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ABSTRACT

The Resource Description Framework (RDF) is a specification that aims to

support the conceptual modeling of metadata or information about resources

in the form of a directed graph composed of triples of knowledge (facts). RDF

also provides mechanisms to encode meta-information (such as source, trust,

and certainty) about facts already existing in a knowledge base through a

process called reification.

In this thesis, an extension to the current RDF specification is proposed in

order to enhance RDF triples with an application specific weight (cost). Unlike

reification, this extension treats these additional weights as first class knowl-

edge attributes in the RDF model, which can be leveraged by the underlying

query engine.

Additionally, current RDF query languages, such as SPARQL, have a

limited expressive power which limits the capabilities of applications that use

them. Plus, even in the presence of language extensions, current RDF stores

could not provide methods and tools to process extended queries in an efficient

and effective way.

To overcome these limitations, a set of novel primitives for the SPARQL

language is proposed to express Top-k queries using traditional query patterns

as well as novel predicates inspired by those from the XPath language. Plus,

an extended query processor engine is developed to support efficient ranked

path search, join, and indexing.

i



In addition, several query optimization strategies are proposed, which

employ heuristics, advanced indexing tools, and two graph metrics: proximity

and sub-result inter-arrival time. These strategies aim to find join orders

that reduce the total query execution time while avoiding worst-case pattern

combinations.

Finally, extensive experimental evaluation shows that using these two met-

rics in query optimization has a significant impact on the performance and

efficiency of Top-k queries. Further experiments also show that proximity

and inter-arrival have an even greater, although sometimes undesirable, im-

pact when combined through aggregation functions. Based on these results,

a hybrid algorithm is proposed which acknowledges that proximity is more

important than inter-arrival time, due to its more complete nature, and per-

forms a fine-grained combination of both metrics by analyzing the differences

between their individual scores and performing the aggregation only if these

differences are negligible.
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1. INTRODUCTION

1.1. Motivation

The Resource Description Framework (RDF) [3], introduced by the World

Wide Web Consortium (W3C), aims to support the conceptual modeling of

metadata or information about resources. The development of RDF has been

motivated by several key challenges in knowledge description and integration:

these include (a) the need for a machine-readable data to allow applications

to share, combine, and create new information, or knowledge, and use it out-

side its native environment and support for software agents to process web

information and (b) the ultimate goal of converting the web into a world-wide

network of cooperating processes.

Indeed, the use of RDF has been shown to allow information sharing

among heterogeneous applications and sources in a minimally constrained and

flexible way [3]. At its core, RDF is extremely simple: knowledge is represented

in the form of a directed graph in which the nodes represent known entities

and the edges represent relationships between them; a pair of nodes a and

b linked by an edge e is called triple and states a fact about a, i.e. “a has

property e with value b” or that “a has the relationship e with the entity b”.

In RDF, the subject, a, does not always need be an external resource, but

it can also be a triple in the knowledge base. Through this process, known as

reification, RDF can also help encode meta-information (such as source, trust,

and certainty) about the statements in the knowledge base. The ability to

annotate statements in the database is especially important for applications
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which may need to impose certain selective criteria over it based on specific

parameters like validity, trust, preference, etc. For instance, applications using

RDF data integrated from several sources may base their preference on the

level of conflict or agreement at which these data are combined with those from

other sources participating in the integration [1]; software agents may prefer

certain pieces of information over others based on trust values associated not

with the source itself but with the data produced by it [4]; information retrieval

applications may use user preferences to assess the relevance of content using

weighted ontologies [5].

It is necessary to point out, however, that the ability to express com-

plex (including reified) statements does not imply that these statements can

be effectively leveraged: since most applications access RDF knowledge bases

through declarative query languages with limited expressive power, such as

SPARQL [6] and SeRQL [7], most applications are limited to the expressive

power of these languages. Secondly, even if we consider new languages with ex-

tended primitives, since these knowledge bases often reside in general purpose

RDF stores, such as Jena TDB [8], these systems need to provide appropriate

indexing and query processing mechanisms to support efficient query process-

ing with these primitives.

In this thesis, it is shown that existing RDF query languages and RDF

stores fail to support key primitives needed in many knowledge applications,

including those that associate a utility over the available knowledge statements:

2



• Ranked query processing: In many knowledge applications, the utility of

the elements in the knowledge base to a particular task varies and users

are interested not in all the results to their queries, but the ones that are

best suited for the given task. Locating such high utility results is known

as top-k (or ranked) query processing. For example, an archaeologist

querying an RDF knowledge base integrating knowledge from several

heterogeneous (potentially conflicting) taxonomies may want to retrieve

the top-10 results with the lowest level of conflict among the data sources

[1, 9].

However, this type of functionality is not offered by current RDF query

languages [6, 7, 10–12] and therefore it cannot be supported unless the

language and the query processing system are extended in order to take

advantage of the extra information associated with the RDF statements.

• Flexible path expressions: While RDF can be used to create complex

knowledge graphs (where each entity is a node and each triple is a di-

rected edge between two entities), most RDF query languages provide

only limited patterns for querying these graphs. One commonly required

primitive that is missing in existing frameworks is the path primitive.

Consider for example a reachability query where the user is interested in

knowing how two entities are related in the knowledge base (i.e., whether

there is a path in the knowledge graph from one entity to the other).
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For example, a user querying a citation network of authors and publica-

tions may be interested in finding how two authors are related by means

of other authors or publications, or how close an author is to another in

terms of common co-authors or publications; in the biological sciences,

path queries over biomedical knowledge bases may allow scientists to find

associations between substances by means of metabolic pathways [13].

Certain RDF query language implementations, like ARQ [14], offer a

very basic support for this type of queries in which the user needs to

have some knowledge of the schema of the underlying RDF graph to

precisely specify the number of edges, and their labels, on the path.

More general path queries that allow the user to discover indirect rela-

tionships between two nodes connected by an arbitrary number of in-

termediate nodes and edges without having prior knowledge about the

relationships1 are not currently possible.

Note that, since the numbers of paths between two nodes in the knowledge

graph may be extremely large (exponential in the worst case), the users may

often be interested in locating a few (i.e., top-k) paths [16] that are short or

consisting of sets of edges that have desirable weights (i.e., “large weights” if

weights denote utility or trust and “small weights” if the weights denote cost

or uncertainty).
1This is similar to XPath’s parent/ancestor axis [15] but within the context of a

graph rather than XML trees.
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1.2. Contributions

The SPARQL specification [6] created by the World Wide Web Consortium

(W3C) is intended to provide an effective and user-friendly way to query RDF

data. The syntax of its constructions resembles those from the classic SQL

languages for relational databases. For this reason, SPARQL has become the

de facto standard for querying RDF graphs. However, this specification does

not provide support for ranked queries or path expressions described above. In

addition, existing SPARQL operators, such as the BGP matcher, join, union,

etc., are not designed to work with complex graph structures, such as paths,

and as a consequence they do not provide mechanisms to optimize executions

of queries that involve such structures.

In this thesis, extensions to the SPARQL specification [6] are proposed

to support the processing and optimization of top-k queries over weighted

RDF graphs using both the traditional subject-predicate-object query patterns

and more advanced operators to support operations with query patterns that

contain XPath-like reachability predicates. To this end, we make use of the

SPARQL implementation included in the Jena Semantic Framework [14, 17],

ARQ. In particular, our specific contributions are

• extension of the RDF model to allow the inclusion of an application

specific weight (cost) to the edges (predicates) of the graph (Chapter 3);
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• extension of the SPARQL query language to enable users to express top-

k queries using traditional patterns and operators as well as novel path

predicates (Chapter 3);

• definition and implementation of new operators to process top-k queries

and reachability predicates along with the redefinition of critical existing

SPARQL operators in order to support these new features (Chapter 4);

• an extended SPARQL query processor engine to support path predicates,

ranked join, and novel indexing techniques (Chapter 5);

– this involves not only the use of efficient graph search algorithms

to find shortest paths in a ranked manner but also the design of

appropriate indexing tools in order to achieve a more efficient path

search and to allow the processing of larger disk resident graphs;

– supporting complex query patterns based on path predicates, i.e.

to represent the ranked join of two or more paths on their common

nodes, demands ranked query processing algorithms that do not

always assume monotonicity of the scores of the joined results;

– implementation of the new set of operators to support path pred-

icates, and more complex structures based on them, necessitates

appropriate indexing structures; and
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• novel optimization strategies to improve the performance of queries with

new primitives (Chapter 6).

In Chapter 7, we experimentally evaluate the optimization strategies pre-

sented in this thesis and show that they improve query processing efficiency

in the presence of the proposed extensions to the SPARQL specification.

1.3. Related Work

In this section, we provide an overview of the literature on path and twig

queries on RDF and ranked query processing.

1.3.1. Query languages for graph data models

Research on graph data models and their query languages is extensive. [18]

presents a thorough survey on the results of past and current research on

these topics. Within this, RDF is considered a model that evolved from being

a tool to represent metadata to being a model in which fundamental notions

of graph theory have great importance. In addition, the development of RDF

motivated the design and implementation of the SPARQL specification to

access and query RDF stores based on graph patterns.

Among the most prominent query languages based on graph models are

the query language created for the Gram model [19] whose algebra is based on

walks (paths) constructed using regular expressions over data types. Similarly,

the query language for the GraphDB system [20] in which special operators

are defined using an object-oriented approach to represent nodes, edges, and
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paths. These operators are in turn used in queries to express extensions or

restrictions to the database. [21] proposes a language to query biological path-

ways and molecule interactions over biological databases stored in an RDBMS

as directed graphs. In particular, the language is presented as an extension to

SQL to support path queries specifying restrictions and conditions over nodes

and edges; however, support for more complex patterns is limited. [22] pro-

poses GraphQL, a graph query language based on graph patterns. Specifically,

the authors define the language as an extension of formal languages for strings;

i.e. a set of terms and rules are defined to produce graph patterns using basic

units which are also graph patterns. In addition, an extension to relational

algebra is presented along with access and optimization methods. [23] proposes

BiQL, which is an SQL-based language to query large networks. In essence,

the authors propose a novel data model with data structures to support large

and complex datatypes along with the ability to support paths and subgraphs.

Over this data model, the language gives the user the possibility to express

queries using aggregates, aliases, and regular expressions.

1.3.2. Reachability Queries

Recent research in executing reachability queries in graphs includes [24] which

proposes a geometry-based reachability labeling algorithm to efficiently evalu-

ate reachability queries over large graphs. Similarly, [25] proposes and alterna-

tive approach in which queries are evaluated with the support of a join index

which represents the union of a center-table and a B+ tree. The first contains

8



the center of the hop between two nodes that are reachable from each other,

whereas the second contains keys which are a pair composed by a center and a

label. A different approach is presented in [26] based on the construction of a

path-tree using identified paths in the graph. Basically, every path in the graph

is represented by a node in the tree along with a 3-component label which is

used to answer reachability queries. Regarding proximity computation, most

recent work includes [27] which uses a connection subgraph to find underlying

relationships between the query nodes and nodes in the graph. This connec-

tion subgraph is constructed by giving each node a goodness score with respect

to the query nodes by using random walks with restarts. Similarly, [28] pro-

poses several algorithms to establish a proximity value between nodes in the

graph that takes into account the directionality of the edges connecting them.

