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ABSTRACT  
   

Surgery is one of the most important functions in a hospital with respect to 

operational cost, patient flow, and resource utilization. Planning and scheduling 

the Operating Room (OR) is important for hospitals to improve efficiency and 

achieve high quality of service. At the same time, it is a complex task due to the 

conflicting objectives and the uncertain nature of surgeries. In this dissertation, 

three different methodologies are developed to address OR planning and 

scheduling problem. First, a simulation-based framework is constructed to 

analyze the factors that affect the utilization of a catheterization lab and provide 

decision support for improving the efficiency of operations in a hospital with 

different priorities of patients. Both operational costs and patient satisfaction 

metrics are considered. Detailed parametric analysis is performed to provide 

generic recommendations. Overall it is found the 75th percentile of process 

duration is always on the efficient frontier and is a good compromise of both 

objectives. Next, the general OR planning and scheduling problem is formulated 

with a mixed integer program. The objectives include reducing staff overtime, OR 

idle time and patient waiting time, as well as satisfying surgeon preferences and 

regulating patient flow from OR to the Post Anesthesia Care Unit (PACU). Exact 

solutions are obtained using real data. Heuristics and a random keys genetic 

algorithm (RKGA) are used in the scheduling phase and compared with the 

optimal solutions. Interacting effects between planning and scheduling are also 

investigated. Lastly, a multi-objective simulation optimization approach is 

developed, which relaxes the deterministic assumption in the second study by 
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integrating an optimization module of a RKGA implementation of the Non-

dominated Sorting Genetic Algorithm II (NSGA-II) to search for Pareto optimal 

solutions, and a simulation module to evaluate the performance of a given 

schedule. It is experimentally shown to be an effective technique for finding 

Pareto optimal solutions.  
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CHAPTER 1 

INTRODUCTION 

1. Introduction and motivation 

Between 1999 and 2007 in the United States, healthcare consumed 35.7% 

of the real increase per capita income, and the share of (Gross Domestic Product) 

GDP devoted to healthcare rose from 13.7% to 16.2% (Chernew et al., 2009). In 

2007, total health care spending in the United States reached $2.3 trillion 

(Erdogan & Denton, 2009). A report forecast that the healthcare cost could rise to 

34% of GDP in three decades unless something was done to overhaul the industry 

(“Moving up”, 2009). In this context, hospitals face an increasing pressure for 

high quality care and cost effectiveness. As one of the key hospital resources, OR 

is accounting for 40% of a hospital’s resource costs (Marcario et al., 1995). The 

activities in the OR also have a dramatic impact on many other activities within a 

hospital. Consequently, the OR department should be continuously enhance 

quality and lower cost. 

Recent studies have shown that the most costs of surgical procedures 

consist of personnel, infrastructure, equipment, logistics and administrative 

support, not of materials expense (Roland et al., 2006). The constraint 

environment has driven the need for efficient resource usage. At the same time, 

OR planning and scheduling is challenging. Firstly, multiple stakeholders with 

conflicting interests are involved (Glouberman & Mintzberg, 2001) such as 

surgeons of various specialties, OR personnel, and patients. Secondly, OR 

surgical scheduling is complicated by the uncertainty regarding the occurrence 
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and duration of surgeries. The arrival of non-elective patients may disrupt the 

planned scheduling throughout the day. The inherent variation and unpredicted 

nature of the surgeries also causes modifications to fixed schedules. Lastly, the 

OR department is facing conflicting performance criteria: high planned utilization 

may lead to excessive patient waiting, while allocating more time to a surgery to 

decrease the waiting could give rise to staff overtime. This problem has thus 

attracted the attention of many researchers (Dexter & Traub, 2002; Cardoen & 

Demeulemeester, 2007; Hans et al., 2008; Jebali et al., 2006).  

2. Organization of the dissertation 

The objective of this dissertation is focused on capacity planning and 

scheduling to support managerial decision making in hospitals. We construct 

models of operating room planning and scheduling to improve the efficiency and 

quality of service. The reminder of this dissertation is organized as follows. 

In Chapter 2, a simulation model is developed to evaluate the performance 

of the existing approach and compare alternative policies at the catheterization lab, 

a type of operating room, at a local hospital in Arizona. In this chapter we focus 

on the day-to-day patient scheduling problem and try to compromise to 

conflicting objectives with considerations of three types of patients with different 

priorities. The factors that we evaluated are the size of time block assigned to 

each procedure, procedure duration, arrival of emergency patients, as well as 

variation in demand. We consider both operational costs and patient satisfaction 

metrics, such that decision makers can trade-off between the two metrics. 

Detailed parametric analysis is performed to develop generic recommendations. 



   

3 

In Chapter 3, the general OR planning and scheduling problem is 

decomposed into two phases, which are cyclic block scheduling phase and day-to-

day patient scheduling phase. It is formulated in mixed integer programming and 

then solved with CPLEX. The objectives of the model include reducing staff 

overtime, idle time and patient waiting time, as well as satisfying the surgeons’ 

preference and minimizing the number of beds used in the PACU. Heuristics and 

RKGA are used in the daily patient sequencing and compared with the optimal 

solutions from the mathematical model. We will also investigate the necessity of 

interacting both phases.  

Chapter 4 applies simulation optimization methodology in the OR 

scheduling problem. We develop a multi-objective simulation optimization 

approach, which integrates an optimization module of RKGA and NSGA-II to 

guide the search of Pareto optimal solutions, and a simulation module to evaluate 

the performance of a given schedule. We examine the effectiveness of the 

approach using real surgical data and compare with alternative approaches. Some 

managerial questions in OR scheduling are also analyzed. The dissertation 

concludes with final remarks in Chapter 5. 
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CHAPTER 2 

IMPROVING THE EFFICIENCY OF CATHETERIZATION LABORATORIES 

USING SIMULATION 

1. Introduction 

Cardiac catheterization is a diagnostic procedure that comprehensively 

examines the functioning of the heart and its blood vessels and is usually 

performed diagnostically, prior to heart surgery. As the size of the population 

suffering from cardiac problems increases, the number of catheterization 

procedures performed is growing rapidly. From 1979 to 2002, the number of 

cardiac catheterizations in the USA increased by 390% and in Europe from 1992 

to 1999 by 112% (Katzberg & Haller, 2006), making catheterizations one of the 

fastest-growing clinical services.  

Catheterization laboratories (cath labs) have high fixed and operating costs 

associated with facilities and staff salaries, and hence, using the lab’s time as 

efficiently as possible becomes crucial to hospital managers and helps them 

control costs associated with cath labs. Uncertainties in patient arrival and service 

times along with the varying degree of patient urgency complicate the process of 

efficient planning, leading to overall poor capacity utilization of resources, 

recurring staff overtime and excessive patient waiting time (Gupta & Denton, 

2008). Appointment systems that assign a specific time window for a case, 

referred to as block scheduling, improve utilization of resources and also allow 

physicians to know case start times well in advance (Ozcan, 2005). However, 

these systems generally do not provide the ability for analyzing the impact of 
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system uncertainties and critical variables such as the block-size, as well as the 

impact of dynamic rescheduling of delayed patients on lab idle time, staff 

overtime and patient waiting time.  

For cath labs, two factors are major contributors to excessive staff 

overtime and patient waiting time. First, the inherent variation and unpredictable 

nature of these procedures can cause disruptions or modifications to fixed 

schedules. The service times are diagnosis-dependent and can vary substantially 

across patients and surgeons (Gupta & Denton, 2008). For instance, if an artery 

blockage is detected, a diagnostic procedure which normally takes 45 minutes 

may become an interventional procedure that takes twice as long and may cause 

all subsequent appointments to be delayed. Second, emergent patients, with the 

highest priority, arrive randomly throughout the day and require immediate 

treatment. This further disrupts the intended flow of operations.  

The main performance metrics for a cath lab are idle time of resources, 

staff overtime, and patient waiting time. Several studies have highlighted the 

importance of these key metrics for healthcare planning (Cayirli & Veral, 2003; 

Gupta & Denton, 2008; Gupta et al., 2007; Huang, 1994; Mullen, 2003; Strum et 

al., 1999). It is important to improve efficiency by minimizing all three metrics. 

When a cath lab is not utilized during the budgeted time, the lab is being under-

utilized and the staff is being paid but no operation is being performed. Also, it is 

quite possible for labs to be under-utilized and still experience overtime. Ideally, 

hospital managers would like to avoid such situations. On the other hand, 

procedures should not be postponed to reduce overtime, since delays in cardiac 
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catheterizations can lead to patient dissatisfaction and even have negative 

consequences on patient health (Huang, 1994; Gupta & Denton, 2008; Gupta et 

al., 2007). Hence, it is critical to improve the efficiency while ensuring the quality 

of care. 

Our research develops a simulation-based framework for analyzing the 

various factors that affect the efficiency of cath labs in termes of lab utilization, 

overtime costs and patient waiting times. It is based on real-world data from 

studying multiple cath labs in a large metropolitan hospital. The factors that we 

evaluate are size of the time block assigned to each procedure, procedure duration, 

arrivals of emergent cases, variation in demand as well as the option of 

rescheduling some patients to the end of the day. The simulation model can be 

used to develop an efficient frontier, so that a decision maker can easily identify 

the trade-offs between operating costs, patient waiting time and lab efficiency, 

and choose the size for the time blocks.  The hospital benefited by utilizing the 

efficiency frontiers generated by the simulation approach in increasing its 

utilization of cath lab resources by 10%, while reducing overtime by 71%. 

The rest of the chapter is structured as follows. Section 2 provides a 

review of existing literature and section 3 introduces the background of the study. 

Section 4 describes the simulation model constructed, as well as the design of 

experiments. Section 5 presents the results from the base model and sensitivity 

analyses along with the pilot study with our recommended approach and 

comparisons. Section 6 concludes with directions for future research. 

2. Literature review 
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Discrete Event Simulation (DES) has been extensively used to study 

health care operations. It allows managers to assess the efficiency of existing 

health care delivery systems, to ask ‘what if’ questions and to evaluate managerial 

alternatives without altering the present system (Jun et al., 1999). An advantage of 

DES modeling over other mathematical modeling techniques is the ability to 

precisely capture complex patient flows and then test alternatives by changing 

flow rules and policies. For example, when emergent patients arrive, a pre-

planned sequence of operations may be changed since emergencies must be 

treated prior to all other patients. DES also has the advantage of easily 

incorporating variability in interarrival and processing times. Finally, actual data 

can be easily employed for comparison and sensitivity analysis. In the existing 

literature (Davies & Davies, 1994; Lowery, 1998), simulation is often the 

recommended method for modeling health care clinics over analytical and 

deterministic approaches, mainly, due to the nature and complexity of such 

systems. 

Everett (2002) uses DES to provide decision support for scheduling of 

elective surgeries in hospitals. Dexter et al. (1999a) use DES to predict the effects 

of management interventions on decreasing variability in operating room 

utilization. In a related study (Dexter et al., 1999b), DES is used to model the 

scheduling of operating rooms to compare and analyze different bin-packing 

algorithms. In a rolling-horizon environment with varying demand loads, 

Rohleder and Klassen (2002) use DES to compare different appointment 

scheduling methods (overtime, double-booking). Romanin-Jacur and Facchin 
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(1987) uses DES to study the facility dimensioning problem and the sizing of the 

assistance team in a pediatric semi-intensive care unit. Gupta et al. (2007) study 

the capacity planning problem in cath labs using DES. De Angelis et al. (2003) 

interactively use system simulation and optimization to calculate and validate the 

optimal configuration of servers in a transfusion center. Swisher (2001) develops 

a DES model to analyze alternatives on staffing levels, facility design scheduling 

policies and operating hours to see the effects of the changes. In more recent 

studies, Persson and Persson (2009) use DES to study how health care policies 

affect the waiting time of patients at a local hospital, and Huang et al. (2009) use 

DES to evaluate the effectiveness of various planning options and assignment 

rules for workforce capacity planning. A detailed review of previous research 

articles on DES in health care is presented by Jun et al. (1999). 

