QUADRATIC FORMS REPRESENTING p TH TERMS OF LUCAS SEQUENCES

PEDRO BERRIZBEITIA, ROBIN CHAPMAN, FLORIAN LUCA, AND ALBERTO MENDOZA

Abstract

We prove that if $\left\{A_{n}\right\}_{n \geq 0}$ is any Lucas sequence and p is any prime, then $4 A_{p}$ admits a representation by one of two quadratic forms according to the residue class of p modulo 4 .

1. Introduction

Let $\left\{F_{n}\right\}_{n \geq 0}$ be the Fibonacci sequence given by $F_{0}=0, F_{1}=1$ and $F_{n+2}=F_{n+1}+F_{n}$ for all $n \geq 0$. The starting point for the investigation of the subject in the title is the formula

$$
\begin{equation*}
F_{2 n+1}=F_{n}^{2}+F_{n+1}^{2} \tag{1}
\end{equation*}
$$

known to Lucas (take $Q=-1$ in formula (34) in Lucas's seminal 1878 paper [4]) since it implies that every Fibonacci number of odd index can be represented as the sum of two squares of integers. This is a question which leads naturally to the investigation of Fibonacci numbers F_{n} which can be represented under the form $a u^{2}+b u v+c v^{2}$ with some integers u and v and some integers a, b and c which can be either fixed or depend on n. For example, in [6], it is shown that if $n \equiv 7$ $(\bmod 16)$, then $F_{n}=u^{2}+9 v^{2}$ holds with some positive integers u and v. For general results regarding the problem of the kind $F_{n}=u^{2}+d v^{2}$, when d is fixed, see [3].

In [2], it was noted that if $n=p^{2}$ is the square of an odd prime $p \neq 5$, then p divides $F_{\frac{p^{2}-1}{2}}$, hence formula (1) implies that $F_{p^{2}}=u^{2}+p^{2} v^{2}$, for some integers u and v. Motivated by this observation, the authors of [2] introduced and estimated the counting function of the infinite set

$$
S=\left\{n: F_{n}=u^{2}+n v^{2} \text { with some integers } u, v\right\}
$$

In the course of their investigation, they found computational evidence that indicated that every prime $p \equiv 1(\bmod 4)$ belongs to S. In [1], it was proved that this fact is true; that is if $p \equiv 1(\bmod 4)$, then $F_{p}=u^{2}+p v^{2}$ for some integers u and v. The proof makes use of basic facts in Galois Theory and basic properties of the norm function of finite extensions of \mathbb{Q}. Prior, it was shown in [6] that the above formula never holds if instead of $p \equiv 1(\bmod 4)$, we have $p \equiv 3,7$
$(\bmod 20)$. In this paper, we extend the results of [1] from the Fibonacci sequence to any Lucas sequence of integers. That is, using basic Galois theory, we find representations by quadratic forms of $4 A_{p}$ for all primes p (congruent to either 1 or 3 modulo 4), where $\left\{A_{n}\right\}_{n \geq 0}$ is any Lucas sequence of integers.

2. The Result

Fix integers r and s and consider the Lucas sequence given by

$$
A_{0}=0, \quad A_{1}=1, \quad A_{n}=r A_{n-1}+s A_{n-2} \quad \text { for all } \quad n \geq 0
$$

We exclude the case in which the roots (α, β) of the quadratic equation $x^{2}-r x-s=0$ are equal. The case $r=s=1$ gives $A_{n}=F_{n}$. Define the discriminant of this sequence as $D=r^{2}+4 s$. Note that $D \neq 0$ because $\alpha \neq \beta$.

Theorem 1.

(1) If $p \equiv 1(\bmod 4)$ is prime, then A_{p} is represented by the quadratic form $u^{2}+u v-\frac{1}{4}(p-1) v^{2}$ and $4 A_{p}$ is represented by the quadratic form $u^{2}-p v^{2}$.
(2) If $p \equiv 3(\bmod 4)$ is prime, then $4 A_{p}$ is represented by the quadratic form $D u^{2}+p v^{2}$.

