µ2) = 3µ1µ2−2µ2
2 . The second objective is to minimize the quality loss of perfor-

mance function. An implicit bending stress performance function is considered in

this example, thus a hybrid design is used to obtain initial samples including a Latin

hyper cube design ofX1 andX2 and a factorial design with low levelP= 570 and

high levelP= 630. Based on the initial sampling points, a combined metamodel Ĝ
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is constructed as follows:

Ĝ(x, p) =
630− p

60
Ĝ−(x)+

p−570
60

Ĝ+(x) (5.12)

where Ĝ−(x) is the Kriging model built on the Latin hypercube samples under

p = 570, andĜ+(x) is the Kriging model built on the Latin hypercube samples

underp= 630. In the objective function, quality loss from transmitted performance

variation is considered as the function ofµ1, µ2 andµP and represented by Delta

method as follows:

V(µi) =Var(Ĝ) =
(∂ Ĝ

∂xi
|µi ,µPσi

)2
+
(∂ Ĝ

∂ p
|µi ,µPσP

)2

=
[630− p

60
Ĝ′
−+

p−570
60

Ĝ′
+

]2
|µi ,µPσi

2+
[ 1

60
Ĝ+− 1

60
Ĝ−

]2
|µi ,µPσ2

P

=
[1

2
Ĝ′
−(µi)+

1
2

Ĝ′
+(µi)

]2
σi

2+
[ 1

60
Ĝ+(µi)−

1
60

Ĝ−(µi)
]2

σ2
P

(5.13)

wherei = 1,2 respective to random variablesx1 andx2.

One probabilistic constraint is considered in the example as P[G(x1,x2) ≥

0] ≥ R, whereG(x1,x2) is the implicit performance which denotes the threshold

σ = 0.016kN/cm2 deducted by the actual bending stress. Then the formulationof

RBRDO becomes:

Minimize: f (µ1,µ2) = 3µ1µ2−2µ2
2

Minimize: V(µ1,µ2)

Subject to:Prob[Ĝ(x1,x2)≥ 0]≥ 99.87%

10≤ µ1 ≤ 80,0.9≤ µ2 ≤ 5

(5.14)

Following the procedure in Fig. 28, a set of weightsw0 and 1−w0 are as-

signed to combine the two objective into a weighted sum single objective, where

the pareto number is set to be 100 in this example. A hybrid design is employed
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Table 17.Initial Samples by Hybrid Design

LHS Factorial LHS Factorial
No. x1 x2 G− G+ No. x1 x2 G− G+

1 32.11 2.63 0.0046 0.0034 11 80.00 3.06 0.0146 0.0145
2 24.74 0.90 -0.0332 -0.038412 28.42 1.76 -0.0045 -0.0066
3 65.26 2.19 0.0131 0.0128 13 39.47 4.35 0.0111 0.0106
4 10.00 3.71 -0.1643 -0.182514 21.05 4.57 -0.0062 -0.0084
5 61.58 3.27 0.0137 0.0135 15 76.32 1.33 0.0127 0.0123
6 50.53 5.00 0.0135 0.0132 16 68.95 4.78 0.0147 0.0146
7 54.21 4.14 0.0135 0.0132 17 13.68 1.55 -0.1002 -0.1121
8 72.63 3.92 0.0146 0.0145 18 43.16 1.98 0.0084 0.0077
9 35.79 3.49 0.0088 0.0080 19 46.84 2.84 0.0113 0.0109
10 57.89 1.12 0.0091 0.0145 20 17.37 2.41 -0.0338 -0.0388

and 40 samples are generated in Table 17 to build the metamodel Ĝ. Then a de-

terministic optimization is solved by using GA with 100 initial population and 10

iterations, and a vector of decision variableµ1 andµ2 is derived. The reliability

analysis is implemented for the implicit performance functions of Ĝ− andĜ+ in,

respectively. We set the stopping criterion of sequential EI-based sampling strategy

to be maximumEI < 0.05. Once both MPP− and MPP+ are satisfied, the optimal

solution(µ1,µ2) is considered as a Pareto optimal solution candidate and thealgo-

rithm enters the next iteration with a new set of weights. In order to achieve the

trade-off between material cost and quality loss, the quality loss objective is multi-

plied by 105 to keep two objectives in similar scale level in this example. The final

Pareto solution set is shown in Table 18, in which the two objective values and the

corresponding weightw0 are indicated.