The focus of this study was the catheterization facilities within Scottsdale 

Healthcare (SHC) located in Arizona. SHC had previously implemented lean 

principles to minimize as much “waste” as possible from their “door-to-balloon” 

procedures. In spite of the process improvement and standardization, utilization of 

resources remained low while overtime costs and patient waiting time were rising 

as the volume of patients was increasing. This led to unsatisfactory operational as 

well as customer satisfaction metrics. SHC was using block scheduling with block 

sizes of 120 minutes. Thus, every scheduled procedure was allotted a time block 

of 120 minutes. When emergent patients arrived, the next free lab was used and 

the patient previously scheduled was delayed, resulting in a delay for all 

subsequent cases. An initial investigation showed that this approach was not very 
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efficient. Most of the procedures were completed well before the allotted 120 

minutes and hence the lab and the staff were idle till the start of the next 

procedure. In most instances, the next procedure could not be advanced since the 

case start times were assigned earlier and that is when the patient and physician 

were expected to be ready. Hence, it was essential to develop a framework to 

analyze the impact of the block size on the cath lab performance. Specifically, the 

objectives of this study were three-fold: 

a. Develop a simulation model that can be used to evaluate the 

performance of the cath lab. 

b. Improve the efficiency of cath labs as measured by (i) lab utilization, 

(ii) staff overtime and (iii) patient delays. 

c. Conduct detailed sensitivity analysis by varying system parameters 

(such as demand variation, processing time variation) to examine the 

robustness of recommended block sizes.  

In addition, our work adds to existing literature by considering patients 

with different arrival patterns and priorities in a multi-criteria decision 

environment, as well as considering the added flexibility of rescheduling patients 

in order to decrease schedule interruptions and the chain-effects caused by delays 

or emergencies. 

3. Defining patient flow in the cath lab of a hospital   

The SHC facility under study has two labs that handle catheterizations. 

Patients requesting this procedure are classified into three types: (1) Elective 

patients -- These are mostly outpatients that request the procedure at least two 
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weeks in advance. (2) Urgent patients -- These are inpatients that stay in the 

hospital for other reasons and need a catheterization. Their operation has to be 

completed within a day of the request. (3) Emergent patients -- These are patients 

that come through the Emergency Department (ED). Their operations have the 

highest priority and must be performed immediately or as soon as possible. The 

patient flow in the cath lab is shown in Figure 1. 

 

Figure 1. Patient flow through the cath labs 

After arrival and admission, the patient is educated about the procedure 

and the risks associated with cardiac catheterization. At the same time, the staff is 

setting up the lab by establishing the ECG monitoring and intravenous (IV) access 

for emergency medications or sedation. The first case of every day requires a little 

more than 30 minutes of lab-preparation due to equipment and computer start-up 

and connection to the network. One technician and one nurse arrive 60 minutes 

prior to the scheduled start time of the first case for the setup. Subsequent clean-

up and preparation, referred to as turn-over, require about fifteen minutes. After 

initial admission procedures, the patient is transferred to the lab where vascular 

access site preparation and sterile field preparation is performed. After the in-lab 

preparation, the procedure begins. The duration of the operation can vary from 
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less than 30 minutes to more than two hours for a variety of reasons, including 

patient medical history, physician experience and procedure type. After the case is 

completed, the patient is transferred to a recovery room and the lab is prepared for 

the next case. The entire process can thus be divided into three phases, namely: 

preparation, procedure and post-procedure. Preparation and post-procedure are 

often referred to jointly as turn-over time. 

As discussed earlier, the SHC cath lab was using block scheduling to 

develop initial schedules. Each scheduled procedure was assigned 120 minutes. 

Elective and urgent cases are scheduled ahead of time. If an emergent case arrives, 

either the lab that is free or the next available lab is used. The procedure 

previously scheduled in that lab is postponed and the patient is delayed. This also 

results in delaying all subsequent cases in that lab. This will be discussed further 

in section 4.1. Each of the labs worked for nine hours with a 30-minute lunch 

break. The starting times of the labs were staggered by 30 minutes to avoid 

congestions. Cases that required time beyond the nine-hour regular shift were 

completed using overtime labor. 

When we analyzed the history of past cases, three things emerged: First, 

utilization of the labs (i.e., the percent of time that they were being used during 

regular hours) was only 43% on average. Second, staff often had to work overtime 

(about 353 minutes on average per week) to complete the cases scheduled during 

the day. Third, patients were experiencing long waiting times. It is interesting to 

point out that the hospital had a low utilization of the cath labs and high level of 

overtime. This clearly indicated inefficiencies in patient scheduling since SHC 
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had implemented several lean principles to standardize many of the cath lab’s 

controllable operations. Hence, management wanted to investigate how to better 

schedule patients in order to balance utilization of resources, overtime, and patient 

waiting times and improve customer satisfaction. 

4. Methods and analyses 

As a first step toward understanding the process, we collected data on all 

the procedures completed in the two labs for a period of 6 months (October 1st, 

2006 to March 31st, 2007). This included the busiest season of the year. A 

preliminary analysis of the data showed that on average, there were four 

scheduled elective cases and three scheduled urgent cases per day. In the peak 

season, which is December, January and February, there were six elective cases 

and four scheduled urgent cases per day. Random arrivals of emergent patients 

had a Poisson distribution with a mean of 2.5 patients per week. Using the 

historical data, we statistically fit probability distributions to describe the three 

phases of the operation. We also collected data on physician lateness and 

incorporated it as part of the preparation time. Finally, we aggregated the three 

phases to determine the total case duration and fit a distribution for this as well. 

Table 1 presents a summary of the distributions for these phases and the total case 

duration. 
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Table 1 

Probability distribution of case duration 

 

 Distribution 
Mean 

(min) 

Std. Deviation 

(min) 

Preparation (incl. 
Physician Lateness) 

Erlang 23 13 

Procedure Beta 42 32 

Post-procedure Lognormal 8 5 

Total case duration Gamma 73 36 

 
Both elective and urgent cases are scheduled a day before the surgery. We 

use block scheduling to generate an initial arrangement for elective and urgent 

cases. To provide some safety cushion for the variation in case duration as well as 

the arrival of emergent cases we adjust the schedule in three ways. First, for each 

case scheduled we allocate a time window that is larger than the historical median. 

Second, a buffer is added to the lunch break to decrease the effect of morning 

delays on the cases that follow in the afternoon. Finally, idle time is allocated at 

the end of the daily schedule to decrease the possibility of overtime. A sample 

initial schedule with 10 patients per day, 90 minutes allocated per case and 30-

minute buffer is shown in Figure 2. 

We use Arena 10.0 to model the patient flow through the two cath labs. 

Generalized capacity planning models often assume that the current resources are 

achieving maximum capacity (VanBerkel and Blake, 2007). We assume that there 

are 10 patients scheduled per day and perform sensitivity analysis on the demand. 

Patients are assumed to be punctual. We treat elective and urgent patients the 

same in this study, because data analysis did not provide statistical evidence that 
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there is a difference in case duration. All cases are allocated the same length of 

time regardless of the type of procedure for the ease of implementation. 

 

Figure 2. Schedule of cases with allocation of 90 minutes 
 

An entity in the model corresponds to a patient arriving and capturing 

available resources, i.e. cath labs. Patient-arrival is a model input and arrivals 

occur exactly as scheduled. Upon arrival, if a lab is available, the case starts 

immediately. Otherwise, the scheduled and emergent cases will wait for the first 

available lab. The emergent cases have the highest priority and the other cases are 

scheduled in the order of arrival. Once a case is assigned to a lab, it occupies it for 

the duration of time sampled from the three distributions, respectively, as shown 

in Table 1. Upon case completion, the lab becomes available for the next patient. 

The model output captures the resulting lab utilization, overtime incurred 

and patient waiting times in each scenario. Utilization is defined as the fraction of 

the budgeted time that the lab is being utilized. When the lab is not utilized during 

regular hours, the lab crew still gets paid. Hence, under-utilization can also be 

translated into a direct cost measure as [(1–utilization) × regular salary for the lab 

crew]. Overtime is defined as the time the staff is working after the budgeted time. 
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This has a direct cost implication and can be captured using total overtime cost, 

calculated as (overtime salary for the lab crew × total overtime). Exact regular and 

overtime salary rates were provided by SHC. Patient waiting time is defined as 

(max{0, (actual start time – scheduled start time)}). Since two of the performance 

measures have been translated to costs, we transformed the problem into 

developing a schedule that minimizes two criteria: total cost of overtime and 

under-utilization and total patient waiting time. 

4.1.Rescheduling  

In order to reduce the adverse effects of delays on scheduled cases caused 

by emergent arrivals and process variation, we consider the option of rescheduling 

inpatients to the end of the day. Since these patients are already in the hospital, 

they can be taken back to their room and brought to the cath lab later in the day 

for the procedure. A patient may be rescheduled for two reasons, (i) due to an 

emergent case arrival, and (ii) when a patient has been waiting longer than a 

predetermined time. However, to maintain service quality and patient satisfaction, 

we use the following constraints. First, to ensure patient safety, an emergent case 

will not be rescheduled. Second, to ensure patient satisfaction, a case cannot be 

rescheduled more than once. Finally, elective cases will not be rescheduled, since 

these are outpatients. 

The hospital decided not to reschedule patients. Based on our observations 

and interviews, this is due to the fact that the feasibility of rescheduling depends 

on physician availability. Most patients are assigned to a specific physician and 

re-assigning on short-notice is challenging. However, the administration also 
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indicated that it might be better to work with the physician and reschedule the 

patient rather than have the physician wait in the hospital for a cath lab. 

Considering this, we have experimented both with and without the option of 

rescheduling, and compared the results. 

4.2.Parametric analysis 

Our goal in using the simulation model is to understand the impact of 

critical decision variables on the output metrics. Hence, we conducted detailed 

experiments using the following decision variables: (a) time-block length L, (b) 

patient waiting time before rescheduling W, and (c) lunch buffer length B. For our 

parametric analysis the duration of the time-block (L) was based on percentiles of 

the case duration distribution, which was derived from historical data. Specifically, 

the scheduling approach used at SHC allocated two hours per case (i.e. L = 120 

min) which corresponds to the 92nd percentile of the total case duration 

distribution. The time-block lengths used for our parametric analysis ranged from 

the 55th to the 95th percentile and are presented in Table 2. The waiting time of 

patients before rescheduling (W) was evaluated at 30%, 40%, 50%, 60% and 70% 

of the time-block length (L). We tried 45-minute and 30-minute lunch buffers (B) 

for lab 1. Lab 2 can only have a 30-minute lunch buffer since the lab starts 30 

minutes later than lab 1. Using a factorial design of experiments, we generated a 

total of 120 experimental scenarios (10 time-block lengths × 5 rescheduling wait 

times × 2 lunch buffer combinations) for schedules with rescheduling and 20 

scenarios (10 time-block lengths × 2 lunch buffer combinations) for schedules 

without rescheduling. Each experimental scenario was simulated for 100 days. 
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Table 2 

Time-block lengths used in the parametric analysis 

Percentile of case duration 55 60 65 70 75 80 85 90 92 95 

Time-block length (min) 65 70 75 80 85 90 100 110 120 140 

 
4.3.Experimental results 

Figure 3 presents the results of the simulation experiments for schedules 

that allow waiting patients to be rescheduled. The results indicate that scenarios 

with time-block length below the 60th percentile and above the 85th percentile are 

clearly dominated. In order to enhance clarity, we are not considering those in the 

following analyses. For each combination of L and B, there are five points on the 

graph corresponding to the 5 different values of W. The horizontal axis contains 

the average weekly under-utilization and overtime cost and the vertical axis 

contains the average weekly total waiting time. Each point in the graph represents 

a combination of the three decision variables (L, W, B). 
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Figure 3. Results with rescheduling 

These results demonstrate that larger (smaller) time blocks result in shorter 

(longer) patient waiting time and higher (lower) total costs. For instance, 

Allocating 70 minutes per case yields a weekly cost of $2710 and waiting time of 

533 minutes. However, allocating 100 minutes per case dramatically reduces the 

waiting time but increases the cost. The graph provides the efficient frontier 

(shown with the solid curve) for the managers to trade-off between the operational 

cost and patient waiting time. Based on the feedback from staff and management, 

we suggested a 90-minute time block allocated per case with a 45-minute lunch 

buffer for lab 1 and 30-minute lunch buffer for lab 2, and 55-minute waiting 

before suggesting rescheduling an inpatient, as marked on Figure 3. The weekly 

cost and patient waiting time at this level are $2753 and 163 minutes, respectively. 

Figure 4 presents the results of the simulation analysis without 

rescheduling patients. Once again, scenarios that were clearly dominated have 
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been omitted from the graph. Based on the results, we suggested a time-block 

length of 90 minutes per case, a 45-minute lunch buffer for lab 1 and 30-minute 

lunch buffer for lab 2. The weekly cost and patient waiting time at this level are 

$3807.34 and 108 minutes, respectively. 

