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ABSTRACT

We introduce a new Monte-Carlo technique to estimate the radiance distribution in a medium according to the
radiative transport equation (RTE). We demonstrate how to form gradients of the forward model, and thus
how to employ this technique as part of the inverse problem in Diffuse Optical Tomography (DOT). Use of the
RTE over the more typical application of the diffusion approximation permits accurate modelling in the case of
short source-detector separation and regions of low scattering, in addition to providing time-domain information
without extra computational effort over continuous-wave solutions.

Keywords: Diffuse Optical Tomography, Radiative Transport Equation, Monte-Carlo Techniques, Inverse Prob-
lems, Image Reconstruction

1. INTRODUCTION

A number of biomedical imaging modalities have been developed to image the spatially varying optical properties
of biological tissues from measurements of light transmission through the medium. The archetypal technique is
Diffuse Optical Tomography (DOT), in which recovery of the parameters of interest is typically achieved by the
solution of a model-based inverse problem, whereby an objective function representing the difference between
the measured data and a suitable forward model is minimised.

Owing to its modest computational requirements, the diffusion approximation (DA) to the radiative transport
equation (RTE) is the usual choice of forward model for the propagation of light employed in the inverse problem.
However, the DA is invalid in many contexts of increasing interest both in DOT and related techniques, including
in the case of measurements close to optical sources, and the presence of non-scattering regions such as the CSF
layer surrounding the brain. Furthermore, the computational requirements of the DA are significantly increased
when time-domain information is required.

Recent advances in parallel computing have made stochastic Monte-Carlo solutions to the RTE viable as a
forward model, but until now it has not been shown how MC solutions to the RTE can be properly and efficiently
used as part of the inverse problem. In this work we introduce a new Monte-Carlo technique to estimate the
radiance distribution in a medium according to the RTE. We demonstrate how to efficiently form gradients of
the forward model with respect to the parameters of interest, and thus how to employ this technique as part of
the typical model-based inverse problem.
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2. THEORY

The Radiative Transport Equation for the propagation of light in a three-dimensional domain is given by

Lφ = q ≡
(

1

c

∂

∂t
+ ŝ · ∇+ µtr

)
φ(r, ŝ, t)− µs(r)

∫
S2

Θ(ŝ, ŝ′)φ(r, ŝ′, t) dŝ = q(r, ŝ, t), r ∈ Ω (1)

where Ω is the domain of interest, c is the speed of light, ŝ is a unit vector in S2, µtr = µa + µs is the transport
coefficient, µa is the absorption coefficient, µs is the scattering coefficient, p(ŝ, ŝ′) is a normalised scattering phase
function which represents the probability of scattering from ŝ to ŝ′, q is a source of light, and φ(r, ŝ, t) is the
radiance at a point r, in direction ŝ, at time t.

Suitable boundary conditions for the RTE enforce that the total energy inwards across the boundary is equal
to that exiting the medium and reflected back into the domain, plus any sources on the boundary,∫

ŝ·n̂<0

ŝφ(r, ŝ, t) dŝ =

∫
ŝ·n̂>0

ŝR(ŝ)φ(r, ŝ, t) dŝ + q+(r, ŝ, t), r ∈ δΩ (2)

where δΩ is the boundary of the domain, n̂ is an outward normal to δΩ at r, R(ŝ) is an angularly dependent
refraction coefficient, and q+ is a boundary source term.

2.1 Forward problem

In DOT a set of optical sources and detectors are placed on the boundary of the domain, and the measured flux
across the boundary is recorded for each combination of source and detector. The forward problem is thus to
find the data

gij(t) =

∫
ŝ·n̂<0

mj(r, ŝ, t)φi(r, ŝ, t) dr dŝ, (3)

for all sources i, and detectors j, where m(r, ŝ) is a spatially and angularly varying detection aperture, and the
forward radiance field for the ith source is given by

φi(r, ŝ, t) = L−1qi, (4)

where L is an operator implementing the RTE of equation 1, for a given choice of parameters. For a set of
sources and detectors we write the forward model

g(t) = P[µa, µs](t), (5)

where we have made explicit parameterisation by the optical properties of interest, µa and µs.