This proximity value is computed using efficient procedures which are based

on random walks and escape probability. [29] presents two novel methods that

approximate a family of proximity measures, i.e Katz, rooted PageRank, and

escape probability, over very large graphs. For this, the authors take a subset

(sketch) of columns or rows from the graph’s transition matrix and use it to

approximate a proximity measure for two given nodes.

1.3.3. Path and Twig Queries on RDF Graphs

Previous work on path search over RDF graphs includes [30–32], which deal

with finding complex relationships between resource entities. Specifically, au-

thors in [30, 31] define semantic associations between two entities based on

9



whether (a) there is an ordered sequence of properties (RDF predicates) be-

tween two entities, (b) whether both entities are start nodes of two different

property sequences that have predicates in common, or (c) whether both en-

tities are start nodes of two different property sequences and both sequences

are ρ-isomorphic to each other2. Barton in [32] proposes various approaches

to implement ρ-path and ρ-connect operators that return all the paths be-

tween two entities and all the intersecting paths on which the two entities lie,

respectively.

In [33], authors introduce the notion of ranking for semantic associations

between entities. To this end, they take into account the context, or domain,

of the association within the underlying ontology in order to perform a rank-

ing analysis based on weighted parameters, such as the relationships of an

entity with other entities, length of the paths between entities, and trustwor-

thiness of the source producing the information expressed by the predicates,

whose importance can be decided by the user. [34] continues the work of [33]

by presenting the SemDIS system which performs discovery and ranking of

semantic associations over large metabases. The system comprises modules

for knowledge extraction, knowledge discovery through adapted k-hops and

random walks, context definition, ranking, and a user interface. [35] presents

SemRank model for ranking semantic associations through the estimation of

2That is the predicates in both sequences have a parent-child, sibling, or equality
RDFS relationship, such as typeOf, subClassOf, or subPropertyOf, with each other
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the predictability of a result for the user. For predictability estimation the

authors use semantic and information-theoretic techniques along with heuris-

tics that allow the modulation of searches, i.e. alterations in the ranking

criteria. Specifically, the techniques used include specificity (uniqueness of a

property in the knowledge base), entropy (information content of a property),

and refraction (frequency with which a path between entities deviates to other

entities).

In [36], Anyanwu et. al present SPARQ2L, an extension to SPARQL [6], to

support path queries over large, disk-resident graphs. The authors define a path

variable, which can be used as a regular predicate variable, and present a novel

technique for path discovery based on LU decomposition, which computes

partial graph fragments that are indexed and stored on disk. This work is

similar to that presented in [13] for the BRAHMS system.

1.3.4. Ranked Query Processing

When the number of candidate results is large and when most of these objects

have very low scores or utilities, it is wasteful to rely on processing strategies

that would require the system to touch all inputs and enumerate all possible

candidate results. To avoid waste, data processing systems need to employ

data structures and algorithms that can prune unpromising data objects from

consideration without having to evaluate them. This is often referred to as

ranked or top-k query processing [37–42].
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Most existing ranked query processing algorithms, including Fagin’s algo-

rithm (FA) [40,41], threshold algorithm (TA) [43], (NRA) [43],and others (such

as [44,45]) assume that one, or both, of the following data access strategies is

available: (a) streaming/pipelined access to the sorted data to identify a set

of candidates, and (b) index based random access to verify if these are good

matches or not. Given monotonic3 queries on the data, these help identify

good candidates and prune non-promising ones quickly.

Note that it is not always the case that both of these access strategies

are simultaneously available: In many database management systems, while

random access is efficiently supported through indexing, sorted access is costly.

In these cases, sorting is avoided as much as possible and filtering is used to

obtain top-ranking objects [38,46,47]. No-random access algorithm (NRA) and

stream-combine [44], both, on the other hand, rely entirely on sorted access,

and avoid random-accesses by maintaining worst- and best-score bounds for

objects based on the available partial knowledge. [39] maintains upper- and

lower-bound scores of all partially seen objects, and uses these bounds to decide

when to stop top-k join evaluation.

Research on querying graphs to find more complex structures, i.e. twigs,

using the structural relationships of their nodes and edges includes [2,4,48,49].

In [2] the authors present a novel algorithm (HR-Join) to answer ranked twig

3An object that is as good as another one in all individual features is also better
than the other object when these features are considered simultaneously.
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queries over weighted graphs without assuming the monotonicity property of

the results, necessary for ranked join algorithms. The ranking algorithm is

based on the weight of the edges of the candidate twigs rather than on the

length of their underlying paths. To overcome the non-monotonicity problem

the authors make use of a self-punctuating and horizon-based approach. [48]

proposes an approach for the evaluation of top-k twig queries over disk-resident

graphs based on the length of their component paths rather than on their

cost. For this, the authors use a runtime graph which is a materialization

of the transitive closure of the underlying graph. In [49] for the evaluation

of twig queries the authors first create an encoding scheme to find paths of

all elements in the underlying XML document. Then the operator XPattern

is used to find twigs over the encoded paths. Finally, [4] presents tSPARQL

which includes an extension to SPARQL that enhances every RDF triple with

a trust value assigned by a trust function specific to an information consumer.

The possible trust values may be between -1 (lack of trust) and 1 (total trust).

This extension, however, does not consider ranking of results.

13



2. RDF PRELIMINARIES

Resource Description Framework (RDF) is an assertional language to ex-

press propositions using formal vocabularies [50]. The main advantage of RDF

is the generality of its design which allows expressing propositions about any

topic if the right vocabulary is available. Particularly, RDF allows decompos-

ing knowledge of any kind into concise, atomic parts and then establishing

relationships among those parts in the form of vertices and edges of a directed

graph. The abstract syntax of RDF [3] defines an RDF graph as a collection

of triples, where each one expresses an assertion in the form of a 3-tuple and

containing a subject, a predicate, and an object.

Figure 1 shows an example, where two basic geographical facts about

Arizona State University are expressed as triples. In general, a triple expresses

a fact (knowledge assertion) between two real-world entities described by the

subject and object. A set of RDF triples can, then, be seen as the logical

conjunction of the assertions of its underlying triples; a set of RDF statements

can also be often viewed as a graph: the subject of a triple represents vertices

in the RDF graph whereas the predicate represents the edge connecting them.

The entities represented by the nodes in an RDF graph are uniquely iden-

tified using uniform resource identifier (URI) references [51], literals, and blank

nodes, which are a special kind of node that is neither a URI reference nor

Subject Predicate Object
Arizona State University latitude 33.42
Arizona State University longitude -111.93

Fig. 1. Information represented as triples
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<rdf:RDF

xmlns:geo="http://www.w3.org/2003/01

/geo/wgs84_pos#">

<rdf:Description rdf:about="http://www.asu.edu">

<geo:lat>33.42</geo:lat>

<geo:long>-111.93</geo:long>

</rdf:Description>

</rdf:RDF>

Fig. 2. RDF knowledge base in Figure 1 serialized in RDF/XML format

@prefix geo: <http://www.w3.org/2003/01

/geo/wgs84_pos#>.

<http://www.asu.edu> geo:lat "33.42".

<http://www.asu.edu> geo:long "-111.93".

(b) Turtle serialization

Fig. 3. RDF knowledge base in Figure 1 serialized in Turtle format

a literal and that is used to uniquely identify a node in the graph without

having a specific name; whereas predicates (graph edges) are identified using

only URI references.

Note that the RDF model is inherently abstract; for this reason, the W3C

also introduced a standard, referred to as RDF/XML [52], for its serialization.

In addition to this, there are two other non-standard formats that are widely

used due to their ease and readability: Notation 3 (N3) [53] and its extension

Turtle [54]. Figures 2 and 3 show the serialized version of the triples of Figure

1 in RDF/XML Turtle format respectively.
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2.1. SPARQL Preliminaries

SPARQL is the query language introduced by the World Wide Web Consor-

tium (W3C) to query RDF information. Its purpose is to express queries in

the form of graph patterns that match and retrieve subgraphs from an RDF

graph.

SPARQL introduces the concept of variable to specify any node in the

graph; and the concept of triple pattern which is a construct identical to

an RDF triple but that may contain a variable in the place of the subject,

predicate, or object [6].

The basic unit of a SPARQL query is the Basic Graph Pattern (BGP)

which is defined as a set of triple patterns. Similarly, the set of all BGPs in a

query, separated by curly brackets is called a group graph pattern. In general,

the purpose of a SPARQL query is to find subgraphs of the underlying RDF

graph that match a BGP. In other words, a subgraph s is a valid match for a

BGP b if after substituting the variables and blank nodes of b with RDF terms

of s, both b and s are equal. The subgraphs resulting from substituting the

variables and blank nodes of b with RDF terms are called a solution mapping

and an RDF instance mapping respectively.

In addition, the matching subgraphs for b form a multiset of pattern in-

stance mappings, which are defined as the combination of a solution mapping

and an RDF instance mapping. Finally, these three components define a so-

lution µ for a BGP b over and RDF graph G as the existence of a pattern
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instance mapping P such that P(b) is a subgraph of G and P is restricted by

µ to the variables in b [6].

2.2. SPARQL Query Processing

The steps to process a SPARQL query include parsing, algebra generation,

and evaluation [55]. The parser converts a query string into an abstract syntax

tree (AST) and the AST is further processed to obtain a tree-like expression

containing algebraic operators. After this expression is built, the query engine

proceeds with its evaluation starting with the operators at the leaves of the

tree. The basic set of algebra operators include project to select only a sub-

set of the variables bound in a solution mapping; bgp to evaluate basic graph

patterns; filter to constrain the matches for a BGP to conditions applied to

their labels or numeric values; join, union, and leftjoin to perform conjunc-

tions, disjunctions, and optional matching of BGPs respectively; and order by,

distinct, reduced, and slice, to modify the sequence of results returned by the

previous operators [6].

The evaluation of a BGP to find matching subgraphs comprises the join

of the matches for its individual triple patterns. In particular, the algebra

operator bgp performs the join of triple patterns belonging to the same basic

graph pattern, whereas the join operator performs joins at the group graph

pattern level; i.e., between basic graph patterns if there is more than one.

However, despite their differences, both join operations operate under the same

principle of solution mapping compatibility, which states that two solution
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Fig. 4. Sample RDF graph

SELECT ?state WHERE {

{?spec1 :type :bird .

?spec1 :location ?state}

{?spec2 :type :reptile .

