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Interval probabilistic forecasts for a binary event are forecasts issued as a range of

probabilities for the occurrence of the event, for example,‘chance of rain: 10-20%’. To

verify interval probabilistic forecasts, use can be made ofa scoring rule that assigns

a score to each forecast-outcome pair. An important requirement for scoring rules, if

they are to provide a faithful assessment of a forecaster, isthat they be proper, by which

is meant that they direct forecasters to issue their true beliefs as their forecasts. Proper

scoring rules for probabilistic forecasts issued as precise numbers have been studied

extensively. But, applying such a proper scoring rule to, for example, the mid-point

of an interval probabilistic forecast, does not, typically, produce a proper scoring rule

for interval probabilistic forecasts. Complementing parallel work by other authors,

we derive a general characterisation of scoring rules that are proper for interval

probabilistic forecasts and from this characterisation wedetermine particular scoring

rules for interval probabilistic forecasts that correspond to the familiar scoring rules

used for probabilistic forecasts given as precise probabilities. All the scoring rules we

derive apply immediately to rounded probabilistic forecasts, being a special case of

interval probabilistic forecasts.
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1. Introduction

Consider an event that can have one of two outcomes. When

forecasting which outcome will occur, the word ‘forecast’ is often

read as ‘point forecast’, a statement about what the outcomeof

the event will be. One may though, also speak of a ‘probabilistic

forecast’, a statement about how likely it is that each outcome

will occur. Probabilistic forecasts are not new (see the historical

account by Murphy 1998) and, already familiar in meteorology,

are of increasing interest in many other disciplines (for a broad

map of applications, see Gneiting and Katzfuss 2014). Studies
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2 Mitchell and Ferro

of how well a probabilistic forecaster performs, which is the

subject of probabilistic forecast verification, have up to now

as far as we are aware, taken the forecast probability to be a

precise number; we will refer to such probabilistic forecasts as

precise probabilistic forecasts(a thorough overview of this type

of probabilistic forecasting is given in Dawid 1986).

Yet a probabilistic forecast is often expressed as a range

of probabilities (for example, “Chance of rain: 25-30%”). We

assume that the forecaster can compute their forecast probability

precisely but must issue a range of probabilities. For example,

meteorological offices around the world communicate their

forecasts for precipitation as ranges of probabilities. Wecall

a probabilistic forecast issued as a range of probabilities, an

interval probabilistic forecast.

Rounded probabilistic forecasts are a special case of interval

probabilistic forecasts. Each rounded probability represents a

range of probabilities, namely those probabilities that, when

rounded, reduce to the forecast probability. For example, if

probabilistic forecasts are rounded to the nearest 10%, a rounded

probabilistic forecast of 20% can be represented as the interval of

probabilities from 15% (inclusive) to 25% (exclusive).

To verify precise probabilistic forecasts, the standard formal

approach is to use a scoring rule (see for example, Winkler

1996), a rule that assigns to each possible outcome of the event

and each (precise) probabilistic forecast of the event, a score. A

forecaster’s accuracy is measured by their average score. There

are many scoring rules from which to choose when calculating

a forecaster’s accuracy. There are no prescriptions about which

rule should be chosen, but, the scoring rule used must satisfy the

condition of beingproper. A scoring rule is proper if a forecast

matching the forecaster’s actual judgment about the event’s

outcomes will optimise the score the forecaster expects to receive;

a scoring rule is strictly properonly if a forecast reflecting the

forecaster’s actual judgment about the event’s outcomes will

optimise the forecaster’s expected score (see Murphy and Epstein

1967).

Consider the following setting. Suppose thatX is 1 if it

rains tomorrow and0 otherwise. Let the precise probability

q be the forecaster’s actual belief that it will rain tomorrow.

The forecaster issues the probabilistic forecastp (which may

or may not equalq). A scoring rule,S, assigns to each precise

forecast probabilityp and each valuex of X a scoreS(p, x).

Before we know the value ofX, the forecaster can compute their

expected score (with respect to their actual beliefq) when they

issue the precise forecastp. We denote this expected score by

S[p, q] = Eq [S(p,X)]. We assume thatS is negatively oriented,

that is, lower values ofS are better (Winkler and Murphy 1968).

With this assumption, the scoring rule,S, is said to be a proper

scoring rule ifS[q, q] ≤ S[p, q] for all p andq and strictly proper

only if S[q, q] < S[p, q] when p 6= q. For precise probabilistic

forecasts there are many well-known proper scoring rules from

which to choose (see for example, Gneiting and Raftery 2007).

For ease of reference, we shall refer to proper scoring rulesfor

precise probabilistic forecasts asprecise-proper scoring rules.

Impropriety gives the forecaster the opportunity to hedge:

obtain better accuracy by publishing forecasts that differfrom

their actual judgments, and, in allowing such dissemblance,

impropriety undermines the credibility of the forecasts. Consider,

for example, the apparently reasonable absolute error scoring rule

(Murphy and Epstein 1967),S(p,X) = |p−X|. The forecaster

will receive a score of|p− 1| if it does rain tomorrow and a score

of |p| if it does not rain tomorrow; a lower score is a better score

(p being closer to the outcome ofX). The expected score of

the forecaster isS[p, q] = Eq[|p−X|] = p+ q − 2pq. It is then

evident that if the forecaster’s true belief isq = 1
2 , S[p, q] = 1

2 ,

so the forecaster will receive the same expected score no matter

what value they issue forp. Similarly, if q < 1
2 the forecaster will

receive the best (i.e. lowest) expected score by issuingp = 0.

And if q > 1
2 , the forecaster will receive the best expected score

by issuingp = 1. The published probabilistic forecasts will then

always be either0 or 1 (or, if q = 1
2 , an arbitrary value) and do

not represent the forecaster’s true views (unless the forecaster

is always certain about whether there will be rain tomorrow i.e.

q = 0 or q = 1).

c© 0000 Royal Meteorological Society Prepared usingqjrms4.cls



Interval Probabilistic Forecasts 3

Maintaining the above setting, suppose that the forecaster

can articulate their precise true belief,q, that X = 1, but must

issue an interval of probabilities thatX = 1. Let 0 = a0 < a1 <

. . . < an−1 < an = 1 be a partition of the interval[0, 1], with

subintervalsI1 = [a0, a1] andIi = (ai−1, ai] for i = 2, . . . , n. An

interval probabilistic forecast is the selection ofIi for some0 <

i ≤ n. A scoring rule,s, for such an interval probabilistic forecast,

gives a values(Ii, x) when the value ofX is x. Having issued

the intervalIi, the forecaster’s expected score, with respect to

their actual (and precise) beliefq thatX = 1, is denoteds[Ii, q] =

Eq[s(Ii, X)]. A scoring rule for interval probabilistic forecasts

is proper if the interval containingq optimises the expected

score and is strictly proper if the only interval that optimises

the forecaster’s expected score is the interval that contains q.

