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Abstract

Polynomial chaos and Gaussian process emulation are methods for surrogate-based uncer-
tainty quantification, and have been developed independently in their respective communities
over the last 25 years. Despite tackling similar problems in the field, to our knowledge there
has yet to be a critical comparison of the two approaches in the literature. We begin by provid-
ing a detailed description of polynomial chaos and Gaussian process approaches for building a
surrogate model of a black-box function. The accuracy of each surrogate method is then tested
and compared for two simulators used in industry: a land-surface model (adJULES) and a launch
vehicle controller (VEGACONTROL). We analyse surrogates built on experimental designs of various
size and type to investigate their performance in a range of modelling scenarios. Specifically,
polynomial chaos and Gaussian process surrogates are built on Sobol sequence and tensor grid
designs. Their accuracy is measured by their ability to estimate the mean, standard deviation,
exceedance probabilities and probability density function of the simulator output, as well as a
root mean square error metric, based on an independent validation design. We find that one
method does not unanimously outperform the other, but advantages can be gained in some
cases, such that the preferred method depends on the modelling goals of the practitioner. Our
conclusions are likely to depend somewhat on the modelling choices for the surrogates as well as
the design strategy. We hope that this work will spark future comparisons of the two methods
in their more advanced formulations and for different sampling strategies.

1 Introduction

Computer simulation of physical systems is now ubiquitous in science, because experimentation in
the field can be expensive, time-consuming, or even impossible in practice. Examples include: re-
gional ocean model systems1 (Haidvogel et al., 2008), modern global three/four-dimensional climate
models (Bellouin et al., 2011), models for complex real world engineering problems (automobile,
aerospace and construction) generated using general-purpose finite element programs2 (Kirkpatrick,
2000) and high fidelity mathematical models used in multi disciplinary design optimisation prob-
lems (for example wing design for a high speed civil transport aircraft) (Giunta et al., 1997). The
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computational models used for these purposes — which we call simulators — are implemented as
computer programs, and typically comprise of a system of (partial) differential equations involving a
large number of input and output parameters. Due to the complexity of the equations which make
up the model as well as the numerical tools needed to obtain their solution, it can take a substantial
amount of time (hours, days, weeks) to execute a single run of the simulator. Running a simulator
at various input parameter configurations to learn about a physical system is known as a computer
experiment (Sacks et al., 1989).

The field of uncertainty quantification in computer experiments has grown rapidly in recent years,
where we aim to identify and reduce uncertainties found in all aspects of the computer modelling
framework. Conventional approaches for tasks such as sensitivity analysis and calibration are based
around Monte Carlo simulation. However, exhaustively running an expensive simulator at a large
number of input settings is simply not practical here. A solution to this problem is to instead use a
smaller number of simulator runs to build a surrogate model, which is designed to provide an accu-
rate and fast approximation to the simulator. In this way, the surrogate model can be used in place
of the simulator for addressing uncertainty quantification objectives at a fraction of the original cost.
Surrogate methods typically make no use of the equations that make up the simulator, assuming
only a “black-box” model. Furthermore, they are usually applied to deterministic simulators which
produce identical outputs if run at the same input settings. We also focus on simulators which are
deterministic black-box functions in the present work. Two of the most popular and widely used
surrogate methods, which are the focus of this work, are polynomial chaos and Gaussian process
emulation.

In polynomial chaos, the simulator output is represented as a series expansion of functionals of
the input parameters. Making use of orthogonality properties of polynomial families, the method
uses information from the simulator to determine the coefficients of the expansion. Principally used
by engineering and applied mathematics communities, the term “polynomial chaos” was first coined
by Wiener (1938) who studied decompositions of Brownian motion. Polynomial chaos was initially
applied to computer experiments in the seminal work of Ghanem and Spanos (1991), who were pri-
marily interested in structural reliability problems. This early work in the field used chaos expansions
made up of Hermite polynomials and Gaussian random variables. An extension of this was given
by Xiu and Karniadakis (2003), who incorporated non-Gaussian variables and polynomials from the
Askey scheme in an approach known as generalized polynomial chaos. Much of the early work imple-
mented polynomial chaos for problems governed by known differential equations — e.g., the Navier-
Stokes equations in computational fluid dynamics (Le Mâıtre et al., 2001; Knio and Le Mâıtre, 2006)
— finding the expansion coefficients by solving an additional coupled system through a Galerkin
projection. This so-called intrusive approach requires knowledge of the equations that make up the
simulator and thus cannot be applied for all computer experiments. Recently there has been a surge
in the development of non-intrusive alternatives, which evaluate the expansion coefficients using
only repeated executions of the simulator. A big advantage of the non-intrusive class of methods
is that the simulator is viewed as a black-box — we can use already compiled code and do not
need to tamper with the simulator itself (useful for legacy codes). Non-intrusive approaches are
wide-ranging, and include sampling (Ghiocel and Ghanem, 2002; Reagan et al., 2003), quadrature
(Le Mâıtre et al., 2002; Debusschere et al., 2004; Nobile et al., 2008) and regression (Berveiller et al.,
2006; Blatman and Sudret, 2011) based techniques. Another important example is the method of
stochastic collocation (Xiu and Hesthaven, 2005) which uses interpolating polynomials. More ad-
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vanced formulations of polynomial chaos have also been developed recently including: incorporating
arbitrary probability distributions (Wan and Karniadakis, 2005), multi-element (Wan and Karniadakis,
2006; Jakeman et al., 2013), gradient-enhanced (Liu et al., 2015), adaptive and sparse (Blatman and Sudret,
2010; Winokur et al., 2016), oscillatory (Witteveen et al., 2008), multi-level and multi-index Monte
Carlo hybrids (Nobile and Tesei, 2015; Haji-Ali et al., 2016) and multi-fidelity (Narayan et al., 2014).

By contrast, Gaussian process emulation treats the simulator as an unknown function of its
inputs, which is modelled as a realisation of a stochastic process. Prior information about the
simulator is expressed as a Gaussian process with mean and covariance functions, which are up-
dated using runs of the simulator in an experimental design. Strongly related to Kriging method-
ology in geostatistics (Cressie, 2015), Gaussian process emulation is primarily used by the statis-
tics and applied mathematics communities and was first applied to the field of computer exper-
iments by Sacks et al. (1989). Taking a frequentist viewpoint, their methodology used a regres-
sion model in conjunction with a zero-mean Gaussian process to best predict simulator output at
an untried input configuration. The concept was soon viewed from the Bayesian perspective by
Currin et al. (1991), who were also concerned with prediction. Since this early work, the Bayesian
methodology has been further refined (Haylock and O’Hagan, 1996; Kennedy and O’Hagan, 2001)
in terms of mathematical elegance, and to incorporate additional sources of uncertainty (for ex-
ample model discrepancy, parametric uncertainty, observation error) found in computer exper-
iments. Emulators have also been applied to address various objectives, including uncertainty
analysis (Oakley and O’Hagan, 2002), sensitivity analysis (Oakley and O’Hagan, 2004), calibration
(Kennedy and O’Hagan, 2001; Higdon et al., 2004) and history matching (Williamson et al., 2013).
Similar to polynomial chaos, more advanced formulations of Gaussian process emulation have been
developed including: multi-fidelity (Kennedy and O’Hagan, 2000; Forrester et al., 2007; Le Gratiet,
2013), nested and hierarchical (Oughton and Craig, 2016), sequential and adaptive (Busby, 2009;
Loeppky et al., 2010), gradient-enhanced (Dwight and Han, 2009) and dynamical or multivariate
(Conti and OHagan, 2010; Fricker et al., 2013; Picheny and Ginsbourger, 2013).

It is clear that polynomial chaos and Gaussian process emulation are contrasting but related
methods that both provide efficient surrogate-based uncertainty quantification for expensive simu-
lators. Developed by separate communities but applied to computer experiments over roughly the
same time period, to our knowledge there has yet to be a critical comparison of the two meth-
ods in the literature. The respective communities are clearly aware of each other; for instance
O’Hagan (2013) gave a tutorial on polynomial chaos from a statistician’s perspective. Furthermore,
DiazDelaO and Adhikari (2011) proposed a method to reduce the computational cost of polynomial
chaos by combining the expansion with an emulator, albeit in the field of stochastic finite elements.
In more recent work, Liu et al. (2015) compare gradient-enhanced surrogate methods (including
polynomial chaos and Gaussian process emulators) to a quasi-Monte Carlo approach for a geometry-
induced uncertainty example in aerodynamics.

