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ABSTRACT 

 

The objective of this work is to develop a Stop-Rotor Multimode UAV. This 

UAV is capable of vertical take-off and landing like a helicopter and can convert 

from a helicopter mode to an airplane mode in mid-flight. Thus, this UAV can 

hover as a helicopter and achieve high mission range of an airplane. The stop-

rotor concept implies that in mid-flight the lift generating helicopter rotor stops 

and rotates the blades into airplane wings. The thrust in airplane mode is then 

provided by a pusher propeller. The aircraft configuration presents unique 

challenges in flight dynamics, modeling and control. In this thesis a mathematical 

model along with the design and simulations of a hover control will be presented. 

In addition, the discussion of the performance in fixed-wing flight, and the 

autopilot architecture of the UAV will be presented. Also presented, are some 

experimental "conversion" results where the Stop-Rotor aircraft was dropped 

from a hot air balloon and performed a successful conversion from helicopter to 

airplane mode. 

  



ii 

 

DEDICATION  

   

I dedicate my Master's thesis to my inspirational and supporting mentor, Dr. 

Sangram Redkar, and my parents who have made this possible with all their 

support, sacrifice and love, Mr. Fernando Vargas Briones and Mrs. Blanca Clara 

de Vargas. 

 

  



iii 

 

ACKNOWLEDGMENTS  

   

I would like to thank my adviser, Dr. Sangram Redkar, for taking the time and 

effort to teach me the basics of nonlinear controls. As well, all the support he has 

provided me with throughout my graduate program.  I would like to acknowledge 

Dr. Narciso Macia for his teaching of modeling and controls of dynamics systems.  

I consider all the material which I learned from his courses of great importance to 

my Master's thesis work. I would like to acknowledge Dr. Changho Nam, for 

teaching me how to effectively use NX7 Nastran to conduct an FE analysis. Also 

thanks to his help I was able to use XFLR5 as a basis for my thesis research.  I 

would also like to thank Dr. John Rajadas, for providing me with crucial feedback 

for my thesis and for being a crucial committee member. The partial financial 

support by the US Navy is gratefully acknowledged.  

  



iv 

 

TABLE OF CONTENTS 

 

Page 

LIST OF TABLES………………………………………………………………..vi 

LIST OF FIGURES……………………………………………………………... vii 

 

CHAPTER 

 

1 INTRODUCTION……………………………………………… 1 

 

History of Aviation………………………………………….. 1 

Ideal Aircraft………………………………………………… 1 

Literature Search…………………………………………….. 2 

Stop-Rotor UAV Project...…………………………………... 4 

Scope of Project………………………………………………7 

Organization of Thesis………………………………………. 7 

 

2 MATHEMATICAL MODEL AND CONTROL FOR HOVER 

FLIGHT………………………………………………………… 9 

 

Mathematical Model……………….…………………………9 

Controller Design for Hover Flight………………………… 19 

Robustness…………………………………………………. 35 

 

3 EXPERIMENTAL VALIDATION TEST AND TRANSITION 

MODEL……………………………………………………….. 39 

 

Experimental Validation Test……………………………….39 

Transition Mathematical Model……………………………. 45 

 

4 FIXED-WING AIRCRAFT PERFORMANCE………………. 48 

 

 Aircraft Performance………………………………………. 48 



v 

 

CHAPTER 

Main Wing Structure Performance………………………….54 

 

5 CONCLUSIONS.………………….………………………….. 64 

 

REFERENCES………………………………………………………………….. 66 

 

  



vi 

 

LIST OF TABLES 

 

Table Page 

 

4.1 Coefficient of Lift, Drag and Moment at different angles of attack…... 54 

4.2 Aerodynamic loads at different angles of attack……………………… 55 

4.3 Max. and min. deflection in x and y direction………………………… 58 

4.4 Vibration deformations at various mode……………………………… 61 

4.5 Vibration deformations………………………………………………... 62 

 

  



vii 

 

LIST OF FIGURES 

Figure Page 

1.1 Stop-rotor aircrafts the X-50 Canard Rotor and Sikorsky X-Wing…….3 

1.2 Stop-Rotor UAV in helicopter and airplane mode…………………….. 5 

1.3 Stop-Rotor UAV flight conversion……………………………….…… 6 

2.1 Stop Rotor UAV model representation..……………………………... 10 

2.2 Thrust vector of above (tail) rotor……………………………………. 12 

2.3 Blade section view…………………………………………………… 17 

2.4 Uncontrolled nonlinear rotational dynamics with non-zero initial 

condition……………………………………………………………… 25 

2.5 Nonlinear rotational dynamics with linear controller with non-zero 

ICs……………………………………………………………………. 25 

2.6 Nonlinear rotational dynamics with optimal linear controller with non-

zero ICs………………………………………………………………. 29 

2.7 Rotational dynamics with nonlinear controller with non-zero ICs…... 33 

2.8 Comparison between nonlinear versus linear versus optimal linear 

controllers…………………………………………………………….. 34 

2.9 Nonlinear, linear, and optimal linear controller effort……………….. 35 

3.1 Stop-Rotor UAV „Big Drop Test‟…………………………………… 40 

3.2 Motor controller for wing control……………………………………. 40 

3.3 Ardupilot (Anderson, 2010) components and interface for Stop-Rotor 

UAV………………………………………………………………….. 42 

3.4 LabVIEW ground station interface..…………………………………. 42 



viii 

 

Figure Page 

3.5 Comparison of simulation and experimental results…………………. 45 

3.6 Free body diagram of Stop-Rotor……………………………………..46 

3.7 Overview of the transition from hover to horizontal flight…………... 47  

4.1 Side view and 3-D body of aircraft geometry………………………... 49 

4.2 Complete fixed-wing aircraft meshed geometry……………………... 49 

4.3 Results from XFLR5 not been able to interpolate at stall angle……... 51 

4.4 Plot of coefficient of lift for airfoil NACA 0012 at various Reynolds 

number………………………………………………………………...51 

4.5 Aircraft‟s plot of Cm versus AoA……………………………………. 52 

4.6 Plot of Cm vs. AoA focusing on point (-0.0158°, 0)……………….…53 

4.7 Wing structure………………………………………………………... 56 

4.8 Mesh of wing structure……………………………………………….. 56 

4.9 Loads and constraints………………………………………………... 57 

4.10 Magnitude deflection of wing structure……………………………... 58 

4.11 Deflection with cubic behavior………………………………………. 59 

4.12 Deflection of model with linear behavior……………………………. 59 

4.13 Maximum Von Mises stress…………………………………………. 60 

4.14 Von Mises stress in entire wing structure……………………………. 60 

   



1 

 

Chapter 1 

INTRODUCTION 

1.1 History of Aviation 

Humankind has demonstrated the interest and ambition in flight since the early 

ages of civilization. Early attempts of flight, date back as early as 200 B.C. 

through the use of a kite (Brown, 1922). Attempts of flight progressed to different 

forms of flight through the use of kites, balloons, gliders, powered heavier-than-

air, supersonic and spaceflights (Crouch, 2004). Better understanding, innovations 

and technology have contributed to the progression of human aviation. In some 

instances the progress of aviation has been halted to a grind. For instance the 

Wright Brothers achieved successful powered heavier-than-air flight because they 

solved the critical issue of roll control, although most people believe that it was 

the recognition of the simplification offered by separating lift from propulsion 

which was already recognized since Sir George Cayley‟s time. Yaw and pitch 

control were already resolved by Cayley‟s cruciform rudder. But the remaining 

critical issue of roll control was not practically solved by Otto Lilienthal and 

others using shifting weight. Successful powered heavier-than-air flight was not 

possible until the Wrights solved roll control with wing warping. Fixed-wing 

aircraft performance has since far eclipsed those humble beginnings. Similarly, 

rotary wing developments have also far eclipsed the modest flight performances 

pioneered by Sikorsky, Piasecki and others. 

1.2 Ideal Aircraft 
 

Airplanes are unquestionably the supreme aircraft for any meaningful payload, 
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speed and range, although they require the use of runways. On the other hand, 

helicopters are without doubt the most versatile aircraft, featuring no need for 

runways, but cannot compare to fixed-wing aircraft for payload, speed, and range. 

A „multimode‟ vehicle that would be as versatile as a helicopter but enjoy the 

payload, speed and range of an airplane would be an ideal aircraft.  

1.3 Literature Search 
 

1.3.1 Tilt-Rotor Aircraft 
 

There have been countless attempts to create such aircraft. But most have fail to 

accomplish this in the most effective and efficient manner. For instance the rotors 

on tilt-rotor vehicle, such as the V-22 Osprey and the TR911D Eagle Eye UAV, 

are necessarily fundamentally compromised in terms of blade twist, geometry, et 

cetera, due to conflicting requirements depending on the mode of flight (Drier, 

2007).  In cruise as a fixed-wing, the rotors are far from ideal as a thrust device; 

and while in helicopter mode, the rotors are likewise far from ideal in hover and 

particularly in autorotation. Such fundamental compromises will likely make a 

candidate small tilt-rotor, Vertical Take Off and Landing (VTOL), UAV 

performance fall well short of the range and endurance performance objectives 

over fixed-wing (citing the Scan Eagle example) and gain the VTOL capability. 

For over five decades, the aerospace community has recognized that such an ideal 

aircraft would likely be a stop-rotor configuration. 

1.3.2 Stop-Rotor Concept 
 

The Stop-Rotor studied here has the VTOL and fixed-wing flight capabilities 

similar to a tilt-rotor aircraft. The main difference between a tilt-rotor aircraft and 



3 

 

stop-rotor is that the rotor that provides lift in VTOL mode is stopped in midflight 

and it is then used as a lift surface in fixed-wing flight mode. For most of those 

five decades, countless stop-rotor concepts and ideas have been advanced.  

