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Abstract This work concerns the control of multi-
stability in a vibro-impact capsule system driven by a
harmonic excitation. The capsule is able to move for-
ward and backward in a rectilinear direction, and the
main objective of this work is to control such motion
in the presence of multiple coexisting periodic solu-
tions. A position feedback controller is employed in
this study, and our numerical investigation demon-
strates that the proposed control method gives rise to
a dynamical scenario with two coexisting solutions,
corresponding to forward and backward progression.
Therefore, the motion direction of the system can be
controlled by suitably perturbing its initial conditions,
without altering the system parameters. To study the
robustness of this control method, we apply numeri-
cal continuation methods in order to identify a region
in the parameter space in which the proposed con-
troller can be applied. For this purpose, we employ
theMATLAB-based numerical platformCOCO,which
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1 Introduction

Multistability is an inherent property referring to the
systems that exhibit coexistence of several stable solu-
tions for a given set of parameters, and the development
of robust controlmethods based on this feature is a topic
of ongoing investigation (see, e.g., [1,2]). Multistabil-
ity introduces a twofold effect in engineering systems.
On the one hand, this phenomenon has to be avoided in
order to prevent costly failures by stabilizing thedesired
state against a noisy environment when designing a
commercial device with specific characteristics [3,4].
On the other hand, coexistence of several stable solu-
tions offers great flexibility in the performance of engi-
neering systems, because the system behavior can be
changed without altering its major control parameters.
For this reason, a significant amount of effort has been
dedicated to the development of control strategies that
allow judiciously switching between stable solutions in
a multistable dynamical scenario; see, e.g., [1,5,6] and
the references therein.

Multistability has been observed in a broad range
of engineering applications [7–12], and in some cases
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the coexisting stable solutions appear to be ‘hidden’,
due to the complex structure of the basins of attraction
[13]. In [14], the authors investigated the case of an
impact oscillator with dry friction. They proved that
not all attractors can be reached by system trajectories
in the presence of noise. Another case is that of a gear-
rattling impact model analyzed in [7], where the focus
was on the numerical study of the basins of attraction of
periodic and chaotic solutions. In [8],multistabilitywas
observed in a bilinear oscillator close to grazing, and the
occurrence of coexisting attractors was manifested in
an experimental investigation that revealed discontinu-
ous transitions from one orbit to another via boundary
crisis. The case of an electro-vibro-impact system was
considered in [10], where the authors studied a broad
range of dynamical scenarios with coexisting periodic
and chaotic solutions.More recently, hidden coexisting
oscillations were investigated in a drilling system [3],
which were identified as a possible cause of harmful
vibrations in the drill strings.

Some recent advances in controlling multistability
have been reported in [1,15]. In [16], an algorithm
was developed to steer most trajectories to a desir-
able attractor by using small feedback control. Fluc-
tuational transitions in a discrete dynamical system
having two coexisting attractors separated by a frac-
tal basin boundary were studied in [17]. The case of
a CO2 laser model driven by a delayed feedback con-
troller was considered in [18], where the authors were
able to lock one of the coexisting attractors and elimi-
nate the others. In [19], the basins of attraction of coex-
isting solutions were controlled by either a harmonic
modulation or a small noise signal applied to a system
parameter in a multistable erbium-doped fiber laser.
Sevilla-Escoboza et al. [20] proposed a robust control
method that allows a periodic or a chaotic multistable
system to be transformed to a monostable system at
an orbit with dominant frequency of any of the coex-
isting attractors. Another control method was devel-
oped in [21], which was based on the computation of
basins of attraction and allows the switching frommul-
tistable to monostable dynamical scenarios. An inter-
mittent control strategywasdeveloped in [2] for switch-
ing between coexisting attractors, which can be applied
to non-autonomous dynamical systems. The method is
based on the knowledge of system’s basins of attrac-
tion with control actions being applied intermittently in
the time domain when an observed trajectory satisfies a
proximity constraintwith respect to a desired trajectory.

In the present work, we consider a vibro-impact cap-
sule system with a position feedback controller mod-
eled in the framework of piecewise-smooth dynami-
cal systems [22], where the discontinuity boundaries
are physically associated with impact, friction and
control input. The vibro-impact capsule system is a
self-propelled mechanism moving rectilinearly under
internal harmonic excitation when overcoming envi-
ronmental resistance, which has practical applications
in gastrointestinal endoscopy [23,24] and engineering
pipeline inspection [25,26]. A previous study of a sim-
pler version of the capsule model was carried out in
[27,28], where the authors investigated the response
of the model in various dynamical scenarios. The cap-
sule was found to be monostable when the environ-
mental resistance was modeled via Coulomb friction.
An experimental verification of the capsule model was
carried out in [29] by using a novel experimental rig. In
[30], various friction models were considered to rep-
resent the resistance of the surrounding medium of the
capsule. If the medium resistance includes the Stribeck
effect, it has been shown that the capsule response
exhibits numerous coexisting attractors, including peri-
odic and chaotic solutions. Therefore, in the present
paper we will include the Stribeck effect in the govern-
ing equations of the capsule system in order to study
the control of the capsule motion using its multistabil-
ity. The main purpose is to apply the position feedback
control method considered in [6] to switch between
forward and backward motion without altering its con-
trol parameters. The robustness of this control strategy
will be investigated by means of numerical continua-
tion methods. Specifically, we will identify a region
in the parameter space in which the proposed con-
troller can be applied. For this purpose, we will employ
the MATLAB-based numerical platform COCO [31],
which supports the continuation and bifurcation detec-
tion of periodic orbits of non-smooth dynamical sys-
tems.

