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Interval probabilistic forecasts for a binary event are forecasts issued as a range of
probabilities for the occurrence of the event, for exampleichance of rain: 10-20%’. To
verify interval probabilistic forecasts, use can be made of scoring rule that assigns
a score to each forecast-outcome pair. An important requirenent for scoring rules, if
they are to provide a faithful assessment of a forecaster, that they be proper, by which
is meant that they direct forecasters to issue their true baéfs as their forecasts. Proper
scoring rules for probabilistic forecasts issued as precesnumbers have been studied
extensively. But, applying such a proper scoring rule to, fo example, the mid-point
of an interval probabilistic forecast, does not, typically produce a proper scoring rule
for interval probabilistic forecasts. Complementing pardlel work by other authors,
we derive a general characterisation of scoring rules that i@ proper for interval
probabilistic forecasts and from this characterisation wedetermine particular scoring
rules for interval probabilistic forecasts that correspond to the familiar scoring rules
used for probabilistic forecasts given as precise probakties. All the scoring rules we
derive apply immediately to rounded probabilistic forecads, being a special case of

interval probabilistic forecasts.
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1. Introduction forecast’, a statement about how likely it is that each auieo

will occur. Probabilistic forecasts are not new (see théohisal
Consider an event that can have one of two outcomes. When

account by Murphy 1998) and, already familiar in meteorgjog
forecasting which outcome will occur, the word ‘forecastbiten

are of increasing interest in many other disciplines (foread
read as ‘point forecast’, a statement about what the outaafime

map of applications, see Gneiting and Katzfuss 2014). 8sudi
the event will be. One may though, also speak of a ‘probaiailis
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2 Mitchell and Ferro

of how well a probabilistic forecaster performs, which ith Consider the following setting. Suppose that is 1 if it
subject of probabilistic forecast verification, have up town rains tomorrow and0 otherwise. Let the precise probability
as far as we are aware, taken the forecast probability to be de the forecaster's actual belief that it will rain tomorrow
precise number; we will refer to such probabilistic fordsams The forecaster issues the probabilistic forecagwhich may
precise probabilistic forecast&@ thorough overview of this type or may not equal). A scoring rule,S, assigns to each precise
of probabilistic forecasting is given in Dawid 1986). forecast probabilityp and each value: of X a scoreS(p, z).
Before we know the value of, the forecaster can compute their
Yet a probabilistic forecast is often expressed as a ranggected score (with respect to their actual befletvhen they
of probabilities (for example, “Chance of rain: 25-30%").eWissue the precise forecagt We denote this expected score by
assume that the forecaster can compute their forecastipliopa S[p, gl = Eq[S(p, X)]. We assume thas is negatively oriented,
precisely but must issue a range of probabilities. For exampthat is, lower values of are better (Winkler and Murphy 1968).
meteorological offices around the world communicate theith this assumption, the scoring rulé, is said to be a proper
forecasts for precipitation as ranges of probabilities. ta scoring rule ifS[qg, ] < S|p, | for all p andg and strictly proper
a probabilistic forecast issued as a range of probabilitigs only if S(q,q] < S[p,q] when p # g. For precise probabilistic
interval probabilistic forecast forecasts there are many well-known proper scoring rules fr

which to choose (see for example, Gneiting and Raftery 2007)

Rounded probabilistic forecasts are a special case ofvaiterFOr €ase of reference, we shall refer to proper scoring foles
probabilistic forecasts. Each rounded probability repnés a precise probabilistic forecasts piecise-proper scoring rules
range of probabilities, namely those probabilities thahew
rounded, reduce to the forecast probability. For examdle, i Impropriety gives the forecaster the opportunity to hedge:
probabilistic forecasts are rounded to the nearest 10%Jredeml  obtain better accuracy by publishing forecasts that diffem
probabilistic forecast of 20% can be represented as thevaitef  their actual judgments, and, in allowing such dissemblance
probabilities from 15% (inclusive) to 25% (exclusive). impropriety undermines the credibility of the forecasten€ider,

for example, the apparently reasonable absolute erromgcare

To verify precise probabilistic forecasts, the standanminfd (Murphy and Epstein 1967)5(p, X) = |[p — X|. The forecaster
approach is to use a scoring rule (see for example, Winkeill receive a score ofp — 1] if it does rain tomorrow and a score
1996), a rule that assigns to each possible outcome of the ewvef |p| if it does not rain tomorrow; a lower score is a better score
and each (precise) probabilistic forecast of the eventoees@ (p being closer to the outcome of). The expected score of
forecaster’'s accuracy is measured by their average schegeT the forecaster iS[p, ¢ = E4[lp — X|] = p + ¢ — 2pq. It is then
are many scoring rules from which to choose when calculatiegident that if the forecaster’s true belief4s= % Slp,q] = %

a forecaster's accuracy. There are no prescriptions abbighw so the forecaster will receive the same expected score nigmat
rule should be chosen, but, the scoring rule used mustydtisf what value they issue fagr. Similarly, if ¢ < % the forecaster will
condition of beingproper. A scoring rule is proper if a forecastreceive the best (i.e. lowest) expected score by isspirg0.
matching the forecaster’s actual judgment about the everfnd if ¢ > % the forecaster will receive the best expected score
outcomes will optimise the score the forecaster expecedeive; by issuingp = 1. The published probabilistic forecasts will then
a scoring rule is strictly propeonly if a forecast reflecting the always be eithet or 1 (or, if ¢ = % an arbitrary value) and do
forecaster's actual judgment about the event’s outcomdk wiot represent the forecaster’'s true views (unless the dstec
optimise the forecaster’s expected score (see Murphy astklBp is always certain about whether there will be rain tomorrasv i

1967). g=0o0rqg=1).
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Interval Probabilistic Forecasts 3

Maintaining the above setting, suppose that the forecaskeom this general expression, we derive particular intepvaper
can articulate their precise true beligf, that X = 1, but must scoring rules that are analogues of some familiar preaispgp
issue an interval of probabilities that = 1. Let0 = ag < a1 < scoring rules. In section 4 we demonstrate the effects afgusi
...<ap—1 <an =1 be a partition of the intervalo, 1], with improper scoring rules for interval probabilistic foretsaswith
subintervald; = [ag,a1] andl; = (a;—1,a;]fori =2,...,n. An  verification studies based on probability of precipitatiGtoP)
interval probabilistic forecast is the selectionpffor some0 <  forecasts issued by the Australian Bureau of Meteorology an
1 < n. Ascoring rule s, for such an interval probabilistic forecastthe United Kingdom Meteorological Office. Section 5 conésd
gives a values(I;,z) when the value ofX is z. Having issued Proofs appear in the appendices.
the interval I;, the forecaster's expected score, with respect to
their actual (and precise) beligthatX = 1, is denoted[1;, ¢] =
E,[s(I;, X)]. A scoring rule for interval probabilistic forecasts2. An lllustration

is proper if the interval containing optimises the expected
) _ ) _ ~ We ask whether, at a particular time in the future, an eveiit wi
score and is strictly proper if the only interval that optes

