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Abstract

Engineers seek optimal solutions when designing dynamic systems but a crucial element
is to ensure bounded performance over time. Finding a globally optimal bounded tra-
jectory requires the solution of the ordinary differential equation (ODE) systems in a
verified way. To date these methods are only able to address low dimensional problems
and for larger systems are unable to prevent gross overestimation of the bounds. In this
paper we show how interval contractors can be used to obtain tightly bounded optima.
A verified solver constructs tight upper and lower bounds on the dynamic variables us-
ing contractors for initial value problems (IVP) for ODEs within a global optimisation
method. The solver provides guaranteed bound on the objective function and on the first
order sensitivity equations in a branch and bound framework. The method is compared
with three previously published methods on three examples from process engineering.

Keywords: Global optimisation; Dynamic systems; Verified integration; Interval anal-
ysis; Interval contractors.

1 Introduction

In chemical engineering dynamic processes arise in many applications and often an op-
timal trajectory is sought. For example we need the control path for optimal resource
consumption in changes of product grade on polymer plants, estimating dynamic states
for process control as well as in model building applications (Esposito and Floudas, 2000b;
Singer et al., 2006), design of batch systems in chemical engineering, including dynamic
rectors and a system with a reactor, heat exchanger, separator and distillation column
(Bhatia and Biegler, 1996), simultaneous dynamic optimisation for the calculation of op-
timal transient trajectories for a polymerisation process (Flores-Tlacuahuac et al., 2005),
dynamic optimisation of distillation columns with particular focus on equilibrium con-
straints (Raghunathan et al., 2004), computation of optimal time trajectories for the
control of the different flows in a simulated moving-bed process (Kloppenburg and Gilles,
1999), and a logic-based solution approach applied to a multistage batch distillation pro-
cess of a ternary mixture (Oldenburg et al., 2003).
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There are many problems that require guaranteed bounded performance along the whole
trajectory often because of safety critical and environmental limits. In these applications,
it is not admissible to allow a certain variable to go beyond some prescribed limits. For
example, the content of a certain compound in a stream is not allowed to be present
in a higher concentration than the level permitted by the environmental regulator who
might otherwise oblige the plant to shut down. The engineer has to make sure that this
concentration is within the admissible limits at all times, however, he must do it without
compromising too much the cost of the plant operation and the qualities of all products.
Safety critical plants require that the variables of interest, for example temperature or
pressure of plant equipment, be within limits for the whole time of operation.

Obtaining the optimal performance is not an easy task since dynamic models in chemical
engineering often exhibit non-convexities due to the combination of nonlinear terms, and
thus, multiple local minima arise in the model. Moreover, to guarantee we are within
limits we are required to rigorously make sure we are including all possible solutions. In
this sense, we want our computations to rigorously determine the optimal solution by
obtaining mathematically verified upper and lower bounds on the global optima.

This can be achieved if we obtain bounds on the dynamic variables that are mathe-
matically verified to be within a safe operating range. In this context, the term ”mathe-
matically verified” means that we are able to include all the solutions within upper and
lower bounds. For example, interval amounts can represent ranges of values from a lower
to an upper endpoint and they include all the values within a range because the lower
and the upper endpoint are rounded downwards and upwards, respectively.

Sequential and simultaneous approaches have been used for the solution of the deter-
ministic global optimisation problem for dynamic systems. In the first, the dynamic
system is integrated and in turn the objective function and gradients are evaluated. In
the second, the dynamic system is converted to a set of algebraic equations by using
collocation-based discretisations leaving a fully algebraic nonlinear programming (NLP)
problem. Stochastic methods have also been used although they are not considered in
this paper because they are not able to provide a guarantee that the global optima have
been found.

Several chemical engineering researchers have devoted their efforts to solve the guaran-
teed global optimisation problem for dynamic systems. They have used complete search
methods such as branch and bound frameworks to make sure no solution is left out and
to focus on finding bounds for the dynamic variables. Therefore, their algorithms rigor-
ously find all global optima within bounds or are at least able to provide a theoretical
guarantee that the global optima have been found. A branch and bound framework was
used with the αBB method (Adjiman et al., 1996) in a sequential approach and applied
to four different optimal control problems including the optimal control of batch and
semi-batch processes (Esposito and Floudas, 2000b), and to parameter estimation prob-
lems to determine reaction kinetic constants from time series data (Esposito and Floudas,
2000a). In principle the method of (Esposito and Floudas, 2000a,b) provides a guaran-
teed global optimum. The rigorous underestimators needed are hard to obtain and here
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only sampling approaches were proposed. Another sequential approach implementing a
branch and bound framework was developed with a convex underestimating procedure
(Papamichail and Adjiman, 2002) which they applied to parameter estimation, chemical
kinetics and modelling and optimal control problems. Some years later, again using a se-
quential approach and a branch and bound framework, Papamichail and Adjiman (2004)
used McCormick relaxations and constant and affine bounds in the solution of param-
eter estimation and optimal control problems. The approach used by Papamichail and
Adjiman (2002, 2004) is computationally expensive in constructing tight affine underes-
timators and overestimators. Singer and Barton (2006) presented a sequential approach
using another branch and bound framework for problems with an integral objective func-
tion. This algorithm implements differential inequalities and McCormick relaxations to
construct the convex/concave relaxations and the method was applied to parameter esti-
mation and optimal control problems. Rauh et al. (2006) presented a global optimisation
method for discrete-time and continuous-time systems applied to a mechanical positioning
system. In the continuous-time system their algorithm uses a prototype implementation
of an interval extension of Taylor series as a verified solver. The guaranteed solution
has also been considered for mixed-integer dynamic optimisation. Chachuat et al. (2006)
presents a review on these methods focusing on systems with embedded ODEs and branch
and bound frameworks. They stress out the importance of tight state relaxations and the
use of heuristics in the global optimisation algorithm. The dynamic optimisation problem
has also been addressed using Taylor Models in a sequential approach and a branch and
bound framework with focus on the tightness of the ODEs state bounds. This method
uses Taylor Models method with an interval remainder term and was applied to several
parameter estimation problems (Lin and Stadtherr, 2006b). Later, they applied the same
method but this time with a branch and reduce approach using a domain reduction tech-
nique Lin and Stadtherr (2007a) and the applications were an optimal control and a final
time formulation of the oil shale pyrolysis problems. The later method was extended to
account for inequality path constraints in a rigorous way (Zhao and Stadtherr, 2011) and
was applied to three semi-batch reactor problems.

Only a few research groups have worked on this problem and they have mainly made
use of a branch and bound framework in a sequential approach. The available methods
for solving dynamic systems to global optimality are only able to address low dimensional
problems. According to Table 1 of the order of 2-7 state variables and 1 to 8 decision
variables.

In these methods one of the main challenges to overcome is on the construction of tight
and efficient bounds for the dynamic constraints. This problem arises because there is
overestimation present in the construction of the bounds which causes the bounds to be
overconservative (yielding to poor objective function and gradient evaluation) or in the
worst case they tend to ±∞ and the algorithm has to be stopped.

Bounds on the dynamic variables overestimate because usually some form of overap-
proximation (such as intervals or relaxations) is used to guarantee that all the solutions
are included. However, the set or relaxation used is merely a representation of the true
solution set and when operations with overestimated values are propagated (in an inte-
gration algorithm for example) the result can be extremely overconservative.
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Table 1: Number of state variables and system parameters in global optimisation for
dynamic systems

Reference Maximum number of
state variables

Maximum number of
decision variables

Esposito and Floudas
(2000b)

7 1

Esposito and Floudas
(2000a)

3 5

Papamichail and Adji-
man (2002)

2 3

Papamichail and Adji-
man (2004)

2 3

Singer and Barton (2006)
4 3

Lin and Stadtherr
(2006b)

2 4

Lin and Stadtherr
(2007a)

5 5

Zhao and Stadtherr
(2011)

4 8

In this work, we propose to use interval contracting methods in a verified integration
method in order to obtain tight and efficient bounds for global optimisation for dynamic
systems applications.