The main contribution of this paper is twofold: first,
to propose a position feedback controller which con-
verts the multistable capsule system to a bistable one,
and, second, to carry out a robustness study of the con-
trol method by using path-following techniques. The
novelty of the position feedback control is that it gives
rise to a dynamical scenario with two coexisting solu-
tions, corresponding to forward and backward motion
control of the capsule, which cannot be achieved by
delayed feedback control [18] or parametermodulation
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Fig. 1 Physical model of the vibro-impact capsule system

[19,20]. The rest of the paper is organized as follows.
In the next section, the physical model of the capsule
system will be introduced including the position feed-
back controller and the considered friction model. In
Sect. 3, we will present the mathematical formulation
of the capsule model in the framework of piecewise-
smooth dynamical systems with emphasis on the basic
set-up required for the application of the continuation
software COCO. The multistable behavior of the sys-
temwill be numerically studied in Sect. 4.1. The robust-
ness of the control scheme will be analyzed via path-
following techniques using COCO in Sect. 4.2. Finally,
in Sect. 5wewill give some concluding remarks regard-
ing the present work.

2 Capsule modeling with position feedback control

This work considers a two-degree-of-freedom capsule
system depicted in Fig. 1. A movable internal massm1

is driven by a sinusoidal force with amplitude Fd and
frequency Ω , interacting with a rigid capsule m2 via
a linear spring with stiffness k1 and a viscous damper
with damping coefficient c. X1 and X2 represent the
absolute displacements of the internal mass and the
capsule, respectively. The internal mass hits a weight-
less plate connected to the capsule by a secondary lin-
ear spring with stiffness k2, when the relative displace-
ment X1 − X2 is larger than or equal to the gap E . If
the force acting on the capsule from the support of the
internal mass exceeds the threshold of the dry friction
Fb between the capsule and the surrounding medium,
the capsule moves in either forward or backward direc-
tion as indicated in Fig. 1. During the motion, a friction
force Fs is exerted on the capsule by the surrounding
medium, which opposes the direction of motion.

The equations of motion will be given in dimension-
less form, according to the following formulae:

Ω0 =
√

k1
m1

, t = Ω0τ, ω = Ω

Ω0
, ξ = c

2m1Ω0
,

α = Fd
Fr

, δ = k1
Fr

E, x1 = k1
Fr

X1, x2 = k1
Fr

X2,

fs = Fs
Fr

, fb = Fb
Fr

, β = k2
k1

, γ = m2

m1
,

(1)

where Fr > 0 is a given reference force. The con-
sidered system operates in bidirectional stick–slip
phases, which can be described by the following main
regimes:No contact—stationary,No contact—drifting,
Contact—stationary and Contact—drifting as intro-
duced in [27]. These operation regimes, however, need
to be split into several submodes so as to able to
describe the model in the framework of piecewise-
smooth dynamical systems as, e.g., in [28]. The com-
plete set of operation regimes will be given in Sect. 3.2.
The equations of motion for the vibro-impact capsule
system (without control) can be written in a compact
form as follows [27]:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x ′
1 = y1,
y′
1 = α cos(ωt) + (x2 − x1) + 2ξ(y2 − y1)

−P3β(x1 − x2 − δ),

x ′
2 = (P1(1 − P3) + P2P3)y2,
y′
2 = 1

γ
(P1(1−P3)+P2P3) (P3β(x1−x2−δ)

−(x2 − x1) − 2ξ(y2 − y1) − fs
(
x ′
2

))
,

(2)

with P1 := H
(∣∣(x2 − x1)+2ξ(y2 − y1)

∣∣ − fb
)
, P2 :=

H
(∣∣(x2−x1)+2ξ(y2−y1)−β(x1−x2−δ)

∣∣− fb
)

and
P3 := H(x1− x2−δ), where H(·) stands for the Heav-
iside step function.

The Stribeck effect is introduced to the friction
model, and the relationship between friction force and
capsule velocity is governed by

fs
(
x ′
2

) :=
(
1 + e−

∣∣x ′
2

∣∣/vs) sign
(
x ′
2

)
,

where vs is the non-dimensional Stribeck velocity.
Here, we will take fb = 2 as the breakaway friction
force that defines the onset of sliding phases.

In order to control the forward and backwardmotion
of the capsule via its multistability, we consider the
position feedback control law

u = kp
∣∣x2 − x1

∣∣,
where kp is a proportional control gain. The resulting
equations of motion of the controlled capsule system
are then given by
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x ′
1 = y1,
y′
1 = α cos(ωt) + fp(x1, x2) + 2ξ(y2 − y1)

−P3β(x1 − x2 − δ),

x ′
2 = (P1(1 − P3) + P2P3)y2,
y′
2 = 1

γ
(P1(1−P3)+P2P3) (P3β(x1−x2 − δ)

−(x2 − x1) − 2ξ(y2 − y1) − fs
(
x ′
2

))
,

(3)

where

fp(x1, x2) := kp
∣∣x2 − x1

∣∣ + (x2 − x1)

=
{

(1 − kp)(x2 − x1), x1 ≥ x2,

(1 + kp)(x2 − x1), x1 < x2.