3. The proof

The sequence A_{n} is given explicitly by

$$
A_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \quad \text { for all } \quad n \geq 0
$$

We take

$$
\alpha=\frac{r+\sqrt{D}}{2}, \quad \beta=\frac{r-\sqrt{D}}{2} .
$$

Note that $\alpha+\beta=r, \alpha \beta=-s$ and $\alpha-\beta=\sqrt{D}$.
For a positive integer n let ζ_{n} be a primitive nth root of unity.
For an odd prime p,

$$
A_{p}=\prod_{j=1}^{p-1}\left(\alpha-\zeta_{p}^{j} \beta\right)=F(\alpha, \beta) G(\alpha, \beta)
$$

where we define

$$
F(x, y)=\prod_{j \in R}\left(x-\zeta_{p}^{j} y\right), \quad G(x, y)=\prod_{j \in N}\left(x-\zeta_{p}^{j} y\right)
$$

where R and N are, respectively, the sets of quadratic residues and quadratic nonresidues modulo p. Then

$$
F(y, x)=\prod_{j \in R}\left(y-\zeta_{p}^{j} x\right)=(-1)^{(p-1) / 2} \zeta_{p}^{S} \prod_{j \in R}\left(x-\zeta_{p}^{-j} y\right)
$$

where

$$
S=\sum_{j \in R} j
$$

Now

$$
S \equiv \sum_{k=1}^{(p-1) / 2} k^{2} \equiv p\left(\frac{p^{2}-1}{24}\right) \quad(\bmod p)
$$

As long as $p \geq 5,24$ divides $\left(p^{2}-1\right)$, so $p \mid S$, therefore $\zeta_{p}^{S}=1$. We will return to the case $p=3$ at the end, so let us continue assuming that $p \geq 5$.

If $p \equiv 1(\bmod 4)$, then $(-1)^{(p-1) / 2}=1$ and $-1 \in R$ so that $F(y, x)=$ $F(x, y)$ in this case. A similar argument gives $G(y, x)=G(x, y)$.

If $p \equiv 3(\bmod 4)$, then $(-1)^{(p-1) / 2}=-1$ and $-1 \in N$ so that $F(y, x)=-G(x, y)$ and consequently $G(y, x)=-F(x, y)$.

The polynomial $F(x, y)$ has coefficients which are algebraic integers in $\mathbf{Q}\left(\zeta_{p}\right)$ and which are fixed under all automorphisms of the form σ_{j} (where $\sigma_{j}: \zeta_{p} \mapsto \zeta_{p}^{j}$) for $j \in R$. Thus these coefficients lie in the quadratic subfield of $\mathbf{Q}\left(\zeta_{p}\right)$, which is $\mathbf{Q}\left(\sqrt{p^{*}}\right)$, with $p^{*}=(-1)^{(p-1) / 2} p$. The ring of integers of $\mathbf{Q}\left(\sqrt{p^{*}}\right)$ is $\mathbf{Z}\left[\left(1+\sqrt{p^{*}}\right) / 2\right]$, and so

$$
\begin{equation*}
F(x, y)=F_{1}(x, y)+\frac{1-\sqrt{p^{*}}}{2} F_{2}(x, y) \tag{1}
\end{equation*}
$$

where F_{1} and F_{2} are polynomials in two variables with integer coefficients. Applying the automorphism σ_{j} with $j \in N$ gives

$$
\begin{equation*}
G(x, y)=F_{1}(x, y)+\frac{1+\sqrt{p^{*}}}{2} F_{2}(x, y) . \tag{2}
\end{equation*}
$$

If $p \equiv 1(\bmod 4)$, then the symmetry $F(x, y)=F(y, x)$ together with (1) imply that F_{1} and F_{2} are symmetric functions with integer coefficients. By the fundamental theorem of symmetric polynomials, $F_{i}(x, y)=H_{i}(x+y, x y)$ for polynomials H_{1} and H_{2} with integer coefficients. Then,

$$
F(\alpha, \beta)=u+\frac{1-\sqrt{p}}{2} v
$$

and

$$
G(\alpha, \beta)=u+\frac{1+\sqrt{p}}{2} v
$$

where $u=H_{1}(r,-s) \in \mathbf{Z}$ and $v=H_{2}(r,-s) \in \mathbf{Z}$. Then,

$$
\begin{aligned}
A_{p} & =F(\alpha, \beta) G(\alpha, \beta) \\
& =\left(u+\frac{1-\sqrt{p}}{2} v\right)\left(u+\frac{1+\sqrt{p}}{2} v\right) \\
& =u^{2}+u v-\frac{p-1}{4} v^{2} .
\end{aligned}
$$