The paper is organised as follows, in Section 2 the problem formulation of the global
optimisation and the dynamic system are presented. Section 3 describes the verified in-
tegration method used in this work. Section 4 presents the sources of overestimation in
interval arithmetic and ways to tackle them are presented. Numerical case studies on
verified integration are reported on Section 5. The description of the global optimisation
solution methodology is given in Section 6 and numerical case studies from global optimi-
sation are presented in Section 7. Finally, conclusive remarks are presented in Section 8.

2 Problem formulation

We assume that the system can be described by an ODE model ẏ(t) = f(t,y(t), θ), with
y, the vector of state variables and θ, the vector of system parameters. In this article the
bold type notation is adopted to indicate vector-valued quantities and square brackets
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are used for interval-valued quantities unless otherwise specified. The lower and upper
endpoints of an interval [x] are specified by [x, x], the width or diameter of an interval
is given by w([x]) = x − x and the midpoint by x̂ = m([x]) = (x − x)/2. A dynamic
optimisation problem involving a dynamic model can be formulated as

min
θ

φ(y(ti, θ), θ; i = 1, . . . , ns)

s.t. ẏ = f(t,y(t), θ)

y(t0, θ) = y0(θ)

t ∈ [t0, tf ]

θ ∈ [θ]

(1)

where φ is the objective function, [θ] = [θ, θ] are the decision variables, an interval vector
where θ and θ are lower and upper endpoints, respectively.

The dynamic simulation problem we are aiming to solve within the optimisation problem
which is as follows:

ẏ(t) = f(t,y(t), θ), y(t0, θ) = y0(θ), y0(θ) ∈ [y0], θ ∈ [θ] (2)

where t ∈ [t0, tf ], θ represent the time-invariant parameters with [θ] = [θ, θ] , y represent
the vector of state variables, y0 are the initial conditions at time t0 with [y0] = [y0,y0].
Here, f is assumed to be (k−1) times continuously differentiable with respect to the state
variables. The parameters of the simulation problem correspond to the decision variables
of the optimisation problem.

A solution of (2) from the initial condition yj at tj and parameter values θ is denoted
by y(t; tj ,yj, θ). The solution set of (2) with initial conditions [yj ] at tj and parameter
values [θ] is given by y(t; tj, [yj ], [θ]) = {y(t; tj,yj, θ) | yj ∈ [yj], θ ∈ [θ]}. The objective
of this method is to compute an enclosure

[yj ] ⊇ y(tj ; t0, [y0], [θ]) = {y(tj; t0,y0, θ) | y0 ∈ [y0], θ ∈ [θ]} (3)

at tj ∈ [t0, tf ], j = 1, . . . Ns. In the next section a method based on interval analysis to
compute the enclosure above is described. As we will see the main problem with these
methods is addressing the overestimation generated in the integration.

This work considers a sequential approach in which the dynamic constraints need to be
integrated in order to evaluate the objective function and gradients. When a sequential
approach is used a verified ODE method integrates the dynamic part of the optimisation
problem leaving a problem only constrained by the system parameters θ. In the global
optimisation algorithm (Table 2) two calls to the verified integration method are done
per iteration. The tightness of the bounds from the verified integration method directly
affect the global optimisation as we evaluate the objective function and gradients with
these. Hence, it is desirable to obtain the tightest bounds possible.

In the next section the verified integration method used in the global optimisation algo-
rithm is described.

5



Table 2: Global optimisation algorithm

GOalgorithm(In: φ∗
local, [θ]0, ε; Out: [φ∗], C, L)

Initialise: [θ] = [θ]0, φub = φ∗
local or φub = φ(θ̂), L = ∅, C = ∅

while L 6= ∅

Bisect [θ] such that w([θ]i) = w([θ]) = max1≤i≤nw([θ]i) : [θ] = [θ](1) ∪ [θ](2)

Call ITSContractor([y0],[θ]
(1)) to evaluate φ([θ](1)) and ∂φ

∂θ
([θ](1))

Call ITSContractor([y0],[θ]
(2)) to evaluate φ([θ](2)) and ∂φ

∂θ
([θ](2))

φub = min{φub, φ(θ̂
(1)
), φ(θ̂

(2)
)}

if max{φ([θ](1)), φ([θ](2))} −min{φ([θ](1)), φ([θ](2))} < ε then

if 0 /∈ ∂φ

∂θ
([θ](1)) then Discard [θ](1)

else if 0 /∈ ∂φ

∂θ
([θ](2)) then Discard [θ](2)

end if

Place [θ](1) and [θ](2) into C in order

if L 6= ∅ then

Remove the first item from L and place its box into [θ]

if φ([θ]) > φub then

return with φ equal to lower bound on the first box in C

and with the lists C and L

end if

else

return with φ equal to lower bound on the first box in C

and with list C

end if

else

if 0 /∈ ∂φ

∂θ
([θ](1)) then Discard [θ](1)

else if 0 /∈ ∂φ

∂θ
([θ](2)) then Discard [θ](2)

end if

Enter the items ([θ](1), φ([θ](1)) and ([θ](2), φ([θ](2)) in proper order in list L

Set [θ] as the argument of the first item in L (with lowest φ([θ])) and remove

the item ([θ], φ([θ]) from the list

end if

end while
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3 Verified integration of dynamic systems

Dynamic simulation represents a key step in the deterministic solution for dynamic op-
timisation problems. When the objective is to rigorously obtain the best solution of the
dynamic optimisation problem, a global optimisation technique is required as well as the
ability to manage the round off and truncation errors in the integration stage which can
be done using a verified integration method for the solution of the dynamic system.

The solution of the initial value problems (IVPs) for ODEs plays a key role in the rigor-
ous deterministic solution of dynamic optimisation problems and there are methods for
this purpose which are mostly based on interval analysis. A number of researchers have
developed several methods for the verified solution of IVPs for ODEs. One of the first
attempts to find a verified solution for these systems was proposed by (Moore, 1962). His
idea consists of the use of the Picard-Lindelhof iteration in the system of ODEs and the
Taylor expansion of the same. In his method he provides a constant enclosure step to
determine an a priori enclosure (coarse enclosure) of the solution.

Several other modifications to Moore’s method have been made by other researchers
including Eijgenraam (1981). The purpose of these modifications were to reduce the
wrapping effect (Section 4.1) so Eijgenraam proposed several transformations. The mod-
ifications proposed by Lohner (1992) also had an important impact as he devised a method
involving a QR factorization of the matrix product responsible for the wrapping effect.
This method is still one of the best alternatives to tackle this problem. Nedialkov et al.
(1999) provide an excellent review about these methods. Another Lohner-type of method
that computes bounds on the partial derivatives with respect to the initial conditions was
developed by Wilczak and Zgliczynski (2011). They employed the CAPD library (CAPD,
2013).

Other alternatives to bound the ODE states with upper and lower bounds have been
proposed, for example the Interval Hermite-Obreschkoff method has been developed by
Nedialkov (2011) and Walawska and Wilczak (2016) have used a similar method to com-
pute bounds on the first order variational equations of ODEs, the Taylor Models approach
by Lin and Stadtherr (2006a) and by Makino and Berz (2003), the differential inequalities
approach by Scott and Barton (2013) and the validated enclosure of an approximate solu-
tion by Rauh et al. (2009). McCormick relaxations (convex and concave relaxations) have
been used in the remainder term of the interval Taylor series (ITS) method (Sahlodin and
Chachuat, 2011b). These relaxations have also been used in the Taylor Models method in
the remainder term (Sahlodin and Chachuat, 2011a). A kind of Taylor model with ellip-
soidal remainder term has also been devised (Houska et al., 2013). Fazal and Neumaier
(2013) computed state bounds using conditional differential inequalities. The method
requires global optimisation subproblems that can make the method verified if a rigorous
global optimisation solver is used.