3 The controlled capsule as a piecewise-smooth
dynamical system

In order to study the behavior of the controlled cap-
sule model introduced in the previous section, we will
employ two different types of numerical approaches,
namely direct numerical integration andpath-following
(continuation) techniques. As can be seen from the
equations of motion (3), the capsule model belongs
to the class of piecewise-smooth dynamical systems
[22], which are characterized by periods of smooth
evolution interrupted by instantaneous events, typically
occurring in applications involving impacts, switches,
friction, etc. From a numerical point of view, it is
convenient to divide the state space of such systems
into disjoint subregions, so that the system dynamics
in each subregion is determined by a smooth vector
field. The boundary of any subregion is mathematically
described by the zero set of a smooth scalar function,
often referred to as event function, which is usually con-
nected to a physical instantaneous event, as explained
above. Therefore, special care must be taken in order
to get reliable numerical approximations of the behav-
ior of such systems in an efficient way. In our inves-
tigation, the numerical simulations will be obtained
via direct numerical integration of one of the possi-
ble smooth vector fields, until the computed solution
approaches the boundary of the corresponding subre-
gion. The boundary point is accurately detected, and
then, the integrated vector field is switched according
to the governing laws of the system. In practice, this
can be implemented by means of the standard MAT-
LAB ODE solvers together with their built-in event
location routines [32,33], as suggested in [34].

As will be seen in the next section, our investiga-
tion will include the study of forced oscillations gener-

ated by an external sinusoidal excitation [see (3)]. Since
the capsule model is parameter dependent, a family of
oscillatory solutionsmay be tracked by freeing one sys-
tem parameter, which can be numerically realized via
path-following (continuation)methods. These arewell-
established techniques in appliedmathematics [35] that
enable a systematic study of a model response subject
to parameter variations, with focus on the detection
of possible qualitative changes in the model behavior
(bifurcations). For the analysis of periodic solutions of
piecewise-smooth systems via continuation methods,
specialized computational tools are available, such as
SlideCont [36], TC-HAT [37] (see also [28,38–41] for
recent applications of this tool) and COCO [31,42–
45], and the latter will be employed in the current work
for the numerical study of the capsule model. In the
next section, we will explain in detail the mathemat-
ical set-up that is required to carry out the numerical
investigation of the capsule via COCO.

3.1 Continuation framework in COCO for
piecewise-smooth dynamical systems

Computational continuation core (in short COCO) is
a MATLAB-based analysis and development platform
for the numerical solution of continuation problems
[31]. The software package includes a collection of
special-purpose toolboxes that covers, to a large extent,
the functionality of existing continuation platforms,
such as AUTO [46] and MATCONT [47]. A key fea-
ture of COCO is, however, that it provides the user with
a general purpose framework that supports and facili-
tates the development of specialized toolboxes tailored
to the user’s interests and needs, which can be built on
top of available core routines, common across a broad
range of continuation problems.

In the present work, we will make extensive use of
the COCO toolbox ‘hspo’, which supports the numer-
ical continuation and bifurcation detection of periodic
orbits of piecewise-smooth dynamical systems. This
toolbox has extended and improved the functionali-
ties of the software package TC-HAT [37], an AUTO-
based application for bifurcation analysis of piecewise-
smooth systems. A detailed discussion regarding the
differences and improvements can be found in [43].
The mathematical set-up required to apply the ‘hspo’
toolbox, however, follows closely that of TC-HAT and
can be briefly described as follows.
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A parameter-dependent, piecewise-smooth dynam-
ical system can be characterized by a collection of
smooth vector fields and smooth event functions
{
f Mi : RN ×Rp → RN

}K M

i=1
and

{
h E j : RN ×Rp → R

}K E

j=1
,

respectively, with N , p, K M, K E ∈ N. Here, the
subindex Mi , i = 1, . . . , K M, represents a mode of
operation of the system, for which the system dynam-
ics is described by the smooth vector field f Mi . Each
mode of operation is defined within a subregion of the
state spaceRN . The boundaries of these subregions are
determined by the zero set of the smooth scalar func-
tions h E j , j = 1, . . . , K E. The subindex E j represents
in this case an event related to, e.g., impacts, switches,
etc., as outlined at the beginning of Sect. 3. A periodic
solution of a piecewise-smooth system can then be rep-
resented by a sequence of segments {I
}K S


=1, K S ∈ N,
also referred to as solution signature. Here, each seg-
ment is associated with a vector field and an event
function, i.e., I
 := {

Mi
 ,E j


}
for all 
 = 1, . . . , K S,

1 ≤ i
 ≤ K M, 1 ≤ j
 ≤ K E. More details about this
mathematical set-up can be found in [31,37].

3.2 Vector fields and event functions for the capsule
model

In this section, we will introduce the modes of opera-
tion and the event functions that describe the behavior
of the capsule, following the mathematical framework
described previously. Before we do so, it is convenient
to introduce the coordinate transformation⎧⎪⎪⎨
⎪⎪⎩

w1 = x1,
w2 = x1 − x2,
v1 = y1,
v2 = y1 − y2,

(4)

which allows decoupling the periodic behavior of the
capsule model from the (forward or backward) drift.
The new variables w2 and v2 represent the relative
position and velocity of the mass m1 with respect to
the capsule; see Fig. 1. In this way, the dimension of
the system can be reduced, as the oscillatory motion
of the capsule is fully captured by the variables w2, v1
and v2, as will be seen later.

