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ABSTRACT 

This dissertation describes development of a procedure for obtaining high 

quality, optical grade sand coupons from frozen sand specimens of Ottawa 20/30 

sand for image processing and analysis to quantify soil structure along with a 

methodology for quantifying the microstructure from the images.  A technique for 

thawing and stabilizing frozen core samples was developed using optical grade 

Buehler
®
 Epo-Tek

®
 epoxy resin, a modified triaxial cell, a vacuum/reservoir 

chamber, a desiccator, and a moisture gauge.  The uniform epoxy resin 

impregnation required proper drying of the soil specimen, application of 

appropriate confining pressure and vacuum levels, and epoxy mixing, de-airing 

and curing.  The resulting stabilized sand specimen was sectioned into 10 mm 

thick coupons that were planed, ground, and polished with progressively finer 

diamond abrasive grit levels using the modified Allied HTP Inc. polishing method 

so that the soil structure could be accurately quantified using images obtained 

with the use of an optical microscopy technique.  Illumination via Bright Field 

Microscopy was used to capture the images for subsequent image processing and 

sand microstructure analysis.  The quality of resulting images and the validity of 

the subsequent image morphology analysis hinged largely on employment of a 

polishing and grinding technique that resulted in a flat, scratch free, reflective 

coupon surface characterized by minimal microstructure relief and good contrast 

between the sand particles and the surrounding epoxy resin.  Subsequent image 

processing involved conversion of the color images first to gray scale images and 

then to binary images with the use of contrast and image adjustments, removal of 
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noise and image artifacts, image filtering, and image segmentation.  Mathematical 

morphology algorithms were used on the resulting binary images to further 

enhance image quality.   The binary images were then used to calculate soil 

structure parameters that included particle roundness and sphericity, particle 

orientation variability represented by rose diagrams, statistics on the local void 

ratio variability as a function of the sample size, and the local void ratio 

distribution histograms using Oda‟s method and Voronoi tessellation method, 

including the skewness, kurtosis, and entropy of a gamma cumulative probability 

distribution fit to the local void ratio distribution.   
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1. INTRODUCTION 

1.1. Objective 

The purpose of this study was to develop techniques for stabilization and 

imaging of cohesionless soil specimens recovered by freezing.  Funded by the 

National Science Foundation, this research was part of a larger study with the goal 

of characterizing the post-liquefaction properties of cohesionless soils. As part of 

the project, techniques for undisturbed sample extraction and stabilization were 

developed to obtain samples that could be used with Bright Field Microscopy 

(BFM) and X-ray Computer Tomography (CT) imaging methods for 

microstructure evaluation.    

1.2. Background 

Specimen stabilization and image analysis techniques have been widely used 

in study of soil fabric properties.  Since cohesionless soils rely upon friction 

forces to maintain their structure, obtaining intact sand specimens for image 

analysis is very difficult due to sampling disturbance associated with inserting 

sampling devices into the ground, reduction of effective stress during sampling, 

and vibrations during transport.  Therefore, stabilization of cohesionless soil is 

generally required prior to image analysis as well as during handling and 

processing for image analysis. 

Since the late 1930s, several stabilization techniques for field sampling and 

for specimen preparation in a laboratory setting have been developed.  Freezing 

has been used in the past to obtain frozen core samples for both triaxial testing 

and microstructure analysis (Langer, 1939; Hvorslev, 1949; Yoshimi and 
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Hatanaka, 1973; Ishihara and Silver, 1977; Yoshimi et al., 1978; Singh el 

at.,1982; Gilbert et al.,1988).  Other reversable stabilization techniques used 

include  the biopolymer Agar (Schneider el at., 1989; Frost, 1989; Sutterer el at., 

1996), Elmer‟s carpenter glue (Yang, 2002; Evans, 2005) and gelatin grouting 

(Dickinson, 1975), have been used to stabilize sand specimens for study of stress-

strain behavior and soil fabric changes. Non-reversible stabilization techniques 

used to study soil structure have included the use of sodium silicate grouting 

(Hendricksen, 1941) and impregnation with optical grade epoxy (Oda et al., 1978; 

Ibrahim and Kagawa, 1991; Kuo and Frost, 1996; Jang et al. 1999; Masad and 

Muhunthan, 2000; Evans, 2005).  Freezing has been the most widely used 

reversible technique for in-situ stabilization and sampling of cohesionless soil 

specimens. Once trimmed to proper dimensions and thawed out under vacuum, 

samples can then be subjected to standard geotechnical testing procedures. The 

thawed specimen can also be stabilized for microstructure analysis. Imaging 

techniques used for microstructure analysis of stabilized granular soil specimens 

include non-destructive techniques such as X-ray Computed Tomography (CT). 

Specimens can also be subjected to the destructive thin sectioning techniques to 

capture soil fabric images with optical microscope illumination and Electron 

Backscattered Diffraction (EBSD) methods. 

Color or gray scale thin section images captured by optical methods have to 

be processed and analyzed to extract information about soil fabric characteristics 

such as void ratio distribution, co-ordination value, entropy, anisotropy, fabric 

tensor, tortuosity, and mean free path.  This information is usually obtained from 
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the images with a computerized analysis.  Computerized image processing of thin 

sections was pioneered by Jongerius et al. (1972), who developed a classification 

system for void patterns.   Subsequently, geotechnical researches have used this 

technique to study the distribution of voids in porous media (Al-Raoush and 

Alshibli, 2005), shear band characterization in triaxial tests ( Desruses el at., 

1996; Oda and Kazama, 1998; Batiste et at., 2004; Evans, 2005; Yang, 2005), 

sand grain characteristics (Whalley, 1980; Alshibli and Alsaleh, 2004), shear 

strength of granular materials (Oda, 1977), fabric anisotropy (Oda el at., 

1985;Yang, 2002), and fluid permeability of porous materials (Berryman and 

Blair, 1986; Wildenschild el at., 2002). 

Image processing was described by Frost and Kuo (1996) as a process 

consisting of five distinct steps; 

 Image generation and capture 

 Image coding 

 Image reconstruction  

 Image enhancement  

 Image analysis 

Image coding and reconstruction includes storing and opening of images in a 

particular type of lossless image compression format (TIFF, BMP, PNG, GIF). 

Image enhancement refers to “high-level” image processing techniques, including 

mathematical morphology (Sierra, 1982).   Mathematical morphology enhances 

binary images through processes of erosion, dilation, segmentation, mask copy  
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and outline to enhance features of interest and to remove any artifacts.  Finally, 

image analysis is used to calculate preselected soil fabric parameters from entire 

area of an enhanced image or some part thereof. 

1.3. Scope of Work 

This study was limited to development of stabilization and imaging techniques 

for frozen core samples.  Additional work to develop the sample extraction 

methodology is only briefly described in this dissertation.  The research work 

addressed herein included storage, trimming and epoxy impregnation of the 

frozen soil samples.  Epoxy impregnation required thawing and then thoroughly 

drying the frozen specimens. To facilitate thawing, drying and the impregnation 

procedure, a specially modified triaxial test chamber was fitted with sacrificial, 

disposable valve and tubing components wherever direct contact with the optical 

grade epoxy occurred.  The work also included the design of base and cap for the 

modified triaxial test chamber, construction of the vacuum/pressure chamber, and 

proper desiccant selection in order to properly dry the specimens.   

In addition to stabilization and imaging of frozen samples, dry air-pluviated 

Ottawa 20/30 sand samples were stabilized with optical grade epoxy for use as a 

control set.  Once imaged, the fabric structure of the control specimens was 

compared to the microstructure of the frozen samples to investigate the level of 

disturbance associated with freezing, sampling, storage, and stabilization. 

Following stabilization with the epoxy, impregnated cores were cut to 1.0 cm 

thick coupons, wet polished with several grades of grit paper and diamond 

suspension, and the particle structure was captured and saved with a microscope 
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connected to a computer work station, a technique known as Bright Field 

Microscopy (BFM).  In addition, some uncut cores were sent out to an X-ray 

Computer Tomography facility for non-destructive three-dimensional imaging of 

the specimen‟s soil fabric. 

The resulting BFM images were analyzed with open source image processing 

and analysis software ImageJ.  Appropriate contrast manipulation, image filtering, 

mathematical morphology and measurement techniques were applied to obtain 

microstructure properties.  Structure parameters, such as global void ratio, 

variation in local void ratio, fabric entropy, and particle orientation rose diagrams, 

were then quantified. 

1.4. Organization of Thesis Work 

This dissertation is divided into five chapters, including this introductory 

chapter.  Chapter 2 examines several published works relating to the structure 

parameters of cohesionless soils, stabilization methods for cohesionless soils such 

as epoxy, paper glue, and Agar impregnation, imaging capture techniques using 

Bright Field Microscopy and Computer Tomography, and a variety of image 

processing techniques used for soil property quantification.  Chapter 3 outlines the 

rationale for the selected stabilization procedure, dry and frozen sample 

preparation methods, modification of the triaxial device for stabilization purposes, 

the experimental setup and the epoxy impregnation technique.  In addition, 

Chapter 3 describes stabilized sample processing for subsequent imaging 

including cutting, trimming, polishing and imaging. Chapter 4 presents image 

processing and analysis results.  Chapter 4 describes image manipulation methods 
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used with open-source software, ImageJ that yielded structural properties of the 

soil samples. Additionally, Chapter 4 compares those results to published soil 

characteristics of the material used and discusses problems encountered during the 

experiment. Finally, Chapter 5 presents conclusions and suggests topics for future 

research. 
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2. LITERATURE REVIEW 

2.1. Introduction 

The purpose of this study was to develop reliable methodology to quantify 

microstructure properties of saturated cohesionless soils.  It has long been 

recognized that particle gradation, particle shape, particle orientation, the number 

of interparticle contacts, the void ratio and its variation, typically referred to as the  

soil fabric, has a significant influence on the soil‟s engineering properties.  

Difficulty arises when attempting to obtain disturbance-free samples of 

cohesionless soil not only for standard geotechnical testing of stress/ strain 

relationships but also for soil fabric quantification.  The following sections review 

past research on soil specimen sampling, preservation and processing, imaging 

techniques and quantification of soil fabric properties for cohesionless soils.  The 

discussion of imaging techniques includes an overview of past work in the field of 

digital image acquisition, storage, and analysis with the use of mathematical 

morphology.   

2.2. Microstructure Parameters for Cohesionless Soils 

2.2.1. Particle Roundness and Sphericity 

There are several different terms used to describe particle roundness and 

sphericity.  These terms are widely accepted but not well standardized. Wadell 

(1932) defined roundness as the ratio of the average of radii of corners of the 

grain image to the maximum radius of the inscribed circle.    Powers (1953) 

created a new roundness/sphericity index for sedimentary particles that depended  
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on the sharpness of the edges and not on the particle‟s shape.  Powers‟ (1953) 

particle classification system for the roundness/sphericity index is shown in FIG. 

2.1. 

 

FIG. 2.1.  Powers Particle Classification Based on Sphericity and Roundness. 

(Powers, 1982) 

Masad et al, (2001) devised a sphericity parameter (SP) that they used to 

describe angularity of particles and a shape factor (SF) denoting the ratio of the 

particle‟s major dimension to its minor dimension as follows: 

3
2

L

Is

d

dd
SP                                                                                                    (2.1) 

ILdd

ds
SF                                                                                                   (2.2) 

where ds, dI, and dL are the particle‟s shortest-, intermediate  and longest-

dimension, respectively.  Another very common shape factor is the form factor  

(FF), sometimes referred to as circularity.  Form factor is defined in Equation 2.3: 
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where A and P are the projected area of the particle and perimeter of that area, 

respectively.  The form factor can range from 0.0 to 1.0, with value of 1.0 being a 

perfect circle. 

Alshibli and Mustafa (2004) developed a roundness index (IR) and sphericity 

index (Isph) to classify the different types of silica sand they studied with the use 

of an optical interferometer and image analysis software. IR and Isph were defined 

as follows: 
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where Pact(i) is the actual perimeter of the particle and Dequ is the equivalent 

particle diameter.   Roundness index, Ir can range from 1.0 for well-rounded 

particles to greater than 1.5 for very angular particles.  Sphericity index, Isph can 

range from 0.0 for diskoidal particles to greater than 1.0 for prismoidal particles. 

2.2.2. Particle Orientation 

Particle orientation can be described either by the orientation of the normal of 

a tangential plane that passes through the interparticle contact point or by the 

inclination of the particle‟s long axes (Park, 1999).  The inclination of the normal 

to a contact plane can be described with two angles, α and β, in three dimensional 
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space, as illustrated in FIG. 2.2(a).  Since it is difficult to find the true orientation 

of the grain particle, a more simplified approach uses the orientation of the long 

axis of the particle described by the angle θ, in relation to a specified reference 

axis in two-dimensional space, as illustrated in FIG. 2.2(b). 

  

FIG. 2.2.  Particle Orientation. (a) Three-dimensional. (b) Two-dimensional. 

(Parks, 1999) 

Particle orientation distribution can be represented by a rose diagram that 

displays the resultant length of vector summations (orientations) and mean 

direction of the observed angles (Krumbein, 1939; Davis 1986; Fisher 1993). The  

resultant length of vector orientations (r) ranges from zero to one, with value of 

one indicating all particles arranged in one direction. It is defined as: 
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where θi is the orientation of the i
th

 particle and li is the length of the major axis of 

the best-fit ellipse for the i
th

 particle.  The mean direction of observed particle 

angles(θr) represents the vector summation of the directions of all the resultant 

vectors for the range from 0° to 360° and can be calculated as follows: 
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Equation 2.7 and Equation 2.8 need to be adjusted with a weighted value for 

the orientation of each particle to prevent bias that an abundant number of small 

particles could cause in calculations.  Giving equal weight to all particles could 

introduce error in the rose diagram distribution by skewing the results toward the 

most abundant particle size class.  Yang (2002) solved this problem by summing 

vectors so the weighted value was selected as the length of the calculated 

orientation in each particle divided by the summation of the lengths in the 

calculation orientation for all the particles. 

Fisher (1993) recommended using a Rayleigh test to determine whether the 

calculated orientation was caused due to randomness, as in case of isotropic 

distributions where the resultant length is zero and all orientations are equally 

possible, or due to a true preferred orientation of the data. A Raleigh test is used  

to check data uniformity against a unimodal distribution,  with the null hypothesis 

that the data is uniformly distributed.  The test values can be calculated according 

to Fisher (1993) as: 
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where n is the number of samples and Z is  a critical value of nr
2
 for a probability 

of occurrence (P) at some confidence interval (typically 95%). 
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Oda (1972a) studied particle orientation of four different sand types 

reconstituted using placement with a spoon from minimum drop height, prepared 

with sand plunging by air, and additional densification with tapping.  Particle rose 

diagrams for the orientation of the long axis, θ, were generated from epoxy-

impregnated thin section photographic images.  Particle orientation was grouped 

into bins at 10° intervals in the horizontal plane.  In addition, the study also 

applied dynamic compaction that resulted in a fairly random particle distribution. 

The pouring method caused particle orientation to be biased toward the horizontal 

direction. 

Jang (1997) studied the structure of air-pluviated and moist tamped ASTM 

graded sand specimens.  Jang (1997) studied spatial void ratio variability of 

specimens prepared by moist tamping and air pluviation and subjected to 

undrained triaxial testing.  Jang (1997) quantified the particle orientation using 

concept of anisotropy which is a ratio of horizontal to vertical intercepts of 

particles in an image. The specimens were impregnated with epoxy resin to 

preserve their microstructure.  Jang (1997) concluded that the anisotropy of sand 

particles is affected by the preparation method.  The sand particles in moist 

tamped specimens were found to be more randomly oriented. Air-pluviated sand 

samples had particles that were more horizontally oriented.  These results 

corroborated Oda‟s (1972a) findings. 

Ibrahim and Kagawa (1991) studied particle anisotropy of sand specimens 

prepared with air pluviation, vibration and moist tamping techniques.  These 

investigators looked at the effect of sample preparation and subsequent 
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liquefaction on the distribution of the orientation of the contact plane angles.  

FIG. 2.3 shows the particle orientation after sample preparation and FIG. 2.4 

illustrates particle orientation after liquefaction.  The study demonstrated that the 

post-liquefaction particle arrangement in horizontal sections prepared with air 

pluviation and vibration becomes more random.  Post liquefaction particle 

arrangement in the vertical direction showed preferential orientation in a discrete 

number of random directions.  Air-pluviated samples had the smallest post 

liquefaction standard deviation of local void ratio but the moist tamped specimens 

showed no significant void ratio change after liquefaction. 

 

FIG. 2.3.  Frequency Distribution of Contact Plane Angles For Specimens with 

50% Relative Density. (Ibrahim and Kagawa, 1991) 
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FIG. 2.4.  Frequency Distribution of Contact Plane Angles for Specimens with 

50% Relative Density after Liquefaction. (Ibrahim and Kagawa, 1991) 

2.2.3. Relative Anisotropy Analysis 

Yang (2002) developed the concept of an anisotropy measure in the image 

analysis of granular soils.  Yank (2002) defined anisotropy as the ratio of 

unbroken horizontal lines to the unbroken vertical lines in the binary digital image 

where values greater than one indicated vertically oriented particles and values 

less than one indicated particles that were horizontally oriented.  The process is 

illustrated in FIG. 2.5.  The binary image is divided into horizontal and vertical  
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lines, one pixel in thickness.  Number of uninterrupted horizontal and vertical 

intercepts is then summed.  Ratio of total horizontal intercepts to the total of 

vertical intercepts represents particle anisotropy.  In the Yang (2002) study the 

moist tamped specimens had average anisotropy of 0.96 and air-pluviated samples 

had average anisotropy of 0.89. 

 

FIG. 2.5.  Definition and Concept of Anisotropy Measurements.(Yang, 2002) 

 Yang (2002) found that his anisotropy measurement would give erroneous 

results for some rotated images.  He found that normalized elongation index was a 

better representation of anisotropy, as it  did not vary by sand type or by image 

selection and could be calculated with the “relative anisotropy” parameter, R.A. 

defined as: 
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where aj is the length of the major axis of particle j, bj is the length of the minor 

axis of particle j, (a/b) is defined as a ratio of the length of the major axis to the 

length of the minor axis in the fitted ellipse, j, (a/b)int is the calculated elongation 

index from the summation of the diameter lengths for each angle for all the 

particles of interest and Aj is the area for particle j. Max(a/b)int represents the 

maximum elongation value when all particles are oriented in just one direction. 

2.2.4. Global and Local Void Ratio 

The global void ratio and its local distribution is another widely used structure 

parameter.  Oda (1976) was the first one to define a method to calculate local void 

ratio distribution of granular materials from images.  Magnified images of the 

grains were used to create the network of polygon elements by connecting 

particles‟ centers of gravity with straight lines, as illustrated in FIG. 2.6.  

 
FIG. 2.6.  Local Void Ratio Measurement. (Oda, 1976) 
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The areas occupied by the voids (Avi) and solid particles (Asi) within each 

polygon were measured by hand to calculate the void ratio (ei) of each polygon 

using following equation: 

si
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A
e                                                                                                       (2.12) 

Bhatia and Soliman (1990) used Oda‟s method to calculate local void ratio 

distributions of epoxy-stabilized thin section images of sand captured with a video 

monitor and a computer.  They found that the mean value (ē) of the distribution 

given by Equation 2.13, is not equal to the global void ratio of the entire thin 

section (es) as given by Equation 2.14, unless the areas of solids (Asi) for all 

polygons were equal:   
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              (2.14) 

where n is the number of polygons. 

More problematic with Oda‟s method for quantifying the local void ratio 

distribution is the fact that the Oda‟s method depends on operator judgment when 

connecting centers of gravity of the particles, as illustrated in FIG. 2.7.  No unique 

solution for those polygons exists because different ways of creating the polygon 

networks create variability in the standard deviation and mean void ratio. Bhatia 

and Soliman (1990) concluded that the Oda‟s method could not be fully 

automated since the method does not require the centers of gravity of particles 

located at the image periphery to be connected. 
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FIG. 2.7.  Different Ways Create a Polygon using Oda's Method 

Frost and Kuo (1996) were able to remove variability in local void ratio 

calculations caused by operator judgment in polygon creation by fully automating 

Oda‟s method with use of digital processing and analysis.  An algorithm for 

Automated Determination of Local Void Ratio Distribution (AADLVRD) was 

developed to create a polygon network connecting centers of mass of sand grain 

particles within a binary image without any operator judgment or manual effort.  

A correction applied by Frost and Kuo (1996) to account for  the thickness of the 

segmentation lines in the digital image resulted in a more accurate average global 

void ratio than  reported by Bhatia and Soliman (1990).  Frost and Kuo (1996) 

also resolved the problem of inequality between Equations 2.13 and Equation 

2.14 by adjusting the mean value ē of the frequency distribution of local void ratio 

by the weighted solid area (Asi) in each polygon, as defined by Equation 2.15: 
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where  ē  is an adjusted mean void ratio. Substituting    
   

   
 into Equation 2.15 

results in: 
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  More recently, Alshibli and El-Saidany (2001) developed a fully automated 

voronoi tessellation method to quantify void ratio called an Algorithm for 

Automatic Determination of Local Void Ratio (AADLVR).  Image processing 

and mathematical morphology were used on binary images to generate a proper, 

consistent polygon network for local void ratio calculations.  Voronoi polygons 

illustrated in FIG. 2.8, were created from a circular growth process originated 

from a single particle centroid along a circular frontier.  In this process, the circles 

are continually expanded using a watershed algorithm, resulting in contact points 

that created lines of a polygon network.  

 
(a)                                                            (b) 

FIG. 2.8.  Comparison between Oda's Method and Voronoi Tessellation: (a) 

Polygon Network Using Oda's Method. (b) Voronoi Tessellation Method. 

(Alshibli and El-Saidany, 2001) 
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This automated method developed by Alshibli and El-Saidany (2001) was 

shown to result in only a 0.4 percent local void ratio error when compared to 

manual calculation of voronoi polygons.  Stated average void ratio (ē) from the 

automated method   was much closer to the void ratio of the thin section (es), with 

much smaller standard deviation and smaller skewness of the void ratio 

distribution compared to Oda‟s method.   

2.2.5. Frequency Distribution of Void Ratio 

Shahinpoor (1981) studied local void ratio distribution in granular materials 

using statistical mechanics theory.  He proposed that the probability distribution is 

a negative exponential function, skewed toward the heavier voids that can be 

represented by following equation: 
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where em and eM are the minimum and maximum void ratios in the packing order 

respectively and λ is a constant which can be determined from Equation 2.18: 
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where ē is the global void ratio of the packing.  FIG. 2.9 illustrates the theoretical 

frequency distribution of void ratios for different soil densities as a function of the 

constant λ that can be used with both two- and three-dimensional packing orders 

of granular materials. 
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FIG. 2.9.  Theoretical Frequency Distribution of Void Ratios for Different 

Density Values. (Shahinpoor and Shahrpass, 1982) 

Bhatia and Soliman (1990) studied the frequency distribution of void ratio of 

glass beads, Ottawa sand and crystal silica.  They found that Equation 2.17 and 

Equation 2.18 have a 1.0 percent Chi-square goodness-of-fit when describing the 

frequency distribution of glass beads previously described by Shahinpoor (1981).   

They found that the frequency distribution of Ottawa sand and crystal silica can 

be better approximated by a beta distribution as follows: 
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where the beta  distribution was fitted to the experimental distribution to find the 

α and β parameters. The resulting frequency distribution for the three materials 

they investigated is shown in FIG. 2.10. 
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FIG. 2.10.  Effect of Particle Shape on Frequency Distribution Function of Void 

Ratio. (Bhatia and Soliman, 1990) 

Yang (2005) described use of the gamma probability distribution to describe 

the shape of the frequency distribution of local voids in a sample.  The gamma 

distribution can be calculated as follows: 
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where λ, k, and x are  scale parameter, shape parameter and the pore size, 

respectively.  The mean estimate (µ) and estimate of the variance (σ
2
) for the 

gamma probability distribution of void ratios can be calculated using following 

equations: 
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Some investigators have suggested that the particle shape frequency 

distribution follows a lognormal distribution. A lognormal distribution can 

describe a random variable x if y=ln(x) is normally distributed with mean µy and 

variance σ
2

y. The lognormal distribution is described by following equation: 
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where x is the local void ratio.  The mean value (µ) and variance of the lognormal 

distribution can be calculated as follows: 
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Pearson and Hartley (1972) introduced skewness and kurtosis to describe 

shape of the frequency distribution function.  Skewness (β1) measures asymmetry 

of the probability distribution and can be calculated with Equation 2.28: 
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where N is the number of void areas, X is the variable of the distribution, µ is the 

mean and σ is the standard deviation of the distribution (Yang, 2005).  A negative 

value indicates a left skew and a positive value indicates a right skew from the 

mean.  Kurtosis (β2) measures “peakedness” of the local voids ratio distribution 

and can be calculated with Equation 2.29: 
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The kurtosis for a standard normal distribution has a value of three. A high 

kurtosis value (above three) indicates a sharper peak and a longer, thicker tail and 

a low kurtosis value (below three) indicate a rounded peak and a shorter, thinner 

tail. 

Once the parameters β1 and β2 are calculated for a random variable, the local 

void ratio distribution can be located in Pearson‟s space to determine best fitting 

model, as illustrated in FIG. 2.11.  To determine the preferred model, the 

Kolmogrorff-Smirnoff test is performed on each distribution function based on 

absolute difference (M) between the sample cumulative distribution function 

FA(x) and the cumulative distribution function FB(x) from the selected models 

(Yang,2002); 

 )()(max xFxFM BA                                                                            (2.30) 

The best model is the one with the minimum M value from among all the 

different distributions. 



25 

 

 

FIG. 2.11.  Evaluation of Local Void Ratio Distribution Models Using Space of 

Pearson's Probability Distribution. (Pearson and Hartley, 1972) 

2.2.6. Entropy of Local Void Ratio Distribution Histogram 

Entropy describes uncertainty about the flatness of the local void ratio 

distribution function.   Entropy evaluates the variation of the distribution of data 

in the histogram and was described by Shannon (1948) as an uncertainty function 

of discrete probabilities: 
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where pi is the probability of the i
th

 bin  and N is the number of void ratio 

intervals (bins).  Yang (2005) found that local void ratio entropy of a sheared 

specimen is higher than those that were only isotropically consolidated.  The 

entropy value is one for distributions having the same probability for each bin and 

zero if all data are in a single bin (Park, 1999). 