. ) ~occur (e.g. will it rain tomorrow?). LeX be a random variable
the forecaster's expected score is the interval that comiai

) o that will take the valu® if the event does not occur (e.g. no rain
Assuming that lower values of indicate better scores, we say,

tomorrow) and1 if the event does occur (e.g. rain tomorrow).
formally,

A precise probabilistic forecast foX is a statement of the

Definition 1.1 (Propriety for Interval Probabilistic Forecasts) Precise value for the probability that = 1 (e.g. “chance of rain

Let X € {0,1}, be a random variable, and let the probabiligy ©MOTOW, 0.2 (20%)"); such a value lies in the inter{@l1]. An

be the forecaster's actual belief that — 1. The scoring rules interval probabilistic forecast is a statement that thebability

is defined to be proper H{I;, ¢] < 8[[]_7(1} for all 4, j andq € I;: that X =1 lies in a subinterval of0,1] (e.g. “chance of rain

s is strictly proper only ifs[Z;, q] < s[I;,q] forall i, j andq € I;, tomorrow, 0.15-0.25 (15-25%)).
To evaluate a precise probabilistic forecast, choose tlier Br

We refer to scoring rules that are proper for interval . . )
ng prop MV coring rule (Brier 1950)5, defined byS(p, ) = (p — z)* where

robabilistic forecasts d@aterval-proper scoring rules . . . I
P prop 9 z is the observed value of andp is the precise probabilistic
forecast thatX =1; S is negatively-oriented. It is known

Given a precise-proper scoring rue there are many pc)SSIbl(_:‘(Murphy and Epstein 1967) that the Brier scoring rule is prop

ways of constructing an interval scoring rulg, from e.g. .
y 9 g rule, S (eg that is S[q, q] < S[p,q] for all values of p,q € [0,1], where

Slp,q] = Eq[S(p, X)] = p* — 2pq + q.

However, an illustration in the next section shows that even

maximum of S over an interval, average of over an interval).

when S is precise-proper and for each s(I;, X) is defined . .
P prop sl X) Suppose that the forecaster does not issue the precise

simply as the value of at the mid-point off;, s need not be I . . .
il P G probabilistic forecast, but issues an intervd}. A scoring rule s,

an interval-proper scoring rule. In response to this difficuve

prop g P e for an interval probabilistic forecast might be defined by
present in section 3 a general expression for any intemealgy
scoring rule. This result is a special case of more genesaitse .

s(1;, X) = S(pi, X)

that have been proved by Lambet al. (2008); Lambert and
Shoham (2009); Lambert (2013) and Frongillo and Kash (2014) where p; = %(ai,l +a;), is the mid-point of ;. We shall
But, their results, while powerful, are abstract and this haefer to the resulting scoring rul§(p, X), as the mid-point Brier
prompted us to offer a short new proof of the characterisatio scoring rule.

interval-proper scoring rules for events with only two autes.
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4 Mitchell and Ferro

The following proposition gives conditions under which the

mid-point Brier scoring rule is proper. L0
09 — il
08 —f /',
07 — I
Proposition 2.1 The mid-point Brier scoring rule is interval- e
proper if and only if thex; are equally-spaced (i.e.; = i/n, for o 05 —
all 0 < i < n). 04 —
03 — ’,’,
Proof. See Appendix A. | 0z — it
It is immediate that, for an unequally-spaced partitiore th 01 —
mid-point Brier scoring rule is not an interval-proper sogr 00 — ol
rule. Under an equally-spaced partition, the interval pholistic L
00 01 02 03 04 05 06 07 08 09 10
forecast will include the forecaster’s true belief,that X =1, a
but under an unequally-spaced partition the forecastéfin it
advantageous, for some valuesypfo hedge and issue an interval @
probabilistic forecast that does not containFor example, in Lo
figures 1a and 1b, the horizontal axis is the forecasterstiglief, 0:9 _
gq; the vertical axis shows the forecaster’s precise proisioil 08 — /’,
forecastp. The forecaster must issue as their forecast an interval 07 =
from the partition 0 =ag < a1 <...<an =1. The chosen -
interval is the intervall;, at which the expected mid-point Brier ’ Zj : ,,"’
score, S[p;, q) = p7 — 2piq + ¢, is a minimum. In each figure, 03 —
the forecast interval is displayed and coloured dark-gfeyne 02 — ,,”
interval does not contaig, or light-grey if the interval does 01 7 ’,"’
containg. The mid-point Brier scoring rule is proper if and only if %0 | T 17 T T T T T T 1
there are no dark-grey intervals, as is the case in Figurehivay 00 01 02 03 04 05 06 07 08 09 10
the partition has equal spacing. q

(b)

Figure 1. For each value of;, the interval probabilistic forecast that gives the
lowest expected mid-point Brier score is showngltloes not lie in this interval
(indicating impropriety), the interval is coloured darkey, otherwise the interval is
coloured light-grey. The mid-point Brier scoring rule isetefore, proper if and only
|f1there1 are 1no d?rk—garey |r;tervzilss. (agIUnequaIIy—spacmuitpDn. ap=0< %2 < .
T <it<i<i<®<i<i<il <1=ay/(b)Equally-spaced partition:
a; =1i/10,7=0,..., 10.