Assuming that lower values ofs indicate better scores, we say,

formally,

Definition 1.1 (Propriety for Interval Probabilistic Forecasts)

Let X ∈ {0, 1}, be a random variable, and let the probabilityq

be the forecaster’s actual belief thatX = 1. The scoring rule,s,

is defined to be proper ifs[Ii, q] ≤ s
[

Ij , q
]

for all i, j andq ∈ Ii;

s is strictly proper only ifs[Ii, q] < s
[

Ij , q
]

for all i, j andq ∈ Ii,

q /∈ Ij .

We refer to scoring rules that are proper for interval

probabilistic forecasts asinterval-proper scoring rules.

Given a precise-proper scoring ruleS, there are many possible

ways of constructing an interval scoring rule,s, from S (e.g.

maximum ofS over an interval, average ofS over an interval).

However, an illustration in the next section shows that even

when S is precise-proper and for eachi, s(Ii, X) is defined

simply as the value ofS at the mid-point ofIi, s need not be

an interval-proper scoring rule. In response to this difficulty, we

present in section 3 a general expression for any interval-proper

scoring rule. This result is a special case of more general results

that have been proved by Lambertet al. (2008); Lambert and

Shoham (2009); Lambert (2013) and Frongillo and Kash (2014).

But, their results, while powerful, are abstract and this has

prompted us to offer a short new proof of the characterisation of

interval-proper scoring rules for events with only two outcomes.

From this general expression, we derive particular interval-proper

scoring rules that are analogues of some familiar precise-proper

scoring rules. In section 4 we demonstrate the effects of using

improper scoring rules for interval probabilistic forecasts, with

verification studies based on probability of precipitation(PoP)

forecasts issued by the Australian Bureau of Meteorology and

the United Kingdom Meteorological Office. Section 5 concludes.

Proofs appear in the appendices.

2. An Illustration

We ask whether, at a particular time in the future, an event will

occur (e.g. will it rain tomorrow?). LetX be a random variable

that will take the value0 if the event does not occur (e.g. no rain

tomorrow) and1 if the event does occur (e.g. rain tomorrow).

A precise probabilistic forecast forX is a statement of the

precise value for the probability thatX = 1 (e.g. “chance of rain

tomorrow, 0.2 (20%)”); such a value lies in the interval[0, 1]. An

interval probabilistic forecast is a statement that the probability

that X = 1 lies in a subinterval of[0, 1] (e.g. “chance of rain

tomorrow, 0.15-0.25 (15-25%)).

To evaluate a precise probabilistic forecast, choose the Brier

scoring rule (Brier 1950),S, defined byS(p, x) = (p− x)2 where

x is the observed value ofX and p is the precise probabilistic

forecast thatX = 1; S is negatively-oriented. It is known

(Murphy and Epstein 1967) that the Brier scoring rule is proper,

that is S[q, q] ≤ S[p, q] for all values of p, q ∈ [0, 1], where

S[p, q] = Eq [S(p,X)] = p2 − 2pq + q.

Suppose that the forecaster does not issue the precise

probabilistic forecastp, but issues an intervalIi. A scoring rule,s,

for an interval probabilistic forecast might be defined by

s(Ii, X) = S(p̂i, X)

where p̂i =
1
2 (ai−1 + ai), is the mid-point ofIi. We shall

refer to the resulting scoring rule,S(p̂, X), as the mid-point Brier

scoring rule.
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4 Mitchell and Ferro

The following proposition gives conditions under which the

mid-point Brier scoring rule is proper.

Proposition 2.1 The mid-point Brier scoring rule is interval-

proper if and only if theai are equally-spaced (i.e.ai = i/n, for

all 0 ≤ i ≤ n).

Proof. See Appendix A. �

It is immediate that, for an unequally-spaced partition, the

mid-point Brier scoring rule is not an interval-proper scoring

rule. Under an equally-spaced partition, the interval probabilistic

forecast will include the forecaster’s true belief,q, that X = 1,

but under an unequally-spaced partition the forecaster will find it

advantageous, for some values ofq, to hedge and issue an interval

probabilistic forecast that does not containq. For example, in

figures 1a and 1b, the horizontal axis is the forecaster’s true belief,

q; the vertical axis shows the forecaster’s precise probabilistic

forecast,p. The forecaster must issue as their forecast an interval

from the partition 0 = a0 < a1 < . . . < an = 1. The chosen

interval is the intervalIi, at which the expected mid-point Brier

score,S[p̂i, q] = p̂2i − 2p̂iq + q, is a minimum. In each figure,

the forecast interval is displayed and coloured dark-grey if the

interval does not containq, or light-grey if the interval does

containq. The mid-point Brier scoring rule is proper if and only if

there are no dark-grey intervals, as is the case in Figure 1b where

the partition has equal spacing.

3. A General Result

3.1. Characterisation Theorem

We would like to be able to write down the general form of those

scoring rules that are proper for interval probabilistic forecasts.

Interval probabilistic forecasts are a particular exampleof the

wider class of statistical functionals (see for example, Gneiting

2011). Recently, Lambertet al. (2008); Lambert and Shoham

(2009); Lambert (2013) and Frongillo and Kash (2014) have

derived a general expression for scoring rules that are proper

for statistical functionals (scoring rules that are properfor some
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Figure 1. For each value ofq, the interval probabilistic forecast that gives the
lowest expected mid-point Brier score is shown. Ifq does not lie in this interval
(indicating impropriety), the interval is coloured dark-grey, otherwise the interval is
coloured light-grey. The mid-point Brier scoring rule is, therefore, proper if and only
if there are no dark-grey intervals. (a) Unequally-spaced partition: a0 = 0 <

1
32
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1
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32

< 1 = a10 (b) Equally-spaced partition:
ai = i/10, i = 0, . . . , 10.

particular statistical functionals are given in Gneiting (2011)).

To arrive at a form for scoring rules that are proper for interval

probabilistic forecasts, we can therefore, contextualisethese

general results, in particular those of Lambert (2013), to our

setting. With this indirect approach, however, we risk being

opaque. Moreover, for interval forecasts of a binary random

variable, it is possible to give a straightforward derivation of the

functional form that an interval-proper scoring rule must have,
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Interval Probabilistic Forecasts 5

and this we now do. The reader inclined more to application may

move immediately to Theorem 3.1.

As in the previous section,X is a random variable taking only

the values0 and 1, for which the forecaster issues an interval

probabilistic forecast,Ii, for some0 < i ≤ n. What is the general

expression for the strictly interval-proper scoring rules?

Recalling that the expected value ofs(Ii, X) when the

probability thatX = 1 is q, is defined by

s[Ii, q] = Eq[s(Ii, X)]

= s(Ii, 0)(1− q) + s(Ii, 1)q (1)

the propriety ofs gives

s[Ik, q] ≤ s
[

Ij , q
]

for all k, j andq ∈ Ik. (2)

The condition (2) must be satisfied for everyq ∈ Ik and, in

particular, forq = ak. Therefore, lettingj = k + 1 and q = ak,

we have

s[Ik, ak] ≤ s[Ik+1, ak] . (3)

From the strict propriety ofs,

s[Ik+1, q] < s[Ik, q] ∀q ∈ Ik+1.