26 

 

2.2.7. Coordination Number 

The coordination number (N) is the average number of contacts per particle in 

a three-dimensional assembly.  Oda (1972) identified fabric orientation and 

packing as two fabric characteristics that define the spatial arrangement of solid 

particles and associated voids of granular materials.  The following soil fabric 

elements can be determined by thin sections and microscope: 

 Preferred orientation of long axes of particles 

 Intensity of preferred dimensional orientation 

 Three dimensional distribution of normal directions perpendicular to 

tangential planes at contacts 

 Co-ordination number (or void ratio) 

Oda (1977) determined experimentally that the co-ordination number value 

has a clear correlation to the void ratio of an assembly of particles and is 

independent of the characteristic of the grain-size distribution, as illustrated in 

FIG. 2.12.  The coordination number value can be represented by a Gaussian 

distribution for a random assembly of homogeneous glass balls, but it becomes a 

polymodal distribution for multi-mixed particle assemblies. 
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FIG. 2.12.  Relationship between Mean Coordination Number and Void Ratio. 

(Oda, 1982) 

The standard deviation of the co-ordination number describes the 

heterogeneity of the soil fabric throughout the assembly and is correlated to the 

void ratio of the assembly as illustrated in FIG. 2.13. According to Oda (1977), 

the forming of a denser sample by changing the characteristics of the grain-size 

distribution causes an increase in sample heterogeneity and an increase in the 

number of particle contacts, N. 
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FIG. 2.13.  Relation between Co-ordination Number and Standard Deviation in 

Homogeneous, Two-mixed and Multi-mixed assemblies. (Oda, 1977) 

 

Oda el at. (1982) developed the following equation to quantify the density of 

contacts (N) within a granular soil fabric: 
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where N
V
 is the total number of contacts, δ is the density of the points marking 

the center of particles, e is the void ratio and r is the particle radius, n is the co-

ordination number and the G(e) function is defined by FIG. 2.12. 

2.3. Stabilization Methods for Cohesionless Specimens 

Undisturbed sampling of cohesionless soils for laboratory testing is very 

difficult.  Clean sands primarily derive their strength from friction caused by sand 

particle interlocking.  Disturbance caused by the sampling process, reduction of 
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effective stress to near zero during sampling, and vibration during transport all 

may result in breakdown of the soil structure (e.g. rearrangement of soil particles).  

According to Hvorslev (1977), the following requirements need to be satisfied 

during soil sampling for the soil to be considered undisturbed for laboratory 

testing: 

 No disturbance of soil structure 

 No change in water content or void ratio 

 No change in constituents or chemical composition 

Mitchell (2008) has shown that the shear strength of freshly deposited sand 

increases with time without any apparent change in void ratio, structure, or 

composition, thereby adding another dimension to the problem.  Several methods 

have been devised to minimize soil structure disturbance in sampling of 

cohesionless soils.  Shelby tubes fitted with mechanical core retainers, e.g. 

Denison and Mohr sampler have been used to prevent soil loss from extracted 

sand samples.  These types of samplers may work well in cohesive soils but are 

not very reliable in clean sands because of excessive sample disturbance. Bishop 

(1948) used an auxiliary barrel to partially dewater cohesionless soil with 

compressed air before extracting the sample.  The dewatered sample would 

hopefully have enough apparent cohesion from capillary forces to minimize 

disturbance to the soil matrix.   

Various in-situ stabilization methods prior to sampling have been employed to 

minimize disturbance to the soil matrix of cohesionless soils during sample 

extraction and transport to laboratory for testing.  These methods generally 
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require injection of some stabilizing substance into the soil voids that, once 

solidified, imparts cohesion to the soil and minimizes disturbance during 

sampling process. A reversible injection method, using a dilute emulsion of 

asphaltic bitumen to study the variation of density within large specimens of 

poorly graded, uniform sand, was described by Van Bruggen (1936). This labor 

intensive and difficult process required the bitumen emulsion to cure for 10 days 

after injection.  The flushing process of the asphalt emulsion after sample 

extraction and drying had to be repeated several times.  Flushing required 

repeatedly passing an evaporating fluid through the sample and recovering the 

fluid via a distillation process until it was free of asphalt emulsion. 

Hendricksen (1941) used low viscosity sodium silicate grouting gel to 

stabilize sand prior to sampling.  According to Hendricksen (1941) the sand 

properties were not affected once the gel was dissolved with sodium hydroxide or 

strong saline solution.  Karol and Mark (1962) described a non-reversible 

grouting processing using water soluble AM-9 chemical grout powder prior to 

sampling with a split spoon.  Since the grout cannot be removed from the soil 

matrix, this method was only used to observe small stratigraphic differences in the 

soil mass and direct measurements of shear strength but relative density could not 

be obtained.   To address this shortcoming, Dickinson (1975) used a 3 % gelatin 

grouting solution to stabilize loose sand in-situ, prior to sampling.  The gelatin 

grouting process could be reversed by heating the tested sand specimen to 40 ° C  
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in a specially modified triaxial cell to allow flushing of the gelatin from the soil 

matrix.  Subsequent measurements of relative density and shear strength could 

then be performed accurately. 

More recently, the reversible processes of freezing (Yoshimi et al., 1978; 

Singh el at., 1982; Gilbert et al., 1988), and impregnation with Agar (Arnott et al., 

1974; Sutterer, 1993; Schneider el at., 1989), or Elmer‟s carpenter glue (Yang, 

202; Evans, 2005) have been used to stabilize cohesionless soils for sampling and 

testing. The following sections describe the use of freezing, impregnation with 

Agar and impregnation with Elmer‟s carpenter glue for stabilization of loose soil 

specimens for laboratory testing. Non-reversible impregnation with optical grade 

epoxy for microstructure characterization with bright field microscopy and X-ray 

computer tomography is also discussed herein. 

2.3.1. Freezing 

Ground freezing has been used as a soil stabilization method for over a 

century, starting in England in 1862 where it was used to stabilize soil for off-

shore shafts (Jones  and Brown,1994) and again in Wales in 1862 for wall 

stabilization of mining shafts in loose, water-logged soils (Lightfoot, 1886).  

Langer (1939), in France, used the freezing method to stabilize loose and very 

uniform sand deposits for sample extraction by pumping a mixture of dry ice and 

alcohol through a series of pipes driven into the ground prior to sample extraction. 

The first reported attempt to obtain in-situ undisturbed soil samples by freezing 

ground in the United States was done by the U.S. Army Corps of Engineers 

during construction of Fort Peck Dam (Hvorslev, 1949).  The ground was frozen 
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by circulating a freezing coolant through seven pipes placed in circle around the 

soil mass to obtain frozen core samples 91.44 cm (36 inches) in diameter.  The 

procedure resulted in formation of ice lenses in clayey soils but not in gravel and 

sand.  A similar technique was employed by Yoshimi and Hatanaka (1973), using 

nitrogen circulated through three pipes. Ishihara and Silver (1977) used liquid 

nitrogen to stabilize sand samples extracted using a thin-walled tube for transport 

from field to the lab.  Once extracted, the samples were allowed to drain for up to 

24 hours, depending on the fines content prior to freezing.  Negligible volume 

change was observed during freezing, indicating negligible disturbance to the soil 

fabric.  Yoshimi et al. (1978) studied the effects of radial and one-dimensional 

freezing of saturated soil on sample disturbance due to volume change of the pore 

phase.  The Yoshimi et al. (1978) experimental setups are illustrated in FIG. 2.14. 

 

   
 

FIG. 2.14.  (a) Method of Sampling by Radial Freezing. (b) One-Dimensional 

Freezing Test. (Yoshimi el at., 1978) 

(a) (b) 
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In the radial freezing test, illustrated in FIG. 2.14(a), a thin-walled steel tube 

was inserted into the ground, soil was removed from the tube and the bottom end 

of the tube was capped. A circulating mixture of ethanol and crushed dry ice was 

pumped through a vinyl pipe inserted into the steel tube to freeze the soil column 

radially. It was discovered that this process allowed excess pore water to escape 

outwards in fully saturated sand under moderate confining stresses.  These 

investigations inferred that changes in shear stress due to radial freezing were 

relatively small if the initial mean principal stress exceeded 14.7 kPa (2.1 psi), 

which corresponds to 2.0 m of overburden cover for fully saturated soils. 

The one-dimensional test, illustrated in FIG. 2.14(b), showed that the most 

important variables that influence the amount of sample disturbance due to 

freezing are the progress of the freezing front, the drainage conditions, confining 

stress, and the soil‟s fines content, as illustrated in FIG. 2.15. Lower permeability 

soils (Tonegawa sand) exhibited larger volume change when compared to soils 

containing fewer fines, given same surcharge load.  Unidirectional freezing with 

unimpeded drainage and sufficient confining pressure was the best way to freeze 

sands in order to maintain their structure upon freezing. 
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(a)                                                         (b) 

FIG. 2.15.  (a) Effect of Surcharge on Expansive Strains Due to Freezing. (b) 

Expansive Strain Due to Freezing and Surcharge for Tonegawa Sand. (Yoshimi et 

al., 1978) 

Singh el at. (1982) used a specially retrofited triaxial cell to unidirectionally 

freeze  satruated, free-draining Monterey No. 0 sand at 300 kPa (21.1 psi)  and 

245kPa (35.6 psi) confining and back pressures, respectively.  It was observed 

that the volume change and the cyclic strength characteristics of the frozen 

specimens remained the same  after coring and thawing, and  coring did not affect 

the sample‟s prior strain history characteristics.   

Singh el at. (1982) and Walberg (1978)  studied the effect of preparing 

drained frozen samples for shipment or handling.  Both studies found no effects of 

freezing and then thawing drained samples on the dynamic strength charactteristis 

of sand.  Singh el at. (1982) demonstrated significant volume change and seismic 

history loss to samples with an impeded drainage path during freezing process, as 

illustrated in FIG. 2.16. 
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FIG. 2.16.  Effect of All-Around Freezing in Triaxial Cell with No Drainage. 

(Singh, 1982) 

 

Gilbert et al. (1988) used undrained cyclic triaxial tests to study density 

variation in cohesionless soil samples subjected  to cyclic and monotonic loads.  

Banding sand, a clean, fine, unifrom white quartz sand classfied SP in the Unified 

Soil Classification System,  was reconsituted using a wet pluviation techinque, 

frozen, and trimmed using a lathe for placement in a triaxial cell for testing.  

Changes to local density caused by cyclic and monotonic loading were preserved 

by refreezing the samples and sectioning them into ninety six 2.54 cm (1 inch) 

cubes inside a dedicated cold room. The density variations within the sample 

could then be accurately quantified by measurement on the individual cubes. 

2.3.2. Chemical Impregnation with Agar 

Agar is a naturally occurring, water soluble bio polymer derived from a 

polysaccharide that accumulates in the cell walls of agarophyte red algae.  It is 

non-toxic, yellow in color and odorless.  Agarose and agaropectin are the two 
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main ingredients of agar.  Agarose is a linear bio polymer composed of repeating 

monomeric units of agarobiose (disaccharide).  It has the lowest degree of 

substitution and highest gelling potential of the two compounds.   According to 

Arnott et al. (1974) the agarose gel makes a three dimensional network of 

interconnected strands that can provide soil structure with artificial cohesion and 

aid in undisturbed soil sampling.  Agaropectin is  composed of various similar 

polymers that gel poorly and are usually removed to improve gelling 

performance.  According to Sutterer (1993), agar experiences gelling hysteresis, 

melting at temperatures from 50°C to 90°C and solidifying at temperatures from 

8°C to 42°C, with gel strength from 1.0 to 28.5 kPa (0.145 to 4.14 psi).  This 

polymer is widely used in microbiology in PCR DNA extraction and in the food 

industry as a stabilizing agent.  Its thermal and mechanical properties can be 

varied depending on mixing, amount of impurities, and source. 

Schneider el at. (1989) studied the feasibility of using agar as an impregnation 

material in undisturbed sampling of recovered cohesionless soils.  Sand samples 

were successfully recovered from below and above the water table by injecting a 

solution with a 0.8% concentration of agar into the soil mass and then coring.  

Cored out samples remained inside the sampling tubes for transport to the 

laboratory.  Schneider el at. (1989) found that an agar solution of 0.5% by volume 

was sufficient to effectively stabilize sand specimens.  FIG. 2.17(a) shows that at 

the melting point of 90° C the agar‟s viscosity varies from 2.0 to 4.0 cPs.  FIG. 

2.17(b) shows that the volume change of agar when transformed from solute to 

solid is less than 2.0 % for agar concentrations as high as 2.0 % by volume. 
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(a)                                                          (b) 

 

FIG. 2.17.  (a) Agar Solution Viscosity vs. Temperature Based on Agar 

Concentration. (b) Volume Change Based on Agar Concentration and 

Temperature. 

 

Frost (1989) used red dye and image capture with a Scanning Electron 

Microscope (SEM) to demonstrate the removal effectiveness of one directional 

flushing on Ottawa 20/30 sand specimens stabilized with a 1% agar solution.   It 

was observed that the dye was initially entrapped between sand particles but was 

completely removed with two-directional flushing.  This study showed that agar 

gel removal is possible and should not significantly affect the properties of clean 

sands. 

Sutterer el at. (1996) studied the effect of agar impregnation of air-pluviated 

Ottawa 20/30 sand samples on contractive volume strain and cyclic shear stress.  

Contractive saturated specimens that were prepared in a modified triaxial cell and 

subjected to drained heating from 27°C to 67°C showed negligible structural 

volume changes. An agar polymer and water mixture (1.5% concentration) with 

60°C gel-melting temperature and 30°C gelling temperature was used to assess 
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the effects of gel impregnation and repeated flushing on soil fabric.  Undrained 

cyclic mobility was used as an indicator of changes in soil fabric.  No significant 

variation in the cyclic shear stress ratio that induced liquefaction was found 

between samples impregnated with agar bio polymer and then flushed and the 

control samples.  Sutterer el at. (1996) concluded that some fabric modification 

might have occurred within the soil fabric from leftover agar residue but not 

enough to affect cyclic mobility response of the sand tested.   

2.3.3. Elmer’s Carpenter Glue 

Elmer‟s carpenter glue was used by several researchers (Yang, 2002; Evans, 

2005) in a two stage specimen impregnation process for very loose sand samples.  

Initially, the soil fabric was flushed with a weak solution of Elmer‟s carpenter 

glue (5% to 7%) and water to lock the soil particles in place and to preserve the 

soil fabric properties prior to stabilization with epoxy.  The specimen was then 

stabilized with optical grade epoxy for subsequent sectioning and image analysis.  

The initial weak bonding with Elmer‟s glue was deemed necessary to reduce 

shrinkage during the epoxy impregnation of very loose sand specimens. Yang 

(2002) found that when applying this two-stage process the axial strain shrinkage 

was reduced from 2.0% to 1.1% for liquefied sand samples in 2-D model tank 

test.  Evans (2005) used the same two-stage procedure to stabilize triaxial sand 

specimens loaded to failure to study shear bands using bright field microscopy.  In 

the Evans (2005) study, the samples were initially flushed with 7% Elmer‟s Glue 

and water solution within the triaxial cell, allowed to drain, dried for several days 

under low vacuum and then removed   from the triaxial cell to be stabilized with 
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Epo-Tek
®
 301 two-part epoxy resin.  This two-stage process eliminated concerns 

about epoxy fouling of the triaxial cell.  Elmer‟s carpenter glue stabilized samples 

can be sectioned prior to impregnation with epoxy so specific areas can be 

preserved for further study, thus making the process less time consuming and less 

expensive than complete epoxy impregnation. 

The two-stage system suffers from several shortcomings.  Due to a high void 

ratio, lightly cemented loose sand specimens (e.g. Elmer‟s carpenter glue 

stabilized specimens) are prone to fracture and collapse during handling.  This is 

especially significant for sheared samples where the reduced number grain 

contacts within the shear zone make it more prone to disturbance during handling 

than unsheared samples.  Several researchers (Oda and Kazama, 1998; Stormont 

and Anderson, 1999; Evans, 2005) also recognized an effect of a capillary barrier 

formed in a sheared specimen wherein the high void ratio within the shear zone 

prevented adequate impregnation of the specimen above that area when using 

vacuum or driving pressure to advance the stabilizing medium. Increasing 

pressure or vacuum to compensate may result in some sample disturbance. 

2.3.4. Epoxy Impregnation 

Preservation of soil structure for microstructural analysis with optical grade 

epoxy resin is more practical than use of freezing, Elmer‟s carpenter glue or agar 

because the resulting specimens are typically harder and less susceptible to 

disturbance when cured.  Therefore, the subsequent sectioning, grinding, and 

polishing procedure does not cause any loss in specimen integrity. This non-

reversible process can be used in-situ or in the lab to preserve soil structure of 
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sand samples. Optical grade epoxy impregnation techniques to preserve the sand 

specimens are well documented in the literature (Oda et al., 1978; Ibrahim and 

Kagawa, 1991; Kuo and Frost, 1996; Jang et al. 1999; Masad and Muhunthan, 

2000; Evans, 2005).  Non-reversible injection methods to study the variation of 

density within large specimens of cohesionless soil using laminar polyester resin 

injection were described by Griffin (1954).  However, the procedures studied by 

Griffin (1954) failed to produce accurate results due to high injection pressures 

and excessive volumetric strain during the curing process.  Clayton el at. (1994) 

successfully used two part Stycast W19 epoxy resin and a catalyst with a reactive 

diluent with a low initial viscosity of 5 cPs and setting time of 6-12 hours to study 

density variation in reconstituted, dry sand samples.  

Epoxy resins are widely used in specimen preservation because they are much 

harder, provide much stronger bond when cured and are more stable compared to 

other types of resins. The most critical consideration when selecting an 

appropriate epoxy for preservation of cohesionless soils is the amount of sample 

disturbance caused due to the impregnation and curing process.  Most air-cured 

epoxy resins have a viscosity of 300 cPs or higher in ambient temperature when 

compared to the 1 cPs viscosity of water.  Loose sand specimens are susceptible 

to disturbance during impregnation when the epoxy‟s viscosity is too high.  

Disturbance to the specimen may also result from volume change caused by 

differential thermal stresses.  Many low viscosity resins produce significant 

exothermic reactions during the curing process or require elevated temperature, as 

high as 60-70
o
C, for  curing to occur.  Some epoxy resins may contain higher  
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amounts of solvent to increase viscosity that is lost during vacuum impregnation 

and subsequent curing, resulting in a larger amount of shrinkage than typical 

epoxy resins.  Finally, the epoxy resin used for soil stabilization should have good 

resilience to cutting, sectioning and polishing, as well as good optical refractive 

properties for use in microscope imagining.  Jang et al. (1999) recommend the 

following epoxy resin properties for sand specimen impregnation: 

• Low viscosity 

• Room temperature curing 

• Low shrinkage during curing 

• High hardness value and high bonding strength on curing 

• Short curing time 

• Nonreactive with soil and test equipment 

Some of the few optical grade resins that meet above requirements include 

Hxtal NYL-1, Epo-Tek
®
 301 and currently discontinued Abelbond resin.   

Buehler®‟s Epo-Tek
®
 301 two-part, low viscosity epoxy meets all of the above 

requirements and is therefore very well suited for geotechnical applications.  

Table 2.1 lists some of the physical and chemical properties of Epo-Tek
®
 301 

epoxy.  
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Table 2.1.  Properties of Epo-Tek
®
 301 Two-part Resin. 

PROPERTY VALUE 

Mixing Ratio 4:1 base to hardener 

Pot Life 1-2 hrs. 

Minimum Bond Line Cure  24 hrs. at 23
o
C 

Specific Gravity 1.15 (base), 0.87 (hardener) 

Color clear 

Viscosity 100-200 cPs 

Shore D Hardness 85 

Index of Refraction @23
 o

C 1.51@589 nm. 

 

Epo-Tek
®
 301 is widely used and its properties well understood in the fields 

of biological tissue preservation and impregnation of core specimens for geology.  

According to Jang el at. (1999), thanks to 100% solid formulation that contains no 

solvent, the linear shrinkage during curing of Epo-Tek
®
 301 is a relatively low 

1.5% when compared to the more typical value of 5% for other epoxies. 

Yamamuro (2008) found very small axial deformation in specimens before and 

after the epoxy impregnation.  Average, maximum, and minimum values of 

volumetric strain measured by Yamamuro (2008) following impregnation with 

Epo-Tek
®
 301 epoxy amounted to 0.15%, 0.33%, and 0.00% respectively, 

indicating very low disturbance to the soil fabric.  Looser specimens of sand are 

more susceptible to larger axial strains than dense sands during the epoxy curing 

process.  Jang (1997) demonstrated that an air-pluviated sand specimen with 



43 

 

initial density of 23 percent would strain 1.4 percent during impregnation, but a 

denser specimen with an initial relative density of 79 percent would only strain 

0.16 percent at a confining pressure of 50 kPa.  Below a void ratio of 0.66 (Dr > 

50%) axial strains due to impregnation are minimal for both air-pluviated and 

moist tamped sand specimens but increase linearly as density decreases, as 

illustrated by the initial void ratio versus total axial strain graph in FIG. 2.18. 

 

FIG. 2.18.  Strain Due to Curing of Epoxy-Impregnated Sand Sample in Triaxial 

Cell at σ3 = 50 kPa. (Jung, 1997) 

 

The typical working time of 1-2 hours after mixing for Epo-Tek
®
 301 , during 

which the epoxy‟s viscosity doubles, can be extended by keeping the epoxy 

cooled in the refrigerator prior to usage and  chilled during mixing, de-airing and 

impregnation.  Furthermore, the manufacturer recommends  not to mix more than 

25 ml of material at a time to reduce negative effects of heat release due to 

exothermic reaction that could cause volume change during the curing process 

and reduce working time after mixing, also known as the pot life.  When cured, 



44 

 

the Epo-Tek
®
 301 epoxy has a very good bonding strength, a medium hardness of  

D =85 on the Shore scale and a lap shear strength of over 13,790 kPa (2,000 psi) 

that holds up very well to cutting, grinding and polishing procedures.  However 

use of Epo-Tek
®
 301 for stabilization requires specialized impregnation 

equipment with sacrificial, disposable parts whenever they come in contact with 

the epoxy. 

2.4. Imaging of Epoxy-Stabilized Soil Samples 

Several destructive and non-destructive imaging methods have been used in 

soil mechanics to study microstructure of cohesionless soil samples.  Bright field 

microscopy (BFM) and electron backscattered diffraction (EBSD) require 

extensive sample preparation e.g. epoxy impregnation, cutting, grinding and 

polishing, to obtain optical grade, perfectly flat coupon surfaces.  Both procedures 

provide good quality, relatively inexpensive, high contrast images. X-ray 

computed tomography is a non-destructive process capable of scanning an entire 

specimen to acquire three-dimensional images of grain structure in real time.  It is 

an expensive, time consuming image acquisition method that may result in 

relatively low image resolution and image artifacts.  Selection of an appropriate 

imaging procedure is a compromise of price, equipment availability and 

limitations, sample preparation, and image processing requirements to obtain 

acceptable results. 
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2.4.1. Bright Field Microscopy (BFM) 

Several types of optical illumination techniques are widely used in fields of 

biology, petrology, metallography, petrography and chemistry.  According to 

Bradbury and Bracegirdle (1998), their purpose is to: 

 Provide a magnified image of the specimen 

 

 Help to visualize fine details in the structure of the specimen 

 

 Measure an object‟s structure 

 

 Measure optical properties of reflectance, refractive index, and phase 

changes 

 

The four most common types of illumination microscopy are incident light, 

transmitted light, dark field, and bright field illumination methods.  In incident 

light microscopy, the specimen is illuminated directly by one or more light 

sources that are set arbitrarily by the user.  This method is very rarely used 

because it is hard to reproduce.  If the illumination of the field of view is not 

controlled by a lens and aperture, the light bulb filament will cause disturbance in 

the image due to spatial variation in light intensity, surface glare, and bleaching 

out of fluorescent particles (Baldock and Graham, 2000).  Transmitted light 

illumination is used in thin section imaging of high contrast biological and 

petrographic specimens where the transmitted light is able to pass through the 

specimen without too much absorption. Dark field illumination is similar to 

transmitted light illumination except the central light rays are blocked, allowing 

only oblique rays to illuminate the specimen.  This is a very simple and popular 

method for increasing the contrast of unstained, low contrast specimens. Oblique 
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light rays emanating from a darkfield condenser strike the specimen from every 

azimuth and are diffracted, reflected, and refracted into the microscope objective, 

making the specimen appear bright on a black background (Davidson and 

Abramowitz, 2003). 

Bright field microscopy, also known as reflected light or episcopic 

illumination, is used with thick specimens where light cannot pass through them.  

Instead, the light is directed onto the surface of the specimen along the 

microscope optic by either specular or diffused reflection.  Episcopic illumination 

system used with optical microscopy is illustrated in FIG. 2.19.  Typically, Kohler 

illumination is used to provide optimum specimen illumination, where the glare-

free, grain-less light source does not suffer deterioration from dust or 

imperfections in the glass surfaces (Davidson, 2010). The light travels from the 

light source through collector lenses, the variable aperture iris diaphragm opening, 

and the opening of a variable pre-focused field iris diaphragm, strikes a partially 

silvered plane glass reflector, and is reflected onto the specimen‟s surface.  Once 

the light reaches the specimen, it is partially absorbed and partially reflected back 

to the microscope as specular and scattered /diffused light.  Sample microstructure 

that contains different types of materials will reflect or scatter the light back to the 

microscope lens based on surface roughness and material hardness, resulting in 

good contrast and definition.  According to Jang (1999), flat surfaces reflect light 

back to the microscope and appear to be bright.  The light that strikes rough 

surfaces is diffused and scattered, resulting in dark features.  The quality of the 

images can be adjusted based on the degree to which the diamond abrasive used 
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in the final polishing stage, removes artifacts from hard surfaces while scratching 

soft surfaces at the same time.  Bright field illumination has been proven to reveal 

desired surface features of metallographic, petrographic and epoxy-impregnated 

sand specimens. 