?spec2 :location :?state}

}

Fig. 5. A SPARQL query over the RDF graph in Figure 4

mappings µ1 and µ2 are compatible if all their common variables are bound

to the same values in both of them [6].

Consider the RDF graph in Figure 4 containing information about three

animal species and their respective locations. The SPARQL query in Figure 5,

containing a group graph pattern with two BGPs, searches for the states that

have both birds and reptiles.

After the parsing process, the generated algebra expression is evaluated

by the query engine starting with the operators at the lowest levels of the tree,

i.e. the BGP operators. Figure 6 shows the partial results (shown over the

outgoing arrows) for each BGP operator and the final joined result. Note that
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Fig. 6. Algebra tree for the SPARQL query in Figure 5

only the solution mappings corresponding to Roadrunner and Rattle snake

are joined by the join operator as they are compatible regarding their common

variable ?state.
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3. WEIGHTED RDF MODEL

In this section, we present the proposed extension to the RDF model.

The weighted extension of the RDF model simply associates to each of the

underlying components of the RDF model, i.e. triples, an application-specific

numeric value representing a measure of desirability or lack thereof.

Weighted Triple. A weighted triple tw is a 4-tuple composed of Subject

(S), Predicate (P), Object (O), and a real value w between 0 and 1 representing

the weight of the assertion made by the triple SPO.

Weighted RDF Graph. A weighted RDF graph Gw is defined as a set

of weighted triples.

In this thesis, triples with weights are represented as quadruples, where

the final value of the quadruple is the weight of the triple , instead of relying on

reification – which could be used to associate weights to the triples indirectly

through reified statements. The reason why we treat weights as first class

knowledge attributes (as opposed to treating them as any other application

specific attribute, which can be specified using reification statements) is that

we would like the underlying engine to easily recognize and leverage these

weights in indexing the knowledge statement (Section 5.3.1) and processing

users’ ranked queries over the weighted graphs (Chapter 5). Note that this is

not a strict requirement in that the same effect can also be achieved using a

special reification statement recognized by the underlying indexing and query

processing engine.
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@prefix biol: <http://purl.org/NET/biol/ns#> .

@prefix : <http://purl.org/NET/biol/zoology#> .

:Chondrichthyes biol:subclass :Elasmobranchii 0.10 .

:Chondrichthyes biol:subclass :Holocephali 0.01 .

:Chondrichthyes biol:subclass :Dusky Shark 0.05 .

:Chondrichthyes biol:subclass :White Shark 0.30 .

:Holocephali biol:subclass :Chimaeriformes 0.10 .

:Elasmobranchii biol:subclass :Chondrichthyes 0.50 .

:Elasmobranchii biol:subclass :White shark 0.90 .

:Elasmobranchii biol:subclass :Basking Shark 0.10 .

Fig. 7. Extended, Turtle-based, representation of a sample weighted RDF knowl-
edge base (adapted from [1,2])

Fig. 8. A sample weighted RDF Graph (adapted from [1,2]

Figure 7 shows a set of weighted RDF triples, in Turtle format [54], con-

taining RDF information adapted from the weighted graph representing the

integration of two shark taxonomies used in [1,2]. In this example, the weight

value associated with each edge (RDF triple) represents the amount of dis-

agreement on the corresponding assertion. The weight value extending the

original Turtle format is shown in bold along with each triple. Similarly, the

weighted RDF graph for this triple set is shown in Figure 8.
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3.1. Query Language Extensions

As we discussed in the Introduction, we propose the following extensions to

the common RDF query language:

• an extension to the syntax of Triple Patterns to include an optional

element (variable or literal) that reflects the weight associated to the

matches of the triple pattern.

• path predicates to allow queries to express relationships between subjects

and objects with one or more predicates between them (similar to the

ancestor-descendant (//) axis of XPath [15]),

• a “SELECT @” clause that enables outputting of each matching result

in the form of a set of RDF triples, and

• a “RANK” clause to state that the user is interested in only the top-k

solutions (where k is user specified) for a query pattern based on the

weights of the statements.

In this section, we describe these extensions, building on the SPARQL query

language [6].

3.1.1. Extended Triple Patterns

An extension to the syntax of Triple Patterns is proposed to include an optional

element, variable or literal, to reflect the weight associated to the matching

results of the given pattern. In particular, the new element is introduced to
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SELECT ?o ?w WHERE {

:Chondrichthyes ?p ?o ?w .

FILTER (?w > 0.01)}

Fig. 9. Sample query containing a triple pattern extended by a new variable
(variable ?w) to associate the weight of the returned matches

comply with the extension to the underlying RDF model, i.e. in addition to

matching the subject, predicate, and object of a triple, an extended triple

pattern allows matching its associated weight. This means that the additional

element can be used in the same way as the other elements in the triple pattern,

i.e. if it is a bound variable or a literal, it will participate in the matching

process as an extra constraint; on the other hand, if it is an unbound variable,

it will be bound to the associated weight of each result matching the triple

pattern. In addition, as a variable, it can be used freely by other patterns or

operators, such as filter or select, within the query. Figure 9 presents a sample

query to retrieve the objects of the triples that contain :Chondrichthyes as

a subject and a weight greater than 0.01.

3.1.2. Path Query Predicates

We propose a novel query predicate <nEdges> to represent multi-edge rela-

tionships between two nodes in an RDF graph; the predicate matches one or

more edges irrespective of the labels of the edges or vertices on the path.

The predicate<nEdges> can be extended to impose additional constraints

over the multi-edge relationships represented by it. In particular, the syntax
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SELECT * WHERE {

:Chondrichthyes <nEdges> ?s }

(a)

SELECT * WHERE {

:Chondrichthyes <nEdges(subclass)> ?s }

(b)

SELECT * WHERE {

:Chondrichthyes <nEdges(subclass)(0.1)(0.3)> ?s }

(c)

Fig. 10. Sample extended SPARQL queries containing a path predicate which
allows multiple matching edges with (a) no restrictions (b) a restriction (subclass)
on the edge label and (c) two additional restrictions on the edge weights to specify
lower and upper limits (prefixes omitted)

supports three optional parameters which can be used to constrain the edges

of the relationship to have a specific label, and to constrain the lower and

the upper limits to the aggregated weight of each matching result returned

by the predicate. These parameters are completely independent from each

other; therefore a given <nEdges> predicate may contain none, one, two, or

all of them. Note that putting path constraints along with the path predicate

allows the path search algorithm (Section 5.1) to recover only those paths that

comply with the constraints while avoiding unnecessary ones that need to be

filtered later.

Figure 10 presents three sample queries, over the RDF dataset from Fig-

ure 8 to retrieve all the nodes reachable from :Chondrichthyes with a path

containing one or more edges with (a) no restrictions on the paths returned,
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SELECT ?s WHERE {

?s <nEdges> :Holocephali .

?s ?p1 :Dusky_Shark .

?s ?p2 :White_Shark .

}

Fig. 11. A sample query where path predicates are used in conjunction with other
SPARQL constructs

(b) with a restriction (subclass) on the edge labels and (c) with an additional

restriction on the lower and upper limits of the edge weights. Path predicates

can be used like any regular query predicate, i.e. the subject can be an IRI or

a variable and the object can be either an IRI, a literal, or a variable.

Naturally, the new <nEdges> path predicate can be used in conjunction

with other query patterns, which in turn can contain other path predicates

or simple regular SPO patterns, and SPARQL clauses (see Figure 11 for an

example).

3.1.3. “SELECT @” Clause

As described in Section 2.1, the “SELECT” clause of SPARQL allows the

user select the variables that will be included in the output. For example, in

Figure 11, the user states the she is interested in the values of the ?s variable,

whereas the values of the ?p1 and ?p2 variables are ignored. In contrast, when

the “SELECT *” clause in Figure 10 is used, the matching values for all the

variables in the query are included in the result.
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SELECT @ WHERE {

:Chondrichthyes <nEdges> ?o .

FILTER regex(str(?o) ,"White_Shark", "i") }

(a) A sample “SELECT @” query

(1)[0.30]

:Chondrichthyes biol:subclass :White_Shark 0.30 .

:White_Shark <isVar> ‘‘?o’’ 0.0 .

(2)[1.00000]

:Chondrichthyes biol:subclass :Elasmobranchii 0.10 .

:Elasmobranchii biol:subclass :White_Shark 0.90 .

:White_Shark <isVar> ‘‘?o’’ 0.0 .

(b) Result based on the RDF graph in Figure 8

Fig. 12. (a) A sample “SELECT @” query and (b) the corresponding set of results;
each of which is a matching path described in the form of a set of RDF triples (since
each triple has a weight, each result is also associated a weight displayed within
square brackets – in this example, the overall score of a result is the sum of the
corresponding triple scores)

One difficulty with the standard “SELECT” and “SELECT *” clauses is

that they allow the query to return only named variables. However, as shown

in Figure 10, the path predicate, <nEdges>, matches entire paths, consisting

of one or more edges; consequently, only the end points of these paths can be

associated with named variables that can be returned to the user.

In order to deal with this shortcoming of the standard SPARQL, the

“SELECT @” clause is introduced, which outputs the entire matching result

subgraph in the form of a (serialized) RDF graph; any variables on this graph

are annotated through a special “isVar” triple as shown in Figure 12. There-

fore, the user can ask further queries on this graph to explore any edges or

nodes that have not been explicitly enumerated in the query specification.
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SELECT * WHERE {

{:Chondrichthyes <nEdges(subclass)> ?o1 ?w1 .

:Elasmobranchii <nEdges(subclass)> ?o2 .

}SCORE IN ?w

}

Fig. 13. A sample query showing the use of the SCORE clause

3.1.4. “SCORE” Clause

The basic unit of a SPARQL query is the Basic Graph Pattern (BGP) (Sec-

tion 2.1)which is defined as a set of triple patterns. Alike the extension for

triple patterns, we propose the SCORE clause to associate the score (weight) of

a solution for a BGP as a whole. The SCORE clause takes as a parameter a

variable name which will be included in the set of query variables and bound

to the weight of each resulting match for the BGP to which the clause belongs.

Figure 13 shows a sample query using the SCORE clause. Note that the

variable ?w introduced by the new clause reflects the aggregated weight of every

resulting match for the BGP of the query; whereas the variable ?w1 reflects

the weight of the matches only for the triple pattern associated with it. In

addition, the variable included by the SCORE clause can be used like any other

variable in the query, i.e. it can be compared, sorted, and filtered. Finally,

the scope of the new clause is the same as that from FILTER, this means that

it can be applied to different parts of a query as long as these parts belong to

different group patterns.
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SELECT ?s ?w WHERE {

{?s <nEdges> :Holocephali .

?s <nEdges> :Dusky_Shark .

?s ?p :White_Shark .

RANK 10

}SCORE IN ?w

}

Fig. 14. An example query showing the use of the RANK clause

3.1.5. “RANK” Clause

The queries presented so far return all possible matches for the given query

patterns. However, the weight information associated with the underlying

RDF graph and triples allows ranking the results returned by a query and

limiting their number based on a k given by the user. To support this, we

propose a RANK clause which takes as a parameter an integer number k greater

than or equal to 1, indicating the desired number of top results.