 

Figure 4. Results without rescheduling 

5. Comparison with historical data 

In order to validate the recommended time-block length, we collected data 

on the actual number of patients per day, case duration, and time of emergent 

patient arrivals for the first eight weeks of 2007 (January 1st to February 23rd). We 

scheduled the same set of patients using the recommended time-block length and 

lunch buffers, considering both with and without rescheduling of waiting 

inpatients. The results are presented in Tables 3 and 4. Table 3 indicates that from 

an operational perspective, our recommendations would have increased the 

average utilization by approximately 26%. The total overtime in eight weeks was 
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significantly reduced from 2738 minutes to 297 (with rescheduling) and 201 

(without), a reduction of approximately 90%. 

Table 3 

Comparison with SHC approach – Operational factors 

 

Average 

utili-
zation 

Total 

over-

time 

(min) 

Number 

resche-

duled 

(min) 

Total cost of 

overtime and 

under-

utilization ($) 

SHC Approach 43.60% 2738 N/A 13,643.11 

Simulation Results of 
SHC Approach 

51.22% 1168 0 12,342.09 

Recommended 
Approach 

With 
rescheduling 

69.31% 297 3 4,704.73 

Without 
rescheduling 

69.72% 201 0 4,432.54 

 
Prior to our study, data on the waiting time of individual patients was not 

collected.  However, according to the perception of nurses, patients were 

experiencing excessive waiting times. Table 4 compares the total waiting time 

incurred by patients when using the recommended schedule with and without 

rescheduling. As expected, rescheduling improves both the average waiting time 

and the possibility of a patient having to wait. All measures, (i.e. percent of 

patients waiting, average waiting time and total waiting time) were within the 

hospital’s acceptable range. 
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Table 4  

Comparison with SHC approach – Patient waiting times 

 
Percentage of 

waiting patients 

Average 

waiting time 

(min) 

Total 

waiting time 

(min) 

SHC Approach N/A N/A N/A 

Simulation Results of 
SHC Approach 

16.26% 15.79 521 

Recommended 
Approach 

With 
rescheduling 

22.36% 19.13 880 

Without 
rescheduling 

25.13% 21.16 1080 

 

Overall, these results indicate that a sensible adjustment of the time 

allocated to each case and the addition of small buffers to allow for uncertainty 

and variation can improve the performance of labs, reduce cost and significantly 

decrease overtime. 

5.1.Sensitivity analysis on scheduling performance 

In order to test the robustness of the model and the extent to which these 

results can be generalized, we performed sensitivity analysis on parameters that 

affect scheduling performance. Specifically, we considered the case duration, the 

demand for elective and urgent cases, and the emergent patient arrivals, as these 

are key factors that influence the schedule and overall efficiency and utilization of 

the cath labs. 

Case Duration Distribution: We first wanted to understand the impact of 

the case duration distribution on the schedule. Previous studies also show that a 

lognormal distribution is usually a very good fit for capturing the variations and 

uncertainties inherent in surgical procedure durations (Kaandorp & Koole, 2007). 
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Our initial study used a Gamma distribution. In order to explore this further, we 

collected additional case duration data from two different SHC facilities. We 

analyzed the 2048 cases and determined that the Lognormal distribution described 

the data very well. This, along with results from published studies that supported 

our conclusion, motivated us to assume that the case duration can be described by 

a Lognormal distribution in all of our sensitivity analyses. 

Table 5 presents the percentiles from the 55th to the 90th for the Lognormal 

case duration distribution obtained with the 2048 cases. For each time-block, we 

ran the simulation for 100 days. Pareto analysis showed that the 70th and 75th 

percentiles (90 and 95 minutes, respectively) are the most desirable options in 

terms of minimizing both waiting time and cost of overtime and under-utilization. 

Processing time varies by case, patient and physician. We performed sensitivity 

analysis by varying the coefficient of variation of the process duration from 0.1, 

0.25, 0.5, 0.75 and 1. Pareto analysis showed that the 75th percentile remains on 

the efficient frontier for all ranges. 

Table 5 

General data percentiles 

Percentile 55 60 65 70 75 80 85 90 

Procedure time (min) 75 80 85 90 95 105 115 130 

 
We conjecture that the 75th percentile will, in general, be on the efficient 

frontier for most scenarios. In the following sections, we study the impact of 

variation in demand for elective and urgent cases, as well as variation in emergent 

case arrival on the Pareto-optimal time-block length. 
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Demand for Elective and Urgent Cases: Literature shows that heart 

disease cases show a winter peak (Spencer et al., 1998), especially in Arizona 

because retired people move here in the winter. In order to test if the 75th 

percentile would be Pareto-optimal during peak seasonal demand, as well as 

lower demand, we varied the demand to capacity ratio from 0.7 to 1.3, in intervals 

of 0.1. A ratio of 1.3 indicates that demand is 30% more than available capacity 

and a ratio of 0.7 indicates that demand is 70% of capacity. For each ratio, we 

used eight different time-block lengths as shown in Table 6. Every ratio - time-

block length combination was simulated for 100 days. Pareto analysis showed that 

the 75th percentile was on the efficient frontier for all levels. 

Specifically, we saw that longer time blocks (80th-85th percentile) tend to 

perform better when the demand-to-capacity ratio is low. In these cases, the total 

waiting time is lower without a significant increase in the overall cost. For 

example, when demand is 70% of capacity, using the 75th percentile yields 

weekly cost of $3,746 and a total waiting time of 146 minutes, while the 85th 

percentile generates weekly cost of $3,849 but with a total waiting time of 63 

minutes. From a management point of view however, we do not recommend 

increasing the block size during off-peak seasons as this may give physicians and 

staff the impression that there is more than enough time and lead to inefficiencies, 

as the demand-to-capacity ratio starts increasing. Similarly, when the demand-to-

capacity ratio is high, shorter time blocks may be preferred as they reduce the 

total cost without significantly increasing the waiting time. For example, by 



   

24 

moving from the 75th to the 70th percentile, the weekly cost is reduced by $262 

while the total weekly waiting time increases by 86 minutes. 

Cath lab managers ideally would like to keep the time-block length 

constant throughout the year. This would make planning and scheduling 

consistent and less cumbersome. In view of this and the results obtained from our 

experimentation, the 75th percentile of the case duration distribution seems to be 

the logical choice for the time-block length. 

Arrival of Emergent Cases: Emergencies are a random and critical part of 

demand that affect the schedule dynamically. Not surprisingly, data analysis 

shows that emergent arrivals follow a Poisson distribution. We perform sensitivity 

analysis by changing the coefficient of variation ( 1CV λ= ) from 0.25, 0.5, 0.65, 

0.75, 0.9 and 1. Each scenario was run for 100 days. Pareto analysis using 

simulation for the eight percentiles (from 55th to 90th) showed that the 75th 

percentile remains on the efficient frontier at all levels of CV. 

In conclusion, sensitivity analysis on demand, emergent arrival variance 

and procedure duration variance, shows that using the 75th percentile of total case 

duration as a general rule, is overall an efficient and reasonable choice as it 

balances all aspects of performance in healthcare scheduling. 

5.2.Implementation and comparison 

SHC has implemented our recommendations since January, 2008. We use 

the same eight-week data in 2008 as in 2007 to compare the performance. Results 

are presented in Table 6. 
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Table 6 

Comparison of performance before and after implementation 

Metrics 2008 2007 

Utilization 52.03% 43.60% 

Avg. weekly overtime (min) 98 342 

Total patient waiting time (min) 1609 N/A 

Total Number waited 72 N/A 

Avg. waiting time per patient (min) 22.35 N/A 

% of patients waiting 33.33% N/A 

No. of cases 216 207 

Total case duration (min) 17991 16973 

Total cost of over-/ under-utilization ($) 8,090.10 13642.42 

 
The improvement in utilization is less than what was predicted by 

simulation, because in 2008 the number of cases and the total case duration is 

different from 2007. However, considering both under-utilization and overtime 

costs, the savings for these eight weeks were $5,552. Coincidentally, we also find 

that physician lateness, which significantly contributes to preparation time 

variation, is reduced in 2008. This was reflected by two facts: (1) the number of 

cases with physicians’ lateness is reduced; (2) the length of lateness is proved to 

have been statistically reduced by a t-test with 99% confidence. This may be due 

to the sense of urgency created by the shorter time-block allotted to each case. 

Table 7  

Physician lateness data in 2007 and 2008 

Physician Lateness Mean Variance Frequency 

2008 10 107 159 
2007 14 128 186 

 
6. Conclusions 
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In this chapter we have developed a simulation model to evaluate the 

efficiency of cath lab operations while varying key parameters such as length of 

the time-block assigned to each case, length of lunch buffers as well as the option 

of rescheduling patients. Our analysis considers both operational costs and patient 

satisfaction metrics and illustrates the tradeoffs between the two. Detailed 

experimentation has helped recommend allocating to each case a time block equal 

to the 75th percentile of the case duration distribution and schedule a short buffer 

in the middle and at the end of each day to absorb variation and reduce the 

possibility of overtime. 

In order to test the robustness of our recommendations we perform 

sensitivity analysis on key variables including demand, process duration, 

emergent case arrivals and also combine data for the busiest months from two 

separate locations and compared the results. Overall we find that the 75th 

percentile of process duration is always on the efficient frontier and is a good 

compromise of both operational cost and patient waiting well. The health care 

facility adopted our recommendations and is now realizing the anticipated 

improvements. An interesting extension of this study would be considering 

physician specific data such as differences in lateness and/or average case 

duration. Incorporating this information in the analysis while developing the 

initial schedule may further improve performance, both in terms of efficiency and 

patient satisfaction. 
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CHAPTER 3 

A TWO-PHASE MULTI-CRITERIA APPROACH FOR THE OPERATING 

ROOM PLANNING AND SCHEDULING PROBLEM 

1. Introduction 

Between 1999 and 2007 in the United States, healthcare consumed 35.7% 

of the real increase in per capita income, and the share of US Gross Domestic 

Product (GDP) devoted to healthcare rose from 13.7% to 16.2% (Chernew et al., 

2009). A report forecasts that the healthcare costs could rise to 34% of GDP in 

three decades unless something is done to overhaul the industry (“Moving up”, 

2009). Hospitals face an increasing pressure for efficient resource usage and high 

quality care in such environment. Surgery accounts for 40% of a hospital’s 

resource costs (Macario et al., 1995), with personnel, infrastructure, equipment, 

logistics and administrative support costs accounting for most of this cost and 

material cost being smaller (Roland et al., 2006). Since the OR is one of the key 

hospital resources, there should be efforts to continuously lower cost and enhance 

quality. At the same time, planning and scheduling the OR is challenging due to 

conflicting priorities (Glouberman & Mintzberg, 2001; Ozcan, 2005), internal and 

external uncertainties (Gupta, 2007), and scarcity of costly resources. 

The objective of this study is to address the following problems through 

developing a concrete model for the strategic level of OR planning and scheduling. 

a. How should hospitals allocate OR time to surgical specialties and 

groups? 
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b. How should hospitals assign and schedule patients considering both 

cost efficiency and patient satisfaction? 

The mathematical model and algorithms we describe in this study aim to 

investigate answers to the following important questions: 

a. Does the size of a surgical group affect scheduling performance? If so, 

how much is the impact? 

b. How much interaction is there between the two phases of this problem? 

In other words, what is the impact of decomposing the problem to a 

planning phase and a scheduling phase? 

The rest of the chapter is organized as follows. The next two sections 

present an introduction to OR scheduling and an overview of previous literature in 

this area, respectively. In section 4, the problem is then modeled in two phases, 

advance scheduling phase and allocation scheduling as mixed integer programs 

(MIP). We consider multiple objectives in each phase and we investigate the 

impacts of the decomposition of the problem. In this section, we also develop 

heuristics and a Random Keys Genetic Algorithm for daily patient scheduling 

problem of the second phase. Experimental results are then presented in section 5. 

Finally, we discuss our conclusions and future research directions.  