 

FIG. 2.19.  Episcopic Illumination System. (Davidson, 2010) 

Additional application specific optical microscope methods such as Rheinberg 

illumination, phase contrast microscopy, polarized light, Hoffman modulation 

contrast or Florence microscopy use optical staining, diffraction, refraction, 

optical gradients or radiation respectively to enhance image contrast  but were not 

considered for this research.  

2.4.1.1. Nature of Light 

Since an epi-illumination (bright field) microscope takes advantage of light 

interaction with the specimen surface to capture high quality images, it is 

important to understand the physical properties of a light wave.  Visible light is 

part of the electromagnetic radiation spectrum that is in wavelength from 400 nm 

to 700 nm.  FIG. 2.20 shows the spectrum of electromagnetic waves including the 
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visible light spectrum. Visible light contains violet, blue, green, yellow, and red 

colors visible to human eye. A beam of light may be expressed as a two-

dimensional sinusoidal curve, where wavelength represents the color of light and 

the amplitude of the wave gives the information about its intensity, or 

“brightness”. 

 

FIG. 2.20.  The Spectrum of Electromagnetic Waves, Including Visible Light 

Spectrum. (BIOSYNTRX, 2005) 

 

Depending on the refractive properties of the microscopic specimen and the 

nature of light source, the principal interaction between light and a specimen may 

result not only in reflection and absorption but also in refraction, diffraction or 

fluorescence.  Each type of interaction may affect the image quality of objects 

viewed under the microscope. FIG. 2.21(a) and FIG. 2.21(b) show specular 

reflection that occurs when the light beam is reflected by a smooth surface, where 

the angle of incidence is equal to the angle of reflection. If the surface if rough, 

diffused reflection returns light in all possible directions. 
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FIG. 2.21.  Diagram of Reflections from Smooth and Rough Surfaces. 

When the transmitted light is absorbed by the specimen, it is reduced in 

amplitude or intensity when compared to light that passes around it, causing a 

phase change or optical path difference.  Absorption of some wavelengths may 

affect the color of the reflected light and thereby make parts of the specimen 

change color or appear dark, resulting in increased contrast for biological and 

petrographic thin sections. 

Refraction occurs when light passes from one material into another of 

different refractive index, e.g. from air into glass.  Bradbury and Bracegirdle 

(1998) state that the refractive index of any medium is the ratio of the phase 

velocity of the electromagnetic waves of light in a vacuum to their phase velocity 

in the medium itself.  The relationship between angles of incidence and refraction 

in materials with different refractive indices is governed by the Snell‟s Law.  

Since the phase of the wave needs to be constant on any given plane, it follows 

that: 

2211 sinsin  nn                                                                                                      (2.35) 
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where n1 and n2 are the refractive indices of the incident and refracted medium, 

one and two respectively, θ1 and θ1 are the incident and refractive angles of the 

normal to the surface respectively, as illustrated in FIG. 2.22. 

 

FIG. 2.22.  Refraction of Light Passing from One Medium to Another. 

Refraction is an important factor in the performance of optical microscopes, as 

it affects resolution and Numerical Aperture (N.A.), which is a measure of the 

light-collecting power of a lens.  N.A. is quantified as: 

sin.. nAN                                                                                              (2.36) 

where α is the half angle of acceptance of incident light rays striking an optical 

lens and n is the refractive index of the lens that can range from 1.0 for air to 1.52 

for oil.  In microscope design, an oil immersed optic provides for the highest 

resolution and N.A. values. 

Diffraction is the scattering of light caused by the beam that passes an edge of 

the object.  Diffraction appears as bending of the light beam that extends into the 

shadow areas of the image.  This bending effect is most pronounced for longer 

wave lengths limiting image sharpness and resolution.   
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Fluorescence is a process where energy from light in the shorter wavelength 

regions is absorbed by an object and then almost immediately re-emitted as light 

of longer wavelengths (Bradbury and Bracegirdle, 1998).  It is used in 

fluorescence microcopy to enhance contrast of biological specimens with use of 

staining techniques.  

2.4.1.2. Coherent and Incoherent Illumination 

A specimen viewed under an optical microscope can be illuminated by light 

sources that vary in wavelength composition and the phase relationship. These 

variations will have different effects on image quality.  According to Baldock and 

Graham (2000), light sources that emit single wavelengths are called coherent or 

monochromatic.  A coherent light source is used in confocal brightfield 

microscopy with a of point detector.  This type of illumination suffers from a 

ringing effect and shifting of sharp edges into a bright area that needs to be 

accounted in calculations.  In addition, even small dust particles can degrade the 

image, requiring aberration-free optics to obtain high quality images.   

Incoherent illumination is characterized by a random phase relationship.  

Incoherent light can be emitted directly from a source such as a halogen lamp and 

is used in epi-illumination microscopes and in this research.  Incoherent 

illumination may be changed to quasi-coherent illumination by closing the 

aperture of the microscope into a pinhole.  A method to control illumination of the 

pupils in the optical path of a microscope and to ensure high resolution,  
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homogenous illumination was first described by Kohler in 1893, and is presented 

in FIG. 2.19.  The advantage of this method is that the image intensity does not 

change with a change of the focal position. 

2.4.1.3. Image Formation and Types of Microscope Systems 

The two most common types of optical microscopes used in illuminated 

microscopy are compound microscopes and infinity corrected microscopes.  In 

the majority of microscopes manufactured before 1980s, a magnified and real but 

inverted intermediate image (O‟) would be formed with an objective composed of 

several lenses inside a fixed optical tube, as illustrated in FIG. 2.23(a).  The image 

would further pass through the eyepiece objective to form the final virtual image 

O”, located at infinity.  This system provides good quality, high resolution images 

that could be affected by optical aberrations caused by quality of the optics and an 

illumination method.  The eyepiece has to compensate for considerable residual 

errors and lateral chromatic aberrations, as discussed further in section 3.5.1.5.  

FIG. 2.23(b) shows an infinity-corrected microscope where the object (O) is 

placed in the front focal plane of the objective that forms a parallel light beam in 

infinity space. The intermediate, inverted image O‟ is created by the reference 

focal length tube lens and it is subsequently converted to a final, infinity focused, 

virtual image O” that is free of residual aberrations. 
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FIG. 2.23. Finite-Tube and Infinity-Corrected Microscope Systems. (Davidson 

and Abramowitz, 2003) 

2.4.1.4. Past Research 

Image capture of light illuminated sand coupon surfaces with an optical 

microscope has been widely used to study microstructure properties of epoxy 

stabilized, cohesionless sand specimens.  This inexpensive method has been used 

in the past two decades by several researchers (Kuo, 1994; Frost and Kuo, 1996; 

Jang, 2000: Yang, 2002; Evans, 2005) to study changes in soil properties when 

subjected to triaxial testing.  The sand specimen would be stabilized with optical 

grade epoxy, sectioned and subjected to manual grinding and polishing to obtain 

artifact-free, perfectly flat coupon surfaces.  Captured images would be stitched 

and processed to calculate the two-dimensional variation in spatial and local void 

(a) 

(b) 
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ratios distribution inside and outside a shear band within the specimen, quantify 

particle orientation distribution, size and shape characteristics, and number of 

interparticle contacts. 

Yang (2005) studied the three-dimensional microstructure of triaxial test 

specimens from reconstructed two-dimensional sections. A hand polishing 

technique was used to remove 5-10 µm of surface thickness at one time.   Up to 

sixty images were captured per individual layer using BFM and then stitched 

together to create a two-dimensional slice. Up to 20 slices were then aligned to 

create a three-dimensional image used to characterize parameters such as 

tortuosity, throat size, global and local void ratio, and pore size. 

Martys et al. (2000) used BFM to capture the grain structure of reconstituted 

Ottawa 30/40 sand specimens that were impregnated with Epo-Thin
®
 two-part 

epoxy.  The resulting binary images were used to obtain the statistics of the pore 

structure distribution to calculate permeability and permeability anisotropy.  The 

permeability and permeability anisotropy were used to calibrate three-dimensional 

numerical model.  

2.4.2. Electron Backscattered Diffraction (EBSD) 

Electron backscattered diffraction is performed with the scanning electron 

microscope (SEM).  The specimen is placed in a vacuum chamber on a surface 

that is tilted at 70° to the incoming high-energy electron beam in a raster scan 

pattern that is then reflected onto a phosphor screen for detection.  The electrons 

interact with the sample‟s surface atoms providing information about 

composition, surface topography, and electrical conductivity. The information is 
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converted from analog to digital with a Charge Coupled Device (CCD) that 

functions as an image sensor inside the digital camera.  The CCD data is then 

processed and displayed on a monitor, as illustrated in EBSD process diagram 

presented in FIG. 2.24(a).   

Image quality and the type of information obtained using EBSD is dependent 

on type of electron beam used. A secondary electron beam can produce very high 

resolution (up to 1 nm) and large depth of field resulting in a three-dimensional 

image useful in the study of surface texture. The magnification can vary from 10 

to 250 times. A back-scattered electron (BSE) beam emits a high energy beam 

that is reflected from the specimen by elastic scattering.  Since the signal strength 

is strongly related to the atomic number (Z), heavy elements within the specimen 

reflect electrons more strongly than light atoms and appear brighter.  The BSE 

beam can be used to detect contrast between areas of different chemical 

composition.  FIG. 2.24(b) shows the SEM setup and a resulting image captured 

from one of the epoxy-stabilized specimens used in this research at minimum 

magnification.  Less work is required to prepare the specimen surface for 

microstructure analysis using BSE compared to BFM because the BSE beam can 

excite subsurface atoms by adjusting the power from 5kV to 40kV to obtain 

information at depth between 50 and 100 nm below the surface.  The specimen‟s 

surface needs to be electrically conductive and grounded to prevent accumulation 

of electrostatic charge.  As a result, the surface of an electrically non-conductive 

object needs to be coated with electrically conductive material such as gold,  
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platinum or graphite.  Environmental SEM has been used to prevent electric 

charge buildup on non-metallic specimens by replacing the vacuum chamber with 

a high pressure chamber filled with positively charged ions. 

 

 
(a)                                                           (b) 

FIG. 2.24.  (a) EBSD Measurement Process (IFW-Dresden). (b) Image Capture 

with ESEM and Resulting Image. 

Yamamuro (2008) used a scanning electron microscope (SEM) in backscatter 

mode to study thin sections of epoxy-stabilized silty sand specimens from 

undrained triaxial compression tests. He found that this technique produced high 

quality, binary micrographs that clearly differentiate between the sand grains and 

the surrounding void spaces, while remaining less sensitive to sample preparation 

methods when compared to image capture with BFM technique. Grain contact 

analysis required 3-D reconstruction to verify the size of the particles.  To enable 

3-D reconstruction, the coupon surface was removed with a polishing process at 

20 micron intervals. The surface images were then used to visually reveal gradual 

morphology of the sand grains in reconstructed 3-D images. 
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Alshibli and Sture (1999) used the same method as Yamamuro (2008) to 

capture binary images to study the level of homogeneity inside and outside the 

shear failure plane of Ottawa F-75 white silica sand specimens tested under plane 

strain conditions.  Back-scatter electron microscope was used to collect images 

from thin sections. Resulting 2,000 µm by 2,000 µm images were converted to a 

binary form and the variation in global void ratio was calculated within and 

outside the shear plane. 

Several petrography studies (Slatt, 1973; Whalley, 1980; Thanachit al et., 

2009; Prakonghep, et al., 2010) also used SEM to analyze the microstructure of 

individual sand grain particles.  Visual observation of images and computer 

assisted image analysis yielded angularity and roundness parameters, feret size 

(the longest distance across a grain section), surface texture, crystal growth, 

pitting, and mineral composition. 

2.4.3. X-ray Computed Tomography (CT) Imagining 

X-ray Computed Tomography is a non-destructive, reliable imagining method 

to obtain the three dimensional microstructure of a material through use of 

tomography. Its use began in radio astronomy (Bracewell, 1956) and later in 

1970s as a diagnostic tool in the medical industry.  Its use has since been extended 

to study soil properties (Al-Raoush and Alshibli, 2006; Desruses, el at. 1996; 

Wang, 2007), cement concrete (Landis and Keane 1999; Hall el at., 2000), asphalt 

concrete (Braz et al., 1999; Wang, 2004) and rock (Radaelli el at. 1998).  Medical 

scanners for examining of human tissue are widely available but limited in power.  

Industrial CT scanners provide higher energy levels, higher intensities and lower 
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exposure times to deliver higher image resolution.  Scanned slices can be 

reconstructed in three dimensions to perform image processing and analysis to 

obtain material property characteristics such as grain size, grain distribution, 

global and local void ratios, particle arrangement, number of contacts and 

permeability estimates. 

Batiste el at. (2004) used X-ray CT to study the spatial density variations 

within Ottawa F-75 sand specimens subjected to axial compression unloading and 

reloading cycles in a triaxial cell under different strain regimes.  The results 

included information on local void ratio distribution within specimens, thickness 

and orientation of shear bands, and volume change distribution.  These 

investigators characterized shear bands into axial conical and radial-planar types 

and correlated them with nominal axial strain increases.  

Al-Raoush and Alshibli (2006) used CT generated three dimensional images 

of porous media to develop a methodology to accurately calculate the distribution 

of local void ratio regardless of irregularity in shapes, sizes, or arrangements of 

particles.  The developed algorithm used a smoothing median filter to suppress 

high-frequency data values while preserving the detail of the image, a watershed 

transform to segment touched or overlapped particles, and the distance transform 

to calculate the boundaries of local void regions. They discovered that porosity 

values are sensitive to image quality, so image filtering should be performed prior 

to mathematical morphology to obtain accurate results. 
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2.4.3.1. Tomography 

Tomography is a process that takes transmitted radiation that is collected by 

the detector and analyzed by a computer to create a two-dimensional 

reconstruction of image slices with the use of complex reconstruction algorithms. 

The mathematical principles of CT are covered in detail by Panton (1981) and 

Kak and Stanley (1988).  The X-ray signal is attenuated by the sample through 

Compton scattering and photoelectric absorption and pair production.  According 

to Ketcham and Carlson (2001), photoelectric absorption occurs when the total 

energy of an incoming X-ray photon is absorbed by an inner electron, causing the 

electron to be ejected.  In Compton scattering the incoming photon interacts with 

an outer electron, causing it to scatter while it is deflected in a different direction.  

In pair production, the photon interacts with the nucleus and is transformed into a 

positron-electron pair.  This process of beam attenuation through homogenous 

material can be described by the Beer‟s Law: 

 xII  0                                                                                                (2.37) 

where I0 is the initial X-ray intensity, µ is the linear attenuation coefficient of the 

specimen and x is the X-ray path through the material.  Attenuation varies with Z
3
 

(the atomic number cubed) and emitted energy. Photoelectric absorption is 

dominant at low beam energy and high atomic number, Compton scattering is 

dominant at higher beam energy. 

Image reconstruction algorithms use the Fourier slice theorem to reconstruct 

one-dimensional Fourier transforms of the parallel projections by assuming that it 

must be equal to a slice of the two-dimensional Fourier transform of the original 
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specimen.  Detailed description of the theory behind system calibration, image 

collection and image reconstruction procedure are well beyond scope of this 

dissertation. 

2.4.3.2. X-ray Computed Tomography Process 

X-ray CT involves creation of incident electromagnetic radiation (x-rays or 

gamma rays) that is directed at the sample being studied.  Some radiation enters 

the sample and is absorbed, but the majority of the radiation passes through the 

specimen and is detected on the back plate. The collected data is used to 

reconstruct two-dimensional slices of the specimen.  CT systems can be classified 

based on the scanning configuration, type of energy source used or resolution. 

First generation CT is done by directing an X-ray beam through an object to a 

single detector while changing the angular orientation of the specimen.  Second 

generation CT scans replaced the single beam with a fan beam and the single 

detector by a series of detectors, as shown in FIG. 2.25(a).  In third generation CT 

illustrated in FIG. 2.25(b), a cone beam configuration can capture an entire object 

so only one rotation of either the specimen or the beam is required (Ketcham and 

Carlson, 2001).  FIG. 2.25(c) presents a parallel beam configuration  used by the 

latest generation of third generation synchrotron CT machines, where a 

continuum of electromagnetic radiation produced by electrons traveling at a speed 

close to the speed of light are used to generate the x-ray source used in imaging. 
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FIG. 2.25.  Beam Configurations in X-ray CT Systems. 

  Non-destructive imaging of very dense materials is done with neutron 

tomography where the spallation of protons into highly excited neutrons is used to 

generate gamma rays.  CT systems can be classified based on resulting scale of 

image resolution.  Table 2.2 presents a CT classification system based upon image 

resolution.  

Table 2.2.  General Classification of Computed Tomography. (Ketcham and 

Carlson, 2001) 

TYPE SCALE OF 

OBSERVATION 

SCALE OF 

RESOLUTION 

Conventional m mm 

High-resolution dm 100 µm 

Ultra-high-resolution cm 10 µm 

Microtomography mm µm 

 

(a) 

(b) 

(c) 
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2.4.3.3. Image Artifacts 

Scanning artifacts can affect quality of the reconstructed images by obscuring 

image details, changing material properties, and affecting dimensional 

calculations.  The most common types of image artifacts are the beam hardening, 

ring artifacts, and partial-volume effects. 

Beam hardening causes variation in brightness, where the center of the object 

appears darker than the edges.  This problem is caused because of the increased 

energy of the x-ray as it passes through the specimen.  Since lower energy x-rays 

are more attenuated by higher energy beams, the beam loses energy from the 

lower part of its spectrum.  The incident beam would have lower energy than a 

direct beam, resulting in brightness variability within a specimen.  In circular 

specimens, the middle would be darker than the periphery, but in irregular 

objects, there is difficulty in differentiating between beam hardening and actual 

material variations.  This problem can be remedied with a higher energy beam and 

by using only the middle part of the image for analysis.   

Ring artifacts occur in third-generation CT and appear as full or partial circles 

located around the rotational axis.  They result from variation in output from 

individual detectors.  A partial-volume effect (partial circle) is caused by material 

variability within a specimen, resulting in different attenuation levels.  It can 

cause blurring of material boundaries, where the material value of a voxel can 

affect the value of surrounding voxels, (Ketcham and Carlson, 2001). Some  
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blurring can also be caused when the specimen is not centered on the rotating 

table along its axis, causing shifting and overlapping of images within the 

specimen 

2.5. Surface Preparation Techniques 

2.5.1. Introduction 

Epoxy-stabilized sand specimens need to be subjected to several preparation 

steps before imaging of the surface microstructure with optical microscopy can be 

performed.  Initially the large specimens are sectioned, planed and mounted into a 

mold for manual or automated grinding.  Grinding is fairly standardized for most 

types of materials and it is performed with Silicone Carbide abrasives to obtain 

initial flat surface.  It is followed by several polishing steps with diamond 

abrasive pastes or slurries to remove damage caused by previous steps and to 

provide perfectly flat, artifact free surface for image capture.  Sample preparation 

techniques used in geology and metallurgy were adopted by several researchers in 

the past to obtain good results with specimens composed of silica grains. Those 

techniques were unique to the materials and equipment used.  Final fine tuning 

through trial and error is required to obtain good imaging results. 

2.5.2. Cutting and Mounting 

Sectioning is the first preparation step in many metallographic, geologic and 

epoxy-stabilized geotechnical soil samples studied with an optical microscope.  

This process inevitably produces surface damage, e.g. grain pullout, beveling of 

the surface, surface stress fractures.  Two types of laboratory cutting devices are 

available.  The first is the abrasive cutter, a 229 to 356 mm (9 to 14 inch), water 
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cooled “chap saw” that can use a consumable wheel with silicon carbide (SiC), 

aluminum oxide (Al2O3), diamond, or cubic boron nitride (CBN) abrasive bonded 

to resin, rubber or metal disks.  The second device is the low speed 76 to 203 mm 

(3 to 8 inch) wavering, metal-bonded diamond or cubic boron nitride saw that is 

used when the specimen is fragile or friable.  Thinner wheel thickness offers 

minimal kerf loss and a cooler cut than that produced by other cutting methods, 

resulting in minimal surface damage and thereby a reduction in the number of 

subsequent grinding steps (Johnson, 2003).  Diamond coated blades are a good 

choice for general sectioning and for polymers.  CBN abrasive coated blades are 

best suited for cutting hard metals, particularly iron and steel. Appendix E lists a 

guide to selecting precision saw wafering blades. Table 2.3 lists the different 

cutting methods for sectioning and the associated surface damage caused by the 

various cutting techniques.  

Table 2.3.  Specimen Surface Damage from Cutting. (www.buehler.com) 

METHOD DAMAGE TYPE POSSIBLE DEPTH 

Shearing Deep mechanical damage 5 mm 

Flame/plasma cutting Deep thermal damage 13 mm 

Band/hack saw 

lubricated not cooled 

Moderate thermal and 

mechanical damage 

2.5 mm 

Dry abrasive cutting Moderate to severe 

thermal damage 

1.5 mm 

Wet Abrasive cut-off 

saw 

Minimal thermal and 

mechanical damage 

250 µm 

Diamond/precision 

saw 

Minimal thermal and 

mechanical damage 

50 µm 
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Mounting involves encapsulating small samples within larger media so 

they‟re easier to handle during the grinding and polishing process.  Hot 

compression mounting uses phenolic, phthalate, thermoplastic and epoxy powders 

to encapsulate samples that can withstand the heat and pressure of the mounting 

process.  Cold mounting is used to encapsulate heat and pressure sensitive 

materials with acrylics and epoxies when better flow and penetration of the 

mounting material is needed or when a large quantity of samples must be 

produced at once. Simply mounting the specimen in a polymer is a good first step 

but, according to Voort (2000), usually not adequate for mounting metallurgical 

samples.  Most polymeric mounting resins whether used hot under pressure or 

“cold” as a castable resin, do not provide a proper degree of edge flatness.  The 

best mounting resins are the thermosetting epoxy resins that contain filler 

material, such as Epomet
®
 resin.  When the thermosetting resins are used, the 

embedded sample can cool at a different rate, resulting in free edge formation.  A 

free edge will be rounded by any abrasive surface causing bleeding problems 

during examination of structure with the microscope and a residue solvent bleed 

out that can obscure edge detail.  Ideally, the specimen should be mounted in 

material of matching thermal coefficient of expansion and of similar hardness. 

This problem is not as acute with epoxy mounted, epoxy-stabilized sand 

specimens because the epoxy matches the mounting resin in hardness and thermal 

expansion coefficient. 
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2.5.3. Planing and Manual Grinding 

Planing and grinding processes remove saw marks from cutting of the 

specimen, clean, and level the surface prior to polishing.  Typically, trimming of 

the specimen with a diamond slab saw or precision section saw will result in grain 

pullout, beveling of the surface and surface stress fractures that need to be 

removed with a surface planer prior to the grinding process.  Grinding uses fixed 

abrasives where particles are formed into a grinding wheel, bonded to a strip or 

disk of paper. Only manual grinding with fixed abrasives is considered in this 

research. 

2.5.3.1. Planing 

Initial planing of the workpiece can be accomplished with a grinding wheel 

that cuts as the specimen passes underneath.  Normal and tangential forces that 

are generated between the workpiece and the grinding wheel cause the abrasive to 

penetrate.  Hahn, (1966) describes rubbing, cutting and ploughing as three stages 

of metal removal during surface grinding, as illustrated in FIG. 2.26.  Grains that 

cut deep into the surface will carve out a chip, but abrasive grains that rub the 

surface very lightly may fail to penetrate the surface.  Some grains rub without 

ploughing and some grains plough without cutting. Some grains experience all 

three stages.  The transition between those three behaviors depends on increasing 

depth of grain penetration into the surface (Marinescu, 2004). 
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FIG. 2.26.  Rubbing, Ploughing, and Cutting Regimes of Deformation in Abrasive 

Machining. (Marinescu, 2004) 

According to Rowe (2009), the most basic grinding parameter for surface 

planing is the real depth of a cut, ac.  The operator sets a depth of cut, ap, but the 

real depth of material removed is much less than the programmed depth of cut.  

Effects of grinding forces on the wheel deflection and real depth of a cut are 

presented in FIG. 2.27. 

 

FIG. 2.27.  Effect of Grinding Forces on Wheel Deflection and Real Depth of Cut. 

(Rowe, 2009) 
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Assuming horizontal surface planing with down-fed depth of cut, the set depth 

of cut is: 

w

fw
p

V

Vd
a

2


                                                                                                  (2.38) 

where, dw is workpiece diameter, Vf is the in-feed rate, and Vw is the work speed.  

After a number of passes, the real value approaches the set value, but typically ae 

is approximately a quarter of ap depending on workpiece hardness, wheel 

stiffness, contact width, work speed, and wheel speed. The actual cut depth is 

affected by the deflection, x of the system, wheel wear, as, and the thermal 

expansion, xexp of the workpiece.  The actual cut depth can be calculated using the 

following equation: 

expxaxaa xpc                                                                                                                     (2.39) 

Evans (2005) used surface planer for initial surface planing of epoxy-

stabilized sand specimen sections mounted onto 7.11 cm (2.8 inch) diameter 

epoxy disks.  The device consisted of a 0.64 cm (0.25 inch) wide grinding wheel 

that can be adjusted vertically with 2.54 µm precision and a two-degree-of-

freedom hydraulically adjustable table.  The table‟s front-to-back movement was 

set at 0.0254 cm per pass during coarse planing and 0.0127 cm per pass during 

fine planing.  Initially, material was removed from the surface at the rate of 254 

µm per pass and then it was reduced in stages from 127 µm to 2.54 µm to prevent 

grain plucking.  
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2.5.3.2. Manual Grinding 

Manual grinding is used when depth of grinding is critical and when 

automatic equipment is not available.  Most grinding methods use paper backed 

abrasive attached to a stationary belt sender or variable speed rotating disk 

grinders/polishers that use pressure sensitive adhesive (PSA) grinding disks.  Disk 

sizes can vary from 10.16 to 30.48 cm (4 to 12 inches) in diameter.  Silicon 

carbide (SiC), zirconia alumina, aluminum oxide (Al2O3), and diamond abrasives 

can either be bonded to paper, resin, and metal, or used in suspension with a 

specially engineered metal disk such as Buehler
®
‟s Apex Hercules

®
 Rigid 

Grinding Discs.  Grit sizes for grinding range from ANSI 80 to 1500. Well-

established preparation practice has been to sequentially grind specimens with a 

series of progressively finer water cooled silicon carbide abrasive papers in 120-, 

240-, 320-, 400-, and 600-grit sizes.  Typically, each abrasive disk is used for 60 

to 120 seconds, after which the paper is worn out (Voort, 2000). Silicon carbide is 

used for coarser sizes and aluminum oxide is used more widely for sizes finer 

than ANSI 1000 (see Appendix A for USA and European grit equivalency guide). 