Comparing with the traditional RBDO with implicit performance function,

the optimal solution in RBRDO is a Pareto frontier not a single optimal solution in

Fig. 29. As indicated in Table 18, when weightw0 is equal to 1.00, the robustness
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Table 18.Pareto Solutions for I-Beam Design

w0 µ1 µ2 Material cost Increase% Quality loss Decrease%
1.00 50.24 0.91 136.10 – 1.88 –
0.69 49.94 0.93 138.09 1.46% 0.52 72.34%
0.65 51.41 0.91 138.37 1.67% 0.48 74.47%
0.63 49.77 0.94 138.87 2.04% 0.45 76.06%
0.43 51.86 0.91 139.37 2.40% 0.39 79.26%
0.19 48.45 1.02 145.90 7.20% 0.38 79.79%
0.13 54.33 0.93 149.44 9.80% 0.33 82.45%
0.05 53.07 0.98 154.67 13.64% 0.23 87.77%
0.02 47.86 1.29 182.98 34.45% 0.14 92.55%
0.00 36.96 2.47 261.62 92.23% 0.09 95.21%

objective is ignored. Thus the traditional RBDO optimal solution is (50.24,0.91)

with material cost 136.10 and quality loss 1.88. When we change the weight, other

non-dominated solutions are derived, in which the materialcost is increased and

quality loss is decreased. Although the absolute value of material cost increase

and quality loss decrease cannot be compared due to different numerical scales, the

increase and decrease percentages compared with traditional RBDO solution are

listed in Table 18. Based on the trade-off between material cost increase and qual-

ity loss decrease, the optimal solution(51.86,0.91) is the desired solution that con-

siders both reliability and robustness simultaneously, inwhich a maximum 76.85%

decrease is obtained totally with 2.40% material cost increase and 79.26% quality

loss decrease.

5.5 Conclusion and Future Work

In this chapter, an RBRDO problem is proposed in product design with implicit per-

formance function. The quality loss objective is integrated into traditional RBDO

problem to add performance robustness consideration. In order to evaluate the im-

pacts of noise variables, we employ the hybrid design and construct a combined
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Figure 29.RBRDO Pareto frontier

Kriging metamodel. Then a sequential sampling approach is employed to update

the metamodel and improve RBRDO solutions. Finally a Paretosolution frontier is

derived to make a trade-off between production cost of RBDO and quality loss of

robust design.

The RBRDO formulation in this chapter only handles one performance

function, but there are typical multiple performance functions in realistic engineer-

ing design. In future work, multiple quality characteristics are required to measure

different product performances, and the interactions between them should be further

developed.
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CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

6.1 Conclusions

This dissertation proposes methods and formulations of product design optimiza-

tion under epistemic uncertainty. Two major aspects of product design optimiza-

tion, reliability and robustness, are addressed by RBDO androbust design, respec-

tively. A comprehensive review of uncertainty including aleatory uncertainty and

epistemic uncertainty is proposed in Chapter 2. The main contributions of the dis-

sertation are the metamodel-based approximation methods and simulation-based

methods in solving RBDO under epistemic uncertainty of implicit constraint func-

tions. By extending the metamodel approximation methods, the robust design is in-

tegrated with RBDO to formulate an RBRDO problem under implicit performance

functions.

In Chapter 3, a sequential sampling strategy is proposed to address the

RBDO problem under implicit constraint function. Based on the Kriging meta-

model, an ERI criterion is proposed to select additional samples and improve the

solution of RBDO. The sampling strategy focuses on the neighborhood of current

RBDO solution and maximally improves the MPP estimation. Itis proved to be

more reliable and accurate than other methods such as MPP-based sampling, lifted

response function and non-sequential random sampling.

In Chapter 4, a new simulation-based reliability analysis approach, the par-

ticle splitting method, is introduced to be integrated withthe traditional sequential

optimization method to solve RBDO problems. The proposed strategy combines

the merits of SORA and particle splitting reliability assessment method, which

not only can provide more accurate solutions than worst caseanalysis as in MPP-
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based method, but also is more efficient than traditional Monte Carlo simulation

and enhances the simulation diversity by using multiple particles. In addition, the

approach can be extended to address problems with multiple constraints without

significantly increasing sample size.

In Chapter 5, a reliability-based robust design optimization is formulated to

consider RBDO and robust design simultaneously. A trade-off balance between

production cost objective of RBDO and quality loss objective of robust design

is obtained in a multi-objective optimization problem under implicit performance

function epistemic uncertainty. The sequential sampling strategy in Chapter 3 is ex-

tended to address noise variables and tackle a multi-objective optimization problem.

A Pareto frontier is derived which includes all non-dominated solutions.

6.2 Future Work

This research has highlighted the algorithms and formulations to address product

design optimization under epistemic uncertainty. Some extensions of work include:

• Implicit constraint (performance) function in Chapter 3 isjust one type of

epistemic uncertainty due to lack of knowledge. Strategiesfor other types

such as unknown random variables distribution could be developed in future

work;

• In particle splitting method, the trade-offs among number of subsets, num-

ber of particles and the length of MCMC chain could be furtherdeveloped.

Different combinations could lead to different simulationdiversity, efficiency

and accuracy;

• Subset simulation in Chapter 4 is one type of rare-event simulations. Other

rare-event simulation methods such as line sampling can be employed in re-
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liability analysis in future work;

• The RBRDO formulation in Chapter 5 could be extended to the case of multi-

ple performance functions. Metrics could be developed to represent the total

quality loss among different product performance functions.
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