By equation (1), for eachi, s[Ii, q] is a continuous function ofq

(a reasonable property: a forecaster who changes their truebelief,

q, by a small amount should not wish their expected score to

change substantially). The continuity ofs[Ii, q] in q for all i gives,

in particular,limq→a+

j

s[Ii, q] = s
[

Ii, aj
]

, ∀i, j. This smoothness

condition coupled with strict propriety gives

s[Ik, ak] = lim
q→a+

k

s[Ik, q]

≥ lim
q→a+

k

s[Ik+1, q]

= s[Ik+1, ak] . (4)

Consequently, from (3) and (4), we have

s[Ik, ak] = s[Ik+1, ak] . (5)

Using (1), equation (5) may be written as

{

s(Ik, 0)− s(Ik+1, 0)
}

(1− ak)

+
{

s(Ik, 1)− s(Ik+1, 1)
}

ak = 0 (6)

and this must hold for everyk = 1, . . . , n− 1.

One possible solution to (6) is the trivial solutions(Ik, X) = 0

for all values of k and X. But such a solution violates the

condition of strict propriety: suppose thati < j and choose

q ∈ Ii; by strict propriety we should haves[Ii, q] < s
[

Ij , q
]

, but

becauses(Ik, X) = 0 for all k andX we haves[Ii, q] = s
[

Ij , q
]

,

a contradiction. So, the trivial solution is inadmissible.

Excluding the trivial solution, for eachk = 1, . . . , n− 1, the

solution must then have the form,

s(Ik, 0)− s(Ik+1, 0) = −akγk

s(Ik, 1)− s(Ik+1, 1) = (1− ak)γk (7)

whereγk is a constant. We now show thatγk is non-negative. For

k > 1, from the propriety ofs we have thats[Ik, q] ≤ s[Ik+1, q]

for all q ∈ Ik = (ak−1, ak], which together with the smoothness

of s, gives

c© 0000 Royal Meteorological Society Prepared usingqjrms4.cls



6 Mitchell and Ferro

s[Ik, ak−1] = lim
q→a+

k−1

s[Ik, q]

≤ lim
q→a+

k−1

s[Ik+1, q] = s[Ik+1, ak−1] .

For k = 1, I1 = [a0, a1] and the propriety ofs alone gives

s[I1, a0] ≤ s[I2, a0]. So, for allk,

s[Ik, ak−1] ≤ s[Ik+1, ak−1] . (8)

Applying (1) to s[Ik, ak−1] and s[Ik+1, ak−1] in (8) and

rearranging the terms in the inequality,

{

s(Ik, 0) − s(Ik+1, 0)
}

(1− ak−1)

+
{

s(Ik, 1)− s(Ik+1, 1)
}

ak−1 ≤ 0.

Substituting from (7) gives

−akγk(1− ak−1) + (1− ak)γkak−1 ≤ 0

⇔ γk(ak−1 − ak) ≤ 0

⇔ γk ≥ 0.

We can, therefore, write

s(Ik, X) − s(Ik+1, X) = γk(X − ak)

for k = 1, . . . , n− 1 (9)

for non-negative constantsγk. The difference equation (9) has a

solution

s(Ik, X) = f(X)−

k−1
∑

i=1

γi(X − ai) (10)

with f an arbitrary function ofX. Defining the functiong

by g(i)− g(i− 1) = γi, i = 1, . . . , n− 1, we have proved the

following theorem

Theorem 3.1 (Characterisation for Interval-Proper Scoring

Rules) LetX ∈ {0, 1} be a future binary observation. Given a

partition 0 = a0 < a1 < . . . < an−1 < an = 1, let s be a strictly

interval-proper scoring rule for interval probabilistic forecasts

I1 = [a0, a1] andIk = (ak−1, ak] for k = 2, . . . , n of the outcome

X = 1. Thens has the form

s(Ik, X) = f(X)−

k−1
∑

i=1

(

g(i)− g(i− 1)
)

(X − ai) (11)

where f is an arbitrary function andg is a non-decreasing

function.

Note that unders given by equation (11), interval probabilistic

forecasts that are closer to the outcome forX receive a lower (that

is, better) score than interval probabilistic forecasts that are further

from the outcome forX. Suppose thatX = 0. We have

s(Ik, 0) = f(0) +

k−1
∑

i=1

(

g(i)− g(i− 1)
)

ai

and the summation term increases ask increases (g being a non-

decreasing function) so that asIk moves further away fromX (as

k increases)s(Ik, 0) increases. Similarly, ifX = 1,

s(Ik, 1) = f(1)−

k−1
∑

i=1

(

g(i)− g(i− 1)
)

(1− ai)

and the summation term is always positive and increases in size

ask increases so thats(Ik, 1) increases asIk moves away from

X (ask decreases).

3.2. Choosingf andg

In equation (11), each choice for the functionf and for the

non-decreasing functiong, will give a new proper scoring rule for

interval probabilistic forecasts. How should the functions f andg

be chosen? Whileany real-valued function may be chosen forf

andany non-decreasing real-valued function may be chosen for

g, it is helpful to have some method to guide these choices. Here

we suggest one such method.

To begin, chooseξk ∈ Ik+1 for k = 0, . . . , n− 1 and define the

functionh by h(ξk) = g(k). Replacingg by h in (11),

c© 0000 Royal Meteorological Society Prepared usingqjrms4.cls



Interval Probabilistic Forecasts 7

s(Ik, X) = f(X)−

k−1
∑

i=1

(

h(ξi)− h(ξi−1)
)

(X − ai) (12)

from which

s(Ik+1, X) − s(Ik, X) =

− (h(ξk)− h(ξk−1))(X − ak). (13)

Restrict attention to thoses for which, asn increases and all

subintervals of the partition are made steadily smaller, the value of

s for the interval containingp tends to the value of some precise-

proper scoring ruleS at p. Then (see Appendix B), for suitably

smooth functionsS andh, lettingn → ∞ in (13), gives

∂S(p,X)

∂p
=

dh(p)

dp
(p−X). (14)

So, if we have a scoring rule,S, that is proper for precise

probabilistic forecasts, we substitute for this scoring rule into the

left-hand side of (14) and solve forh as a function ofp; having

done so, we setg(k) = h (ξk) (for some predetermined choice for

theξk).

To interpreth, integrate both sides of (14) with respect top to

obtain

S(p,X) + a(X) = h(p)(p−X)−

∫

h(p) dp

wherea(·) is a function ofX alone. Taking the expectation in

X underp gives

S[p, p] + Ep[a(X)] = −

∫

h(p) dp.