According to the manufacturer‟s literature for Buehler
®
 SUM-MET

TM 
(2007), 

grinding should commence with the finest grit size that will establish an initially 

flat surface and remove the effects of sectioning within a few minutes.  An 

abrasive grit size of 180 to 240 is coarse enough to use on specimen surfaces 

sectioned by an abrasive cut-off wheel.  Hack-sawed, band sawed, or other rough 

surfaces usually require abrasive grit sizes in the ranges of 120 to 180 grit.  The 

abrasive used for each succeeding grinding operation should be one or two grit 
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sizes smaller than that used in the preceding step.  A satisfactory fine grinding 

sequence might involve SiC paper with grit sizes of 220-, 320-,400-,600-grit.  All 

grinding steps should be performed wet provided that water has no adverse effect 

on any constituents of the microstructure.  Wet grinding minimizes specimen 

heating, prevents the abrasive from becoming loaded with grinding swarf and 

uniformly distributes the contact stresses between the platen and the specimen 

during grinding. Water is the most commonly used lubricant, but nonaqueous 

lubricants are recommended for ceramics and minerals that are easily dissolved in 

water. 

Consecutively finer grit abrasive is used to remove damage from the previous 

step.  To aid in this process, Chinn (2002) proposed choosing a reference point on 

the specimen, such as point Q in the 12 o‟clock position shown in 

FIG. 2.28 (a). While holding the specimen surface firmly against the abrasive disc 

or belt such that the reference point is fixed with respect to the direction of 

abrasive motion, grinding continues until the saw marks are replaced by the 

parallel scratches of the first abrasive, as illustrated in FIG. 2.28(b). The specimen 

surface is cleaned with mineral soap and compressed air in between different grit 

sizes. Next, point Q on the specimen is rotated to the 3 o‟clock position, as 

illustrated in FIG. 2.28(c), and the specimen is grinded with the next finer 

abrasive until the previous artifacts are removed. The new parallel scratches lie at 

a 90° angle to the previous ones, as illustrated in FIG. 2.28(d). Rotation of the 

mount by 90° after each abrasive step shown in FIG. 2.28(e) allows one to easily 

see when the artifacts of the previous preparation step have been removed.  
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FIG. 2.28.  Manual Grinding and Polishing Procedure. (Chinn, 2002) 

2.5.4. Lapping 

Lapping is an intermediate step between the grinding and polishing processes 

designed for material removal and reduction of the specimen dimensions, while 

decreasing the surface roughness.  According to Marinescu et al. (2007), lapping 

is a fine finishing abrasive process aimed at imparting specific characteristics to 

the work piece with respect to form, size, and surface conditions.  Unlike 

polishing, the goal of lapping is to impart dimensional tolerances and an accurate 

shape by concentrating more on stock removal than on surface finish.  It 

incorporates three abrasive mechanisms: rolling, sliding, and microcutting.  In the 

lapping process the rotation lap is charged with loose abrasive slurry that removes 

material from the metallic or non-metallic specimen at low speed and low 

pressure, resulting in fine finished surface of extreme flatness. The system is 

composed of four parts; lap plate, abrasive slurry, truing rings and press plate, as 

illustrated in FIG. 2.29. 
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FIG. 2.29.  Single-side Lapping Process. (www.azom.com, 2011) 

2.5.4.1. Lap Plate 

Improper selection of a lapping plate can result in a badly scratched and 

abrasive contaminated workpiece.  When the lapping surface is too hard, it will 

prevent embedment of the particles within the lapping plate, resulting in rolling of 

abrasive on the surface and material removal via stress induced micro fractures. A 

softer lapping surface will enable the abrasive to partially embed within the 

lapping plate, resulting in more sliding motion and material removal by 

ploughing.  The resulting surface has a finer finish but less planarity.  A hard 

lapping surface used in combination with a very fine abrasive can create better 

coupon surface with respect to planarity.  Best results are obtained when the lap 

plate surface is charged with abrasive slurry until gray in appearance.  

Overcharging the lap plate surface will result in inaccuracy due to excessive 

rolling of the abrasive. The most common lapping plate materials are iron, copper, 

ceramic, and tin.  An iron lap plate has an aggressive stock removal rate and it is 

an excellent primary or roughing lap plate, with long service life.  An iron lap 
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plate produces a good surface finish on most materials and is typically used with 

an abrasive composed of coarse to medium diamond sizes.  Jang, el at. (1999) 

used lapping with a cast iron platen and 600 grit silicon carbide and anti-freeze 

suspension at 13.79 kPa (2 psi) for 10 minutes as part of the initial sand coupon 

surface preparation method. The Jang, el at. (1999) method was modified from 

Buehler Dialog
®
 Method (see Appendix B for details of the Buehler Dialog

®
 

Method).  Evans (2005) successfully used a cast iron lapping plate with 600 grit 

silicon carbide/ Metadi Fluid slurry on a Buehler
®

 MetaServ
®
 polishing table with 

an Autopol II attachment for the initial grinding phase of epoxy-impregnated sand 

specimens prior to polishing.  Table 2.4 lists the parameters of the grinding and 

polishing procedure used by Evans (2005).  

Table 2.4.  Parameters Used for Polishing and Grinding. (Evans, 2005) 

PARAMETER GRINDING PHASE POLISHING PHASE 

Wheel surface Cast iron Texmet 1000 cloth on 

aluminum 

Abrasive 600-grit Sic powder 1000-drit Sic powder 

Mixing 50 g/250 ml Metadi fluid 50 g/250 ml water 

Wheel speed 120 rpm 120 rpm 

Overburden stress 29 kPa 23 kPa 

Duration Until flat, 30-60 min 10-13 min 
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2.5.4.2. Abrasive Slurry 

Abrasive slurry used in lapping has two components: the lapping abrasive and 

the lapping medium.  The volumetric mixing ratio of the abrasive to the medium 

is 1:2 to 1:6, but the optimal ratio needs to be established experimentally for each 

application (Marinescu et al. 2007).  The abrasive used in grinding, lapping, or 

polishing suspensions has to be harder than the material that is being machined.  

The material removal rates and surface roughness are directly proportional to the 

size and size distribution of the abrasive medium. The most common abrasive 

used for almost all applications is silicon carbide (SiC), a fused, hard crystalline 

abrasive of Mohs 9.5 hardness that is capable of fast cutting with a good crystal 

breakdown.   Just below SiC in hardness, aluminum oxide (Al2O3) is a fused 

crystalline abrasive that has a very hard crystal structure that is slowly dulled but 

hard to fracture.  Aluminum oxide is not well suited for fine finishes or precision 

lapping.  Finally, a diamond suspension abrasive with Mohs 10 hardness is best 

suited for hard metals, where embedding may not be a factor.  A diamond 

suspension abrasive cuts faster and produces fine finishes.  Table 2.5 lists some 

commonly used abrasives.  Abrasives with the same or similar hardness on Mohs 

scale may not have the same abrading power or produce a similar lapped finish 

due to variability in crystalline shapes, lines of cleavage, friableness, or chemical 

composition. 
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Table 2.5.  List of Most Commonly Used Abrasives and Their Hardness. 

(www.reade.com) 

 

MATERIAL MOHS HARDNESS NUMBER 

Diamond 10.0 

Cubic Boron Nitride 9.9 

Norbide abrasive 9.7 

Silicon Carbide 9.5 

Aluminum Oxide 9.0 

Fused Alumina 9.0 

Corundum 9.0 

Chromium Oxide 8.5 

Quartz 7.0 

Silica 6-7 

 

The lapping fluid is used to deliver the abrasive grains to the lapping surface.  

The lubricant facilitates the interaction between the abrasive and the specimen 

whether the abrasive is fixed or free.  Its function is to act as a coolant that 

prevents heat buildup from friction, transports the swarf away from the platen and 

specimen, and uniformly distributes contact stresses between the platen and the 

specimen during grinding (Marinescu et al., 2007). Lapping fluid is typically 

water based with added corrosion inhibitors and agents for increased viscosity and 

lubrication.  Mixtures of oil, petroleum paraffin, Vaseline, and other additives are 

commonly used as the lapping fluid. 
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2.5.4.3. Truing Rings and Press Plate 

Truing rings illustrated in FIG. 2.29 are used for regeneration of the surface 

texture and flatness of lap plates.  They are used for retaining parts during 

processing and to maintain lap plate flatness.  Cast iron rings are used for general 

engineering.  Ceramic, Micarta and Polycarbonate rings are used for polishing 

applications.   The press plate, on the other hand, is used to deliver the abrasive 

grains mixed with a lubricant and corrosion inhibitors to the plate surface.   Its 

purpose is to lubricate the lapping surface and to apply contact pressure to the 

specimens. 

2.5.4.4. Advantages of Lapping Process 

The lapping process provides very good quality and repeatability of surface 

finish on all types of materials.  It is well suited for polishing of brittle materials 

because a relatively uniform pressure is exerted on the workpiece, minimizing the 

potential for thermal damage or distortion.  According to Marinescu et al. (2007), 

for flat surfaces, lapping can achieve: 

 Flatness to less than one light band (He) 0.0000116”/0.3 µm 

 Roughness of less than 1 µin. Ra/0.025 µm Ra 

 Size control  to less than 0.0001”/2.5 µm 

2.5.5. Polishing 

Polishing is a final surface finishing process designed to remove any 

remaining artifacts leftover from grinding and/or lapping while maintaining good 

edge retention among various grain sizes and material types on the surface of the 

specimen.  It is carried out without letting fine abrasive particles generate brittle 
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fractures on the work surface while removing material by means of plastic 

deformation (Marinescu, 2007). Polishing should produce a deformation free 

surface that is flat, scratch free, and mirror-like in appearance so true grain 

microstructure can be observed with various imagining techniques.  The process 

progresses from coarse polishing and fine relief polishing, to vibratory polishing 

with progressively smaller abrasive sizes ranging from 30 µm and 15 µm 

diamond suspensions, to 0.05 µm aluminum oxide and colloidal silica slurries 

with optional chemical etching used as a final step.  The transition from grinding 

to polishing may require additional time on the coarse polishing step to remove 

the artifacts of grinding.  Cloth is used as a delivery medium for the abrasive. 

Napless cloth is used primarily with diamond pastes and suspensions and napped 

cloth used with colloidal silica and alumina slurries. Appendix C lists various 

types of napped and napless cloths from Buehler
®

 and Allied High Tech Inc.  

Napless cloth is a stiff, nonwoven polyvinyl chloride (PVC) chemotextile sold 

under such trade names as UltraPad
®
, VerduTex

®
, Pellon

®
, PLAN-B, Plan-Cloth, 

and Gold Label.  Napless cloth is designed for high removal rates and good edge 

retention.  Nonwoven, fiber-reinforced-resin perforated pads and woven silks 

work well for polishing ceramics with diamond pastes and suspensions.  Napped 

cloth that is sold under such names as TexMet
®
, VelTex

®
, MicroFloc

®
, DiaMat, 

and Pan-B has a fuzzy texture that conforms to the surface being polished.  

Napped cloth is not well suited for use with materials containing particles of 

different texture or hardness.  Application of excessive force or duration during 

polishing may lead to an unevenly polished surface, creating various artifacts such 
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as grain rounding, grain pullout, grain surface plucking and surface variation 

between different material types. 

A vast number of surface preparation procedures have been developed for 

polishing of metals, glass, ceramics and electronic components. This research is 

mostly concerned with sample preparation methods compatible with epoxy 

embedded silica crystals. Wei (2010) developed a grinding/polishing procedure to 

prepare 31.75 mm (1.25 in) epoxy mounted geological samples for microscope 

examination.  Initial grinding with 600 and 800 grit silicon carbide abrasive disks 

using a MetPrep 3
TM

 power head grinder/polisher was followed by polishing with 

0.3 µm and 0.05 µm alumina suspension on Allied High Tech‟s Spec-Cloth and 

Imperial Cloth, respectively.  Samples were washed with micro organic soap and 

water, then dried with compressed air to remove swarf and abrasive in-between 

steps.  The procedure resulted in high quality, scratch and artifact free images 

with good surface flatness and particle edge retention.  See Appendix D for the 

resulting images, the system polishing procedure, and consumables used by Wei 

(2010). 

2.5.6. Specimen Cleaning and Preparation 

Improper specimen handling and cleaning between the planing, grinding and 

polishing steps may result in lapping and cloth surface cross contamination, 

leading to damage to the coupon surface in the form of scratches, grain plucking 

and rounding.  The most common solutions used in cleaning are distilled water,  
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organic soap, alcohol and compressed air.  The use of tap water or cotton swabs 

may result in removal of material or scratching on samples containing soft, water 

soluble minerals. 

Chinn (2002) developed cleaning procedure for ceramographic mounts.  After 

each abrasive step, the specimen is rinsed with warm distilled or deionized water 

and then swabbed with a cotton ball soaked with a solution of distilled water 

mixed with a laboratory detergent such as Micro-90 or Alconox.  The specimen is 

then placed in ultrasonic bath for 1 to 2 minutes, rinsed with warm distilled water, 

sprayed with ethanol, and dried under a heat gun. 

2.5.7. Common Errors 

Accurate interpretation and analysis of images from a polished coupon 

requires a properly prepared sample that is free of any artifacts, including edge 

rounding, constituent pullout, particle embedding, large scratches, smearing, and 

relief.  Even an improper sample cleaning process can result in sample 

preparation artifacts.  If the sample is not cleaned properly between stages of 

preparation, any remaining coolant/abrasive will contaminate subsequent cloth 

resulting in large scratches.  If samples are not fully dried before mounting, 

outgassing may occur.  After the final polishing step, if the sample is not properly 

cleaned and dried, water and residual etchant can stain the sample.  Cleaning a 

surface that oxidizes easily in soap and water will damage the sample surface, 

hiding the true microstructure.  The implement used for cleaning samples such as 

a brush or a  cotton swab can scratch the sample surface and the ultrasonic cleaner 

can  sometimes damage samples by shaking out sample constituents.  
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Edge rounding between the mounting material and the specimen or between 

different materials within the specimen can affect measurement accuracy.  The 

image in FIG. 2.30 shows silica grains with rounded edges that are 27 microns 

across as well as damage (surface roughness) due to surface plucking.  

 
 

FIG. 2.30.  Epoxy-Stabilized Ottawa 20/30 Sand Grains with Visible Edge 

Rounding and Surface Plucking. 

According to Abraham (2010), edge rounding can be caused by a polishing 

cloth that is too soft, a polishing time that is too long, an applied force that is too 

high, large differences in hardness between sample and mounting material, 

sample edge gaps, or abrasive material that is too soft. Changing from soft, 

resilient cloth such as DiaMat
®
 (i.e. a cloth that tries to bounce back under the 

load and hugs the surface features of the sample) to a more rigid, less resilient 

polishing cloth such as White Label (i.e. a cloth that can provide a flatter, more 

supportive surface for the abrasive particles) can reduce edge rounding.  Since the 

mounting material is usually softer than the sample, it may wear away at a faster 

586 

mic

27 
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rate.  Switching to a harder mounting material such as hot mounted Black Glass-

Filled Epoxy will protect sample edges more effectively.  Fast curing cold 

mounting acrylic materials will typically shrink around the sample due to 

exothermic reactions and material pullback. Slower curing epoxy will set slower 

and harder so it will not wear away as fast or create edge gaps.  Silicon carbide is 

effective at polishing metals and plastics but not effective at polishing ceramics, 

as it just rubs and chips away at the ceramic materials.  A harder abrasive such as 

diamond may need to be used to create even surface without edge rounding. 

Constituent pullout will cause any porosity measurement to become 

unreliable.  Constituent pullout can be caused by polishing cloth fibers that are 

plucking out specimen constituents or insufficient lubrication.  Switching from a 

napped cloth such as Final-P to a napless polishing cloth such as Final-A, 

reducing friction heat with a more viscous lubricant, and keeping the polishing 

cloth moist at all times should eliminate most of  pullout problems.  Over 

lubricating will cause samples to hydroplane, reducing contact between the 

abrasive and sample surfaces and increasing polishing time.   

Particle embedding affects soft samples that contain soft metals and polymers 

due to frictional heat generation where the abrasive becomes embedded in the 

sample surface.   This problem can be caused by rigid polishing cloths, 

insufficient lubrication, and too much force applied during the polishing process. 

Large scratches can be present if they were not removed in a previous step, 

the polishing cloth does not support that particular abrasive size, the polishing 

cloth is contaminated, or the polishing cloth is worn and it is not removing the 
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material properly.  Polishing for a longer time period to remove scratches may 

result in edge rounding.  Abraham (2010) recommends instead of increasing 

polishing time to use a more rigid polishing cloth such as PLAN-B instead of 

Gold Label  and to segregate different polishing cloths to eliminate cross-

contamination (Appendix C contains a list of polishing materials).  Good cleaning 

with micro mineral soap, rinsing with alcohol, and drying with compressed air are 

essential between grinding and polishing steps to get a good quality specimen. 

2.6. Digital Image Processing and Analysis 

Digital images captured with the previously described techniques of optical 

microscopy, computed tomography, or  electron backscattered diffraction can be 

used to extract  information about the soil fabric properties described in Section 

2.2.  As noted, image processing and analysis can be divided into five generally 

accepted steps: image generation and capture; image coding; reconstruction; 

enhancement; and analysis (Frost and Kuo,1996). 

Image generation and capture involve a process of creating high quality, high 

resolution images that can be encoded in some digital format without losing any 

important data that cannot be recovered later, as discussed in Section 2.4.  In the 

case of BFM and EBSD, image quality is highly dependent on the coupon 

preparation technique. In the case of X-ray CT, image quality depends on 

equipment calibration and equipment resolution capabilities. 
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Image coding is a technique of image storage (save and open) with some type 

of lossless image compression format (.TIFF, BMP, PNG, GIF).  Typically, 

images are stored in 16-bit grayscale or 256-bit RGB (color) TIFF lossless 

compression format. 

Image reconstruction is used to reconstruct image information that has been 

lost in the processes of image formation.  Images can be degraded by optical 

distortions during image capture. Degradation during image capture can be 

avoided with proper equipment setup/calibration and good specimen preparation 

techniques.  Degraded images can be reconstructed based on mathematical and 

statistical models. 

Image enhancement refers to a number of methods used to improve certain 

image characteristics prior to image analysis.  They include contrast and texture 

manipulation, histogram manipulation, noise deconvolution, use of masks, filters 

and thresholding.  Separate group of image processing techniques, referred to as 

mathematical morphology, was developed by Sierra to quantify mineral 

characteristics from thin sections (Sierra, 1982).   Mathematical morphology 

enhances binary images through processes of opening, closing, dilation, erosion, 

boundary detection, skeletonization, segmentation with a watershed algorithm and 

a “Hit-or-Miss” transform used for object recognition, thinning and pruning.  

More detailed description of these processes will be presented in Chapter 4.  

Kuo (1994) recommended that the maximum effort should be expended in the 

preparation, illumination and capture of images to minimize the need for image 

processing and alteration.  FIG  2.31 illustrates Kuo‟s (1994) image processing 
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work flow diagram.  Kuo (1994) recommended that any processing should be 

performed on the grayscale images until all the enhancement techniques have 

been exhausted. The image can then be converted to a binary image for 

processing with mathematical morphology operations and for image analysis. 

 

FIG  2.31.  Image Processing and Analysis Philosophy According to Kuo (1994). 

Image analysis uses what Frost and Kuo (1996) refer to as “low-level” image 

processing to extract information about soil fabric characteristics such as void 

ratio distribution, co-ordination value, entropy, anisotropy, fabric tensor, 
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tortuosity, and mean free path.  This information is obtained from the images with 

a computerized analysis technique first pioneered by Jongerius et al. (1972), who 

initially developed a classification of void patterns.   Subsequently, geotechnical 

researches have used this technique in the study of the distribution of voids in 

porous media (Frost and Kuo,1996; Kuo and Frost, 1996,  Al-Raoush and 

Alshibli, 2005;Evans el at., 2009), shear band characterization in triaxial tests 

(Desruses el at., 1996; Oda and Kazama, 1998; Batiste et at., 2004; Evans, 2005; 

Yang, 2005), sand grain characteristics (Whalley, 1980; Alshibli and Alsaleh, 

2004), shear strength of granular materials (Oda, 1977), fabric anisotropy (Oda el 

at., 1985;Yang, 2002), and the fluid permeability of porous materials (Berryman 

and Blair, 1986; Wildenschild el at., 2002) 
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3. TESTING PROCEDURE 

3.1. Rationale for Selected Approach 

Several methods were considered to sample and stabilize soil for laboratory 

testing and to quantify changes in microstructure.  Critical criteria included the 

use of proven, well researched stabilization methods, equipment and image 

analysis software availability, and time and budget constraints.   Uni-directional 

freezing, described in Section 2.3.1, was chosen for initial stabilization to enable 

sampling of saturated cohesionless soil.  Extensive past research has shown 

minimum effects of this sampling method on soil structure, when used properly.  

Chemical impregnation with agar, Elmer‟s carpenter glue, or bitumen solution 

were eliminated due to limited background information and/or complicated, time 

consuming sampling procedures.  Freezing was not suitable for image processing 

since that would require a dedicated cold room facility for sectioning, grinding, 

polishing and imaging.   Instead, Buehler
®
‟s optical grade epoxy was used to 

stabilize the frozen sand specimens inside a specially modified triaxial cell for 

subsequent imaging.  As mentioned in Section 2.3.4, epoxy‟s performance 

characteristics and application are well documented.  It has been widely used in a 

number of scientific fields, including geotechnical engineering research, for 

stabilization of soil specimens for imaging.  More specifically the low viscosity, 

medium hardness, and low shrinkage/strain of Buehler
®
‟s Epo-Tek

®
 301two-part 

optical grade epoxy when cured, are well suited for sample preparation techniques 

required in image capture with Bright Field Microscopy (BFM) or X-ray 

Computed Tomography (CT).   
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BFM and CT were the chosen methods for microstructure image capture.  

BFM required the development of a coupon preparation procedure to capture the 

microstructure of individual image slices (2-D) with a digital camera connected to 

an optical microscope.  To obtain three dimensional images of the specimen, the 

epoxy-impregnated sand specimens were sent off-site for X-ray CT scans.  2-D 

image capture with electron backscattered diffraction process was considered, but 

rejected. Benefits of using a scanning electron microscope (SEM), instead of 

BFM, for image capture include a less rigorous grinding and polishing procedure 

to obtain quality images since SEM does not depend on the surface properties as 

much as on the difference in material properties when exposed to a high energy 

electron beam.  However, at minimum magnification, a 2500 µm diameter field of 

view could only capture eight to ten individual grain particles.  Slow image 

acquisition rate and excessive image stitching, required to obtain a representative 

image, made SEM impractical for this study. 

Digital image processing was used to quantify local and global void ratios for 

this study.  It can also be used to quantify structure anisotropy, number of particle 

contacts per particle (coordination number) and particle shape descriptors such as 

roundness and angularity.  In subsequent studies, several commercial image 

processing programs (Avizo Fire, Materialise, Adobe Photoshop) were considered 

for particle analysis but the licensing fees and computer hardware requirements 

were prohibitive.  Instead, ImageJ was used to perform image processing for this 

research.  ImageJ is an open-source, Java-based freeware program widely used in 

biology, astronomy and geology to perform particle analysis.  Over one hundred 
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downloadable macros and plug-ins can be modified to fit specific applications or 

can be combined with Matlab to develop new sub routines.  ImageJ was used for 

image processing, mathematical morphology, and core sample microstructure 

analysis. 

3.2. Specimen Reconstitution and Sampling 

A procedure was devised to create reconstituted, air-pluviated Ottawa 20/30 

dry sand samples for placement inside a triaxial cell to calibrate and test the epoxy 

impregnation procedure.  A saturation technique and a unidirectional freezing 

method were devised to obtain frozen core samples from a prototype model 

container.  Frozen samples, recovered from the model container, were stabilized 

with epoxy for microstructure analysis.  

3.2.1. Sand Properties 

The sand used in this study is Ottawa 20/30 sand from U.S. Silica Company 

located in Ottawa, Illinois.   Ottawa 20/30 sand is a poorly graded subrounded 

sand composed primarily (99.8%) of silicon dioxide (quartz) with trace amounts 

(less than 0.02%) of iron oxide and aluminum oxide. Ninety seven percent of the 

material is retained on #30 sieve (0.6 mm), 1 percent is retained on # 20 sieve 

(0.85mm) and the rest is retained on the pan (U.S. Silica Company, 2011).  This 

sand is widely used in geotechnical testing due to the uniform grain size and the 

presumed uncontaminated nature of the grains that do not show any visible signs 

of clay, silt or iron particles. The grain size distribution curve for Ottawa 20/30 

sand is presented in FIG. 3.1.     
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FIG. 3.1.  Grain Size Distribution for Ottawa Sand 20/30. 

FIG. 3.2 shows an image of Ottawa 20/30 sand.  Raveia et al. (2008) 

discovered that besides quartz, 1-2 percent of the grains are chert fragments. 

Scanning electron microscopy (SEM) performed by Raveia et al. (2008) indicate a 

variety of trace impurities including carbon, iron, manganese, chromium, 

chlorine, and potassium.  Significant soil properties of Ottawa 20/30 sand are 

presented in Table 3.1 (Santamarina and Cho, 2001). 