Among recent efforts have been the cancelled, Boeing X-50 Canard Rotor Wing 

and the Sikorsky X-Wing as shown in Figure 1.1. 

 
 

Figure 1.1. Stop-rotor aircrafts the X-50 Canard Rotor (left and 

middle) and Sikorsky X-Wing (right) 

1.3.3 Radial Flow Stop-Rotor 
 

In virtually every case known to the author, the stop-rotor concepts were of a 

radial flow conversion category. This is to say the rotor disc is parallel to the air 

flow during conversion when the rotors are to be slowed and stopped to become 

wings. A radial flow conversion stop-rotor forces the airfoil to experience 

approximately 180º change in direction of the airflow on the airfoil during 

conversion between rotary and fixed-wing flight modes. This is because on the 

retreating blade side, the rotor‟s trailing edge becomes a leading edge when 

locked in the fixed-wing position.  This has resulted in very serious compromises 

and consequences including 50% chord-wise pitching axis placement; creating 

considerable aero-elasticity problems including flutter, and a one per revolution 

oscillatory center of lift during conversion. All of these and other problems and 



4 

 

similar challenges encountered have proven to be virtually undefeatable by radial 

flow conversion stop-rotor design approaches. 

Like the roll control, critical issues plaguing airplane developers fifty 

years since Cayley‟s experiments, the stop-rotor development progress has been 

stalled for fifty years mainly over the obstacle of the conversion approach 

between rotary and fixed-wing flight modes.  What is evidently needed to resolve 

this critical issue hampering stop-rotor development is a departure from the radial 

flow conversion approach. 

1.3.4 Axial Flow Stop-Rotor 
 

Axial flow conversion is analogous to feathering or pitching propellers with the 

airflow impinging upon the rotor disc plane perpendicularly, aligned with the 

rotational axis of the rotor. The principal advantage of an axial flow conversion 

approach compared to the radial flow conversion is the airflow impinging the 

airfoil does not change direction, so the airfoil can have conventional, normal 

profiles with aero-elastically stable quarter chord pitch axes.  In this work, we 

focus on an axial stop-rotor. We present the theoretical as well as experimental 

results, performance, stability and structural stress analysis of this aircraft. 

1.4 Stop-Rotor UAV Project 
 

The Stop-Rotor UAV proposed herein, is the first and only stop-rotor concept 

where an axial flow conversion approach is advanced. The Stop-Rotor UAV 

comprises of four major components: fuselage, wings, tail rotor and push 

propeller. Figure 1.2 illustrates these components in both helicopter and airplane 

mode (Vargas-Clara, 2010).  
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Figure 1.2. Stop-Rotor UAV in helicopter (left) and airplane mode 

(right)  

The fuselage accommodates the engine, rotor shaft, clutch and any electrical and 

navigational hardware. The wings are a conventional NACA 0012 airfoil. In 

helicopter mode the wings are feathered and act as a rotor to counteract the torque 

from the tail rotor, while in airplane mode they act like conventional fixed-wings. 

The tail rotor also consists of a NACA 0012 airfoil. In helicopter the tail rotor is 

the sole lift generating mechanism and is the only powered rotor. In airplane 

mode the clutch disengages power to the tail rotor and the tail rotor is feathered 

and assumes the role of a tail in conventional fixed-wing aircraft. The final main 

component of the Stop-Rotor UAV is the push propeller; its sole purpose is to 

provide thrust in airplane mode. The push propeller is optimized in pitch, blade 

area and twist to provide the best performance of speed, range and endurance.     

The flight conversion concept for the Stop-Rotor UAV is illustrated in 

Figure 1.3. It is important to note that the Stop-Rotor UAV can convert between 

helicopter and airplane modes any number of times during the same flight. The 
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helicopter mode is not just the launch and recovery method.  

 
 

Figure 1.3. Stop-Rotor UAV flight conversion 

 

Conceptually, the conversion from powered helicopter to airplane mode can be 

achieved by releasing a selectable clutch while the wings and tail fins are 

collectively pitched (analogous to feathering a propeller) until it is in the airplane 

mode position. The wings and tail fins stop rotating solely due to external 

aerodynamic forces and do not require indexing or braking. The selectable clutch 

engages the propeller drive shaft and power is now delivered to the pusher 

propeller for airplane flight mode.  The propeller is thus optimized for cruise and 

not compromised like so many fixed pitch propeller UAVs for take-off and cruise 

conditions. For the conversion from airplane to helicopter mode the clutch is 

released and the wing and tail fins are collectively pitched to the auto rotating 

position. The wings and tail fins spin up solely due to external aerodynamic 

forces. The selectable clutch engages the tail rotor hub and power is then 

delivered to the tail rotor for powered helicopter flight mode while the collective 

pitch is increased to provide hovering and normal helicopter-like flight 

functionalities.  

Thus, the Stop-Rotor UAV is an ideal fixed-wing, uncompromised in 

terms of propulsion and landing mechanism making available higher weight 
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fractions for payload and fuel for longer endurance and greater payload than 

conventional fixed-wing. In helicopter mode, Stop-Rotor UAV is an ideal rotary 

wing vehicle, with efficient, slow turning rotors without the need of power-

robbing tail rotor for anti-torque.  

1.5 Scope of Project 
 

The scope of the project includes creating a mathematical model of the Stop-

Rotor UAV. This model will then be used to conduct simulations so as to aid the 

development of the Stop-Rotor UAV, controller design and implementation to 

control the states in hover flight. In addition, a proof of concept drop test is to be 

conducted to prove that the Stop-Rotor UAV can efficiently convert between the 

flight-modes. In the drop test, the objective is to gather data, which will be used to 

compare experimental results to the simulation results. Furthermore, fixed-wing 

aircraft configuration is to be analyzed, to study the stability and performance of 

the Stop-Rotor UAV. 

1.6 Organization of the Thesis 
 

It is noted that this work was funded by the US Navy.  ASU was tasked with 

specific milestones and Work Breakdown Schedule (WBS). ASU was responsible 

for:  

a) Developing mathematical model and proposing control strategies in pure hover. 

b) Instrumenting a stop rotor specimen for the big drop to validate the multimode 

capability of the Stop-Rotor UAV. 

c) Analyze the data from the big drop and correlate the results with simple, first 

order model and develop transition equations. 
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d) Perform preliminary analysis of the stop rotor stability in the airplane mode 

and conduct stress analysis to check if the wing structure could sustain the loads 

and stress during the big drop. 

This thesis follows the same outline as the WBS and the progress notes submitted 

to the Navy. While the significant part of thesis is devoted to the development of 

mathematical model and controller design, other work done during the project are 

also included in the thesis and constitute chapters three and four.  Even though the 

tasks (or the chapters in this thesis) may not seem to be tightly linked they fit in 

the big picture and are required for developing a completely autonomous 

multimode Stop-Rotor UAV.   

Chapter 1 presents brief introduction and the literature review. The 

mathematical model of the Stop-Rotor UAV in hover flight is discussed in 

Chapter 2, along with some strategies for the hover control. Control robustness is 

discussed in this chapter as well. Chapter 3 presents the experimental „proof of 

concept test‟ showing the transition from rotary wing to fixed-wing. The 

preliminary equations for transition dynamics are also derived in this chapter. 

Chapter 4 has the basic fixed-wing stability and wing structure stress analysis. 

Chapter 5 has discussions and conclusion.   
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Chapter 2 

 

 MATHEMATICAL MODEL AND CONTROL FOR HOVER FLIGHT 

 

In this chapter, a mathematical model of the Stop-Rotor UAV will be presented. 

This model will allow for the comparison of linear and nonlinear controls 

techniques and tune various parameters and controller gains. In addition, control 

robustness will be discussed. This model will give an insight of the aircraft‟s 

stability, controllability and flight dynamics. The mathematical model will 

primarily focus on dynamics of the aircraft in hover flight.  

2.1 Mathematical Model 
 

The Stop-Rotor UAV in hover flight is similar to a coaxial helicopter. It 

comprises of two contra-rotating rotors. The tail rotor is supplying thrust in hover 

flight while the wing rotor is simply counter rotating due to the counter torque. 

However, the main differences between the stop rotor configuration and the 

coaxial helicopter are: 

1. In case of the coaxial helicopter, both the rotors are powered and are in close 

proximity. Thus, the bottom rotor is in the „down wash‟ of the top rotor. In the 

case of the stop-rotor the bottom (wing) rotor rotates purely due to anti-torque.  

2. In the case of a stop-rotor, the top (tail) rotor and the bottom (wing) rotor are 

separated by the fuselage and hence the top rotor „down wash‟ effects are not as 

significant as the coaxial helicopter. 

3. Unlike the coaxial helicopter, where top and bottom rotors produce significant 

amount of thrust, the stop-rotor top (tail) rotor contributes to the majority of 

thrust.    
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The stop-rotor is shown in Figure 2.1 along with the coordinate systems used to 

derive the equations of motion.   

 
 

Figure 2.1. Stop Rotor UAV model representation 

 

 £ = {Ex, Ey, Ez} as a right hand inertial frame, which is stationary with 

respect to the earth. Let C = {E1, E2, E3} be a right hand body fixed frame, where 

CG is the fixed position center of mass of the aircraft. R , is an orthogonal rotation 

matrix. R : C→£ denotes the aircraft orientation with respect to £. Where ψ, θ, ϕ 

describes yaw, pitch, and roll angles respectively.  The rotational matrix that 

aligns the body fixed frame to the inertial frame is given by 

 

 , ,

c c s s c c s c s c s s

c s s s s c c c s s s s

s s c c c

           

           

    

  

  
 

   
  

R                                (2.1) 

   

where cosc   and sins    

Dynamic model was obtained by with the following assumptions: 

 The blades of the two rotors are not hinged, but are directly attached to the 

hub. As a consequence each rotor blades will always lie in a disk termed 
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rotor disk. 

