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Abstract. We prove that if {An}n≥0 is any Lucas sequence and
p is any prime, then 4Ap admits a representation by one of two
quadratic forms according to the residue class of p modulo 4.

1. Introduction

Let {Fn}n≥0 be the Fibonacci sequence given by F0 = 0, F1 = 1 and
Fn+2 = Fn+1+Fn for all n ≥ 0. The starting point for the investigation
of the subject in the title is the formula

(1) F2n+1 = F 2
n + F 2

n+1

known to Lucas (take Q = −1 in formula (34) in Lucas’s seminal 1878
paper [4]) since it implies that every Fibonacci number of odd index can
be represented as the sum of two squares of integers. This is a question
which leads naturally to the investigation of Fibonacci numbers Fn

which can be represented under the form au2 + buv + cv2 with some
integers u and v and some integers a, b and c which can be either
fixed or depend on n. For example, in [6], it is shown that if n ≡ 7
(mod 16), then Fn = u2 + 9v2 holds with some positive integers u and
v. For general results regarding the problem of the kind Fn = u2 +dv2,
when d is fixed, see [3].

In [2], it was noted that if n = p2 is the square of an odd prime p 6= 5,
then p divides F p2−1

2

, hence formula (1) implies that Fp2 = u2 + p2v2,

for some integers u and v. Motivated by this observation, the authors
of [2] introduced and estimated the counting function of the infinite set

S = {n : Fn = u2 + nv2 with some integers u, v}.
In the course of their investigation, they found computational evidence
that indicated that every prime p ≡ 1 (mod 4) belongs to S. In [1],
it was proved that this fact is true; that is if p ≡ 1 (mod 4), then
Fp = u2 + pv2 for some integers u and v. The proof makes use of
basic facts in Galois Theory and basic properties of the norm function
of finite extensions of Q. Prior, it was shown in [6] that the above
formula never holds if instead of p ≡ 1 (mod 4), we have p ≡ 3, 7
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(mod 20). In this paper, we extend the results of [1] from the Fibonacci
sequence to any Lucas sequence of integers. That is, using basic Galois
theory, we find representations by quadratic forms of 4Ap for all primes
p (congruent to either 1 or 3 modulo 4), where {An}n≥0 is any Lucas
sequence of integers.

2. The result

Fix integers r and s and consider the Lucas sequence given by

A0 = 0, A1 = 1, An = rAn−1 + sAn−2 for all n ≥ 0.

We exclude the case in which the roots (α, β) of the quadratic equation
x2 − rx − s = 0 are equal. The case r = s = 1 gives An = Fn. Define
the discriminant of this sequence as D = r2 + 4s. Note that D 6= 0
because α 6= β.

Theorem 1.

(1) If p ≡ 1 (mod 4) is prime, then Ap is represented by the quad-
ratic form u2 + uv − 1

4
(p − 1)v2 and 4Ap is represented by the

quadratic form u2 − pv2.
(2) If p ≡ 3 (mod 4) is prime, then 4Ap is represented by the quad-

ratic form Du2 + pv2.

3. The proof

The sequence An is given explicitly by

An =
αn − βn

α− β
for all n ≥ 0.

We take

α =
r +
√
D

2
, β =

r −
√
D

2
.

Note that α + β = r, αβ = −s and α− β =
√
D.

For a positive integer n let ζn be a primitive nth root of unity.
For an odd prime p,

Ap =

p−1∏
j=1

(α− ζjpβ) = F (α, β)G(α, β),

where we define

F (x, y) =
∏
j∈R

(x− ζjpy), G(x, y) =
∏
j∈N

(x− ζjpy),

where R and N are, respectively, the sets of quadratic residues and
quadratic nonresidues modulo p. Then

F (y, x) =
∏
j∈R

(y − ζjpx) = (−1)(p−1)/2ζSp
∏
j∈R

(x− ζ−jp y),
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where

S =
∑
j∈R

j.

Now

S ≡
(p−1)/2∑
k=1

k2 ≡ p

(
p2 − 1

24

)
(mod p).