With X ∈ {0, 1}, we can writea(X) = a(0)(1−X) + a(1)X

so thatEp[a(X)] = a(0)(1− p) + a(1)p. The functioneS(p) =

−S[p, p] is known as the entropy ofp associated withS (Gneiting

and Raftery 2007; Bröcker 2009). We have

∫

h(p) dp = eS(p)− a(0)(1− p)− a(1)p

from which, differentiating both sides with respect top,

h(p) =
deS(p)

dp
− (a(1)− a(0)). (15)

Equation (15) states thath(p) is (up to a constant), the

derivative of the entropy ofp associated withS (we thank an

anonymous referee for bringing this property ofh to our attention

and for suggesting that this property ofh promises an interesting

form for equation (12) in the limit, a form which we resolve in

the next paragraph).

Lead by this interpretation ofh, from equation (12), we have

(where the indicator function1(·) has the value1 if its argument

is true, and0 otherwise)

s(Ik, X) = f(X) −

k−1
∑

i=1

(

h(ξi)− h(ξi−1)
)

(X − ai)

= f(X) −

n
∑

i=1

(X − ai)1(ai < ak)
(

h(ξi)− h(ξi−1)
)

.

(16)

Allowing n → ∞ in equation (16), we obtain

S(p,X) = f(X) −

∫

(X − q)1(q < p)dh(q) (17)

which (for our choice off , see below) is the Schervish-

representation of a proper scoring rule for a binary event

(Schervish (1989),Theorem 4.2,page 1861; see also Gneiting and

Raftery (2007), page 364).

What of the functionf? From equation (11) we have that

s (I1, X) = f(X)

We choose f(X) = S(ξ0, X). This choice ensures that

s (I1, X) → S(0, X) asn → ∞.

As examples of this method we take some familiar precise-

proper scoring rules and derive the corresponding analogues that

are interval-proper. In all cases, we assume thatX takes only the

values0 and 1, the precise probabilistic forecast thatX = 1 is

c© 0000 Royal Meteorological Society Prepared usingqjrms4.cls



8 Mitchell and Ferro

p and that the interval[0, 1] hasn subintervals with end-points

0 = a0 < a1 < . . . < an = 1.

EXAMPLE (Brier scoring rule (Brier 1950)). The Brier

scoring rule isS(p,X) = (p−X)2. Substituting forS in (14),

we have

−2(X − p) = (p−X)
dh(p)

dp

giving h(p) = 2p. Identify points ξk ∈ Ik+1 for all

k = 0, . . . , n− 1. Then g(k) = h(ξk) = 2ξk. Choose

f(X) = (ξ0 −X)2.

With these choices off andg, equation (11) gives the following

Brier scoring rule for interval probabilistic forecasts

s(Ik, X) = (ξ0 −X)2 −

k−1
∑

i=1

(2ξi − 2ξi−1) (X − ai)

which may be rewritten as

s(Ik, X) = (ξk−1 −X)2 −

k−1
∑

i=1

{

(ξi − ai)
2 − (ξi−1 − ai)

2
}

(18)

and the expected interval Brier score is

s[Ik, q] = q − 2qξk−1 + ξ2k−1

−

k−1
∑

i=1

{

(ξi − ai)
2 − (ξi−1 − ai)

2
}

.

If we choose ξk = 1
2 (ak + ak+1), the mid-point of each

subinterval, then

s(Ik, X) =
(

1

2
(ak−1 + ak)−X

)2

−
1

4
(ak − ak−1)

2 +
1

4
a21 (19)

=(X − ak−1)(X − ak) +
1

4
a21. (20)

Since propriety is preserved under translation, we define the

adjustedinterval-proper Brier scoring rule by

s(Ik, X) = (X − ak−1)(X − ak). (21)

Equation (19) also shows that whenξk is the mid-point of the

(k + 1)st interval, then, underequally-spaced subintervals,

s(Ik, X) =
(

1

2
(ak−1 + ak)−X

)2

which, from Proposition 2.1, is known to be proper.

✷

EXAMPLE (Ignorance scoring rule (Good 1952)). The

Ignorance scoring rule is defined by

S(p,X) = −X log(p)− (1−X) log(1− p)

for p ∈ (0, 1). Substituting into (14) gives

p−X

p(1− p)
= (p−X)

dh(p)

dp
.

We have, therefore, that forp ∈ (0, 1), h(p) = log{p/(1− p)},

from which g(k) = h (ξk) = log {ξk/ (1− ξk)}, for 0 ≤ k < n.

Choosef(X) = S (ξ0, X).

The expression fors(Ik, X) may be written

s(Ik, X) = S(ξk−1, X)−

k−1
∑

i=1

{S(ξi, ai)− S(ξi−1, ai)}

which is of the same form as equation (18) for the Brier scoring

rule, although, for the ignorance scoring rule there is no apparent

simplification similar to that by which equation (18) reduces to

equation (20) for the Brier scoring rule.

✷

EXAMPLE (Pseudo-spherical scoring rule (Roby 1964)). Fix

α > 1. Theα-pseudo-spherical scoring rule is

S(p,X) =
{−Xp+ (X − 1)(1− p)}α−1

{pα + (1− p)α}
α−1

α

.

c© 0000 Royal Meteorological Society Prepared usingqjrms4.cls



Interval Probabilistic Forecasts 9

ReplacingS in (14) gives

dh(p)

dp
=

(α− 1){(p− 1)p}α−2

{pα + (1− p)α}2−
1
α

.

Solving forh, we have

h(p) =
pα−1 − (1− p)α−1

{pα + (1− p)α}
α−1

α

.

Set g(k) = h(ξk) and choosef(X) = S(ξ0, X). (If α = 2,

the pseudo-spherical scoring rule is referred to as the spherical

scoring rule.)

✷

4. Consequences of Impropriety

Equation (11) presents the characteristic form that an interval-

proper scoring rule must have. Yet it is unclear what the practical

implications are if an improper interval scoring rule is used. In

this section, we use actual precise probabilistic forecasts provided

by two separate meteorological offices to construct hypothetical

interval probabilistic forecasts when an improper interval scoring

rule is in place. From these synthetic, yet representative,interval

probabilistic forecasts, we can establish empirical measures of

the influence of impropriety.

4.1. Data

Two separate data sets, in both cases precipitation data, were

used. The amount of precipitation per day (the 24-hour period

beginning at midnight local time) is converted into a binary

variable,X, by choosing a threshold rainfall level (in mm) and

definingX = 1 if the recorded amount of precipitation is greater

than or equal to the threshold level; otherwiseX = 0.

The UK Meteorological Office (UKMO) provided data for

58 lead-times (from6 to 348 hours at6-hourly intervals) and

2 locations; for each lead-time and location pair approximately

two-years of daily data was available. For each day of each

lead-time and location pair, the observation was a precipitation

level (in mm) and the forecast was given as a set of nodes

(zj , F (zj)) j = 1, . . . ,m of the cumulative distribution function

(F ) of the precipitation level in mm (z), from which the precise

probability of the precipitation level exceeding a threshold of 1mm

was calculated; if necessary, the nodes were linearly interpolated

and the tails were linearly extrapolated, that is, the upperlimit of

the cumulative distribution function was determined by

z∗ =

(

1− F (zm)

F (zm)− F (zm−1)

)

(zm − zm−1) + zm

and the lower limit of the cumulative distribution functionwas

calculated as

z∗ = max

{

0, z1 −

(

F (z1)− 0

F (z2)− F (z1)

)

(z2 − z1)

}

.