 The tail rotor, denoted by „A‟ for above rotor, is assumed to rotate in an 

anti-clockwise direction when viewed from above.  The wing rotor, 

denoted by „B‟ for bottom rotor, rotates in a clockwise direction. 

 It is assumed that the cyclic lateral and longitudinal tilts of the tail rotor 

disk are measureable and controllable. The tail rotor is the only rotor that 

has inputs for flapping angles.  

 The only air resistances modeled are simple drag forces opposing the 

rotation of the two rotors. 

 Aerodynamic forces generated by the relative wind are not considered 

 The interaction of the ground and aircraft is neglected.  

 The interaction of the two rotors acting in close proximity will not be 

considered. 

For simplification, the model will be split into two major sections. First 

section will cover the translational forces acting on the aircraft. The second 

section will cover the rotational dynamics. A complete model will then be 

presented that will combine these two sections.  

2.1.1 Translational Forces 
 

The forces acting on the fuselage of the aircraft are the forces produced by the 

above rotor, bottom rotor and lastly due to gravity. Denoted by TA the thrust 

generated by the above „A‟ (Tail) rotor while denoted TB the thrust generated by 

the bottom „B‟ (Wing) rotor. The thrust of the above and bottom rotor are 

described as the following: 
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1 2 3

1 2 3A A A AT T E T E T E    (2.2) 

 
1 2 3

1 2 3B B B BT T E T E T E    (2.3) 

  

Since the bottom rotor has no swash plate. The thrust vector of this rotor 

only has the same direction, i.e. in the direction of the E3 axis, so Equation (2.3) 

can be rewritten: 

 
3

3B BT T E   (2.4) 

 

As described in (Castillo et al., 2004), the thrust vector for the above rotor is 

defined as a function of the flapping angle β. The angle represents the tilt of the 

above rotor disk with respect to its initial rotation plane. This angle consists of 

angle a (longitudinal flapping) and angle b (lateral flapping) in which they were 

assumed to be measureable and controllable variables. Figure 2.2 illustrates this 

correlation.  

 
 

Figure 2.2. Thrust vector of above (tail) rotor (Castillo et al., 2004) 

 

 Using geometric calculus, the projection of the thrust components of TA 

can be expressed as: 
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 1

2 2

sin cos( )

1 sin ( ) sin ( )
A A

a b
T T

a b

 
 

 
 (2.5) 

 
 2

2 2

cos sin( )

1 sin ( ) sin ( )
A A

a b
T T

a b


 

 
 (2.6) 

 
 3

2 2

cos cos( )

1 sin ( ) sin ( )
A A

a b
T T

a b

 
 

 
 (2.7) 

  

The thrust vector TA can be expressed as 

 

  ,A AT G a b T   (2.8) 

 

where, 

 

  
 

 

 
2 2

sin cos( )
1

, cos(a) sin( )
1 sin sin ( ) 

cos cos( )

a b

G a b b
a b

a b

  
 

   
     

 (2.9) 

  

Lastly, the final force applied to the Stop-Rotor UAV is gravitational force given 

by: 

 g zf mgE  (2.10) 

 

where, m defines the total mass of the aircraft and g is the gravity constant. 

Equation (2.10) is given in the inertial fixed frame £. 

So the external total force applied to the aircraft can be represented by F: 

 A B gF T T f    (2.11) 

   3

3, A B zF G a b T T E mgE   R R  (2.12) 

 

This is the representation of F on the inertial frame. 

 

2.1.2 Torques and Anti-Torques 
 

Due to the thrusts TA and TB the torques will be generated.  The torques are due to 
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the separation between the center of mass (CG) and the rotor hubs. τA and τB are 

denoted as the torques produced by TA and TB  respectively.  

 Represented by lA and lB are the measured distances from the CG to the 

hubs of the above and bottom rotor respectively. So the torques being applied to 

the aircraft are: 

 A A Al T    (2.13) 

 B B Bl T    (2.14) 

  

In addition, the aerodynamic drags acting on the rotors produce pure 

torques acting through the rotor hubs. So the anti-torques are defined by: 

 3A AQ Q E  (2.15) 

 3B BQ Q E   (2.16) 

 

Lastly, the total torque applied to the aircraft can be expressed in the body fixed 

frame as: 

 3 3A B A BQ E Q E       (2.17) 

 

2.1.3 Complete Dynamic Model 
 

By incorporating the total forces and total torques, the following complete 

dynamic model is obtained in the inertial frame:  

      (2.18) 

                    
          (2.19) 

        (2.20) 

                                 (2.21) 

 

In the translation movement of the aircraft, let     (c.f. Equation (2.18)) define the 

velocity, v, of the aircraft‟s CG expressed in its inertial frame £. In Newton‟s 
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equations of motion               denotes the rotational component of 

movement in a non-inertial frame, where Ω is the angular velocity in the non-

inertial frame; I defines the inertia of the aircraft in its CG in respect to the body 

fixed frame and τ represents the total external torque applied in the body fixed 

frame. 

 Also it is important to define that Ω ϵ |R
3
 and 

 

3 2

3 1

2 1

0 Ω Ω

ˆ Ω 0 Ω

Ω Ω 0

 
 

   
  

 (2.22) 

 

The mathematical model presented above embodies the dynamics of the 

aircraft in vector form, but to conduct simulations and analyze the dynamics of 

the aircraft this model will be expanded using Newton-Euler formulation, which 

will be presented in the following section.  

2.1.4 The Detailed Mathematical Model 
 

The Newton model will be expanded to Newton-Euler form to code and simulate 

the dynamics of the aircraft in hover flight. The Newton-Euler model is expanded 

using the same assumptions, and equations previously stated in previous sections 

as well as using Figure 2.1 as aircraft model representation. The main objective 

for expanding the model is to be able to implement it in a MATLAB code and 

simulate to obtain translation and rotational dynamics of the aircraft. This model 

expansion will be split into two parts, one covering the translation dynamics and 

the other the rotational dynamics.  

For the expanded model, let define Rexp as: 
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   ( , , )

c c c s s s c c s c s s

s c s s s c c s s c s c

s s c c c

           

           

    

  

  
 

   
  

expR  (2.23) 

 

where cθ = cos(θ) and sθ = sin(θ) are used as before. 

 Rexp is an orthogonal rotation matrix. Rexp: C→£ denotes the aircraft orientation 

with respect to £. 

The translation dynamics for the expanded Newton-Euler model 

(Bouabdallah, 2010) in the fixed inertial frame £ are: 

          1 2 31
( )X A A A Bc c T s c c s s T c s cE s s T T

m
           

          
 

 (2.24) 

            1 2 31
Y A A A Bs c T s s s c c T s s c s c T

m
E T           

          
 

 (2.25) 

          1 2 31
( )Z A A A Bg s T s c T c c T TE

m
    

         
 

 (2.26) 

  

The expansion of the rotational dynamics in the Newton-Euler‟s model 

uncovers the body gyro-effect, rotor gyro-effect, inertial-counter torque and 

counter torque unbalance which were all hidden in the Newton model.  

So the rotational dynamics for the expanded model in the fixed inertial frame £ 

are: 

   2Ω Ωxx yy zz B B A A A AI I I J J T l         (2.27) 

   1Ω Ωyy zz xx B B A A A AI I I J J T l         (2.28) 

  zz xx yy A BI I I Q Q      (2.29) 

 

where Ixx, Iyy, Izz are the moments of inertia of the aircraft about the CG; JA/B are 

the rotor inertias of the above and bottom rotor respectively. 
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 To obtain the thrust (T) and drag moment (Q) for the above and bottom 

rotor, the momentum theory is used, which is discussed in the following section. 

2.1.5 Rotor Aerodynamics 
 

For any airfoil at a certain angle of attack it will produce a lift force and drag 

force. This is true for a rotor since it basically consists of airfoils pinned at a one 

end and rotating about the pinned end. In analyzing the two rotors, we can obtain 

the lift and drag forces as (Drier, 2007): 

  
21

Ω r
2

LdL C c dr        (2.30) 

  
21

Ω r
2

DdD C c dr        (2.31) 

 

where CL and CD are the lift and drag coefficients respectively; ρ is the density of 

air; r is radius location of the blade and c is the chord length of the blade.  

 Since the objective is to obtain the vertical thrust and horizontal drag 

moment produced by blades both thrust and drag force have components in the 

vertical thrust since the blade is pitch at angle ̂  illustrated in Figure 2.3.  

 
 

Figure 2.3. Blade section view 

 

Therefore, thrust force and drag moment are the following: 

                          (2.32) 
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                             (2.33) 

 

Substitute dL and dD into both dT and dQ and integrate with respect to the blade 

radius we obtain: 

   2 3 2 3

A A

1 1ˆ ˆΩ cos Ω sin
6 6

A L A A D A AT C c R C c R               (2.34) 

 

Equation (2.34) is thrust force for a single blade of the above rotor. We can obtain 

the total thrust force produced by the above rotor by multiplying the equation by 

the number of blades, n, in the rotor. 

     2 3 2 3

A A

1 1ˆ ˆΩ cos Ω sin
6 6

A L A A D A AT C c R C c R n   
 

           
 

 
  

(2.35) 

 

where n is 3, or 2 for either the above or bottom rotor respectively.  