2.2 Inverse problem

The inverse problem in DOT is to infer the optical properties of interest (typically the absorption coefficient
µa) from the measured data. Whilst arguably of less clinical relevance, the scattering coefficient µs may also be
reconstructed. A typical approach is to pose this problem as the optimisation of a non-linear objective function,

E(µa, µs) =
1

2

∑
j,i

∫ ∞
−∞

(
yj,i(t)− Pj,i[µa, µs](t)

σj,i

)2

dt (6)

the minimisation of which is consistent with a maximum likelihood estimation under the assumption that the
data are corrupted with multivariate Gaussian noise.

The error functional of equation 6 is convex and differentiable, such that its minimisation can be achieved
using a variety of non-linear first- and second-order non-linear optimisation techniques. The starting point in
each case is a definition of the gradient of the error function, which in this case is given by

∂E
∂x

= −
∑
j,i

∫ ∞
−∞

(
yj,i(t)− Pj,i[µa, µs](t)

σ2
j,i

)(
∂Pji[µa, µs](t)

∂x

)
dt (7)
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where x is either µa or µs. The derivative of the forward operator with respect to the absorption and scattering
coefficients is given by

∂Pji[µa, µs](t)

∂µa(r)
= −

∫ ∞
−∞

∫
S2

φ∗j(r, ŝ, t
′)φi(r, ŝ, t− t′) dŝ dt′, (8)

and

∂Pji[µa, µs](t)

∂µs(r)
=

∫ ∞
−∞

[∫
S2

φ∗j(r, ŝ, t
′)φi(r, ŝ, t− t′) dŝ−

∫
S2

∫
S2

φ∗j(r, ŝ
′, t′)p(ŝ, ŝ′)φi(r, ŝ, t− t′) dŝ′ dŝ

]
dt′,

(9)
respectively, where φi is the solution of equation 1 for source i and φ∗j is the solution of the adjoint equation,

L∗φ∗j = 0 ≡
(
−1

c

∂

∂t
− ŝ · ∇+ µtr

)
φ∗j(r, ŝ, t)− µs(r)

∫
S2

Θ(ŝ, ŝ′)φ∗j(r, ŝ
′, t) dŝ′ = 0, r ∈ Ω (10)

with the boundary conditions of equation 2 where the boundary source is given by

q+
j (r, ŝ, t) = mj(r, ŝ, t), r ∈ δΩ. (11)

2.3 Discretisation

To represent the radiance numerically we discretise the spatio-angular-temporal radiance field φ in a piecewise-
constant basis in space and time, and a truncated real spherical harmonic basis in angle. The discretised radiance
field is thus expressed as

φ(r, ŝ, t) =

Nk∑
k

Np∑
p

N∑̀
`=0

∑̀
m=−`

ψklmpY`m(ŝ)X 3
k (r)X 1

p (t), (12)

where Y`m (defined further in appendix A) are real spherical harmonics of degree `, order m (with normalisaion
condition 〈Y`m, Y`′m′〉 = δ``′δmm′), and X 3 and X 1 are a suitable discretisation of the spatial domain in R3 and
the temporal domain in R1, respectively.

The angular basis is limited to degree Nl which restricts the recording of high spatial frequencies inherently
attenuated by the RTE in a highly scattering regime. Storage of the coefficient array ψklmp in this discretisation
requires NkNpNt(Nl + 1)2 elements. As an example, a spatial discretisation of 1003 voxels, 100 time points, and
an angular discretisation up to and including degree 4 implies 9× 108 elements, requiring ∼ 3.5Gb of storage in
single-precision floating point.

2.3.1 Absorption sensitivity functions

To determine the sensitivity functions with respect to µa substitute equation 12 into equation 8,

∂Pji[µa, µs](t)

∂µa(r)
= −

∫ ∞
−∞

∫
S2

Nk∑
k′

Np∑
p′

N∑̀
`′=0

∑̀
m′=−`

ψ′k′l′m′p′Y`′m′(ŝ)X 3
k′(r)X 1

p′(t′)


×

Nk∑
k

Np∑
p

N∑̀
`=0

∑̀
m=−`

ψklmpY`m(ŝ)X 3
k (r)X 1

p (t− t′)

 dŝ dt′. (13)

The real spherical harmonic basis used in this work forms an orthonormal basis,∫
S2

Y`m(ŝ)Y`′m′(ŝ) dŝ = δ``′δmm′ , (14)

such that

∂Pji[µa, µs](t)