The purpose of this paper is to bring together the polynomial chaos and Gaussian process em-
ulation communities — in the spirit of O’Hagan (2013), who recast polynomial chaos methodology
in a statistical framework — by providing a comprehensive description and comparison of the two
techniques, assessing their relative advantages and disadvantages in a range of modelling scenar-
ios. We concentrate on describing and comparing the approaches on a basic level, in the sense
that although we are aware of more advanced techniques associated with both methods (for exam-
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ple multi-fidelity (Le Gratiet, 2013; Narayan et al., 2014) or adaptive (Blatman and Sudret, 2010;
Loeppky et al., 2010) extensions), we believe a comparison of “off-the-shelf” methods would be more
useful to practitioners in the area. Naturally, our particular modelling choices in constructing poly-
nomial chaos and Gaussian process surrogates will have an effect on the conclusions we draw from
our experiments. We hope that this work will spark further research into how the methods compare
in their more advanced formulations.

In the examples we present, we seek to non-intrusively build polynomial chaos and Gaussian pro-
cess surrogates to best represent a simulator output across the design space of the input parameters
(the prediction objective outlined above), rather than tailor the surrogate for any specific uncertainty
quantification task such as calibration or sensitivity analysis. This is to build a comparison of the
two methods from the ground up, and we hope that the present paper will fuel further studies in
other uncertainty quantification topics. We are primarily interested in the comparative accuracy
of each method — how well the surrogates approximate the simulator — with changes in design
type and size. We achieve this by building and validating polynomial chaos and Gaussian process
surrogates on land-surface (adJULES) and launch control vehicle (VEGACONTROL) simulators. For all
cases, the surrogates are built and compared on exactly the same design size and type for a fair
analysis. Even so, we acknowledge that our sampling strategy is likely to have some effect on the
performance of the two surrogate methods. We hope that future research will be able to investigate
the impact of design choice on the comparison.

The outline of the remainder of the paper is as follows. In §2 we introduce notation for surrogate
modelling and give detailed descriptions of polynomial chaos (§2.1) and Gaussian process emulation
(§2.2) methodologies. We also outline methods for validation and comparison of surrogate models
in §2.3. In §3 we give details of our experiments and present results from the adJULES (§3.1) and
VEGACONTROL (§3.2) simulators. We conclude the paper with some discussion in §4.

2 Surrogate modelling

We proceed by introducing our notation for surrogate modelling. Consider a deterministic black-box
simulator, η(·), as a function of n input parameters, x = {x1, . . . , xn} ⊂ R

n, producing a set of
outputs y. Suppose we are concerned with only one of those outputs, y ∈ R. As outlined in §1, we
assume that the simulator is computationally expensive, in that the evaluation of simulator output

y(i) from a single input configuration x(i) = {x(i)1 , . . . , x
(i)
n } may take a substantial amount of time.

Computational and time issues mean that we are restricted to making a small number of runs of the
simulator, which we use to build a surrogate model.

Let D = {x(1), . . . ,x(m)} be a set of input configurations in an experimental design, and Y =
{y(1), . . . , y(m)}T be the corresponding output obtained by evaluating y(i) = η(x(i)), i = 1, . . . ,m.
The experimental design should follow some basic principles (Santner et al., 2003) to ensure an
accurate representation of the simulator. For surrogate modelling the experimental design should
generally be space-filling in the input region of interest, and Latin Hypercube (McKay et al., 1979)
or tensor (factorial) grid designs are popular here. Of course, there is no need to run a deterministic
simulator at the same input configuration more than once, so design points should be strategically
placed to maximise the information gained from the number of simulator runs you can afford. The
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design may also be restricted because it is itself an integral part of building the surrogate — for
example, if a quadrature rule is required in the fitting process.

The surrogate model, denoted η̂(·), is built non-intrusively using only information contained in
D and Y. Once built, it should provide a fast approximation to the simulator at any untried input
configuration x(∗) so that it may be used in place of it for subsequent uncertainty quantification
tasks. Other desirable (but not necessary) properties for a surrogate are for it to exactly reproduce
simulator output at the experimental design points (since the simulator is deterministic), and for it
to provide some form of uncertainty measure along with its predictions.

2.1 Polynomial chaos

In polynomial chaos, the simulator output is modelled as a function of the input parameters in a
series expansion. Since we are uncertain about the correct configuration of the input parameters,
in the polynomial chaos framework we begin by representing them as a random vector X with joint
probability density function (PDF) fX(x). We are primarily interested in the induced uncertainty on
the simulator output, Y ≡ η(X). In the following, we assume independence of the input parameters
such that their joint PDF may be written as fX(x) =

∏n
j=1 fXj

(xj), where fXj
(xj) is the marginal

PDF of input parameter Xj . For computer experiments, distributions for the input parameters can
usually be found or estimated through expert elicitation. In the case of parameter dependence or a
random field, an extra decorrelation step is required (for example, using a Rosenblatt transformation
or a Karhunen-Loève expansion) (Eldred et al., 2008).

We assume that the uncertain simulator output Y is a second-order stationary process; that is, it
can be characterised by its first and second moments. It can be shown (Xiu and Karniadakis, 2003)
that Y can expanded onto an orthogonal polynomial basis as follows,

Y ≡ η(X) =
∑

α∈Nn

aαψα(X) . (1)

The series in (1) is known as a polynomial chaos expansion. The aα’s are unknown expansion
coefficients (to be determined) and the ψα(X)’s are known multivariate polynomials (specified a
priori). The multidimensional summation index α will be described in more detail later. The selec-
tion of multivariate polynomials used in (1) depends on a number of orthogonality properties, which
we will now outline.

Consider the set {ψ(j)
k , k ∈ N} a family of polynomials in terms of the parameter Xj , where

k denotes the polynomial degree. For example, ψ
(2)
5 denotes a fifth order polynomial in terms of

the parameter X2. A set of polynomials are said to be orthogonal with respect to a probability
distribution fXj

if the following inner product holds (Ghanem and Spanos, 1991):

〈

ψ
(j)
k (Xj), ψ

(j)
l (Xj)

〉

≡ E

[

ψ
(j)
k (Xj)ψ

(j)
l (Xj)

]

≡
∫

Xj

ψ
(j)
k (xj)ψ

(j)
l (xj) fXj

(xj) dx = γ2k δkl , (2)

where Xj is the support of fXj
and δkl is the Kronecker delta. The normalisation constants γk

are unique to the chosen family of polynomials and are known in practice.
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Since we have assumed independence of the input parameters, the multivariate polynomials used
in (1) are constructed using a tensor product of the n families of univariate polynomials,

ψα(x) = ψ(1)
α1

(x1)× · · · × ψ(n)
αn

(xn) ,

where we use the multidimensional index notation α ≡ {α1, . . . , αn} ∈ N
n to define the degree

of each one-dimensional polynomial. As an example, ψ{2,4,3} would correspond to the multivariate

polynomial ψ
(1)
2 ψ

(2)
4 ψ

(3)
3 . The multivariate version of the inner product in (2) is

〈ψα(X), ψβ(X)〉 ≡ E [ψα(X)ψβ(X)] ≡
∫

X

ψα(X)ψβ(X) fX(x) dx = γ2α δαβ , (3)

where X = X1 × · · · × Xn is the support of fX(x).

As a consequence of (2) and (3), the polynomial terms used in the expansion are entirely de-
pendent on the probability distributions of the input parameters. As mentioned in §1, early work
involved the use of Gaussian random variables for the input parameters, which results in Hermite
polynomials being used in the expansion (Wiener, 1938; Ghanem and Spanos, 1991). In the ex-
tended approach of generalized polynomial chaos (Xiu and Karniadakis, 2003), most common types
of distributions for the inputs are accounted for, resulting in polynomials from the Askey scheme
being used in the polynomial chaos expansion. To give some examples, if the input parameters have
a Gamma distribution then we use Laguerre polynomials, whereas Poisson distributed inputs are
coupled with Charlier polynomials (Xiu and Karniadakis, 2003). A mix of distributions across the
input parameters is also supported, and in this case the expansion would be made up of a mix of
the relevant polynomial families. For the examples used in this paper, we assume all input param-
eters are uniformly distributed which gives rise to the use of Legendre polynomials. This is for two
reasons: firstly we have no information to say they are distributed otherwise, and secondly it leads
to a fairer comparison with Gaussian process methods (since we give no advantage to polynomial
chaos by hand-picking the most appropriate polynomial families).