2. Problem description 

Three classes of patients are generally considered in OR planning and 

scheduling: elective, urgent and emergency patients. Elective surgeries are usually 

requested a few weeks in advance. On the other extreme, emergency patients need 

to be immediately performed. Urgent patients are sufficiently stable so that they 
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can be postponed for a short period, i.e. a few days. Urgent and emergency 

patients sometimes are classified together as non-elective patients. OR 

departments can plan for non-elective surgeries ahead of time by reserving partial 

OR capacity. The reserved capacity may be concentrated in an OR (ORs) that is 

(are) entirely dedicated for non-elective surgeries. However, this usually leads to 

low utilization in the dedicated rooms. Another way is to allocate the slack to a 

number of ORs scheduled with elective surgeries, allowing non-elective surgeries 

to be scheduled in between two elective surgeries. In this study, we adopt the 

second option, which is to reserve some capacity in every room for non-elective 

surgeries. The actual arrival and duration of emergency patients will not be 

considered in this study.  

Surgical cases have three stages: preoperative, perioperative and 

postoperative (Pham & Klinkert, 2008). In the preoperative stage, patients get 

necessary preparations, including certain instructions, paperwork, medication, etc., 

and then are moved to an OR. In the second stage, patients are anaesthetized and 

surgeries are performed. In the last stage, patients are transported to PACU to 

recover. In this study we do not consider the first stage, because 1) preparation 

procedures are usually quite standardized and do not have much uncertainty; 2) 

the arrival time of elective and urgent patients, which make up 90% of all patients, 

are scheduled. The capacity planning and staffing of the preoperative stage can 

thus be well determined ahead of time. However, the duration of the second stage 

is not as predictable and all patients from different ORs all share PACU resources 

in the third stage. If there is no available bed in PACU when the surgery 
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completes in OR, the patient may be held in the OR until a PACU bed is available. 

It is considerably more costly for patients to recover in the OR. 

The most popular basic OR scheduling approaches are open scheduling 

and block scheduling (Ozcan, 2005). Open scheduling allocates surgery times to 

the first surgeon requesting them. A limit on the number of times allocated to that 

surgeon, or to the estimated surgical time may be imposed. This approach has 

several critical drawbacks, such as simultaneous OR overtime and idle time, and 

high cancellation rates due to overbooking (Ozcan, 2005). With block scheduling, 

a block of OR time, usually one-half to a full day, is allocated exclusively to a 

surgical group, which is composed of one or multiple surgeons in the same 

specialty. Based on the availability of surgeons and historical demand patterns, a 

“master schedule” is first developed with surgical groups assigned to one to two 

week repeating time blocks until there are major changes in demand or surgical 

groups (Roland et al., 2006). Table 8 shows an example of OR block allocation 

for a 2-OR hospital with 20 blocks allocated to surgical groups, assuming there 

are two ORs with 20 blocks, and four surgical specialties in the hospital. The 

advantage of the block system is that it increases utilization through better 

afternoon usage of the OR. It also guarantees surgeons surgical times and allows 

them to know surgical start times well in advance (Ozcan, 2005). 
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Table 8 

An example of surgical block scheduling 

 
OR 1 OR 2 

8:00-12:00 13:00-17:00 8:00-12:00 13:00-17:00 

Mon Anesthesiology 
Oral 

maxillofacial 
Urology Urology 

Tue Anesthesiology Anesthesiology 
Oral 

maxillofacial 
Urology 

Wed 
Oral 

maxillofacial 
Ophthalmology 

Oral 
maxillofacial 

Oral 
maxillofacial 

Thu Urology Urology Anesthesiology Anesthesiology 

Fri Ophthalmology Ophthalmology Anesthesiology Ophthalmology 

 
In practice, block scheduling is divided into three sub-procedures. Firstly, 

a master cyclic operation schedule is developed and surgical groups are assigned 

to blocks. Secondly, elective patients are assigned time blocks and surgical groups 

according to the availability of recourses. After blocks are assigned, the sequence 

of patients is determined. The first and second step together are referred to as 

“advance scheduling” (Magerlein & Martin, 1978) in the literature. Thirdly, 

patients are sequenced on each day of surgery, with considerations of urgent 

patients. This step is referred to as “allocation scheduling” (Magerlein & Martin, 

1978). In this study, we develop our approach based on such a two-phase 

structure. 

3. Literature review 

In the advance scheduling phase, budgets often determine the total OR 

time available, and there are several factors that determine the proportion of time 

to be assigned to each surgical specialty, such as waiting times (Dexter & Traub, 
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2002), OR efficiency (Dexter & Traub, 2002), and equity among all the 

specialties (Blake & Dexter, 2002).  Ogulata and Erol (2003) develop a set of 

hierarchical multiple criteria mathematical programming models to generate 

weekly operating room schedules. The objectives considered are maximizing 

utilization of operating room capacity, balancing distribution of operations among 

surgeon groups and minimizing patient waiting times. Marcon et al. (2006) model 

the problem as a multiple knapsack problem while minimizing the difference of 

workload between rooms and minimizing the risk of no-shows. The allocation 

scheduling phase is more operationally focused. Ozkarahan (2000) uses goal 

programming to assign cases to ORs in order to minimize the sum of ORs’ 

undertime and overtime costs, and then sequences the loaded cases according to 

some priority rules. Pham and Klinkert (2008) use an MIP model formulation to 

minimize the weighted sum of makespan and the starting times of all surgeries. 

They also propose that add-on and emergency surgeries can be scheduled by 

adding new constraints using job insertion. Jebali et al. (2006) develop a two-step 

MIP formulation considering both phases. Fei et al. (2006) also develop a MIP 

model and solve the two-phase scheduling problem by column generation. 

Cardoen and Demeulemeester (2007) use simulation to tackle the problem and 

they include overtime and patient waiting time in their evaluation criteria.  

In this study we consider both phases with multiple objectives in each 

phase. Although this problem has attracted much attention, there are still some 

open challenges that need more attention. Firstly, much previous research is 

concerned with patients’ waiting time on the day of surgery (Cardoen & 
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Demeulemeester, 2007; Jebali et al., 2003), while the time they spend in the wait 

list to be scheduled is more important from a patient safety perspective (Marcon 

& Dexter, 2006). Secondly, many studies focused solely on the OR (Jebali et al., 

2003; Gerchak et al., 1996; Hans et al., 2008), however, other parts of the surgical 

suite can have an impact on the performance as we discussed in section 2. Lastly, 

the vast majority of the literature tries to optimize OR scheduling by splitting it 

into a planning phase and a scheduling phase (Fei et al., 2006; Hans et al., 2008), 

and each phase is considered separately. However, the two steps interact with 

each other in reality and a bad assignment in the planning phase may influence the 

performance of the scheduling phase (Roland et al., 2006).  

Table 9 shows papers that consider both advance and allocation 

scheduling. In the header row, the most commonly used objectives in the 

literature and in hospitals are listed. As is shown in the table, recent papers tend to 

consider multiple objectives. 

The models proposed in this paper take into account all the objectives 

except the patients’ waiting time on the day of surgery because we assume 

surgery durations are known ahead of the time as we illustrate in section 4. We 

will also study the importance of considering both phases interactively. To the 

best of our knowledge no surgery scheduling models have been proposed that 

consider all these perspectives. 
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Table 9  

Summary of literature considering both phases 

Author 
(Year) 

Sur-
geon 
prefer
-ences 

Patients’ 
waiting 
on the 
waiting 
list 

Patients’ 
waiting 
on the 
day of 
surgery 

OR 
Utiliza-
tion 

Over-
time 

Level-
ing 

PACU 

Com-
ments 

Lowery  
et al. (1999) 

   S    

Vandan  
et al. (2000) 

  S  S   

Jebali et al. 
(2003) 

  M M M   

Everrett 
(2004) 

 S  S*   

*Ward 
utilize-
tion 

Sciomachen 
et al. (2005) 

 S   S   

Sandberg et 
al. (2005) 

   A    

Fei et al. 
(2006) 

   D,C,T D,C,T   

Krempels  
et al. (2006) 

H  H     

McIntosh  
et al. (2006) 

   H,A H,A   

Roland  
et al. (2006) 

  M,G  M,G  
Inter-
action 

Jebali et al. 
(2006)  

 M  M M   

Cardoen  
et al. (2007) 

 S S  S S  

Gupta 
(2007) 

SP  SP SP SP   

Testi et al. 
(2007) 

M,S M,S M,S M,S M,S   

Gupta et al. 
(2007)  

S  S S S   

Hans et al. 
(2008)  

 S,SA  S,SA S,SA   

This study X X  X X X 
Inter-
action 
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(S: simulation, M: mixed integer programming, A: qualitative analysis, D: 

dynamic programming, C: column generation, T: tabu search, H: heuristics, G: 

genetic algorithm, SP: stochastic programming, SA: simulated annealing.) 

4. Solution approaches 

4.1.Model description and assumptions 

In this research we use block scheduling and develop a two-phase 

scheduling approach. In the advance scheduling phase (Phase 1), the surgical 

groups are first assigned time blocks (Phase 1.1). This is done yearly or 

seasonally depending on the variation in demand, and the block schedule will 

repeat every one or two weeks. The allocations of blocks to surgeons are revisited 

when there is a change in capacity, number of surgeons, or when medical 

technology innovations alter the capacity usage of certain types of procedures 

(Gupta, 2007). The objective is to satisfy surgeons’ preferences as much as 

possible. Next, patients are assigned to surgical groups and time blocks (Phase 

1.2); this takes place every one or two weeks at the beginning of each cyclic 

period. The objectives are to minimize patients’ waiting on the waiting list, under-

utilization and overtime in OR. In the allocation scheduling phase (Phase 2), the 

goal is to find the optimal sequence for all patients each day and the objectives are 

to minimize the overtime and to regulate the patient flow from OR to PACU by 

minimizing the maximum number of beds in PACU in use at any time. The lack 

of PACU beds may lead to OR blocking (as discussed in section 2) and the 

staffing cost in PACU is determined by peak demand. Figure 5 shows the 

planning horizon and objectives of each phase. 
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Figure 5. Illustration of the two phases in our approach 

We model each step with a mixed integer program. The assumptions are: 

1) Each day is divided into two blocks (a morning and an afternoon block) 

with a lunch break in between. 

2) Cases that cannot be finished in the morning will use the time in the 

lunch break. 

3) Cases that cannot be finished during regular hours and the lunch break 

will be pushed to overtime. By law, overtime cannot exceed 4 hours. 

4) If there is no available bed in the PACU when a case finishes in OR, 

the patient has to recover in OR until there is an available bed in 

PACU or fully recovered.  

5) A user-specified capacity in each room is reserved for emergency 

surgeries.  

6) Case durations and recovery times are known.  
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7) Surgical demand is not greater than the capacity. 

4.2.Mathematical model 

Decision variables are in uppercase letters throughout this dissertation. 

Furthermore, the results of some decision variables would feed the next phase, 

such as the decision variable of block allocation to surgical groups in Phase 1.1, 

and they will be changed to lowercase in the next phase but the same notation is 

kept for consistency. In Phase 1, the planning problem is to allocate surgeons and 

patients with time blocks.  

Notation in Phase 1: 

Nn ∈  index of room 

Ss ∈  index of specialty 

Mm∈  index of surgical group 

Rr ∈   index of surgeon 

Pp∈   index of patient 

Tt∈   index of time block (2 blocks per day) 

rmsurg   1 if surgeon r is in surgical group m, 0 otherwise 

mssurs   1 if surgical group m is in specialty s, 0 otherwise 

ntra   1 if room n is available in block t, 0 otherwise 

nsrs   1 if room n can be assigned to specialty s, 0 otherwise 

pτ   estimated surgery time of patient p 

pdd   due date of patient p 

pspts   1 if patient p is in specialty s, 0 otherwise 
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prpg   1 if patient p can be assigned to surgeon r, 0 otherwise 

rtsa   1 if surgeon r is available in block t, 0 otherwise 

mtpr   1 if surgical group m does not prefer block t, 0 otherwise 

tbrk   length of the lunch break after block t 

tcap   capacity of block t per room 

te   emergency demand in block t (from historical data) 

ut   target block usage in an open OR 

ot   maximum possible overtime per room per day 

1α   relative weight factor of objectives in model 1.2 

21,cc   cost of under-utilization and overtime, respectively 

 

The objective of Phase 1.1 is to find a cyclic operation schedule. The 

decision variables include:  

nstX   1 if specialty s is assigned room n in block t, 0 otherwise 

nmtY   1 if surgical group m is assigned room n in block t, 0 otherwise 

MIP formulation of phase 1.1: 

Min ∑∑ ∑ 








m t n

nmtmt Ypr               (1) 
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nst raX ≤∑         TtNn ∈∈∀ ,                                    (2) 
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nst rsX ≤∑         SsNn ∈∈∀ ,                (3) 
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{ }1,0, ∈nmtnst YX         , , ,n N m M s S t T∀ ∈ ∈ ∈ ∈             (7) 

The objective (1) minimizes the dissatisfaction of surgical groups. 