∂µa(r)
= −

N∑̀
`=0

∑̀
m=−`

∫ ∞
−∞

Nk∑
k′

Np∑
p′

ψ′k′lmp′X 3
k′(r)X 1

p′(t′)

Nk∑
k

Np∑
p

ψklmpX 3
k (r)X 1

p (t− t′)

 dt′. (15)
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For the purposes of optimisation we wish to represent the sensitivity functions as a set of coefficients in a
suitable basis. In this work we choose to represent the parameter distributions of interest in the same spatial
basis as the radiance field. We accordingly project the resultant sensitivity functions into the same spatial and
temporal basis as the radiance field,

∂Pji[µa, µs]p
∂µak

=

∫ ∞
−∞

∫
Ω

X 3
k (r)X 1

p (t)
∂Pji[µa, µs](t)

∂µa(r)
dr dt (16)

which, for our choice of a piecewise-constant non-overlapping uniform rectilinear basis, is given by,

∂Pji[µa, µs]p
∂µak

= −
N∑̀
`=0

∑̀
m=−`

p∑
q=0

∆r∆t ψ′klm(p−q)ψklmq (17)

where ∆r =
∫
X 3

k (r) dr and ∆t =
∫
X 1

k (t) dt for any k, it is assumed that the source functions are delta functions
in time, and p = 0, 1, . . . , Nt − 1, for recording over the period 0 ≤ t ≤ Nt∆t.

2.3.2 Scattering sensitivity functions

To determine the sensitivity functions with respect to µs we begin by expressing the Henyey-Greenstein phase
function Θ(ŝ, ŝ′) in the same spherical harmonic basis as that in which we represent the radiance, whereby it
forms a series in powers of the anisotropy factor g,17

Θ(ŝ, ŝ′) =

∞∑
`=0

∑̀
m=−`

g`Y`m(ŝ)Y`m(ŝ), (18)

and now substitute equations 12 and 18 into the second term of equation 9,∫
S2

∫
S2

φ∗j(r, ŝ
′, t′)Θ(ŝ, ŝ′)φi(r, ŝ, t− t′) dŝ′ dŝ

=

∫
S2

∫
S2

Nk∑
k′

Np∑
p′

N∑̀
`′=0

∑̀
m′=−`

ψ′k′l′m′p′Y`′m′(ŝ′)X 3
k′(r)X 1

p′(t′)


×

 ∞∑
`′′=0

`′′∑
m′′=−`′′

g`
′′
Y`′′m′′(ŝ)Y`′′m′′(ŝ′)


×

Nk∑
k

Np∑
p

N∑̀
`=0

∑̀
m=−`

ψklmpY`m(ŝ)X 3
k (r)X 1

p (t− t′)

 dŝ′ dŝ. (19)

The integrals in the expression can be separated by defining

I1 =

∫
S2

I2(ŝ)

Nk∑
k

Np∑
p

N∑̀
`=0

∑̀
m=−`

ψklmpY`m(ŝ)X 3
k (r)X 1

p (t− t′)

 dŝ (20)

where

I2 =

∫
S2

Nk∑
k′

Np∑
p′

N∑̀
`′=0

∑̀
m′=−`

ψ′k′l′m′p′Y`′m′(ŝ′)X 3
k′(r)X 1

p′(t′)

 ∞∑
`′′=0

`′′∑
m′′=−`′′

g`
′′
Y`′′m′′(ŝ)Y`′′m′′(ŝ′)

 dŝ′. (21)

We invoke the orthogonality relationship for the real spherical harmonics, which reduces the integral over ŝ′

I2 =

Nk∑
k′

Np∑
p′

∞∑
`′=0

`′∑
m′=−`′

ψ′k′l′m′p′g`
′
Y`′m′(ŝ)X 3

k′(r)X 1
p′(t′), (22)
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and substitute the result into the expression for I1

I1 =

∫
S2

Nk∑
k′

Np∑
p′

∞∑
`′=0

`′∑
m′=−`′

ψ′k′l′m′p′g`
′
Y`′m′(ŝ′)X 3

k′(r)X 1
p′(t′)