Inwhat follows,wewill denote by z := (w2, v1, v2)
T

∈ R3 and μ := (ω, α, ξ, δ, β, γ, vs, kp) ∈ (
R+)7 ×R

the state variables and parameters of the system, respec-
tively, whereR+ stands for the set of positive numbers.
The modes of operation of the capsule system are anal-
ogous to those introduced in a previous work [28]. The
main difference, however, lies in the fact that the cur-
rent model includes a position feedback control, which
gives rise to additional modes of operation, as will be
described in detail below.

No contact 1—stationary (NC-S1). This mode takes
place when three conditions are fulfilled: the gap
between the secondary spring k2 and the internal mass
m1 is smaller than δ (w2 = x1 − x2 < δ), the force
acting on the capsule from the support of the inter-
nal mass is smaller than the breakaway friction force
fb = 2

(∣∣w2 + 2ξv2
∣∣ ≤ 2

)
, and the relative distance

w2 is positive. The motion of the capsule during this
regime is governed by the equation

z′ = f NC-S1(t, z, μ)

:=
⎛
⎝ v1

α cos(ωt) − (1 − kp)w2 − 2ξv2
α cos(ωt) − (1 − kp)w2 − 2ξv2

⎞
⎠ , (5)

which results from application of the variable change
(4) to the governing equations (3). This operationmode
terminateswhenoneof the following events is detected:

h IMP(z, μ) := w2 − δ = 0

(Internal mass hits the secondary spring),

h FOR1(z, μ) := w2 + 2ξv2 − 2 = 0

(Transition to forward drift),

h BACK1(z, μ) := w2 + 2ξv2 + 2 = 0

(Transition to backward drift),

h CONT(z, μ) := w2 = 0

(Position feedback control becomes zero).

No contact 1—forward drift (NC-FD1). During this
mode, the internal mass and the secondary spring are
not in contact and the gap w2 is positive, i.e., 0 <

w2 < δ. Furthermore, the capsule moves forwards
(y2 = v1 − v2 > 0), and the dynamics of the system
is described by
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z′ = f NC-FD1(t, z, μ) :=
⎛
⎜⎝

v2
α cos(ωt) − (1 − kp)w2 − 2ξv2

α cos(ωt) − w2

(
1 − kp + 1

γ

)
− 2ξv2

(
1 + 1

γ

)
+ 1

γ

(
1 + e− v1−v2

vs

)
⎞
⎟⎠ . (6)

This operation regime ends when one of the following
events takes place: h IMP(z, μ) = 0, h CONT(z, μ) = 0 or

h STOP(z, μ) := v1 − v2 = 0 (capsule velocity becomes zero).

No contact 1—backward drift (NC-BD1). This
regime is similar to the one introduced before. In this
case, however, the capsule moves backwards, which

means that v1 − v2 < 0. The motion of the capsule is
described by the system of ODEs

z′ = f NC-BD1(t, z, μ) :=
⎛
⎜⎝

v2
α cos(ωt) − (1 − kp)w2 − 2ξv2

α cos(ωt) − w2

(
1 − kp + 1

γ

)
− 2ξv2

(
1 + 1

γ

)
− 1

γ

(
1 + e

v1−v2
vs

)
⎞
⎟⎠ . (7)

As in the previous mode, the terminal point of this
regime is defined by the event functions h IMP, h CONT

or h STOP, introduced before.
No contact 2—stationary (NC-S2). This mode is

analogous to the operation regime No contact 1—

stationary defined before, except that in this casew2 =
x1 − x2 ≤ 0. The behavior of the capsule is governed
by the system

z′ = f NC-S2(t, z, μ)

:=
⎛
⎝ v1

α cos(ωt) − (1 + kp)w2 − 2ξv2
α cos(ωt) − (1 + kp)w2 − 2ξv2

⎞
⎠ , (8)

and the operation mode terminates when one of the fol-
lowing events occurs: h FOR1(z, μ) = 0, h BACK1(z, μ) =
0 or h CONT(z, μ) = 0.

No contact 2—forward drift (NC-FD2). As in the
previous case, this mode is similar to its counterpart
No contact 1—forward drift. Again, the difference is
given by the condition w2 ≤ 0, and the dynamics of
the system is described by the equation

z′ = f NC-FD2(t, z, μ) :=
⎛
⎜⎝

v2
α cos(ωt) − (1 + kp)w2 − 2ξv2

α cos(ωt) − w2

(
1 + kp + 1

γ

)
− 2ξv2

(
1 + 1

γ

)
+ 1

γ

(
1 + e− v1−v2

vs

)
⎞
⎟⎠ . (9)

The terminal point of this regime is determined via the
event functions h STOP or h CONT.

No contact 2—backward drift (NC-BD2). This
regime follows the operation principles of No con-
tact 1—backward drift, with w2 ≤ 0. The motion of
the capsule is described in this case by the system of
ODEs

z′ = fNC-BD2(t, z, μ) :=

⎛
⎜⎜⎝

v2
α cos(ωt) − (1 + kp)w2 − 2ξv2

α cos(ωt) − w2

(
1 + kp + 1

γ

)
− 2ξv2

(
1 + 1

γ

)
− 1

γ

(
1 + e

v1−v2
vs

)
⎞
⎟⎟⎠ . (10)

As in the previousmode, the terminal point of this oper-
ation regime is determined by the event functions h STOP

or h CONT.
Contact—stationary (C-S). This operation regime is

analogous to the No contact 1—stationary mode. The
difference is that now the internal mass is in contact
with the secondary spring (w2 ≥ δ > 0), and therefore,
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an additional elastic force has to be taken into account
in the governing equations, as shown below

z′ = f C-S(t, z, μ)

:=
⎛
⎝ v1

α cos(ωt) − (1 − kp)w2 − 2ξv2 − β(w2 − δ)

α cos(ωt) − (1 − kp)w2 − 2ξv2 − β(w2 − δ)

⎞
⎠ .