To be used in practice, the polynomial chaos expansion in (1) must be truncated after N terms.
It is common to keep polynomials ψα with degree up to p:

Y ≈ ηp(X) =
∑

0≤|α|≤p

aαψα(X) ≡ aTΨ(X) , (4)

where a and Ψ(X) are vectors containing the coefficients and polynomial elements of the trun-
cated expansion respectively. The parameter p is usually referred to as the truncation order. The
truncation depends on how you define |α|, and two truncation schemes are used here:

1. |α| =∑n
j=1 αj

2. |α| = each αj , j = 1, . . . , n, in α considered individually

In this paper, (i) is referred to as a total order truncation since we include all polynomials where
summation of the multidimensional index is less than or equal to the truncation order p. In con-
trast, (ii) is referred to as a tensor product truncation, since the restriction of order is applied in
each dimension and all combinations of possible one-dimensional polynomials are included. To give
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a worked example, suppose we require a quadratic expansion (p = 2) in terms of two input param-

eters (n = 2). A total order expansion would include the polynomial Ψ{0,0} = ψ
(1)
0 ψ

(2)
0 as well as

ψ
(1)
1 ψ

(2)
0 , ψ

(1)
0 ψ

(2)
1 , ψ

(1)
2 ψ

(2)
0 , ψ

(1)
1 ψ

(2)
1 and ψ

(1)
0 ψ

(2)
2 , since the multidimensional index α = {α1, α2}

sums to p = 2 or less in each case. The alternative tensor product expansion would also include the

polynomials ψ
(1)
2 ψ

(2)
1 , ψ

(1)
1 ψ

(2)
2 and ψ

(1)
2 ψ

(2)
2 since the restriction of order is applied in each input

dimension separately.

The number of terms, N , for the truncated polynomial chaos expansion in (4) grows rapidly with
the number of input parameters n and the truncation order p. Specifically, N =

(

n+p
p

)

for a total

order expansion and N = (p+ 1)n for a tensor product expansion. Since n is typically fixed for the
simulator, one must choose p in accordance with computational restraints, that is, the number of
simulator runs you can afford. To successfully fit a polynomial chaos expansion, at least N design
points are required to avoid an under-determined system. An alternative truncation scheme has re-
cently been proposed in the method of sparse polynomial chaos (Blatman and Sudret, 2010, 2011).
Here, the curse of dimensionality is reduced by using an algorithm to select the most influential
terms in the expansion. However, for simplicity this will not be considered here.

With the initial selection of polynomial terms complete, all that remains is to estimate the
expansion coefficients aα using information from the simulator. Methods to compute the expansion
coefficients are classed intrusive and non-intrusive depending on whether they require knowledge of
the equations that make up the simulator. Since we are treating the simulator as a black-box, we
focus only on non-intrusive approaches. Specifically, the following two non-intrusive methods are
used:

1. regression: uses the least-squares solution to a linear system

2. spectral projection: uses the numerical solution of an integral, e.g., using quadrature

Other non-intrusive methods such as sampling and stochastic collocation are not considered here.

We now proceed with a description of the two non-intrusive methods. For the regression approach,
the expansion coefficients are found by minimising (Blatman and Sudret, 2011)

â = arg min
a∈RN

[

m
∑

i=1

(

η(x(i))− aTΨ(x(i))
)2
]

,

that is, the sum of the squared difference between the simulator output and the truncated PCE
in (4) at the experimental design points. The least-squares solution is

â =
(

Ψ
T
Ψ

)−1

Ψ
TY ,

where

Ψij = ψαj
(x(i)), i = 1, . . . ,m, j = 1, . . . , N ,

is a data matrix containing the N polynomial terms in (4), evaluated at them design points. This
approach is also known as point-collocation, and the design size m must be greater than or equal
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to the number of expansion terms N to produce a well-conditioned linear system. Hosder et al.
(2007) suggest m = 2N (twice over-determined), but we also experiment with m = N (uniquely-
determined) in our experiments. This is to test the capability of the regression approach when faced
with small design sizes. We acknowledge that for the uniquely-determined regression, or cases where
m < N , sparse approximation techniques based on l1-minimisation, LASSO or least-angle regression
(for example, Blatman and Sudret (2010, 2011)) are likely to give more stable results. However,
since we seek to perform a comparison off “off-the-shelf” methods, we only consider the more com-
mon least-squares method. Finally, this approach is combined with a polynomial chaos expansion
with total order truncation as is common in the literature (Eldred and Burkardt, 2009).

The spectral projection approach projects the simulator output against each polynomial term
using inner products and employs orthogonality to extract each expansion coefficient. Taking the
inner product of (4) with respect to ψα and enforcing orthogonality (Eldred et al., 2008) yields the
following expression for the coefficients,

aα =
1

γ2α
〈Y, ψα(X)〉 = 1

γ2α

∫

X

Y ψα(X) fX(x) dx . (5)

We cannot evaluate this expression analytically since we do not know the simulator output at
all points in the design space. To estimate the expansion coefficients we need to use a numerical
method to approximate the integral on the right hand side of (5). Early work used Monte Carlo or
sampling based methods (Ghiocel and Ghanem, 2002; Reagan et al., 2003), although improvements
can be made through the use of quadrature methods for numerical integration (Le Mâıtre et al.,
2002; Debusschere et al., 2004; Eldred et al., 2008). In this case, the experimental design D should
encompass a quadrature rule to ensure accurate approximation of the integral. There are several
choices of quadrature abscissae, but in our experiments we implement a tensor product of Gauss-
Legendre points to complement the use of multivariate Legendre polynomials in (4) (Eldred et al.,
2008). Gaussian-type quadrature rules are the natural choice for our “off-the-shelf” comparison as
they are standard for polynomial chaos, accounting for the probability weight in the integral in
(5). However, other choices of quadrature rules (for example, Clenshaw-Curtis) may perform better
in certain scenarios. A tensor product truncation scheme for the polynomial chaos expansion is
also used to align with the tensor product experimental design. A disadvantage of tensor product
quadrature rules is that they suffer from the curse of dimensionality, because the number of de-
sign points required grows rapidly with the input dimension. When the input dimension becomes
large (e.g., n > 5), sparse grid quadrature (not to be confused with sparse polynomial chaos) is
an alternative method which can reduce the computational burden while retaining high accuracy
(Xiu and Hesthaven, 2005; Nobile et al., 2008). However, the input dimension in our examples is
relatively small so sparse grids are not required.

Finally the estimated expansion coefficients, âα, are substituted into the truncated polynomial
chaos expansion in (4). The resulting polynomial chaos surrogate can be used to approximate
simulator output at any untried input configuration. In this way, features of the simulator output,
such as its mean and variance, may be estimated by using the surrogate in a Monte Carlo fashion.
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2.2 Gaussian process emulation

In the Gaussian process emulation framework, the simulator is viewed as an unknown function which
we model as a realisation of a stochastic process. In particular, the main assumption we make is
that the simulator can be represented by a Gaussian process; that is, simulator output obtained at
different input configurations can be modelled with a joint Gaussian distribution.

A Gaussian process is fully specified by a mean function, M(·), and a covariance function, V (·, ·).
Taking a Bayesian perspective, we put priors on these to reflect any knowledge or information we may
have about the simulator. As is common in the literature, we restrict ourselves to mean functions
that can be represented as a sum of basis functions, M(x) = h(x)Tβ. Here, h(x) is a q× 1 vector of
known basis or regression functions and β are the corresponding coefficients, to be estimated. The
mean function should describe any known global behaviour of the simulator output across the input
space, and it is common to use a simple constant or linear trend in the absence of any information.
In our experiments, however, we determine the regression functions using a preliminary regression
analysis in conjunction with a stepwise algorithm. In this way, we allow data from the simulator
runs to determine a suitable form for the mean function.

The covariance function describes how we expect the simulator output to be correlated as a
function of two input configurations, say x and x′. Where the mean function models the global
behaviour of the simulator output across the input space, the covariance function controls local
behaviour. Usual practice is to define V (x,x′) = λ2C(x,x′; δ), where λ2 is the Gaussian process
variance, and C(x,x′; δ) is a correlation function dependent on parameters δ = {δ1, . . . , δn}. These
parameters are referred to as correlation lengths, and control the strength of the correlation in output
for each of the n input parameters. In general, a smaller correlation length corresponds to a rougher
process and a larger correlation length corresponds to a smoother process. The Gaussian process
variance describes the extent to which the simulator can deviate away from the mean function.

We focus on continuous and stationary correlation functions, where the correlation is simply a
function of the Euclidean distance between two inputs. We define this distance between x and x′

separately along each input dimension j as dj ≡ |xj − x′j |, j = 1, . . . , n. The most widely used
correlation function in the literature, which we use in our examples, is the squared exponential
(sometimes referred to as Gaussian) (Rasmussen and Williams, 2006). The squared exponential
covariance function has the following form for n input parameters,

C(x,x′) = exp



−1

2

n
∑

j=1

(

dj
δj

)2


 .