3. A General Result

3.1. Characterisation Theorem

We would like to be able to write down the general form of thogearticular statistical functionals are given in Gneitir0{1)).
scoring rules that are proper for interval probabilisticeftasts. To arrive at a form for scoring rules that are proper for iér
Interval probabilistic forecasts are a particular exampiehe probabilistic forecasts, we can therefore, contextuatisese
wider class of statistical functionals (see for examplegiémy general results, in particular those of Lambert (2013), to o
2011). Recently, Lamberet al. (2008); Lambert and Shohamsetting. With this indirect approach, however, we risk Pgein
(2009); Lambert (2013) and Frongillo and Kash (2014) hawpaque. Moreover, for interval forecasts of a binary random
derived a general expression for scoring rules that areepropariable, it is possible to give a straightforward derigatiof the

for statistical functionals (scoring rules that are profsgrsome functional form that an interval-proper scoring rule muat/d,
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Interval Probabilistic Forecasts 5

and this we now do. The reader inclined more to applicatiog ma
move immediately to Theorem 3.1.

sy, a] = lim_s[Iy,q]
q—a;

As in the previous sectiony is a random variable taking only

[\

lim s[ly1,4]
q—a;
the values0 and 1, for which the forecaster issues an interval

_— , . = s[Ipt1,ak]- 4)
probabilistic forecastl;, for some0 < i < n. What is the general
expression for the strictly interval-proper scoring rsfe

Consequently, from (3) and (4), we have
Recalling that the expected value &{I;, X) when the
probability thatX = 1 is ¢, is defined by s[Ik, ax) = s[Ix41, ax] - (5)
Using (1), equation (5) may be written as

S[Ii7 Q] = ]EQ[S(I% X)]

{s(I1;, 0) = s(Ix41,0) } (1 — ay,)
I, 1) — s([, 1 . =0 (6
the propriety ofs gives + {55, 1) = s(Ip11,1) pay, (6)
and this must hold for everly=1,...,n — 1.
sk, q) < s[1j, 4] forallk,j andg € I.. (2)

One possible solution to (6) is the trivial solutiefl, X) = 0
for all values of ¥ and X. But such a solution violates the
The condition (2) must be satisfied for evegy I, and, in
condition of strict propriety: suppose that< ;7 and choose
particular, forq = a;. Therefore, lettingj = k +1 andq = ay,
q € I;; by strict propriety we should hav€l;,q] < s[I;,q|, but
we have
because (I, X) = 0 for all k and X we haves[/;, q] = s[I;,q|,
a contradiction. So, the trivial solution is inadmissible.
sl ar] < s[Ikq1,ak]- 3)
Excluding the trivial solution, for eackh = 1,...,n — 1, the

From the strict propriety of,
solution must then have the form,

s[Tut1,q] < sllg,q] Vg€ Iy

_ _ _ _ 8(I1,0) = s(I41,0) = —agk
By equation (1), for each s[I;, ¢] is a continuous function af

(a reasonable property: a forecaster who changes theibéfie, sl 1) = slliep1, 1) = (1= ak) ™
q, by a small amount should not wish their expected score to
change substantially). The continuity €f;, ¢] in ¢ for all ¢ gives, where~; is a constant. We now show thgt is non-negative. For
in particular,limq_mj slli, q = s[Ii, aj} , Vi, j. This smoothness k > 1, from the propriety ofs we have thak[Iy, q] < s[Ij+1,4q]
condition coupled with strict propriety gives for all ¢ € Iy, = (ap_1, ag], which together with the smoothness
of s, gives

(© 0000 Royal Meteorological Society Prepared usingjjrms4.cls



6 Mitchell and Ferro

Theorem 3.1 (Characterisation for Interval-Proper Scoring
Rules) LetX € {0,1} be a future binary observation. Given a

sk ag—] = lim sl q] partition 0 = ag < a1 < ... < an—1 < an = 1, let s be a strictly
=0y

interval-proper scoring rule for interval probabilisticofecasts

< lim sy, q] = sk, apa]-
q—a;_, Iy = [ag,a1] and I, = (ag_1,ax]for k = 2,..., nof the outcome

X = 1. Thens has the form
For k=1, I; =[ag,a;] and the propriety ofs alone gives

S[Il,ao] < S[IQ,CL()]. So, for allk,
k—1
s(lp, X) = f(X) = ) (9(1) —9(i = D)(X —a;)  (11)

8T, ap—1] < s[pq1,ak-1] - 8 =t

where f is an arbitrary function andg is a non-decreasing

Applying (1) to s[ly,ax—1] and s[lji1,a,—1] in (8) and function.

rearranging the terms in the inequality,
Note that undeg given by equation (11), interval probabilistic

forecasts that are closer to the outcomeXoreceive a lower (that

is, better) score than interval probabilistic forecasss #re further

11,0) — s({p41,0) p (1 —ap_
{S( 0 0) = sl )}( ak-1) from the outcome foX . Suppose thak = 0. We have

+ {s5(Iy, 1) = 5(Ip41,1) fag—1 <0.

s(Iy,,0) = +Z g(i —1))a

Substituting from (7) gives
and the summation term increaseskaacreasesd being a non-

decreasing function) so that &s moves further away fronX (as

k increases} (I, 0) increases. Similarly, ik =1,
—apyK(l —ag—1) + (1 — ag)ygag—1 <0
k—1

sy, 1) = f(1) = > (9() —g(i = 1)) (1 — a;)

1

& Ye(ak—1 —a) <0

Aad Y > 0. ‘
and the summation term is always positive and increasez@ si
. ask increases so that(I,,1) increases ag, moves away from
We can, therefore, write

X (ask decreases).

(I, X) = 5(Ta1, X) = (X — a) 3:2. Choosing’ andg

fork=1,...,n—1 (9) In equation (11), each choice for the functignand for the
non-decreasing functiog will give a new proper scoring rule for
for non-negative constants,. The difference equation (9) has dnterval probabilistic forecasts. How should the functignandg
solution be chosen? Whilany real-valued function may be chosen for
and any non-decreasing real-valued function may be chosen for
s(I, X) = Z (X — a) 10) 9 it is helpful to have some method to guide these choicese Her
we suggest one such method.
with f an arbitrary function ofX. Defining the functiong
by g(i) —g(i—1) =, i =1,. —1, we have proved the To begin, choosgy € Ij,; fork =0,...,n — 1 and define the

following theorem functionh by h(¢;,) = g(k). Replacingg by A in (11),

(© 0000 Royal Meteorological Society Prepared usingjjrms4.cls



Interval Probabilistic Forecasts 7

from which, differentiating both sides with respecipio

k—1

(I, X) = £(X) = 3 (&) = h(&—) (X —a;)  (12) h(p):degépt(a(l)fa(o». (15)
1

%

from which Equation (15) states thak(p) is (up to a constant), the

derivative of the entropy op associated withS (we thank an
anonymous referee for bringing this propertyhab our attention

and for suggesting that this property lopromises an interesting
8(1k+17X)_8([k7X): . . L. . .
form for equation (12) in the limit, a form which we resolve in

= (h(E) = M(Em)(X — ) (13) o oraph)