The drag moment for both above and bottom rotor is the following: 

    2 4 2 41 1ˆ ˆ  Ω sin Ω cos
8 8

L DQ C c R C c R n   
 

           
 

 
  

(2.36) 

 

To obtain the value of angular velocity, ΩA for the above rotor the trim condition 

during hover flight is used: 

 AT mg  (2.37) 

Solve for ΩA  

 
   

A
3 3

Ω
1 1ˆ ˆ  cos sin
2 2

L A A D A A

mg

C c R C c R   



      

 
(2.38) 

 

To obtain the value of angular velocity, ΩB for the bottom rotor the following 

condition is used: 

 A BQ Q J   (2.39) 
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Since in steady hover    is zero, Equation (2.39) results into the following: 

       (2.40) 

 

To solve for the angular velocity, ΩB for the bottom rotor we solve Equation 

(2.40) for ΩB that makes the condition (2.40) true. So ΩB is the following: 

 

2 4

4

Ω3
Ω

2

A A A
B

B B

c R

c R

 
 


 (2.41) 

  

This concludes the mathematical model for the Stop–Rotor UAV. The 

next section will discuss possible control options for controlling the states in the 

hover flight.  

2.2 Controller Design for Hover flight 
 

In this section, three control systems will be created and implemented to the 

nonlinear rotational dynamics described in the previous chapter. The three control 

systems consist of a linear controller, optimal linear controller and a nonlinear 

controller. Their main objective here is to stabilize the rotational dynamics of the 

system.  

2.2.1 Linear Controller 
 

First, to create a linear controller for a nonlinear system the system had to be 

linearized about an equilibrium solution. The linearized equations of motion take 

form of: 

  21
Ω ΩB B A A A A

xx

J J T l
I

  
 

    
 

 (2.42) 

  11
  Ω ΩB B A A A A

yy

J J T l
I

  
 

    
 

 (2.43) 
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  
1

A B

zz

Q Q
I


 

  
 

 (2.44) 

To control the rotational dynamics the system command inputs have been 

included in roll, pitch, and yaw to stabilize the dynamics. With addition of the 

command inputs the linearized state equations take the following form: 

  

1
( Ω Ω )B B A A act Roll

xx

J J T
I

  
 

         
 

 (2.45) 

  

1
( Ω Ω )B B A A act Pitch

yy

J J T
I

  
 

         
 

 (2.46) 

  

1
( ) ( )act Yaw

zz

T
I

    (2.47) 

 

where, Tact Roll, Tact Pitch, and Tact Yaw are command inputs for roll, pitch, and yaw 

respectively. The next step for linearization of the system is to convert it to state-

space form. 

0 1 0 0 0 0

0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0

0 0

Ω Ω

0 0 0 1

0 0 0 0 0 0

Ω Ω

B B A A

B B A A

Ixx

d

dt

Iy

J J

y

J J

 

 

 

 

 

 

 
    
    
    
           
    
    
    
       
 

 







    (2.48) 

 

The system (2.48) has been now linearized. By analyzing the equations in yaw 

and rate of yaw, one can conclude that yaw is independent of roll and pitch, but 

roll and pitch are dependent on upon each other. The linear controller will be of 

the following form: 

                                                   ( )t x Ax Bu     (2.49) 



21 

 

where, x is a state rate, A is the state matrix, B is the controller matrix and, 

u(t)=Kx in which K is a matrix of control gains.  

                            

0 1 0 0 0 0

0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0

0 0 0 0 0 1

0

Ω Ω

Ω

0

Ω

0 0 0 0

B B A A

B B A A

Ixx

I

J J

y

J

y

J

 
 
 
 
 


 




 
 
 
 
 
 

A  (2.50) 

                                           

0 0 0 0 0 0

1 1 0 0 0 0

0 0 0 0 0 0

0 0 1 1 0 0

0 0 0 0 0 0

0 0 0 0 1 1

 
 
 
 
 
 
 
 
 

B

  (2.51)

 

                              

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

K K K K K K

K K K K K K

K K K K K K

K K K K K K

K K K K K K

K K K K K K

 
 
 
 

  
 
 
 
 

K  (2.52) 

With the above assumption the controller would be of the form B Kx giving the 

following state control inputs of: 

2 41 3

5 76 8

9 10

Roll

Pitch

Yaw

act

act

act

T K K K K

T K K K K

T K K

  

   

 

  

   

 

    (2.53) 

where: 
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1

2

3

4

5

6

7

8

9

10

 1 7 

 2 8

 3 9 

 4 10 

13 19

14 20

15 21

16 22

29 35

30 36

K K K

K K K

K K K

K K K

K K K

K K K

K K K

K K K

K K K

K K K

 

 

 

 

 

 

 

 

 

 

      (2.54) 

  

The approach here would be to determine the gains in the matrix K that would 

give all negative real parts for the eigenvalues for the matrix  A BK . This 

proved to be rather challenging since the characteristic polynomial was extremely 

intricate and long. The strategy was to obtain the characteristic polynomial to be 

of the form:  

 6 5 4 3 2

0 1 2 3 4 5 6a a a a a a a              (2.55) 

Then using the stability criteria of Routh-Hurwitz and Lienard-Chipart to obtain 

conditions for the gains that would give all negative real parts for the eigenvalues 

of matrix  A BK . This proved rather complicated and yielded multiple 

solutions. One of the possible solutions was to use rate and state feedback type 

controller with  

3

4

5

6

0

0

0

0

K

K

K

K








       

 (2.56) 

With the above assumption the state control inputs in Equation (2.53) will be 

reduced to the following: 
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1 2

7 8

9 10

Roll

Pitch

Yaw

act

act

act

T K K

T K K

T K K

 

 

 

 

 

 

      (2.57) 

where K1, K2, K7, K8, K9, and K10 are all gains that can be selected. This allows 

for the command input of roll, pitch and yaw for stabilization of those states. The 

new state-space system is given by: 

1 2

7 8

9 10

0 1 0 0 0 0

0 0 0

0 0 0 1 0 0

0 0 0

0 0 0 0 0 1

0

Ω

0 0

Ω Ω

0

ΩB B A A

B B A A

K K
Ixx

d

dt
K K

Iyy

K K

J J

J J

 

 

 

 

 

 

 
    
    
    
           
    
    
    
       
 


 




 (2.58) 

This gives the ability to choose values for the gains in the state-space system that 

gives negative real-parts of the eigenvalues of the system making it stable. 

Through a number of trials the chosen values of the gains were determined. These 

gain values were chosen to be: 

 

1

2

7

8

9

10

175

58

175

58

1

2

K

K

K

K

K

K

 

 

 

 

 

 

        (2.59) 

 

These gains resulted in the following eigenvalues for the system (c.f. Equation 

(2.58)) system: 
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55.42 26.34

55.42 26.34

2.58 1.22

2.58 1.22

1

1

i

i

i

i


  
 
 
 
  

  
  

 
 

 

       (2.60) 

Upon selecting the non-optimal gains by trials for the linear controller, the 

controller is implemented into the nonlinear rotational dynamics. In doing this, it 

is possible to check whether the linear controller is effective at stabilizing the 

nonlinear rotational dynamics. So the nonlinear rotational dynamics incorporating 

the linear controller is the following: 

  

  

  

1
1 2

1
3 4

Ω Ω

5

Ω

1
6

Ω

yy zz B B A A

zz B Bxx

yy

A A

xx

K K
Ixx

K K
Iyy

K K
Iz

I I J J

I I J

z

J

I I

     

     

   

 
      
 

 
       
 

 
      
 

  

 



 (2.61) 

  

A code was written in MATLAB that simulates the nonlinear rotational 

dynamics. So first, the nonlinear rotational dynamics were simulated with non-

zero initial conditions (IC) and uncontrolled. The rotational dynamics are clearly 

unstable with non-zero ICs. Figure 2.4 illustrates the unstable rotational dynamics 

with non-zero ICs. Then, in this code the linear controller was implemented. 
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Figure 2.4. Uncontrolled nonlinear rotational dynamics with non-zero initial 

condition 

 

So, the linear controller is now introduced to the nonlinear rotational dynamics 

with identical non-zero ICs. Figure 2.5 illustrates effect of the linear controller on 

the nonlinear rotational dynamics. 

 
 

Figure 2.5. Nonlinear rotational dynamics with linear controller with non-

zero ICs 
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In Figure 2.5, it can be noticed that the rotational dynamics are stabilized. The 

rotational dynamics are locally stabilized since a linear controller was 

implemented. This means that for a given domain of attraction the linear will 

stabilize the nonlinear rotational dynamics. 

The linear controller also clearly exhibits settling time issues. The settling 

time is most noticeable in yaw, which approximately takes the controller 40 

seconds to stabilize it. The settling time could be a cause from using insufficient 

gains, non-optimal gains or simply the fact that the linear controller is trying to 

control nonlinear rotational dynamics. In the next section an optimal linear 

controller will be created and implemented to the same nonlinear rotational 

dynamics. This will allow us to compare the performance of an optimal controller. 

2.2.2 Optimal Linear Controller 
 

An optimal linear controller will be designed comprising of the linear controller 

described by Equation (2.53)and utilizing the same assumptions made in 

Equations (2.50), (2.51), and (2.52). To design an optimal linear controller it 

entitles selecting the gains that would minimize the cost function:  

     2

0

1 1
( ), ( ) ( ) ( ) ( ) ( )

2 2

tf
T TJ t t tf tf t t t dt        x u x H x x Q x R u  (2.62) 

where H, Q and R are all positive semi-definite matrices of size 6x6. H will be 

assumed to be a zero matrix, while Q and R will be assumed to be identity 

matrices. Matrix Q will be multiplied by a factor of 100 indicating weight on the 

states. The best approach to minimize the cost function is to reduce u(t) which as 

previously mention as u(t)=K(t)x(t). One method for finding the optimal feedback 
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gain matrix is utilizing a nonlinear matrix differential equation, known as the 

Riccati equation. 