(11)

The terminal condition for this mode of operation is
defined by the events: h IMP(z, μ) = 0 or

h FOR2(z, μ) := w2 + 2ξv2 + β(w2 − δ) − 2 = 0

(Transition to forward drift),

h BACK2(z, μ) := w2 + 2ξv2 + β(w2 − δ) + 2 = 0

(Transition to backward drift).

Contact—forward drift (C-FD). In this case, the
mass m1 is in contact with the spring k2 (w2 ≥ δ > 0)
and the capsule moves forwards (v1 − v2 > 0). The
system dynamics is described by the equation

z′ =
⎛
⎜⎝

v2
α cos(ωt) − (1 − kp)w2 − 2ξv2 − β(w2 − δ)

α cos(ωt) − w2

((
1 + 1

γ

)
(1 + β) − kp

)
− 2ξv2

(
1 + 1

γ

)
+ 1

γ

(
βδ(1 + γ ) + 1 + e− v1−v2

vs

)
⎞
⎟⎠

=: f C-FD(t, z, μ). (12)

This operation regime ends when one of the events
takes place: h IMP(z, μ) = 0 or h STOP(z, μ) = 0.

Contact—backward drift (C-BD). Similarly to the
previous regime, in this operation mode the internal
mass is in contact with the secondary spring, but the
difference is that in this case the capsule moves back-
wards. The motion of the capsule is governed by the
system of ODEs

z′ =
⎛
⎜⎝

v2
α cos(ωt) − (1 − kp)w2 − 2ξv2 − β(w2 − δ)

α cos(ωt) − w2

((
1 + 1

γ

)
(1 + β) − kp

)
− 2ξv2

(
1 + 1

γ

)
+ 1

γ

(
βδ(1 + γ ) − 1 − e

v1−v2
vs

)
⎞
⎟⎠

=: f C-BD(t, z, μ), (13)

and the terminal point of this mode of operation is
defined by the event functions h IMP or h STOP, as in the
previous case.

A list of all possible segments used to describe the
periodic solutions of the capsule system is presented
in Table 1. As explained in Sect. 3.1, each segment is
associated with a vector field (operation mode) gov-
erning the evolution of the system during the segment
and an event function that defines the terminal condi-
tion of the segment, which can be an impact with the
secondary spring, a transition from stationary position
to forward or backward drifting, etc.

To conclude this section, we present below the com-
plete mathematical model of the capsule system, given
in terms of the vector fields and event functions defined
before:

No contact 1 (0 < w2 < δ):

z′ =

⎧⎪⎨
⎪⎩

f NC-S1(t, z, μ), h STOP(z, μ) = 0 and
∣∣w2 + 2ξv2

∣∣ ≤ 2,

f NC-FD1(t, z, μ), h STOP(z, μ) > 0 or (h STOP(z, μ) = 0 and h FOR1(z, μ) > 0) ,

f NC-BD1(t, z, μ), h STOP(z, μ) < 0 or (h STOP(z, μ) = 0 and h BACK1(z, μ) < 0) .

(14)
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No contact 2 (w2 ≤ 0):

z′ =

⎧⎪⎨
⎪⎩

f NC-S2(t, z, μ), h STOP(z, μ) = 0 and
∣∣w2 + 2ξv2

∣∣ ≤ 2,

f NC-FD2(t, z, μ), h STOP(z, μ) > 0 or (h STOP(z, μ) = 0 and h FOR1(z, μ) > 0) ,

f NC-BD2(t, z, μ), h STOP(z, μ) < 0 or (h STOP(z, μ) = 0 and h BACK1(z, μ) < 0) .

(15)

Contact (w2 ≥ δ):

z′ =

⎧⎪⎨
⎪⎩

f C-S(t, z, μ), h STOP(z, μ) = 0 and
∣∣w2 + 2ξv2 + β(w2 − δ)

∣∣ ≤ 2,

f C-FD(t, z, μ), h STOP(z, μ) > 0 or (h STOP(z, μ) = 0 and h FOR2(z, μ) > 0) ,

f C-BD(t, z, μ), h STOP(z, μ) < 0 or (h STOP(z, μ) = 0 and h BACK2(z, μ) < 0) .

(16)

A final step before starting the analysis of this
piecewise-smooth model via COCO is to write the
system in autonomous form. This is typically car-
ried out by embedding the non-autonomous system
into an autonomous one of higher dimension, which

Table 1 Operation modes and segments defined to study the
dynamics of the capsule system in COCO

Operation mode Segment

No contact 1—stationary I11 := {NC-S1, IMP}
I12 := {NC-S1,FOR1}
I13 := {NC-S1,BACK1}
I14 := {NC-S1,CONT}

No contact 1—forward drift I21 := {NC-FD1, IMP}
I22 := {NC-FD1,STOP}
I23 := {NC-FD1,CONT}

No contact 1—backward drift I31 := {NC-BD1, IMP}
I32 := {NC-BD1,STOP}
I33 := {NC-BD1,CONT}

No contact 2—stationary I41 := {NC-S2,FOR1}
I42 := {NC-S2,BACK1}
I43 := {NC-S2,CONT}

No contact 2—forward drift I51 := {NC-FD2,STOP}
I52 := {NC-FD2,CONT}

No contact 2—backward drift I61 := {NC-BD2,STOP}
I62 := {NC-BD2,CONT}

Contact—stationary I71 := {C-S, IMP}
I72 := {C-S,FOR2}
I73 := {C-S,BACK2}

Contact—forward drift I81 := {C-FD, IMP}
I82 := {C-FD,STOP}

Contact—backward drift I91 := {C-BD, IMP}
I92 := {C-BD,STOP}

results from, e.g., introducing the time as an additional
state variable. In the present work, we appended an
autonomous nonlinear oscillator to the equations of
motion (14)–(16), whose solution can be used to sim-
ulate the external sinusoidal excitation [35].