Nk∑
k

Np∑
p

N∑̀
`=0

∑̀
m=−`

ψklmpY`m(ŝ)X 3
k (r)X 1

p (t− t′)

 dŝ′

(23)

where the integral is again resolved by the orthogonality relation,

I1 =

∞∑
`=0

∑̀
m=−`

Nk∑
k′

Np∑
p′

ψ′k′lmp′g`X 3
k′(r)X 1

p′(t′)

Nk∑
k

Np∑
p

ψklmpX 3
k (r)X 1

p (t− t′)

 . (24)

We now insert 24 into equation 9, where we note that the first term is given by the earlier result for the
absorption gradient as expressed in equation 15,

∂Pji[µa, µs](t)

∂µs(r)
=

∞∑
`=0

∑̀
m=−`

∫ ∞
−∞

Nk∑
k′

Np∑
p′

ψ′k′lmp′X 3
k′(r)X 1

p′(t′)

Nk∑
k

Np∑
p

ψklmpX 3
k (r)X 1

p (t− t′)


−

Nk∑
k′

Np∑
p′

ψ′k′lmp′g`X 3
k′(r)X 1

p′(t′)

Nk∑
k

Np∑
p

ψklmpX 3
k (r)X 1

p (t− t′)

 dt′ (25)

which is readily factorised

∂Pji[µa, µs](t)

∂µs(r)
=

∞∑
`=1

∑̀
m=−`

∫ ∞
−∞

Nk∑
k′

Np∑
p′

ψ′k′lmp′X 3
k′(r)X 1

p′(t′)

Nk∑
k

Np∑
p

ψklmpX 3
k (r)X 1

p (t− t′)

 (1−g`) dt′. (26)

where since for the zeroth degree spherical harmonics (1− g`) = 0, the limits of the first summation have been
altered, and it is now readily apparent that the gradient with respect to scattering contains contributions only
from the gradient of the field, and not its average.

Finally we project this result into the reconstruction basis,

∂Pji[µa, µs]p
∂µsk

= −
N∑̀
`=1

∑̀
m=−`

p∑
q=0

∆r∆t ψ′klm(p−q)ψklmq(1− g`), (27)

where ∆r =
∫
X 3

k (r) dr and ∆t =
∫
X 1

k (t) dt for any k, it is assumed that the source functions are delta functions
in time, and p = 0, 1, . . . , Nt − 1, for recording over the period 0 ≤ t ≤ Nt∆t.

3. METHOD

In this work, we use the Monte-Carlo method to approximate the forward and adjoint RTE operators in order
to build the gradients of the forward model according to equations 17 and 27.

3.1 Monte-Carlo forward solver

We have developed a Monte-Carlo forward solver which employs full ray-tracing of the computational domain in
which all parameters (absorption, scattering, refractive index) are defined on the same basis as the radiance field.
The front-end simulation code is written in the Julia language,21 which controls and dispatches the execution of
kernels on both the CPU (written in Julia), and the GPU (written in nVidia’s CUDA language).

The code computes step lengths and scales radiance deposition according to the alebdo-weight (AW) method.16

The roulette technique employed in the MCML package7 is used to reduce variance and improve computational
efficiency. At each deposition event the vector of radiance basis coefficients ~ψ is updated

ψklmp ← ψklmp + ∆w∆φklmp, (28)

Proc. of SPIE Vol. 10059  100590W-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/09/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



µa = 0.01 mm-1 

µs = 5.00 mm-1 

g = 0.8

µs = 0.1 mm-1 µs = 0.1 mm-1 

x

y

z

µa = 0.01 mm-1 

µs = 5.00 mm-1 

g = 0.8

x

y

z

z = 0mm

z = 0mm z = 0mm

z = 0mm

x

y

z

x

y

zx

y

z

Figure 1. Homogenous domain of dimensions 50×50×50mm, absorption coefficient µa = 0.01mm−1, scattering coefficient
µs = 5.00mm−1, ansiotropy factor g = 0.8. Inwards arrows depict the source locations for radiance evaluations (left), and
gradient calculations (right). Outwards arrows indicate detector location for gradient evaluations (right only).

where ∆w is computed according to the AW technique, and

∆φklmp =

∫ ∞
−∞

∫
Ω

∫
S2

f(r, ŝ, t)Y`m(ŝ)X 3
k (r)X 1

p (t) dŝ dr dt (29)

with
f(r, ŝ, t) = δ(r− r′)δ(ŝ− ŝ′)δ(t− t′), (30)

for deposition by a photon packet at location r′, travelling in direction ŝ′, having travelled for t′.