As long as p ≥ 5, 24 divides (p2 − 1), so p | S, therefore ζSp = 1. We
will return to the case p = 3 at the end, so let us continue assuming
that p ≥ 5.

If p ≡ 1 (mod 4), then (−1)(p−1)/2 = 1 and −1 ∈ R so that F (y, x) =
F (x, y) in this case. A similar argument gives G(y, x) = G(x, y).

If p ≡ 3 (mod 4), then (−1)(p−1)/2 = −1 and −1 ∈ N so that
F (y, x) = −G(x, y) and consequently G(y, x) = −F (x, y).

The polynomial F (x, y) has coefficients which are algebraic integers
in Q(ζp) and which are fixed under all automorphisms of the form σj
(where σj : ζp 7→ ζjp) for j ∈ R. Thus these coefficients lie in the

quadratic subfield of Q(ζp), which is Q(
√
p∗), with p∗ = (−1)(p−1)/2p.

The ring of integers of Q(
√
p∗) is Z[(1 +

√
p∗)/2], and so

F (x, y) = F1(x, y) +
1−
√
p∗

2
F2(x, y), (1)

where F1 and F2 are polynomials in two variables with integer coeffi-
cients. Applying the automorphism σj with j ∈ N gives

G(x, y) = F1(x, y) +
1 +
√
p∗

2
F2(x, y). (2)

If p ≡ 1 (mod 4), then the symmetry F (x, y) = F (y, x) together
with (1) imply that F1 and F2 are symmetric functions with integer
coefficients. By the fundamental theorem of symmetric polynomials,
Fi(x, y) = Hi(x + y, xy) for polynomials H1 and H2 with integer coef-
ficients. Then,

F (α, β) = u+
1−√p

2
v,

and

G(α, β) = u+
1 +
√
p

2
v,

where u = H1(r,−s) ∈ Z and v = H2(r,−s) ∈ Z. Then,

Ap = F (α, β)G(α, β)

=

(
u+

1−√p
2

v

)(
u+

1 +
√
p

2
v

)
= u2 + uv − p− 1

4
v2.
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Consequently,

4Ap = (2u+ v)2 − pv2.
Now assume that p ≡ 3 (mod 4). From (1) and (2), we get

2F (x, y) = K1(x, y)−
√
−pK2(x, y), (3)

and

2G(x, y) = K1(x, y) +
√
−pK2(x, y), (4)

where K1(x, y) = 2F1(x, y) + F2(x, y) and K2(x, y) = F2(x, y) have
integer coefficients. This time, as F (y, x) = −G(x, y), we have

K1(y, x) = −K1(x, y) and K2(x, y) = K2(y, x).

As before v = K2(α, β) is an integer, but K1 is an alternating function,
so that

K1(x, y) = (x− y)K3(x, y),

where K3(x, y) is a symmetric function with integer coefficients. There-
fore,

K1(α, β) = (α− β)K3(α, β) =
√
Du,

with u ∈ Z. Then

4Ap = (2F (α, β)) (2G(α, β)) = K1(α, β)2 + pK2(α, β)2 = Du2 + pv2.

To complete the proof, we need to dispose of the case p = 3. Now

A3 = α2 + αβ + β2 =
(α− β)2 + 3(α + β)2

4
=
D + 3r2

4
.

Thus, 4A3 = Du2 + 3v2, with u = 1 and v = r.

Remark. The referee asked whether there is a quick way to compute
u and v. This amounts to knowing F (α, β), which essentially means
knowing F (α, β)/G(α, β). In the case α = β = 1 and p ≡ 1 (mod 4),
this last quantity is

p−1∏
a=1

(
1− ζap

)(a
p)
,

which by the analytic class number formula is εh, where ε is the funda-
mental unit of Q(

√
p) and h is the class number. For general r and s,

the situation should be even harder. Hence, finding u and v amounts
to solving a Pell-type equation and there are no efficient algorithms for
this type of problem. The situation is perhaps easier for p ≡ 3 (mod 4),
since then the quadratic form is positive definite. Thus, while we can-
not provide an overall formula for u and v, this is an interesting topic
which deserves further investigation.
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