 
1( ) ( ) ( ) ( ) ( )T Tt t t t t          S S A A S Q S B R B S  (2.63) 

 

The Riccati equation has only final conditions and can be solved backward in 

time using numerical integration. The solution of an optimal control can be 

reduced by finding the matrix S(t). The optimal gains are therefore given by: 

 
1( ) ( ) ( ) ( )Tt t t tK x R B S x  (2.64) 

Using MATLAB, a code was written to numerically integrate the Riccati 

equation using ode45. The results S(t) were then inputted into Equation (2.64). 

The results led to the population of the K matrix with optimal gains: 

 

4.97 6.31 5.03 1.33 0 0

4.97 6.31 5.03 1.33 0 0

5.03 1.33 4.97 8.99 0 0

5.03 1.33 4.97 8.99 0 0

0 0 0 0 7.07 7.55

0 0 0 0 7.07 7.55

 
 


 
  

  
  
 
 
 

K  (2.65) 

 

Consequently the controller would be of the form B Kx giving the following 

state control inputs similar to the ones in Equation (2.53). Where the gains in 

(2.54) now have the following values: 
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2.66

10.05

2.66
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 
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





 

 

 

 

       (2.66) 

These are the optimal linear gains. The optimal linear controller is then 

incorporated into the nonlinear rotational dynamics as 

  

  

  

Ω Ω
1

1 2 3 4

1
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I I J J
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K K
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I
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   


  




          
 

 
           
 

 
     




  (2.67)

 

In this form it is clearly evident that the controller inputs for roll and pitch are 

dependent on each other to stabilize the roll and pitch. It is also evident that yaw 

is independent of both roll and pitch. 

A code is written in MATLAB that simulates the nonlinear rotational 

dynamics. In this code the optimal linear controller is implemented. Figure 2.6 

illustrates the optimal linear controller performing with the nonlinear rotational 

dynamics. 
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Figure 2.6. Nonlinear rotational dynamics with optimal linear controller with 

non-zero ICs 

The figure above shows that the states are stabilized. It is important to mention 

that in similar fashion as the linear controller, the optimal linear control only 

stabilizes the rotational dynamics locally. As well, from the Figure 2.6 it is 

evident that the optimal controller stabilizes yaw faster than roll or pitch, as a 

result that yaw is independent of roll and pitch. In roll and pitch the issue of 

settling time is still very present. In the next section a nonlinear controller will be 

created and implemented to the same nonlinear rotational dynamics. This will 

allow us to compare the performance of the linear controller, and optimal linear 

controller against the nonlinear controller.    

2.2.3 Nonlinear Controller 
 

It can be noted that the linear control may work on the nonlinear plant but 

stability cannot be guaranteed. Also as the initial conditions deviate from 

equilibrium solution the linear control may not work as the nonlinear effects 
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become predominant. In order to achieve „global‟ stability a nonlinear control was 

proposed.  The approach here would be to design the nonlinear controller using 

Lyapunov approach. In specifically the Lyapunov's direct method. This method is 

widely used in the stability analysis of general dynamical systems.  It makes use 

of a Lyapunov function ( , )V tx .  This scalar function of the state and time may be 

considered as some form of time dependent generalized energy.  The basic idea of 

the method is to utilize the time rate of energy change in ( , )V tx for a given system 

to judge whether the system is stable or not.  The details about Lyapunov's 

method and stability theorems can be found in the text by Bay (1999). 

For a linear system where constant coefficients are concerned, it is simple to find 

a Lyapunov function.  Consider the linear system 

                                 ( ) ( )t tx Ax                        (2.68)  

 

where A  is a constant matrix.  A quadratic form of ( )V x  may be assumed as 

                                    ( ) TV x x Px       

 

where P  is a real, symmetric and positive definite matrix.  Then 

      ( ) ( )T T T TV    x x Px x Px Ax Px x PAx                      (2.69) 

 or  

                              ( ) ( )T TV  x x A P PA x                                         (2.70) 

 

According to the Lyapunov theorem for autonomous systems, if ( )V x  is negative 

definite then the null solution is asymptotically stable (Brogan, 1974).   Therefore, 

one can write (Bay, 1999): 

                    
T   A P PA C                   (2.71)  
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where C  is a positive definite matrix.  Equation (2.71) is called the Lyapunov 

equation.  It has been shown by Kalman and Bertram, that if  A  has eigenvalues 

with negative real parts (asymptotically stable), then for every given positive 

definite matrix C , there exists a unique Lyapunov matrix P .  In this study, 

matrix C  is always taken as the identity matrix. The following Lyapunov 

function was selected that is always positive definite. 

 2 2 2 2 2 2V             (2.72) 

 

where V is Lyapunov function. The derivative of Equation (2.72)  takes the 

following form: 

 2 2 2 2 2 2V             (2.73) 

 

If V is negative definite, then the nonlinear rotational dynamics will be globally 

asymptotically stable. So the rotational dynamics for               are substituted 

into Equation (2.73) yielding. 
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 (2.74) 

We assume the nonlinear controller of the form 
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    (2.75) 
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where K1 through K6 are controllable gains. To determine the appropriate gains 

that would satisfy condition for Lyapunov stability, assumptions (2.75) were 

substituted into Equations (2.74). After the substitution the gains would be 

obtained as  
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      (2.76) 

where a is any number that is less than zero. By implementing these gains 

Equation (2.74) is reduced to: 

2 2 22 2 2V a a a           (2.77) 

Thus, Equation (2.77) will be always negative definite satisfying the condition for 

Lyapunov stability.  

The nonlinear controller along with the gains were implemented into the 

nonlinear rotational dynamics. Equation (2.78) illustrates the rotational dynamics 

with the nonlinear controller. 
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                                                                                           (2.78) 

 A code is written in MATLAB that simulates the nonlinear rotational 

dynamics. In this code the nonlinear controller is implemented. Figure 2.7 

demonstrates the nonlinear controller at work with non-zero ICs for the rotational 

dynamics. 

 
 

Figure 2.7. Rotational dynamics with nonlinear controller with non-zero ICs 

 

It is evident that nonlinear controller stabilizes the rotational dynamics. It is 

important to note that the nonlinear controller not only stabilized the rotational 

dynamics but in addition made the rotational dynamics globally stable. This 

means the rotational dynamics will always be stable no matter if large ICs are 

provided. As well, the nonlinear controller exhibits some settling time. Though, 

this settling time of the nonlinear controller is much smaller than that of the linear 
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controller or optimal linear controller. Figure 2.8 illustrates a comparison between 

the linear controller, optimal linear controller and the nonlinear controller at 

stabilizing the same rotational dynamics with identical non-zero ICs.  

 
 

Figure 2.8. Comparison between nonlinear versus linear versus optimal 

linear controllers 

From the Figure 2.8 it is evident that the nonlinear controller has a quicker 

response at stabilizing the rotational dynamics. From Figure 2.8, one can conclude 

that the nonlinear controller is better performing than the both linear and optimal 

linear controllers. The controller effort was also calculated for the linear, optimal 

linear and nonlinear controllers. This allows for a more complete assessment of 

the performance of all controllers. Figure 2.9 demonstrates the controller effort 

for the nonlinear, linear controller and optimal linear controller. 
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Figure 2.9. Nonlinear, linear, and optimal linear controller effort 

 

Initially the effort for the nonlinear controller at stabilizing the three states (roll, 

pitch, and yaw) is more than that of the linear and optimal linear controller. As 

well, the nonlinear controller demonstrates the most effort at the beginning as 

oppose to the linear and optimal linear controller. The linear controller 

demonstrates controller effort throughout a larger range of time, while the optimal 

linear controller demonstrates the least controller effort.   

2.3 Robustness 

 

In this section, we briefly remark on the robustness analysis of the controller. It 

can be observed that an exact plant dynamics is difficult to model due to 

uncertainties in modeling. A controller that functions adequately for all 

admissible perturbations is termed robust (Burl, 1999).  Generally the uncertainty 

is classified as unstructured uncertainty where the uncertainty is modeled by 

connecting unknown but bounded perturbations to the plant or structured 
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uncertainty where additional constraints on the uncertainty are available. These 

constraints provide structure to the set of admissible perturbations (Burl, 1999).  

In the example of Stop-Rotor UAV the structured uncertainty could be nominal 

weight or inertia properties plus a perturbation (payload variation).  

Consider the linearized plant dynamics given by Equation (2.49) with the 

controller, the „stabilized‟ plant dynamics is given by   

                                               ( ) x A BK x                                                 (2.79)   

It is noted that previously we assumed that the inertia properties remain 

unchanged. Now assume that the inertia properties change with known bounds.  

The Equation (2.79) can be written as   

                                                ( ( ) )t  x A G BK x                           (2.80) 

where ( )tG is the time varying perturbation. Equation (2.80)can be written as  

                                              [ ( )]t x A G x                                           (2.81)  

where  A A BK  

 It is to be noted that A  is a constant matrix whose eigenvalues have negative real 

parts. We follow the approach presented by Infante (1969) to obtain stability 

bounds. 

Theorem:  If, for some positive definite matrix B  and some  > 0, 

               1

max{ [( ( )) ( ( )) ]}TE t t     A G B A G B             (2.82)  

 

then Equation (2.81) is almost surely asymptotically stable in the large, where 

{}E is the expectation operator, and max  is maximum real eigenvalue.  
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Proof:  Consider the quadratic (Lyapunov) function ( ) TV x x Bx  as before.  

Then along the trajectories of Equation (2.81), define 

       
( ) [( ( )) ( ( ))]

( )
( )

T T

T

V t t
t

V


  
 

x x A G B B A G x

x x B x
             (2.83) 

It is noted that the numerator and denominator in Equation (2.83) are quadratic 

forms.  The pencil of quadratic forms 
, 1

ˆ ( , )
n

ik i k

i k

a x x


A x x and 
, 1

ˆ ( , )
n

ik i k

i k

b x x


B x x

a matrix valued function defined over complex numbers given by 

ˆ ˆ( , ) ( , )A x x B x x  (Gantmacher, 1977).  For the details and the properties on the 

pencils of quadratic forms and matrices, we refer to the references (Bai et al., 

2000). 