Constraints (2) ensure that each OR is assigned to at most one specialty at one 

time only if the room is available. Constraints (3) indicate that each OR may be 

assigned to one specialty at one time only if the room can be assigned to that 

specialty. Constraints (4) ensure that each OR is assigned to at most one specialty 

at one time only if at least one surgeon of the specialty is available in that time 

block. Constraints (5) guarantee that a surgical group is assigned to an OR at one 

time only if their specialty is assigned with the time block. Constraints (6) 

indicates that the amount of ORs assigned to each surgical group in a time block 

has to be at most the number of surgeons available in that block. Constraints (7) 

ensure all the variables in this model are binary. 

Phase 1.2 is to assign patients to time blocks. The decision variables are:  

rptZ   1 if patient p is assigned to surgeon r on block t, 0 otherwise 

−
ntU   under-utilization in room n on block t 

+
ntU   over-utilization in room n on block t 
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pW   waiting time of patient p on the waiting list after the due date. 

The result of nmtY  from Phase 1.1 is input to Phase 1.2 and presented as 

nmty . 

MIP formulation of phase 1.2: 

Min ( ) ( ) ∑∑∑ ⋅−+⋅+⋅⋅ −+

p

p

n t

ntnt WUcUc 1211 1 αα            (1) 

( )∑ ∑∑ 
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, , 0nt nt pU U W+ − ≥         , ,n N p P t T∀ ∈ ∈ ∈          (11) 

{ }1,0∈rptZ         TtPpRr ∈∈∈∀ ,,           (12) 

The objective (1) minimizes the weighted total of under- and over-

utilization costs and waiting time of patients after due dates. Due dates could be 

determined by the threshold that the hospital imposes on patient waiting time, or 

estimated by the surgeons. Constraints (2) ensure that each patient is assigned to 

at most one surgeon in the same specialty, only if the surgical group that the 

surgeon is in is assigned to that block. Constraints (3) indicate that each patient 

must be assigned to a surgeon that can be assigned to this patient, as sometimes 

surgeons bring their own patients to the hospital. Constraints (4) guarantee that 

each patient is assigned to at most one surgeon at one time. Constraints (5) and (6) 

ensure that the operating room is scheduled within the capacity and overtime limit 

in each individual block and each day, respectively. Constraints (7) define the 

under-utilization as the difference between the target usage and the total surgery 

time in a block, if the operating room is available and there is under-utilization. 

Constraints (8) define the over-utilization as the difference between the sum of 
all surgery time and the sum of capacity and lunch break of a block, if there is 

overtime. For a scheduled patient p, if scheduled after due date, the waiting time 

on the waiting list is defined in constraints (9) as the difference between the date 

that he/she is scheduled and the due date. For an unscheduled patient p, since 

he/she will be scheduled at least one day after the planning horizon 2T , the 
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waiting time is defined in constraints (10) as the difference between ( 2T + 1) and 

the due date. Constraints (11) and (12) are the integrality constraints. 

In Phase 2 patients are sequenced in each room block.  

Notation: 

Nn∈   index of OR 

Bb∈   index of beds in PACU 

Pp∈   index of patient 

Nw 2∈  index of room block 

{ }1,0∈k  index of stage, 0 if a patient is in OR, 1 if a patient is in PACU. 

pτ   estimated surgery time of patient p 

pυ   estimated recovery time of patient p 

l   a very large number 

2α   relative weight factor of the objectives 

tm   regular morning hours including lunch break 

cap   capacity in each room 

Decision variables: 

nOT   overtime in OR n 

BM   total number of beds in PACU 

wMW   makespan in room block w 

pkX   start time of patient p in stage k 

pS   recovery time of patient p in OR  
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'ppOR   1 if patient p proceeds patient p’ in the same OR, 0 otherwise 

'ppPACU  1 if patient p proceeds patient p’ in the same PACU bed, 0 

otherwise 

bpF   1 if patient p is assigned to bed b, 0 otherwise 

Note that we have a decision variable pS  to represent the recovery time of 

patients in OR. This is because of our assumption (4), which indicates patients 

have to recover in OR if there is no available bed in PACU. The result of rptZ  in 

Phase 1.2 is input to Phase 2 and presented as wpz , indicating if patient p is 

assigned to room block w.  

MIP formulation of phase 2: 

Min ( )BMOT
n

n 22 1 αα −+∑              (1) 

10 pppp XSX =++τ         Pp∈∀              (2) 

( ) wpppwp MWSDurXz ≤++⋅ 00         NwPp 2, ∈∈∀           (3) 

nn OTcapMWTM ≤−+ +12         Nn∈∀              (4) 

nnn OTcapMWMW ≤−+ +122         Nn∈∀              (5) 

( )''0'00 3 wpwppppppp zzORlXSX −−−⋅+≤++τ    

',',,2 ppPpPpNw ≠∈∈∈∀               (6) 

( )''0''0' 2 wpwppppppp zzORlXSX −−+⋅+≤++τ        

 ',',,2 ppPpPpNw ≠∈∈∈∀                (7) 

( )''1'1 3 bpbppppppp FFPACUlXSX −−−⋅+≤−+υ        
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',',, ppPpPpBb ≠∈∈∈∀               (8) 

( )''1''1' 2 bpbppppppp FFPACUlXSX −−+⋅+≤−+υ     

',',, ppPpPpBb ≠∈∈∈∀               (9) 

BMFb bp ≤⋅         BbPp ∈∈∀ ,            (10) 
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ppS υ≤         Pp∈∀              (12) 

, , , , 0pk n p wX OT S MW BM ≥         , ,n N p P w W∀ ∈ ∈ ∈                    (13) 

{ }1,0,, '' ∈bppppp FPACUOR         , , 'b B p P p P∀ ∈ ∈ ∈         (14) 

The objective (1) minimizes the weighted total of overtime in all ORs and 

the largest number of beds used in PACU during the day, because as we indicated 

earlier, the staffing level in PACU is usually determined by the peak demand in 

hospitals. In this phase, constraints (2) ensure that each patient completes the 

operation and recovery in OR before transferred to PACU. Constraints (3) 

guarantee that all patients assigned to a room block finish their operations within 

the makespan of that room block. Constraints (4) and (5) define the overtime of 

an OR as the difference between the summation of makespan in the morning and 

the afternoon, and the daily capacity, if there is overtime in the morning; if not, it 

is defined as the difference between the summation of morning capacity including 

lunch break and the makespan in the afternoon, and the daily capacity. Constraints 

(6) and (7) indicate that an OR cannot have more than one patient scheduled at a 

time. Constraints (8) and (9) ensure that a bed in PACU not be occupied by more 
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than one patient at a time. Constraints (10) indicate that the assigned beds have to 

be less than the maximum number of beds in PACU. Constraints (11) indicate that 

all patients who are not fully recovered in OR must be scheduled in PACU and 

can only be assigned to one PACU bed. Constraints (12) guarantee that the 

recovery time of patients in OR no to exceed the estimated recovery time. 

Constraints (13) and (14) are the integrality constraints. 

4.3.Heuristics and RKGA 

Since phase 2 is done on a daily basis, we construct heuristics and RKGA 

for this phase. The complexity of doing an exhaustive search is first analyzed. 

Suppose we have 6 patients in each room, and 3 patients in each room block. 

Thus there are 16 room blocks (8 rooms with 2 time blocks each), the complexity 

of the patient sequencing problem is then ( ) 1216
108.2!3 ×= . In general, the 

complexity is ( )( )n
pO ! , where p is the number of patients in each room block, n is 

the number of room blocks. 

Heuristic 1 – Johnson’s rule  

The first heuristic is to minimize the overtime without considering the 

number of beds in PACU ( 12 =α ). Since this phase is similar to a two-step flow 

shop scheduling problem, we apply Johnson’s rule for each OR, i.e. order all the 

patients and find the start and finish times in OR and PACU.  

Heuristic 2 – Minimum beds  

The second heuristic is to minimize the number of beds in PACU without 

considering the overtime ( 02 =α ). We fix the number of beds to one to minimize 
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the objective. Then we order patients in each room block in increasing order of 

recovery time. Patients cannot leave the OR until they are fully recovered in the 

OR or the PACU bed is available.  

Heuristic 3 – Modified Johnson’s rule  

The third heuristic aims to compromise to both objectives ( 2 0.5α = ). We 

first apply Johnson’s rule to order patients as in Heuristic 1 and get the solution, 

then reduce the number of beds by half (if non-integral, take the ceiling). Fix the 

number of beds all through the day. Keep the order of patients as in Johnson’s 

rule, but similar to Heuristic 2, patients cannot leave the OR until they are fully 

recovered in the OR or the PACU bed is available. 

Random Keys Genetic Algorithm 

Introduced by Holland (1975), Genetic Algorithm (GA) is an adaptation 

procedure based on the mechanics of natural genetics and natural selection. GA 

efficiently searches the solution space globally by combining the existing 

solutions to form new ones. We refer to (Davis, 1991) and (Goldberg, 1989) for a 

detailed introduction to genetic algorithms.  

GA starts by initializing a population, of which each individual 

“chromosome” represents a solution of the problem in the form of a string 

structure. Then a fitness value is calculated to assess the relative quality of each 

individual. The optimization process of GA takes advantage of three GA 

operators: selection, crossover, and mutation. The selection operator uses the 

fitness value to adjust the survival probability of each individual in the population. 

The probabilities are used to randomly select survivors to generate offsprings. The 
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crossover operator combines pairs of individuals in the current population 

(parents).   The mutation operator chooses a random position in a chromosome, 

and changes the value to a new randomly selected value. 

A common problem for combinatorial applications of genetic algorithms 

is that some operations may create infeasible solutions. Attentions of researchers 

have been attracted to fix this problem in different ways, the most commonly used 

ones of which are to “repair” the algorithm repeatedly after a generation to 

recreate only feasible solutions. However, the repair is computational expensive 

and may cause convergence (Michalewicz, 2000; Haral et al., 2006). Bean (1994) 

has introduced an alternative method to encode problem solutions using random 

numbers called RKGA, which is known as a better alternative for this type of GA 

applications. RKGA differs from traditional GA mostly in the solution 

representation. Specifically, a random number encoding structure is used in the 

chromosomal representation to avoid creating infeasible chromosomes during 

traditional GA crossover. In our study, the chromosome is represented in the form 

of ROOM_BLOCK.KEY. For example, the representation of a chromosome in 

the patient sequencing problem in two room blocks would be in the following 

form, as an instance: (2.93854, 2.75581, 1.28560, 2.00645, 1.65938). Each 

number represents a patient. The part of the number to the left of the decimal is 

used to assign room blocks and the part to the right is used to assign the sequence. 

In the example chromosome, the first, second and fourth patient would go to room 

block 2, and the fourth patient is scheduled first because it has the smallest key, 
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followed by the second and the first one. Similarly, the third and the fifth patient 

would go to room block 1, and the third one is before the fifth one. 

4.4.Interactions between two phases 

As we stated in section 2, most of the literature has decomposed the 

problem into two phases. However, both these steps interact with each other in 

reality. The allocation of capacity may affect the performance of daily scheduling. 

Therefore, in this study we also consider treating both Phase 1.2 and 2 

simultaneously and compare with decomposed solutions. We do not consider 

Phase 1.1 because this phase is a higher level planning of capacity, in which 

decisions are made upon how much capacity to allocate to each surgical group. 

This is done for a much longer planning horizon (sometimes longer than a year) 

and patients and individual surgeons are not involved. Thus, we start by 

developing an MIP model that includes both the planning over a short time 

horizon (one or two weeks) and the scheduling in each single day. The model can 

be found in Appendix A. Then, we use the same data for both situations to see 

how much loss of optimality there would be from the decomposition. 

5. Computational results 

5.1.Input data 

Our data is from an outpatient clinic of a major healthcare provider. 

There are eight operating rooms, four clinical specialties with a total of 36 

surgeons. The average case duration and number of surgeons in each specialty is 

shown in Table 10. When blocks are fixed for surgical groups, mean surgery 

durations are typically used to determine whether the cases fit in the block (2007).  
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By summing up the surgery time and number of patients for all 

consecutive two weeks, from August 2005 to July 2006, the maximum, mean and 

minimum bi-weekly surgery demand are identified and present in Table 11.  