Restri ntion hose for which incr nd all . . .
estrict attention to those for which, asn increases and a Lead by this interpretation di, from equation (12), we have

subintervals of the partition are made steadily smallerydiue of L . .
P y vt (where the indicator functiofi(-) has the valuad if its argument

s for the interval containing tends to the value of some precise: .
is true, and) otherwise)

proper scoring ruleés at p. Then (see Appendix B), for suitably

smooth functionss andh, lettingn — oo in (13), gives
k—1

(I, X) = f(X) = > (h(&) = h(&-1)) (X — a;)

95(p, X) _ dh(p)

_ i=1
o o= (14) -
= [(X) = D> (X —a)(a; < ag) (A(&) — h(Ei-1)).-
So, if we have a scoring ruleg, that is proper for precise i=1

A . : L 16
probabilistic forecasts, we substitute for this scorinig iinto the (16)

left-hand side of (14) and solve fér as a function ofy; having . . i .
Allowing n — oo in equation (16), we obtain

done so, we set(k) = h (&) (for some predetermined choice for

the&y,).
S0 ) =100 - [(X-@ta<pana QD)
To interpreth, integrate both sides of (14) with respectptto which (for our choice off, see below) is the Schervish-
obtain representation of a proper scoring rule for a binary event

(Schervish (1989), Theorem 4.2,page 1861; see also Goeitid

(630 +a00) = 1)~ X) = [ 1lp) dp Rattery (2007), page 364).

wherea(-) is a function ofX alone. Taking the expectation in What of the functionf? From equation (11) we have that

X underp gives

s (11, X) = f(X)
Stp.#) + Bpla(X)] =~ [ (p) dp.
' We choose f(X) = S5(&,X). This choice ensures that
With X € {0, 1}, we can writea(X) = a(0)(1 — X) +a(1)X (I, X) — 5(0, X) asn — oo.

so thatEy[a(X)] = a(0)(1 — p) + a(1)p. The functioneg (p) =
—Slp,plis known as the entropy gfassociated witts (Gneiting As examples of this method we take some familiar precise-
and Raftery 2007; Brocker 2009). We have proper scoring rules and derive the corresponding anasotas
are interval-proper. In all cases, we assume aakes only the
/h(P) dp = es(p) — a(0)(1 —p) —a(l)p values0 and 1, the precise probabilistic forecast that= 1 is

(© 0000 Royal Meteorological Society Prepared usingjjrms4.cls



8 Mitchell and Ferro

p and that the intervalo, 1] hasn subintervals with end-points

O=ay<a;1 <...<anp=1.
ExAmPLE (Brier scoring rule (Brier 1950)) The Brier
scoring rule isS(p, X) = (p — X)?. Substituting forS in (14),

we have

dh(p)
22X —p)=(p—X)—
X=-p=r@P-X) a
giving h(p) =2p. Identify points ¢ € Iy for all
k=0,...,n—1. Then  g(k) = h(&) = 2&k. Choose

F(X) = (& — X)*.

With these choices of andg, equation (11) gives the following

Brier scoring rule for interval probabilistic forecasts

k—1

s(Ii, X) = (S0 — X)? = ) (26 —26-1) (X —ay)

i=1

which may be rewritten as

s(I, X) = (€—1 — X)*

k—1

Z {(&' —a;)% = (-1 — ai)2} (18)

i=1

and the expected interval Brier score is

sk, ql = g — 26,1 + Ery

k-1
-> {(&' —a;)® = (-1 — ai)Q} .
i=1

If we choose¢;, = %(ak+ak+1), the mid-point of each

subinterval, then

2

s(Iy, X) = (%(akq +ag) — X)
~ ok —ap) + 1od (19)
—(X —ap_1)(X — a) + 203, (20)

4

(© 0000 Royal Meteorological Society

Since propriety is preserved under translation, we defiee th

adjustedinterval-proper Brier scoring rule by

s(Ig, X) = (X —ap_1)(X — ag). (21)

Equation (19) also shows that whep is the mid-point of the

(k + 1)stinterval, then, underqually-spaced subintervals,

(1. X) = (arcr +a) - x)°

which, from Proposition 2.1, is known to be proper.

]

ExAamMPLE (Ignorance scoring rule (Good 1952)) The

Ignorance scoring rule is defined by

S(p, X) = —Xlog(p) — (1 = X)log(1 - p)

for p € (0,1). Substituting into (14) gives

We have, therefore, that fere (0,1), h(p) = log{p/(1 — p)},
from which g(k) = h (&) = log {&x/ (1 — &)}, for 0 < k < n.

Choosef(X) = S (&, X).

The expression fog(7;, X) may be written

k1
s(I, X) = S(&r—1,X) = Y {S(&,a:) — S(&i1,a:)}
=1

which is of the same form as equation (18) for the Brier s@prin
rule, although, for the ignorance scoring rule there is nuaagnt
simplification similar to that by which equation (18) redsde

equation (20) for the Brier scoring rule.

O

ExamMPLE (Pseudo-spherical scoring rule (Roby 1964))Fix

a > 1. Thea-pseudo-spherical scoring rule is

_{=Xp+(xX -1 fp)}o‘*.
(po+ (1 —p)ay o

Prepared usingjjrms4.cls

S(p, X)



Interval Probabilistic Forecasts 9

ReplacingsS in (14) gives (F) of the precipitation level in mmz{, from which the precise

probability of the precipitation level exceeding a thrddhaf 1mm
dh(p) _ (o= D{(p-Dp}*~*
o {prr(1-p)yTe

was calculated; if necessary, the nodes were linearlypotated

and the tails were linearly extrapolated, that is, the ufipat of

Solving forh, we have ] o ] )
the cumulative distribution function was determined by

a—1 a—1
— (1=
hp) = 2 (1-p)

(1 —per = o (F(Z;;_Fézgl_l)) (zm — Zm—1) + 2m

Set g(k) = h(&) and choosef(X) = S(&, X). (If a=2,
and the lower limit of the cumulative distribution functiavas
the pseudo-spherical scoring rule is referred to as therisplhe
calculated as
scoring rule.)