Figure 14 shows the use of the RANK clause applied to our previous query

to return the top-10 common classes with the lowest amount of disagreement

regarding the underlying taxonomy. Note that the scope of RANK is the same

as that of the SCORE clause. Additionally, the scope of the RANK clause is the

group pattern in which it occurs, in a similar way to the FILTER clause of

SPARQL (see Section 5.2.2 in [6]). This means that the RANK clause can be

applied to different parts of a query as long as these parts belong to different

group patterns; i.e., they are separated by curly brackets.

For instance, the query in Figure 15 retrieves the top-5 results of the join of
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SELECT ?o ?w WHERE {

{{:Chondrichthyes <nEdges> ?o RANK 3}

{:Elasmobranchii <nEdges> ?o RANK 3}

RANK 5

}SCORE IN ?w

}

Fig. 15. A sample query illustrating the use of multiple RANK statements in a
single query

two different group patterns, which in turn are limited to 3 results each. Note,

however, that queries of this type must be used carefully as the underlying

join operator may need more than 3 results from each side to return the top 5

results for the whole query (this will be discussed in detail in Section 5.2).
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4. EXTENDED QUERY OPERATORS

Extensions of the SPARQL query language with extended triple patterns,

path predicates and the new clauses as described in the previous section ne-

cessitate (a) formal definitions of the semantics of the underlying algebra, (b)

implementation of physical operators to support these extensions, and (c) a

reconsideration of the SPARQL query processing strategies. These aspects are

explained in detail in this and the following sections.

4.1. Extended Graph Pattern Matching

As described in Section 2.1, the unit of representation in SPARQL is the basic

graph pattern (BGP) which is expressed as a set of RDF triples that form a

graph pattern and that may contain variables as the subjects, predicates, or

objects. The BGP is matched against an RDF graph to obtain a solution

subgraph whose nodes are bound to the variables of the BGP. A solution

for a BGP in SPARQL comprises a subgraph, which maps the BGP against

an RDF graph, along with solution and instance mappings binding variables

to the nodes of the subgraph. In this section, following [6], we extend the

definitions of triple pattern and solution mapping, and define a solution over

a weighted RDF graph.

Extended Triple Pattern. Let RDF-PP be the set {<nEdges>},

an Extended Triple Pattern is a member of the set (RDF-T ∪ V ) ×

(I ∪ V ∪ RDF-PP)× (RDF-T ∪ V )

Note that the definition of Extended Triple Pattern includes path query

patterns as it uses the special path predicate <nEdges>. Similarly, path query
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predicates are defined as a regular IRI predicate; therefore the notion of so-

lution mapping as a partial function V→T still applies. However, solution

mappings over RDF graphs must have a weight value associated with them.

This calls for the definition of weighted solution mapping and solution over a

weighted RDF graph1.

Weighted Solution Mapping. A weighted solution mapping µw is a

pair (µ, w) composed of a solution mapping µ and a real value w represent-

ing its weight. The cardinality of µw in a multiset Ωw of weighted solution

mappings is expressed as cardΩw(µw).

As defined in [6], a solution mapping that is a solution for a BGP rep-

resents a solution subgraph. This implies that the weight associated with a

weighted solution mapping represents the aggregation of the weights of the

triples in the subgraph. Specifically, we define weight aggregation function.

Weight Aggregation Function. A weight aggregation function

aggW(µw) is a function that determines the aggregated weight of a weighted

solution mapping µw by applying an aggregation function to the weights of

the underlying subgraph of µw.

Note that the aggregation function applied to the weights of the triples of

the underlying subgraph can be either sum, min, max, average, or product.

Solution over a weighted RDF graph. Let Gw be a weighted RDF

graph, and let bgp be a Basic Graph Pattern. A solution over Gw for bgp is a

1Similar to the definitions presented in [4]
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SELECT * WHERE {

:Chondrichthyes <nEdges> ?o ?w

}

(a)

?o -> :Dusky_Shark ?w -> 0.05

?o -> :Chimaeriformes ?w -> 0.11

?o -> :White_Shark ?w -> 0.30

(b)

(c)

Fig. 16. Sample path query (a) over the graph in Figure 8 showing (b) the bound
variables of its solution mappings, and (c) the underlying graph corresponding to
the second solution mapping

weighted solution mapping µw that combines a solution mapping µ from vari-

ables to nodes, an instance mapping σ from blank nodes to nodes, a weighted

subgraph gw of Gw defined as µ(σ(bgp)), and a weight w given by a Weight

Aggregation Function aggW(µw). The cardinality cardΩw(µw) for each µ is de-

fined as the number of distinct RDF instance mappings σ such that µ(σ(bgp))

is a subgraph of Gw.

Figures 16a and 16b show a query over the weighted RDF graph from

Figure 8 with its respective weighted solution mappings presented in non-

decreasing order of their weight. The bindings are shown as arrows going

from the variable to the bound value. Similarly, Figure 16c presents the sub-

graph associated with the weighted solution mapping corresponding to [?o
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-> :Chimaeriformes ?w -> 0.11] and that is used to compute its weight.

Note that in this case the aggregation function used to compute the weight

is sum. Alternative aggregation functions like min, max, average, and prod-

uct would give the solution mapping a different weight (0.01, 0.10, 0.055, and

0.001 respectively) and would potentially change the order of the final results.

In addition to simple BGP matching, SPARQL provides operators to allow

expressing more complex queries using one or more group graph patterns [6].

They operate over multisets of solution mappings to perform operations like

Join, Union, Project, Filter, Order, and Distinct. However, the SPARQL spec-

ification does not consider weight values associated with solution mappings.

Plus, the new clauses SCORE and RANK need to work with operators that con-

sider this associated weight. Therefore, these operators need to be redefined so

they can use the associated weight value when creating new solution mappings.

SPARQL operators create new solution mappings by merging two solution

mappings if they are compatible 2. The function merge applied to two solution

mappings µ1 and µ2 is defined as µ1 ∪ µ1. In presence of Weighted Solution

Mappings, this function needs to be extended to perform the aggregation of

the weight values associated with them.

Weight Merge Function. A weight merge function mergeW(µw1 , µw2)

is a function that determines the aggregated weight of two weighted solution

2Two solution mappings are compatible if for every variable v in both mappings,
v is bound to the same value
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mappings µw1 and µw2 by applying a Weight Aggregation Function aggW to

the weights of the subgraph resulting from merge (µw1 , µw2).

Next, we present the algebra definitions of the operators for our proposed

clauses, as well as the redefinition of the existing SPARQL in order to add

the support for the processing of weighted solutions. Our algebra definitions

follow those presented in the SPARQL specification.

Weighted Join Operator. Let Ωw1 and Ωw2 be two multisets of

weighted solution mappings, the result of the join operator is a multiset of

weighted solution mappings defined as

Join(Ωw1 ,Ωw2) = { (merge(µ1, µ2),mergeW (µw1 , µw2)) |

µw1 ∈ Ωw1 ∧ µw2 ∈ Ωw2 ∧

µ1 andµ2 are compatible}
with

cardJoin(Ωw1 ,Ωw2 )(µw) =
∑

µw1 ∈ Ωw1

µw2 ∈ Ωw2



cardΩw1
(µw1)

∗cardΩw2
(µw2) if µw = (µ,w)with

w = mergeW (µw1 , µw2)

µ = merge(µ1, µ2)

where µwi
= (µi, wi)

0 else

Note that although Ωw1 and Ωw2 are defined as multisets, their weighted

solution mappings are ordered (ranked) in non-decreasing order of their weight.

This implies that the Weighted Join Operator has to return results in a ranked
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manner. For this, the query processor engine should make use of well-known

ranked-join algorithms [43, 56–58] to perform the join operation efficiently.

However, there are cases in which the use of this type of algorithms is not

possible. For instance, if the aggregation function being used is sum and the

subgraphs of the two solution mappings have triples (edges) in common, the

weights of the common edges may need to be counted only once. This situa-

tion violates the monotonicity of the results required by common ranked-join

algorithms. In this case, the query processor engine should use a more appro-

priate algorithm such as HR-Join [2]. We leave the details of join processing

to Section 5.2.

In order to have access to the weight value of a weighted solution mapping

µw the proposed SCORE clause adds its parameter variable, bound to the weight

of µw, to the set of variable bindings of µw.

Score operator. Let Ωw be a multiset of weighted solution mappings;

let v be a query variable; a Score operator is defined as

score(Ωw, v) = {(µsw, w) | (µ,w) ∈ Ωw ∧ µsw = µ ∪ (v, w)}

cardscore(Ωw,v) (µw) = cardΩw (µw)

Similarly, the RANK clause acts as a wrapping operator for any SPARQL

operator that returns a multiset of weighted solution mappings. This gives

RANK the ability to control the number of results that must be returned by the

nested operator, which is specified by a positive integer k sent as a parameter.

Rank operator. Let Ωw be a multiset of weighted solution mappings;
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let k be a positive integer; a Rank operator returns a multiset Ωwr created by

obtaining at most k elements from Ωw and preserving their order and cardi-

nality. If the number of elements in Ωw is less than or equal to k, Ωw and Ωwr

are the same.

As described in Section 3.1.3, the SELECT @ clause returns the serialized

RDF form of the subgraph of each solution mapping matching a BGP. To

support this functionality we define the SelectAt operator

SelectAt operator. Let Ψw be a sequence of weighted solution map-

pings; let x be the set of variables and blank nodes of the BGP from which Ψw

is obtained; let σ be the RDF instance mapping of the blank nodes of BGP in

each solution mapping of Ψw. The result of a SelectAt operator is a sequence

defined as

SelectAt (Ψw) = {(µsα, w) | (µw, w) ∈ Ψw ∧ µsα = µ (σ (x))}

cardSelectAt(Ψw,w) (µw) = cardΨw (µw)

The order of SelectAt (Ψw) must preserve the order given by orderBy.

Filter operator. Let Ωw be a multiset of weighted solution mappings

and exp be an expression (as defined in [6], Section 3). The result of a Filter

operator is a multiset of weighted solution mappings defined as

filter (exp,Ωw) =


µw | µw = (µ,w) ∈ Ωw ∧ exp (µ) is an

expression that has an effective

boolean value of true


cardfilter(exp,Ωw) (µw) = cardΩw (µw)
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Union operator. Let Ωw1and Ωw2 be two multisets of weighted solution

mappings. The result of a Union operator is a multiset of weighted solution

mappings defined as:

union (Ωw1 ,Ωw2) = {µw | µw ∈ Ωw1 or µw ∈ Ωw2}

cardunion(Ωw1 ,Ωw2)
(µw) = cardw1 (µw) + cardw2 (µw)

Note that, similar to the Join operator, the query processor engine needs

to return ranked solution mappings resulting from the union of Ωw1and Ωw2 .