Table 10 

Data analysis by specialty 

Specialty 
Average case 

duration (min) 

Number of  

surgeons 

Pain clinic 26 11 
Urology 60 8 

Ophthalmology 51 12 
Oral Maxillofacial 40 5 

 
Table 11  

Bi-weekly demand analysis 

 Dates 
Bi-weekly total 

surgery time 

Bi-weekly total 

number of patients 

Maximum 06/05/2006 - 06/16/2006 18350 451 
Mean 02/13/2006 - 02/24/2006 15781 377 

Minimum 12/26/2005 - 01/06/2006 9628 264 

 
5.2.Results of Phase 1 

We conduct experimentation for each of the MIP formulations. These 

formulations are modeled with C++ and CPLEX version 11.0 is used to solve the 

problem instances. The experiments were run on a 2.66GHz PC with 4GB RAM.  

The objective value of optimal solutions of Phase 1.1 is simply the number 

of unsatisfied surgeon preferences. In the data there is no record of surgeon 

preferences. We suppose all surgeons choose 30% of the capacity to be their 

preferred time within their available time. Surgeons can be assigned available but 

not preferred blocks, although that would cause the increase in objective value. 
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We have three levels in demand (maximum, mean and minimum). To analyze the 

impact of the number of surgical groups, we use four levels (1, 2, 3 and 4 groups 

in each specialty). Optimal solutions of Phase 1.1, which is the number of 

unsatisfied preference in each scenario, is listed in Table 12.  

Table 12  

Computation results of Phase 1.1 

Number of groups 1 2 3 4 

Min Demand 9 11 12 15 

Mean Demand 13 15 18 24 

Max Demand 16 19 22 33 

 
The optimal solutions of Phase 1.1 for different demand volumes are input 

to Phase 1.2. In this phase, we have three levels in demand and four levels of 

surgical groups as in Phase 1.1, and five different values of weight factor 1α  (0.1, 

0.3, 0.5, 0.7, 0.9). The results of Phase 1.2 are presented in Figure 6. Different 

shapes of dots in the figures represent the results with different number of groups 

in each specialty as indicated in the top right legend. 
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Figure 6. Results of Phase 1.2 
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As can be seen from the results in both Phase 1.1 and Phase 1.2, the 

performance of more groups in each specialty is dominated by that of fewer 

groups. This is as expected because having more surgeons in a group brings more 

flexibility. The result also supports the findings in several previous studies that 

the block scheduling approach is preferred over the open scheduling approach 

because the former yields a better utilization, as mentioned in section 3.2.  

Then we choose the data with mean demand as a representative to analyze 

the weighted total of two objectives to find the relationship between the increment 

in the number of groups and the objective value. In Figure 7, the connected lines 

represent the change in objective value with different weight factors while 

increasing the number of groups.  As we can see from the figure, objective value 

increases nonlinearly as the number of groups increases. 
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Figure 7. Impact of changing number of groups in weighted sum of multi-

objectives 
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Figure 8. Impact of changing number of groups in computation time 

Figure 8 shows the change in computation time with different numbers of 

groups. As is shown in the figure, when the number of groups goes up from 1 to 3, 

not much increase in computation time is observed, but at 4 groups there is a 

dramatic increase. Thus from our results we conclude that there is a nonlinear 

increasing trend in computation time when to the number of groups goes up. 

5.3.Results of Phase 2 

One day is picked randomly and we solve daily scheduling problem using 

MIP, RKGA and all the heuristics we proposed. The comparison of the results is 

can be found in Figure 9 and Table 13 (GA Population size: 1000. Number of 

generation: 500). 
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Figure 9. Comparison of MIP, RKGA and heuristics 

As can be seen from the results, RKGA perform very close to optimum 

while using much less computation time than the MIP. The heuristics are simple 

to implement, consuming even less time, but Heuristic 1 and 2 are lacking the 

compromise between the two objectives. Figure 9 illustrates the trade-off between 

the objectives. Managers can make decisions on the schedule based on their own 

criteria. 
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Table 13  

Comparison of the results with MIP, RKGA and Heuristics 

2α  

MIP RKGA Heuristics 

Over-

time 

Number 

of Beds 

Comp.  

Time 

(sec) 

Over-

time 

Number 

of Beds 

Comp.  

Time 

(sec) 

Over-

time 

Number 

of Beds 

Comp.  

Time 

(sec) 

0 1020 1 7258 217 2 162 1159 1 38 

0.2 119 2 19320 76 3 289 

143 4 71 
0.4 48 3 27256 56 4 125 

0.6 38 4 20667 56 4 311 

0.8 0 7 34153 2 6 284 

1 0 7 5114 0 7 192 0 7 23 

 
5.4.Analysis of interactions between two phases 

In the combined model in Appendix A, room blocks are used in both 

phases instead of time blocks to standardize the time unit. The cost of under-

utilization, overtime and staffing in PACU is combined to one objective, and 

waiting time of patients is the other. We fix the relative weight factor to 0.5. In 

the decomposed model, we use the same value of weight factor. Since both Phase 

1.2 and Phase 2 aim to minimize the cost of overtime, the optimal objective value 

will only be taken from Phase 2. Due to the increase in complexity, the number of 

days in a planning horizon is limited to one week. The experimental design and 

results can be found in Table 14. 

  



   

56 

Table 14 

Analysis of interactions between two phases 

Number 

of 

days 

Number 

of rooms 

Gap to optimum by 

decomposition  
Computation time 

Min 

Demand 

Mean 

Demand 

Max 

Demand 

Average time (sec) 

Difference 
Optimum 

Decom-

posed 

3 

2 1.29% 1.84% 2.89% 42459 77 99.82% 

4 2.33% 3.38% 4.37% 73681 88 99.88% 

6 3.76% 4.96% 5.91% 89878 135 99.85% 

8 5.17% 6.23% 7.10% 116763 146 99.87% 

5 

2 2.04% 2.71% 3.82% 86642 91 99.89% 

4 3.28% 4.50% 5.60% 128939 126 99.90% 

6 4.85% 6.21% 7.73% 169086 168 99.90% 

8 7.22% 9.06% 10.51% 193771 219 99.89% 

 
Overall, the solution obtained from the decomposed model is close to 

optimal (1%-11% gap). At the same time, the computational time is greatly 

reduced by around 99% (from several hours to less than an hour) through 

decomposing the two phases. The results also show the impact of interaction 

increases as 1) the planning horizon increases; 2) the size of operating department 

increases; 3) the demand increases. The impact of number of rooms is slightly 

greater than the number of days. Consequently, in practice if there are many 

rooms in the facility or the demand is very high, to decrease the effect of 

decomposition, hospitals could choose a shorter planning horizon for Phase 1.2. 

6. Conclusions 

In this chapter we have introduced a modeling approach to OR planning 

and scheduling. The problem is modeled in two phases with MIP. We consider 
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multiple criteria while evaluating the performance of the planning and scheduling, 

including OR utilization and overtime, surgeons’ preference, patient waiting time 

and patient flow from OR to PACU. The exact solution from Phase 1 illustrates 

the trade-offs between operational objectives and patient/surgeon satisfaction 

objectives. Also it shows that fewer number of surgeon group yields better 

performances. In the second phase, we first obtain the optimal solution from MIP. 

Due to the complexity and computation time considerations, three heuristics and 

RKGA are developed, from which close-to-optimal solutions can be derived 

much more efficiently. The impact of decomposing the problem is found to be 

~11% loss in the optimality, which is tolerable considering the 90% saving in 

computation time.  

In the study we assumed that all procedure times are deterministic. A 

simulation model would be a useful extension to the study. The optimal solution 

from the MIP model can be tested in the simulation model that captures some of 

the randomness of the processes (for instance, surgery time, demand, and arrival 

time). 
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CHAPTER 4 

A MULTI-OBJECTIVE SIMULATION OPTIMIZATION APPROACH TO 

OPERATING ROOM SCHEDULING 

1. Introduction 

The surgery scheduling problem involves several conflicting objectives, 

such as patient satisfaction and operational cost. Improving one objective may 

depreciate the performance of one or more other objectives. Traditional 

approaches for solving multi-objective optimization problems try to scalarize the 

multiple objectives into a single objective and change the problem formulation 

into a single objective optimization problem in which only one global optimal 

point is desired. However, there are several drawbacks to scalarize objectives, 

such that the priority vector is playing a key role in the final solution, and some 

alternative solutions may not be available to decision makers without changing 

the priority vector. Although some optimization techniques, such as goal 

programming, genetic algorithms (GA), and simulated annealing have been used 

to deal with multiple objectives, they often fail to capture the uncertainties in 

health care practice. 

DES is a powerful tool in evaluating complex health care systems and 

answering “what if” questions. There have been extensive studies on using DES 

to study health care operations (Dexter et al., 1999b; Everett, 2002). It allows 

hospital managers to include most of the randomness in reality. However, 

practical questions are often seeking optimum values for the decision variables 

and thus exploratory process for optimal solutions is needed.   
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Simulation optimization is the process of finding the best values of some 

decision variables for a system where the performance is evaluated through 

simulation (Fu, 2002). It conquers the difficulties in optimization to incorporate 

randomness and guides the simulation to find the optimal solution efficiently. Due 

to the uncertainty nature in the health care industry, there have been some efforts 

on applying simulation optimization in health care (Angelis et al., 2003; Ahmed 

& Alkhamis, 2009; Baesler et al., 2001) while no previous literature is found to 

apply simulation optimization in OR scheduling to our best knowledge. In this 

chapter, we use simulation optimization to model and solve the surgery 

scheduling problem. By combining RKGA and NSGA-II as the optimization 

algorithm in multi-criteria simulation optimization, it can also be applied in 

general scheduling problems.  

In addition, we would like to investigate answers to the following 

important questions from the managerial perspective: 

1) What is the optimal length of time block for each case?  

2) How much impact does patient no-show have on the scheduling 

performance?  

3) How much impact does the downstream resource have on the 

scheduling? 

The rest of the paper is organized as follows. The next section gives an overview 

of previous literature related to our study. In section 3, the problem is described 

and modeled as mixed integer programs (MIP). Our simulation optimization 

methodology is illustrated in section 4, followed by experimental results in 
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section 5. In section 6 the managerial questions are analyzed. Finally, we discuss 

our conclusions and future research directions. 

2. Literature review 

2.1.Operational research in OR scheduling 

Operating room scheduling problems have gained much attention in the 

operational research area and have been extensively studied recently due to the 

increased importance of providing health services efficiently and effectively. 

Cardoen et al. (2010) provides a review of recent operational research literature 

on operating room planning and scheduling. One of the major problems 

associated with the development of accurate OR scheduling is the uncertainty 

inherent to surgery services. Deterministic scheduling approaches ignore such 

uncertainty or variability, which is essential for solving realistic problems. 

Stochastic approaches try to incorporate uncertainties related to surgery durations 

and patient arrivals (Cardoen et al., 2010; Erdogan & Denton, 2009). However, 

many other aspects of uncertainty in reality, including availability of downstream 

resources, patient no-shows and accommodation of add-on cases that arise on 

short notice, are still open in existing stochastic optimization literature on surgery 

scheduling (Denton et al., 2007; Denton et al., 2009). 

2.2.The use of simulation optimization in health care 

There have been several efforts in developing simulation optimization 

models for solving problems in healthcare management in the last decade, though 

none has been found in surgical scheduling. Angelis et al. (2003) use simulation, 

estimation of target function and optimization interactively to assign servers and 
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facilities to different services in a health care. Ahmed and Alkhamis (2009) 

design a decision support system for the operation of an emergency department 

that uses simulation optimization to determine the optimal number of staff to 

maximize patient throughput and to reduce patient time in the system subject to 

budget constraints. Baesler and Sepulveda first introduce an approach by 

integrating GA with goal programming (2000), and then apply their methodology 

to design a cancer treatment facility (2001). They consider patients’ waiting time, 

closing time, and nurse and chair utilization as performance measures. 

2.3.Multi-objective simulation optimization 

Most of the applications of simulation optimization have been single 

objective problem. In the literature there are limited attempts to multi-objective 

simulation optimization problems (Table 15). The majority of them are focused 

on response surface methodology and interactive procedures. The major 

drawbacks are local optimality and lack of automated direct search.  