This correlation function is infinitely differentiable, which results in a Gaussian process that is
very smooth. Since this may not necessarily be the case for the simulators in our examples, we
also experiment with a Matérn covariance function (Rasmussen and Williams, 2006). This class of
covariance function has an extra scale parameter, ν, which controls the differentiability of the process.
Specifically, the process is ⌊ν⌋ times differentiable (Rasmussen and Williams, 2006). Commonly, this
parameter is set to a half-integer to simplify the form of the covariance function. We use ν = 5/2,
which results in the the following form for the Matérn covariance function in n input parameters,
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C(x,x′) =





n
∏

j=1

(

1 +

√
5dj
δj

+
5d2j
3δ2j

)



 exp



−
√
5

n
∑

j=1

dj
δj



 .

This particular covariance function results in a Gaussian process that is twice differentiable, and
consequently a rougher process than if using a squared exponential covariance function.

The complete Gaussian process prior for the simulator can be written

η(x) |β, λ2, δ ∼ GP(h(x)Tβ, λ2C(x,x; δ)) .

This prior process is very flexible and can represent a wide range of simulator output behaviours.
As with our construction of the polynomial chaos expansion, the choices we have made in specify-
ing the Gaussian process are standard in the literature. More advanced formulations (for example,
nonstationary covariance functions) are likely to perform better in certain scenarios, but would not
make for a balanced comparison.

The unknown parameters β, λ2 and δ must be estimated using information from the simulator
runs, Y. If we assume a standard non-informative prior, namely p(β, λ2) ∝ λ−2, an analytical
marginalisation is possible of the β and λ2 parameters (Haylock and O’Hagan, 1996). This results
in the following marginal likelihood for the correlation lengths

L(δ|Y) ∝ (λ̂2)−(m−q)/2|A|−1/2|HTA−1H |−1/2 , (6)

where λ̂2 = (Y−Hβ̂)TA−1(Y−Hβ̂) and β̂ = (HTA−1H)−1HTA−1Y. Furthermore, the experi-
mental design points define the regression matrix H , with ith row Hi = h(x(i))T , and the correlation
matrix A, which has elements Aij = c(x(i),x(j)). The use of a non-informative prior for the regres-
sion and variance parameters means that some accuracy is lost in their estimation, but in practice
this is not noticeable. It also leads to a fairer comparison to polynomial chaos methods since we are
not giving Gaussian process emulation any advantage.

The correlation length parameters can be estimated in a number of ways. A fully Bayesian
analysis would proceed with a numerical marginalisation of δ, e.g., using a MCMC algorithm. This
is typically a computationally expensive approach and is rarely used in practice. We favour the
method outlined in Kennedy and O’Hagan (2001), who simply find a maximum likelihood estimate
of δ and assume it as the true value. Of course, this ‘plug-in’ approach does not fully account for the
uncertainty in these parameters, but the loss of accuracy is minimal and the savings in computational
cost typically outweigh this disadvantage (Oakley and O’Hagan, 2004). We estimate the correlation
lengths by maximising the logarithm of the likelihood in (6),

δ̂ = argmax
δ

[logL(δ|Y)] . (7)

In our experiments we use the R package DiceKriging (Roustant et al., 2012) to fit Gaussian
process emulators. This maximises the log-likelihood in (7) using the “L-BFGS-B” optimisation al-
gorithm, which is a quasi-Newton scheme constrained by given lower and upper bounds (Byrd et al.,
1995; Park and Baek, 2001). This algorithm makes use of analytical gradients of the log-likelihood
with respect to the correlation length parameters to speed up the optimisation. The number of
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iterations required for accurate approximation of the correlation lengths is problem dependent, but
note that the main cost stems from inverting the m×m correlation matrix A. Strategies for using
Gaussian process emulators for large datasets are presented in Rasmussen and Williams (2006).

After the correlation lengths have been estimated the result is a Gaussian process surrogate
model, known as an emulator. The emulator specifies a full posterior distribution for its predictions
which is a Student’s-t distribution with m − q degrees of freedom (Haylock and O’Hagan, 1996;
Kennedy and O’Hagan, 2001),

η(x) | Y, δ ∼ tm−q(M
∗(x), V ∗(x,x)) . (8)

Here we have introduced the posterior mean function,

M∗(x) = h(x)T β̂ +R(x)A−1(Y −Hβ̂) ,

and posterior covariance function,

V ∗(x,x′) =
λ̂2

m− q − 2

[

c(x,x′)−R(x)A−1R(x′)T +Q(x)(HTA−1H)−1Q(x′)T
]

,

where Q(x) = h(x)T −R(x)A−1H , and R(x) is a vector of correlations between x and the experi-
mental design D. A key feature of the Gaussian process emulator is that it interpolates the simulator
output at the experimental design points (without a nugget parameter, see Andrianakis and Challenor
(2012)). At an untried input configuration, the emulator gives a prediction of simulator output by
taking the maximum of the posterior. In contrast to polynomial chaos methods, the distribution in
(8) means the emulator also readily provides uncertainty information. Uncertainty in the output at
the experimental design points is zero, but grows as we move away from them. This can be helpful in
identifying areas in the design space where the emulator is particularly confident, or areas where we
may wish to make more simulator runs because uncertainty is high. Nevertheless, it is common to
simply use emulator predictions as a fast approximation to the simulator, enabling surrogate-based
uncertainty quantification in a Monte Carlo fashion.

2.3 Validation and comparison of surrogate models

Once we have built a surrogate model, it is important to assess its quality. We may check the sur-
rogate’s ability to represent the simulator using a number of validation exercises, which tend to fall
into two categories. Firstly, we can make m′ additional runs of the simulator in a validation design,
say D′ = {x(1′), . . . ,x(m′)}. The simulator output at the validation design, η(x(i)), i = 1′, . . . ,m′,
can then be compared to corresponding surrogate predictions at these points using various metrics.
It is important that these design points are distinct from the original experimental design D to fully
test the quality of the surrogate. Of course, this approach requires the extra computational cost
of obtaining simulator output at the validation design. If this is not possible, a second approach
is to re-use the original experimental design points in some way. The main class of methods here
are based on cross-validation exercises, and leave-one-out cross validation is a popular approach.
This is where surrogates are sequentially rebuilt on the original experimental design with one point
withheld, and then used to predict simulator output at the withheld input configuration. A benefit
of this approach is that no extra simulator runs are required, but computational cost does arise from
refitting the surrogate model for the m sub-designs. In this paper we implement the first of the
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outlined validation approaches, since for the simulators used in our examples it is relatively cheap to
produce a set of validation runs. Furthermore, cross-validation is not compatible with the quadra-
ture approach for polynomial chaos since we must use all quadrature abscissae for the method to
work.

Given simulator output at the validation design and corresponding surrogate predictions, a num-
ber of metrics can be used to assess performance. In the context of analysing two contrasting
surrogate approaches, it is vital that we use metrics that compare Gaussian process emulation and
polynomial chaos methods in an unbiased and fair way. Validation metrics specific to either ap-
proach, for example those for Gaussian process emulators outlined in Bastos and OHagan (2009)
which take correlated predictions into account, are not necessarily suited to such a comparison. We
proceed by presenting the validation metrics used in our experiments, which are computed using a
1000-point Latin Hypercube (McKay et al., 1979) validation design, independent to the experimental
designs used to build the surrogates. Firstly, we use root mean square error (RMSE),

RMSE =

√

√

√

√

1

m′

m′

∑

i=1′

(

η(x(i))− η̂(x(i))
)2
, (9)

to assess the accuracy of the surrogate across the input space. Since this in effect measures the
distance between the surrogate and the simulator, a lower RMSE is favourable. Secondly, let µY

and σY denote the true values of the simulator output mean and variance respectively. We estimate
these using the surrogate in the following empirical fashion,

µY ≈ µ̂Y =
1

m′

m′

∑

i=1′

η̂(x(i)) , (10)

σY ≈ σ̂Y =

√

√

√

√

1

m′

m′

∑

i=1′

(η̂(x(i))− µ̂Y )2 . (11)

The mean and standard deviations estimated by the surrogates can be compared to simulator
quantities also computed at the validation design points. We acknowledge that for polynomial chaos,
estimates of these quantities can be derived analytically from the expansion (Xiu and Karniadakis,
2003) but instead use the above Monte Carlo approach for fairer comparison to Gaussian process
emulation. Thirdly, we are interested in the capability of the surrogates to estimate the chance
of rare events, represented by the exceedance probabilities Pr(Y ≥ µY + κσY ). We estimate this
quantity using the surrogate as follows,

Pr(Y ≥ µY + κσY ) ≈
1

m′

m′

∑

i=1′

1

(

η̂(x(i)) ≥ µY + κσY

)

, (12)

where 1 denotes the indicator function, and we set κ = 2, 3 for probabilities of exceeding two
and three standard deviations above the mean. Since the simulator has only been evaluated 1000
times at the validation design, naturally we can only have approximate values of µY , σY and
Pr(Y ≥ µY + κσY ). To account for the uncertainty on these quantities induced by finite sim-
ulator evaluations, we perform a bootstrap analysis to obtain 95% bootstrap percentile intervals
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(Efron and Tibshirani, 1994). Finally, we wish to test the surrogate’s ability to reconstruct the PDF
of the simulator output. We do this by smoothing the surrogate predictions at the validation design
with a kernel density estimator. For all examples we use a Gaussian kernel and estimate the kernel
bandwidth for the simulator output at the validation design using the method outlined in Silverman
(1986). The estimated bandwidth for the simulator is then kept the same between surrogate methods
for consistency.