 

FIG. 3.2.  Microscopic Image of Ottawa 20/30 Sand. 

1.0 mm 
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Table 3.1.  Physical Characteristics of Ottawa 20/30 Sand. 

PARAMETER VALUE REFERENCE 

D10 0.65 mm Santamarina and Cho (2001) 

D50 0.72 mm Santamarina and Cho (2001) 

emax 0.742 Santamarina and Cho (2001) 

emin 0.502 Santamarina and Cho (2001) 

Cu 1.15 Santamarina and Cho (2001) 

Cc 1.02 Santamarina and Cho (2001) 

Gs 2.65 Santamarina and Cho (2001) 

φcr 28
°
 (undrained) Santamarina and Cho (2001) 

Slope of CSL in e log p‟ 0.053 (undrained) Santamarina and Cho (2001) 

D10 0.64 mm ASTM D422 

D30 0.66 mm ASTM D422 

D50 0.70 mm ASTM D422 

D60 0.72 mm ASTM D422 

 

3.2.2. Dry Sand Specimens 

Two types of sand specimens were prepared for epoxy stabilization and digital 

image processing; air-pluviated dry control samples formed inside a vacuum split 

mold and air-pluviated,  saturated, and then frozen cored sand samples formed 

inside an aluminum model container.  The specimens formed in the split mold 

were used as a control to gauge the effect of freezing on soil microstructure. 
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3.2.2.1. Sand Preparation 

Initially some of the Ottawa 20/30 sand used for frozen specimens was re-

used for dry sample preparation.  However repeated coring with a 35.56 mm (1.4 

inch) diameter hollow diamond core barrel, handling, and drying, resulted in an 

increased amount of fines, crushed particles, and an overall change in the 

gradation curve for the reused soil.  Furthermore, foreign matter such as lint and 

high density polyethylene particles dislodged from the geosynthetic drainage liner 

accumulated over time in the reused soil.  An excessive amount of fines and 

foreign matter would make microscope imagining and image analysis more 

difficult due to the increased presence of visual artifacts.  Therefore, prior to air 

pluviation, the sand was sieved to ensure proper particle gradation, repeatedly 

washed to remove any remaining fines and foreign matter, and then oven dried for 

24 hours. 

3.2.2.2. Air Pluviation Technique for Dry Samples 

An air pluviation technique was used to form reconstituted sand specimens 

inside a split mold to obtain control samples for soil fabric analysis.  The density 

of the sand after pluviation was controlled by regulating the flow rate and drop 

height of the sand (Katapa, 2011). In general, denser specimens can be obtained 

by reducing the flow rate to allow particle rearrangement or by increasing the 

drop height resulting in larger kinetic energy.  Therefore, a variation in drop 

height can be used to create specimens of different densities (Miura and Toki 

(1982). Kolbuszewski (1948) studied the effect of drop height on the void ratio of 

air-pluviated Ottawa C-109 and Leighton Buzzard sands.  As illustrated in FIG. 
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3.3(a) the higher kinetic energies were associated with higher densities as the 

height of drop increased, until the particle‟s terminal velocity was reached. 

Increasing drop height beyond this point did little to increase sand compaction. 

According to the UC Berkeley (2004) study, to achieve maximum density of 

Ottawa 20/30 sand with the air pluviation technique, a minimum drop height of 66 

cm (25.98 inches) from top of the specimen needs to be maintained during the air 

pluviation process utilizing three sieves (No. 8, No. 4, No.8, in that order) stacked 

in such a way that the sand particles cannot fall freely through the opening of the 

sieves.  Density data on air-pluviated Ottawa 20/30 sand specimens generated 

from UC Berkeley (2004) study are presented in FIG. 3.3(b). 

  
(a) Kolbuszewski (1948)   (b)  UC Berkeley (2004) 

 

FIG. 3.3.  Effect of Drop Height on Void Ratio and Density From Air Pluviation. 

The air pluviation method is preferred to moist tamping for sample 

reconstitution because according to Frost (2003), moist tamping can result in a 

non-uniform, layered profile with a high standard deviation of local density.  Jang 

(1997) studied the amount of strain within air-pluviated sand specimens caused by 
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curing of Epo-Tek
®
 301 as a function of initial void ratio.  His research  showed 

that a void ratio reduction of less than 1 percent could be achieved when the 

initial relative density of the specimen was higher than 70 percent (ei ≤ 0.60) for 

specimens confined with σ3=50 kPa.  Results from the work of Jang (1997) are 

presented in FIG. 3.4. 

 

FIG. 3.4.  Void Ratio Reduction of Sand From ei to ef after Dying  and 

Impregnation with Buehler
®
 Epo-Tek

®
 301 at σ3=50 kPa.( Jang, 1997) 

 

In this study, Ottawa 20/30 sand was introduced through a funnel with a 1.0 

cm (0.4 inch) opening connected to the top of a 66 cm (25.98 inch) PVC tube 

having the same inside diameter as the 3.8 cm (1.5 inch) split mold. Fine wire 

mesh was placed at the tube‟s center as shown in FIG. 3.5.  The resulting 

specimens had the following properties: 
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 Dry Density   ρd = 1.71 gm/cm
3
 

 Dry Unit Weight  γd = 16.81 kN/m
3
 

 Void Ratio   e = 0.5470 

 Relative Density  Dr = 81.25 % 

 
(a)                                                      (b) 

FIG. 3.5.  (a) Manual Air Pluviator. (b) Dispersing Screen. 

The specimen was formed in a vacuum split mold lined with a 3.56 cm (1.40 

inch) diameter latex membrane sealed with rubber gaskets and attached to a 

triaxial cell base pedestal.  Disposable, 0.032 cm thick Porex Polyethylene porous 

stones with an average pore size of 125 to 175 microns and  3.56 cm (1.4 in.) in 

diameter, were cut out from a larger sheet using a hand held punch (Porex).  A 

Porex filter stone was placed on the base prior to pluviation and on top of the 

specimen after pluviation. After the filter stone was placed on the bottom of the 



95 

 

mold, a vacuum of 25 kPa was applied to pull the membrane tight against the split 

mold, and the pluviator extension was placed over the top of the split mold to 

prevent overflow. The sample was then filled to within 0.5 cm of the top with 

Ottawa 20/30 sand using the pluviator.  The split mold before and after pluviation 

is shown in FIG. 3.6. 

 
(a)                                                                (b) 

FIG. 3.6.  (b) Split Mold before Air Pluviation. (b) After Air Pluviation with 

Sand. 

After pluviation was complete, another Polyethylene porous stone was placed 

on top of the sand specimen, and then covered with the triaxial top cap that was 

placed on top of the porous stone.  Next, the rubber membrane was pulled over 

the top cap and sealed against the cap with two rubber gaskets.  Once the 

membrane was secured to the top cap, the vacuum was switched from the split 

mold to the sand specimen to minimize the possibility of sample disturbance due 

to vibration.  At this point, the sand specimen was ready for stabilization with 

optical grade epoxy. 
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3.2.3. Saturated Sand 

3.2.3.1. Air Pluviation Technique for Frozen Samples 

The air pluviation technique was also used to form samples used with a model 

container for sampling by freezing.  The Ottawa 20/30 sand was dropped, at a 

steady rate from height of 66 cm through a funnel and two sieves with opening 

size of 0.025 cm (top) and 0.05 cm (bottom), into an aluminum box enclosed with 

side panels to prevent spillage (Katapa, 2011).  Drop height was maintained as the 

box filled to assure an even density distribution.  The average sample density 

upon falling to the container was ρ = 1.73 gm/cm
3
.  The calibration curve shown 

in FIG. 3.7 was developed to establish variation in sample density for different 

drop heights (Katapa, 2011). 

 
 

FIG. 3.7.  Density Variation Due to Height Drop Change For Air-Pluviated 

Ottawa 20/30 Sand. (Kanyembo, 2011) 

 



97 

 

3.2.3.2. Freezing 

The model container was a rectangular box with inside dimensions of 55.9 cm 

(L) x 27.9 cm (W) x 17.8 (H).  The box, modeled after the container described by 

Fiegel el at. (1994) for use in geotechnical centrifuge testing is shown in FIG. 3.8. 

Three sides, the bottom, and the top cover of the box were constructed using 1.27 

cm (0.5 inch) thick, 6061-T651 grade aluminum plates to minimize the deflection 

of the box during the saturation and freezing processes. To facilitate visual 

inspection of the freezing front, the front panel was constructed out of 1.27 cm 

(0.5 inch) thick, clear Lexan Polycarbonate.  The top cover was fitted with 

pressure gauge, compression fittings, valves and six pull latches to ensure a tight 

fit during the saturation process (see Appendix F for the complete list of design 

drawings). 

 
 

FIG. 3.8.  The Box Used for Wet Sample Preparation during Saturation Process. 

Sand was placed in the model box using an air pluviation technique described 

in section 3.2.3.1.  The cover was then placed on top of the box and secured with 

the in-line clamps to make an air-tight fit.  Carbon dioxide was then pumped into 
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the soil mass for 10 minutes to displace air from the pore space, followed by slow 

hydration of the sand with water introduced through inlet ports located on the 

bottom of the box.  To prevent soil disturbance from piping, a 0.95 cm (0.38 inch) 

geocomposite drainage net with a non-woven geosynthetic fabric on top was 

placed at the bottom of the box.   

Once the soil mass became fully saturated with water, metal trays filled with a 

mixture of 200 proof  ethanol and dry ice were placed on top of the soil mass as 

shown in FIG. 3.9(a).  The freezing front created by this approach is a hybrid 

between a radial and one-dimensional methods described by Yoshimi el at. 

(1978), result in a half-cylinder freezing front spanning between the front and 

back walls of the box, as illustrated in FIG. 3.9(b).  In three- to four-hours this 

process would freeze the soil to -60
o
C with minimal volume change in the 

configuration shown in FIG. 3.9(b), reaching to within 1.5 mm of the drainage 

composite at the base of the box.  Visual observation and numerical analysis 

confirmed that the freezing front created in this manner was created in a uni-

directional manner.  

 
(a)                                                               (b) 

FIG. 3.9.  (a) Freezing of Fully Saturated Ottawa 20/30 Sand. (b) Resulting Semi-

circular Mass of Stabilized, Frozen Soil. 
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3.2.3.3. Coring and Storage 

The freezing procedure was terminated before the freezing front could reach 

the sides or bottom of the box.  This produced a uni-directional freezing front 

with free draining conditions that minimized volume change and disturbance to 

the soil structure.  A specially designed drilling guide jig was used with the 3.56 

cm (1.4 inch) inside diameter, diamond tipped coring bit to extract frozen soil 

specimens. The jig, coring bit, and the frozen soil after extraction of a series of 

cores are shown in FIG. 3.10(a).  Once extracted, the samples were trimmed, 

encased in latex rubber membranes, placed in cylindrical Plexiglas split molds, 

and placed in deep freeze storage for future testing.  Up to eight frozen cores 

could be extracted from a single model, as illustrated in FIG. 3.10(b).    

 

 

 
(a)                                                           (b) 

FIG. 3.10.  (a) Drilling of Frozen Sand Core Samples with a Hand Drill and Guide 

Jig. (b) Top View of the Frozen Soil Mass after Specimen Extraction. 
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3.3. Epoxy Impregnation Using Triaxial Cell Setup 

Impregnation with optical grade epoxy was used to stabilize the frozen cores 

for micro structure imaging and analysis. 

3.3.1. Triaxial Test Device Setup and Modifications 

A specially modified triaxial cell was used to impregnate 3.56 cm (1.4 inch) in 

diameter, 7.11 cm (2.8 inch ) tall frozen sand cores with Buehler
®
‟s Epo-Tek

®
 

301 two-part optical grade epoxy. A schematic drawing of the modified triaxial 

cell setup is presented in FIG. 3.11.  All parts of the setup in FIG. 3.11 that would 

come in contact with the epoxy, including 0.48 cm (0.19 inch) I.D. polyethylene 

tubing, Porex porous stones, and the rubber membrane, were disposed of after 

each impregnation procedure.  The pedestal, top cap, inside of the rubber 

membrane and some of the tubing were coated with a thin film of vacuum release 

grease to facilitate easier disassembly once the epoxy has set.  The cell was 

refitted with 0.48 cm (0.19 inch) compression type Swagelok
®
 fittings to accept 

smaller diameter tubing so the amount of epoxy required for each procedure was 

reduced.  All mechanical valves that could become fouled with the epoxy were 

replaced with hose clamps.  The setup in FIG. 3.11 used air for confining pressure 

but water could be used as well to perform any conventional type of triaxial test 

prior to impregnation with the epoxy to study soil structure under applied stress or 

strain conditions.
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FIG. 3.11.  Epoxy Impregnation Setup. 

A dual purpose pressure/vacuum chamber, made out of clear Lexan plastic, 

was fitted with two compression type fittings and a removable top to allow for 

easy placement of 100 ml graduated glass beaker filled with epoxy within the 

chamber.  A second top cover was fabricated to accept a humidity gauge to 

monitor moisture levels during the drying process required to properly impregnate 

a thawed specimen with epoxy. 

3.3.2. Dry Chamber and Moisture Monitoring 

Buehler
®
 Epo-Tek

®
 301epoxy cannot cure well in a moist environment.  A 

humidity level less than 40% is required for proper curing of the epoxy.  

Therefore, for the frozen core samples, it was necessary to thaw, drain, and 

thoroughly dry the sand prior to epoxy impregnation.  The specimen drying 

system employed for this purpose was similar to that used by Jang et al. (1999) 
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and Yamamuro (2008). Yamamuro (2008) found that the average, maximum, and 

minimum values of specimen shrinkage in axial direction were 0.066%, 0.18%, 

and 0.02% respectively during the drying process.  

 
 

FIG. 3.12.  Specimen Drying Setup. 

Initially, the frozen core sample was placed in the triaxial cell shown in FIG. 

3.12, confined with 50 kPa of air pressure, and allowed to thaw.  Next, 15 kPa of 

pore air pressure would be applied through the top cap to expel free water from 

the soil sample.  Next, the 15 kPa vacuum was drawn through silica gel (SiO2) 

desiccant before being drawn through the sand specimen.  A humidity gauge was 

monitored from three to seven days until the gauge indicated a relative humidity 

of no more than 20%.  The duration of this drying process will vary due to 

environmental factors (ambient humidity level), choice of a desiccant, specimen 

volume, and permeability.  Humid climates may require use of anhydrous calcium 
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sulfate (CaSO4), Calcium Oxide (CaO), molecular sieve (porous crystalline 

aluminosilicates) or a dedicated desiccant dehumidifier system to achieve the 

desired results.  Fortunately this study was conducted in central Arizona, where 

ambient humidity level varied from 2 to 20 percent. Therefore, a maximum of 

five days was required to drop humidity level inside the vacuum chamber from 

100 to 13 percent resulting in moisture content, ω, equal to approximately 0.75 

percent within the core. 

3.3.3. Epoxy Impregnation Technique 

Air-pluviated specimens and dried frozen cores were preserved using 

Buehler
®
 Epo-Tek

®
 301 two-part optical grade epoxy resin.  Based on several 

trials, it was established that 32 to 35 ml of epoxy was required to saturate the 

3.56 cm (1.4 inch) in  diameter, 7.11 cm (2.8 inch) high specimen with epoxy.  A 

volume greater than the pore volume of approximately 25 ml was required to 

prevent air from getting into the system from the epoxy reservoir and to account 

for the volume of the tubing and the connections. The Epo-Tek
®
 301 epoxy was 

mixed in 25 ml batches in accordance with the manufacturer‟s recommendations.  

Mixing larger volumes is not recommended due to the exothermic reaction that 

occurs once the base and hardener are combined that could result in shortened pot 

life.   

The epoxy components were combined using graduated pipets in a re-sealable 

118 ml (4 ounce) jar and thoroughly mixed for 2 minutes until the solution 

became clear and uniform in consistency.  This process introduces air into to the 

solution that has to be removed prior to specimen impregnation.  According to the 



104 

 

EpoTech technical data (2009), the three most common methods to accomplish 

this task are vacuum degas, use of a centrifuge, and heating.  Vacuum degas 

requires at least 98.2 kPa (14.2 psi) of vacuum to allow the air trapped inside the 

epoxy to easily escape.  The container used for this process needs to be at least 5 

times larger than volume of the epoxy to allow for volume expansion.  Excessive 

vacuum has to be avoided to prevent a “rolling boil” that will cause additional air 

entrapment.  A centrifuge can be used to remove air bubbles from epoxy placed in 

syringes by rotating them at 1000 to 3000 RPM for 3 minutes.  In the centrifuge 

process, the air is ejected through the nozzle of the syringe.  Air can also be 

removed from the epoxy by placing it in relatively wide pan (to increase surface 

area) and pre-heating it to 35°C to 40°C for 10 minutes.  However, the heat might 

affect the pot life of the epoxy by acting as a catalyst. 

Vacuum degas was used to remove air entrapped inside the epoxy. The 118 ml 

jar  the epoxy was mixed in was sealed with a perforated screw-on top connected 

to 172 kPa (25 psi) of vacuum and de-aired for 5 to 8 minutes until all the air was 

forced out of the solution and migrated to the epoxy‟s surface.  The jar contents 

were then transferred over to the pressure chamber using a syringe.   

Epoxy impregnation was performed by introducing epoxy into the specimen 

very slowly at a very low differential pressure (between the base and top cap) of 7 

to 14 kPa (1 to 2 psi) to minimize disturbance to the soil structure and to prevent 

air entrapment within the soil matrix.  For Ottawa 20/30 sand, impregnation time 

ranged from 20 to 60 minutes.  However, impregnation time could vary for 

specimens with different hydraulic conductivity or due to changes in the applied 
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differential pressure or viscosity/ temperature of the epoxy.  Impregnation time 

for the air-pluviated dry samples did not exceed 25 minutes.  The thawed cores 

required more time to impregnate ( up to 60 minutes) than the never frozen air-

pluviated samples, possibly due to increased amount of fines caused by sample 

extractions with the hollow stem, diamond core bit.  Dry-pluviated samples also 

required more epoxy (~35 ml) than the thawed core samples (~32 ml) to fully 

impregnate the sample, fill the inflow tubes, and maintain a reserve in pressure 

chamber. 

Once the initial 25 ml volume of the epoxy was introduced to the specimen, 

the inflow tubing was clamped to prevent draining of the epoxy. The graduated 

beaker in the pressure chamber was then replenished with the remaining 7 to 10 

ml of epoxy.  It was critical not to allow the graduated beaker containing the 

epoxy to go dry during the impregnation process or air bubbles would be 

introduced into the specimen, impairing the procedure.  Once the specimen 

became fully saturated with the epoxy, the inflow port was once again clamped 

and the sand specimen allowed to cure for 24 hours at room temperature. 

3.3.4. Encountered Difficulties 

Initially, components of the two-part epoxy were kept in the refrigerator to 

extend their shelf life. A cooled mixture could also provide the additional benefit 

of increasing pot life (working time) for large diameter or low permeability 

specimens where the impregnation process might exceed one hour. It was 

observed that the epoxy that was stored and then mixed at room temperature 

(~21°C) would become visibly more viscous and begin to skim over after one 
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hour inside the vacuum chamber.  In practice, Epo-Tek
®
 301 was found to have 

only one hour of working time, at which point increased viscosity of the epoxy 

could affect the specimen‟s microstructure and promote uneven saturation of the 

core. 

Previously cooled epoxy was used to impregnate the dry, air-pluviated 

samples with very good results.  However, the same procedure failed to 

consistently saturate the thawed and dried sand cores, possibly due to the epoxy‟s 

increased viscosity.  The problem was mostly overcome by allowing the epoxy 

components temperature to equalize with room temperature overnight.   

Impregnation of specimens by vacuum was initially considered but rejected.  

Vacuum epoxy resin impregnation of petrographic specimens is very common in 

preparation of thin section for optical mineralogy.  The epoxy fills voids and 

cracks in between rigid crystalline arrangements.  However Jang (1997) failed to 

produce quality sand specimens using vacuum because reacting agents in the Epo-

Tek
®
 301 epoxy can easily volatilize under vacuum, resulting in voids once cured.  

In this research work, a problem of void formation after curing was encountered 

when diluting the epoxy with 2 percent of 99.9 percent Isopropyl alcohol to 

reduce viscosity and to extend pot life. 

In some instances, full saturation of the specimen could not be achieved 

resulting in air voids within the grain structure. To salvage those samples, several 

methods were tried to re-saturate voids of the coupon‟s surface.  The goal was to 

improve image quality obtained later from the optical microscopy procedure.  The 

coupons would be subjected to the planing and grinding steps described in Section 
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3.4, wrapped in aluminum foil and the surface flooded with small amount of 

epoxy resin, as illustrated in FIG. 3.13(a).  Some coupons were then placed on a 

shake table to remove air bubbles and allowed to cure in room temperature, others 

were placed in a vacuum chamber (-85 kPa) or pressure chamber (150 kPa) and 

allowed to cure overnight, as illustrated in FIG. 3.13(b).   

(a)                                                           (b) 

FIG. 3.13.  (a) Sand Coupon Flooded with Epo-Tek
®
 301.  (b) Overnight Curing 

in Vacuum Chamber (right) and Pressure Chamber (left). 

Best results were obtained when the coupon surfaced was flooded with epoxy 

and then allowed to cure overnight inside the vacuum chamber at -85 kPa 

vacuum.  Most air voids were fully filled and no air bubbles were present.  The 

surface was then grinded down with 600 grit SiC abrasive and polished with the 

procedure described in section 3.4.3. 

Epo-Tek
®
 301 does not set properly in a moist environment.  According to 

Jang (1997) to prevent water used as confining pressure medium within  the 

triaxial cell from  diffusing into the specimen through the latex membrane, a thin 
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layer of vacuum grease  needs to be applied to the outside of the membrane.  

However, since the confining pressure used in this study was only ~50 kPa, air 

pressure was used instead of water to apply confinement to the specimen.   

3.4. Coupon Preparation 

Once the epoxy-impregnated sand specimen was fully cured, it was removed 

from the drying cell, both ends were trimmed to remove the disposable plastic 

porous stones, and the specimen was cut, planed, ground and polished in 

preparation for Bright Field Microscopy.  Accurate quantification of soil fabric 

depends on the quality of images obtained from illumination microscopy.  The 

quality of these images is directly related to the surface finish quality of the 

coupons being imaged. 

3.4.1. Cutting, Trimming and Planing 

Initial rough cuts of the impregnated specimens were made with the National 

Scientific Corporation Dyna-Cut 48.72 cm (18-inch) diamond blade, water 

cooled, slab saw shown in FIG. 3.14 to section the 3.56 cm diameter (1.4 inch), 

7.11cm  high (2.8 inch) specimen into 1.0 cm thick coupons. Coupons were taken 

from the bottom, middle and the top of the specimen for horizontal images.  
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FIG. 3.14.  Dyna-Cut 18-inch Diamond Slab Saw. 

Cuts with the 48.72 cm diamond slab saw caused concave, non-parallel 

surfaces because of blade flexure and operator error.  The 100 to 150 micron deep 

regions of disturbance had to be removed with a combination of grinding and 

planing steps.  Some researchers (Evans, 2005) used a metal-bonded diamond 

wavering saw to cut coupons from a larger specimen.  Thinner wheel thickness 

offers minimal kerf loss and a cooler cut than that produced by other cutting 

methods. Specimen sectioning with a wavering saw results in minimal surface 

damage which reduces the number of subsequent grinding steps, as discussed in 

Section 2.5.2. In this research, the entire coupon surface was subjected to the 

planing, grinding and polishing steps.  A wafering saw was not used because the 

cutting depth of equipment available was well below the diameter thickness of the 

specimen being sectioned.  Fabrication of a custom jig to make rotating cuts was 

rejected in favor of more planing and grinding steps to remove surface 

imperfections.   



110 

 

The coupon surface was subjected to manual rough grinding with 120-, 240-, 

320-grit, silicon carbide abrasive attached to 20.32 cm (8 inch), pressure sensitive 

adhesive (PSA) backed paper disks to establish an initial flat surface plane. The 

opposite side of the coupon was then planed with an OS Walker LBP‟s Haring 

618 Automatic surface grinder, shown in FIG. 3.15, using 120-grit and 240-grit 

abrasive wheels to establish a parallel surface.  During initial trials, both surfaces 

were planed using the grinding wheel, but this process was discontinued due to 

excessive fracturing of the silica sand grains.  Subsequent hand grinding, to 

remove damage in excess of 800 microns (the median sand particle diameter), 

was deemed impractical due to the time required and the large number of samples 

being processed.  Fractured silica grains result in image artifacts (which are 

caused by light scattering during illumination microscopy) that require additional 

back-end image processing and should be avoided if possible. 

 
 

FIG. 3.15.  Haring Surface Planer. 
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A surface planer was also used to trim the coupon diameter to fit inside the 

polishing/grinding jig. Refer to Appendix G for the polishing /grinding jig design 

specifications.   The coupon diameter varied due to side disturbance from frozen 

core extraction.  The coupon diameter was also larger than the specified 3.56 cm 

diameter due to the latex membrane expansion when the dry air-pluviated sand 

specimens were prepared inside the vacuum split mold.  An edge chamfer, of 45 

degrees, was formed around the coupon‟s edges to reduce wear on grinding disks 

and to extend the service life of the polishing cloths. 

3.4.2. Manual Grinding 

The vast majority of research literature on epoxy-stabilized sand coupon 

surface preparation techniques for image analysis, e.g. Jang et al. (1999) and 

Evans (2005), describe the use of  a lapping technique during initial grinding to 

obtain fast removal rates and superior surface flatness, as noted in Section 2.5.4.1.  