There have been a few papers considering operation scheduling problems 

using simulation optimization. Almeida et al. (2003) introduce a simulation-based 

approach for multi-objective optimization of operation scheduling in a petroleum 

refinery, which is based on GA combined with a multi-objective energy 

minimizing method. Allaoui and Artiba (2004) use a combined method of 

simulated annealing and dispatch rules for flow shop scheduling problems. Gupta 

and Sivakumar (2002) propose an approach based on compromise programming 

for operation scheduling in semiconductor manufacturing and apply the method to 

find a Pareto optimal solution of a NP-hard problem. 
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Table 15 

Summary of multi-objective simulation optimization literature 

Author (Year) Methodology Application 

Mollaghasemi et 
al. (1991) 

Integrate gradient search and multiple 
attribute value function 

  

Mollaghasemi & 
Evans (1994) 

STEP method (to minimize the 
maximum deviation of objectives 
from the ideal solution using relative 
weight of deviations) 

A job shop model 

Teleb & Azadivar 
(1994) 

Interactive approach   

Boyle & Shin 
(1996) 

Interactive approach   

Beasler & 
Sepulveda (2000) 

Integrate GA, goal programming and  

Cancer treatment 
facility design 
(Beasler & 
Sepulveda, 2001) 

Joines et al. 
(2002) 

Modified NSGA-II  
Supply chain 
optimization 

Gupta & 
Sivakumar (2002) 

Compromise programming 
Scheduling in 
semiconductor 

Almeida et al. 
(2003) 

GA combined with multi-objective 
energy minimizing method 

Scheduling in 
petroleum refinery 

Allaoui & Artiba 
(2004) 

Simulated annealing combined with 
dispatch rules 

 Flow shop 
scheduling 

Eskandari et al. 
(2005) 

Integrate stochastic nondomination-
based multi-objective optimization 
technique and GA 

  

Willis & Jones 
(2008) 

Heuristic search algorithm and 
database technologies 

  

Zsakerifar et al. 
(2009) 

Kriging metamodeling 
 (S,s) inventory 
system 

 
2.4.Original contributions of this research 
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This study develops a modeling framework using simulation optimization 

to assist the OR scheduling in hospitals, serving as an alternative which conquers 

the difficulties in pure simulation and optimization. We take into account of 

uncertainty in practice, including actual start time and duration of surgeries, 

downstream resources and patient no-shows.  

Multiple objectives are considered, including patients’ waiting time and 

operational cost composed of overtime and under-utilization cost, the staffing cost 

in Post Anesthesia Care Unit (PACU), and the fixed cost of opening OR. RKGA 

and NSGA-II are combined as the optimization algorithm in multi-criteria 

simulation optimization for the first time. Pareto optimal solutions are compared 

and shown to be outperforming single objective simulation optimization and pure 

GA. 

3. OR scheduling problem formulation 

In this study, we investigate the surgery scheduling problem which 

consists of multiple OR and a set of patients, under uncertainty. The objective is 

to minimize patient waiting and operational cost. Each patient goes through two 

stages: surgery in OR and recovery in PACU, both having stochastic durations. 

There is a possibility that some patients do not show up for the surgery.  

Block scheduling is used, with which a block of time (usually one-half or 

a full day) is allocated to one surgeon. There is a lunch break in the middle of the 

day. Patients are then assigned to blocks and reserved a certain period. The length 

of the period is usually determined by the distribution of the particular type of 

patients. The planning horizon can vary from one to several days. We assume all 
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patients are independent and available to be scheduled at time 0, and if showing 

up on the day of surgery, patients arrive at the beginning of the period. Upon 

arriving, if the previous patient is not finished in the OR, a patient has to wait 

until the previous patient finishes. PACU resource is assumed to be shared by 

patients from all OR.  

The problem is formulated as a mixed integer program as follows. 

Deterministic Parameters 

Rr ∈  index of room 

t T∈   index of day 

Ss ∈  index of specialty 

Ii∈   index of room block 

Pp ∈   index of patient 

ibrk   length of the lunch break after room block i 

ira   1 if room block i is available to schedule cases, 0 otherwise 

rsrs   1 if patients in specialty s can be assigned to room r, 0 otherwise 

ot   maximum possible overtime per room per day 

1α   relative weight factor of objectives in model 1.2 

cuco,   cost of overtime and under-utilization, respectively 

cr   fixed cost of opening an OR 

cb   cost of staffing in PACU 

ie  capacity reserved for emergency patients in block i (from historical 

data) 
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pε   estimated surgery time of patient p 

pspts   1 if patient p is in specialty s, 0 otherwise 

piptb   1 if patient p has to be assigned to room block i, 0 otherwise 

icap   total capacity in room block i 

λ   relative weight factor of the two objectives 

Random Parameters 

pτ   actual surgery time of patient p 

pυ   actual recovery time of patient p 

pns   1 if patient p shows up, 0 otherwise 

Decision variables  

piAS   1 if patient p is assigned room block i, 0 otherwise 

'ppOR   1 if patient p proceeds patient p’ in the same OR, 0 otherwise 

'ppPACU  1 if patient p proceeds patient p’ in the same PACU bed, 0 

otherwise 

bptF   1 if patient p is assigned to bed b on day t, 0 otherwise 

iP   1 if room block i is open, 0 otherwise 

pS   recovery time of patient p in OR 

Resultant variables  

iOT   overtime in room block i 

iUT   utilization in room block i 
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tBM   number of beds in PACU used on day t 

piX1   start time of patient p in OR in room block i  

2ptX   start time of patient p in PACU on day t 

pW   waiting time of patient p after their scheduled time 

pARR   scheduled arrival time of patient p 
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The objective (1) is to minimize the weighted total of cost and patients’ 

waiting time. The cost is composed of the cost of overtime and under-utilization 

in the OR, the staffing cost in PACU on each day, and the fixed cost of opening 

OR. Constraints (2) ensure each patient is assigned to at most one room block that 
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is open, in the same specialty, and they can be assigned to that block. Constraints 

(3) ensure each patient completes all operations in OR before transferred to 

PACU. Constraints (4) and (5) guarantee that each OR block is scheduled within 

the capacity and overtime constraint. Constraints (6) and (7) define overtime and 

under-utilization, respectively. Constraints (8) define the scheduled start time of 

each patient. Constraints (9) indicate that the waiting time is the difference 

between the actual start time and the scheduled start time of a patient, if there is 

waiting for that patient. Constraints (10) and (11) ensure that OR cannot be 

occupied by more than one patient at a time. Constraints (12) and (13) guarantee 

that a bed in PACU not occupied by more than one patient at a time. Constraints 

(14) ensure the index of assigned beds is less than the maximum number of beds 

in PACU. Constraints (15) indicate that all patients who are not fully recovered in 

OR must be scheduled in PACU and can only be assigned to one PACU bed. 

Constraints (16) indicate that the recovery time in OR cannot exceed the actual 

recovery time needed for all patients 

4. RK-NSGA-II based simulation optimization methodology 

GA were introduced by Holland (1975) as a methodology to adaptively 

search for solutions to complex problems based on the mechanics of natural 

genetics and natural selection. The procedure involves representing solutions as 

“chromosomes” and generating new population of chromosomes through 

randomly choosing and changing chromosomes. In this study, the main 

optimization routine that we use for searching schedules is developed based an 

RKGA implementation of NSGA-II, which we call “RK-NSGA-II”. The 
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chromosomes are represented using the random number encoding structure of 

RKGA, and new populations are generated by the operators of NSGA-II. We will 

explain these two different types of GA in detail as follows. 

4.1.RKGA 

GA chromosomes are usually strings of numbers that represent the 

solution to the problem or can be decoded to represent the solutions. As an 

important operator of GA, crossover can cause infeasibility when applying GA to 

scheduling problems (Haral et al., 2006). Introduced by Bean (1994), RKGA uses 

random number encoding structure in the chromosomal encoding to avoid 

creating infeasible chromosomes during traditional GA crossover. For the surgery 

scheduling problem, if using a p-dimensional vector representing the order of p 

patients to for chromosomes, by applying crossover, two types of infeasibility 

may be created: (1) patients may be assigned to the room that may be constrained 

to their specialties; (2) some patients may be repeated or omitted. Using RKGA, a 

2-dimensional vector consisting of two random numbers (keys) for each patient 

can avoid such problems. Two keys are generated randomly from 0 to 1. The first 

key decides which room block the patient would be assigned. The second key 

decides the sequence of patients in each room. 

For example, the chromosome of one patient contains the following key: 

(0.3245, 0.1287). Assume the patient can be assigned to four room blocks (3, 4, 7, 

8). Dividing 1 into four equal intervals, 0.3245 would fall in the second interval 

from 0.25 to 0.5. Thus the patient would go to room block 4. After all patients are 
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assigned to room blocks, they are sequenced according to the increasing order of 

the sequence key. 

4.2.NSGA-II 

NSGA-II was first introduced by Deb and Goel (2002). We adopt NSGA-

II as our GA operator because it outperforms over other multi-objective GA in 

generating Pareto frontier (2006). In the NSGA-II evolutionary process, 

individuals are first selected from the current generation to be parents based on 

the fitness, which is determined by a ranking process for a Pareto-based multi-

objective GA. The rank is determined by its Pareto dominance in the current 

population. To maintain a good spread of solution set, crowding distance is 

calculated to estimate the density of the individuals surrounding a particular 

individual in the population. It is done for a solution point by calculating the 

average distance of two points on either side of the point along each of the 

objectives. The logic of one generation of NSGA-II can be found in Figure 10. 









 

Figure 10. Main loop of NSGA-II 
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4.3.Modeling framework 

The main logic of our approach is present in Figure 11. First, the 

information of patients is input and a set of configurations and the random keys 

are generated to form the initial population of GA. These individuals are then 

translated to surgery schedules which consist of the assignment and sequence of 

all patients. A simulation model is run for each configuration and the output is 

recorded. The values are ranked according to dominance and thus the 

nondomination frontiers can be found. Crowding distance is calculated to 

distinguish individuals that have the same rank. The Pareto optimal set is then 

updated and checked with stopping criteria. If the stopping criteria are not 

satisfied, the traditional GA selection, crossover and mutation are performed and 

the new population generated is repeating this process from the beginning. On the 

other hand, if not satisfying the stopping criteria, the current Pareto optimal set is 

the final result. 

Elitist is guaranteed by the flow of the NSGA-II algorithm, i.e. the first 

front (which is the Pareto optimal set of a generation) is always kept in the next 

generation. A stopping criterion is adopted based on the convergence speed 

towards the Pareto optimal curve. If in a pre-specified number of consecutive 

generations, no considerable improvement is found in the quality of the Pareto 

optimal curve, the algorithm is stopped. Alternatively, the algorithm could be 

stopped after a specific number of generations. 
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Figure 11. Simulation optimization framework 

5. Computational experiments 

5.1.Data description 

The data in this study are provided by an outpatient clinic of a major 

health care provider in the US. A sample of 10570 surgeries from August, 2005 to 

February, 2007 is used. We categorize patients by specialty and allocate time 

accordingly, as there is statistical difference with 99% confidence among the 

surgery times. All surgery and recovery times follow Weibull distribution. The 

mean, 65th percentile, 75th percentile and 85th percentile of each specialty are 

shown in Table 16. We use planning horizon of one week in this study, which can 
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be adjusted in practice. The maximum, mean and minimum number of patients 

per week in the sample data is present in Table 17. 

Table 16  

Surgery duration (min) 

Specialty Mean 
65th 

percentile 

75th 

percentile 

85th 

percentile 

Anesthesiology 27 26 30 36 

Urology 60 60 72 97 

Ophthalmology 51 48 56 71 

Oral & Maxillo Surg 40 43 49 58 

  
Table 17  

Weekly demand 

 Dates Number of patients 

Maximum 06/12/2006 - 06/16/2006 228 
Mean 08/29/2006 - 09/02/2006 196 

Minimum 11/21/2005 - 11/25/2005 159 

 
5.2.Implementation of the simulation-optimization methodology 

The simulation optimization model is implemented in C++ and run on a 

PC with a 2.66GHz processor with 4GB of RAM. We first investigate the 

convergence of the algorithm.  
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Figure 12. Efficient Frontier in 1 – 10000 generations (GA population size: 2000) 

Surgery and recovery durations are randomly generated in the simulation 

module according to the distribution of each specialty. The basic structure as 

shown in Figure 12 is seen in all experiments with different demand pattern and 

different length of duration allocated to each patient. The efficient frontier is 

improved substantially while increasing the number of generations from 1 to 1000. 