0 B F(z1)—0
Zx = max{O,zl — (m) (22 — zl)}

UKMO precise probabilistic forecasts were translated into

4. Consequences of Impropriety

Equation (11) presents the characteristic form that amiate o )
interval probabilistic forecasts (see below) using thdofeing

proper scoring rule must have. Yet it is unclear what thetjralc

partition of the interval0, 1] used by the UKMOuq = 0, 0.025,
implications are if an improper interval scoring rule is disén

0.05, 0.10, 0.20, 0.25, 0.30, 0.40, 0.50, 0.60, 0.70, 0.75, 0.80,
this section, we use actual precise probabilistic foregaivided

0.90, 0.95,1 = ays.
by two separate meteorological offices to construct hyytithle

interval probabilistic forecasts when an improper intesgoring
The Australian Bureau of Meteorology (ABOM) computes

rule is in place. From these synthetic, yet representativerval

precise probabilistic forecasts fof based on a threshold level
probabilistic forecasts, we can establish empirical messof

of 0.2mm. For each day, a total of different forecasts are
the influence of impropriety.

computed: a forecast being calculatediat 36, 60, 84, 108,

132 and 156 hours before the start of the day to which the
4.1. Data recorded precipitation amount refers. The data consistéued

precise probabilistic forecasts for each29b consecutive days

Two separate data sets, in both cases precipitation date we ) ] ] o )
for 18 different locations around Australia; missing data (eithe

used. The amount of precipitation per day (the 24-hour gerio o ) o
observed precipitation or precise probabilistic forecasts

beginning at midnight local time) is converted into a binary ] ] o
omitted not imputed. The ABOM precise probabilistic foretsa

variable, X, by choosing a threshold rainfall level (in mm) and ) o
were converted to interval probabilistic forecasts (selvie

defining X = 1 if the recorded amount of precipitation is greater _ N ]

using the following partition of the intervad, 1]: ag = 0, 0.025,
than or equal to the threshold level; otherwise= 0.

0.075, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.925, 0.975,

1 = ay3; this partition is used by the ABOM.
The UK Meteorological Office (UKMO) provided data for

58 lead-times (from6 to 348 hours at6-hourly intervals) and

2 locations; for each lead-time and location pair approxetyat ) o
P pproxétya 4.2. Calculating Interval Probabilistic forecasts

two-years of daily data was available. For each day of each

lead-time and location pair, the observation was a pretipit The data described in the previous subsection are precise

level (in mm) and the forecast was given as a set of nodpmobabilistic forecasts. We now describe how these data may

(25, F(z5)) 7 =1,...,m of the cumulative distribution function be used to calculate interval probabilistic forecasts. \Wgirb

(© 0000 Royal Meteorological Society Prepared usingjjrms4.cls



10 Mitchell and Ferro

by assuming that each precise probabilistic forecast,is distribution of precipitation over some agreed historipatiod.
determined under a precise-proper scoring rule and sosemi® (The UKMO historical period is 1983-2012, and the ABOM
the forecaster’s true belief that = 1. Next, suppose that the historical period is 1981-2010. Both the UKMO and the ABOM
forecaster is made aware of both the interval scoring rylby provide site-specific climatological probabilistic foests as a
which they will be evaluated (see for example, Gneiting (Y01 set of nodegz;, Fyjim(z;)) for j = 1,..., mejim from which the
on the need for the forecaster to be made aware of the scompigcise climatological forecast is calculated as the poitiba
rule) and the partition0=ap <a; <...<an—1 <an =1 of exceeding the applicable threshold; linear interpotatand
from which they must choose an interval. The interval chosextrapolation are used where necessary in the manner loledcri
by the forecaster/,, is that which optimises their expectedabove.)

score,s[Iy, p]. If s is an interval-proper scoring rule, the interval

issued by the forecaster will be the interval containindJnder We define (Wilks 2006, page 259), the forecaster’s skill by

an interval-improper scoring rule, the forecast intervél not
E[S(Iv X)] — ]Eclim[s(lv X)]
Eperf[s(L X)] - IE:clim[S(L X)]

necessarily contain the forecaster’s true belief (22)

where uciim = Ecim[s(Z, X)] is the accuracy of the climato-
In this manner, for each precise probabilistic forecast in
logical forecaster ang@, et = Epere[s(I, X)] is the accuracy of
the data two interval probabilistic forecasts are computet
the perfect forecaster, from which, takingi,, and ppe+ as
when s is an interval-improper scoring rule and one whers
constant, a forecaster’s skill is approximately normalstributed
an interval-proper scoring rule. We emphasise that allrnate

with mean
probabilistic forecasts so calculated are hypothetical are
not actual interval probabilistic forecasts provided bthei the Efs(I, X)] — ptel
i cllm
UKMO or the ABOM. Mpert — Hclim

and variance

4.3, Skill &2

N (ppert — ,uclim)Q
Let z; be theith recorded binary observation antl, be A skill of 1 for a forecaster demonstrates a perfect forecast
the interval probabilistic forecast associated with, i = record for the forecaster, while a skill @f indicates that the
1,...,N. The forecastersiccuracyis their average scorev = forecaster is no more skillful than a climatological forsiea.
LS8 s(Iy,, ;). In the limit, the forecaster's average score is
the expected valuE[s(I, X)], where the expected value is taken ExampLE (Brier scoring rule (Brier 1950)) Let0 = ag <

over thejoint distribution of the intervalg and the observation . a1 < ...<an =1 be a partition ofunequallyspaced intervals.

For largeN, 5 is approximately normally distributed with meanChooset;, to be the mid-point of .., foreachk =0,...,n— 1.

E[s(1, X)] and variancé> /N where Let s be the adjusted interval-proper Brier scoring rule (equmti
N (21)) ands be the interval-improper adjusted mid-point Brier
1
62 = T Z (5(Iy; i) — §N)2 scoring rule

=1
A forecaster’s skill is evaluated by comparing their accyra

to the accuracy of other forecasters; specifically, we make 5 1 o
8(Ig, X) = (€g—1 — X)7 — ai
comparisons with the accuracy of the perfect forecasterthed

1 2 19
. . . . =X —arp_1)(X —ar)+ =(ar, — ap_ - —a
accuracy of the climatological forecaster. The climatalah ( k=1 k) 4( k= k=) 4t

forecaster computes their actual precise belief from the (23)
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Interval Probabilistic Forecasts

(For equally-spaced intervalsands are equivalent; but, here,

unequally-spaced intervals are supposed.)

Figures 2a and 2b compare forecaster skill ungdéproper)
and s (improper). In figure 2a, the skill of interval probabilisti
forecasts at Heathrow Airport for different lead-times ligwn.

In figure 2b, the skill of tha2-hour lead-time forecast at each of

18 different locations around Australia is plotted.

O

11

The immediate conclusion from the above example is that

there appears to be no material difference in skill measunelér

the interval-proper and interval-improper (Brier) scgrmiles.