However, there is still need for a method able to obtain tighter and more efficient bounds
since solving solving dynamic optimisation problems of practical size remains an issue.
Considering all the previous methods, this work makes use of an ITS method because of
its implementation simplicity. This method is prone to be modified and take new imple-
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mentations in an easier manner especially in the development stage and when proposing
new methods. The interval Taylor series has already been subject to some changes re-
cently. It is the basis of the method of the popular software package VNODE (Nedialkov,
2011) which also used the interval Hermite-Obreschkoff approach. McCormick relaxations
have also been used in the method in Sahlodin and Chachuat (2011b). In this paper we
propose to implement interval contractors (Krawczyk and Newton/Gauss-Seidel) at each
iteration of ITS method so as to reduce the overestimation generated. The next section
describes the traditional ITS method.

3.1 Interval Taylor series

In this section an interval Taylor series (ITS) method has been used for obtaining bounds
on the dynamic variables of the ODE models. The bounding method used in this paper
consists of two stages, the approach is similar the one of the VNODE software package
(Nedialkov, 2011) except that the parametric dependency is being explicitly accounted
for. The first stage is the validation of existence and uniqueness of a solution in which
also a suitable a priori enclosure and a time step are obtained. The second stage involves
the computation of a tighter enclosure which consists on the use of a high order Taylor
series to refine the solution obtained in the first stage.

3.1.1 First stage. Validation of existence and uniqueness

In the first stage the validation of existence and uniqueness is carried out and an ap-
propriate time step hj as well as an a priori enclosure [ỹj] ⊇ y(t; tj, [yj ], [θ]), for all
t ∈ [tj , tj+1] with tj+1 = tj + hj are obtained making use of the High Order Enclosure
(HOE) approach (Nedialkov et al., 2001). According to this approach hj and [ỹj ] must
satisfy the following equation:

[ỹj ] = [yj ] +

k−1∑

i=1

[0, hj ]
if [i]([yj], [θ]) + [0, hj]

kf [k]([ỹ0
j ], [θ]) ⊆ [ỹ0

j ] (4)

where k is the order of the Taylor series expansion, [yj ] is the vector of tight enclosures
of the solutions with ranges in [ỹ0

j ], [θ] is the vector of system parameters and f [i] are the
Taylor coefficients defined according to

f [0](y, θ) = yj

f [i](y, θ) =
1

i

(
∂f [i−1]

∂y
f

)

(y, θ) for i ≥ 1
(5)

These Taylor coefficients can be calculated using automatic differentiation.

3.1.2 Second stage. Tightening of the solution

The second stage involves the computation of a tight enclosure [yj+1] ⊇ y(tj+1; t0, [y0], [θ])
given interval bounds [yj] at tj . This stage refines the a priori enclosure [ỹj ] on t ∈ [tj , tj+1]
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provided in the first stage. It satisfies the next equation

[yj+1] =

uj+1
︷ ︸︸ ︷

ŷj +
k−1∑

i=1

hijf
[i](ŷj, θ̂) +

[Sy
j+1]

︷ ︸︸ ︷
{

I+
k−1∑

i=1

hij
∂f [i]

∂y
([yj ], [θ])

}

([yj ]− ŷj)

+

{
k−1∑

i=0

hij
∂f [i]

∂θ
([yj], [θ])

}

︸ ︷︷ ︸

[Sθ
j+1]

([θ]− θ̂) + hkj f
[k]([ỹj ], [θ])

︸ ︷︷ ︸

[zj+1]

(6)

where I is the identity matrix and ŷj = ([yj ] + [yj ])/2. For the sake of simplicity, we

rewrite equation (6) as

[yj+1] = uj+1 + [Syj+1]([yj ]− ŷj) + [Sθj+1]([θ]− θ̂) + [zj+1] (7)

In this method the interval matrix-vector product [Syj+1]([yj ] − ŷj) in equation (7) is
known to be one of the main contributors of the wrapping effect (Moore, 1966). Because
of this, a number of methods have been developed to try to avoid direct evaluations of
this matrix-vector product (Nedialkov et al., 1999). In this article the QR factoriza-
tion technique devised by Lohner (1992) is used in the interval Taylor series method.
This technique or a similar variation is also used in Nedialkov (2011), Lin and Stadtherr
(2006a), Sahlodin and Chachuat (2011b) and Sahlodin and Chachuat (2011a).

The QR factorization technique consists of the substitution of the term [Syj+1]([yj ]− ŷj)
by another term containing a matrix that induces an orthogonal coordinate system that
often provides a better enclosure than the original coordinate system.

[yj+1] = uj+1 + ([Syj+1]Aj)[Γj] + [Sθj+1]([θ]− θ̂) + [zj+1] (8)

where,

[Γj+1] = A−1
j+1([zj+1]− ẑj+1) +A−1

j+1([S
y
j+1]Aj)[Γj ] + (A−1

j+1[S
θ
j+1])([θ]− θ̂) (9)

Here, [Γ0] = [y0] − ŷ0, A0 = I and Aj+1 is chosen as the orthogonal matrix in the QR
factorization of mid([Syj+1]Aj), the parallelepiped enclosure of [Γj+1].

As discussed before, overestimation is present in verified integration methods because
intervals and relaxations provide only approximations of the true solution set. The ITS
method on its own is not able to address significant widths in the system parameters or
initial conditions. When intervals with big widths are used in the method overestimation
is generated by the dependency, cancellation and wrapping effect problems. The excess of
overestimation causes the bounds to be overconservative and in the worst case makes the
bounds tend to ±∞ and consequently the integration stops. The next section describes
the overestimation sources, some techniques to reduce it and an implementation of these
techniques in a verified integrator.
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4 Overestimation in verified simulation

Verified methods exist for the solution of IVPs for ODEs which often rely on interval
analysis (Moore, 1962). These methods provide upper and lower bounds in which the
true solution of the problem is guaranteed to be contained. A major challenge in these
methods is the reduction of the overestimation generated in the integration process which
is mainly caused by the dependency and wrapping effect problems.

To tackle this problem some approaches have been proposed such as the ITS with Hermite-
Obreschkoff approach by Nedialkov (2011), the ITS with convex/concave remainder term
using McCormick relaxations (Sahlodin and Chachuat, 2011b), the differential inequalities
with interval analysis approach (Scott and Barton, 2013), the validated enclosure of an
approximate solution for ODEs and DAEs by (Rauh et al., 2009) and the Taylor Models
approach with interval remainder term (Lin and Stadtherr, 2006a), with convex/concave
remainder term using McCormick relaxations (Sahlodin and Chachuat, 2011a) and with
ellipsoidal remainder term (Houska et al., 2013).

However, there is still a need for effective ways to reduce the overestimation in order
to address problems with more state variables and bigger uncertainties. Being able to
address bigger uncertain values means that in the dynamic optimisation problem we are
able to provide bounds for the objective function and gradients of larger regions of the
decision space which leads to speed-up of the algorithm as less calls to the verified integra-
tion algorithm are required. Section 4.1 presents the sources of overestimation in interval
analysis which directly affect verified ODE integration. Interval contractors able to re-
duce the overestimation in nonlinear functions are presented in Section 4.2 as an option
for tackling this problem. Finally, Section 4.3 describes a algorithm implementing interval
contractors in an ITS method to enhance its overestimation reduction capabilities.

4.1 Reduction of the overestimation via interval contractors

In verified simulation there are three main sources of overestimation namely, dependence,
cancellation and wrapping.