This would have been a preferred method to use in this study but the necessary 

equipment was not available at ASU. Several alternative methods, suggested by 

the Buehler
®
 and Allied High Tech Products Inc. technical representatives, were 

considered.  These alternatives included silicon carbide paper disks, metal and 

resin bonded diamond disks, lapping Mylar film coated with resin containing 

diamond, aluminum oxide (Al2O3), silicon oxide (SiO), or silicon carbide (SiC) 

abrasive.  Silicon carbide abrasive resin bonded to adhesive backed 8-inch paper 

disks, was chosen for its uniform cutting, minimum surface distortion, and 

deformation.  Allied High Tech Product‟s silicon carbide abrasive disks were used 

with Buehler
®
‟s Ecomet III 8-inch Grinder/Polisher, rotated at 150 rpm for 2 to 3 
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minutes per disk, for this stage of the process.  The sand coupon was mounted 

inside the grinding/polishing jig with double-sided Scotch tape.  Its depth was 

adjusted with the inset bolt to expose no more than 0.01 cm of edge surface to the 

abrasive wheel surface, as illustrated in FIG. 3.16(a). 

 
(a)                                                              (b) 

FIG. 3.16.  (a). Buehler
®
 Ecomet III Manual Grinder and Grinding/Polishing Jig.  

(b). Grinding/Polishing Jig Loaded with Weights During Manual Grinding 

Process. 

A contact pressure of 29 kPa was applied to the coupon with weights placed 

on top of the mounting jig, as illustrated in FIG. 3.16(b).  The abrasive disks had 

to be replaced frequently because the abrasive would wear out within a few 

minutes.  A steady stream of water was used to provide lubrication, prevent heat 

buildup, facilitate swarf removal, and evenly distribute the contact stresses. 

Coupon was rotated 90 degrees during each consecutive grinding step to help 

gauge removal rates of damage caused by previously used larger abrasive grit. 

Grinding steps employed to prepare coupons are listed below in Table 3.2. 
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Table 3.2.  Grinding Procedure. 

 
STEP 1 2 3 4 

C
o
n
su

m
ab

le
s 

Abrasive, US 

Industrial Grit Size 

120 240 320 600 

Type SiC SiC SiC SiC 

Carrier Adhesive 

Paper 

Adhesive 

Paper 

Adhesive 

Paper 

Adhesive 

Paper 

Coolant Water Water Water Water 

  
  
  
  
 S

et
ti

n
g
s 

Platen Speed (RPM) 150 150 150 150 

Pressure (kPa) 29 29 29 29 

Number of Disks 5 5 5 5 

Time/Disk (min) 2-3 2-3 2-3 2-3 

 

The sand/epoxy coupon and the polishing jig were thoroughly cleaned before 

switching to a finer size abrasive.  The coupon was removed from the jig, washed 

with mineral soap, rinsed with tap water, placed in an ultrasonic bath, rinsed again 

with distilled water, and then dried with compressed air.  The polishing jig was 

scrubbed with a brush and mineral soap and then dried with compressed air.  In 

addition, the polishing wheel surface and the grinder/polisher housing were rinsed 

with soapy water and then clean water to remove scarf and prevent cross 

contamination with larger size abrasive.  This cleaning step was critical in 

obtaining a good quality surface finish.  The raw surface of the coupon, after it 

was sectioned with a diamond chap saw, is presented in FIG. 3.17(a).  The coupon 

surface shows grain fractures, grain plucking and large surface grooves prior to 

grinding.  At the completion of last grinding step, most of the deep scratches and 
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fractured grain particles had been removed, but distinguishing between silica 

grains and the background is still difficult, as illustrated by the image in FIG. 

3.17(b). 

 
(a)                                                           (b) 

FIG. 3.17.  (a) Coupon Surface After Sectioning with Diamond Chap Saw. (a) 

Coupon Surface After Final Grinding Step with 600 Grit SiC Abrasive. 

3.4.3. Manual Polishing 

Manual polishing was used to remove any damage caused by the grinding 

process and to obtain an almost perfectly flat, scratch and artifact free surface that 

can be used for image capture with an optical microscope. This step is critical in 

obtaining accurate quantitative measurements of the soil structure. However the 

hardness difference between silica sand grains and the epoxy can result in uneven 

cutting of those materials during the polishing stage.  According to Jang (1999), 

uneven cutting can result in microstructure relief of grains in relation to the epoxy 

and edge rounding, where the grain‟s flat, sharp edge becomes a radius, as  
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illustrated in FIG. 3.18. This blurring will affect accuracy in calculating the 

microstructure properties of the specimen by underestimating the grain areas and 

overestimating the void ratio.   

 
 

FIG. 3.18.  Effect of Sand Particle‟s Relief and Edge Rounding on Quantitative 

Measurements. (Jang, 1999) 

Structure relief and grain rounding are caused by over polishing, excessive 

pressure on the coupon surface, excessive platen speed, and under lubrication of 

the abrasive carrying media.  Not enough pressure on the coupon surface, short 

polishing time, and over lubrication with polishing extenders, alternatively, can 

result in insufficient removal rates and surface artifacts.  Accordingly, the 

polishing procedure used in this study needs to be monitored with settings 

adjusted properly to obtain good results. 
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Initially, the grinding and polishing procedure used by Yang (2002) and Evans 

(2005), and described in section 2.5.4.1, was used but failed to produce good 

results.  A possible cause for this failure may have been caused by the substitution 

of the lapping process with silicon carbide paper disks for the initial grinding 

process. The modified Buehler Dialog
®
 Method, used by Jang (1999) and 

included in Appendix B, was also considered for polishing but rejected due to the 

lack of lapping equipment. Instead, the modified Allied HTP Inc.‟s multi-step 

polishing procedure was tried.  This procedure employs several nappless and 

napped cloth abrasive-carrying mediums, diamond colloidal suspensions and 

paste abrasives, and polishing extender fluid.  The method calls for six polishing 

steps, with the smallest abrasive size of 0.3 µm grit alumina in colloidal 

suspension. This approach, however, resulted in over polishing and reduced the 

contrast between the sand particles and the epoxy.  After several trials, the steps in 

this process were reduced to three steps which are described in Table 3.3.  

Appendix C lists the material properties and design specification for the polishing 

cloths. Appendix H lists the material descriptions of all other consumables 

obtained from Allied HTP Inc. and listed in Table 3.3.  
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Table 3.3.  Polishing Procedure for Buehler
®
 Epo-Tek

®
 301 Optical Grade 

Epoxy-Impregnated Ottawa 20/30 Sand Coupons. (www.alliedtech.com) 

 STEP 1 2 3 
C

o
n
su

m
ab

le
s 

Abrasive 

(µm) 

15 9 6 

Type Diamond Diamond Diamond 

Carrier Paste Suspension Suspension 

Polishing 

Cloth 

PLAN-Cloth Gold Label Gold Label 

Coolant GreenLube GreenLube GreenLube 

  
  
  
  
  
  
  
  
  
  
S

et
ti

n
g
s 

Coolant 

Application 

Rate 

Moisten cloth 

initially, 5-8 

drops/15 sec 

afterwards. 

Keep on wet side 

Moisten cloth 

initially, 5-8 

drops/15 sec 

afterwards. 

Keep on dry side 

Moisten cloth 

initially,5-8 

drops/15 sec 

afterwards. 

Keep on dry side 

Abrasive 

Application 

10 cm bead 

initially then 2 

cm/2 min 

afterwards 

12 drops 

initially,4-5 

drops/15 sec 

afterwards 

12 drops initially, 

4-5 drops/15 sec 

afterwards 

Platen 

Speed 

(RPM) 

120 120 120 

Pressure 

(kPa) 

19 14 14 

Time(min) 5 5 8 or more 

 

The Allied polishing method uses several types of polishing cloths mounted 

on 0.03175 cm (0.125 inch) thick sheets of glass and attached to the polishing 

wheel surface with double sided Scotch tape.  Each polishing cloth was washed 

with tap water and stored in a separate Ziploc bag after every use to prevent cross-

contamination.  The cloth would be saturated with GreenLube
TM 

antifreeze and 

then loaded with either a 10 cm long bead of diamond compound or 12 drops of 

diamond suspension.  Diamond paste and diamond suspension were substituted 
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several times with no adverse effect on final results.  The sand coupon was 

mounted inside the polishing jig with double sided tape and its seating depth 

adjusted so only a small edge of no more than 0.01 cm was exposed.  The coupon 

was marked with reference points to aid in proper positioning, as shown in FIG. 

3.19(a).  The coupon was rotated 90 degrees for each polishing step to aid in the 

assessment of material removal rates.  Each step had to continue until 

perpendicular scratch marks made by preceding abrasive were removed.  

The polishing jig was positioned on the outer portion of the polishing cloth 

and weights were stacked on top of the jig to obtain the required contact pressure, 

as illustrated in FIG. 3.19(b). Lubricant and abrasive suspension were 

administered in front of the coupon every 15 seconds continuously.  For the first 

polishing step, with 15µm diamond paste, the wheel would be stopped every two 

minutes and loaded with an additional 2 cm bead of diamond paste abrasive.  The 

polishing cloth was kept on the wet side to facilitate swarf removal and to prevent 

surface tear outs due to relatively aggressive material removal rates at this 

polishing stage. 
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(a)                                                           (b) 

FIG. 3.19. (a) Gold Label Polishing Cloth Moistened with Lubricant and Sand 

Coupon Inside Polishing Jig, left. (b) Manual Polishing Setup (right). 

The initial polishing step, using 15 µm diamond paste abrasive, removed 

major artifacts from the grinding process and made the coupon surface perfectly 

flat.  Grinding with similar size silicon carbide abrasive, on the other hand, would 

cause deep gouges on top of the silicon grains.  Since the epoxy is a much softer 

material than the sand grains, its removal rate would be much greater, causing 

grain relief and edge rounding.  The initial polishing step removed scratches from 

the sand particles and then from the surrounding epoxy while maintaining very 

good edge retention.  The resulting low contrast images made it very difficult to 

distinguish between sand grains and the surrounding epoxy, as illustrated by FIG. 

3.20(a).  

The second polishing step, with 9 µm grit diamond suspension, used lower 

contact pressure of 14 kPa.  During this step, surface artifacts such as scratches 

were removed at a higher rate from the epoxy matrix than from the sand grain 

particles.  Polishing with 9 µm grit abrasive resulted in a progressively better 
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image contrast, as shown in FIG. 3.20(b).  The grain particles began to appear 

darker than the surrounding epoxy and the grain relief was no more than 2 µm 

above the epoxy matrix when observed under a high power microscope.  Some of 

the surface scratches were still apparent after 5 minutes but extending this step 

beyond the specified 5 minutes was found to result in excessive edge rounding of 

the grain particles.  

The final polishing step used a relatively low contact pressure, with duration 

in excess of eight minutes, or until the desired image quality was obtained, as 

illustrated in FIG. 3.20(c).  The polishing cloth was loaded with a small amount of 

anti-freeze coolant and kept on the dry side to ensure good surface contact.  

Scratches on top of the sand particles were removed at a higher rate than the 

surrounding epoxy resulting in a high contrast image.  The sand grain particles 

appeared darker than the epoxy with good edge retention. Grain relief was 

confirmed with a high power microscope not to exceed 4 µm above the epoxy 

surface. The time required to obtain good results may vary and needs to be 

monitored until satisfactory results are achieved.  The process described above 

should provide consistent, repeatable results for epoxy-impregnated sand coupons 

composed of Ottawa 20/30 silica and for specimens composed of sand of similar 

hardness and shape. However, it may not be applicable to soil specimens with 

variability in particle hardness.  Ultimately, the process will have to be refined by 

trial and error for any new material.   

Excessive polishing with one size abrasive will lead to particle edge rounding 

and should be avoided. The objective in this process is not to achieve a perfectly 



121 

 

polished surface.  Instead, the aim is to create a matrix of flat surfaces and very 

fine scratches produced by the hardness differences between silica and the epoxy. 

When viewed under a bright field microscope, this process should result in a good 

image contrast without introducing an excessive number of artifacts that have to 

be removed on the back end of the imaging process with image analysis software.    

  

(a) Polished with 15 µm Abrasive. (b) Polished with 9 µm Abrasive. 

  

  

(c) Polished with 6 µm Abrasive.  (d) Over Polished Sample, 0.3 µm.  

FIG. 3.20.  Images of Ottawa 20/30 Epoxy-Impregnated Sand Coupons at Various 

Stages of Polishing. 
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FIG. 3.20(d) shows a coupon surface subjected to a manual polishing 

procedure using 30 µm, 15 µm, 9 µm, 6 µm, 3 µm diamond abrasive and 0.3 µm 

alumina suspension abrasive to obtain a mirror-like finish.  Once viewed with the 

BFM procedure, the resulting image displayed grains with good flatness and edge 

retention but was deficient in high grain-to-background contrast that could be 

used to successfully perform image segmentation during the digital image 

processing procedure. Those types of mistakes can be corrected by resurfacing the 

coupon with larger sized abrasive and repeating several polishing steps while 

monitoring the progress with an optical microscope.  Past experience has 

demonstrated that the coupon surface would have to be re-surfaced using the last 

step of the grinding process (600 grit SiC abrasive) and the entire polishing 

procedure repeated.  The attempts to correct over polishing by reverting to step 

one, described in Table 3.3, and repeating the polishing procedure, resulted in low 

contrast, poor quality images similar to the one shown in FIG. 3.20(d). 

3.5. Image Capture 

Epi-illumination (BFM) was used to image the microstructure of the epoxy-

stabilized cohesionless soil specimens.  BFM was used to image specimens that 

were subjected to procedure outlined in Sections 3.3 and 3.4 above (epoxy 

impregnation and manual surface polishing).   

3.5.1. Bright Field Microscopy 

Image capture for this research was accomplished with an optical microscope 

with built-in light source connected to a digital camera and personal computer.  

The InfiniVar CFM-2/S manufactured by the INFINITY Photo Optical Company 
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(www.infinity-usa.com), with standard length tube lens, digital camera and 

software was used.  According to the company‟s technical data, the InfiniVar 

CFM-2/S is a continuously focusable microscope with infinity-correction that 

requires Infinity Tube Lenses to establish final focus.  In this research, a standard 

tube lens was used to obtain a theoretical resolution range from 23.68 µm to 1.42 

µm for a corresponding magnification ranging from 0.18-times to 9-times 

depending on the working distance (WD) from the surface of the specimen to the 

lens and the field of vision (FOV).   Table 3.4. describes the characteristics of the 

optical microscope used, including the working distance (WD), magnification, 

resolution, and field of vision (FOV).  The field of vision describes how much of 

the object‟s depth can be held at reasonable focus for a particular working 

distance and magnification. Anything outside of that FOV will appear blurred.  

The air immersed objective used in this research has a Numerical Aperture 

NA=1.5.  The microscope objective was also fitted with a zoom module that can 

vary from 1x to 2.2x magnification. In this research the zoom module was set at 

2.2x magnification. 

Table 3.4.  InfiniVar GS Characteristics Based on 160 mm Tube Lens and 35mm 

Format. Not Adjusted for 2.2x Zoom Module. (www.infinity-usa.com) 

N.A. 0.24 0.21 0.17 0.11 0.07 0.06 0.04 0.04 0.02 0.01 

WD (mm) 18 20 25 38 58 75 95 115 220 300 

Magnification 9.00 8.00 5.00 2.00 1.00 0.75 0.60 0.50 0.25 0.18 

Resolution, 

(µm) 

1.42 1.58 1.97 3.00 4.58 5.92 7.50 9.08 17.37 23.68 

FOV (mm) 0.7 0.8 1.3 3.2 6.4 8.5 10.7 12.8 25.6 35.6 
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The optics were combined with a Lumenera
®
 Corporation‟s Infinity 2-1, 1.4 

megapixel charge-coupled device (CCD) camera capable of taking high quality 

RGB (Red-Green-Blue) color images over a wide range of lighting conditions 

with a maximum resolution of 1392 x 1040 pixels. Appendix I provides a 

complete list of specifications for the camera.  The camera was controlled with 

proprietary Infinity Analyze software for advanced camera control, image 

processing, measuring, and annotation. The Infinity Capture user interface 

software was used to control the camera and to capture images 

(www.lumenera.com). 

Sample illumination was provided with two banks of 150 watt, fiber optic 

EKE ring lights that supplied 380,000 foot-candles  of high intensity, highly-

directed,  cold light, FIG. 3.21. Inner and outer light rings, attached around the 

microscope objective, could be adjusted separately to create appropriate lighting 

pattern.  To ensure an even lighting pattern, free of glare and variation in surface 

intensity, the specimen was leveled in X and Y directions in relation to the 

microscope‟s objective using a specially constructed leveling table.   
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FIG. 3.21.  Experimental Setup Used for Image Capture with Bright Field 

Microscopy. 

3.5.1.1. Procedure 

Individual and sets of images, used to recreate the surface of the entire coupon 

with a stitching technique, were obtained with the equipment setup described in 

the previous section.  A high resolution image of the entire coupon could not be 

obtained with a single shot due to equipment limitations.  When the distance 

between the coupon surface and the microscope‟s objective (known as the 

working distance, WD), is set too far, optical aberrations can prevent an entire 

image from coming into sharp focus.  If grain particles in the center of the image 

are in-focus, the grain particles on the periphery will appear slightly fuzzy and 

blurred, and vice versa.  In addition, a large WD value will result in uneven 

illumination of the specimen with over- and under-exposed areas. After the zoom 

module was set at 2.2x magnification, it was found that the optimum working 
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distance was 5.8 cm to 7.5 cm, corresponding to a magnification of 2.2x to 1.65x.  

This WD resulted in high quality, evenly illuminated, aberration-free images.  

Since only a small section of the coupon (7mm x 5 mm) could be imaged at a 

time, close to 100 individual images had to be taken to create a mosaic which 

could be stitched together using image processing software to recreate the coupon 

surface. 

In the initial setup, it was essential that the surface of the sand coupon was 

parallel to the surface of the microscope‟s objective.  To achieve this goal, the 

microscope‟s base was shimmed and leveled. The 3.56 cm diameter coupon was 

then centered and attached to the top of the specimen stage with double sided 

adhesive Scotch tape.  The adjustable stage was placed on top of the leveling table 

shown in FIG. 3.21 and the coupon was checked for level in X and Y directions.  

Moving the InfiniVar GS unit to a working distance of 5.8 cm to 7.5 cm, the 

magnification and potential depth of field were adjusted to the previously 

discussed levels.  Since the image exposure and gain can be controlled with the 

Infinity Capture software, the EKE fiber optic light apertures were fully open and 

the light intensity was set to medium level. No further adjustments to the 

illumination source were required from then on. 

3.5.1.2. Image Acquisition 

When microscopes fitted with conventional objectives are used for imaging, 

focusing is done either by moving the stage and the specimen relative to the 

objective or by moving the entire tube relative to the stage.  According to 

Bradbury and Bracegirdle (1998), when infinity-corrected objectives are used, the 
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distance between the objective and the tube lens may be varied significantly 

without detriment to the image quality.  Obtaining best quality images requires 

only setting the working distance to a value that corresponds to a field of vision 

between 0.64 cm – 0.85 cm and then adjusting the focus ring to acquire a sharp 

image of the coupon surface. 

Infinity Capture software was used for image preview, adjustment of initial 

white balance, image brightness, exposure and gain, and image capture.  FIG. 

3.22 shows the image preview of a coupon surface with the image histogram and 

image capture control software settings.  The maximum digital resolution used to 

capture color (RGB) images was 1392 x 1040 pixels, equivalent to 4.65 µm 

square pixels. Typically, however, lower resolutions were used for image preview 

to speed up the image acquisition process.  The gain (used to electronically 

brighten the image) was permanently set at 10x and only the extended range 

exposure was varied for different images in order to obtain desired characteristics 

of the image histogram used to gauge the quality of the image.  For reasons 

described in more detail in Section 3.5.1.4., the exposure was adjusted in each 

image to maintain the image histogram within the central portion of the gray scale 

pixel intensity range to reduce brightness and contrast variations among 

consecutive images.  The coupon surface was scanned from right-to-left and from 

bottom-to-top to create a mosaic grid, as illustrated in FIG. 3.23.  The scanning 

sequence  becomes significant in the subsequent image stitching process because 

the PanaVue Image Assembler, used to create a final image, can only be used with 

images assembled in reverse order from the one mentioned above.  Finally, the 
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captured color images were saved in Tagged Image File Format (TIFF), a lossless 

data compression storage format popular in the publishing and scientific fields. 

 
 

FIG. 3.22.  Image Preview of Coupon Surface with Image Histogram and Image 

Capture Control Software. 

 
 

FIG. 3.23.  Scanning Order of the Coupon Surface for Subsequent Reassembly 

with PanaVue Image Assembler. 
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3.5.1.3. Image Resolution 

To effectively observe image details under a microscope, magnification and 

good resolution are required.  Magnification of a poor resolution image is 

pointless, since it would not yield any additional information about the specimen.  

Resolution is a combination of the theoretical resolution of the microscope optics 

combined with the maximum resolution of the charge-coupled device (CCD) 

sensor in the digital camera.  Image resolution can also be diminished by 

insufficient contrast caused by improper specimen illumination and the use of 

lower resolution images for analysis and storage. 

Optical resolution (minimum resolved distance) is defined as the least 

separation between two points at which they may be resolved as being separate. 

As the light waves pass through the objective, they are diffracted on their way to 

the camera detector creating a diffraction pattern of light and dark bands.  The 

center band of undisturbed, zero-order maximum light that is surrounded by rings 

of 1
st
, 2

nd
, and higher orders of interference is called the Airy disc.  The airy disk 

typically contains 84 percent of the luminous energy (the rest is lost to diffraction) 

and represents the smallest size that the microscope can be focused on.   Fig. 

3.24(a) illustrates a single Airy disk pattern.  The maximum resolution is the 

smallest distance between two Airy disks where they are still resolvable.  Fig. 

3.24(b) illustrates two resolvable Airy disks.  Once the separation between two 

disks exceeds their radii and their intensity distributions merge, the image detail is 

lost.  Fig. 3.24(c) illustrates a case in which image detail will be lost. 
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Fig. 3.24.  The Airy Disks of Two Points. (a) Single Airy Disk Pattern. (b) Two 

Airy Disks at Limit of Resolution. (c) Two Airy Disks Overlapping. 

(www.micro.magnet.fsu.edu) 

Larger numerical apertures increase resolution and image quality because they 

reduce light diffraction.  The larger the aperture is, the higher (brighter) the Airy 

disk and the smaller its diameter.  The maximum resolution, R, of an image is 

described by the Raleigh criterion which states that the maximum resolution is a 

function of the light wavelength, λ, used for specimen illumination (typically a 

λ=550 nm is used for white light source) and the size of the numerical aperture, 

N.A: 

..

61.0

AN
R


                                                                                                    (3.1) 

Image sharpness and resolution are also affected by the quality of the CCD 

sensor that is used to convert image formed by the microscope into its digital 

equivalent. The 1.4 megapixel CCD sensor provided a maximum pixel resolution 

of 1392 x 1040 in this research, which is equivalent to a maximum resolution of 
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4.65 µm/pixel.  Depending on the level of magnification chosen, either the 

theoretical resolution of the optics or actual resolution of the digital camera can be 

a limiting factor in image quality.  For example, using 2x magnification 

referenced from Table 3.4 will result in 3 µm theoretical resolution with 1070 

lines/mm or 1 µm/pixel, but the actual resolution is limited by the CCD sensor to 

4.65 µm/pixel.  Assuming 0.75x magnifications with a theoretical resolution of 

5.92 µm with 218 lines/mm, the image quality is limited by the optics instead.  

Storing images in lower resolution formats, or saving them using compression 

algorithms, results in data loss that cannot be recovered during subsequent image 

processing and analysis. 

3.5.1.4. Image Histogram 

An image histogram is a valuable tool to quickly assess image quality.  It is a 

graphical representation of the tones contained within an image.  An image 

histogram shows the relative number of pixels at different light intensity levels, 

the calculated luminescence, and the individual red, green and blue intensities for 

color images or gray tones in black and white images.  In this research, RGB 

images were converted to 8-bit gray scale images with a possible range of 256 

tones from black (0) to white (255).  For epoxy-impregnated sand coupons, the 

ideal histogram should have two distinct peaks; right peak that represents the 

lighter epoxy and left peak that represents the sand grain particles, as illustrated in 

FIG. 3.25(a).  This characteristic is crucial later on during image processing to 

successfully threshold each image into a binary format.   FIG. 3.25(b) shows a 

histogram containing only one distinct peak. This single peak indicates a very low 
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contrast between the background and the grain particles, where the majority of 

gray scale intensities are centered around one mean value.  This result is 

indicative of a failed finishing procedure that either over- or under-polished the 

coupon surface.   FIG. 3.25(c) and FIG. 3.25(d) display over- and under- exposed 

images with the histograms shifted to the extreme right or left, respectively.  As 

mentioned in Section 3.5.1.3, over- or under-illuminated images can be corrected 

by adjusting the exposure level during the image acquisition process until the 

image histogram is in the central part of the intensity range.  It should be noted 

that some errors during image capture can be corrected for brightness variability, 

sharpness, and contrast with most image analysis software, but not without some 

information loss that could affect the accuracy of measurements later on. 
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    (a)   Optimally Illuminated Image.          (b)  Poorly Polished Coupon Surface 

 
            (c)  Overexposed Image         (d) Underexposed Image 

FIG. 3.25.  Histogram Response of 8-bit, Gray-scale Image to Different 

Illumination Levels and Polishing Errors. 

3.5.1.5. Image Distortions 

Image distortions, also known as optical aberrations, are caused by artifacts 

due to the interaction of glass lenses with the light source.  Just as a poor 

specimen preparation can create image artifacts, lens aberrations can add another 

layer of “noise” to the image.  Davidson and Abramowitz (2003) identified two 

primary sources of image distortions: the geometrical aberrations caused by the 

spherical nature of the lens and chromatic aberrations caused by the variations in 

the refractive indices of the wavelengths found in visible light. 
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Spherical aberrations are caused by the spherical nature of the objective, 

where light rays passing through the periphery of the objective are refracted more 

than those passing through the intermediate areas and the center.  The rays cannot 

focus on one spot, creating a zone of confusion.  Chromatic aberration is caused 

by the variation in the refractive properties of glass for different wavelengths.  It 

is larger for short wave lengths (blue) than for longer wave lengths (red).  The 

point of focus varies and the image is blurred due to chromatic aberrations.  Coma 

and astigmatism also cause blurring of non-axial points.  In coma, the marginally 

passing rays meet at a different point than the axially passing rays.  In 

astigmatism, geometric distortion can cause the magnification of the image to 

vary from the center to the periphery causing either greater magnification at the 

center or at the periphery.  In compound microscopes, the objectives are classified 

by the level of optical correction and vary from the least corrected achromatic 

objectives and fluorite objectives to the most corrected (and expensive) 

apochromatic objectives.   