But, there is a more insidious danger from impropriety
impropriety permits hedging, wherein the forecaster cheos
to publish an interval probabilistic forecast that differeom

the interval they truly believe is appropriate. In such sase

a forecaster's accuracy (or skill) does not measure their

true forecasts but measures their given forecasts, thereby

misrepresenting their ability.
decisions based on the forecaster’s ability, in particulbether

one forecaster is better than another, are invalid.

For a given interval-improper scoring rulej, and the
forecaster's true (precise) belief that =1, ¢, whether a
forecaster is induced to hedge depends on the valug$l of|

for different intervalsl, and therefore, only on the partition from

In the presence of hedging,

o.e—AA
A
s 1% A
o
v ok
s o VY A
v%o0aA
03 —
Skill Voo A
o A
02 —
2 OAAA
01 — VOOOOAAAA
AA L RN BN
00 — 4 vvvoo
vv
[ [ [ [ [
e 3 8 3 3 3 3 3
- - oN oN (3] (3]
Lead-time (hours)
(@
N
® A
AV ®
9 e AAAA v
: v °c0o00a Ao , .
vVvve©a®ew T,
08 — ® vvov ® (V]
v vOov
Skill v v 4
07 —
A
0.6 —
o
05 — v
['TTTTTTTTTTTI [T
SEP3TE4IEEITIIEENG
;_gaﬁm—gﬁngm0>\mmw:§§
f=4 n © - = T E Coq"tEE‘“ 3
PEgtEE<< f§gs53s358 2
oz 2 gigngEI =

(b)

Figure 2. In each figure, estimated forecaster skill (defined by equa®2)) and

95% confidence intervals are shown under the adjusted altpraper Brier scoring

rule (4 e ») and the interval-improper adjusted mid-point Brier sogriule
(< o ). (a) SKill of interval probabilistic forecasts at Heatwrd\irport for
different forecast lead-times. (b) Skill of interval prdiiisstic forecasts for the 2-
hour lead-time at different locations in Australia.

which the interval forecasts are selected. In the exammé th

follows we demonstrate the effect of the choice of partitiona

forecaster’s hedging profile.

ExAMPLE (Brier scoring rule (Brier 1950) cont) Assume
unequally-spaced intervals and the interval-impropestdd
mid-point Brier scoring rule given by equation (23). We ddes
the interval probabilistic forecasts issued at Heathro@ Barth

Airports.

(© 0000 Royal Meteorological Society

In the bar-graphs below, the height of each bar is the praport
of times the interval is issued as a forecast. For each mwliite
area (if any) is the proportion of times the interval is fastc
and is a hedge that understates the forecaster’s true ;betleef
dark-grey area (if any) is the proportion of times the intkrig
forecast and is a hedge that overstates the forecastex'belief.
(In all cases, an understated forecast is a forecast of theval
immediately below the true interval forecast and an ovézdta
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12 Mitchell and Ferro

forecast is a forecast of the interval immediately abovetthe beliefs while hedges in the upper ranges of {bel] interval
interval forecast.) The points marked Byare the proportion of will overstate the forecaster’s beliefs. The relative érexcy of
times the interval is a hedge given the interval is foredhst, is, hedging is11.5%.

the propensity to hedge.

In figure 3, the distribution of th&2-hour lead-time forecasts at 04 —

Heathrow Airport is shown. The relative frequency of hedgis

5% with hedging existing in both the lower and upper mid-ranges 03 —f
of the [0, 1] interval. A hedge in the lower mid-ranges of tjoe1] g -
interval may be either an understatement or an overstate@en EE 0r = |
too a hedge in the upper mid-ranges may be. There is no simple ié; .
trend in the propensity to hedge across the subintervals. : ] .
0.1 —

o J L] Pl 1l 1
030 — 1110 T T 17 1T T
n n n n n n n n n n n n -
N ~ -~ N ™ < n ©o ~ «© N ~
] ° ggdo’o‘o'o'o'do‘gg
0.25 —
Published Interval Forecast
? 0.20 — .
“g’_ * ] Figure 4. The relative frequency ofl2-hour lead-time interval probabilistic
@ ° forecasts issued for Perth Airport. For an interpretatibthe bars see the caption
L 015 — ° to figure 3.
[}
2
3
[J]
X 010 —
® [ ]
005 To examine the impact of the form of the partition on the
0.00 _ _ ﬂﬂmﬂﬂﬁﬁﬂ _ hedging profile, figure 5 presents a bar-graph ofitivaour lead-
ST rrrrrrirrrriTd
T N N T time interval probabilistic forecasts at Heathrow Airpassuming
ggo'o‘go‘o'do'o'go'og
o

Published Interval Forecast the same partition that was applied at Perth Airport. Thatired
frequency of hedging i6% and hedging behaviour is now much
Figure 3.The relative frequency ofi2-hour lead-time interval probabilisic More similar to the hedging behaviour seen for the Perthokirp
forecasts issued for Heathrow Airport. The height of eawtire bar is an estimate

of the probability that the interval is forecast. The whitertjpn of each bar is an forecasts.

estimate of the probability that the interval is the foreéqamlishedandis a hedge

that understates the forecaster’s true belief. The dagl-gortion of each bar is

an estimate of the probability that the interval is the palid forecasand is a

hedge that overstates the forecaster's true belief.eTheints are estimates of the

conditional probability that when the interval is foregasis a hedge. (The tick-

labels on the horizontal axis are the upper end-points df sabinterval.) m]

An examination of single site and lead-time forecasts, for a
predetermined partition and preselected interval-impragoring
An altogether different set of features is displayed in fgurule, is helpful in assessing local properties of a foremast
4, a bar-graph of the2-hour lead-time interval probabilistic hedges. Of interest too, is aggregate hedging behavioer, th
forecasts at Perth Airport. Here, the forecaster only témtiedge proportion of times the forecaster hedges (either undessta
when issuing forecasts in the extremities of fbel] interval. or overstates their true beliefs) as the site and forecast- le
Further, the forecaster has a greater propensity to hedgedber time changes. We investigate aggregate hedging behavipur b
their published forecast lies to either extremity. Hedgeshie continuing the above example.
lower ranges of thé0, 1] interval will understate the forecaster's
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Figure 5. The relative frequency ofi2-hour lead-time interval probabilistic Figure 6. Relative frequency of hedging when issuing interval prdlisic
forecasts issued for Heathrow Airpounder the same partition used for the forecasts for different lead-times (hours). Forecaststfay different locations,
forecasts issued for Perth Airport in figure Bor an interpretation of the bars seeHeathrow Airport (solid line) and Eskdalemuir (dashed )jrsge compared.

the caption to figure 3.