4 Numerical results

In the following subsections,wewill analyze the behav-
ior of the capsule system based on two numerical
approaches: direct numerical integration (Sect. 4.1) and
continuationmethods (Sect. 4.2). Fromapractical point
of view, it is convenient first to introduce suitable solu-
tion measures that are related to physical quantities rel-
evant in engineering applications. Consider a periodic
solution z(t) = (w2(t), v1(t), v2(t)) of (14)–(16) with
period T > 0. The motion of the capsule can be com-
puted via the expression

x2(t) = x∗
2 +

t∫
0

(v1(s) − v2(s)) ds,

where x∗
2 ∈ R represents the position of the capsule at

t = 0. By using this formula, we introduce the quantity

ROP := 1

T
(x2(T ) − x2(0)), (17)

which gives the average rate of progression (drift) per
period of the capsule. Its sign indicates whether the
capsule moves forwards (ROP > 0) or backwards
(ROP < 0), as indicated by the arrows in Fig. 1. The
second physical measure that will be considered in our
study is the average power used to drive the internal
mass m1 per period, computed as
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Fig. 2 aBasins of attraction for the vibro-impact capsule system
(14)–(16) calculated for γ = 0.36, β = 3, ξ = 0.05, δ = 0.02,
α = 1.6, ω = 1.1, vs = 0.1 and kp = 0 (no control). Orbits,
Poincaré maps (red dots) and the time histories of displacements
x1 (black solid line) and x2 (red dash line) for the coexisting,

b period-1 with two impacts, c period-2 with four impacts, d
period-4 with eight impacts, e period-1 with one impact solu-
tions. The vertical blue line in the phase portraits represents the
discontinuity boundary w2 = δ, at which impacts with the sec-
ondary spring occur. (Color figure online)

PAVG := 1

T

T∫
0

(
α cos (ωs) + kp

∣∣w2(s)
∣∣) v1(s) ds. (18)

The solution measures (17) and (18) introduced above
will allow us to gain more insight into the dynamics of
the capsule from a practical perspective, as will be seen
in the following sections.

4.1 Multistable behavior of the controlled capsule

The multistable scenario of the capsule model (14)–
(16) for kp = 0 (without control) is shown in Fig. 2. As
can be seen from panel (a), the capsule system without
the position feedback control has four coexisting attrac-
tors: period-1 solution with two impacts per period and
forward drifting; period-2 with four impacts and for-

ward motion; period-4 with eight impacts and forward
progression; and period-1 with one impact and back-
ward motion. The (green and yellow) basins for the
period-1 and the period-4 forward motions are rela-
tively large compared to the rather fragmented (gray)
basin for the period-2 solution with forward progres-
sion and the (orange) basin for the period-1 with back-
ward motion. Therefore, for the considered dynami-
cal scenario, the forward progression dominates the
behavior of the system, due to which the capsule is
rather unlikely to operate in backward drifting modes.
A closer look into the capsule behavior is presented in
Fig. 3a. Here, a bifurcation diagram of the uncontrolled
systemwith respect to themass ratioγ is presented.The
results indicate that two solutions, one with forward
(purple line) andonewith backward (blue line) progres-
sion, exist in the parameter windows γ ∈ [0.32, 0.48]
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(a) (b)

Fig. 3 Bifurcation diagrams for the capsule system (14)–(16) constructed for varying mass ratio, γ , a without control (kp = 0), b with
control (kp = −0.2), calculated for β = 3, ξ = 0.05, δ = 0.02, α = 1.6, ω = 1.1, and vs = 0.1

(a) (b) (c)

Fig. 4 a Quasiperiodic (no control kp = 0, gray color) and
period-1 (with control kp = −0.2, red color) orbits, b time his-
tories of capsule displacements, c control input u, computed for

γ = 0.35, β = 3, ξ = 0.05, δ = 0.02, α = 1.6, ω = 1.1 and
vs = 0.1. The location of the impact boundary is shown by the
vertical blue line. (Color figure online)

andγ ∈ [0.35, 0.437], respectively. Furthermore, addi-
tional solutions are also present in the system, which
pose difficulties for the directional control of the cap-
sule. These undesired attractors are observed for γ ∈
[0.337, 0.381] (black plot) and γ ∈ [0.329, 0.468]
(cyan plot).

Next wewill introduce the position feedback control
to the capsule system and study the effect on the model
response. The result is shown in Fig. 3b. The main dif-
ference is that the unwanted solutions described above
disappeared, and only the desired forward and back-
ward drifting solutions persist, meaning that the system
switched from the multistable to a bistable dynamical
scenario. Another effect is that the window of exis-
tence of the solution with backward drift (blue line) has
increased to γ ∈ [0.32, 0.456). In Fig. 4, we present
a comparison between two system solutions with (red

line) and without (gray line) control. Apart from the
control gain, all parameters values are the same for
both cases. As the picture shows, the controlled solu-
tion (periodic) presents a faster backward drift than the
uncontrolled (quasiperiodic) one.