OrderBy operator. Let Ψw a sequence of weighted solution mappings;

let cond be a condition (defined in [6], Section 9.1), the result of an OrderBy

operator is a sequence defined as

orderBy (Ψw, cond) =

 µw | µw ∈ Ψw and the sequence

satisfies the ordering condition


cardorderBy(Ψw,cond) (µw) = cardΨw (µw)

Project operator.Let Ψw be a sequence of weighted solution mappings

and PV a set of query variables. The result of a Project operator is a sequence

defined as:

For mapping µw, write Proj(µw,PV) to be the restriction of µw to the

variables in PV.

project (Ψw, PV ) = [Proj (µw, PV ) | µw ∈ Ψw]

cardproject(Ψw,PV ) (µw) = cardΨw (µw)

The order of project (Ψw, PV ) must preserve the order given by the or-

derBy operator.
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Distinct operator. Let Ωw be a sequence of weighted solution mappings.

The result of a Distinct operator is a sequence defined as

distinct (Ψw) = [µw | µw ∈ Ωw]

carddistinct(Ψw) (µw) = 1
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5. EXTENDED QUERY PROCESSING ENGINE

In this chapter, the details of the query processing engine required to

parse, generate, optimize, and evaluate a SPARQL query containing the new

and redefined operators proposed in the previous chapter are presented. Also,

we describe the processing of path predicates and how they are used in con-

junction with the new clauses and join processing to evaluate ranked queries

more efficiently. The indexing approach to solve path queries more effectively

is also described.

5.1. Shortest paths

In section 3.1.2 the functionality of our proposed path predicate <nEdges>

was briefly described. In this section, a description of the operator used by

the query engine to evaluate path query patterns is presented. In particular,

the query engine is extended to return solution mappings that match both

triple and path patterns. Additionally, the extension to support ranked top-k

queries motivates the use of algorithms that allow finding these structures in a

very efficient way. For this, a version of Yen’s algorithm [59] presented in [16]

which returns the k-shortest simple paths between two given nodes is used and

it was chosen due to its optimal nature.

The evaluation of a path pattern starts by identifying the type of the start

and end nodes of the path pattern. For instance, if both are non-variables,

Yen’s algorithm is invoked directly on them; otherwise, variable nodes are re-

placed by a temporary node connecting, through predicates, all the nodes that
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SELECT * WHERE {

?s <nEdges(subclass)> :White_Shark .

RANK 1}

Fig. 17. Path query to find the top-1 class for which :White Shark is a subclass

are reachable from (or can reach) the non-variable node in the path pattern 1.

Reachable (or reaching) nodes are found by means of a reachability index (See

section 5.3). Note that k-shortest paths algorithms require that both start

and end nodes be specific nodes in the graph; however, this is not the case for

variable nodes as they may represent any node in the graph.

After the variables of a path pattern have been processed, this is ready

to be evaluated by the query engine using Yen’s algorithm. In particular, the

query engine associates the algorithm with a path operator which implements

an iterator to return results in a pull-based manner 2, i.e. paths are produced

on-demand based on the requirements of the operator using the path operator.

Each retrieved path is then processed to remove the temporary node and

its edge and to create a weighted solution mapping by binding their nodes,

predicates (edges), and weight to variables in the path pattern. Finally, once

the path iterator is not required to return more results, the temporary nodes

along with its edges are removed from the graph.

1This is done by adding temporary weighted triples with weight 0 to the under-
lying RDF graph

2This contrasts with [2] in which Yen’s algorithm is used with a push-based
approach returning paths permanently until instructed to stop
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Fig. 18. Graph from Figure 8 modified to include a temporary node that links the
nodes that can reach the node :White Shark

Consider the query in Figure 17 which retrieves the top-1 class for which

:White Shark is a subclass. As the subject of the path pattern is a variable,

it needs to be replaced by a temporary node linking the nodes that can reach

:White Shark, i.e. :Chondrichthyes and :Elasmobranchii.

Figure 18 shows the modified version of the graph in Figure 8 (the tem-

porary node tmpNode is shown in grey). After this addition, the query en-

gine executes Yen’s algorithm to find the top-k paths between tmpNode and

:White Shark. As expected, the shortest path between these two nodes is

the one connecting tmpNode→:Chondrichthyes→:White Shark with weight

0.30. Once this path is found, tmpNode and its temporary edges are removed

from the path and graph, and the path is returned.
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5.1.1. Enhanced query processing using path operators

A path operator is not considered an independent algebra operator as it is never

evaluated in isolation but always within the context of a BGP operator, like

any regular triple pattern. Therefore the BGP operator may greatly benefit

from using a path operator to evaluate its triple patterns as a whole instead

of considering them independently.

Specifically, the use of path operators is not limited only to the evaluation

of single path query expressions, i.e. a single expression containing one path

predicate and one start and end node, but it can also be extended to the eval-

uation of more complex queries that contain more than one path (or triple)

pattern and that can be seen as an extended path pattern with intermediate

nodes. For example, consider the query in Figure 19 which asks for the top-5

intermediate subclasses connecting the class :Elasmobranchii and the sub-

class :Chimaeriformes. The regular approach to solve a query like this is to

apply a path operator to each path pattern and then perform the ranked join

of the results.

Alternatively, the query engine can treat this query as a single path pat-

tern from :Elasmobranchii to :Chimaeriformes with an intermediate node

?o and use a single path operator to return ranked results without requir-

ing a join operator. In this case, the path operator also needs to consider

intermediate nodes in the query pattern in order to a) validate the lengths

of the retrieved paths, and b) perform the appropriate variable bindings.
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SELECT * WHERE {

:Elasmobranchii <nEdges(subclass)> ?o .

?o <nEdges(subclass)> :Chimaeriformes

RANK 5}

Fig. 19. Query composed of two simple path patterns

In our example, the length validation considers only paths with at least

two edges (one intermediate node), and the binding process associates ?o

with :Chondrichthyes and :Holocephali (See Figure 8) which will have

the same aggregated weight as they occur in the same (and only) path from

:Elasmobranchii to :Chimaeriformes.

5.2. HR-Join operator

The evaluation of a BGP operator involves the evaluation of its composing

triple and path patterns and then the join of the solution mappings pro-

duced by them. Similarly, join operations are also performed at a higher level,

i.e. when joining solution mappings produced by two or more BGPs (group

graph patterns). In this section, we present the details of the extension to the

SPARQL join operator to work over ranked inputs of weighted solution map-

pings. Specifically, as mentioned in previous sections, a join operator working

with ranked input streams of weighted solution mappings also needs to return

a ranked sequence of joined weighted solution mappings either by using con-

ventional ranked-join algorithms [43,56–58], if the aggregation function being

used is monotonic, or alternative join algorithms such as [2] otherwise.
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The non-monotonicity problem occurs during the aggregation of the

weights of two solution mappings whose subgraphs have overlapping edges. In

particular, during this computation, the weight of the edges (triples) of each

subgraph is processed by a Weight Merge Function to assign a weight to the

results of the join operation. Depending on specific application requirements,

this function may process overlapping edges, i.e. edges that are common to

both subgraphs, only once or twice. When common edges are processed only

once, aggregation functions like sum and product may affect the monotonic-

ity of the produced results. For instance, assume we use the function sum

3, then the aggregated weight of two subgraphs with high individual weights

and many overlapping edges may be lower than that of two subgraphs with

lower individual weights but with zero overlapping edges [2], inducing this way

non-monotonicity in the aggregation function. On the other hand, when over-

lapping edges are treated independently, then the join operator behaves like a

usual ranked-join algorithm as the aggregation function is always monotonic.

Note that for aggregation functions like min and max, monotonicity holds even

if overlapping edges are considered only once. Next, we present the details of

the join operator considering its aggregation function as non-monotonic.

For the evaluation of the join operator using a non-monotonic aggregation

function we extend the functionality of the HR-Join operator, presented in [2].

3For the case of product note that a . b = c is equivalent to log(a) + log(b) =
log(c)
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In general, this extension allows the operator to (a) work with general struc-

tures not limited to twigs, (b) access its input streams more efficiently using

a pull-based approach, (c) match two sub-results in one or more nodes not

limited to a root node, (d) be fully compatible with other SPARQL algebra

operators occurring in an algebra expression.

The evaluation of the extended HR-Join operator follows, in a general

way, the process thoroughly described in [2]. In general, the input streams to

the join operator are managed by horizon valves to control the availability of

data. Then, the (Symmetric Hash) join operation pulls sub-results from each

valve in a round-robin manner. Sub-results in one valve are compared against

those from the other valve to find possible matches based on their root nodes.

Once a match is found, it is passed to the Result Sieve whose function is to

return a cost-ranked stream of results while dealing with the non-monotonicity

of its input stream.

The extension to this evaluation process involves the implementation of

the HR-Join as a cost-ranked iterator of weighted solution mappings and the

association of the horizon valves with other cost-ranked iterators, such as path

or other join operators, in order to seamlessly include the new operator in a

SPARQL algebra tree generated from a query. As described in Section 5.1, the

association of the horizon valves with iterators improves the access to the input

streams as sub-results are produced on a pull-based instead of a push-based

manner.
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SELECT ?s ?w WHERE {

{?s <nEdges(subclass)> :Chimaeriformes ?w1 .

?s <nEdges(subclass)> :Dusky_Shark ?w2 .

RANK 5

}SCORE IN ?w

}

Fig. 20. Sample query to find the top-5 common classes for the subclasses
:Chimaeriformes and :Dusky Shark

Another important aspect of our extension is the ability of the HR-Join

operator to produce results that are not limited to twigs, and to match sub-

results based on several nodes rather than on one root node. This extension

involves the use of mapping compatibility introduced in Section 2.2. In par-

ticular, when a sub-result (weighted solution mapping) in one valve has to be

compared to those in the other valve, this operation is reduced to a verification

of mapping compatibility between sub-results, i.e. the existence of common

variables bound to the same values in all of them.

Consider the query in Figure 20 to find the top-5 common classes for

the subclasses :Chimaeriformes and :Dusky Shark. The BGP evaluation in-

volves the join of the two path patterns which are associated to path operators.

For this example, we assume that the join operator uses sum as the weight

aggregation function and it counts overlapping edges only once. Internally, the

join operator associates each path operator with a horizon valve. As described

in [2], the join operator pulls paths from each valve in a round-robin manner.