UKMO precise probabilistic forecasts were translated into

interval probabilistic forecasts (see below) using the following

partition of the interval[0, 1] used by the UKMO:a0 = 0, 0.025,

0.05, 0.10, 0.20, 0.25, 0.30, 0.40, 0.50, 0.60, 0.70, 0.75, 0.80,

0.90, 0.95, 1 = a15.

The Australian Bureau of Meteorology (ABOM) computes

precise probabilistic forecasts forX based on a threshold level

of 0.2mm. For each day, a total of7 different forecasts are

computed: a forecast being calculated at12, 36, 60, 84, 108,

132 and 156 hours before the start of the day to which the

recorded precipitation amount refers. The data consisted of the 7

precise probabilistic forecasts for each of290 consecutive days

for 18 different locations around Australia; missing data (either

observed precipitation or precise probabilistic forecast) was

omitted not imputed. The ABOM precise probabilistic forecasts

were converted to interval probabilistic forecasts (see below)

using the following partition of the interval[0, 1]: a0 = 0, 0.025,

0.075, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.925, 0.975,

1 = a13; this partition is used by the ABOM.

4.2. Calculating Interval Probabilistic forecasts

The data described in the previous subsection are precise

probabilistic forecasts. We now describe how these data may

be used to calculate interval probabilistic forecasts. We begin

c© 0000 Royal Meteorological Society Prepared usingqjrms4.cls



10 Mitchell and Ferro

by assuming that each precise probabilistic forecast,p, is

determined under a precise-proper scoring rule and so represents

the forecaster’s true belief thatX = 1. Next, suppose that the

forecaster is made aware of both the interval scoring rule,s, by

which they will be evaluated (see for example, Gneiting (2011)

on the need for the forecaster to be made aware of the scoring

rule) and the partition0 = a0 < a1 < . . . < an−1 < an = 1

from which they must choose an interval. The interval chosen

by the forecaster,Ik, is that which optimises their expected

score,s[Ik, p]. If s is an interval-proper scoring rule, the interval

issued by the forecaster will be the interval containingp. Under

an interval-improper scoring rule, the forecast interval will not

necessarily contain the forecaster’s true beliefp.

In this manner, for each precise probabilistic forecast in

the data two interval probabilistic forecasts are computed: one

when s is an interval-improper scoring rule and one whens is

an interval-proper scoring rule. We emphasise that all interval

probabilistic forecasts so calculated are hypothetical and are

not actual interval probabilistic forecasts provided by either the

UKMO or the ABOM.

4.3. Skill

Let xi be the ith recorded binary observation andIki
be

the interval probabilistic forecast associated withxi, i =

1, . . . , N . The forecaster’saccuracyis their average scorēsN =

1
N

∑N
i=1 s(Iki

, xi). In the limit, the forecaster’s average score is

the expected valueE[s(I,X)], where the expected value is taken

over thejoint distribution of the intervalsI and the observationX.

For largeN , s̄N is approximately normally distributed with mean

E[s(I,X)] and variancêσ2/N where

σ̂2 =
1

N − 1

N
∑

i=1

(

s(Iki
, xi)− s̄N

)2

A forecaster’s skill is evaluated by comparing their accuracy

to the accuracy of other forecasters; specifically, we make

comparisons with the accuracy of the perfect forecaster andthe

accuracy of the climatological forecaster. The climatological

forecaster computes their actual precise belief from the

distribution of precipitation over some agreed historicalperiod.

(The UKMO historical period is 1983-2012, and the ABOM

historical period is 1981-2010. Both the UKMO and the ABOM

provide site-specific climatological probabilistic forecasts as a

set of nodes(zj , Fclim(zj)) for j = 1, . . . ,mclim from which the

precise climatological forecast is calculated as the probability

of exceeding the applicable threshold; linear interpolation and

extrapolation are used where necessary in the manner described

above.)

We define (Wilks 2006, page 259), the forecaster’s skill by

E[s(I,X)]− Eclim[s(I,X)]

Eperf [s(I,X)]− Eclim[s(I,X)]
(22)

whereµclim = Eclim[s(I,X)] is the accuracy of the climato-

logical forecaster andµperf = Eperf [s(I,X)] is the accuracy of

the perfect forecaster, from which, takingµclim and µperf as

constant, a forecaster’s skill is approximately normally distributed

with mean

E[s(I,X)]− µclim

µperf − µclim

and variance

σ̂2

N
(

µperf − µclim

)2

A skill of 1 for a forecaster demonstrates a perfect forecast

record for the forecaster, while a skill of0 indicates that the

forecaster is no more skillful than a climatological forecaster.

EXAMPLE (Brier scoring rule (Brier 1950)). Let 0 = a0 <

a1 < . . . < an = 1 be a partition ofunequally-spaced intervals.

Chooseξk to be the mid-point ofIk+1 for eachk = 0, . . . , n− 1.

Let s be the adjusted interval-proper Brier scoring rule (equation

(21)) and s̃ be the interval-improper adjusted mid-point Brier

scoring rule

s̃(Ik, X) = (ξk−1 −X)2 −
1

4
a21

= (X − ak−1)(X − ak) +
1

4
(ak − ak−1)

2 −
1

4
a21

(23)
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Interval Probabilistic Forecasts 11

(For equally-spaced intervalss ands̃ are equivalent; but, here,

unequally-spaced intervals are supposed.)

Figures 2a and 2b compare forecaster skill unders (proper)

and s̃ (improper). In figure 2a, the skill of interval probabilistic

forecasts at Heathrow Airport for different lead-times is shown.

In figure 2b, the skill of the12-hour lead-time forecast at each of

18 different locations around Australia is plotted.

✷

The immediate conclusion from the above example is that

there appears to be no material difference in skill measuredunder

the interval-proper and interval-improper (Brier) scoring rules.

But, there is a more insidious danger from impropriety:

impropriety permits hedging, wherein the forecaster chooses

to publish an interval probabilistic forecast that differsfrom

the interval they truly believe is appropriate. In such cases,

a forecaster’s accuracy (or skill) does not measure their

true forecasts but measures their given forecasts, thereby

misrepresenting their ability. In the presence of hedging,

decisions based on the forecaster’s ability, in particularwhether

one forecaster is better than another, are invalid.

For a given interval-improper scoring rule,̃s, and the

forecaster’s true (precise) belief thatX = 1, q, whether a

forecaster is induced to hedge depends on the values ofs̃[I, q]

for different intervalsI, and therefore, only on the partition from

which the interval forecasts are selected. In the example that

follows we demonstrate the effect of the choice of partitionon a

forecaster’s hedging profile.