4.1.1 Dependence

The dependency problem arises in interval analysis because the method does not account
for the dependency of multiple repetitions of the variables in a mathematical model. In
other words, a variable repeated twice in a model is treated as two separate variables
because in the definition of the interval multiplication rule the left and right factors vary
independently. For example, [x]2 = [−1, 1]2 = [0, 1] with [x] = [−1, 1] and [x] × [x] =
[−1, 1] × [−1, 1] = [−1, 1] and hence [x]2 6= [x] × [x] in interval arithmetic. In order to
manage this problem ways of reducing to a minimum the number of repetitions of the
same variable are sought.

4.1.2 Cancellation

When the mathematical expressions contain at least one addition or subtraction some
overestimation is generated. Contrary to floating point arithmetic the widths in interval
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arithmetic are additive instead of cancelling.

4.1.3 Wrapping

According to Lohner (2001) it is the undesirable overestimation of a solution set of an
iteration or recurrence which occurs if this solution set is replaced by a superset of some
’simpler’ structure (e.g. an interval) and this superset is then used to compute enclosures
for the next step which may eventually lead to an exponential growth of the overesti-
mation. More generally, according to Neumaier (2003) wrapping is the overestimation
due to the depth of a computational graph describing the ODE system, caused by long
sequences of nested operations depending on a limited number of variables only, which
also magnifies bounds on rounding errors and hence can give wide meaningless results
even for problems with exact data.

4.2 Fixed-point interval contractors

When a real valued function is evaluated using interval arithmetic usually some overes-
timation is present in the range of the function. Interval contractors offer the possibility
to contract the estimated range in an interval evaluated function. Some of these con-
tractors, such as the Krawczyk contractor and the Newton contractor (Neumaier, 1990;
Jaulin et al., 2001), are able to contract nonlinear functions. Consider the case in which
we have ny variables linked by nf relations of the form

fq(y1, y2, ..., yn) = 0, q ∈ 1, 2, ..., n (10)

Each variable yj belongs to a domain Yj, an interval. Equation (10) can be written in a
vector form and a constraint satisfaction problem (CSP) can be formulated as in equation
(11).

(f(y) = 0, y ∈ [yj ]) (11)

The solution set B of (11) is defined as

B = {y ∈ [yj ]|f(y) = 0} (12)

Contracting the CSP in (11) means replacing [yj] by a smaller domain [y′
j ] such that

the solution set remains unchanged, i.e. B ⊂ [y′] ⊂ [y]. The contractors considered
in this work are interval counterparts of classical point algorithms such as Gauss-Seidel
and Newton algorithms. For more details see (Jaulin et al., 2001) and for application
examples in deterministic global optimisation refer to (Balendra and Bogle, 2009).

As nonlinear problems are being considered contractors for nonlinear functions were used
in this work as opposed to contractors for linear functions (Gauss elimination, Gauss-
Seidel, Linear Programming). The Krawczyk and Newton/Gauss-Seidel nonlinear con-
tractors were implemented in the method as described in Section 4.3. This method was
then used in case studies to assess the effectiveness in the reduction of the overestimation.

4.2.1 Interval Krawczyk contractor

The Krawczyk contractor (see Table 3) considers a CSP as in (11) where the number of
variables is the same as the number of relations and f is assumed to be differentiable.
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Table 3: Krawczyk contractor algorithm

KContractor(In: [yj ], [S
y
j+1], S

y
j+1(ŷj , θ̂), g(ŷj , [θ]); Out: [yj ])

begin

ŷj = m([yj ])

M = Syj+1(ŷj , θ̂)

[Jψ] = I−M[Syj+1]

[r] = ŷj −Mg(ŷj , [θ]) + [Jψ]([yj ]− ŷj)

[yj ]← [yj ] ∩ [r]

end

The function
ψ(y) = y −Mf(y) (13)

is a fixed-point subsolver for (11) where M is any invertible matrix. Its centred inclusion
function is

Ψ([yj ]) = ψ(ŷj) + {Jψ([yj])}([yj ]− ŷj) (14)

where Jψ is an inclusion function for the Jacobian matrix of ψ with ŷj as the midpoint
of [yj]. The intersection between the original domain and the one obtained with (14)
results in the fixed-point contractor as in equation (15).

[yj ]← [yj ] ∩ψ(ŷj) + {I−MJf ([yj])}([yj ]− ŷj) (15)

4.2.2 Interval Newton/Gauss-Seidel contractor

We consider again a CSP as in (11) and apply the mean value theorem to obtain

(f(ŷj) + Jf (ξ)(yj − ŷj) = 0, yj ∈ [yj ], ξ ∈ [yj]) (16)

The CSP in (16) can be arranged as









Ap+ f(ŷj) = 0
p = (yj − ŷj)
A = Jf(ξ)
b = −f(ŷj)

yj ∈ [yj ], ξ ∈ [yj ]









(17)

In this way, a linear contractor can be used such as the Gauss-Seidel contractor (see
Table 4). The Gauss-Seidel contractor is able to contract domains of linear systems of
the form

Ap− b = 0 (18)
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Table 4: Gauss-Seidel Preconditioned contractor algorithm

GSContractor(In: [A], [p], [b]; Out: [A], [p], [b])

begin

A0 = m([A])

[A′] = A0[A]

[b′] = b0[b]

diag([A′]) + extdiag([A′]) = [A′]

[p]← [p] ∩ (diag([A′]))−1([b′]− extdiag([A′])[p])

[b]← A0[b
′] ∩ [b]

[A]← A0[A
′] ∩ [A]

end

If A is square it can be decomposed as the sum of a diagonal matrix and a matrix with
zeroes on its diagonal (extdiag):

diag(A)p+ extdiag(A)p = b (19)

Also if A is invertible then (19) can be rewritten as

p = (diag(A))−1(b− extdiag(A)p) (20)

Hence, the solution of the Gauss-Seidel contractor is defined as the intersection of the
original domain p and the new p calculated with (20). This results in:

p← p ∩ (diag(A))−1(b− extdiag(A)p) (21)

Finally, the Gauss-Seidel contractor solution in (21) is used to update [yj ] and the in-
tersection [yj ] ← [yj ] ∩ (p + ŷj) is obtained to finish with the Newton procedure (see
Table 5).

4.3 Interval Taylor series with contractors

In order to apply the interval contractors in the verified method with the aim of reducing
the overestimation this work considers an implicit form of equation (7) so as to formulate
a CSP (f(y) = 0) at each time step. In a similar way if in other verified ODE solvers (e.g.
based on Taylor models or differential inequalities) this formulation can be done then
interval contractors can be applied as well. If we make this reformulation it is possible to
consider the new implicit equation as a CSP problem in the form of (11). The formulation
is the following

g(y) = uj+1 + ([Syj+1]Aj)[Γj] + [Sθj+1]([θ]− θ̂) + [zj+1]− [yj+1] = 0, y ∈ [yj]. (22)
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Table 5: Newton/Gauss-Seidel contractor algorithm

NGSContractor(In: [yj+1], [S
y
j+1], g(ŷj, [θ]); Out: [yj+1])

begin

ŷj = m([yj ])

[A] = [Syj+1]

[p] = [yj ]− ŷj

[p] ⊇ [p]GSP =GSContractor([A], [p], g(ŷj, [θ]))

[yj]← [yj ] ∩ [p]

end

However this reformulation does not yield a form as in (11) as the subtraction of identical
vectors in interval arithmetic does not cancel but the widths are summed together. So a
midpoint evaluation is performed and we get

g(ŷj) = uj+1(ŷj, θ̂) + {Syj+1(ŷj , [θ])Aj}Γj(ŷj, [θ]) + {Sθj+1(ŷj , [θ])}([θ]− θ̂)
+ zj+1(ỹj , [θ])−m(yj+1([yj ], [θ])) = 0

(23)

which has the form of (11). Now since

m(yj+1([yj ], [θ])) = uj+1(ŷj, θ̂) +m(zj+1([ỹj ], [θ]))

we have

g(ŷj) = uj+1(ŷj, θ̂) + {Syj+1(ŷj , [θ])Aj}Γj(ŷj , [θ]) + {Sθj+1(ŷj, [θ])}([θ]− θ̂)
+ zj+1(ỹj , [θ])− (uj+1(ŷj , θ̂) +m(zj+1([ỹj], [θ]))) = 0

= {Syj+1(ŷj , [θ])Aj}Γj(ŷj, [θ]) + {Sθj+1(ŷj , [θ])}([θ]− θ̂)
+ zj+1(ỹj , [θ])−m(zj+1([ỹj ], [θ])) = 0.