Since emulators provide uncertainty information, we also use the re-sampling approach outlined
in
Oakley and O’Hagan (2002) to obtain 95% confidence intervals about Gaussian process point esti-
mates of all the validation metrics outlined above. This method works by sampling from the posterior
distribution given in (8) a large number of times and averaging across the validation metrics com-
puted for each sample.

3 Experiments

In this section we present results comparing polynomial chaos and Gaussian process emulation for two
simulators, named adJULES and VEGACONTROL. Our comparison uses the validation metrics outlined
in §2.3 to assess surrogate accuracy for different choices of experimental design. We investigate the
performance of the two surrogate methodologies under changes in the type and size of experimental
design used to build the surrogate. We proceed by describing the rationale behind our experimental
design choices. A summary of the designs used in the adJULES and VEGACONTROL experiments is
given in Table 1.

We have grouped our experimental designs into three classes to distinguish between the different
methods used to compute the coefficients of the polynomial chaos expansions. Recall in §2.1, that
two strategies were outlined for estimating the polynomial chaos expansion coefficients: regression
and spectral projection (quadrature). For the regression approach there are no restrictions on the
experimental design, but one should generally use a space-filling design with enough design points
to ensure a well-determined system. For this purpose we use Sobol sequence designs (Niederreiter,
1988), and these make up class 1 and class 2 designs (the difference between the two will be ex-
plained shortly). Sobol sequences are used (instead of the more popular Latin Hypercube designs)
because of the fact that we can take subsets of the original design and it remains a Sobol sequence.
In this way, we can save computational time by evaluating the simulator at one large Sobol sequence
design and use its subsets to build surrogates based on smaller design sizes. For the spectral projec-
tion approach, numerical quadrature is used to evaluate the coefficients, therefore the experimental
designs in this case are quadrature rules. As explained in §2.1, we implement a tensor (factorial)
grid of one-dimensional Gauss-Legendre quadrature rules, and these make up class 3 designs.

Each design class comprises four distinct designs of increasing size. Like the class of design, the
design sizes are chosen according to how we construct the polynomial chaos expansion. Recall that
the design size (m) for polynomial chaos must be at least as big as the number of terms in the
expansion (N), which depends on truncation order (p), the input parameter dimension (n) and the
truncation scheme used (see §2.1 for the exact relation). Since n is fixed for the simulators in our
examples, we experiment with truncation orders of p = 1, 2, 3, 4 in our polynomial chaos expansions
(we do not experiment with p > 4 due to computational restraints). This fixes the number of terms
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in each of the polynomial chaos expansions, and all that remains is to choose suitable design sizes.
For the quadrature rules in class 3 we naturally fix m = N , but for the regression designs in classes
1 and 2 we are free to choose any m ≥ N . As described in §2.1, we experiment with m = N
(uniquely-determined) and m = 2N (twice over-determined). This is the only difference between
class 1 and class 2 designs. To give an example from Table 1, for the adJULES experiment we have
n = 4, therefore a third-order polynomial chaos expansion (p = 3) uses the following design sizes:
m = N =

(

4+3
3

)

= 35 (class 1); m = 2N = 2×
(

4+3
3

)

= 70 (class 2); m = N = (3+1)4 = 256 (class 3).

For each design in Table 1 we build a polynomial chaos surrogate using the appropriate method
to find the expansion coefficients. From this point on, all polynomial chaos surrogates fitted by the
different non-intrusive approaches will be referred to by the acronym PC for simplicity. For all de-
sign classes and sizes in Table 1, separate Gaussian process emulators with squared exponential and
Matérn covariance functions are also built; in our experiments we refer to these using the acronyms
SE GP and M GP respectively. The rationale of choosing our experimental designs provides a struc-
ture to our experiments, fixes the computational budget and ensures that we compare surrogates on a
level playing field. The Sobol sequences in class 1 and 2 designs are generated randomly and kept the
same for building each type of surrogate, so should not favour either surrogate method in any way.
It would be beneficial to examine the effect of design choice through repeating the experiments with
other randomly generated Sobol sequences, however this is not feasible because the simulators are
expensive. Furthermore, sequentially or adaptively building the surrogates would no doubt lead to an
improved performance in either case, but for a simple comparison we choose to fix the design a priori.

Since the sizes of the largest tensor grid designs in each experiment are much bigger than any of
the Sobol sequence designs, we also use Sobol sequences of size 625 and 1024 in the adJULES and
VEGACONTROL experiments respectively. This is to test whether there is any difference in the choice
of experimental design when we can afford a large number of runs. Note also that a general rule of
thumb in the Gaussian process literature is to use a design size ten times that of the input dimension
(m = 10n) (Loeppky et al., 2009). Since n = 4 and 5 for the adJULES and VEGACONTROL simulators
respectively, many of our design sizes are smaller than this suggestion. Hence, we are also testing
the accuracy of surrogates built on small design sizes in our experiments.

To recap, in our experiments PC, SE GP and M GP surrogates are built on all the designs
in Table 1. For each of the adJULES and VEGACONTROL experiments we also have a independent
1000-point Latin Hypercube design to be used for validation. Simulator output at the validation
design points are compared with predictions from each of the surrogate methods. For each surrogate
method and design, we compute the RMSE, mean, standard deviation, exceedance probabilities and
PDF as described in §2.3. Surrogate mean, standard deviation, exceedance probability and PDF
estimates are compared to corresponding simulator quantities evaluated from the validation design,
whereas the RMSE is preferred to be a low as possible. As outlined in §1 and §2.3 we wish to
investigate how the accuracy of each surrogate method — measured using the validation metrics —
is affected by changes in design size and class. In the process, we aim to identify scenarios in which
polynomial chaos and Gaussian process methods might outperform one another.
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Table 1: Summary of the designs used in the adJULES and VEGACONTROL experiments. The
design size m increases to allow polynomial chaos expansions with larger truncation orders p. Note
that a fourth class 3 design was not implemented for the VEGACONTROL experiment due to
computational restrictions. Sobol sequence designs of size 625 and 1024 were also used for the
adJULES and VEGACONTROL experiments respectively for comparison to the largest tensor grid
designs.

Class Type p madJULES mVEGACONTROL

Class 1 Sobol sequence

1 5 6
2 15 21
3 35 56
4 70 126

Class 2 Sobol sequence

1 10 12
2 30 42
3 70 112
4 140 252

Class 3 Tensor grid

1 16 32
2 81 243
3 256 1024
4 625 —

3.1 adJULES

The Joint UK Land Environment Simulator (JULES) (Best et al., 2011; Clark et al., 2011) is a sim-
ulator which models the interactions between the land and the atmosphere. It is the land surface
component currently used in the UK Met Office Unified Model. JULES uses a number of meteorologi-
cal drivers and vegetation processes (e.g., photosynthesis, soil microbial activity) to model radiation,
heat, water and carbon fluxes. Presently, observed time-series of these fluxes cannot be incorporated
into the JULES framework. A new system, adJULES, has been developed to provide this functionality
and also comprises an adjoint model for parameter estimation or optimisation studies. The current
implementation of adJULES contains 9 input parameters detailing various plant properties and a
single output, a cost function for optimisation purposes. The gradient of the output with respect
to each of the input parameters is also available, but for simplicity we do not make use of this in
building the surrogates. Expert elicitation prior to the experiment led us to focus on 4 of the most
important input parameters; these were t_low, t_upp, cs and rootd_ft, which represent lower and
upper temperatures for photosynthesis (◦C), carbon content of soil (kg Cm−2) and root depth (m)
respectively. To build the surrogates, we first transform the parameters to be distributed on [−1, 1],
so that D ⊆ [−1, 1]4, and assume a uniform distribution across this space. We keep the remaining 5
parameters at their nominal values when executing the adJULES simulator. We consider the adJULES
simulator to be a black-box and aim to best represent the simulator output (cost function) across
the space of the 4 input parameters described above. We do this by building (non-intrusively) PC,
SE GP and M GP surrogates on the designs in Table 1 and seek to compare their accuracy, as mea-
sured by the validation metrics presented in Section 2.3, with changes in design type and class. A
visualisation of the adJULES simulator output (cost function) as a function of pairwise combinations
of each of the 4 input parameters can be seen in Figure 1.