EXAMPLE (Brier scoring rule (Brier 1950) cont.). Assume

unequally-spaced intervals and the interval-improper adjusted

mid-point Brier scoring rule given by equation (23). We consider

the interval probabilistic forecasts issued at Heathrow and Perth

Airports.
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Figure 2. In each figure, estimated forecaster skill (defined by equation (22)) and
95% confidence intervals are shown under the adjusted interval-proper Brier scoring
rule (◭ • ◮) and the interval-improper adjusted mid-point Brier scoring rule
(⊳ ◦ ⊲). (a) Skill of interval probabilistic forecasts at Heathrow Airport for
different forecast lead-times. (b) Skill of interval probabilistic forecasts for the12-
hour lead-time at different locations in Australia.

In the bar-graphs below, the height of each bar is the proportion

of times the interval is issued as a forecast. For each bar, the white

area (if any) is the proportion of times the interval is forecast

and is a hedge that understates the forecaster’s true belief; the

dark-grey area (if any) is the proportion of times the interval is

forecast and is a hedge that overstates the forecaster’s true belief.

(In all cases, an understated forecast is a forecast of the interval

immediately below the true interval forecast and an overstated

c© 0000 Royal Meteorological Society Prepared usingqjrms4.cls



12 Mitchell and Ferro

forecast is a forecast of the interval immediately above thetrue

interval forecast.) The points marked by•, are the proportion of

times the interval is a hedge given the interval is forecast,that is,

the propensity to hedge.

In figure 3, the distribution of the12-hour lead-time forecasts at

Heathrow Airport is shown. The relative frequency of hedging is

5% with hedging existing in both the lower and upper mid-ranges

of the [0, 1] interval. A hedge in the lower mid-ranges of the[0, 1]

interval may be either an understatement or an overstatement, as

too a hedge in the upper mid-ranges may be. There is no simple

trend in the propensity to hedge across the subintervals.
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Figure 3. The relative frequency of12-hour lead-time interval probabilistic
forecasts issued for Heathrow Airport. The height of eachentirebar is an estimate
of the probability that the interval is forecast. The white portion of each bar is an
estimate of the probability that the interval is the forecast publishedand is a hedge
that understates the forecaster’s true belief. The dark-grey portion of each bar is
an estimate of the probability that the interval is the published forecastand is a
hedge that overstates the forecaster’s true belief. The• points are estimates of the
conditional probability that when the interval is forecast, it is a hedge. (The tick-
labels on the horizontal axis are the upper end-points of each subinterval.)

An altogether different set of features is displayed in figure

4, a bar-graph of the12-hour lead-time interval probabilistic

forecasts at Perth Airport. Here, the forecaster only tendsto hedge

when issuing forecasts in the extremities of the[0, 1] interval.

Further, the forecaster has a greater propensity to hedge the closer

their published forecast lies to either extremity. Hedges in the

lower ranges of the[0, 1] interval will understate the forecaster’s

beliefs while hedges in the upper ranges of the[0, 1] interval

will overstate the forecaster’s beliefs. The relative frequency of

hedging is11.5%.
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Figure 4. The relative frequency of12-hour lead-time interval probabilistic
forecasts issued for Perth Airport. For an interpretation of the bars see the caption
to figure 3.

To examine the impact of the form of the partition on the

hedging profile, figure 5 presents a bar-graph of the12-hour lead-

time interval probabilistic forecasts at Heathrow Airportassuming

the same partition that was applied at Perth Airport. The relative

frequency of hedging is6% and hedging behaviour is now much

more similar to the hedging behaviour seen for the Perth Airport

forecasts.

✷

An examination of single site and lead-time forecasts, for a

predetermined partition and preselected interval-improper scoring

rule, is helpful in assessing local properties of a forecaster’s

hedges. Of interest too, is aggregate hedging behaviour, the

proportion of times the forecaster hedges (either understates

or overstates their true beliefs) as the site and forecast lead-

time changes. We investigate aggregate hedging behaviour by

continuing the above example.

c© 0000 Royal Meteorological Society Prepared usingqjrms4.cls



Interval Probabilistic Forecasts 13

0.
02

5

0.
07

5

0.
15

0.
25

0.
35

0.
45

0.
55

0.
65

0.
75

0.
85

0.
92

5

0.
97

5 1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Published Interval Forecast

R
el

at
iv

e 
F

re
qu

en
cy

Figure 5. The relative frequency of12-hour lead-time interval probabilistic
forecasts issued for Heathrow Airportunder the same partition used for the
forecasts issued for Perth Airport in figure 4. For an interpretation of the bars see
the caption to figure 3.

EXAMPLE (Brier scoring rule (Brier 1950) cont.). In

figure 6, the relative frequency of hedging is shown for different

lead-times at two sites: Heathrow Airport and Eskdalemuir.

Hedging is, on the whole, higher for Heathrow Airport than for

Eskdalemuir, although the pattern of hedging is similar over

the different lead-times: hedging occurs on no more than12%

or so of occasions, tending to peak shortly before the150-hour

lead-time forecast and is lowest for the longest lead-times.

In figure 7, the relative frequency of hedging when issuing

interval probabilistic forecasts is compared for a number of lead-

times across different locations in Australia. Here, hedging occurs

on between approximately0% and 20% of forecasts. Hedging

levels are similar for sites that are geographically close.In general,

hedging is higher for shorter duration lead-times with hedging

decreasing as the lead-time increases.

✷

5. Summary

We consider probabilistic forecasts for a future0/1 event. A

precise probabilistic forecast is a statement of the exact value
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Figure 6. Relative frequency of hedging when issuing interval probabilistic
forecasts for different lead-times (hours). Forecasts fortwo different locations,
Heathrow Airport (solid line) and Eskdalemuir (dashed line), are compared.
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Figure 7. Relative frequency of hedging when publishing interval forecasts, for
different locations. Each line represents forecasts for a different lead-time:12-
hour ( ), 36-hour ( ),60-hour ( ),84-hour ( ),108-hour ( ),132-hour ( ),156-
hour ( ).

for the probability that1 will occur. An interval probabilistic

forecast is a range of values for the probability that1 will occur.

Interval probabilistic forecasts may be issued explicitly(e.g.

‘chance of rain tomorrow: 10-20%’) or implicitly as a rounded

probabilistic forecast (the undeclared interval forecastbeing

all those precise probabilities that round to the given rounded

probabilistic forecast).
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14 Mitchell and Ferro

Probabilistic forecasts must be evaluated using proper scoring

rules. Scoring rules that are proper when the forecast probability

is a precise value are not, in general, proper when applied toa

representative probability from the interval forecast. Analogous to

the result of Lambert (2013), we present a general expression for

scoring rules that are proper for interval probabilistic forecasts.