Every time a valve pulls a path, it is compared to those already pulled in the
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(a) (b)

Fig. 21. HR-Join stages for query in Figure 20

other valve. Figure 21(a) shows the query algebra tree and a snapshot of the

intermediate solution mappings (paths) when both valves have pulled two and

one path respectively. After the left valve pulls the second solution mapping,

it finds a match with the first solution mapping from the right valve as they

are compatible. However, it is not output by the join operator (shown in grey)

until it verifies that the maximum score in each valve is greater than the score

of the result just found or that both valves have finished their outputs. In Fig-

ure 21(b) the left valve finds another match with the second solution mapping

from the right. Note that the solution mappings joined to create the second re-

sult have one overlapping edge, :Elasmobranchii→:Chondrichthyes, which

is counted only once by the join operator. For this reason, the aggregated

weight of the second result is 0.66 instead of 1.16. Finally, since both valves

have finished their outputs, both results are output by the join operator.
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5.3. Indexing

In this section, the details of the index structures used to support the exten-

sions described in previous sections are presented. Specifically, the extension

to the index structures of Jena TDB [8] is described; along with the details of a

reachability and graph proximity indices. The first one is used during the pro-

cessing of path operators to replace variable nodes with reaching or reachable

nodes; whereas, the second one is used for query optimization (Chapter 6).

5.3.1. Weight Aware Indexing

The RDF storage framework of Jena, TDB [8], provides three composite

indices, subject-predicate-object (SPO), predicate-object-subject (POS), and

object-subject-predicate (OSP) for efficient execution of queries on disk-resident

RDF graphs. In order to avoid any full table scans when executing a query, we

extend the indexing scheme of TDB in such a way that results can be returned

in non-increasing order of their weight no matter what literals are available in

the query pattern. Thus, our extended indexing scheme contains nine compos-

ite index structures, SWPO, SPWO, SPOW, PWOS, POWS, POSW, OWSP,

OSWP, and OSPW, where W denotes the weight of the triples. In addition,

alike the original SPO fields, the weight field is internally represented as an

inline 64 bit node identifier [8]. The choice to represent it this way has the

double benefit of (a) avoiding expensive conversions from Node to NodeID,

and vice versa, and (b) allowing the order of triples according to their weight.
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5.3.2. Reachability Index

As explained in Section 5.1, a path pattern may contain variable nodes as

its start or end nodes. However, the underlying Yen’s algorithm used to find

paths needs specific node labels to initialize its search. In addition, a variable

node as a start or end node in a path pattern indicates a path from or to any

node in the graph. For this reason, in order to reduce the path search time,

it is necessary to reduce the search space of Yen’s algorithm to a reachability

neighborhood, i.e those nodes that are reachable or can reach the non-variable

node in the path pattern.

The retrieval of the reachability neighborhood of a node needs to be pro-

cessed during query evaluation. This requirement discards online methods to

recover reachability information; therefore we make use of an all-pairs reach-

ability index to recover this information quickly without affecting the per-

formance of the query evaluation. The high cost of computing an all-pairs

reachability index, O(V 3), is acceptable as this index is generated offline along

with the generation of the extended TDB database described in the previous

section.

5.3.3. Proximity Index

The proposed extensions include an optimization strategy (See Chapter 6)

to improve the execution time of top-k queries. This strategy is based on

statistical information about a weighted RDF graph regarding graph proxim-

ity [27, 28]. Essentially, graph proximity is a measure that summarizes the

49



relationships between any two nodes in the graph such as the number, length,

and weight of the paths between two nodes. In other words, two nodes are

closer to each other if the paths connecting them are large in number, short

in length, or have a low weight.

In this thesis, a variant of the reachability computation algorithm pre-

sented in [28] is used. In general, this algorithm uses a proximity definition

based on properties of random walks [60–62] to characterize node relation-

ships based on the paths connecting them. In order to generalize the use of

random walks to directed graphs, the algorithm introduces the concept of es-

cape probability between two nodes i and j, which is defined as the probability

that a random particle starting from i visits j before it returns to i. Finally,

the algorithm adds parameters to reflect noise that may distract the particle

from reaching its goal, and to reduce the asymmetry in the graph connectivity

induced by its directed edges.

Our proposed optimization strategy uses all-pairs proximity information

computed over the underlying RDF graph. Similar to reachability neighbor-

hoods, all-pairs proximity information is used during query processing time;

therefore, for better performance, it is computed offline and stored as an ad-

ditional index. As an example of this, the proximity indices created for the

experimental datasets presented in Chapter 7 had a creation time of approxi-

mately three hours.
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6. OPTIMIZATION

6.1. Preliminaries

The evaluation of a basic graph pattern involves the join of its component

triple and path patterns. Specifically, the query engine creates a query plan

which is represented as a rooted binary tree in which the leaf nodes are triple

or path patterns and the non-leaf nodes are join operators. As described in

Section 5.2, to perform join operations the extended query engine uses an

extension of the HR-Join operator proposed in [2] in order to deal with the

potential non-monotonicity of the sub-results produced by the join operations.

Essentially, this operator is based on a symmetric hash join which pulls sub-

results from each of the input streams being joined in a round-robin manner.

For this, the operator keeps a map associated with each input stream to keep

record of of every single sub-result retrieved so they can be compared to those

from the other input to find potential matches. When a match is found, it

is stored in a special structure for further processing. For this, the operator

maintains a priority queue of candidate results which outputs one result at a

time when the conditions to avoid non-monotonicity are met. This process is

repeated every time the operator is required to return a result.

Note that, similarly to classic rank-join operators, the HR-Join operator

is optimized to return ranked results without having to access all the sub-

results of its input streams. However, the benefits of this optimization may be

affected when the sub-results of the two input streams are not likely to match

in reasonable time, i.e. when it is necessary to access a high number of sub-
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results in each input stream in order to find one match. In addition, the time

at which each sub-result arrives in each input stream has a great impact on the

total query execution time. As shown in Chapter 7 the reduction/increase of

number of accesses in each input stream must be linked to the inter-arrival time

of its sub-results, i.e. it is better to perform a high number of accesses in the

streams with very low inter-arrival time and only a few accesses in the streams

with very high inter-arrival time. Also, the number of sub-results accessed

in each input stream affects directly the performance of the join operation as

more comparison operations to find a match need to be done every time a

new sub-result arrives. Finally, the join operation may be potentially costly in

terms of memory usage as all retrieved sub-results need to be kept in memory

for further comparison and matching.

To overcome the problems described previously, we propose a set of op-

timization strategies associated with the query planner which aim to select a

join order to reduce the number of sub-results accessed in each input stream

of each join operator in the query, and to minimize the overall query execution

time. Following the SPARQL specification, these strategies consider only left-

deep plans, i.e. the outer node of a join node is always a triple or path pattern.

Similarly to other optimization techniques for the SPARQL language [63], each

proposed optimization strategy uses a cost model to assign a score to each pat-

tern in the BGP. Essentially, the score assigned to a given pattern reflects the

order in which it must be joined to the other patterns in the query in order to
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produce results quickly and with a low number of intermediate results.

In summary, the proposed optimization strategies are defined in the fol-

lowing general steps

1. Obtain a list of the triple/path patterns from the query and assign each

one a score using the cost model associated to the strategy

2. Sort the list of patterns in decreasing/increasing order of their scores

depending on the strategy used

3. Create a left-deep query plan by joining the patterns in the same order

as returned by the sorted list

Note that the heuristic nature of the proposed strategies makes it difficult

to guarantee the selection of the optimal plan for all queries; however, they

have the benefit of minimizing the time to select a query plan that improves

the query execution time while ensuring that the worst possible combination

of query patterns is not selected, as it is shown in Chapter 7.

6.2. Optimization Strategies

As stated previously, each of the proposed optimization strategies uses a cost

model to assign a score to each pattern of a BGP in order to establish a join

order. In general, these strategies use two characteristics inherent to each

pattern of a BGP: the proximity of a pattern to the other patterns in the

query, and the average time that each of its sub-results takes to be returned.
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Experiments presented in Chapter 7 demonstrate that these two parameters

play an important role when the query planner has to decide which join order

requires the lowest number of accesses for each join operator in the query

plan, and yields the shortest query execution time to return the number of

results required by the user. In the following we present the details of the

proposed optimization strategies which differ in the way they use proximity

and inter-arrival time.

6.2.1. Join order based on proximity score

In Section 5.3.3, we introduced the concept of graph proximity [27, 28] to

reflect the closeness of two nodes in a weighted directed graph in terms of the

number, length, and cost of the paths connecting them. In other words, a high

proximity value between two nodes implies that they are connected through a

high number of low-cost paths.

The use of proximity for query optimization is based on the assumption

that those patterns that are close to the other patterns in the query, in terms

of proximity, must be joined first as they will generate early sub-results that

are very likely to join those sub-results from the other patterns early in the

process and with a small number of accesses to their respective sub-result

streams.

The strategy described in this section establishes the proximity score for

a pattern p as the average of the individual proximities between p and the
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(a) (b) (c)

Fig. 22. A sample query (a), and the graphical representation of its BGP (b).
The proximity score of a pattern is computed as its average proximity to the other
patterns in the query (c)

other patterns in the BGP. Formally, this is defined as

TP (pi) =

∑npatterns
j patternProximity(pi, pj)

npatterns
(6.1)

where npatterns is the total number of patterns in the BGP, and the prox-

imity score between two patterns, patternProximity, is equal to the proxim-

ity score between their non-shared nodes. For example, consider the sample

query in Figure 22(a) along with the graphical representation of its BGP in

Figure 22(b). For this query, the proximity score for each of its patterns is

computed as the average proximity between their non-shared nodes :a, :b and

:c (Figure 22(c)). Once a proximity score has been assigned to each pattern

in the query, the join order is established by sorting the list of patterns in

non-increasing order of proximity score.

Considering the way proximity scores are assigned to the patterns of a

query, it could be argued that the average of the all-pairs proximities does

not necessarily reflects the closeness between two specific patterns. In other

words, a high proximity score given to a pattern does not necessarily ensure
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that there will be a high number of paths between it and another pattern in

the query. This observation is especially true if we consider that joining first

those patterns whose non-shared nodes have a higher local proximity may be

as effective or potentially more effective than computing the average proximity.

However, the strategy presented here, despite the fact that it is not optimal,

intends to join first those patterns that are close to the other patterns as

a whole. In other words, taking the proximity as a whole is based on the

intuition that a high average proximity indicates a high number of matches

for the nodes that are common for all the patterns (node ?s for the query

presented in Figure 22(a)).

Finally, note that an RDF graph is directed. This implies that the proxim-

ity from a node a to a node b is not the same as that from b to a. However, the

proximity computation presented in [28] is partially symmetric. This allows to

establish bidirectional proximity scores between two nodes in a directed graph

even though the connection between them is unidirectional. This characteris-

tic also makes the proximity-based optimization applicable to cases where two

patterns have to join in nodes other than the subject.

6.2.2. Join order based on inter-arrival time

As described in Section 5.1, the processing of a path pattern is based on a

version of Yen’s algorithm presented in [16]. One of the properties of this

algorithm is that the cost of path enumeration is linear in the number of paths

returned. This has the advantage of ensuring a relatively constant inter-arrival
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time of results as the inter-arrival time is a function of the number of nodes

and edges in the reachability neighborhood between the start and end nodes

of the path pattern [2]. This feature adds predictability to the execution of a

path operator and therefore it allows a better optimization.