The Infinity-corrected system that was used in this research is almost free of 

residual aberrations.  The image formation is not fixed at finite tube length but is 

formed in infinity with parallel rays that eliminate the need for most image 

corrections.  It was found that the InfiniVar microscope system still suffered from 

some geometric distortion where it was difficult to focus both central and 

peripheral sections of the image at the same time.  This problem seemed to 

diminish with magnification levels of 0.75x and higher.   
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4. RESULTS 

4.1. Image Processing Procedure 

Images of the coupon cut and polished from the epoxy-stabilized sand 

specimens, and generated with the use of the BFM technique described in Section 

3.5, were processed with image processing software to extract information about 

their microstructure properties.  Following guidelines on image manipulation, 

presented by Frost and Kuo (1996) and discussed in Section 2.6 of this 

dissertation, five necessary image processing steps were identified: image 

generation, image coding, image assembly, image processing, and measurement.   

Image generation was accomplished with the BFM optical microscopy 

technique.  For image coding, two types of lossless compression formats were 

used: Tagged Image File Format (TIFF) for storage and processing of color 

(RGB) and grayscale images and Bitmap Image File format (BMP) for binary 

image processing and analysis.  Individual 0.7 cm by 0.5 cm (1024 by 768 pixels) 

images were assembled to form a single image of the entire coupon with the use 

of PanaVue Image Assembler software.  Appendix J presents a mosaic stitch 

procedure that combines individual red-green-blue (RGB) images to recreate a 

surface image of the entire coupon. Image processing involved the conversion of 

RGB images with ImageJ software, manipulation of 8-bit gray scale images to 

enhance image quality, and the removal of noise and image artifacts.  Images 

were then converted to black and white binary images and subjected to 

mathematical morphology algorithms.  The individual sand grain particles in the 

image were separated from each other and the boundaries of the void space 
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associated with the individual particles were defined with voronoi, watershed, 

outline, erode, and dilate algorithms.  Measurements performed on the binary 

image generated information about particle shape parameters and local void ratio 

distribution.  FIG. 4.1 presents the image processing work flow diagram. 

 

FIG. 4.1. Work Flow Diagram for Image Processing.   
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4.2. Image Processing and Analysis with ImageJ Software 

Image processing and specimen microstructure analysis were performed with 

ImageJ, an open source, Java based image processing program that provides 

simple and usable plug-ins and macros for file manipulation, image conversion, 

arithmetic operations, and common image processing. ImageJ supports standard 

image processing functions such as contrast manipulation, sharpening, smoothing, 

edge detection and image filtering. It also supports image stacking and 

mathematical morphology operations on binary images. ImageJ does geometric 

transformations such as scaling, rotation and image flipping.  It can generate 

histograms and line profile plots. There are currently over 100 free plug-ins 

written for image processing in multiple scientific fields, including microbiology, 

physics, geology, and astronomy.  These are available for downloading at no cost.  

ImageJ can display, zoom, scroll, edit, analyze, process and print 8-bit to 32-bit 

images in TIFF, GIF, JPEG, BMP, DICOM or “raw” formats.  User generated 

macros can be developed to perform several consecutive image processing steps 

more efficiently.   

4.2.1. Grayscale Images 

Color (RGB) images that were assembled with the PanaVue Image Assembler 

were converted to 8-bit gray scale images.  Only a center area of the image, 2.54 

cm (1 inch) in diameter, was kept for image processing.  The image perimeter was 

discarded to minimize the possibility of processing sand grain particles disturbed 

by the extraction process.  The image quality of the coupon‟s edge suffered from 

overexposure and optical distortions.  The gray scale images were processed to 
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correct image defects and for image enhancement.  Steps involved in this stage of 

the process included contrast expansion, correction for noise, illumination 

correction, histogram manipulation, processing of the image in frequency space 

with image filters, and finally  segmentation and thresholding.  The goal of this 

stage was to minimize loss of data and, at the same time, enhance image quality 

so that consistent results could be obtained from the images after conversion to a 

binary format. Through trial and error, an automated procedure (with use of a 

macro) for achieving this goal was devised.  The algorithm for the automated 

process is illustrated in FIG. 4.2.  The coupon preparation technique and image 

acquisition procedure, described in the preceding chapter 3, provides consistent 

results between different coupons from the same specimen and among different 

core samples for input through this automated procedure. Appendix K shows 

individual settings and screen captures for each step outlined in FIG. 4.2 for 

automated image processing using ImageJ. 

 
FIG. 4.2.  Image Processing Algorithm for 8-bit Gray Scale to Binary Image 

Conversion. 
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Auto adjustment of image brightness and window values ensures that the pixel 

values and image histograms are shifted to the optimum value level and image 

brightness and contrast are similar among different specimens. The despeckle 

function removes image noise from the image. The outlier function removes white 

or black image artifacts of specified pixel size.  Band pass and mean filters are 

designed to filter large and small image features to a specified pixel size, and to 

smooth particle perimeters, respectively.  

The final step before conversion to a binary (black and white) image is called 

thresholding/segmentation.  This process is designed to select the pixels within a 

range of brightness values that belong to the foreground and reject all of the other 

pixels in the background.  The resulting image is displayed as a binary image, 

using black and white colors, to distinguish foreground and background regions.  

This process is called thresholding and must be calibrated using a control image 

of known properties in order to establish the correct threshold value, as illustrated 

in the following section. An auto adjusted Huang thresholding procedure, 

available in ImageJ, was applied to a gray scale image to create black sand grain 

particles (value of 0) on a white background (value of 255).  

4.2.2. Procedure to Calibrate the Thresholding Value 

The accuracy of parameters calculated from the binary images depend on a 

threshold value set during the segmentation process.  This threshold value divides 

an image histogram, composed of a grayscale intensity frequency distribution, 

into two groups of values corresponding either to the background or to 

foreground.  The optimal threshold value was established for this study by 
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selecting a small (2000 µm x 2000 µm) subsection of the RGB image from the 

control sample. The image was converted to an 8-bit gray scale image that was 

then adjusted for image artifacts, noise, brightness, and contrast.  The grain 

outlines were then created manually at the maximum image magnification and 

filled.  After the grayscale image was converted to a binary one, the true global 

void ratio, e, was established as 0.4894. In order to establish the automatic 

segmentation procedure, this true void ratio was compared to the void ratio 

obtained from the same 8-bit gray scale image and subjected to 15 different 

segmentation methods offered through the ImageJ software.   For each 

segmentation method, the thresholding value was set to “Automatic”. The image 

was then subjected to the mathematical morphology, as operations discussed in 

Section 4.2.3, and the image void ratio calculated.  Threshold value was 

progressively adjusted until the calculated error for each method could not be 

minimized any further.  Table 4.1 lists the first five segmentation methods, and 

the inherent errors associated with using them, as established from the above 

comparison.   FIG. 4.3  displays results from employing the Huang, Intermodes, 

and IsoData segmentation methods on the gray scale image with the resulting 

final binary image.  Appendix L presents the segmentation calibration results, and 

associated images, for all fifteen thresholding methods.  Huang segmentation was 

chosen as the preferred method because when applied in the automatic mode and 

then adjusted by a value of 7 toward darker intensities, it resulted in an error of 

only 0.1 percent when compared to the control image. 
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Table 4.1 Calculated Error Associated with Different Thresholding Methods 

THRESH-

OLDING 

METHOD 

AREA OF 

SOLIDS, 

As 

(µm
2
) 

AREA 

OF 

VOIDS, 

Av 

(µm
2
) 

VOID 

RATIO, 

e 

 

Error 

(%) 

VALUE 

AUTO 

+7 

Control 2,689,477 1,316,215 0.4893 0 NA 

Huang 2,690,461 1,315,231 0.4888 0.11 139 

Intermodes 2,658,092 1,347,600 0.5069 3.59 138 

IsoData 2,652,443 1,353,249 0.5101 4.24 132 

Li 2,543,526 1,462,166 0.5748 17.46 119 

MaxEntropy 2,580,488 1,425,204 0.5523 12.85 121 
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FIG. 4.3.  Results of the Huang, Intermodes and IsoData Segmentation Methods 

on the Gray Scale Image. 

4.2.3. Binary Images 

Segmented 8-bit gray scale images were processed, as described in previous 

sections, using ImageJ to create  binary images containing white (value of 1) 

particles on a black (value of 0) background.  ImageJ requires that those values 

are reversed for binary image processing and analysis.  Raw binary images can 

exhibit a substantial number of artifacts caused by fractured grains, foreign matter 

imbedded within the soil matrix, and the presence of trace impurities (carbon, 
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iron, manganese, chromium) which appear as holes or chips within the grain 

particles.  Those artifacts can be corrected manually with a pointer and drawing 

tool suite available in ImageJ program.  This correction process can be tedious, is 

prone to errors, and is not practical for larger images.  As an alternative, another 

class of automated editing procedures based on neighbor relationships (Rosenfeld 

and Pfaltz, 1966), from a field known as mathematical morphology (Matheron, 

1975; Sierra, 1982), was employed.  The underlying theory is beyond the scope of 

this dissertation, but a brief overview of the functionality of each operator is 

provided herein. 

In mathematical morphology, erosion and dilation functions are used to 

smooth out feature outlines, join discontinuous features, and separate touching 

features.  The erosion function examines each binary pixel and changes it from 

ON to OFF if it has any neighbors that are OFF.  This global process reduces 

image features all around their periphery.  Dilation is the inverse of erosion 

(etching), wherein a pixel is switched from OFF to ON if it has at least one ON 

neighbor.  This results in feature dilation that fills small breaks, internal voids, or 

small indentations. 

Erosion and dilation can be used together leading to a smoothed shape that 

recovers most of its original size.  Opening is the process of erosion, and followed 

by dilation, removes small features (noise) and sharp protuberances from the 

feature outline.  The resulting features almost fully maintain their original size but 

may become more rounded and smooth with gaps forming between touching 
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grains.  Closing is the process of dilation followed by erosion that results in some 

loss of the original area and smoothing of internal corners. 

Skeletonization, also known as medial axis transform (MAT), is a specialized 

form of erosion that creates lines of pixels that mark the midline of the features.  

Skeletonization is useful for the reduction of broad features, such as grain 

boundaries that have been widened by dilation. 

Watershed segmentation is another mathematical morphology operation.  

Watershed segmentation uses a distance map to separate touching features so they 

can be measured separately.  In a gray scale image, it uses local maxima to find 

most of the elevated parts of the object (highest localized intensities).  Starting 

with those points, it dilates outward either until the edge of the object is reached 

or the edge of the region of another maxima erosion point is reached. 

The voronoi algorithm forms a polygon network through the void space and 

particle contacts that is a result of growth process of simultaneous circular growth 

outward from particle centroids.  Growth stops at a point of contact but the 

remaining points of the circle continue to expand and the points of contact 

become midpoints of growing straight line segments along which growth frontiers 

meet and freeze (Alshibli, el at., 2001). 

A combination of manual image corrections and mathematical morphology 

algorithms was used to prepare the binary images for microstructure analysis.  

The required sequence of image corrections, performed on the binary image, is 

presented in FIG. 4.4.  See Appendix M for a complete list of ImageJ screen 

captures and software settings.  
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FIG. 4.4.  Image Processing Algorithm of a Binary Image Using Manual 

Techniques and Mathematical Morphology. 

4.3. Local Void Ratio 

4.3.1. Representative Coupon Size 

The distribution of the local void ratio in the processed images, obtained from 

the air-pluviated control sample, was analyzed to establish the representative area 

of a coupon. A binary image, with a diameter, d, equal to 23,649 microns, and a 

global void ratio, e, of 0.5475, was divided into progressively smaller images.  

The local void ratio of each of the smaller images, and the standard deviations of 

each set of images with the same size, was calculated. Table 4.2 presents the 

resulting standard deviation versus the size of the smaller images. 
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Table 4.2.  Standard Deviation of Global Void Ratio as a Function of 

Representative Image Size, Control Coupon. 

SIZE           

(µm) 

IMAGE 

COUNT 

AREA, AT 

(µm2) 

AVE. # 

OF 

GRAINS 

WEIGHTED 

MEAN 

STANDARD 

DEVIATION 

D=23,649 1 439,243,686 927 0.5475 0.000 

16000 x 16000 1 256,000,000 546 0.54091 0.000 

16000 x 8000 2 128,000,000 284 0.54101 0.012 

8000 x 8000 4 64,000,000 148 0.54128 0.023 

4000 x 4000 16 4,000,000 43 0.54000 0.057 

 

As the image size decreases, the standard deviation of the smaller images 

increases, as shown by the values in Table 4.2.  The minimum representative 

image size can be established by observing the inflection point in the graph of the 

image size versus the standard deviation, as presented in FIG 4.5.  FIG. 4.6 

presents a graph of the average particle count in the image versus the standard 

deviation of the void ratio.  From FIG 4.5 and FIG. 4.6 it was established that the 

area of a representative image should at a minimum be 100,000,000 µm
2 

(10 mm 

x 10 mm) or contain at least 200 to 250 particles.  
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FIG 4.5.  Standard Deviation from Global Mean vs. Image Area.  

 

FIG. 4.6.  Standard Deviation from Global Mean vs. Average Particle Count. 
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(1976) method which is described in Section 2.2.4. The calculations were 

performed on images obtained from the control air-pluviated, never frozen 

specimen, and from the previously frozen sand specimen.  The Matlab 

programming code, written by Matt Evans, an assistant professor from North 

Carolina State University and used in his doctoral dissertation (Evans, 2005), was 

employed to generate polygon networks for subsequent generation of local void 

ratio histogram frequency distributions.  The polygons developed using this 

method are illustrated in FIG. 4.7. 

 
(a)                                                             (b) 

FIG. 4.7.  Polygon Network Generation for Local Void Ratio Calculations using 

Oda‟s (1976) Method. (a) Binary Image. (b) Polygon Network of Image Using 

Oda's Method. 

The local void ratio distribution frequency histograms, for different size 

images, were generated using the Evans (2005) Matlab program.  Images, 16,000 

µm x 16,000 µm, obtained from the air-pluviated control coupon and the frozen 

sample were divided into the progressively smaller sizes listed in the first column 

of Table 4.2. The void ratio distribution frequency histograms, for the two 

coupons, are presented in FIG. 4.8  for different sample sizes. 
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(d) 

FIG. 4.8  Comparison of Local Void Ratio Distribution for a Control and Frozen 

Sample Using Oda's Method. (a) 16,000 µm by 16,000 µm. (b) 16,000 µm by 

8,000 µm. (c) 8,000 µm by 8,000 µm. (d) 4,000 µm by 4,000 µm. 
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There is conformity in the shape of the frequency distribution of the local void 

ratio histograms of the control and the frozen coupon generated from the largest 

image (16,000
2
µm

2
).  However, the histogram in FIG. 4.8 (a) contains a larger 

number of outlying frequencies with higher local void ratios.   This may be 

attributed to the frozen sample containing crushed particles caused by the reuse of 

the sand in the model container during the experiments.  As the image size and the 

number of particles in the image decreases, the histogram shape and local mean 

void ratio of the smaller images becomes more variable, as illustrated by FIG. 4.8 

(b) through FIG. 4.8 (c).  Information on the local void ratio, from Oda‟s method 

for different sub-area sizes, and the local void ratio deviation, from the global 

void ratio calculations are presented in Table 4.3.  This corresponds well with the 

finding in Section 4.3.1 on minimum representative sample size. 

Table 4.3.  Variability in Mean Void Ratio of Control and Frozen Coupon Based 

on Representative Image Size 

 CONTROL FROZEN 

SIZE           

(µm) 

AREA, AT 

(µm
2
) 

VOID 

RATIO, 

e  

ERROR VOID 

RATIO, 

e  

ERROR 

D=23,649 439,243,686 0.5475 - 0.5455 - 

16000 x 16000 256,000,000 0.5491 0.29 0.5414 0.75 

16000 x 8000 128,000,000 0.5513 0.69 0.5312 2.63 

8000 x 8000 64,000,000 0.5429 0.84 0.4781 12.35 

4000 x 4000 4,000,000 0.4561 16.69 0.4917 9.86 
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4.3.3. Voronoi Tessellation 

The local void ratio distribution, calculated using the voronoi tessellation 

method on the control coupon, was compared to the Oda‟s method.  Voronoi 

tessellation is a much more consistent and repeatable technique than Oda‟s 

method.  Voronoi polygon network can be easily generated with ImageJ program 

and as described by Alshibli el at. (2001). All steps were performed manually for 

the work presented herein.  A programming code, in Matlab or Java could be 

written to handle a large volume of images at one time.  The voronoi command is 

executed in ImageJ on a binary image (black grains). The image is then the image 

is subjected to several image processing steps aimed at enhancing definition and 

contrast of the polygon network, so that measurements can be performed.  These 

steps are listed in FIG. 4.9 (see Appendix N for actual program settings and the 

screen captures).   

 

FIG. 4.9  Procedure to Generate Voronoi Polygon Network in ImageJ. 

Binary Image  

(Black Grains on White Background) 

Voronoi 

Sharpen Image 

Enhance Contrast 

Enhance Brighness 

Threshold 

Make Binary 

Skeletonize  
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To calculate the local void ratio distribution, the binary image of the particles 

is overlain onto the image of the voronoi network, as illustrated in FIG. 4.10 (a). 

The areas of the particles are calculated first and then subtracted from the total 

areas encompassed by the polygon network, as illustrated in FIG. 4.10 (b), to 

obtain the areas of the individual voids, Avi.  ImageJ can generate numbered 

outlines that correspond to the tabulated values for the areas of each particle, and 

the areas enclosed by each polygon, making the local void ratio calculation 

straightforward. 

  
(a)                                                              (b) 

FIG. 4.10.  Voronoi Tessellation.  (a) Voronoi Polygon Network with Black 

Grains and Surrounding Voids in Gray.  (b) Grain Areas Subtracted for Av 

Calculation. 

Local void ratio distribution frequency histograms, using the voronoi 

tessellation method, were generated on the image areas listed in Table 4.2 for the 

control coupon and are presented in FIG. 4.12.  The voronoi tessellation method 

calculates a larger number of high local void ratios than Oda‟s method, resulting 

in increased positive skewness of the histograms.  The voronoi tessellation 
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method also generates higher local void ratio frequencies around the image‟s 

global mean, increasing the “peakedness” or kurtosis of the distribution that can 

be characterized as Leptokurtic. A leptokurtic distribution has a higher peak than 

a normal (Mesokurtic) distribution and heavier tails.  A Platykurtic distribution 

has a lower peak than a normal distribution and lighter tails, as illustrated in FIG 

4.11 (MVP programs). 

 

FIG 4.11.   General Forms of Kurtosis. (www.mvpprograms.com) 
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FIG. 4.12.   Local Void Ratio Frequency Distribution Histograms Calculated 

Using Voronoi Tessellation Method. 
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In voronoi tessellation, the network of polygons is generated with straight 

lines, one pixel in widths, that are part of the total image area but are not taken 

into account during the local void ratio calculations.  Consequently, the VT 

method has a built in error that varies with the image size.  This error, presented 

in Table 4.4 and illustrated in FIG. 4.13, can approach 2 percent for the specimens 

evaluated herein.  In this process, the total area of the voronoi polygon lines, AVR, 

is divided by the total coupon area, AT, to arrive at the calculated error value 

percentage. 

Table 4.4.  Method Specific Error in Voronoi Tessellation Resulting from 

Polygon Network Generation. 

COUPON 

WIDTH, W   

(µm) 

COUPON 

HEIGHT, H 

(µm) 

TOTAL 

AREA, AT 

(µm
2
) 

VORONOI 

POLYGONS, AVR 

(µm
2
) 

ERROR     

(%) 

16,000 16,000 256,000,000 5,046,724 1.97 

16,000 8,000 128,000,000 2,457,331 1.92 

8,000 8,000 64,000,000 1,147,581 1.79 

4,000 4,000 16,000,000 274,192 1.71 
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FIG. 4.13.    Error in Voronoi Tessellation Resulting from Polygon Network 

Generation Based on Coupon Size. 

 

4.3.4. Gamma Probability Distribution 

A frequency histogram of the local void ratio can be represented by a 

probability distribution function, as described in Section 2.2.5.  Several function 

types were considered to fit the histograms generated herein, including the 

normal, beta, gamma and lognormal distributions.  The space of Pearson‟s 

probability distribution, previously presented in FIG. 2.11, was used to estimate 

the best type of function to fit the histograms generated herein.  This analysis 

indicated that the gamma probability distribution was optimal.  The gamma 

distribution was therefore fitted to the local void ratio frequency histograms, 

obtained from the control and frozen sand samples using Oda‟s method on 16,000 

µm by 16,000 µm images, for comparison purposes.  The fitted histograms are 

presented in FIG. 4.14.  
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                                                             (a) 

 
(b) 

FIG. 4.14.  Gamma Probability Distribution Fitted to Local Void Ratio Frequency 

Histogram Using Oda's Method. (a) Control Sample. (b) Frozen Sample. 
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The calculated shape descriptors for the gamma distribution function included 

kurtosis (Equation  2.28), which is a degree of peakedness of the distribution, 

skewness  (Equation 2.29), which is a measure of the asymmetry around the mean 

value, and the entropy of the histogram, which quantifies the uniformity of the   

distribution  (Equation 2.31).  The calculated results are presented in Table 4.5.  

Good agreement was observed between the calculated values for the two samples. 

The values of symmetry and kurtosis indicate local void ratio probability 

distribution functions characterized by right skewness and leptokurtic graph 

shapes. 

Table 4.5  Shape Descriptors for the Gamma Distribution Functions 

COUPON SKEWNESS KURTOSIS ENTROPY 

Control Sample 1.25 5.31 7.38 

Frozen Sample 1.11 4.26 4.36 

 

4.4. Particle Descriptors 

4.4.1. Particle Roundness and Sphericity 

ImageJ can generate several types of particle shape descriptors from binary 

images.  The calculated data for these descriptors includes the mean and standard 

deviations (SD) and a tabulated list of individual particle characteristics that can 

be used to generate frequency distribution histograms and probability distribution 

curves. Table 4.6 lists the particle shape descriptor mean standard deviations 

calculated by ImageJ, for the control coupon and the frozen coupon for the four 

common descriptors: circularity, roundness, aspect ratio, and solidity.   
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Particle circularity is defined as a degree to which a particle approaches a 

circular (spherical) shape and can be calculated with Equation 2.3.  A value of 1.0 

indicates a perfect circle, whereas a value close to 0.0 indicates an elongated 

polygon. 

Particle roundness refers to the sharpness of the corners and the edges of a 

particle.  Roundness is defined by Wadell (1932) as the ratio of the average radius 

of the curvature of the corners to the radius of the largest inscribed circle.  More 

commonly, the particle roundness is calculated using Equation 4.1: 

2

4

Ld

A
Roundness





                                                                                 (4.1) 

where A is the particle area, and dL is the particle‟s longest axis.   

Particle aspect ratio (AR) is the ratio of the particle‟s long axis, dL, to short 

axis, dS.  AR is used in the calculation of grain anisotropy as described later, in 

Section 4.4.2.   

Solidity of the grain particle describes the ruggedness of the boundary profile.  

It is a ratio of the particle area, AP to particle‟s convex area, ACNV:  

   
CNV

P

A

A
Solidity                                                                                          (4.2) 

    
Perimeter

PerimeterTautString
ACNV                                                                     (4.3) 

The solidity is equal to 1.0 for particles that have no concave areas in its 

boundary and is lower for particles with perimeter indentations.   

 

 



164 

 

Table 4.6  Particle Shape Descriptors for the Control and the Frozen Coupons.   

 CONTROL COUPON FROZEN COUPON 

 COUPON AREA 

(in millions, µm2) 

COUPON AREA 

(in millions, µm2) 

 256 128 64 16 256 128 64 16 

VOID RATIO, e  54.09 55.14 54.29 45.61 54.14 53.12 47.81 49.17 

CIRCULARITY 0.793 0.792 0.791 0.790 0.794 0.795 0.801 0.797 

SD 0.073 0.062 0.066 0.080 0.082 0.078 0.074 0.076 

ROUNDNESS 0.730 0.710 0.720 0.740 0.710 0.710 0.710 0.690 

SD 0.120 0.120 0.130 0.140 0.140 0.130 0.130 0.140 

ASPECT 

RATIO 

1.420 1.450 1.430 1.420 1.470 1.470 1.460 1.530 

SD 0.280 0.270 0.290 0.340 0.360 0.320 0.310 0.390 

SOLIDITY 0.730 0.710 0.720 0.740 0.710 0.710 0.710 0.690 

SD 0.120 0.120 0.130 0.140 0.140 0.130 0.130 0.140 

 

This data was generated using the “Particle Analysis” and the “Shape 

Descriptor 1u” plug-ins available in ImageJ.  The calculations did not include 

particles touching the perimeter of the image because that would introduce errors 

into the results.  It appears, based on the data listed in Table 4.6, that there is very 

little variability in values calculated for image sizes above 16 million µm
2
.  

Larger image sizes are preferred for the generation of frequency distribution 

histograms so that all the representative particle sizes are captured. 

Frequency distribution histograms were generated for circularity, roundness, 

aspect ratio, and solidity.    FIG. 4.15 presents a circularity frequency distribution 
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histogram for a control coupon. Most circularity values range from 0.70 to 0.90, 

which is characteristic of the subrounded particle shape of Ottawa 20/30 sand. 

FIG. 4.16 presents the particle roundness frequency distribution for the control 

sample.  The majority of the circularity values for the control coupon are 

concentrated in the value range from 0.5 to 0.95, as would be expected for Ottawa 

20/30 sand. FIG. 4.17 shows the particle aspect ratio frequency distribution for 

the control coupon.  Most AR values are concentrated in a range from 1.0 to 1.75. 