Also recalling equation (9)

[Γj+1] = A−1
j+1([zj+1]− ẑj+1) +A−1

j+1([S
y
j+1]Aj)[Γj ] + (A−1

j+1[S
θ
j+1])([θ]− θ̂)

we get that
g(ŷj) = Aj+1Γj+1(ŷj, [θ]) (24)

which corresponds to the global error in the verified simulation (Lohner, 1992).

Now when there is no uncertainty then g(ŷj) = Aj+1Γj+1(ŷj , [θ]) = 0. In the present
work uncertainty has been considered in the initial conditions and parameters of the
ODEs and it will be shown in the next section that when a number of iterations of the
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Table 6: Interval Taylor series with fixed-point contractors algorithm

Initialise: A0 = I, [Γ0] = [y0]− ŷ0

ITSContractor(In: Aj, [Γj], hj , [ỹj ], [yj ], [θ]; Out: Aj+1, [Γj+1], [yj+1])

begin

uj+1 = ŷj +
∑k−1

i=1 h
i
jf

[i](ŷj, θ̂)

[zj+1] = hkj f
[k]([ỹj ], [θ])

[Syj+1] = I+
∑k−1

i=1 h
i
j
∂f [i]

∂y
([yj ], [θ])

[Sθj+1] =
∑k−1

i=0 h
i
j
∂f [i]

∂θ
([yj ], [θ])

QjRj = m([Syj+1]Aj)

Aj+1 = Qj

[Γj+1] = A−1
j+1([zj+1]− ẑj+1) +A−1

j+1([S
y
j+1]Aj)[Γj ] + (A−1

j+1[S
θ
j+1])([θ]− θ̂)

[yj+1] = uj+1 + ([Syj+1]Aj)[Γj ] + [Sθj+1]([θ]− θ̂) + [zj+1]

Newton/Gauss-Seidel contractor :

g(ŷj , [θ]) = Aj+1[Γj+1](ŷj , [θ])

[yj+1] ⊇ [yj+1]N =NGSContractor([yj+1], [S
y
j+1], g(ŷj, [θ]))

or

[yj+1] ⊇ [yj+1]N =KContractor([yj+1], [S
y
j+1], g(ŷj , [θ]))

[yj+1]← [yj+1] ∩ [yj+1]N

end

Krawczyk and Newton steps are used in equation (24) reduction of the overestimation is
achieved.

In summary, since equation (24) is defined at each time step it is possible to imple-
ment the contractors as in an equation of the form of (11). In this way at each time step
the interval Taylor series method obtains an interval ([yj+1]) that encloses the solution of
the problem. The midpoint ŷj+1 is then used to define equation (23). After a number of
iterations if sufficient reduction is achieved the verified method obtains a new [yj+1] and
the contraction step is repeated otherwise the algorithm returns the best [yj+1] found so
far. The steps to obtain the guaranteed enclosures using contractors are illustrated in
Table 6.
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5 Testing the dynamic simulation method

Numerical experiments on test problems from chemical and biochemical processes were
carried out. Seven ODE models were used in the experiments and in each model the
interval contractors were applied alongside an interval Taylor series method to demon-
strate the effectiveness of the methods. The test problems have different numbers of state
variables and system parameters. Table 7 shows a summary of the test problems used
which includes columns with the number of state variables, the number of system param-
eters and the importance in dynamic optimisation. Appendix 1 extends this information
and includes the mathematical models, the values of the system parameters and initial
conditions and specifies which ones have been used as uncertain values.

In this section results on the implementation of the Krawczyk and Newton/Gauss-Seidel
(K and NGS, respectively) interval contractors in an interval Taylor series method are
presented for the test problems in Table 7. For comparison purposes the simulations were
also carried out using no contractors (NC method) where when necessary the uncertain
amounts were subdivided, solved and then the bounds combined so as to provide a more
fair comparison in terms of the time taken by the methods with contractors. The fourth
column indicates the number of inital boxes used to simulate the case study. Finally,
Taylor model bounds provided by the software package VSPODE version 1.4 (Lin and
Stadtherr, 2007b) (VSPODE method) are also used for comparison purposes. This in-
formation is displayed in figures in the present section alongside with a Monte Carlo
simulation (MC) that provides an approximation of the reachable set.

Tables 8 and 9 report the results obtained after using the four methods on the seven
test problems. The results include the widths of the bounds and the CPU time in sec-
onds for each of the problems and the methods. The widths given corresponds to a
selected time ts and the CPU time reported here is using an IntelR CORETM i5 com-
puter with 8Gb RAM, running Ubuntu. Depending on the problem studied a number
of contractor iterations (or Contractors as specified in Tables 8 and 9) has been used to
contract the width of the bounds.

Figures 1 to 7 show the trajectories in the NC, K, NGS and VSPODE methods with
dot-dot-dashed blue, dot-dashed orange, dashed black and solid red lines, respectively.
The MC simulation is shown as a shaded grey area.

The algorithm was implemented in C++ and the libraries FADBAD++ (Bendtsen and
Stauning, 1996) and PROFIL/BIAS (Knuppel, 1994) were used for the automatic dif-
ferentiation and interval operations, respectively. The Profil/Bias library was used since
it is faster when only interval arithmetic operations and the square function are needed
(Žilinskas, 2005) as in the examples considered.
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Table 7: Test problems used, number of state variables and parameters and relevance in
dynamic optimisation

Problem States Parameters Relevance
1. First order

irreversible series
reaction

2 2 Parameter estimation
for model development

2. First order reversible
series reaction

2 4 Parameter estimation
for model development

3. Exothermic batch
reactor

2 8 Guaranteed safe
operation

4. Two-state bioreactor 2 6 Parameter estimation
for model development

5. Three-state
bioreactor

3 8 Parameter estimation
for model development

6. Reactor separator
model

6 9 Optimal control

7. Glucagon receptor
model

5 22 Guaranteed safe
operation

In order to provide a fair comparison a number of subdivisions of the input uncertain
intervals (box) was obtained and the solutions from each box were combined. In the
first five case studies the most expensive method using the original input intervals (no
subdivisions, 1 box) was determined and the simulations with the rest of the methods
were carried out by subdividing the box into smaller boxes. The number of boxes was
chosen so as to roughly take the same amount of time of the most expensive method
using a single box. In the last two case studies, bounds were obtained up to the final
time horizon regardless of the time taken. Therefore, in the first five case studies we
compare the widths at final time or at selected time since the computational times are
roughly the same. In the last two examples we compare the simulation times and the
bound widths at final time.

Using a prespecified uncertainty in the initial conditions and system parameters the K,
NGS and VSPODE methods managed to bound all of the case studies (Figures 1 to 7).
The NC method provided bounds for all the case studies except the fifth one (Figure 5).