Validation results from fitting PC, SE GP and M GP surrogates to the adJULES simulator are
presented in Figures 2, 3 and 4. Firstly examining Figure 2, we note that for class 1 designs both GP
emulator types outperform PC for the RMSE, mean and standard deviation metrics. The accuracy
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Figure 1: Visualisation of the adJULES simulator output (cost function) as a function of pairwise
combinations of each of the 4 input parameters. The smoothing of the simulator output is performed
using the surrogate with the lowest root mean square error metric in the adJULES experiments (see
Figure 2), which in this case is the polynomial chaos expansion built on the largest class 3 design
(see Table 1).
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Figure 2: Root mean square error, mean and standard deviation validation results for the adJULES
simulator. Design classes are in columns and validation metrics are in rows. Polynomial chaos,
squared exponential and Matérn Gaussian process surrogate models are shown as red triangles,
purple crosses and blue circles respectively. The points have been been jittered slightly for clarity.
Gaussian process emulators also have 95% confidence intervals about their estimates (solid lines).
Simulator mean and standard deviation (solid black lines) are also shown with 95% confidence
intervals (dashed black lines).
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Figure 3: Exceedance probability validation results for the adJULES simulator. Design classes
are in columns and validation metrics are in rows. Polynomial chaos, squared exponential and
Matérn Gaussian process surrogate models are shown as red triangles, purple crosses and blue circles
respectively. The points have been been jittered slightly for clarity. Gaussian process emulators also
have 95% confidence intervals about their estimates (solid lines). Simulator exceedance probabilities
(solid black lines) are also shown with 95% confidence intervals (dashed black lines).
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Figure 4: Probability density function (PDF) estimation validation results for the adJULES simula-
tor. Design classes are in columns and design size used to build the surrogates increases further down
the rows (see Table 1 for exact design size in each panel). Polynomial chaos, squared exponential and
Matérn Gaussian process surrogate model PDF estimates are shown as red, purple and blue lines
respectively, while the simulator output PDF is shown as a black line. Gaussian process emulators
also have 95% confidence intervals about their estimates.
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of PC surrogates does not necessarily improve with design size and consequently the addition of more
expansion terms, suggesting that uniquely-determined regression approach is unstable. Particularly
we draw attention to the outliers for PC in the third design of this class (size 35). For this design
class there is little difference between the two GP emulators, and they are the preferred method.
For class 2 designs, twice over-determined regression is used to determine the expansion coefficients,
leading to more interesting results. When analysing RMSE there is little to choose between GP
and PC approaches. We note that PC has a faster initial reduction in error but does not continue
to improve. Both GP methods have a slower reduction in error but may begin to outperform PC
methods for larger designs in this class. Concerning the simulator mean, all surrogate estimates
are within our calculated confidence intervals. The uncertainty on the GP estimates can be seen
to reduce with larger design size. For the simulator standard deviation, PC and GP estimates are
mostly similar although we note that PC estimates tend to be closer to the ‘true’ value. However,
uncertainty on the GP estimates themselves does mean it is difficult to choose a favoured surrogate
approach here. For class 3 designs, we observe that PC methods are consistently more accurate than
GP emulators for the RMSE metric so they are preferred here. Similarly to results from class 2
designs, when estimating the simulator mean the surrogate approaches are very consistent with one
another and are all within the confidence intervals. Some preference for PC methods can be found
in the case of standard deviation, as GP estimates are unstable to increases in design size whereas
PC estimates gradually become more accurate.

Secondly, we analyse results from the exceedance probability metrics shown in Figure 3. For
class 1 designs it is clear that GP methods outperform PC surrogates for all design sizes and both
exceedance probabilities. However we note that while GP estimates are comparatively better and
preferred here, they are still not particularly accurate. Furthermore, the uncertainty attached to GP
estimates are always small meaning they are confident about their inaccurate predictions. Clearly
for these small design sizes it is different to get an accurate estimate of such small probabilities —
no surrogate method can get within the confidence intervals calculated for the probability of exceed-
ing three standard deviations above the mean. For class 2 designs we see a great improvement for
PC methods, and they arguably give the most accurate estimates for both exceedance probabilities
and most design sizes in the class, falling within the calculated simulator confidence intervals more
often. One can also observe more stable results here compared to class 1, with accuracy generally
improving with design size for all surrogate methods. For class 3 designs, results are similar between
PC and GP methods and their estimates fall within the confidence intervals, with the exception of
the smallest design size considered. It could perhaps be said here that PC methods do better at
estimating the probability of exceeding three standard deviations above the simulator mean.

Finally, we examine the capability of the surrogates at estimating the simulator output PDF,
shown in Figure 4. As observed with the previous validation metrics, a clear preference for GP meth-
ods can be found for class 1 designs, where PC methods struggle to estimate the PDF accurately in
all cases. For class 2 and 3 designs, it is difficult to observe many differences between the methods,
although PC can be seen to have a slight advantage for individual designs (for example the second
and third designs in class 2, and the first design in class 3). For large design sizes in these classes
all methods can estimate the PDF to a high degree of accuracy.

In summary, GP methods are preferred for class 1 designs regardless of validation metric; RMSE
results are similar for surrogates built on class 2 designs but PC is favoured for class 3 designs;
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all surrogate methods accurately estimate the simulator mean for class 2 and class 3 designs; PC
is narrowly favoured for estimating the simulator standard deviation in all cases except for class 1
designs. For both the exceedance probabilities considered, neither method is accurate for class 1
designs but GP is preferred; PC is more accurate for class 2 designs; methods perform similarly for
class 3 designs with a narrow preference for PC. Finally, density estimation results show that both
methods give accurate results for large design sizes in classes 2 and 3. Some preferences can be found
for PC in the smaller designs in these classes.

We also built PC, SE GP and M GP surrogates for the adJULES simulator on a Sobol sequence
design of size 625, to see if any improvement could be made on the validation results from the largest
tensor grid design. RMSE, mean and standard deviation validation metrics for surrogates built on
tensor grid and Sobol sequence designs of size 625 are shown in the top panels of Figure 9. We observe
that with the use of a large Sobol sequence design, both GP emulators become more accurate in
terms of RMSE and now have similar results to PC. While the simulator mean estimates still remain
accurate for all surrogate methods with the design change, for simulator standard deviation the GP
emulator estimates are now within the confidence intervals. Validation metrics for PC do not worsen
with the change to Sobol sequence designs and remain highly accurate. We expect these results to
carry over to the exceedance probability and PDF estimation validation metrics, but do not consider
these here for simplicity.

3.2 VEGACONTROL

VEGACONTROL is a Matlab C-coded simulator used in industry to prepare and validate the VEGA flight
management and control system in the atmospheric and exo-atmospheric flight phases (Mujumdhar et al.,
2015). It is a non-linear, six degrees of freedom industrial simulation model of the VEGA launch
vehicle, which is a recent European multi-payload launch vehicle developed by European Launch
Vehicle under European Space Agency (ESA) responsibility3. The flight phase with altitude be-
tween 30m and 60km is considered in the present study. The simulator equations for motion include
force and drag components depending on Mach and angle of attack, kinematic coupling in all axes,
and a non-linear model of the electro-mechanical actuator dynamics with associated backlash and
delays. The mathematical model for QUASAR Inertial Sensor Unit with its noise and bias charac-
teristics and the propulsion model of the P80 solid propulsion system with validated thrust curves
that include thrust oscillation effects to assess proper execution of the separation dynamics further
constitute to the complexity of the simulator.

A high fidelity structural flexible mode model describing the launcher deformation is included to
assess proper filtering and stability properties. The atmosphere model includes also a set of measured
sizing wind-gust input models representative for the Kourou launch site. The launcher dynamics are
driven by the FPSA ADA/C-flight code reflecting the flight management system for the time line
sequence command and execution of associated guidance navigation and control system for thrust
vector control (TVC) and roll and attitude control (RACS) and other support functions such as
acceleration threshold detection and pyro-valve command for stage separation.