Define  
1/2

T

p
x x Bx . It can be shown (Kozin, 2000) that 

p
x satisfies 

                                  
[( ( )) ( ( ))]

log
T T

Tp

d t t

dt

  


x A G B B A G x
x

x B x
           (2.84) 

integrating and dividing Equation (2.84) by t  ,                       

0

1 1 [( ( )) ( ( ))]
[log ( ) log (0) ]

t T T

Tp p

s s
t ds

t t

  
  

x A G B B A G x
x x

x B x
     (2.85) 

For 
1

[log ( ) log (0) ] 0
p p

t
t

 x x as t   it must follow that lim ( ) 0
t

t


x . 

Thus, the algebraic sign of 
0

1 [( ( )) ( ( ))]
lim[ ]

t T T

Tt

s s
ds

t

  


x A G B B A G x

x B x
 provides 

the condition for the stability (Kozin, 2000). It is noted that if ( )tG is assumed 

stochastic then ergodicity would be required if we want to evaluate 
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0

1 [( ( )) ( ( ))]
lim[ ]

t T T

Tt

s s
ds

t

  


x A G B B A G x

x B x
 using expectation operator {}E

(Kozin, 2000). 

From the properties of pencils of quadratic forms (Gantmacher, 1977), the 

quotient 
[( ( )) ( ( ))]T T

T

t t  x A G B B A G x

x B x
 (c.f. Equation (2.84)) satisfies    

1 1

min max{[( ( )) ( ( ))] } ( ) {[( ( )) ( ( ))] }T Tt t t t t          A G B B A G B A G B B A G B

(2.86)  

where max is defined before and min is the minimum real eigenvalues of the 

matrix pencil 
1[( ( )) ( ( ))]Ts s   A G B B A G B . After expansion, Equation (2.86) 

can be written as  

1 1

min max{( ( )) ( ( )) } ( ) {[( ( )) ( ( )) }T Tt t t t t          A G B A G B A G B A G B  

(2.87) 

Thus, the solution of Equation (2.83) can be given as 

     0 0

1
0

0
( ) ( )[ ( ) ]

0 0[ ( )] [ ( )] [ ( )]

t t

t t
d t dt t t

V t V t e V t e
     


 

 x x x              (2.88)  

It can be observed that, if { ( )}E t    for some 0  , [ ( )]V tx is bounded and 

that [ ( )] 0V t x  as t  . 

Thus, we can observe that as long as the condition given by theorem is 

satisfied the linear controller will stabilize the UAV in presence of perturbation. 

 

 

 

 

 

 

 



39 

 

Chapter 3 

EXPERIMENTAL VALIDATION TEST AND TRANSITION MODEL 

In order to demonstrate the conversion between rotary aircraft mode to fixed-wing 

aircraft mode, an experimental validation test was performed. The objective of 

this test drop was to prove the concept that the Stop-Rotor UAV has the ability to 

transition between rotary aircraft mode to fixed-wing aircraft mode and vice 

versa. As well as to test the collective (feathering) mechanism and to gather 

crucial data via Ardupilot‟s data logging capability. This chapter consists of two 

major sections. The first section will focus on the experimental validation test and 

all other worked related to the drop test. The second section of this chapter will 

focus on developing a mathematical model that will be used to analyze the 

transition flight of the aircraft.   

3.1 Experimental Validation Test 
 

In this drop test an unpowered Stop-Rotor UAV test specimen was dropped from 

a hot air balloon with the wings and tail fins pitched for rotary aircraft mode (for 

autorotation), then the collective (feather) mechanism was engaged to transition to  

fixed-wing mode position for the wings and tail fins, then the fixed-wing aircraft 

was pulled out of the dive and allowed glide before pushing over and pitching the 

wings and tail fins back into their previous rotary aircraft mode position and land 

as shown in Figure 3.1.  
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Figure 3.1. Stop-Rotor UAV ‘Big Drop’ test 

 

 During the drop test an Ardupilot (a COTS autopilot) was used for data 

logging with the addition of an on board video recording of the test. All of the 

data that was gathered was used to further validate the aircraft transition. A simple 

mathematical model for computation of rotor speed in rotary aircraft mode was 

used (Drier, 2007) and was compared to the experimental results. 

3.1.1 Collective Feathering Mechanism and Ardupilot 
 

Collective feathering of the wing is the most important aspect of this design 

which enables the aircraft to transition from rotary wing to fixed-wing 

configuration and vice versa. The wing collective control is obtained by 2 

independent motor controllers shown in Figure 3.2.   

 
 

 

Figure 3.2. Motor controller for wing control 
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Each controller is powered by a separate battery pack.  An RC interface is 

provided for collective and flaps control. Following fail safe mechanism were 

incorporated in the wing collective control. 

a. Electronic overrun stop  

 

b. Mechanical overrun stop  

 

c. Current limiting control 

 

These electro-mechanical controls would ensure that the Stop-Rotor UAV will not 

lose control and wings would return to trim conditions in case of an overrun. 

In order to log the data from the drop test, an open source autopilot, 

Ardupilot was used (Anderson, 2010). This instrumentation comprises of an 

autopilot that has static and pitot pressure sensor, thermopiles and global 

positioning system (GPS).  This autopilot was used in data logging mode along 

with zigbee wireless transmitter and receiver, and a ground station as shown in 

Figure 3.3.  It is anticipated that this instrumentation will be used as an autopilot 

for Stop-Rotor to make it an unmanned aerial vehicle.  
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Figure 3.3. Ardupilot (Anderson, 2010) components and interface for Stop-

Rotor UAV 

 

The ground station interface was implemented using another open source software 

(Anderson, 2010) however, the LabVIEW interface was modified to incorporate 

data logging capability as shown in Figure 3.4.  This ground station interface 

shows airspeed, GPS location, attitude and altitude of the aircraft. 

 
                                     

Figure 3.4. LabVIEW ground station interface 
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Though for the drop test only airspeed, inertial measurement unit (IMU) and GPS 

data were recorded.                      

3.1.2 Experimental and Mathematical Rotor Speed Results Comparison 
 

In this section a comparison of the experimental validation results of the rotor 

speed data and the results of the mathematical model will be analyzed.  

 First, the rotor speed during the experimental drop test was obtained by 

analyzing the video recording of the drop. The rotor RPM was obtained by 

measuring the number of revolutions per each video time stamp. These results 

were then plotted versus time and are illustrated in Figure 3.5. 

 Second, a simple mathematical model was used to simulate the rotor 

speed. It is noted that the drop test is unpowered the expression for rotor speed in 

autorotation can be directly used to compute rotor RPM and velocity. These 

expression and their derivations are given in reference (Drier, 2007).  Thus, 

following the development from reference (Drier, 2007), we assume the first 

order equation for rotor speed 

                                                           eng rotor J Q Q                                      (3.1) 

 

Where J is the inertia,   is the angular velocity, ,eng rotorQ Q are the engine torque 

and the rotor torque, respectively. The rotor torque rotorQ  and thrust T can be 

modeled as: 

                                                          

2

0

0

rotor

 
  

 
Q Q                                       (3.2) 

  

2

0

 
  

 
T W                                               (3.3) 
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Where 0 is the initial speed and W is the weight.  During the unpowered test 

drop, engine torque,  0eng Q  and the rotor speed equation is given by: 

                                                                  

2

0

0

 
   

 
J Q

                               (3.4) 

 

This is called Bernoulli's equation with the closed form solution 

                                                           

0

0

0

( )

1

t
t


 




Q

J                                           (3.5) 

       

The equation of vertical motion during the test drop (i.e. free fall) is given by 

                                                      

2

0

(1 ) [1 ]y g g
 

     
 

T

W
                          (3.6) 

 

Equation (3.5) is substituted in Equation (3.6) and integrated numerically once for 

velocity y  and twice for position y  determination. The simulation results were 

obtained by numerically integrating dynamical equations of motion. Then, the 

simulation results were compared to the experimental results, which are shown in 

Figure 3.5.  It is noted that initially from time t=2 seconds results, when the Stop-

Rotor UAV is in autorotation mode results are comparable.  However, the 

difference between Expt. RPM and simulation RPM increases as time increases. 

The difference between simulation and experimental results can be attributed to 

approximate aerodynamic modeling, approximate mathematical model for the 

Stop-Rotor UAV and numerical integration error.  
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Figure 3.5. Comparison of simulation and experimental results 

 

3.2 Transition Mathematical Model 
 

For transition from helicopter mode to airplane mode and vice versa, the tail 

rotator stops and helicopter in a dive, control surfaces on the wings pull the 

aircraft out of dive and glide, pusher propeller is powered on and provides the 

thrust required. In the airplane mode, the design resembles a flying wing airplane. 