Specific interval-proper scoring rules, corresponding to the

more familiar precise-proper scoring rules (Brier scoringrule,

Ignorance scoring rule and Pseudo-spherical scoring rule)are also

given; of these, the interval-proper Brier scoring rule (equation

(21)) has a simple and appealing form.

The importance of interval-proper scoring rules is their use

in assessing the performance of forecasters issuing interval

probabilistic forecasts. That is not to say that an interval-improper

scoring rule necessarily results in a meaningful change in a

forecaster’s calculated skill; substituting an interval-improper

scoring rule for an interval-proper scoring rule can have little

quantifiable impact on a forecaster’s skill. Rather, the egregious

effect of impropriety is on the interpretation of a forecaster’s

computed skill. Under impropriety, a forecaster may hedge when

issuing a forecast, giving a forecast that does not reflect their true

opinion. In such cases the skill, being based on the published

forecasts, no longer represents the forecaster’s true views and

gives only partial insight into their substantive ability.

We calculate the relative frequency of hedging using interval

probabilistic forecasts simulated using precise probability of

precipitation (PoP) forecasts provided by The Australian Bureau

of Meteorology and the UK Meteorological Office. While

hedging varies with site and forecast lead-time, the relative

frequency of hedging in the cases we consider lies approximately

in the range of0− 15%.

Interval-proper scoring rules depend explicitly on the setof

intervals to which the interval forecasts refer. A change ofthe

intervals used to express forecasts will influence the scoring rule

and a natural question arises as to whether there is an optimal set

of intervals. The question may be framed as a high-dimensional

non-linear constrained optimisation problem and while we have

not conducted a general investigation of this problem, in the

particular case of the unadjusted interval-proper Brier scoring

rule (equation (20)) it can be shown that the optimal partition

is the equally-spaced partition, when ‘optimal’ is defined as the

interval-proper Brier scoring rule being close in the squared-error

sense to the precise-proper Brier scoring rule.
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A. Appendix

For 0 < i ≤ n, write p̂i =
1
2 (ai−1 + ai), the mid-point of the

intervalIi. The mid-point Brier scoring rule is defined by

s(Ii, X) = (p̂i −X)2

and satisfiess[Ii, q] = Eq [s(Ii, X)] = p̂2i − 2p̂iq + q. The mid-

point Brier scoring rule is interval-proper if and only if

s[Ii, q] ≤ s
[

Ij , q
]

∀i, j and∀q ∈ Ii.

Proof of Proposition 2.1: the mid-point Brier scoring rule is

proper if and only if the partition is equally-spaced.

Proof. Suppose that the mid-point Brier scoring rule is

interval-proper. Then

s[Ii, q] ≤ s
[

Ij , q
]

∀i, j and∀q ∈ Ii

which holds if and only if, fixingi, ∀q ∈ Ii,
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q ≤
1

4
(ai−1 + ai + aj−1 + aj) i < j

q ≥
1

4
(ai−1 + ai + aj−1 + aj) i > j. (24)

Condition (24) must hold for allq ∈ Ii and so holds forq = ai.

In this case,

ai ≤
1

4
(ai−1 + ai + aj−1 + aj) i < j

and, lettingj = i+ 1,

ai ≤
1

4
(ai−1 + ai + ai + ai+1)

from which

ai − ai−1 ≤ ai+1 − ai.

Also, condition (24) must hold for q = inf Ii = ai−1.

Specifically,

ai−1 ≥
1

4
(ai−1 + ai + aj−1 + aj) i > j.

Letting j = i− 1,

ai−1 ≥
1

4
(ai−1 + ai + ai−2 + ai−1)

giving

ai−1 − ai−2 ≥ ai − ai−1.

As i was fixed arbitrarily, we have, for all0 < i < n,

ai − ai−1 ≤ ai+1 − ai and for 1 < i ≤ n, ai−1 − ai−2 ≥

ai − ai−1.

Now, for any0 < k < n, let i = k, to giveak+1 − ak ≥ ak −

ak−1 and let i = k + 1 to give ak − ak−1 ≥ ak+1 − ak, from

which

ak+1 − ak = ak − ak−1

and this holds for all0 < k < n, that is, theai are equally-spaced.

Conversely, suppose that theai are equally-spaced;ai = i/n

for all 0 ≤ i ≤ n. Then

1

4
(ai−1 + ai + aj−1 + aj) =

1

n

(

i+ j − 1

2

)

.

If i < j theni ≤ j − 1 and

ai =
i

n
≤

1

n

(

i+ j − 1

2

)

=
1

4
(ai−1 + ai + aj−1 + aj)

so q ≤ 1
4 (ai−1 + ai + aj−1 + aj) for all q ∈ Ii with i < j.

Equally, if i > j theni− 1 ≥ j and

ai−1 =
i− 1

n
≥

1

n

(

i+ j − 1

2

)

=
1

4
(ai−1 + ai + aj−1 + aj)

so thatq ≥ 1
4 (ai−1 + ai + aj−1 + aj) for all q ∈ Ii with i > j.

Condition (24) is satisfied and therefore, the mid-point Brier

scoring rule is interval-proper.

�

We remark in passing that the propriety of the more generalλ-

Brier scoring rule, defined bys(Ii, X) = {(1− λ)ai−1 + λai −

X}2 also depends critically on the spacing of the partition, being

proper if and only if, letting∆i = ai − ai−1,



































∆1

∆1+∆2
≤ λ ≤ 1 for q ∈ I1

∆k

∆k+∆k+1
≤ λ ≤

∆k−1

∆k+∆k−1
for q ∈ Ik

1 < k < n

0 ≤ λ ≤
∆n−1

∆n+∆n−1
for q ∈ In

B. Appendix

We show under certain conditions on the partition0 = a0 < a1 <

. . . < an = 1, and on the functionss, S andh, that, lettingξk ∈

Ik+1, asn increases the equation

s(Ik+1, X)− s(Ik, X) =

− (h(ξk)− h(ξk−1))(X − ak) (25)
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leads to the differential equation

∂S(p,X)

∂p
=

dh(p)

dp
(p−X). (26)

Definition B.1 The partitions[a]n = an,0 < an,1 < . . . < an,n,

0 = an,0, 1 = an,n, are said to be increasingly refined asn → ∞

if the mesh,µn = max{an,i − an,i−1 | i = 1, . . . , n} tends to0.

Remark. When refering to subintervals of the partition

[a]n = an,0 < an,1 < . . . < an,n, 0 = an,0, 1 = an,n, we shall

use the notationIn,1 = [an,0, an,1], In,k = (an,k−1, an,k] for

k = 2, . . . , n.

Lemma B.1 Let p ∈ [0, 1]. If the partitions[a]n are increasingly

refined then∀ǫ > 0, ∃N ≥ 0 such that for eachn > N , there is a

k (depending onn) such that|an,k − p| < ǫ.

Proof. Fix ǫ > 0. Since the partitions[a]n are increasingly

refined, there is anN ≥ 0 such that∀n > N , µn < ǫ. Let n > N

so thatµn < ǫ. If p ∈ [0, 1] then there is somek such thatp ∈ In,k.