The overall validation and verification criteria considered in this research activity represent the

3The simulation environment has been used as a benchmark model for the ESA research activity “Robust Flight
Control System Design Verification and Validation Framework” (ESA AO/1-6322/09/NL/JK).
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TVC and RACS technical requirements for the atmospheric phase of flight. Load requirement devi-
ations (Qα) must be limited via the product of dynamic pressure Q and angle of attack α over the
entire P80 flight Mach range. The problem addressed in this paper attempts to assess the require-
ment on max(Qα) over a reduced parameter combination subset that dominates the requirement
degradation. The current implementation of VEGACONTROL has 83 input parameters and 37 outputs.
Expert elicitation prior to the experiment led us to focus on 5 of the most influential input pa-
rameters; these were IRSmountingX, IRSmountingY, dTc, SRM_roll and air_density_scat. These
parameters correspond to the Indian Remote Sensing (IRS) mounting error with respect to the X
and Y body axes respectively, scattering on time burn, scattering on P80 roll degree and atmospheric
density respectively. As already mentioned we focus on a single output, namely max(Qα), which is
the maximum of the aerodynamic load. The gradient of this output with respect to the input pa-
rameters is not available. As with the adJULES experiment we transform the input parameters to be
uniformly distributed on [−1, 1], so that here D ⊆ [−1, 1]5, and keep the remaining input parameters
at their nominal values when executing the simulator. Once again, we consider the VEGACONTROL

simulator to be a black-box and aim to best represent the simulator output (max(Qα)) across the
space of the 5 input parameters described above. We do this by building (non-intrusively) PC, SE
GP and M GP surrogates on the designs in Table 1 and seek to compare their accuracy, as mea-
sured by the validation metrics presented in Section 2.3, with changes in design type and class. A
visualisation of the VEGACONTROL simulator output max(Qα) as a function of pairwise combinations
of each of the 5 input parameters can be seen in Figure 5.

Validation results for the VEGACONTROL simulator are shown in Figures 6, 7 and 8. Looking at
Figure 6, once again we observe that for class 1 designs, both the GP emulators outperform PC
for the RMSE, mean and standard deviation metrics. In particular, the PC surrogate built on the
second design of this class (size 21) has a large error for all validation metrics. For class 2 designs,
all the surrogate approaches exhibit similar accuracy. This is particularly the case when estimating
simulator mean and standard deviation; we find that surrogate estimates are similar to one an-
other and are also all within the calculated confidence intervals. In this case, none of the surrogate
methods would be preferred. However, when looking at RMSE results there is some evidence for
favouring GP emulation over PC. While PC and SE GP surrogates have similar accuracy for all
design sizes, the M GP surrogate consistently does better. This is one of the few cases where there is
substantial difference in choice of covariance function, and perhaps the Matérn covariance function
is particularly suited to output from the VEGACONTROL simulator. The converse is found for class 3
designs. While again the surrogate estimates of simulator mean and standard deviation are almost
identical and of high quality, there is some evidence to suggest that PC methods perform better in
terms of RMSE. However, this can only be observed for the largest design in this class; for the two
smaller designs all the surrogate approaches have a similar RMSE.

Examining the exceedance probabilities in Figure 7, we see that all surrogate methods perform
better than in the adJULES experiment. We attribute this to the fact that the simulator output PDF
is more symmetrical and has a shorter tail, although perhaps the VEGACONTROL simulator is better
behaved in the tails. Once again for class 1 designs the PC estimates are inaccurate and unstable
with increases in design size, and GP methods are favoured. For class 2 and 3 designs, estimates
from GP and PC surrogates are similar and of high quality for both exceedance probabilities and
all design sizes considered. In this case, none of the surrogate methods would be preferred.
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Figure 5: Visualisation of the VEGACONTROL simulator output max(Qα) as a function of pairwise
combinations of each of the 5 input parameters. The smoothing of the simulator output is performed
using the surrogate with the lowest root mean square error metric in the VEGACONTROL exper-
iments (see Figure 6), which in this case is the Gaussian process emulator with Matérn covariance
function built on the largest class 2 design (see Table 1).
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Figure 6: Root mean square error, mean and standard deviation validation results for the VEGA-
CONTROL simulator. Design classes are in columns and validation metrics are in rows. Polynomial
chaos, squared exponential and Matérn Gaussian process surrogate models are shown as red trian-
gles, purple crosses and blue circles respectively. The points have been been jittered slightly for
clarity. Gaussian process emulators also have 95% confidence intervals about their estimates (solid
lines). Simulator mean and standard deviation (solid black lines) are also shown with 95% confidence
intervals (dashed black lines).
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Figure 7: Exceedance probability validation results for the VEGACONTROL simulator. Design
classes are in columns and validation metrics are in rows. Polynomial chaos, squared exponential and
Matérn Gaussian process surrogate models are shown as red triangles, purple crosses and blue circles
respectively. The points have been been jittered slightly for clarity. Gaussian process emulators also
have 95% confidence intervals about their estimates (solid lines). Simulator exceedance probabilities
(solid black lines) are also shown with 95% confidence intervals (dashed black lines).
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Figure 8: Probability density function (PDF) estimation validation results for the VEGACONTROL
simulator. Design classes are in columns and design size used to build the surrogates increases
further down the rows (see Table 1 for exact design size in each panel). Polynomial chaos, squared
exponential and Matérn Gaussian process surrogate model PDF estimates are shown as red, purple
and blue lines respectively, while the simulator output PDF is shown as a black line. Gaussian
process emulators also have 95% confidence intervals about their estimates.
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Figure 9: Difference in root mean square error, mean and standard deviation estimates when using
large Sobol sequences instead of tensor grids. Sobol sequences of size 625 and 1024 were used
in the adJULES (top panels) and VEGACONTROL (bottom panels) experiments respectively to
correspond with the largest tensor grid designs. Validation diagnostics from the tensor grid designs
are shown in black. Diagnostics from the Sobol sequence designs are shown in colour: polynomial
chaos, squared exponential and Matérn Gaussian process surrogate models are shown as red triangles,
purple cross and blue circles respectively.
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Lastly we consider PDF estimation, shown in Figure 8. A clear preference for GP methods can
again be found for class 1 designs, where PC methods struggle to estimate the PDF accurately in
the majority of cases. For class 2 and 3 designs, all surrogate PDF estimates are of high quality and
there is little to choose between the methods.

In summary, GP methods are preferred for class 1 designs regardless of validation metric; mean,
standard deviation, exceedance probability and PDF estimates are high quality and similar between
surrogate approaches for class 2 and 3 designs; for lower RMSE the M GP emulator is preferred for
class 2 designs, whereas PC is favoured for class 3 designs. In general, the results from the adJULES
experiment nicely carry over to the VEGACONTROL simulator apart from the fact that all surrogates
tended to calculate the validation metrics to a higher degree of accuracy here.

We also built PC, SE GP and M GP surrogates for the VEGACONTROL simulator on a Sobol
sequence design of size 1024, to see if any improvement could be made on the validation results from
the largest tensor grid design. RMSE, mean and standard deviation validation metrics for surrogates
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built on tensor grid and Sobol sequence designs of size 1024 are shown in the bottom panels of Figure
9. We note that with the use of a large Sobol sequence design, both GP emulators become more
accurate in terms of RMSE. Some improvement can also be observed for PC, and now all surrogate
methods show similar accuracy. Estimates of the simulator mean and standard deviation remain
accurate and are robust under the change of design. Again we expect these results to carry over to
the exceedance probability and PDF estimation validation metrics, but do not consider these here
for simplicity.

4 Discussion

In this paper we have compared two popular surrogate methods for uncertainty quantification in com-
puter experiments, polynomial chaos and Gaussian process emulation. Based on results from fitting
surrogates to the output of two simulators, we have found that one approach does not unanimously
outperform the other but that the best method depends on the modelling goals of the practitioner
and on the type of experimental design. If one requires an accurate surrogate across the design
space (which we measure using RMSE), we generally observed that Gaussian process emulators are
preferred for Sobol sequence type designs, whereas polynomial chaos was more accurate for tensor
grid designs. We have two possible reasons for why this should be. Firstly, research has found (for
example, Urban and Fricker (2010)) that Gaussian process emulators are more accurate when built
on less structured designs than tensor grids. This is mainly because if we project a multidimensional
tensor grid design onto a single dimension, some design points are repeated and do not provide extra
information. This does not happen for Sobol sequences or Latin Hypercubes, and the extra data in
each dimension results in better estimation of Gaussian process parameters. Secondly, the regression
approach used for polynomial chaos on the Sobol sequence designs leads to surrogates which do not
necessarily interpolate the simulator output, but the quadrature approach on tensor grid designs
does. This has some parallels with the use of a nugget parameter in Gaussian processes, where
the interpolation property of the emulator is relaxed. If instead one simply wants to extract some
properties of the simulator output (for example, the mean or standard deviation) there is a slightly
different focus. When estimating the simulator mean, results showed that both Gaussian process
emulation and polynomial chaos gave very similar and highly accurate results even for small design
sizes. In terms of the standard deviation, a similar story was seen for the VEGACONTROL simulator but
a narrow preference for polynomial chaos could be found in the adJULES experiment. When estimat-
ing the probability of exceeding two or three standard deviations above the simulator mean, while
results for each surrogate were similar for the VEGACONTROL experiment, some small preferences for
PC could be seen for the adJULES simulator (particularly for class 2 designs). In terms of estimating
the simulator PDF, there was little to choose between the surrogate approaches. We also found that
if one is restricted to small design sizes the uniquely-determined regression technique for estimating
the polynomial chaos coefficients should be avoided, agreeing with Hosder et al. (2007) who sug-
gest twice over-determined regression gives more stable results. In this case the practitioner should
ensure enough design points for at least twice over-determined regression, or use Gaussian process
emulation instead. Alternatively, sparse polynomial chaos techniques, which use regularisation to
reduce the number of terms in the expansion (for instance, using LASSO or least-angle regression),
may also lead to improved stability in this case. Lastly, given that there was some evidence of a
performance gap between polynomial chaos and Gaussian process emulators for the largest tensor
grid designs, we investigated how the validation metrics changed with a Sobol sequence design of
the same size. We found that the performance gap could be closed completely if one used a Sobol
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sequence design instead. In particular, the RMSE for the Gaussian process emulators massively
reduced to be consistent with polynomial chaos approaches. We reiterate that the choice of design
is very important when building a surrogate; if one can afford a reasonable amount of design points
then a tensor grid design would be suitable for polynomial chaos, whereas a Sobol sequence or Latin
Hypercube design would be more appropriate for a Gaussian process emulator.