Starting from 1000 generations, the variation in efficient frontier between every 

500 generations is much smaller, and the movement of efficient frontier is random 

rather than converging to the ideal point (Figure 13).  
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Figure 13. Efficient Frontier in 1000 – 10000 generations 

The random movement can be interpreted that the variation is caused by 

the randomness in simulation, not the number of generations. Thus we decide to 

choose 1000 as the minimum generations. For the stopping criterion, as stated in 

section 4, the convergence speed, if the improvement in both objectives is less 

than 10% in 50 consecutive generations, the algorithm is stopped. Alternatively, 

the algorithm could be stopped after a sufficient large number of generations, 

which we set to be 3000. 

5.3.Testing the effectiveness by comparing with alternative approaches 

The effectiveness of our approach is tested through comparison with 

single objective simulation optimization with GA operator and pure GA. In both 
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alternative methods, the random keys encoding structure is kept in the GA. In the 

RKGA simulation optimization, since RKGA cannot generate efficient frontier 

directly, we use relative weight factor of cost to from 0 to 1. In pure RKGA, only 

cost is used as the criteria as waiting time cannot be captured without simulation.  

Population size, number of generations, crossover and mutation rates are 

all the same for all approaches. We use 75th percentile of time distribution as the 

allocated duration for each specialty. After running all three approaches, the 

assignment and sequence of patients are obtained, which is input to a simulation 

model and compared performance using common random numbers. The 

performances of the approaches of three demand patterns can be found in Figure 

14. There are two observations from the figure: (1) for two approaches both using 

simulation optimization, our approach using RK-NSGA-II as the optimizer is 

outperforming the RKGA optimizer, especially when the demand is larger; (2) for 

the two approaches both using RKGA as the optimization algorithm, RKGA 

simulation optimization is dominating the solution from pure RKGA, under all 

three demand patterns. 
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Figure 14. Comparison of three approaches 

6. Investigating managerial questions 

6.1.What is the optimal length of time block for each case? 

We investigate the managerial questions mentioned in section 1, starting with 

testing different length of the time allocation for each surgery. Since the 65th 

percentile of case duration is very close to the mean duration in our sample data, 

in the experiment we include the 65th, 75th and 85th percentile of the case 

distribution. The basic structure is seen in all experiments with different demand 

patterns. The result from mean demand is shown in Figure 15. It can be seen that 

as the time allocation increases, the patient waiting time is decreasing, while the 

operational cost is increasing. There is no clear domination between different time 

allocations. Thus the decision maker can choose according to the hospital’s own 

criteria. 
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Figure 15. Pareto frontiers for allocating 65th, 75th & 85th percentile to surgeries 

6.2.How much impact does patient no-show have on the scheduling performance? 

We then use our approach to investigate the impact of no-show on the 

scheduling performance. In this design of experiment, no-show rate has five 

levels ranging from 0% to 20%; no-show occurrence has three types of 

distributions: all day, morning only, or afternoon only. The result is shown in 

Table 18 and Figure 16. 
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Table 18  

Numerical results from the no-show impact analysis 

No-show rate 
Time of  

no-show 

Estimated average 

operational cost 

Estimated average 

waiting time 

0% N/A 3843.92 65.91 

5% 

All day 3870.39 57.53 

Morning 3895.47 51.60 

Afternoon 3847.90 62.90 

10% 

All day 3893.31 51.42 

Morning 3940.25 44.53 

Afternoon 3847.71 65.47 

15% 

All day 3918.22 49.83 

Morning 3990.84 37.19 

Afternoon 3866.03 61.49 

20% 

All day 3939.47 47.13 

Morning 4018.09 38.08 

Afternoon 3848.28 61.58 

 

 

Figure 16. Results from no-show impact analysis 

It is shown that as the no-show rate increases, cost is increasing and 

waiting time is decreasing. Within a day, the earlier the no-show is distributed, the 

higher the cost and the lower the waiting time. Since no-show rate may vary 
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among different specialties, surgical groups or patients (literature), the schedule 

can be adjusted accordingly in practice. Meanwhile, the no-show rate can be 

incorporated while deciding the time allocation of patients’, which is also 

affecting both performance measures as indicated in section 6.1. 

6.3.How much impact does the downstream resource have on the scheduling? 

Next, our approach is used to find if there is statistical difference whether 

considering PACU simultaneously while scheduling or not. After conducting 

experiments for three different level of demand, the result is shown in Figure 17. 

The label of each point indicates the number of beds used in PACU for that 

solution. It is seen to be more costly not to consider PACU in all demand levels. 
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Figure 17. Comparison of the two scenarios 
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The estimated average of the number of PACU beds, cost and waiting 

time can be found in Table 19. The gap in performance measures between two 

scenarios is calculated. Although the number of beds has been decreased by more 

than 10% and shown to be statistically different with 99% confidence by 

considering PACU while scheduling, neither the cost nor the waiting time is 

affected statistically, either. Thus in practice, whether to consider PACU depends 

almost solely on the scarcity of PACU resource. If the number of beds or the 

staffing in PACU is limited, we suggest considering PACU while scheduling. 

Table 19  

Numerical results of the two scenarios 

Demand 

Criteria  

(Estimated 

average) 

Consider 

PACU 

while 

scheduling 

Not 

consider 

PACU 

while 

scheduling 

Gap 

Statistically 

different? 

(with 99% 

confidence) 

Min 

Number of beds 9.13 10.21 10.58% Y 

Cost ($) 21918.4 22130.93 0.96% N 

Waiting time (min) 638 607 -4.85% N 

Mean 

Number of beds 9.51 10.85 12.35% Y 

Cost ($) 22271.84 22767.62 2.18% N 

Waiting time (min) 728 696 -4.50% N 

Max 

Number of beds 9.92 11.5 13.74% Y 

Cost ($) 23031.38 23582.7 2.34% N 

Waiting time (min) 916 930 1.51 % N 

 

7. Conclusions 
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In this chapter, we develop a modeling framework based on simulation 

optimization to assist multi-criteria surgery scheduling according to hospital 

management desires. The Pareto frontier allows managers to make the best 

decisions. The integration of simulation and optimization incorporate more 

uncertainty factors than existing optimization methods. It was experimentally 

shown that our proposed RK-NSGA-II is an effective technique for finding Pareto 

optimal solutions which are found by 3000 generations.  

Using our methodology, it is shown how the time allocation and no-show 

are affecting the scheduling performance. We also compare whether or not to 

consider PACU while scheduling. The results suggest that it is affecting the 

number of beds in PACU but not cost or patient waiting.  

Future work could extend the model to explore more on the uncertainties 

in OR, such as the how to plan overbooking bearing the fact that a certain portion 

of patients will not show up. 
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CHAPTER 5 

CONCLUDING REMARKS 

In this dissertation we develop three models to assist the multi-objective 

decision making and analysis in OR scheduling using simulation, math 

programming, meta-heuristics and simulation optimization.   

In chapter 2 we develop a simulation model to evaluate the efficiency of 

cath lab operations in a major local health care facility. We vary the key 

parameters in the model such as length of the time-block assigned to each case, 

length of lunch buffers as well as the option of rescheduling patients, and consider 

both operational costs and patient satisfaction metrics to illustrate the tradeoffs 

between the two. Detailed experimentation help recommend allocating to each 

case a time block equal to the 75th percentile of the case duration distribution and 

scheduling a short buffer in the middle and at the end of each day to absorb 

variation and reduce the possibility of overtime. Sensitivity analysis is performed 

on key variables to test the robustness of our recommendations. Overall we find 

that the 75th percentile of process duration is always on the efficient frontier and is 

a good compromise of both operational cost and patient waiting well. The health 

care facility adopted our recommendations and is now realizing the anticipated 

improvements. 

Chapter 3 introduces a two-phase modeling approach to OR planning and 

scheduling. We considered multiple criteria while evaluating the performance of 
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the planning and scheduling, including OR utilization and overtime, surgeons’ 

preference, patient waiting time and patient flow from OR to PACU. The exact 

solution from Phase 1 illustrates the trade-offs between operational objectives and 

patient/surgeon satisfaction objectives. Also it shows that fewer number of 

surgeon group yields better performances. In the Phase 2 optimal solution from 

MIP is compared with three heuristics and RKGA. By applying RKGA, close-to-

optimal solutions can be derived much more efficiently. The impact of 

decomposing the problem is found to be within 11% to the optimality, which is 

tolerable considering the 99% saving in computation time. 

Chapter 4 develops a modeling framework based on simulation 

optimization to schedule surgeries according to hospital management desires. We 

use RKGA and NSGA-II as the optimizer. The integration of simulation and 

optimization incorporate more uncertainty factors than existing optimization 

methods, and guides the simulation to optimum efficiently. The Pareto optimal set 

of solutions allows managers to trade-off between multi-criteria and make their 

best decisions. It is experimentally shown that our proposed RK-NSGA-II is an 

effective technique for finding Pareto optimal solutions which are found by 3000 

generations.  

Using our methodologies, hospital managers can allocate capacity and 

schedule patients with compromise to multiple objectives according to their own 

preference. In this dissertation we have also shown how to use the methodologies 

introduced to investigate managerial questions in the real world. For example, 

using the MIP formulation, we find that fewer groups with more surgeons in each 
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group is outperforming more groups with less surgeons; we compare whether or 

not to consider PACU while scheduling using the simulation optimization 

framework and results suggest that it is affecting the number of beds in PACU but 

not cost or patient waiting. By developing OR scheduling models, the managers 

are able to make multi-criteria decisions based on system-wide performance.  
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APPENDIX A  

COMBINED MODEL OF PHASE 1.2 AND PHASE 2  

Notations and decision variables: 

t T∈   index of day 

Ii ∈   index of room block ( 2I N T= × ) 

1λ   relative weight factor of cost 

bc    cost of staffing in PACU 

rpiZ   1 if patient p is assigned to surgeon r in room block i, 0 otherwise 

−
iU   under-utilization in room block i 

+
iU   over-utilization in room block i 

pW   waiting time of patient p on the waiting list after the due date 

tBM   number of beds in PACU on day t 

piX1   start time of patient p in OR in room block i  

ptX 2   start time of patient p in PACU on day t 

ptX 3   start time of patient p in OR on day t  

'ppOR   1 if patient p proceeds patient p’ in the same OR, 0 otherwise 

'ppPACU  1 if patient p proceeds patient p’ in the same PACU bed, 0 

otherwise 

bptF   1 if patient p is assigned to bed b on day t, 0 otherwise  

MIP formulation of combined two phases: 
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The objective (1) minimizes the weighted total of cost and patients’ 

waiting time. The cost is composed of the cost of under- and over-utilization in 

the OR, and the maximum number of beds in PACU on each day. Constraints (2) 

to (11) are the constraints from Phase 1.2. (12) to (22) are from Phase 2. 
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Specifically, constraints (2) ensure that each patient is assigned to at most 

one surgeon in the same specialty, only if the surgical group that the surgeon is in 

is assigned with that block. Constraints (3) indicate that each patient must be 

assigned to a surgeon that can be assigned to this patient. Constraints (4) 

guarantee that each patient is assigned to at most one surgeon at a time. 

Constraints (5) and (6) ensure that the operating room is scheduled within the 

capacity and overtime limit in each individual block and each day, respectively. 

Constraints (7) define the under-utilization as the difference between the target 

usage and the total surgery time in a block, if the operating room is available and 

there is under-utilization. Constraints (8) define the over-utilization as the 

difference between the sum of all surgery time and the sum of capacity and lunch 

break of a block, if there is overtime. For a scheduled patient p, if scheduled after 

due date, the waiting time on the waiting list is defined in constraints (9) as the 

difference between the date that he/she is scheduled and the due date. For an 

unscheduled patient p, since he/she will be scheduled at least one day after the 

planning horizon 2T , the waiting time is defined in constraints (10) as the 

difference between ( 2T + 1) and the due date. Constraints (11) guarantee that 

one surgeon can work in at most one room at a time. Constraints (12), (13) and 

(14) ensure that the starting time of a patient in OR and PACU on a day to be zero 

if the patient is not scheduled on that day. Constraints (15) guarantee that the 

starting time of a patient in PACU is the estimated surgery time of that patient in 

addition to his/her starting time in OR. Constraints (16) and (17) ensure that OR 

cannot be occupied by more than one patient at a time. Constraints (18) and (19) 
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ensure that a bed in PACU cannot be occupied by more than one patient at a time. 

Constraints (20) indicate that the assigned index of beds on each day have to be 

less than the maximum number of beds in PACU of that day. Constraints (21) 

indicate that all patients should have the surgery and recovery on the same day. 

 

 