The use of inter-arrival time in query optimization is based on the as-

sumption that the arrival rate of the sub-results of patterns in a query affects

the total query execution time; this is demonstrated in Chapter 7. In conse-

quence, our proposed strategies sort the patterns in a query in increasing or

decreasing order of their inter-arrival times depending on the approach used.

The rest of strategies presented in this section are based on the combi-

nation of the proximity and inter-arrival scores. These strategies assume that

patterns with the lowest inter-arrival scores must be joined first. The reason

for this assumption is based on the nature of the HR-Join operator explained

in Section 5.2 and the fact that the plans created by the query planner are

left-deep. In particular, in Section 5.2 it was shown that the HR-Join operator

accesses its input streams in a round-robin manner, one stream at a time to

find matches. This means that in the best-case scenario the operator has to

perform at least four accesses to produce one match; two accesses to identify

it, and two more to verify horizon punctuation. However, when the left side

of an HR-join operator is another HR-Join operator (as it may be the case in

any pipelined left-deep plan), each access to that side implies accesses to the

streams under the left HR-join operator.
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Fig. 23. Query plan for three HR-Join operators. Note that one single access to
the left side of Op3 implies accesses to the streams of Op2 and in turn to those of
Op1. As the streams of Op1 are accessed more frequently, the query planner should
put under it those patterns with the lowest inter-arrival times.

This is presented more clearly in Figure 23. It can be seen that one

single left access in Op3 produces a series of accesses to those streams being

joined by operators located lower in the plan (Q2 and Q1 ). This implies that

the streams under Op1 are accessed more frequently than those under Op2

and Op3. Therefore, based on this fact, it is reasonable to put under Op1

those patterns with the lowest inter-arrival time. Finally, potential problems

with this assumption may appear when the streams under Op1 are used up

completely before all results are produced, forcing this way to access only the

right side of Op3 (the slowest). Another potential problem is the punctuation

of the streams of Op1 forcing again the access of the right side of Op3. However,

this last problem is cancelled out by the fact that punctuation can also occur

in the slowest side and therefore speeding up the process by accessing only

those streams with the lowest inter-arrival times.
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6.2.3. Join Order based on Aggregated Score

To reinforce the benefits offered by the use of proximity and inter-arrival time,

a set of optimization strategies is proposed which are based on the assumption

that a high proximity score is as desirable as a low inter-arrival time when

trying to find the patterns that must be joined first within a query plan.

These strategies compute an aggregated score Sagg which is defined for each

pattern in a BGP as the aggregation of its normalized proximity (TPn) and

inter-arrival time (IaTn) scores1. Note that the optimizer gives more priority

to a pattern with a high proximity score and with a lower inter-arrival time. To

overcome this disparity, after the normalization of the proximity scores, these

are subtracted from the unit in order to establish an order that is compatible

to that established by inter-arrival times. With this, the aggregated score Sagg

for a pattern pi in a BGP is defined as

Sagg(pi) = TPn(pi) [aggFun] IaTn(pi) (6.2)

where [aggFun] is an aggregation function such as min, max, average, or

product.

6.2.4. Join Order based on Hybrid Score

The Hybrid optimization approach does not assume that it is always appro-

priate to combine proximity and inter-arrival scores. Concretely, this strategy

1The normalized scores are obtained by dividing each of them by the maximum
score given to a pattern in that category
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acknowledges that optimization based on proximity does not provide great

benefits2 if the difference between the proximity scores of the patterns in a

query is not significant. In other words, proximity scores are not considered

for aggregation if their variance is lower than a cut-off value. The assumption

behind this reasoning is that when the proximity scores assigned to the pat-

terns in the query are very close (or similar) to each other, the optimization

strategy based on proximity cannot clearly differentiate between patterns or

the join order provided by the strategy is very similar to that of the random

plan. Finally, the cut-off value necessary to differentiate variances of proxim-

ity scores is obtained by running queries over the dataset to identify the gain

of their optimized plans with respect to the average plan and the respective

variance of their proximity scores. Experiments in Chapter 7 demonstrate this

for two real world datasets.

In addition, unlike the regular score aggregation approaches presented in

the previous section, the combination of the proximity and inter-arrival scores

is performed at a fine-grained level. Concretely, the algorithm compares the

positions of each pattern, starting with the right-most pattern, in the plans

provided by both proximity and inter-arrival time approaches. If a position

contains different patterns, the position suggested by the inter-arrival time

approach is used only if the normalized proximity score of the pattern in the

2These benefits are measured in terms of the distance of the query plan selected
by the optimizer to the best, the worst, and the average plan; as shown in Chapter 7
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Fig. 24. Algorithm for the Hybrid Score approach

differing position is greater than or equal to a given threshold. The algorithm

for this approach is presented in Figure 24.
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7. EXPERIMENTS

In this section, we evaluate the performance of our optimization strategies

by evaluating cost-ranked query patterns over subsets of two real weighted

graph datasets. For comparison, we tested the running time for random queries

whose execution was optimized using the proposed optimization strategies. All

experiments were run on an Intel Core i3-330M (2.13 GHz.) with 4GB memory,

running Windows 7. In addition, our experiments comprise the evaluation of

the proposed optimization strategies in terms of their distance from the average

random plan regarding the overall query running time for queries returning

different numbers of top results.

7.1. Datasets

The CoSeNa dataset [64], is a weighted graph based on the bag of words from

articles of the New York Times. In particular, the nodes of this graph represent

words and the weighted edges represent the co-occurrence of two words in

the same article. For our experiments we used a subset graph containing

9K nodes and 24K edges. Similarly, we use a graph, with 10K nodes and

25K edges, containing author relationships based on an subset of the DBLP

database [65]. The nodes in this graph represent authors and the edges indicate

the participation of two authors in the same publication. The weight of an

edge indicates the number of publications in which two authors co-participated.

These values are normalized to the maximum number of shared publications

included in the subset.
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These datasets are not originally in RDF format, for this reason it was

necessary to adapt them by adding a label to each edge and to convert each

node into an IRI. In addition, note that the use of Yen’s algorithm, which

returns a sequence of paths in non-decreasing order of their total weight, forced

us to adapt the original edge weight to the semantics of our application. For

this, we reassigned the weights for each edge by subtracting the original value

from 1.

7.2. Distance from the average plan

In section 6.2 we stated that although the selection of the optimal plan for

a query is not guaranteed, our proposed strategies help avoid the execution

of the worst combination of patterns, i.e. the combination that requires the

longest time to return results.

To identify the best and worst combination of a set of query patterns we

execute all their possible combinations while measuring the total time required

by each one to return a fixed number k of results. With this, the average plan

is represented by the average of the values for all the possible combinations.

Thus, the relative distance Rdis of the selected combination with respect to

the other possible combinations is defined as

Rdis =
MeasureSel −MeasureBest
MeasureWorst −MeasureBest

(7.1)

where MeasureSel, MeasureBest, and MeasureWorst are the measures for

the selected, the best, and the worst combinations in terms of number of
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Fig. 25. Proximity scores distribution for the CoSeNa dataset

accesses and total execution time. Note that the best plan will have an Rdis

value of 0 whereas the worst plan will have an Rdis value of 1.

For our specific evaluation, Rdis is evaluated for each variant of our pro-

posed optimization strategies as the average of Rdis for random sets of 20

queries with different number of patterns (3, 4, and 5) and returning different

numbers of top results (5 through 30). The first set of results are all for queries

with 4 patterns. Results for queries with 3 and 5 patterns are shown at the

end of this chapter.

7.3. Impact of variance of proximity scores

As stated in Section 6.2.4, the variance of the proximity scores of the patterns

in a query is an indicator of the gains provided by the proximity-based strategy
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Fig. 26. Proximity scores distribution for the DBLP dataset

with respect to the average plan for that particular query. Note that, gain is

defined as the reduction in the Rdis value provided by the proximity-based

strategy when compared to the average plan1. In other words, the higher the

reduction, the higher the gain.

The variance in the proximity scores of a query is affected directly by the

distribution of the weights of the triples in a graph dataset. In particular,

if the majority of all-pairs proximity scores of a graph is very close to zero,

i.e. they are far away, the proximity-based strategy will not be able to clearly

differentiate and establish the best order of query patterns. Therefore, the

benefits provided by this strategy will not be significant. Figures 25 and 26

1The best plan for a query has an Rdis value of 0
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(a)

(b)

Fig. 27. Gain provided by proximity vs the variance in the proximity scores for
each individual query in the random query sets for (a)CoSeNa (b) DBLP

present the distribution of the proximity scores for the CoSeNa and DBLP

datasets. Note that the number of records for each interval is in logarithmic

scale. It is clear to see that the distribution of proximity scores in both datasets

is Zipfian-like with the big majority of proximity scores being very close to zero.

This allows us to conclude that the majority of nodes in the graph are very far

from each other; and therefore the proximity-based strategy will not be able
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(a)

(b)

Fig. 28. Gain provided by proximity vs the variance in the proximity scores on
the random query sets extended with queries specifically selected to have a high
variance, for (a) CoSeNa (b) DBLP

to establish a significant difference between patterns in a query that has been

randomly selected.

To establish the benefits of the proximity-based strategy for our query sets

of randomly selected queries, we compared the gain against the variance in the

proximity scores for each individual query. Figures 27(a) and 27(b) show the

results of this comparison. From these figures it can be noticed that for those

queries with a very low variance in their proximity scores, the gain provided
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by the proximity-based strategy shows a random nature, i.e. it can be very

high (the selected plan is better than random), very low, or even negative (the

selected plan is worse than random). On the other hand, for those queries with

a higher variance, the gain provided by the proximity-based strategy is better

than random with no occurrences of queries with negative gains. Also note

that the cut-off value, i.e. the variance value that establishes the difference

between variances that provide gains and those that do not, is different for

both datasets.

To confirm this observation, we extended the random query sets with

more queries specifically selected to have a high variance. This is shown in

Figures 28(a) and 28(b). As expected, the sets of queries with a variance higher

than the cut-off value contain queries with positive gains and only a few with

negative gain. The occurrence of queries with high variance and negative gain

shows that the variance in the proximity scores of a pattern is still a rough, yet

important, indicator of the benefits provided by the proximity-based strategy.

7.4. Results and discussion

In this section, a comprehensive analysis of the evaluation of the tests pro-

posed in the introduction of this chapter is presented to evaluate the impact

of proximity and inter-arrival time on the performance of Top-k queries, and

the impact of the proposed optimization strategies.
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7.4.1. Impact of proximity

For the analysis of the impact of proximity on the performance of ranked

queries we evaluated Rdis for measures of total number of accesses and total

query execution time and setting a fixed inter-arrival times to 0 ms. This set-

ting allows eliminating the impact of inter-arrival times on query performance.