Therefore,|an,k − p| ≤ |an,k − an,k−1| ≤ µn < ǫ. So for alln >

N , there exists ak (depending onn) such that|an,k − p| < ǫ. �

Definition B.2 We shall say that the interval scoring rules

converges in the Lipschitz sense to the precise scoring ruleS

at p if and only if ∀ǫ > 0, ∃N ≥ 0 such that for alln ≥ N ,

|s(In,k, x)− S(p, x)| < ǫmin{|an,k−1 − p|, |an,k − p|} for all x,

p ∈ In,k. If s converges toS in the Lipschitz sense at every

p ∈ [0, 1], then we shall say simply thats converges toS in the

Lipschitz sense.

Proposition B.1 Let s be an interval-proper scoring rule

satisfying equation (25), withh continuously differentiable.

Suppose thats converges to the precise scoring ruleS in the

Lipschitz sense, whereS is continuously partially differentiable

with respect top. If the partitions [a]n are increasingly refined

then

∂S(p,X)

∂p
=

dh(p)

dp
(p−X).

Proof. Let ǫ > 0, p ∈ [0, 1]. S is continuously partially

differentiable with respect top, so∃δ∗ > 0 such that∀|r| < δ∗,

∣

∣

∣

∣

S(p+ r,X)− S(p,X)

r
−

∂S(p,X)

∂p

∣

∣

∣

∣

<
ǫ

4

and∃δ′ > 0 such that if|ξ − p| < δ′,

∣

∣

∣

∣

∂S(ξ,X)

∂ξ
−

∂S(p,X)

∂p

∣

∣

∣

∣

<
ǫ

4
.

Further, sinceh is continuously differentiable,∃δ∗∗ such that

∀|r| < δ∗∗,

∣

∣

∣

∣

h(p+ r)− h(p)

r
−

dh(p)

dp

∣

∣

∣

∣

<
ǫ

2

and∃δ′′ > 0 such that if|ξ − p| < δ′′, then

∣

∣

∣

∣

dh(ξ)

dξ
−

dh(p)

dp

∣

∣

∣

∣

<
ǫ

2
.

Let δ = min{δ∗, δ
′, δ∗∗, δ

′′, ǫ}.

As the partitions[a]n are increasingly refined,∃N∗ ≥ 0 such

that forn ≥ N∗, µn < δ
2 . The interval scoring rules converges to

S in the Lipschitz sense, so∃N ′ ≥ 0 such that∀n > N ′,

|s(In,j , X)− S(p,X)| <

ǫ

4
min{|an,j−1 − p|, |an,j − p|}

for p ∈ In,j. LetN = max{N∗, N
′}, n ≥ N and letk (depending

onn) satisfyp ∈ In,k. From equation (25),

s(In,k+1, X)− s(In,k, X)

ξn,k − ξn,k−1
=

−

(

h(ξn,k)− h(ξn,k−1)

ξn,k − ξn,k−1

)

(X − an,k) (27)

where, as above,ξn,k ∈ In,k+1.

Considering the left-hand side of equation (27),
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∣

∣

∣

∣

s(In,k+1, X)− s(In,k, X)

ξn,k − ξn,k−1

−
∂S(p,X)

∂p

∣

∣

∣

∣

=

∣

∣

∣

∣

s(In,k+1, X)− S(ξn,k, X)

ξn,k − ξn,k−1

−
s(In,k, X) + S(ξn,k−1, X)

ξn,k − ξn,k−1

+
S(ξn,k, X)− S(ξn,k−1, X)

ξn,k − ξn,k−1

−
∂S(ξn,k−1, X)

∂ξn,k−1

+
∂S(ξn,k−1, X)

∂ξn,k−1

−
∂S(p,X)

∂p

∣

∣

∣

∣

≤

∣

∣

∣

∣

s(In,k+1, X)− S(ξn,k, X)

ξn,k − ξn,k−1

∣

∣

∣

∣

+

∣

∣

∣

∣

s(In,k, X) + S(ξn,k−1, X)

ξn,k − ξn,k−1

∣

∣

∣

∣

+

∣

∣

∣

∣

S(ξn,k, X)− S(ξn,k−1, X)

ξn,k − ξn,k−1
−

∂S(ξn,k−1, X)

∂ξn,k−1

∣

∣

∣

∣

+

∣

∣

∣

∣

∂S(ξn,k−1, X)

∂ξn,k−1

−
∂S(p,X)

∂p

∣

∣

∣

∣

.

But, S is partially continuously differentiable with respect to

p, ξn,k − ξn,k−1 ≤ an,k+1 − an,k−1 ≤ 2µn < δ, and |ξn,k−1 −

p| < µn < δ, from which it follows that

∣

∣

∣

∣

s(In,k+1, X)− s(In,k, X)

ξn,k − ξn,k−1

−
∂S(p,X)

∂p

∣

∣

∣

∣

<
ǫ

4

min{|an,k+1 − ξn,k|, |an,k − ξn,k|}

ξn,k − ξn,k−1

+
ǫ

4

min{|an,k − ξn,k−1|, |an,k−1 − ξn,k−1|}

ξn,k − ξn,k−1

+
ǫ

4
+

ǫ

4

<
ǫ

4
+

ǫ

4
+

ǫ

4
+

ǫ

4

=ǫ

having noted too that

min{|an,k+1 − ξn,k|, |an,k − ξn,k|}

ξn,k − ξn,k−1

≤
|an,k − ξn,k|

ξn,k − ξn,k−1

≤ 1

and, similarly

min{|an,k − ξn,k−1|, |an,k−1 − ξn,k−1|}

ξn,k − ξn,k−1

≤
|an,k − ξn,k−1|

ξn,k − ξn,k−1

≤ 1.

Next,

∣

∣

∣

∣

h(ξn,k)− h(ξn,k−1)

ξn,k − ξn,k−1

−
dh(p)

dp

∣

∣

∣

∣

=

∣

∣

∣

∣

h(ξn,k)− h(ξn,k−1)

ξn,k − ξn,k−1

−
dh(ξn,k−1)

dξn,k−1

+
dh(ξn,k−1)

dξn,k−1

−
dh(p)

dp

∣

∣

∣

∣

≤

∣

∣

∣

∣

h(ξn,k)− h(ξn,k−1)

ξn,k − ξn,k−1

−
dh(ξn,k−1)

dξn,k−1

∣

∣

∣

∣

+

∣

∣

∣

∣

dh(ξn,k−1)

dξn,k−1

−
dh(p)

dp

∣

∣

∣

∣

<
ǫ

2
+

ǫ

2

=ǫ.

Finally, |(X − an,k)− (X − p)| = |p− an,k| ≤ µn < δ
2 ≤ ǫ.

Combining these separate limit results, equation (27) gives

∂S(p,X)

∂p
= −

dh(p)

dp
(X − p).

�
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