Consequently,

$$
4 A_{p}=(2 u+v)^{2}-p v^{2} .
$$

Now assume that $p \equiv 3(\bmod 4)$. From (1) and (2), we get

$$
\begin{equation*}
2 F(x, y)=K_{1}(x, y)-\sqrt{-p} K_{2}(x, y) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
2 G(x, y)=K_{1}(x, y)+\sqrt{-p} K_{2}(x, y) \tag{4}
\end{equation*}
$$

where $K_{1}(x, y)=2 F_{1}(x, y)+F_{2}(x, y)$ and $K_{2}(x, y)=F_{2}(x, y)$ have integer coefficients. This time, as $F(y, x)=-G(x, y)$, we have

$$
K_{1}(y, x)=-K_{1}(x, y) \quad \text { and } \quad K_{2}(x, y)=K_{2}(y, x) .
$$

As before $v=K_{2}(\alpha, \beta)$ is an integer, but K_{1} is an alternating function, so that

$$
K_{1}(x, y)=(x-y) K_{3}(x, y),
$$

where $K_{3}(x, y)$ is a symmetric function with integer coefficients. Therefore,

$$
K_{1}(\alpha, \beta)=(\alpha-\beta) K_{3}(\alpha, \beta)=\sqrt{D} u
$$

with $u \in \mathbf{Z}$. Then

$$
4 A_{p}=(2 F(\alpha, \beta))(2 G(\alpha, \beta))=K_{1}(\alpha, \beta)^{2}+p K_{2}(\alpha, \beta)^{2}=D u^{2}+p v^{2}
$$

To complete the proof, we need to dispose of the case $p=3$. Now

$$
A_{3}=\alpha^{2}+\alpha \beta+\beta^{2}=\frac{(\alpha-\beta)^{2}+3(\alpha+\beta)^{2}}{4}=\frac{D+3 r^{2}}{4} .
$$

Thus, $4 A_{3}=D u^{2}+3 v^{2}$, with $u=1$ and $v=r$.
Remark. The referee asked whether there is a quick way to compute u and v. This amounts to knowing $F(\alpha, \beta)$, which essentially means knowing $F(\alpha, \beta) / G(\alpha, \beta)$. In the case $\alpha=\beta=1$ and $p \equiv 1(\bmod 4)$, this last quantity is

$$
\prod_{a=1}^{p-1}\left(1-\zeta_{p}^{a}\right)^{\left(\frac{a}{p}\right)}
$$

which by the analytic class number formula is ε^{h}, where ε is the fundamental unit of $\mathbb{Q}(\sqrt{p})$ and h is the class number. For general r and s, the situation should be even harder. Hence, finding u and v amounts to solving a Pell-type equation and there are no efficient algorithms for this type of problem. The situation is perhaps easier for $p \equiv 3(\bmod 4)$, since then the quadratic form is positive definite. Thus, while we cannot provide an overall formula for u and v, this is an interesting topic which deserves further investigation.

Acknowledgements

We thank the referee for comments which improved the quality of this paper.

References

[1] J. J. Alba González, P. Berrizbeitia and F. Luca, "On the formula $F_{p}=u^{2}+$ $p v^{2} "$, Internat. J. Number Theory 11 (2015), 185-191.
[2] J. J. Alba González and F. Luca, "On the positive integers n satisfying the equation $F_{n}=x^{2}+n y^{2} "$, Diophantine Methods, Lattices, and Arithmetic Theory of Quadratic Forms, Contemporary Mathematics, Vol. 587 (American Mathematical Society, Providence, RI, 2013), pp. 95-109.
[3] C. Ballot and F. Luca, "On the equation $x^{2}+d y^{2}=F_{n}$ ", Acta Arith. 127 (2007), 145-155.
[4] E. Lucas, "Théorie des fonctions numériques simplement périodiques", Amer. J. Math. 1 (1878), 184-240, 289-321.
[5] M. R. Murty and J. Esmonde, Problems in Algebraic Number Theory, Second Edition, Springer 2004.
[6] D. Savin, "Fibonacci primes of special forms", Notes on Number Theory and Discrete Math. 20.2 (2014), 10-19.

Departamento de Matemáticas Pura y Aplicada, Universidad Simón Bolívar, Caracas, Venezuela

E-mail address: pberrizbeitia@gmail.com
Mathematics Research Institute, University of Exeter, Exeter, EX4 4QF, UK

E-mail address: R.J.Chapman@ex.ac.uk
School of Mathematics, University of the Witwatersrand, P. O. Wits 2050, South Africa

E-mail address: florian.luca@wits.ac.za
Departamento de Matemáticas Pura y Aplicada, Universidad Simón Bolívar, Caracas, Venezuela

E-mail address: jacob@usb.ve