Let us now investigate the effect of the proportional
control gain on the capsule behavior. To this end, we
computed the bifurcation diagram depicted in Fig. 5a,
with respect to kp. The picture shows inner panels cor-
responding to various periodic orbits found during the
computation. For the sake of clarity in the presenta-
tion of the results, we use a label P-i- j in the pic-
ture to denote a period-i solution with j impacts with
the secondary spring k2 per orbital period, i, j ∈ N.
From Fig. 5a, we observe that the capsule model
presents multistability for a small parameter window
kp ∈ [−0.023, 0.042]. After this interval, two period-1
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A
V
G

(a) (b)

Fig. 5 a Bifurcation diagram, b average power consumption
PAVG for the capsule system (14)–(16), constructedbyvarying the
control parameter kp, calculated for γ = 0.36, β = 3, ξ = 0.05,

δ = 0.02, α = 1.6, ω = 1.1, and vs = 0.1. The location of the
impact boundary is shown by the vertical blue line. (Color figure
online)

orbits, one with forward and one with backward pro-
gression, coexist for kp ∈ (0.042, 0.09]. If kp is fur-
ther increased, only one solution with forward motion
remains, in the interval kp ∈ (0.09, 0.13], where the
system is monostable. For control gain in the param-
eter window kp ∈ [−0.51,−0.023), the capsule sys-
tem is bistable, with one solution with forward and one
with backward drift. If kp is further decreased, only one
solution with backward motion remains in the interval
kp ∈ [−0.53, −0.51).

Figure 6 presents the evolution of the basins of
attraction of the capsule system as the control gain kp
increases. As shown from this sequence of plots, the
basin of the (unwanted, see above) black attractor is
gradually shrinking as the control gain increases, and
the yellow basin disappears completely at kp ≈ 0.042,
where the green basin becomes dominant. Thereafter,
the period-1 forward and backward attractors coexist,
and the orange basin for the period-1 backward motion
becomes smaller with increasing control gain, disap-
pearing completely at kp ≈ 0.09. The evolution of the
basins of attraction for the capsule system as the control
gain kp decreases is shown in Fig. 7. It can be observed
from the sequence of graphs that the orange basin of
the period-1 backward attractor expands as the control
gain decreases, and the yellow basin of the period-4
attractor shrinks and vanishes at kp ≈ −0.023, where
the orange basin becomes dominant. After this, two sta-
ble solutions are present in the system, one of whose
basin gradually shrinks and disappears at kp ≈ −0.51.
It can be seen from the figures that the positive control
gain is more effective to convert the multistable system
to a monostable one, whereas the negative control gain

is more effective to maintain bistability in the capsule
system. At kp ≈ −0.023, as the yellow basin disap-
pears, the area of the green basin is the maximum in
the bistable scenario.

Based on the numerical observations discussed
above, two control strategies for controlling the for-
ward and backward drift of the capsule system may be
considered. One approach is via varying the propor-
tional control gain. As observed before, the system is
monostable for kp > 0.09 and kp < −0.51, where the
capsule presents forward and backward progression,
respectively. On the other hand, all parameters can be
set in such a way that the system is bistable, with one
solutionwith forward andonewith backward drift. This
occurs for instance at kp = −0.2 (see above). In this
case, the direction of progression can be chosen by
suitably perturbing the initial conditions of the system;
see Fig. 7b, without altering the system parameters. In
this dynamical scenario, the size of the corresponding
basins is suitable for such a strategy, although one basin
is clearly larger than the other.

One criterion to choose the type of control strat-
egy can be given in terms of power consumption, cal-
culated via the solution measure defined in (18). In
Fig. 5b, we calculated this quantity with varying con-
trol gain, as was carried out in Fig. 5a, showing the
capsule motion in internal panels. Although the system
presents higher ROPs in the monostable regimes A2

and B2, in the bistable mode represented by the labels
A1 and B1, the power used to drive the internal mass
is smaller, compared with the corresponding direction
of drift in the monostable modes. Therefore, from an
energy consumption point of view, the directional con-
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Fig. 7 Evolution of the basins of attraction of the capsule model (14)–(16), with negative feedback gain, a kp = −0.02, b kp = −0.2,
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trol via bistability is preferable. In the next section, we
will consider this type of control and discuss its robust-
ness via numerical continuation methods, for the case
kp = −0.2.

4.2 Path-following analysis of the controlled capsule

In order to identify the bistable regime where the
period-1 forward and backward solutions coexist, we
will first perform the numerical continuation of these
two periodic orbits with respect to the excitation fre-
quency ω, using the ROP as solution measure (see
(17)). The result of the continuation is depicted in
Fig. 8a, which shows red and blue curves corre-
sponding to forward (positive ROP) and backward
(negative ROP) progression, respectively. These red
and blue curves are obtained by tracing the solutions
shown in panels (d) and (e), with solution signatures
{I23, I51, I43, I11, I72, I81} and {I14, I42, I52, I31, I92,
I71}, respectively. For the parameter window consid-
ered, only one fold bifurcation F2 (ω ≈ 1.0165) was

found along the red curve, below which the solution
disappears. On the other hand, two fold bifurcations
F1 (ω ≈ 1.0292) and F3 (ω ≈ 1.1836) were detected
during the continuation of the solution in panel (e), cor-
responding to backward drift. This allows identifying
with high accuracy the interval of bistability, limited
in this case by the fold points F1 and F3. In this win-
dow, the existence of the forward and backward drifting
solutions is guaranteed, and therefore, the directional
control of the capsule can be achieved by switching
between these two attractors, as discussed in the previ-
ous section. In panels (f)–(h) of Fig. 8, enlargements of
the bifurcation diagram depicted in panel (a) are pre-
sented, showing how the bifurcation curve folds at the
critical points F1, F2 and F3.