ExampPLE (Brier scoring rule (Brier 1950) cont) In
figure 6, the relative frequency of hedging is shown for défe
lead-times at two sites: Heathrow Airport and Eskdalemuir. 16 —
Hedging is, on the whole, higher for Heathrow Airport than fo
Eskdalemuir, although the pattern of hedging is similarrove

the different lead-times: hedging occurs on no more thzfb

or so of occasions, tending to peak shortly before its@hour

Relative Frequency of Hedging (%)

lead-time forecast and is lowest for the longest lead-times

0 — O—O
[TTTTTTTTTTTTI [T 11
§E£3:58 8558888858588
- ; : sy 58 s 238838 ssez=2E
In figure 7, the relative frequency of hedging when issuing Esog2sgECEcgsEs E
a g8 guw 283822 3¢
. e . . o = o Z2r pg5=aT z
interval probabilistic forecasts is compared for a numijdead- << @ §~ 32 =

times across different locations in Australia. Here, thg]CCUI’S Figure 7. Relative frequency of hedging when publishing intervalefasts, for
. . different locations. Each line represents forecasts foifferdnt lead-time:12-
on between approximatel§% and20% of forecasts. Hedging hour @), 36-hour @),60-hour @),84-hour @),108-hour @),132-hour (©),156-
hour ©).

levels are similar for sites that are geographically closgeneral,
hedging is higher for shorter duration lead-times with hiedg
) o for the probability thatl will occur. An interval probabilistic
decreasing as the lead-time increases.
forecast is a range of values for the probability thatill occur.
Interval probabilistic forecasts may be issued explicité/g.
o ‘chance of rain tomorrow: 10-20%) or implicitly as a roumtle
probabilistic forecast (the undeclared interval forechsting

5. Summary
all those precise probabilities that round to the given dmah

We consider probabilistic forecasts for a futu¢l event. A probabilistic forecast).

precise probabilistic forecast is a statement of the exalttev

(© 0000 Royal Meteorological Society Prepared usingjjrms4.cls



14 Mitchell and Ferro

Probabilistic forecasts must be evaluated using propeirgco not conducted a general investigation of this problem, i@ th
rules. Scoring rules that are proper when the forecast piliya particular case of the unadjusted interval-proper Brierisg
is a precise value are not, in general, proper when applied toule (equation (20)) it can be shown that the optimal parniiti
representative probability from the interval forecastafagous to is the equally-spaced partition, when ‘optimal’ is definexdtlae
the result of Lambert (2013), we present a general expmessio interval-proper Brier scoring rule being close in the sgdagrror
scoring rules that are proper for interval probabilisticeftasts. sense to the precise-proper Brier scoring rule.
Specific interval-proper scoring rules, corresponding he t
more familiar precise-proper scoring rules (Brier scoringg,
Ignorance scoring rule and Pseudo-spherical scoring anéeglso Acknowledgements
given; of these, the interval-proper Brier scoring ruleu@iipn
(21)) has a simple and appealing form. We would like to thank Prof. A. Abu-Hanna for introducing us
to the problem of proper scoring rules for interval probiabi
The importance of interval-proper scoring rules is theie udorecasts. For their generous help in providing the datad use
in assessing the performance of forecasters issuing aiterip this paper, we would like to thank the Australian Burerau
probabilistic forecasts. That is not to say that an inteivgdroper Of Meteorology, in particular, Dr. D. Griffiths and Ms. I.
scoring rule necessarily results in a meaningful change inl@nnou, and the UK Meteorological Office, specifically Dr. M
forecaster's calculated skill; substituting an interimproper Mittermaier. Lastly, to the two anonymous referees, forirthe
scoring rule for an interval-proper scoring rule can havgeli comments and suggestions, our sincerest thanks.
guantifiable impact on a forecaster’s skill. Rather, theeggus
effect of impropriety is on the interpretation of a foreea'st
computed skill. Under impropriety, a forecaster may hedgew A Appendix
issuing a forecast, giving a forecast that does not refledt true
opinion. In such cases the skill, being based on the puldlishor 0 < i < n, write p; = 3(a;—1 + a;), the mid-point of the
forecasts, no longer represents the forecaster's truesviwd intervall;. The mid-point Brier scoring rule is defined by
gives only partial insight into their substantive ability.
s(I;, X) = (pi — X)*
We calculate the relative frequency of hedging using irgerv
and satisfiess[I;, q] = Eq[s(I;, X)] = p? — 2piq + q. The mid-
probabilistic forecasts simulated using precise prolgbibf
point Brier scoring rule is interval-proper if and only if
precipitation (PoP) forecasts provided by The AustraliameBu
of Meteorology and the UK Meteorological Office. While
hedging varies with site and forecast lead-time, the radati sllina] < s|lj.q]  vi.j and¥g € I
frequency of hedging in the cases we consider lies apprdgigna

Proof of Proposition 2.1: the mid-point Brier scoring ruke i

in the range of) — 15%. proper if and only if the partition is equally-spaced.

Interval-proper scoring rules depend explicitly on the skt Proof Suppose that the mid-point Brier scoring rule is

intervals to which the interval forecasts refer. A changehef interval-proper. Then

intervals used to express forecasts will influence the sganile
and a natural question arises as to whether there is an dsiha o
s, q) < s[Ij,q} Vi, 7 andVq € I;
of intervals. The question may be framed as a high-dimeasion

non-linear constrained optimisation problem and while vageh which holds if and only if, fixingi, Vq € I;,
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Interval Probabilistic Forecasts

(ai—1+ai +aj-1+ay) i<j

(aj—1 +a; + aj—1+ aj) 1> 7. (24)

Condition (24) must hold for alj € I; and so holds fog = a;.
In this case,
a; <

(ai—1+a;+aj_1+aj) i<y

N

and, lettingj =7 + 1,

a; < ~(aj—1 +a; +a; + aj41)

=

from which

a; —aj—1 < ajy1 — a;-

Also, condition (24) must hold forg=infI; =a;_1.

Specifically,

1 . .
aj—1 > Z(ai—l +a;+aj_1+a;) i>j.

Lettingj = — 1,

1
a1 > Z(aifl +a;+ai_2+a;_1)
giving
j—1 — Gj—2 2 QG — Qj—1.

As i was fixed arbitrarily, we have, for alb <i < n,

a; —ai—1 < Q41 — and for 1<i<n, aj—1—a_os>

A — Qg—1-
Now, for any0 < k < n, leti =k, to giveap41 — a > ag —

aix—1 and leti = k+1 to give ay — ap_1 > agy1 — ag, from

which

Ag+1 — A = 0 — Qf—1

and this holds for ald < & < n, that is, thez; are equally-spaced.