In the first five case studies it was observed that in the methods with contractors (K
and NGS) provided tighter bounds than the NC method in the Exothermic batch re-
actor, the Two-state bioreactor and the Three-state bioreactor problems (See Figures 3
to 5 for problems 3, 4 and 5). According to Table 8 in the case studies 3, 4 and 5 the
methods using contractors represent on average the 78, 36 and 17 % of the widths of the
NC method. In the case studies 1 and 2 (Figures 1 and 2) the NC method bounds have
widths that represent on average the 83 and 74 %, respectively, of the widths of the K
and NGS methods. In these first five case studies VSPODE method constructs tighter
bounds in four of them. In problems 1, 2, 4 and 5 the widths are on average the 73, 49,
16 and 26 % of the widths of the best method. Only case study three exhibits widths at
final time that are on average 98 % of the size of the VSPODE method widths.
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Table 8: Results on the implementation of interval contractors in the first five case studies

Method Contractors CPU(s) Boxes Width at ts
1. First order irreversible series reaction (ts = 1 day)

NC 0 0.0058 4
w(CA(ts))=0.009225
w(CB(ts))=0.9190

K 1 0.0055 2
w(CA(ts))=0.01242

w(CB(ts))=1.0002108

NGS 1 0.0056 2
w(CA(ts))=0.01221
w(CB(ts))=0.9962

VSPODE N/A 0.0053 1
w(CA(ts))=0.007070
w(CB(ts))=0.6317

2. First order reversible series reaction (ts = 0.5 day)

NC 0 0.027 2
w(CA(ts))=0.8611
w(CB(ts))=0.3028

K 1 0.029 1
w(CA(ts))=0.9458
w(CB(ts))=0.5412

NGS 1 0.028 1
w(CA(ts))=0.9342
w(CB(ts))=0.5391

VSPODE N/A 0.029 1
w(CA(ts))=0.4317
w(CB(ts))=0.1435

3. Exothermic batch reactor (ts = 60 s)

NC 0 0.067 2
w(x(ts))=0.07566
w(T (ts))=75.2560

K 2 0.069 1
w(x(ts))=0.06179
w(T (ts))=57.3130

NGS 2 0.068 1
w(x(ts))=0.06176
w(T (ts))=57.1690

VSPODE N/A 0.075 1
w(x(ts))=0.06351
w(T (ts))=57.6620

4. Two-state bioreactor (ts = 10 day)

NC 0 0.103 4
w(X(ts))=0.9387
w(S(ts))=2.1959

K 2 0.105 2
w(X(ts))=0.3498
w(S(ts))=0.7629

NGS 2 0.106 2
w(X(ts))=0.3491
w(S(ts))=0.7412

VSPODE N/A 0.118 1
w(X(ts))=0.03555
w(S(ts))=0.1542

5. Three-state bioreactor (ts = 7.7 day)

NC 0 0.669 16
w(x1(ts))=4.4063
w(x2(ts))=4.1199

K 2 0.701 2
w(x1(ts))=0.7211
w(x2(ts))=0.7876

NGS 2 0.702 2
w(x1(ts))=0.7209
w(x2(ts))=0.7868

VSPODE N/A 0.601 1
w(x1(ts))=0.1278
w(x2(ts))=0.2666
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Table 9: Results on the implementation of interval contractors in the last two case studies

Method Contractors CPU(s) Boxes Width at ts
6. Reactor separator model (ts = 100 s)

NC 0 6381.810 128
w(x1(ts))=0.000238
w(x6(ts))=0.00007

K 3 79.597 1
w(x1(ts))=0.000231
w(x6(ts))=0.000069

NGS 3 82.627 1
w(x1(ts))=0.000231
w(x6(ts))=0.000069

VSPODE 0 25.875 1
w(x1(ts))=0.000229
w(x6(ts))=0.000067

7. Glucagon receptor model (ts = 100 s)

NC 0 40.610 4
w(Rs(ts))=24.5

w(PLC∗(ts))=0.0001216

K 3 42.115 1
w(Rs(ts))=52.5

w(PLC∗(ts))=0.0002621

NGS 3 34.266 1
w(Rs(ts))=51.1

w(PLC∗(ts))=0.0002517

VSPODE N/A 8.874 1
w(Rs(ts))=3.4539

w(PLC∗(ts))=0.000006
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Figure 1: First order irreversible series reaction
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Figure 2: First order reversible series reaction
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Figure 3: Exothermic batch reactor
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Figure 4: Two-state bioreactor
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Figure 5: Three-state bioreactor
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Figure 6: Reactor separator model
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Figure 7: Glucagon receptor model
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The last two case studies (Table 9), the Reactor separator and the Glucagon receptor
models as shown in Figures 6 and 7 were also compared. In Table 9 all the methods in the
Reactor separator model (Figure 6) have a similar width so the main comparison in this
example comes in terms of time. The slowest method was the NC method requiring more
than 6000 seconds and 128 interval boxes to complete the simulation with this final width.
The K and NGS method took roughly 80 seconds each and the VSPODE method took
25.875 seconds representing 32.5 and 31.3 % of the methods with contractors, respectively.

The NC method provided bounds that were roughly half as wide as the bounds of the K
and NGS methods and the tightest bounds were constructed by VSPODE with bounds
that are the 15 % the width of the NC method. In terms of computational time, the
slowest methods, the NC and K methods performed the simulation in about 40 seconds
and the NGS and VSPODE methods in 34 and 9 seconds, respectively.

So far the paper has demonstrated that the addition of interval contractors to veri-
fied integration methods can be advantageous to reduce the overestimation generated in
the integrated. Only in one case study (Exothermic batch reactor) the method obtained
tighter bounds bounds and in less computational time than the VSPODE software pack-
age.

Now that we have the verified integration method we will use it as the bounding tech-
nique in a global optimisation algorithm. The next section explores the use of a verified
integration method (ITS) with interval contractors in the context of dynamic optimisa-
tion. The contractor that was used was the one that has the best performance in terms
of tightness and computational time: the Newton/Gauss-Seidel contractor.

6 Global optimisation for dynamic systems

The main objective of the present section is to describe the algorithm to find the global
optima using the verified integration method with contractors in a sequential approach.
As far as the authors know this is the first time an interval Taylor series method with
a Newton/Gauss-Seidel contractor is used in a sequential approach to solve dynamic op-
timisation problems to global optimality. When a sequential approach is used a verified
ODE method is applied to the dynamic part of the optimisation problem leaving a prob-
lem only constrained by the system parameters θ. The spatial search procedure used was
similar to a standard branch and bound algorithm by Moore et al. (2009). The global
optimisation method considers a problem of the form:

min
θ

φ(θ)

s.t. θ ∈ [θ]
(25)

The global optimisation method that has been used in the numerical experiments is given
in Table 2. In this algorithm each time a box is branched new bounds are needed and
so the bounding routine (ITS method with contractors) is called for each box. This call
represents the most expensive part in the branch and bound framework. Therefore it is
needed to reduce the number of calls by discarding as many boxes as possible prior to the
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bounding step. A condition that tests whether or not zero is contained in the gradient of
the objective function is being used in this algorithm in which we need to compute the
first order sensitivity equations.

∂

∂t

(
∂y

∂θ

)

=
∂f

∂y

∂y

∂θ
+

∂f

∂θ
(26)

The first order sensitivity equations are integrated in a verified way together with the
ODE system.

7 Global optimisation results

The following examples were solved in a sequential approach and using the interval Tay-
lor series with the Newton/Gauss-Seidel contractor to bound the dynamic variables. The
CPU times are for the same computer as in Section 5. The programs were also written
in C++ and the third party libraries FADBAD++ (Bendtsen and Stauning, 1996) and
Profil/Bias (Knuppel, 1994) were used for the automatic differentiation and the interval
arithmetic operations, respectively.