Figure 29(a) shows the curves depicting the difference between the average

plan and the optimized plan in terms of number of accesses according to prox-

imity scores only. These results show that, in general, the use of the proximity

metric in query optimization produces join orders that return results with a

reduced number of total accesses. Note that the proximity metric is not aware

of the inter-arrival time at which sub-results arrive; as it is based totally on

the structural characteristics of the underlying graph. In other words, it aims

to join patterns that can produce a high number of valid sub-results with the

least number of accesses to the pattern streams ignoring the rate at which they

arrive.

In addition, this strategy is also unaware of the time required for the join

process only. This is demonstrated in Figure 29(b), which shows the curves

depicting the difference between the optimized plan and the average plan in

terms of total query execution time. Here, the time taken by each query is

totally for the join operation since the total inter-arrival times for each pattern

in the queries is set to 0 ms.

Results obtained from the DBLP dataset are shown in Figures 30(a)
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(a)

(b)

Fig. 29. Relative distance (in (a) number of accesses and (b) time) between the
average and the optimized plan based on proximity for a fixed inter-arrival time of
0 ms (CoSeNa graph)

and 30(b). Note that for this dataset, optimization based on proximity per-

forms better than for the CoSeNa dataset. This difference is due to the fact

that the queries in both sets differ in the variance of their proximity scores;

and therefore they differ in the gains with respect to the average plan. This

will be explained with more detail later in this section.

70



(a)

(b)

Fig. 30. Relative distance (in (a) number of accesses and (b) time) between the
average and the optimized plan based on proximity for a fixed inter-arrival time of
0 ms (DBLP graph)

7.4.2. Impact of inter-arrival time

For the analysis of the impact of inter-arrival time on the performance of

ranked queries, we used an environment similar to that from the previous

section but setting the inter-arrival times of the patterns in the queries to

several fixed values in each execution. These values were set to 1, 5, 10, and

20 ms. Note that, similarly to the previous experiments the optimization
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strategy used in this experiment is still based on proximity only. This means

that despite the change in the inter-arrival times of the patterns in the queries,

the total number of accesses remains unchanged.

(a)

(b)

Fig. 31. Relative distance (in time) between the average and the optimized plan
based on proximity for queries with different inter-arrival times (a) 5ms and (b)
10ms (CoSeNa graph)

Figures 31(a) and 31(b) presents the curves for the average plan and the

optimized plan for queries, in the CoSeNa graph, whose patterns return results

at 5 and 10 ms respectively. Note that the impact of the time used for the
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join process (Figure 29(b)) is surpassed by that of the time at which each

sub-result arrives, becoming negligible. Also note that the change in the inter-

arrival times of sub-results provokes a change in the location of the average

plan, locating it closer or further away from the best plan. Results for the

DBLP dataset are shown in Figures 32(a) and 32(a).

(a)

(b)

Fig. 32. Relative distance (in time) between the average and the optimized plan
based on proximity for queries with different inter-arrival times (a) 5ms and (b)
10ms (DBLP graph)
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(a)

(b)

Fig. 33. Relative distance (in time) between the average and the optimized
plan based on proximity for queries with heterogeneous inter-arrival times over (a)
CoSeNa graph (b) DBLP graph

7.4.3. Impact of heterogeneous inter-arrival times

As explained in the beginning of this section, the optimization based on prox-

imity scores only is not aware of the inter-arrival times at which sub-results of

the patterns in a query arrive, i.e. it assumes that all sub-results arrive at the

same time. Experiments in the previous sub-section showed that this strategy

performs well when this is the case, i.e. when the inter-arrival times for all the
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patterns are homogeneous.

However, the fact that the proximity strategy does not use inter-arrival

times to perform the optimization, makes it susceptible to heterogeneity in

these times. This means that the performance of the plans created by the

proximity strategy is affected by the random nature of the inter-arrival time

inherent to each pattern. This implies that proximity-based plans may be bet-

ter or worse than the average plan depending on whether they coincidentally

locate the patterns with the lowest inter-arrival times first in the plan or not.

Figures 33(a) and 33(b) show the curves for the average and selected plans

for queries with heterogeneous inter-arrival times over the CoSeNa and DBLP

graphs respectively. As expected, these figures show that the heterogeneity of

the inter-arrival times in the query patterns adds randomness to the results

provided by the proximity-based optimization strategy.

7.4.4. Optimization based on inter-arrival time only

Figures 34(a), 34(b), 35(a), and 35(b), show the relative distance of the op-

timized plan based on inter-arrival times only, in terms of number of accesses

and total execution time, for the CoSeNa and DBLP graphs.

As expected from Section 6.2.2, the strategy based on ascending order of

inter-arrival times provides the best results in terms of total execution time.

However, it can be noted that the gains in terms of number of accesses are

not as good as those provided by the proximity-based strategy; as the curves

for this measure are very similar to that of the average plan. Nevertheless,
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(a)

(b)

Fig. 34. Relative distance (in (a) number of accesses and (b) time) between the
average and the optimized plan based in ascending and descending order of inter-
arrival time (Cosena graph)

despite this trade-off between number of accesses and total execution time, the

strategy based on inter-arrival time still provides significant improvements in

terms of time if the conditions explained in Section 6.2.2 are met.

7.4.5. Optimization based on aggregated and Hybrid score

In this subsection we present comparative results among the two optimization

strategies presented so far, proximity and inter-arrival time in ascending order;
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(a)

(b)

Fig. 35. Relative distance (in (a) number of accesses and (b) time) between the
average and the optimized plan based in ascending and descending order of inter-
arrival time (DBLP graph)

and those that perform an aggregation of these scores.

To avoid ambiguity and emphasize clarity, information about Rdis scores

for each strategy in each Top-K number is presented in tabular form. The last

row of a table contains the average value of Rdis so that the reader can get a

global idea of the performance of each strategy. In addition, for each dataset

two tables are presented containing the information regarding number of ac-
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Fig. 36. Comparison tables for all the optimization strategies in terms of (a)
Number of accesses and (b) Inter-arrival time (CoSeNa graph)(4-pattern queries)

cesses and time respectively. With this, the results are presented in Figures 36

and 37.

From the information presented in these tables, it can be noticed that,

in terms of number of accesses, the hybrid approach, unlike the aggregated

approaches, always performs better than the random (average) plan. However,

as it uses inter-arrival time to perform the optimization it has to pay the price

of having an increased number of accesses with respect to the strategy based on

proximity only. However, as stated in the previous section, this small trade-off

provides big benefits when considering the gains in total execution time.

Regarding execution time, it is worth noting that both the aggregated and
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Fig. 37. Comparison tables for all the optimization strategies in terms of (a)
Number of accesses and (b) Inter-arrival time (DBLP graph)(4-pattern queries)

hybrid approaches provide huge improvements with respect to the random plan

and pure-proximity optimization. In addition, it is important to note that the

aggregated-score approaches, which naively combine the proximity and inter-

arrival time scores without further analysis, provide worse or as good results as

the approach based only on inter-arrival time. On the other hand, as expected,

the hybrid approach offers better or, in the worst case, just as good results.

Also note that, for the DBLP dataset, the difference between the hybrid

approach and the aggregated approaches is much smaller than that for the

CoSeNa graph. The reason for this can be found in Figures 27(a) and 27(b).

Note that the random query set for the CoSeNa dataset contains fewer queries
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with high variance than that for the DBLP dataset. This means that the

benefits provided by proximity are more noticeable for the DBLP query set

than those for the CoSeNa query set. For this reason, in the DBLP dataset,

the approaches that always combine proximity and inter-arrival time have a

better chance to perform as good as the hybrid approach. On the other hand,

the benefits of the hybrid approach are more noticeable for the CoSeNa dataset

as the few queries with high proximity score variance are leveraged to produce

better gains. In addition, the aggregated approaches perform worse than the

hybrid due to the fact that they do not make differentiation between queries

with high or low variance in proximity scores. Figures 38, 39, 40, and 41 show

the comparison tables for all the strategies for queries with 3 and 5 patterns

for both datasets. It can be noticed that the hybrid approach still performs

better in terms of time for these query sets.
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Fig. 38. Comparison tables for all the optimization strategies in terms of (a)
Number of accesses and (b) Inter-arrival time (CoSeNa graph)(3-pattern queries)

Fig. 39. Comparison tables for all the optimization strategies in terms of (a)
Number of accesses and (b) Inter-arrival time (CoSeNa graph)(5-pattern queries)
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Fig. 40. Comparison tables for all the optimization strategies in terms of (a)
Number of accesses and (b) Inter-arrival time (DBLP graph)(3-pattern queries)

Fig. 41. Comparison tables for all the optimization strategies in terms of (a)
Number of accesses and (b) Inter-arrival time (DBLP graph)(5-pattern queries)
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8. CONCLUSIONS

In this thesis, we presented an extension to the RDF specification to allow

RDF triples include an additional component in the form of a weight value

in order to impose further selectivity in the knowledge that can be extracted

from an RDF graph. We pointed out that current implementations of RDF

query languages, such as SPARQL, have limited expressive power and there-

fore they fail to offer the necessary language constructs to express queries that

make efficient use of the proposed extension. Similarly, we stated that current

RDF stores do not provide specialized functionality to leverage the advantages

of weighted RDF graphs. To overcome these limitations we presented exten-

sions to the SPARQL specification in order to support a weight extension to

RDF triples, new predicates to express advanced relationships (reachability)

between nodes, the ability to express cost-ranked queries that contain both

regular and path predicates, advanced indexing tools and optimization strate-

gies.

The proposed optimization strategies are based on two metrics that deal

with graph proximity and sub-result inter-arrival time. The goal of these

strategies is to find join orders that reduce both the number of accesses per-

formed at the nodes of a query plan, and the total execution time of queries.

We experimentally demonstrated that these two metrics have a significant im-

pact on the performance of ranked queries either individually or combined.

This result allowed us to conclude that, to be complete, an optimization strat-

egy should take into account the effect and impact of both of them.
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Finally, our experimental evaluation showed that heterogeneity in the

inter-arrival times of the patterns in a query affects negatively the optimization

results provided by proximity only. This is due to the fact that the proximity

metric is suitable to create query plans that produce results with a reduced

number of accesses but is unaware of the time required to retrieve each sub-

result and therefore it should be combined with the inter-arrival time metric

in order to overcome this limitation.

On the other hand, we showed that optimization strategies that naively

combine the scores given by the two metrics, without further consideration, do

not always produce efficient plans. This motivated the development of a hybrid

algorithm which performs the combination of the two metrics at finer level by

taking into account the variance in the proximity scores of the queries being

optimized. Experiments showed that the gains, in terms of time, provided by

the proximity-based optimization are better when the variance in the proximity

scores of the individual patterns is high. Further experimentation also showed

that, unlike the approaches that naively combine proximity and inter-arrival

time, the hybrid approach is able to leverage the benefits of proximity in

optimization when the variance in its scores is high.
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