(© 0000 Royal Meteorological Society
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Conversely, suppose that the are equally-spacedi; = i/n

forall0 <i <n.Then

1 (i+5—1
(ai—1+a; +aj—1+a;) = n (T) :

=

If : < jthen; <j—1and

a; =

7 1 /i4+75-1 1
P (JT) = 7 (@i-1+ai+aj-1 +a;)

SO qgi(ai,l—&-ai—&—aj,l—i—aj) for all ¢e I; with i< j.

Equally, ifi > j theni —1 > j and

aj—1 =

i—1_1(i+j—-1 1
so thatq > %(ai,1 +a;+aj—1+ a]-) for all ¢ € I; with 7 > ;.
Condition (24) is satisfied and therefore, the mid-pointeBri
scoring rule is interval-proper.

We remark in passing that the propriety of the more general
Brier scoring rule, defined by(7;, X) = {(1 — Na;—1 + Aa; —
X1}? also depends critically on the spacing of the partitionngei

proper if and only if, lettingA; = a; — a;_1,

A
Ara, < A <1 forge I,
Ay Ap_1
Ap+Akt1 < A< Ap+Ak—1 forg € I,
1<k<n
0 < A < xa%l— forgeln
B. Appendix

We show under certain conditions on the partitiog ag < a1 <
... < an =1, and on the functions, S andh, that, letting¢;,

I, 1, asn increases the equation

s(Igy1,X) — s, X) =
— (h(&k) = M(€x—1))(X —ay) (25)
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16 Mitchell and Ferro

leads to the differential equation

<<
4

'S(p+r,X)—S(p,X) o aS(p,X)
T dp

95(p, X) _ dh(p)
dp dp

(p—X). (26)

and3s’ > 0 such that ifi¢ — p| < &,
Definition B.1 The partitions(a]n = an,0 < an,1 < ... < an,n,

0 = an,0, 1 = an,n, are said to be increasingly refined as— oo

< £
1

8(¢,X)  9S(p, X)
oc  dp

if the meshy, = max{a, ; —ani—1|3=1,...,n} tends ta0.

Remark When refering to subintervals of the partition pyqher since; is continuously differentiableds.. such that

[aln = ano <ani<...<ann, 0=ano, 1=anmn, we shall V| < Gus,

use the notationl,, 1 = [an,0,an,1], Ink = (Gn k—1,an%) fOr

h(p+7) —h(p)  dh(p)
r dp

£
2

k=2,...,n.
| <

LemmaB.1 Letp € [0, 1]. If the partitions|a],, are increasingly and3d” > 0 such thatifi¢ — p| < &, then

refined therve > 0, 3N > 0 such that for eachh > N, there is a

k (depending om) such thatja,, ;, — p| < e. dh(&)  dh(p) <
dg dp

N

Proof.  Fix € > 0. Since the partitionga],, are increasingly

: ! 1!
refined, there is atv > 0 such thatvn > N, un < €. Letn > N Letd = min{dx, 8", 6xx, 67, €}.
sothatu, < e. If p € [0,1] then there is someesuchthap € I, ;.
Therefore|a,, . — pl < lank — an k-1 < pn <e.Soforalln > aq the partitionsla],, are increasingly refinediN. > 0 such
N, there exists & (depending om) such thaja,, , —p| < W tpatforn > N, 4, < $. The interval scoring rule converges to

S in the Lipschitz sense, stV’ > 0 such that'n > N’,
Definition B.2 We shall say that the interval scoring rule

converges in the Lipschitz sense to the precise scoring $ule

at p if and only if Ve > 0, 3N > 0 such that for alln > N,

[s(In, k> z) — S(p,x)| < emin{|ay, x—1 — pl, |an,, — p|} forall z, Is(Ip,;,X) — S(p, X)| <
. : . e

p € I, . If s converges taS in the Lipschitz sense at every me{|an7j_1 — pl,lan.; — pl}

p € [0,1], then we shall say simply thatconverges td5 in the

Lipschitz sense.
forp € I, ;. Let N = max{N«, N'}, n > N and letk (depending

Proposition B.1 Let s be an interval-proper scoring rule onn) satisfyp € I,, ;.. From equation (25),
satisfying equation (25), withh continuously differentiable.
Suppose that converges to the precise scoring rutein the

Lipschitz sense, wherg is continuously partially differentiable  s(1,, ,. 1, X) — s(I,, &, X)

with respect top. If the partitions[a],, are increasingly refined Sk = &n k-1
h(gn k) - h(&nk71)>

— 2 ’ X —anp 27

then ( Eh ( &) (27)
95(p, X) _ dh(p)
ap - dp (p—X). where, as abové,, , € I, j11-
Proof. Let e >0, p€0,1]. S is continuously partially

differentiable with respect tp, s036. > 0 such thatv|r| < é«, Considering the left-hand side of equation (27),
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$(In k41, X) = s(Unks X)  8S(p, X) h(&n,k) = h(&nk—1)  dh(p) '
§n,k - gn,kfl ap §n,k - gn,kfl dp
_ | sUn k1, X) = SEn ks X) _ | Mnk) = hEn k1) dh(Enp—1) | dh(En k1) dh(p)‘
Enk — Enk—1 Enk — Enk—1 d&p k-1 d&p k-1 dp
~ 5(In ke X) + 5 k-1, X) < h(€nk) = h(Enk—1)  dh(&n k—1) 'dh(ﬁn,kl) B dh(p)'
Enk — Enk—1 - Enk —Enk—1 A&y k-1 d&p k-1 dp
S(€nk, X) = S(€n k-1, X) € €
* gn,k - §n,k71 <§ * 5
_08(8nk—1,X) | 95(&nk—1,X)  3S(p, X)' —.
O k-1 O k-1 dp

3([n,k+17X) _ S(gn,bx) ‘
§n,k - gn,kfl

Finally, |(X = an 1) — (X —p)l = Ip— anil <pn < § <e.
S(In,/w X) + S(gn,k—ly X) '

Combining these separate limit results, equation (27)sgive

Enk — Enk—1
'S(&z,mx) —SEn k-1, X)  95(&n,k—1,X) '
Enk — Enk—1 O k-1 3S(p.X) _ dn(p) (X —p)
9S(€nk-1,X)  9S(p,X) ap  dp
‘ Onp—1  Op ' '

But, S is partially continuously differentiable with respect tdReferences
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