The main comparison criteria in this section are the CPU times. Two other works have
been used to compare the present work. In order to provide a fair comparison the times
reported by Lin and Stadtherr (2006b) and Lin and Stadtherr (2007a) have been ad-
justed by multiplying the time it takes VSPODE to perform a simulation of the ODE
system times the number of iterations reported by each of the works. We believe this
provides a better comparison since the simulations are carried out in the same machine.
In order to adjust the times of Singer and Barton (2006) and Papamichail and Adjiman
(2004) we use the relation used by Lin and Stadtherr (2006a) in which according to the
SPEC benchmark the times of the computers used by Lin and Stadtherr (2006a), Lin
and Stadtherr (2006b) and Lin and Stadtherr (2007a) correspond to roughly half of the
time reported in Singer and Barton (2006) and to roughly 0.128 times the time reported
in Papamichail and Adjiman (2004).

7.1 First order irreversible series reaction

A first-order irreversible chain reaction taken from Tjoa and Biegler (1991) considers the
following reaction

A
k1−→ B

k2−→ C

The algorithm presented in Table 2 is applied to the parameter estimation problem with
two parameters and two dynamic variables. The experimental data has been taken from
Esposito and Floudas (2000a). The problem has been solved to global optimality using
an absolute tolerance εabs = 10−4 in 0.40 seconds. Lin and Stadtherr (2006b) solved the
problem with a relative tolerance εrel = 10−3 and exactly (ε = 0) in 0.023 and 0.059
seconds, respectively. The machine used was an Intel Pentium 4 3.2 GHz. Singer and
Barton (2006) solved the problem with an absolute tolerance εabs = 10−4 in 0.036 seconds
in an AMD Athlon XP2000+ 1667 MHz. However, the differential inequalities approach
is used in this work in which the auxiliary system is solved by a conventional solver and
hence the solution is not computationally verified.
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Table 10 shows these results and a column with the adjusted CPU time. In the case
of the work by Singer and Barton (2006) the table shows two numbers in the columns
CPU (s) and Iterations because they correspond to the cases without and with heuristics.
Papamichail and Adjiman (2004) solved the problem in 9 and 11 seconds using constant,
and constant and affine underestimation schemes, respectively. The tolerance they used
was εrel = 10−7 in an UltraSPARC-II 2× 360 MHz.

min
k

φ =
10∑

j=1

2∑

i=1

(xi(tj)− xexpi (tj))

s.t. ẋ1 = −k1x1

ẋ2 = k1x1 − k2x2

x1(0) = 1, x2(0) = 0

t ∈ [0, 1]

k ∈ [0, 10]× [0, 10]

(27)

In the first order irreversible series reaction case study the adjusted CPU time provided
by the algorithm was much smaller than the Papamichail and Adjiman (2004) method, it
was higher compared to the other two works and the number of iterations was the highest
of all.

7.2 Singular control problem

The procedure from Section 6 is applied to a nonlinear singular control problem taken
from Luus (1990)

min
u

φ =

∫ tf

t0

[x2
1 + x2

2 + 0.0005(x2 + 16t− 8− 0.1x3u
2)2]dt

s.t. ẋ1 = x2

ẋ2 = −x3u+ 16t− 8

ẋ3 = u

x1(0) = 0, x2(0) = −1, x3(0) = −
√
5

t ∈ [0, 1]

u ∈ [−4, 10]

(28)

Table 11 shows the results of the singular control problem with a column containing the
adjusted CPU time. As in the revious case study in the work by Singer and Barton
(2006) the table shows two numbers in the columns CPU (s) and Iterations because they
correspond to the cases without and with heuristics. The sequential approach was used
to provide a solution for this problem.

The computational time taken for solving the problem was 1.42 seconds with an absolute
tolerance of εabs = 10−3. The problem was also solved by Lin and Stadtherr (2007a) in
0.02 seconds with the same absolute tolerance. It is worth mentioning that their global
optimisation algorithm implements a branch and reduce approach and is able to reduce
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the search space. The machine used was an Intel Pentium 4 3.2 GHz. Also Singer and
Barton (2006) provided a (non-verified) solution for the problem with the same tolerance
in 2 and 1.8 seconds without and with heuristics. They used an AMD Athlon XP2000+
1667 MHz to solve the problem. In the singular control problem the adjusted CPU time
of the present algorithm resulted to be competitive as it was similar to the quadrature
variable formulation of Singer and Barton (2006) but is was bigger than Lin and Stadtherr
(2007a) and the original formulation in Singer and Barton (2006).

7.3 Oil shale pyrolysis

The optimal temperature profile in a plug flow reactor is considered. The reactions
involved and the model of the problem are shown in (29). In the model only components
A1 and A2 are included and the objective is to maximise the production of A2. Here u is
the adjustable parameter and is taken as a piecewise constant profile.

min
u

φ = −x2(tf)

A1
k1−→ A2 s.t. ẋ1 = −k1x1 − (k3 + k4 + k5)x1x2

A2
k2−→ A3 ẋ2 = k1x1 − k2x2 + k3x1x2

A1 + A2
k3−→ 2A2 ki = aie

(

−bi/R

698.15+50u

)

, i = 1, . . . , 5

A1 + A2
k4−→ A3 + A2 x1(0) = 1, x2(0) = 0

A1 + A2
k5−→ A4 + A2 t ∈ [0, 10]

u ∈ [0, 1]

(29)

Table 12 reports the results of the oil shale pyrolysis example and it includes a column
with the adjusted CPU time. Again the columns CPU (s) and Iteration in the work
by Singer and Barton (2006) correspond to the cases without and with heuristics. The
dynamic optimisation problem has been solved to global optimality using an absolute
tolerance of εabs = 10−3 in 5.22 seconds. The same problem was solved by Lin and
Stadtherr (2006a) in 3.2 seconds using εabs = 10−3 and an Intel Pentium 4 3.2 GHz.
Singer and Barton (2006) solved the problem in a non-verified manner in 27.30 and 26.20
seconds without and with heuristics, respectively. The machine used was an AMD Athlon
XP2000+ 1667 MHz. In the oil shale pyrolysis problem the adjusted CPU time of the
present method was smaller than those of Singer and Barton (2006) with and without
heuristics and very similar to Lin and Stadtherr (2007a).

8 Conclusions

The paper has presented a global optimisation algorithm for dynamic systems in which
for the first time an interval Taylor series with Newton/Gauss-Seidel contractor is used
to integrate the dynamic system and thus evaluate the objective function and constraints
of the optimisation problem.

The global optimisation method performed reasonably well in two out of three case stud-
ies. In the first case study the number of iterations turned out to be the worst of the
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Table 10: Global optimisation results. First order irreversible series reaction (εabs =
1× 10−4)

Method Objective
function

Optimiser CPU (s) CPU (s)
adjusted

Iterations

This work 1.185×10−6 (5.0035,
1.0000)

0.40 0.40 75

Singer and Barton
(2006)

1.22×10−6 (5.0, 1.0) 0.036 0.017 -

Lin and Stadtherr
(2006b)

1.185×10−6 (5.0035,
1.0000)

0.023 &
0.059

0.022 4 & 2

Papamichail and
Adjiman (2004)

1.185×10−6 (5.0035,
1.0000)

9 & 11 1.10 &
1.35

1

Table 11: Global optimisation results. Singular control problem (εabs = 1× 10−3)

Method Objective
function

Optimiser CPU (s) CPU (s)
adjusted

Iterations

This work 0.4965 (4.071) 1.42 1.42 34

Singer and Barton
(2006) (quadrature
variable)

0.497 (4.07) 5.2 & 3.4 1.82 &
1.19

33 & 15

Singer and Barton
(2006) (original)

0.497 (4.07) 2.0 & 1.8 0.7 &
0.63

21 & 15

Lin and Stadtherr
(2007a)

0.4965 (4.071) 0.02 0.014 9

Table 12: Global optimisation results. Oil Shale Pyrolysis (εabs = 1× 10−3)

Method Objective
function

Optimiser CPU (s) CPU (s)
adjusted

Iterations

This work -0.3479 (0.231) 5.22 5.22 39

Singer and Barton
(2006)

-0.3480 (0.231) 27.3 &
26.2

19.67 &
18.87

115

Lin and Stadtherr
(2007a)

-0.3479 (0.984) 3.2 4.61 21
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compared works and the CPU time was only better than the method by Papamichail and
Adjiman (2004). However, in the oil shale pyrolysis case study the number of iterations
was similar and the CPU time was better than the differential inequalities (Singer and
Barton, 2006) approach and slightly lower than the Taylor models approach (Lin and
Stadtherr, 2007a). In the singular control problem the CPU time resulted better than
the quadrature variable formulation without heuristics of Singer and Barton (2006) and
slightly higher time when using heuristics. The CPU time of the present method was not
better than the rest of the compared works and the number of iterations was similar to
Singer and Barton (2006) but not better than Lin and Stadtherr (2007a).