The particle solidity frequency distribution histogram of the control coupon is 

illustrated in FIG.  4.18.  The shape of the solidity frequency distribution is very 

similar to the particle roundness frequency distribution, with most of the particles 

falling within the value range from 0.5 to 0.95.  This value range indicates that 

most of the particle perimeters are smooth and have very few jagged, chipped 

edges. 

 

FIG. 4.15.   Particle Circularity Histogram, Control Sample. 
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FIG. 4.16.   Particle Roundness Histogram, Control Sample. 

 

FIG. 4.17.  Particle Aspect Ratio Histogram, Control Sample. 
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FIG.  4.18.   Particle Solidity Histogram, Control Sample. 

4.4.2. Relative Anisotropy 

Relative anisotropy (RA) was defined by Yang (2002) as a ratio of unbroken 

horizontal lines to the unbroken vertical lines in the binary image and is 

calculated using Equation 2.10 and Equation 2.11.  RA measures relative particle 

alignment in the image.  RA values greater than one indicate vertically aligned 

particles and values of less than one indicate horizontally aligned particles.  The 

relative anisotropy of the particles was calculated on two images; a coupon 

obtained from the control specimen and a coupon obtained from the frozen 

specimen.  The ImageJ “Shape Descriptor 1u” plug-in was used to obtain 

information on the individual particle‟s long axis (a), short axis (b) and the aspect 

ratio (a/b), the variables defined by Yang (2002) in Section 2.2.3. Particles in 
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contact with the image border were discounted from the calculations to remove 

unrepresentative particle shapes.  Table 4.3 lists the results for both specimens. 

Table 4.7.  Relative Anisotropy of Grains from the Control and the Frozen 

Specimens. 

SPECIMEN DIAMETER, 

(µm) 

AREA 

(µm)
2
 

VOID RATIO  RELATIVE 

ANISOTROPY 

Control 23,660 439.24 0.5475 1.07 

Frozen 23,661 439,70 05455 1.21 

 

For the air-pluviated control specimen, the RA is very close to 1.0 thereby 

indicating no preferential alignment of particles in the image.  The RA value 

calculated for the frozen sample, which was greater than one, would indicate more 

particles were vertically aligned in the image.  Yang (2002) calculated the relative 

anisotropy for a rotated synthetic image and obtained RA values ranging from 

0.17 to 6.48.  The RA value for the frozen sample is within the range for an 

isotropic specimen, but the 13 % discrepancy for the control coupon could have 

been caused by the differences in the sample preparation technique.  The RA 

values are only valid for the images analyzed and might not have any real 

significance for the specimens sampled.  The imaged coupons should be 

referenced to the sampling location and their relative orientation preserved during 

the imaging process. 

4.4.3. Particle Orientation and Rose Diagrams 

The orientation of each sand particle was measured using the ImageJ function 

“Shape Descriptor 1u” plugin which can generate information on particle angle 
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and also generate particle orientation plots.  The particle orientation can be 

defined as the angle between the feret diameter and the horizontal axis (or any 

other reference axis).  The feret diameter is a “slide gauge” measurement of the 

particle, which is the distance between two tangents to the contour of the particle 

in a well-defined orientation, as illustrated in FIG.  4.19.  Maximum and 

minimum feret diameters are considered by looking at all possible angles.  The 

maximum feret is established first and then the minimum feret is calculated at a 

90° angle to the maximum feret.  Maximum feret and the angle it forms to the 

arbitrary (typically horizontal) reference axis of all the particles contained in the 

binary image is used to generate the particle orientation rose diagrams in ImageJ. 

The minimum feret diameter is sometimes considered to be the diameter 

equivalent to the particle size measurement in a sieve analysis. 

 

FIG.  4.19.  Feret Diameter. (a) Maximum Feret. (b) Minimum Feret. (c) Angle 

between Maximum Feret Diameter and the Horizontal Axis. 
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The particle maximum feret diameter and feret angle were used to generate 

polar/rose diagrams based on single particle orientations.  The rose diagrams are 

generated using the weighted value for the orientation of each particle, where the 

weight is based upon the area (volume) of the particle.  Weighting the particle 

orientation in this manner prevents the rose diagram from being controlled by the 

presence of small particles in certain instances.  The weighted particle rose 

diagram gives a higher significance to the orientation of larger particles, as 

described in Yang (2002). 

In generating the rose diagram, particle orientations are grouped into bins of 

fixed interval width (angle range).  Ibrahim and Kagawa (1991) used a ten degree 

bin interval in their research on particle orientation differences in cohesionless 

soil due to different sample preparation techniques.  Reducing bin size increases 

the amount of detail in the plot, as demonstrated in Table 4.8, but also increases 

computational effort.   Images obtained from the control and frozen samples were 

used to generate polar plots of particle orientations for bin sizes ranging from 10 

degrees to 1 degree.  As the bin size decreases, the level of detail for a range of 

possible angles increases.  The average feret angle calculated for the entire image 

was 92.68° and 92.17° for the control sample and the frozen sample coupons, 

respectively.  The results demonstrate that the particle orientation between both 

samples is similar, indicating that the effects of freezing on sample disturbance is 

minimal. 
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Table 4.8.  Particle Orientation Rose Diagrams at Different Bin Sizes. 

BIN SIZE 

(DEGREES) 

CONTROL SAMPLE 

(Feret Angle=92.68°) 

FROZEN SAMPLE 

(Feret Angle=92.17°) 

 

 

 

10 

  

 

 

 

8 

  

 

 

 

6 
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5. CONCLUSIONS AND RECOMMENDATIONS 

5.1. Summary 

The objective of this dissertation was to develop means of characterizing 

changes in the microstructure of cohesionless soils due to freezing and sampling 

(and ultimately due to liquefaction). Microstructure characterization of granular 

cohesionless soils is a complex, time consuming and labor intensive process.  

Specimen sampling may introduce microstructure disturbance due to vibration, 

particle displacement, and changes in the effective stress. In this dissertation, the 

microstructure of never-frozen samples reconstituted with the use of an air-

pluviation technique and the air-pluviated specimens subjected to uni-directional 

freezing process were characterized using bright field microscopy imaging and 

image analysis.  The frozen samples were extracted with a hollow stem drill bit, 

and then drained, dried and impregnated with optical grade epoxy in a modified 

triaxial cell to preserve soil structure.  The air-pluviated and never frozen 

specimens were also stabilized by impregnation with optical grade epoxy. 

A specialized equipment set-up was developed to impregnate the frozen 

samples with epoxy after they were thawed.  Proper curing of the optical grade 

epoxy required that the thawed specimen be thoroughly dried such that the 

relative humidity in the pore space was less than 40 percent.  A modified triaxial 

cell, as described by Jang et al. (1999), was used to draw, under low vacuum, 

ambient air through a desiccant, and the specimen for several days to remove 

moisture from the pore space.  The same set-up was used to impregnate the air-

pluviated samples with epoxy, however, dehumidification was not required.  All 
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portions of the epoxy impregnation setup that came in contact with epoxy (e.g. the 

drainage lines leading into the cell by which the epoxy was introduced, the porous 

stone at the base of the cell) were disposed of and replaced after each sample was 

stabilized. 

Through trial and error, a cutting, grinding and polishing procedure was 

developed to prepare individual epoxy-impregnated sand coupons for image 

capture with a bright field microscopy technique.  Since coupon preparation can 

affect image quality and the accuracy of subsequent measurements, coupon 

preparation is the most critical step when using an optical microscope to image 

coupons from stabilized sand specimen. 

Characterization of soil fabric was accomplished with digital image 

processing using ImageJ, an open source computer program for image analysis.  

Individual, high resolution color images were stitched together to form a mosaic 

of the entire coupon surface and then converted to an 8-bit gray scale format for 

processing.  An algorithm for processing the gray scale images was developed 

using a standard set of image processing tools, including contrast and brightness 

adjustment, filtering, and thresholding.  Segmented binary images were then 

subjected to a set of mathematical morphology filters to clean up any remaining 

image artifacts and ready the images for particle analysis.  ImageJ generated 

information on particle count, area, circularity, feret, compactness, circularity, 

aspect ratio, and solidity.  From the data, global void ratio and local void ratio 

variability was calculated.  Local void ratio frequency histograms were fitted with 

gamma distribution curves that can be characterized by skewness, kurtosis and 
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entropy.  Particle shape descriptors were used to generate frequency distribution 

histograms of circularity, feret, and roundness and rose diagrams for particle 

orientation.  These operations were conducted on both control samples from the 

air-pluviated but never frozen samples and from the frozen samples.  

5.2. Conclusions 

In this study, a methodology was developed to stabilize and process 

cohesionless specimens for soil fabric analysis.  With respect to sample 

stabilization and coupon preparation, conclusions arrived at in the course of this 

research include: 

 Cold storage of Epo-Tek
®
 301 epoxy will extend its shelf and pot life but 

increases its viscosity.  Better saturation outcomes of previously frozen 

core samples were achieved with the epoxy mixed at room temperature. 

 Epoxy impregnation time can vary greatly based on amount of fines in the 

specimen, grain gradation, size of the sample, and the differential 

impregnation pressures used. 

 The cutting, planing, grinding, and polishing procedure developed for this 

dissertation is only applicable to Ottawa 20/30 sand and Epo-Tek
®
 301 

epoxy.  Other sands with different particle hardness, shape, and amount of 

fines may require deviation from this procedure to achieve satisfactory 

image quality. 

 Planing of coupon surfaces with a silicon carbide wheel fractures grain 

particles and should be avoided. 
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 Silicon Carbide abrasives are best suited for the grinding process.  

Diamond abrasives loaded onto nappless polishing cloths achieve superior 

removal rates, flatness and minimal edge rounding during the polishing 

procedure. 

 Errors during a polishing process can be corrected by resurfacing the 

coupon surface with 600 grit silicon carbide abrasive, used in last step in 

the grinding process. 

 Maximum effort should be applied in achieving a  perfectly flat, artifact 

free coupon surface during grinding and polishing to minimize the amount 

of image corrections required during image processing . 

With respect to image analysis, conclusions arrived in the course of this 

research include: 

 Most of the image processing can be automated with the use of user 

defined macros when a large number of images need to be processed.  

However, some manual work to remove artifacts from individual grains, a 

time consuming process for large images, may still be required.  

 ImageJ software can generate microstructure parameters on particle area, 

orientation, sphericity, roundness, aspect ratio and solidity that can be 

used to calculate global void ratio, variation in local void ratio and particle 

orientation rose diagrams. 

 Local void ratio calculations using the Oda‟s method and voronoi 

tessellation, yielded similar results, but voronoi tessellation is more 

consistent at generating polygon networks around individual particles. 
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 The void ratio of the air-pluviated Ottawa 20/30 sand specimens was 

calculated by laboratory measurements to be e= 0.5470. The calculated 

global void ratio for coupons obtained from control specimens created 

using an air pluviation technique resulted in e=0.5475.  Measurements of 

the void ratio on the air-pluviated and then frozen sand specimen resulted 

in a void ratio of e=0.5455.  The slightly lower void ratio of the coupon 

from the frozen sand samples may be due to an increased amount of fines 

in the specimen from reusing sand from previous model tests. 

 Representative coupon size for image analysis and processing was 

established to be at least 10 mm by 10 mm and to contain at least between 

200 and 250 grains.  Local void ratios calculated from the images falling 

below these criteria exhibited substantially higher deviation from the 

global void ratio. 

 Calculated microstructure parameters included circularity, roundness, 

aspect ratio and solidity.  The obtained values matched well with the 

subrounded, smooth characteristics of the Ottawa 20/30 sand.  The 

calculated values were less sensitive to the image size used, as opposed to 

the local void ratio calculations, exhibiting very similar values for images 

as small as 1.6 mm by 1.6 mm.  Resizing did not affect the structure of the 

sample 

 The shape of the rose diagrams of particle orientation obtained from both, 

the control and frozen coupon specimens, displayed very uniform but very 



178 

 

random plot in each case.  It can be concluded that, based on those results, 

freezing has no significant effect on soil structure 

 Relative anisotropy of the control sample and the frozen sample were 

calculated to be 1.07 and 1.21, respectively.  The value of 1.0 would 

indicate a perfectly isotropic soil fabric structure.  The 13 % percent 

discrepancy might be a result of the variability in the air-pluviation 

preparation technique between both samples, as well as, image 

processing/analysis error. That requires further study. 

5.3. Recommendations for Future Study 

This study developed a procedure to characterize the microstructure 

parameters of the saturated cohesionless soil specimens.  The procedures 

described in this dissertation can be used to quantify and analyze the variability of 

the local void ratio in saturated cohesionless soils subjected to liquefaction.  The 

variability of the local void ratio, and the change in fabric anisotropy, can also be 

quantified inside and outside of their shear failure zones.  Standard statistical 

analysis can be performed to assess variability.  However, the work was limited to 

two coupons extracted from the middle portion of specimen cores: one obtained 

from an air-pluviated dry sand sample used as a control and one obtained from an 

air-pluviated sand sample that was then saturated, frozen, cored, and thawed.  

Additional coupons from the bottom part and top of these samples should be 

analyzed to study the variability in specimen uniformity.  More work could also 

be performed in the future to characterize the coordination number (number of 

particle contacts, or N-value) of the specimens as an additional microstructure 
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parameter of interest.  However, this will require additional programming in Java 

or Matlab within or outside of the ImageJ environment. 

More extensive analysis needs to be performed to develop an analytical model 

for the local void ratio frequency distribution histogram.  This model can then be 

used with the Kolmogoroff-Smirnoff test, or some other statistical test, to 

compare results from different specimens and make statements regarding the 

confidence that that microstructure is similar or different between two samples. 

Additional work needs to be done to verify the inherent built-in error resulting 

from the use of the Oda‟s method in calculating the local void ratio when the 

polygon network is generated.  It can then be compared to the error resulting from 

the use of the voronoi tessellation method, calculated in the results section.   

Additional samples need to be processed to study the relative anisotropy 

variation in frozen sand samples.  In this study, a 13 percent discrepancy between 

the control and the frozen sand coupon was calculated, indicating less than 

isotropic soil fabric arrangement for the frozen sample.  Additional work needs to 

be done to link this error to either the sample preparation technique or to the 

image processing and analysis procedure. 
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APPENDIX A 

EUROPEAN AND USA EQUIVALENCY GRIT GUIDE 

(WWW.BUEHLER.COM) 
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APPENDIX B 

SAND COUPON SURFACE PREPARATON METHOD, MODIFEID FROM 

BUEHLER DIALOG
®
 METHOD (JANG, 1999). 
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APPENDIX C 

POLISHING CLOTH SELECTION GUIDE FROM BUEHLER
®
 AND ALLIED 

HIGH TECH PRODUCTS INC  

(WWW.BUEHLER.COM AND WWW.ALLIEDHIGHTECH.COM) 
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BUEHLER
®
 Polishing Cloths 

 
  



196 

 

Allied High Tech, Inc. Polishing Cloths 

Name Image Description 

PLAN-

Cloth 

 

Durable, coarsely woven polyester with hard resin coating used with 

diamond (30-6 micron) and either BlueLube™ or GreenLube™ 

lubricant. Provides aggressive stock removal and excellent flatness 
on all types of materials 

PLAN-B 

 

Rigid, densely woven polyester used with diamond (15-3 micron) and 

any lubricant. Maintains superior edge retention and flatness, 
providing aggressive material removal for coarse to intermediate 

polishing of metals, ceramics and refractory materials 

Gold 

Label 

 

Specially woven, extremely durable, long-lasting napless nylon used 

with diamond (15-3 micron) and any lubricant*. Provides excellent 
flatness and material removal on a wide variety of materials, 

especially those with varying hardness. Exceptional for intermediate 

polishing of refractory metals, glass, ceramics, coatings and 
composites. 

TECH- 

Cloth 

 

Tightly woven silk used with diamond (9-1 micron) and either 

GreenLube™ or RedLube™ lubricant. Reduces smearing and 

pullout, providing excellent finish, flatness and edge retention. 
Especially good for coatings and samples composed of materials with 

varying hardness 

White 

Label 

 

Durable, densely woven napless silk with plastic barrier used with 

diamond (6-0.25 micron) and any lubricant*. Provides excellent 
flatness and edge retention prior to final polishing on a wide variety 

of materials 

Nylon 

 

Napless woven nylon used with diamond (15-3 micron) and 

any lubricant. Provides good flatness and edge retention for 

most materials 

DiaMat 

 

Medium-napped, low resilient durable woven wool used with 
diamond (6-0.25 micron) and any lubricant. Provides excellent edge 

retention and surface finish on hard materials, often good enough for 

a final polish using 3 or 1 micron diamond. 

Pan-B 

 

Dense, non-woven, planarized textile used with diamond (9- 1 
micron) and either RedLube™ or GreenLube™ lubricant. Provides 

superior cutting rates, edge retention and flatness on a variety of 

different materials 

Final A 

 

Dense, napless polyurethane used with diamond (1-0.05 micron), 
colloidal (0.06-0.02 micron) or alumina suspensions. Excellent for 

final polishing a wide variety of materials. Especially effective in 

eliminating smearing and pullout when preparing soft metals (e.g. 
copper, aluminum, etc.) and porous structures/ceramics. 

Final P 

 

Dense, rigid, low napped synthetic flock used with diamond (3-0.1 

micron) and any lubricant, or with colloidal silica and/ or alumina. 

Ideal for final polishing soft metals such as copper and aluminum. 

Imperial 

 

Rigid, medium-low-napped, synthetic rayon flock used with diamond 

(9-0.25 micron), colloidal silica (0.06-0.02 micron) or alumina and 
either RedLube™ or GreenLube™ lubricant. Very good all-purpose 

final polishing cloth 

Spec-

Cloth 

 

Soft, medium-napped, synthetic rayon flock used with diamond (1-
0.25 micron) or alumina and either RedLube™ or GreenLube™ 

lubricant. For general polishing of a wide range of materials. 

Red 

Final C 

 

Dense, low-napped silk used with colloidal silica (0.06-0.02 micron) 

or alumina to provide an excellent final polish on a wide variety of 

materials. Especially effective when preparing materials for SEM or 
TEM evaluation 
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APPENDIX D 

 

METPREP 3™ SYSTEM POLISHING PROCEDURE FOR GEOLOGICAL 

SAMPLES FROM ALLIED HIGH TECH INC (WEI, 2010) 
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Table on a Polishing Procedure for Geological Samples. 

 
 

 

 

 
Resulting Images: Surface Condition after the 800 Grit Step, 50x, Brightfield 

(left), Surface Condition after the 0.05 μm Step, 50x, Brightfield (right). 
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APPENDIX E 

 

GUIDE FOR SELECTING PRECISION SAW WAFERING BLADES 

(JOHNSON, 2003) 
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APPENDIX F 

 

BOX DESIGN DRAWINGS FOR THE BOX USED IN LIQUEFACTION, 

FREEZING AND SPECIMEN EXTRACTION EXPERIMENTS 

  



202 

 

 

 

 

 



203 

 

 



204 

 

 

  



205 

 

APPENDIX G 

 

HAND GRINDING/POLISHING JIG DESIGN SPECIFICATIONS 

 

  



206 

 

 
  



207 

 

APPENDIX H 

 

CONSUMABLES USED IN MANUAL POLISHING OF EPOXY-

IMPREGNATED SAND COUPONS (WWW.ALLIEDTECH.COM) 
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1. Diamond Abrasive Compound Paste (Monocrystaline) 

Provides good stock removal and finish.  It has slightly irregular shape 

with multiple cutting edges and is recommended for general applications. 

Water soluble and compatible with glycol or alcohol based lubricants.  

Used alone or as a base product before applying diamond suspension to 

polishing cloths. Monocrystaline grit 45 µm to 0.25 µm. 

  
 

2. Diamond Suspensions (Water Based) 

The diamond particles remain suspended and 

separated throughout the stable liquid carrier to 

distribute diamond easily and uniformly over 

the cloth or platen surface.  99% water based 

formula recommended for manual application.  

Monocrystaline grit 45 µm to 1 µm. 

 

 

3. Alumina Suspension 

De-agglomerated and water based. Chemically stable.  

Clean alternative to powers. Ideal for the finest finishes.  

Pre-mixed.  Grit sizes 1µm to 0.05 µm. 

 

 

 

4. Green Lube 

Used to enhance the polishing performance of diamond 

suspensions, compounds and sprays.  They reduce friction, 

increase the life of polishing cloths and are also used with 

lapping film for polishing hard, dense materials or soft ductile 

metals.  This is water based lubricant used for general 

metallographic preparation.  Recommended for bot manual and 

automatic applications. 
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APPENDIX I 

 

LUMENERA‟S INFINITY 2-1 CCD DIGITAL CAMERA PERFOMANCE 

SPECIFICATIONS (WWW.LUMENERA.COM) 
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APPENDIX J 

IMAGE STICHING WITH PANAVUE SOFTWARE IMAGE ASSEMBLER 

(WWW.PANAVUE.COM) 
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1. File → New Project → Mosaic Stitching 

2. Add Images:  

a. Stich images from top-to-bottom and left-to-right only. 

b. Initially combine sets of images into single rows (load left-to-right). 

c. Combine rows to form a final image (load top-to-bottom). 

d. Stitching large subsets can result in errors; switch to manual 

alignment, eliminate some images to reduce overlap. 

3. Automatic stitching setup. 

a. Increase Pattern Recognition resolution to prevent loss of image 

quality. 

b. Minimize rotational displacement and rotational angle (vertical and 

horizontal) to prevent blurring. 

4. Manual stitching setup. 

a. Used when automatic stitching fails. 

b. Stich points are tagged manually. 

c. Minimize image blending to prevent blurring and loos of data. 

d. No Image Aliasing,  it causes blurring. 

e. Force first row and first column to have no rotation . 
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APPENDIX K 

IMAGE PROCESSING ALGORITHM FOR BINARY IMAGE CONVERSION 

USING IMAGEJ 
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1. Color image to 8 bit gray image. 

     
2. Brightness (Auto) 

 
3. Window (Auto) 
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4. Despeckle 

 
5. Outliers 

 
6. Bandpass Filter 

 
7. Mean Filter 

 
 

8. Threshold with Huang (Auto plus 7) 
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APPENDIX L 

SEGMENTATION CALIBRATION RESULTS FOR VARIOUS 

THRESHOLDING METHODS 
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THRESH- 

OLDING 

METHOD 

Atotal 

(µm2) 

As 

(µm2) 

Av 

(µm2) 

E 

(%) 

Error 

(%) 

VALUE 

AUTO 

+7 

Control 4,005,692 2,689,477 1,316,215 48.934 0 NA 

Huang 4,005,692 2,690,461 1,315,231 48.885 0.111 139 

Intermodes 4,005,692 2,658,092 1,347,600 50.698 -3.593 138 

IsoData 4,005,692 2,652,443 1,353,249 51.019 -4.249 132 

Li 4,005,692 2,543,526 1,462,166 57.486 -17.463 119 

MaxEntropy 4,005,692 2,580,488 1,425,204 55.230 -12.854 121 

MinError 4,005,692 2,656,707 1,348,985 50.777 -3.754 133 

Minimum 4,005,692 2,675,152 1,330,541 49.737 -1.630 136 

Moments 4,005,692 2,542,506 1,463,186 57.549 -17.592 117 

Otsu 4,005,692 2,650,912 1,354,780 51.106 -4.427 132 

Percentile 4,005,692 2,203,656 1,802,036 81.775 -67.094 95 

RenyiEntropy 4,005,692 2,575,676 1,430,016 55.520 -13.446 120 

Shabhag 4,005,692 2,670,850 1,334,842 49.978 -2.122 135 

Triangle 4,005,692 2,650,328 1,355,364 51.139 -4.495 132 
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METHOD SEGMENTED IMAGE PROCESSED IMAGE 

 Huang   

  

 

 

 

 

 Intermodes 

 

 

 

 

 

 

 

 IsoData 

 

 

 

 

 

 

 

 Li 

 

 

 

 

 

 

 

 MaxEntropy 
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 MinError 

 

 

 

 

 

 

 

 Minimum 

 

 

 

 

 

 

 Moments 

 

 

 

 

 

 

 Otsu 

 

 

 

 

 

 

 

 Percentile 
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 RenyiEntropy 

 

 

 

 

 

 

 

 Shabhag 

 

 

 

 

 

 

 

 Triangle 
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APPENDIX M 

IMAGEJ IMAGE SCREEN CAPTURES AND PROGRAM SETTINGS 

USED IN PROCESSING OF BINARY IMAGES USING MANUAL 

AND MATHEMATICAL MORPHOLOGY TECHNIQUES 
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1. Fill  Holes 

 
 

2. Remove Outliers by Hand (Using Draw Tools) 

 
 

3. Close 
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4. Watershed 

 
5. Remove Outliers 

  
 

6. Binary Dilate (Plugin→Morphology→Binary Dilate) 

Coefficient (0-No Dilation, 7- Maximum Dilation) 

Iteration (1-Small Increase, 7- Maximum Increase) 

 
 

7. Analyze → Set Scale 

 
Based on Total Image Dimensions: 

Distance in Pixels: Based on Image Resolution 

Known Distance:  Image Width Measured During BFM 

Unit Length:  Use Microns for Better Accuracy where1 mm = 1000 µm 
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APPENDIX N 

POLYGON NETWORK GENERATION AND LOCAL VOID 

RATIO CALCULATIONS USING VORONOI TESSELLATION 

METHOD 
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1. Voronoi (Process → Binary → Voronoi). 

 

 
 

2. Sharpen. 

 

 
 

3. Enhance Contrast (Process → Enhance → Contrast). 

 

 
 

 



227 

 

4. Adjust Brightness/Contrast (Image → Adjust → Brightness/Contrast). 

 

 
 

5. Threshold (Image → Adjust → Threshold) 

 

 
 

6. Make Binary (Process → Binary → Make Binary). 

 

7. Skeletonize (If Polygon Network Thickness > 1 pixel). 

 

8. Calculate Areas Within Polygon Networks, (AT)i. 

 

9. Subtract Grain Area (AV)i to Obtain Area of Air Voids, (AV)i. 

 

10. Calculate ei= (AV)i/(AV)i                                         

 

 

 