The transition will be performed in the direction of heading in the airplane 

mode, hence we derive 2-D equations for transition as reference in (Osborne, 

2007). Consider the aircraft transitioning from a helicopter mode to airplane mode 

as shown in Figure 3.6. L and D represent the lift and drag T indicates thrust, 

and  indicates angle of attack and pitch angle, respectively, V is the forward 

velocity. 
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Figure 3.6. Free body diagram of Stop-Rotor 

 

 Equations of motion can be written as:  

 

( )c

x
m

y

k  

 
 

 

 

G + L + D + T
       (3.7) 

Where c , is the commanded pitch angle and k is the gain. In the inertial frame 

the gravity vector is given as  
0

mg

 
  

 
G  

Assuming that the thrust T is along the axis of the aircraft ( )
0

T

 

  
 

T R  where 

( )R the rotational matrix from body coordinates to inertial coordinates. The lift 

and drag vectors are given as 

 

0
( )

( )
0

L

D

 

 

 
   

 

 
   

 

L R

D R

       (3.8)

Airspeed is given by 2 2V x y  and angle of attack is given by 1tan
y

x
    
   

 
.                 
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It can be noted that transition control problem can be viewed as a trajectory 

tracking where the Stop-Rotor UAV transitions from a controlled hover to fixed-

wing flight and vice versa 

 
 

Figure 3.7. Overview of the transition from hover to horizontal flight 

 

The trajectory tracking algorithm will generate values of , , , , ,x x x y y y . The input to 

algorithm will be time ft to perform transition and final speed fV . The pitch 

control values can be computed as 1

2 2
tan

y

x y
  

 
  
  

. There are multiple 

methods to develop this trajectory algorithm some of them include a Lyapunov 

based controller, feedback linearization and model predictive adaptive control. 
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Chapter 4 

FIXED-WING AIRCRAFT PERFORMANCE 

 As previously mentioned, the Stop-Rotor UAV has the capability of fixed-

wing flight. It is important that performance of this aircraft in this flight mode be 

analyzed and evaluated. Therefore, one of the objectives of this research was to 

analyze the performance of the existing Stop-Rotor UAV in fixed-wing aircraft 

mode. This chapter is split into two sections. First section will focus on the 

performance analysis of the whole aircraft, and the second section will focus on 

the performance analysis of the main wing structure that is later used to perform 

stress analysis on the wings. Both performance analyses will be conducted while 

the aircraft is in fixed-wing flight.  As well, it is important to note that in both 

analyses XLFR5 software is used. XFLR5 is a software package that allows the 

analysis of airfoils, wings and airplanes operating at a low Reynolds number 

(XFLR5, 2010). 

4.1 Aircraft Performance 
 

The first step for setting up the analysis of the whole aircraft was to first create the 

airplane geometry using XFLR5 software. The body, which is the fuselage, was 

first constructed; it was created by using circular cross-sections with varying radii 

where the smaller radii are located at the front and rear ends of the aircraft. Figure 

4.1 illustrates the body of the aircraft using XFLR5.  
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Figure 4.1 Side view (Top) and 3-D body (Bottom) of aircraft geometry 

 

After creating the body, the wings, elevators and fin of the aircraft were created 

by defining the chord length, span and airfoil. The airfoil for the wings, elevators 

and fin were all selected to be NACA 0012. For the elevators a -30° dihedral 

angel was set. The locations of the wings, elevators and fin relative to the body 

were then defined. The complete fixed-wing aircraft geometry is illustrated in 

Figure 4.2. 

 
 

Figure 4.2. Complete fixed-wing aircraft meshed geometry 

 

Upon completing the airplane geometry, an analysis on the NACA 0012 

airfoil was conducted. This was done by creating a list of Reynolds number in 

which the airfoil coefficients of lift, drag and moment were obtained at various 
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angles of attack. This airfoil analysis would supply the fixed-wing aircraft 

analysis with the flight envelope of the analysis as discussed in reference 

(Deporris, 2010). 

Lastly, the fixed-wing aircraft performance was analyzed. To begin the 

analysis following flight and airplane characteristics were established:  

Free Stream Speed = 31.29 m/s 

Polar Type = Fixed Speed 

X COG = 18 inches 

where, X COG refers to the x-coordinate of the center of gravity (COG) of the 

aircraft. The location of COG was initially automatically calculated from the 

masses of the body, wings, elevators and fins. But it was moved on purpose to 18 

inches to simulate the counter weight that was added on the specimen during the 

experimental validation “Big Drop” test. This was done to make the Stop-Rotor 

UAV specimen nose heavy during the test. The next step was to select a sequence 

of angle of attacks (AoA) in which the aircraft would be analyzed. The range was 

selected to be from -5° to 16°. The analysis was finally conducted using XFLR5.  

The results of the analysis are the stall angle of the aircraft, the stability of 

the aircraft, and key parameters such as coefficient of lift, drag, and moment at 

various angles of attack. 

The stall angle was determined from the analysis to be around 15°. This 

was determined by results of the analysis, when XFLR5 was unable to interpolate 

the coefficient of lift at that particular AoA, hinting that it had reached the stall 
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angle, even though the Reynolds number was within the flight envelope‟s domain. 

Figure 4.3 illustrates the XFLR5 results of the aircraft analysis at the stall angle. 

 
 

Figure 4.3. Results from XFLR5 not been able to interpolate at stall 

angle 

 

This was further reinforced when the plot of coefficient of lift for airfoil was 

analyzed at Reynolds number that are near, or at that value.  The coefficient of lift 

of 1.26 is unachievable at Reynolds number 556,336 as shown in Figure 4.4.   

 
 

Figure 4.4. Plot of coefficient of lift for airfoil NACA 0012 at various 

Reynolds number 

 

It is also important to note that the stall angle for this airfoil at Reynolds number 
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of 556,336 is at approximately an AoA of 15° as in determined in reference 

(Anderson, 1999). 

The next aircraft performance obtained from XFLR5 was the stability of 

the aircraft. As mention in the reference from Meschia (2008) stability in this 

context is the inclination for the aircraft to keep its pitch manner against any 

disturbances that it might encounter as found in reference (Meschia, 2008). The 

stability of the aircraft was determined by analyzing the polar plot of the pitching 

moment coefficient (Cm) versus the AoA. Figure 4.5 illustrates this plot. 

 
 

Figure 4.5. Aircraft’s plot of Cm versus AoA 

 

The slope of this curve is clearly negative for a range of AoA of -5° to 16°. This 

plot indicates that the design of the fixed-wing aircraft is stable for all of the AoA 

in that range. The physical meaning is that the aircraft flies balance at 

approximately an AoA of -0.016°. 
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Figure 4.6. Plot of Cm vs. AoA focusing on point (-0.0158°, 0) 

 

 As well, the graph implies that if the aircraft were to encounter a disturbance, eg. 

a wind gust, that makes the aircraft to take an AoA of attack, such as zero 

degrees. Figure 4.6 illustrates that the plot at zero degrees AoA the aircraft 

develops a negative pitching moment coefficient which is a nose-down moment 

that pushes the aircraft to its original AoA, and therefore the aircraft is 

longitudinally stable. 

 The wing structure performance is of great importance, as this component 

is essential to the aircraft‟s performance in fixed-wing flight. Before the 

experimental drop test was performed, a wing structural performance was 

conducted. In following section the aerodynamic loads experienced by the wing 

will be used to carry out a finite element analysis on the wing structure. 
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4.2 Main Wing Structure Performance 
 

A wing under operating conditions experiences aerodynamic loads. These 

aerodynamic loads will be used to conduct a structural analysis on the main wing 

structure of the Stop-Rotor UAV. For this structural analysis it is assumed that the 

wing is made out of Aluminum 2014, which has Young Modulus of 9.53E6 psi 

and a Poisson‟s ratio of 0.33. The wing will be pinned supported at two bearing 

locations at the aluminum spar. The loads that the wing structure will be subjected 

to are lift force, drag force, and moment.  All aerodynamic loads will be assumed 

to be acting at quarter chord point and to be constant along span of the wing. 

 The first step in conducting this analysis was to determine the 

aerodynamic loads that the wing structure would experience. These loads were 

determined by conducting a 2-D CFD analysis on a NACA 0012 airfoil. The 

calculated Reynolds number the wing would operate was 483,908 at STP. The 

CFD analysis was conducted using XFLR5 software. In doing the CFD analysis, 

coefficients of lift, drag, and moment were obtained at various angles of attack. 

Table 4.1    

 

Coefficient of Lift, Drag and Moment at different angles of attack 

 

Alpha  CL CD CM 

0° 0 0.0062 0 

5° 0.631 0.0105 -0.0134 

10° 1.041 0.0196 0.0114 

15° 1.219 0.0499 0.0331 

 

Once obtaining these coefficients, the aerodynamic forces were calculated using 

the following equations: 
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  (4.1) 

where, S is the plan-form area and the span assumed to be one, c the chord length, 

ρ the air density, and V free stream velocity. 

Table 4.2 

 

Aerodynamic loads at different angles of attack 

 

Alpha 
Lift per unit 

Span (N/m) 

Drag per unit Span 

(N/m) 

Moment per unit 

Span (Nm) 

0 0 0.72 0 

5 72.97 1.21 -0.41 

10 120.27 2.26 0.35 

15 140.86 5.76 1.02 

 

The next step was to construct the wing structure using Solidworks. The 

structure consisted of two major components, an airfoil skin and the aluminum 

spar. The span of the wing was 47.5 inches and the thickness was assumed to be 

0.1 inches.  The aluminum spar had a span of 52.5 inches and the thickness of the 

aluminum spar was measured to be 0.125 inches.  The material for both 

components was assumed to be Aluminum 2014. 
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Figure 4.7. Wing structure 

 

The wing structure was then inputted into NX 7 Nastran where a mesh, 

constraints, and loads were applied. The elements selected for this analysis were 

thin shell Quad-4, and solid Hex-8. The airfoil skin used the thin shell while the 

aluminum spar used solid elements. A 2-D mapped mesh was applied on the 

airfoil skin while a 3-D swept mesh was applied on the aluminum cross section. 

This resulted in a uniform mesh in the aluminum spar and airfoil. A face split was 

used on the top surface of the airfoil to create a single contact point with the 

aluminum spar. At this location the spar and airfoil shared common nodes along 

the span wise direction.  

 
 

Figure 4.8. Mesh of wing structure 
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The last step to setting up the analysis was to input the loads and 

constraints. The edge created by the face split was used to apply the lift and drag 

forces. The lift force was applied on the top surface of the airfoil skin in the 

negative y-direction, while the drag force was split in half and applied in the top 

and bottom of the spar in the x-direction. The moment was applied in the inner 

surface of the tube in the z-direction.  