The verified integration technique at the heart of the global optimisation algorithm con-
sists of an interval Taylor series method with Krawczyk and Newton/Gauss-Seidel interval
contractor. The method was compared with and without contractors in seven case studies
leading to the conclusion that contractors help reduce the overestimation and are faster
than the standalone method in most of the cases. In three of the first five case studies
the widths of the method using contractors represented from 18 to 78 % of the widths of
the method with no contractors.

In terms of the Krawczyk and Newton/Gauss-Seidel contractors. The Newton/Gauss-
Seidel contractor performed better than the Krawczyk contractor as it consistently pro-
duced tighter widths at almost the same computational time. Furthermore in the glucagon
receptor model it provided a much better time than the Krawczyk contractor.

The methods with contractors were also compared with the software package VSPODE.
Such comparison resulted in that the method performs better in one case study (Exother-
mic batch reactor). However, in the rest of the case studies VSPODE showed that the
widths of its bounds represent from 15 to 72 % of the width of the bounds constructed
by the method with contractors.

While the method presented is not faster than the method that features Taylor Models
(VSPODE) it provides the basis of an interval contracting technique that can be ex-
tended to other verified simulation methods (such as Taylor Models and convex/concave
differential inequalities) and in turn other dynamic simulation methods.

The algorithm developed in this paper can be better than the differential inequalities
approach and very similar to the Taylor models approach. It also offers the guarantee
that the global optima have been bounded in a verified way. In future work an interest-
ing idea would be to implement a constraint propagation contractor (Jaulin et al., 2001;
Benhamou et al., 1999) instead of a fixed-point contractor and to apply the different
contracting techniques to other kind of verified integrators. The global optimisation al-
gorithm presented in this paper introduced an verified integration method with an interval
Newton/Gauss-Seidel contractor which could potentially enhance the overestimation re-
duction capabilities of other methods, for example, global optimisation methods using the
Taylor models or the convex/concave differential inequalities with interval contractors.
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Appendix I

Table 13 extends the information about the case studies presented in the numerical ex-
periments section.

Table 13: Mathematical models of the seven dynamic simulation case studies

Mathematical model Initial conditions
and parameters

First order irreversible series reaction

ĊA = −k1CA
ĊB = k1CA − k2CB

CA(0) = 1
CB(0) = 0
Uncertain values
k1 = [4.5, 5.5]
k2 = [0.2, 1.8]

First order reversible series reaction

ĊA = −k1CA + k−1CB
ĊB = k1CA − (k−1 + k2)CB + k−2(1 −
CA − CB)

CA(0) = 1
CB(0) = 0
k−1 = 2
k−2 = 20
Uncertain values
k1 = [2, 6]
k−1 = [1, 3]

Exothermic batch reactor

ẋ = k0(1− x)e−
Ea
RT

Ṫ =
UA

CA0V Cp
(Ta − T ) − ∆HR

Cp
k0(1 −

x)e−
Ea
RT

x(0) = 0
k0 = 0.022
V = 0.1
Cp = 60
Ea = 6000
R = 8.314
∆HR = −140000
UA = 3
CA0 = 10
Uncertain values
T (0) = [310, 410]
Ta = [290, 310]

Two-state bioreactor

Ẋ = (µ− αD)X
Ṡ = D(Sf − S)− kµX

µ =
µmaxS

Ks + S

S(0) = 0.8
α = 0.5
k = 10.53
D = 0.36
Sf = 5.7
Ks = 7.0
k0 = 0.022
Uncertain values
X(0) = [0.80, 0.85]
µmax = [1.1, 1.2]
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Table 13: Mathematical models of the seven dynamic simulation case studies

Mathematical model Initial conditions
and parameters

Three-state bioreactor

ẋ1 = (µ−D)x1

ẋ2 = D(x2f − x2)−
µx1

Y
ẋ3 = Dx3 + (αµ+ β)x1

µ =
µmax[1− ( x3

x3m
)]x2

ks + x2

x2(0) = 5.0
x3(0) = 15.0
D = 0.202
x2f = 20
Y = 0.4
β = 0.2
x3m = 50
α = 0.5
Uncertain values
x1(0) = [6.45, 6.55]
µmax = [0.46, 0.47]
ks = [1.05, 1.1]

Reactor separator model

ẋ1 =
F +B

H
(xF − x1) + kx1(1− x1)

ẋ2 = (L+ F +B)x3 − Bx2 − V y2
ẋ3 = (L+ F +B)(x4 − x3) + V (y2 − y3)
ẋ4 = (F +B)x1 +Lx5 − (L+F +B)x4 +
V (y3 − y4)
ẋ5 = L(x6 − x5) + V (y4 − y5)
ẋ6 = −(L+D)x6 + V y5

xF =
FxF0 +Bx2

F +B

yi =
αxi

1 + (α− 1)xi
i = 2 . . . 5

x1(0) = 0.5
x2(0) = 0.0
x3(0) = 0.0
x4(0) = 0.0
k = 0.06
xF0 = 0
D = 1
H = 63.33
α = 7.5
B = 1.2
L = 1.704
F = 1.0
Uncertain values
x5(0) = [0.0, 0.08]
x6(0) = [0.0, 0.16]

Mathematical model

Glucagon receptor model

Ṙr = k−1LRu − Lk1Rr − ksRr + krRs

Ṙs = kspLRp +GiK2sLRu + ks(LRu +Rr)− krRs

Ġi = −GiK23LRu +G∗

(

kh +
Ca kGdeg,Cal

KGdeg,Cal +G∗

+
PLC∗ kGdeg,PLC
KGdeg,PLC +G∗

)

˙LRp = −kspLRp + kp

(

1 +
A0

1 +B1G
−n1
∗

)(
LRu

LRu +B2

)

˙PLC∗ = kPCG∗ −
PLC∗kPC,deg

KPC,deg + PLC∗

G∗ = G0 −Gi

R0 = Rr +Rs + LRu + LRp

Initial conditions and parameters
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Table 13: Mathematical models of the seven dynamic simulation case studies

Mathematical model Initial conditions
and parameters
k1 = 100

ks = 5.2× 10−3 ksp = ks
K2s = 2× 10−8 kr = 4× 10−3

K23 = 1× 10−7 kh = 2× 10−1

kGdeg,Cal = 1.47× 103 KGdeg,Cal = 3.54× 101

kGdeg,PLC = 2.19× 103 KGdeg,PLC = 5.7
kp = 6.5× 104 A0 = 3
k−1 = 10 n1 = 1
B2 = 1× 106 R0 = 5.5× 104

G0 = 1× 105 kpc = 6.06× 10−4

kPC,deg = 2.82× 10−1 KPC,deg = 2.55× 10−1

Uncertain values
B1 = [98.8, 102.2]
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