Source functions, measurement apertures, and adjoint source functions are directly implemented by spec-
ification of their spatial, angular, and temporal probability density functions. When acting as sources, these
functions are sampled uniformly to initialise the location, direction, and start time of a given photon packet.
When acting as detectors, the values of the probability density functions are calculated at the specified location,
direction, and time, and a weighted fraction of the incoming flux is deposited accordingly.

4. RESULTS

To explore our proposed technique, we present sensitivity calculated functions according to the presented theory.
We consider the CW case in depth, in both an homogeneous domain and one containing a void region. In each
case we consider the variation of the sensitivity functions with respect to the degree of the angular discretisation.

4.1 Homogenous domain

We first consider an homogenous cube, as depicted in figure 1.

To evaluate the forward radiance distribution we add a single pencil-source at the center of the boundary in
the x − z plane, as depicted in figure 1 (left). In figure 2 we plot the spherical harmonic coefficient values for
the resultant radiance distribution, evaluated in the y − z plane in the axis of the source. The Y0,0 component
is by definition the fluence in the medium, and follows the expected exponential decay profile away from the
source. The Y1,−1 component (second row, left) corresponds to the gradient of the fluence in the +x direction,
and demonstrates that the field decays from the peak generated by the pencil source at x = 0. The Y1,0

component (second row, center) corresponds to the gradient of the fluence in the +z direction — this is zero
throughout the image since we are observing the gradient in the plane of the source, where the fluence is at
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Figure 2. Forward radiance fields in an homogenous cube for a single pencil source as depicted in figure 1. All plots
share a common, arbitrary, colour scale, red indicates positive values, blue indicated negative. Fields are shown in a slice
through the plane of the source.

an extremum. The Y1,−1 component represents the gradient of the fluence in the +y direction. At depth the
gradient is seen to be positive, representing the decay of the fluence into the medium. Close to the boundary we
find the gradient is negative, representing the backscattering of light towards the input plane. Since the higher
harmonics contain combinations of the Cartesian components they do not offer a simple interpretation, though
we note that the magnitude of the higher harmonics decays more quickly with respect to depth, as the scattering
process randomises the direction of the propagation of the direction of the light.

We now proceed to evaluate the absorption and scattering sensitivity functions in the same domain. To
this end, we add a single source-detector pair to the domain, as depicted in figure 1 (right). Figure 3 depicts
the sensitivity functions for the absorption coefficient, evaluated using different maximum degress of spherical
harmonic coefficients, and the difference between them (multiplied by ten). The absorption sensitivity functions
form the familiar ‘banana’ shaped distribution with peak sensitivity near the source and detector. Given the
scaling of the difference, we find that for the homogenous domain their is limited benefit to increasing the degree
of the spherical harmonic expansion.

Figure 4 depicts the sensitivity functions for the scattering coefficient, in the same configuration. The form
of the scattering coefficient is more complex, and demonstrates a bipolar distribution. At depth the common
‘banana’ shaped sensitivity function is evident, though closer to the boundary we see a region of positive sen-
sitivity in which an increase in the scattering coefficient will cause more light to reach the detector from the
source position, by increased scattering of the incident light. As in the case of absorption, increasing the degree
of spherical harmonic expansion used to represent the field has limited effect, excepting regions very close to the
source and detector.
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Figure 3. Sensitivity functions for the absorption coefficient in an homogenous cube, built using spherical harmonic
functions of degree ` ≤ 1 (left) and ` ≤ 4 (centre), and the difference between the two results (right). The scale of the
difference plot is multiplied by ten relative to the sensitivity functions

Figure 4. Sensitivity functions for the scattering coefficient in an homogenous cube, built using spherical harmonic functions
of degree ` ≤ 2 (left) and ` ≤ 4 (centre), and the difference between the two results (right). The scale of the difference
plot is multiplied by ten relative to the sensitivity functions
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Figure 5. Domain including a void of dimensions 50 × 50 × 50mm, bulk absorption coefficient µa = 0.01mm−1, scattering
coefficient µs = 5.00mm−1, and ansiotropy factor g = 0.8. The void region has scattering coefficient µs = 0.1mm−1.
Inwards arrows depict the source locations for radiance evaluations (left), and gradient calculations (right). Outwards
arrows indicate detector location for gradient evaluations (right only).