Aside from the results of our experiments, we should also reflect on some generic advantages
and disadvantages that polynomial chaos and Gaussian process emulation may have in relation to
one another. Notably we draw upon some points concerned with the computational cost of build-
ing the surrogate, as well as their flexibility and practicality in different scenarios. In terms of the
computational cost of building the surrogate, for polynomial chaos most of the work is done prior
to the experiment in choosing the polynomial basis used in the expansion. Recall that this solely
depends on the probability distributions chosen for the simulator input parameters. The subsequent
non-intrusive computation of the expansion coefficients is generally cheap, requiring the evaluation
of plug-in formulas (quadrature) or some simple matrix algebra (regression). Therefore if one sim-
ply wants to find the simulator mean or standard deviation, polynomial chaos methods would be
the faster approach. Conversely, most of the computational cost comes from fitting the Gaussian
process emulator itself, and this can be expensive (particularly for large design sizes). Problems can
also arise when estimating the correlation lengths and the optimisation process for the parameters
may have to be restarted. However, these problems usually have a simple fix (for example with the
addition of a nugget parameter, see Andrianakis and Challenor (2012)).

Regarding the comparative flexibility of the surrogate approaches to adapt to different scenarios,
it is clear that Gaussian process emulation has the edge. In all of our experiments we were restricted
in our choice of design by the polynomial chaos method — whether it be choosing Gaussian abscissae
for the quadrature method or restricting the size of design to ensure a certain truncation order for
the polynomial expansion. In this sense we gave a subtle advantage to polynomial chaos methods
in our experiments. In contrast, there are really no restrictions on the type and size of design
used to build a Gaussian process emulator; although naturally we adhere to principles such as a
space-filling design, and require an adaquate design size for an accurate emulator. The fact that
the Gaussian process emulator performed as well as polynomial chaos based on our design choices
is testament to flexibility of the approach. We must also remark that although many simulators
can be quickly and accurately modelled by a polynomial function, some are bound to exhibit more
complicated behaviour. There is no doubt that Gaussian process emulators can deal with a wider
range of simulator behaviours, and this can be done relatively easily with changes in the mean and
covariance functions. To add more weight to this argument, consider the following two-dimensional
function as a simulator,

y = η(x1, x2) = exp(−x1) tanh(5x2) x1, x2 ∈ [−1, 1]. (13)

This toy simulator, plotted in Figure 10, is clearly a nonlinear function of the input parameters.
As a result of this, we would expect a low-order polynomial expansion to perform poorly. We repeat
our experiments for the toy simulator by fitting PC, SE GP and M GP surrogates to class 1, 2 and
3 designs and evaluating validation metrics based on an independent 1000-point Latin hypercube
design. Once again, the design sizes are restricted by the polynomial chaos methods chosen, as well
as the input dimension (n = 2). Validation results for the two-dimensional function are shown in
Figures 11, 12 and 13. Interestingly, polynomial chaos accuracy for this function is not so poor for
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Figure 10: Plot of the two-dimensional function in (13) for x1, x2 ∈ [−1, 1].
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Figure 11: Root mean square error, mean and standard deviation validation results for the two-
dimensional function in (13). Design classes are in columns and validation metrics are in rows.
Polynomial chaos, square exponential and Matérn Gaussian process surrogate models are shown as
red triangles, purple crosses and blue circles respectively. The points have been been jittered slightly
for clarity. Gaussian process emulators also have 95% confidence intervals about their estimates
(solid lines). Simulator mean and standard deviation (solid black lines) are also shown with 95%
confidence intervals (dashed black lines).
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Figure 12: Exceedance probability validation results for the two-dimensional function in (13). Design
classes are in columns and validation metrics are in rows. Polynomial chaos, squared exponential and
Matérn Gaussian process surrogate models are shown as red triangles, purple crosses and blue circles
respectively. The points have been been jittered slightly for clarity. Gaussian process emulators also
have 95% confidence intervals about their estimates (solid lines). Simulator exceedance probabilities
(solid black lines) are also shown with 95% confidence intervals (dashed black lines).
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Figure 13: Probability density function (PDF) estimation validation results for the two-dimensional
function in (13). Design classes are in columns and design size used to build the surrogates increases
further down the rows. Polynomial chaos, squared exponential and Matérn Gaussian process surro-
gate model PDF estimates are shown as red, purple and blue lines respectively, while the simulator
output PDF is shown as a black line. Gaussian process emulators also have 95% confidence intervals
about their estimates.
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class 1 designs as it was for the adJULES and VEGACONTROL experiments. However, both Gaussian
process emulators still give more accurate and stable results so they are preferred here. One of the
most striking results is the difference between the two methods for class 2 designs. For all validation
metrics and the majority of design sizes, Gaussian process emulators consistently perform better
than polynomial chaos surrogates. We also note for class 3 designs (tensor grids where polynomial
chaos surrogates where slightly preferred), the performance gap between the two methods has closed
considerably. Finally, this nonlinear function exhibits a bimodal PDF that all surrogate methods
find difficult to estimate, especially for small design sizes. Nonetheless, a preference for GP methods
is still apparent. These results provide good evidence that Gaussian process emulators are more
suitable for modelling nonlinear simulator behaviour. Nevertheless, polynomial chaos surrogates
still provide respectable accuracy for a fraction of the cost.

Finally we reflect on the practicality of polynomial chaos and Gaussian process surrogates —
once built, what do they give us? It is clear that both methods offer a fast-approximation to the
simulator at any untried input configuration, which is useful in performing Monte Carlo based un-
certainty quantification tasks such as uncertainty or sensitivity analysis. Crucially though, Gaussian
process emulators not only provide a single prediction but have the advantage of readily available
uncertainty information due to the distributional assumptions. This not only allows the user to see
where the emulator is most uncertain in the design space, but uncertainty can be fed through to
various validation metrics as we showed in our examples. This is not the case for polynomial chaos,
and thus some preference may be found for Gaussian process emulators if uncertainty information
is required by the practitioner.

In conclusion, polynomial chaos and Gaussian process emulation are both state-of-the-art ap-
proaches with the focus of performing surrogate-based uncertainty quantification for computation-
ally expensive simulators. Despite this common goal, their respective communities tend to work on
their own problems and are only just starting to recognise each other. We hope the work presented
here goes some way towards bringing the two communities closer together, or at least is useful advice
for practitioners in the field who may be unsure of what method to use. Scope for future work in
the area is vast, including similar comparisons for higher dimensional problems and more rigorous
or theoretical assessments of the two methods in terms of flexibility, practicality and computational
cost. In this work we were primarily concerned with the prediction objective, that is, using a sur-
rogate to give an estimate of the simulator output at an untried input location. Comparisons of
the two methods for other specific uncertainty quantification tasks, such as calibration or sensitivity
analysis, would also be valuable. Development of a hybrid method combining polynomial chaos
and Gaussian process emulation may also be possible, and such an approach could draw upon the
advantages of both approaches to give a more accurate surrogate.
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Le Mâıtre, O. P., O. M. Knio, H. N. Najm, and R. G. Ghanem, 2001: A stochastic projection method
for fluid flow: 1. Basic formulation. Journal of Computational Physics , 173, 481–511.
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