The constraints used for this analysis were pinned constraints at the 

aluminum spar. These constraints were selected to simulate the mounting 

structure of the wing. The method of applying these constraints was using a user 

defined constraint. This was done by fixing the translations in the x, y, and z 

direction in selected nodes at the locations where the bearing supports would be 

located.  

 
 

Figure 4.9. Loads and constraints 

 

For this structural analysis the results obtained were for deflection, Von 

Mises stresses, and vibration of the wing structure. This analysis was conducted 

using the maximum values of lift, drag, and moment forces previously obtained.  
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 The wing structure had a maximum magnitude deflection of 0.167 inches 

located at the tip of the wing. The minimum deflection was 0 inches situated at 

the constraints.  

 
 

Figure 4.10. Magnitude  deflection of wing structure 

 

 The maximum and minimum deflection in the x and y directions are given 

in the following table: 

Table 4.3 

 

Max. and min. deflection in x and y direction 

 
Direction Maximum Minimum 

X-direction 0.0022 in. -0.00029 in. 

Y-direction 0.167 in. -0.00675 in. 

 

The results obtained in the simulation appear to be accurate, because the 

model had the most deflection in y-direction. This makes sense since the lift force 

was the main force acting on the wing, with 140.86 N/m while drag and moment 

only applied 5.76 N/m and 1.02 Nm. The behavior of the deflection is reasonable, 

even though the wing structure did not behave in a cubic way, shown in the 

Figure 4.11. 
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Figure 4.11. Deflection with cubic behavior 

 

 
 

Figure 4.12. Deflection of model with linear behavior 

 

The model behaved linearly from the point that the airfoil skin and the spar joined 

together. This is due to the fact that after the constraints the spar had an added 

stiffness that was provided by the airfoil skin. So deflection was constant.  

 The maximum Von-Mises stress was obtained to be 5,421 psi located next 

to the pinned constraint, while the minimum Von-Mises stress was 1.931 psi at 

the tip of wing.  
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Figure 4.13. Maximum Von Mises stress 

 

 
 

Figure 4.14. Von Mises stress in entire wing structure 
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The maximum Von-Mises stress occurred at the bottom and top of the spar right 

after the constraints, this is understandable since the wing structure is mostly 

experiencing a bending due to the lift. As well, the maximum stress 5,421 psi is 

well within the yield strength of Aluminum 2014 which is 60,000 psi (ASM, 

2001). This relative low Von-Mises value is due to the weak loading conditions 

the structure experienced. The aerodynamic forces were calculated using the 

assumption the max. velocity the wing would experience was 26.82 m/s, which is 

a qualified small velocity. So the aerodynamic forces were small. 

Lastly, for the structural analysis vibrations results at various frequencies 

were obtained. 

Table 4.4 

 

Vibration deformations at various mode 

 
Vibration Frequency Deformation Type 

Mode 1: 15.9 Hz 

 

Mode 2: 19.6 Hz 
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Mode 3: 71 Hz 

 

Mode 4: 112.5 Hz 

 

Mode 5: 168.3 Hz 

 
 

The results obtained from vibration are realistic because it illustrated all of the 

deformations that are expected under vibration.  Usually a model under vibration 

exhibits the following behaviors: 

Table 4.5  

 

Vibration deformations 

 
Vibration Mode Deformation Type 

Mode 1 Bending 

Mode 2 Lead or Drag 

Mode 3 Torsion 

Mode 4 Second Bending 

Mode 5 Second Torsion 

  

The structure exhibited exactly same deformations as the expected ones. These 

deformations can be seen in Table 4.4.  
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 Upon concluding the structural analysis accurate results for deflection, 

Von-Mises stresses and vibration were obtained. These results are an excellent 

stepping point to conduct additional structural analysis on wing mount structure, 

though further improvements and modifications can be applied to obtain results 

with greater degree of accuracy. Some recommendations are to use smaller 

elements, obtain more realistic aerodynamic loads, and improve the application of 

those loads to the structure. 
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Chapter 5 

 

CONCLUSIONS 

 

In this work, design and analysis of a multimode Stop-Rotor UAV is presented. 

This axial flow stop-rotor is capable of VTOL with ability to transition from 

helicopter to airplane mode and vice versa in flight.  

A mathematical model was developed that captures the stop-rotor 

dynamics in hover. It is noted that the stop rotor is unstable in hover. So a linear, 

Linear Quadratic Regulator (LQR) control was designed and implemented to 

stabilize the hover dynamics. This linear control works when the initial conditions 

are small and nonlinear effects are not significant. The linear control achieves 

„local‟ stability and may not work for all large disturbances or initial conditions.  

In order to ensure „global‟ stability a Lyapunov approach based nonlinear 

controller was designed and implemented on the nonlinear plant. The domain of 

attraction for this nonlinear controller is much higher than the linear controller. 

Furthermore, the control robustness was discussed. 

An experimental validation „big drop‟ test was also conducted in which an 

unpowered stop-rotor specimen was dropped from a hot air balloon. This 

specimen successfully demonstrated transition from the helicopter to airplane 

mode.  During the test, crucial experimental rotor RPM data was obtained which 

was then compared to a simple mathematical model. Preliminary equations for 

helicopter to airplane transition via pitch control were also derived.  It is noted 

that during drop „pitch control‟ via RC transmitter was utilized to pull the aircraft 

from helicopter mode.  
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Finally, performance of the Stop-Rotor UAV in fixed-wing mode was 

studied. Primarily, the stability of the aircraft was determined, which served for 

consideration for future changes in the stop-rotor‟s design. In evaluating the 

aircraft performance, it was apparent that for future aircraft performance analysis 

required software that had more competence.  Lastly, design considerations were 

considered on the main wing structure. This allowed for the evaluation of the 

main wing performance in fixed-wing flight. 

It is anticipated that this work would serve as the foundation to develop a 

complete autonomous multimode Stop-Rotor UAV.  The future work can include 

simulating the transition equations, design controller for transition dynamics and 

detailed mathematical analysis that relaxes the assumptions that were used while 

deriving the equations of motion, to mention a few.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



66 

 

REFERENCES 

 

C. Anderson. (2010). Ardupilot. Retrieved (July 2010) from: 

http://diydrones.com/notes/ArduPilot 

 

J. D. Anderson. (1999). Aircraft performance and design, 5, 252-255. (ISBN: 

9870070019713) 

 

ASM aerospace specification metals inc. (2001). Retrieved (March 2010) from: 

http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA2014T6 

 

Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. Van Der Vorst. (2000). Generalized 

Hermitian Eigenvalue Problems: Templates for the Solution of Algebraic 

Eigenvalue Problems. A Practical Guide Philadelphia: 

SIAM. ISBN: 0898714710 

 

J. S. Bay. (1999). Linear state space systems, 7, 280-285. (ISBN: 0256246394) 

 

J. E. Bertram, R. E. Kalman. (1960). Control system and analysis and design via 

the second method of Liapunov: Parts I and II, Journal of Basic 

Engineering, Vol 82, pp. 371-400. 

S. Bouabdallah. VTOL aircraft dynamic modeling of MAVS. Retrieved (January 

2010) from: www.asl.ethz.ch/education/.../2010-L6-

Dynamic_Modeling_Rotorcraft.pdf 

W. L. Brogan. (1974). Modern Control Theory. Quantum Publishers, New York.   

B. Brown. (1922). Chinese Nights Entertainments, Brentano's, OCLC 843525 

 

J. B. Burl. (1999). Linear optimal control: H2 and H(infinity) methods. Addison 

Wesley Longman, New York 

 

P. Castillo, A. E. Dzul, R. Lozano. (2005). Modelling and control of mini-flying 

machines. 5, 85-94. (ISBN: 1852339578) 

 

A. Vargas-Clara, S. Redkar. (2010). Development of a stop-rotor unmanned aerial 

vehicle. Proceedings of the 2011 IAJC-ASEE international conference 

(ISBN: 9781606433799) 

 

T. Crouch, (2004). Wings: A History of Aviation from Kites to the Space Age, 

New York, New York: W.W. Norton & Co, ISBN 0393326209 

 

A. Deporris. (2010). Why do I get the message. Retrieved (May 2011) from: 

xflr5.sourceforge.net/docs/Point_Out_Of_Flight_Envelope_fr.pdf 

 

http://diydrones.com/notes/ArduPilot
http://en.wikipedia.org/wiki/James_Demmel


67 

 

M. Drier. (2007). Introduction to helicopter and tiltrotor flight simulation, 11, 

236-237. (ISBN: 1563478730) 

 

F.R. Gantmacher. (1977). The theory of matrices. Chelsea Publishing Co. New 

York 

 

E. F. Infante. (1968). On the stability of some linear non-autonomous random 

systems', J. Appl. Mech. 35, 7-12. Retrieved (June 2011) 

 

F. Kozin. (1986). Some Results on stability of Stochastic Dynamical Systems. 

Probabalistic Enginering Mechanics. Vol 1 (1), pp 13- 22 

 

F. Meschia. (2008). Model analysis with XFLR5. Radio control soaring digest. 

Vol. 25, No. 2. Retrieved (May 2011) from: 

http://www.rcsoaringdigest.com/pdfs/RCSD-2008/RCSD-2008-02.pdf 

 

S. R. Osborne. (2007). Transition between hover and level flight for a tailsitter 

UAV. Retrieved (May 2011) from: 

http://contentdm.lib.byu.edu/ETD/image/etd2054.pdf 

 

XFLR5. Retrieved (March 2010) from: http://xflr5.sourceforge.net/xflr5.htm 

 

 

 

 

http://contentdm.lib.byu.edu/ETD/image/etd2054.pdf