4.2 Domain with a void region

We now consider a a domain containing a void region, as depicted in figure 5.

We once again illuminate the medium with a single pencil-source at the center of the boundary in the x− z
plane, as depicted in figure 5 (left). In figure 6 we plot the spherical harmonic coefficient values for the resultant
radiance distribution, evaluated in the y − z plane in the axis of the source. In the presence of a void region,
significant differences are evident relative to the homogenous case. The lack of scattering in the void is such
that the direction of transport is not randomised to as great an extent as in the homogenous case, this allows
propagation of the higher harmonics far deeper into the medium.

Following the addition of a source-detector pair to the domain, as depicted in figure 5 (right), we compute
the absorption and scattering sensitivity functions in the domain. Figure 7 depicts the sensitivity functions for
the absorption coefficient, evaluated using different maximum degress of spherical harmonic coefficients, and the
difference between them, presented on the same scale. The void region supports the collimation of the source
until far deeper into the domain, reducing the sensitivity to absorption near the surface of the domain. Of
particular note is that the difference between a zeroth- and fourth-degree spherical harmonic approximation is
now far more pronounced: with a higher degree approximation the collimation of the input is better captured,
leading to reduced superficial sensitivity.

Figure 8 depicts the sensitivity functions for the scattering coefficient, in the same configuration. Again it is
demonstrated that in the presence of a void region, there are significant differences in the sensitivity functions.
In particular, we note that a higher degree approximation allows backscatering from the highly scattering region
below the void to lead to a band of higher (more positive) sensitivity whereby backscattering from the region
back into the void layer increases the detected signal. We will return to this point in the following section.

5. DISCUSSION & CONCLUSIONS

We have demonstrated a new technique to stochastically estimate solutions to the radiative transport equation
in arbitrary three dimensional domains. This method naturally provides estimates of the radiance in a spherical
harmonic basis. Following their derivation, the derivatives of the RTE with respect to absorption and scattering
parameters are shown to have a straightforward form in this choice of discretisation.
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Figure 6. Forward radiance fields in an homogenous cube for a single pencil source as depicted in figure 5. All plots
share a common, arbitrary, colour scale, red indicates positive values, blue indicated negative. Fields are shown in a slice
through the plane of the source.

We have shown the form of sensitivity functions calculated in an homogenous cube, and those in the presence of
a void region. As expected, the presence of a void region allows higher degree harmonic components to penetrate
deeper into the domain, thus requiring a higher degree spherical harmonic expansion for their representation.
These derivatives are the starting point of the inverse problem which seeks to recover the parameters of interest
from measurements.

The use of the RTE overcomes approximations present in the diffusion equation which permits accurate
calculation of the optical field in the presence of short source-detector separations, and void regions. If required,
stochastic solution of the RTE allows computation of the time-domain form of both the forward radiance fields
and the sensitivity functions without extra computational cost over the CW case.
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Figure 7. Sensitivity functions for the absorption coefficient in a cube with a void region, built using spherical harmonic
functions of degree ` ≤ 1 (left) and ` ≤ 4 (centre), and the difference between the two results (right). The colour scale is
identical for all plots.

Figure 8. Sensitivity functions for the scattering coefficient in a cube with a void region, built using spherical harmonic
functions of degree ` ≤ 2 (left) and ` ≤ 4 (centre), and the difference between the two results (right). The colour scale is
identical for all plots.
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APPENDIX A. REAL SPHERICAL HARMONICS

The spherical harmonics are a set of complex-valued functions which form an orthogonal basis over the sphere.
For computational convenience we choose to use the real-valued form of this set,

Y`m =



√
2

√
(2`+ 1)

4π

√
(`− |m|)!
(`+ |m|)!

P
|m|
` (cos θ) sin |m|ϕ if m < 0√

(2`+ 1)

4π
Pm
` (cos θ) if m = 0

√
2

√
(2`+ 1)

4π

√
(`−m)!

(`+m)!
Pm
` (cos θ) cosmϕ if m > 0

(31)

where ` is the degree of the spherical harmonic, m is the order, Pm
` are the associated Legendre polynomials.
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