In order to gain an insight into the robustness of the
directional control of the capsule based on its bista-
bility, we will perform a two-parameter continuation
of the codimension-one bifurcations discussed above.
Figure 9a shows the locus of the fold points F1, F2 and
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Fig. 8 a One-parameter continuation of the period-1 response
of the capsule system (14)–(16) with respect to the excitation fre-
quencyω, computed for the parameter values α = 1.6, ξ = 0.05,
δ = 0.02, β = 3, γ = 0.36, kp = −0.2 and vs = 0.1. This panel
shows the behavior of the rate of progression ROP as the fre-
quency varies. The red and blue curves correspond to the contin-
uation of the periodic orbits shown in panels (d, e), respectively,

for which the progression has opposite directions, as shown in
panels (b, c). Here, the figures depict the time history of the
internal mass (solid line) and capsule (dashed line) motion. Pan-
els (f–h) show enlargements of the bifurcation diagram in (a)
around the fold bifurcations F1, F2 and F3, respectively. (Color
figure online)

F3 detected before in the parameter plane ω–γ . The
intersection of this diagram with the horizontal line
γ = 0.36 (dashed) gives the bifurcation points found
in Fig. 8a. The gray area shows the region of bista-
bility where the solutions shown in Fig. 8d (forward
progression) and Fig. 8e (backward progression) coex-
ist. In addition, several test points have been chosen,
at each of which the corresponding forward and back-
ward drifting solutions are shown, with inner panels
for the capsule motion. This numerical study reveals
that the interval of bistability is robust under parame-
ter perturbations, although the length of the ω-interval

of bistability changes significantly as the mass ratio γ

varies. Another important aspect is that the left bound-
ary of the interval of bistability switches between bifur-
cation curves. Specifically, below γ ≈ 0.4094 the left
boundary is determined by the blue bifurcation (con-
tinuation of F1). Above this value, the left boundary is
defined by the green curve (continuation of F2). This
is due to the intersection of the bifurcation curves at
(ω, γ ) ≈ (0.9891, 0.4094). All these aspects should be
taken into account in order to ensure an effective direc-
tional control of the capsule system based on switching
between attractors.
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Fig. 9 a Two-parameter continuation of the fold points F1 (blue
curve), F2 (green curve) and F3 (red curve) found in Fig. 8a,
with respect to frequency ω and mass ratio γ . The gray area rep-
resents the parameter region in which stable period-1 orbits of
the type shown in Fig. 8d, e coexist. b, d, f depict periodic orbits
for which the ROP is positive, while in panels (c), (e) and (g) the

capsule moves backwards. These solutions are computed for the
test points P1 (ω = 0.98, γ = 0.44), P2 (ω = 1.06, γ = 0.41)
and P3 (ω = 1.09, γ = 0.37). The inner panels show the internal
mass (solid line) and capsule (dashed line) motion. (Color figure
online)

5 Conclusions

This paper studied forward and backward motion con-
trol of a vibro-impact capsule system based on its
multistability, implemented via a position feedback
controller. The capsule system was modeled in the
framework of piecewise-smooth dynamical systems,
where the discontinuity boundaries were physically
associated with impact, friction and control input. Fur-

thermore, the mathematical description of the friction
considered the Stribeck effect, for which the system
response presented a variety of complex dynamical sce-
narios, as analyzed in a previous study [30]. In partic-
ular, several coexisting solutions become dominant in
the system dynamics, and this feature was exploited to
perform directional control of the system.

Our investigation showed that the dynamical behav-
ior of the capsule can be manipulated by a position
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feedback controller, where the main desired effect was
the switching betweenmultistable, bistable andmonos-
table system responses. In this way, two control strate-
gies were identified. The first one consists in varying
the proportional control gain, thus obtaining forward
progression for kp > 0.09 and backward progression
for kp < −0.51, in which cases only one stable solu-
tion is present. The second control method takes advan-
tage of the bistable system response encountered at
kp = −0.2. In this case, the system has precisely one
solutionwith forward drift and onewith backward drift,
between which a switching can be achieved by suitably
perturbing the initial conditions of the system. The lat-
ter proposed method was found to be more efficient
from an energy consumption point of view, which is a
relevant factor for many engineering applications.

In order to gain an insight into the robustness of the
directional control of the capsule based on its bista-
bility, numerical continuation methods were applied.
Specifically, the forward and backward drifting solu-
tions in the bistable regime were traced with respect
to the excitation frequency ω. During the continua-
tion, three fold bifurcation points were detected, which
can be used to define the window of bistability of
the system. A region in the parameter space ω–γ was
identified, on which the existence of the forward and
backward drifting solutions can be guaranteed. For
this purpose, a two-parameter continuation of the three
fold bifurcations was carried out, which determined
the bistability region. The results indicated that the
ω-interval of bistability persists under parameter per-
turbations showing robustness of the proposed control
method. However, the size of the interval can change
significantly, which should be taken into account so as
to ensure the effectiveness of directional control of the
capsule system based on its bistability.
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