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ABSTRACT

Many functions and signals of interest are formed by the ad-
dition of multiple underlying components, often nonlinearly
transformed and modified by noise. Examples may be found
in the literature on Generalized Additive Models [1] and Un-
derdetermined Source Separation [2] or other mode decom-
position techniques. Recovery of the underlying component
processes often depends on finding and exploiting statistical
regularities within them. Gaussian Processes (GPs) [3] have
become the dominant way to model statistical expectations
over functions. Recent advances make inference of the GP
posterior efficient for large scale datasets and arbitrary likeli-
hoods [4, 5]. Here we extend these methods to the additive GP
case [6, 7], thus achieving scalable marginal posterior infer-
ence over each latent function in settings such as those above.

1. INTRODUCTION

We are interested here in settings where a measured signal
y(x) defined over a space X can be modelled as a trans-
formed sum, with arbitrary observation noise, of D indepen-
dent source functions f (d)(x(d)), defined on domains X (d).
In some cases both the domain of each function, and the point
of evaluation may be identical. That is X = X (1) = · · · =
X (D) and x = x(1) = · · · = x(D). (For example, y might
be the sum of different functions of time.) In this case, the
setting is one of source separation. Alternatively, X may
be the Cartesian product space of possibly unrelated inputs
X (1)×· · ·×X (D), with each f (d) defined on the single input
domain X (d). Then x = (x(1), . . . , x(D)). This is the set-
ting most often encountered in the literature on Generalized
Additive Models (GAMs).

We imagine that the signal has been measured atN points
xi, yielding values yi. We collect these measurements into a
vector y = (y1, . . . , yN ). Similarly the vector f (d) is formed
by the evaluations of f (d) at each x

(d)
i . We write f(x) =∑

d f
(d)(x(d)) and f =

∑
d f

(d). We focus on conditionally
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independent observation models where the likelihood factor-
izes p(y|f) =

∏N
i=1 plik(yi|fi), but each conditional plik(y|f)

may be arbitrary. Our goal is to recover estimates of the func-
tions f (d).

Bayesian approaches to this problem express beliefs about
the function values p(f (d)), which capture assumptions about
how the underlying processes might differ, and then compute
the posterior p

(
f (d)|y

)
. Hyperparameters (that is, parameters

specifying the form of beliefs) are selected by maximizing the
marginal likelihood p(y).

Here, we follow a Bayesian approach and specify a gen-
erative model using Gaussian Process (GP) priors for each
individual function. We propose an approximate inference al-
gorithm based on sparse variational inducing points to solve
the inference problem and hyperparameter optimization.

2. BACKGROUND

2.1. Gaussian Process Regression

Gaussian Processes are infinite collections of random vari-
ables, any finite subset of which follows a multivariate Gaus-
sian distribution. They are defined by a mean function m and
covariance function k. A draw from a GP defined on a index
set X is a function on the domain X . Given a list of points
X ∈ XN and a function draw f ∼ GP (m, k), the vector of
function evalutions f(X) is an associated multivariate normal
random variable such that f(X) ∼ N (m(X),K(X,X)),
where m is a vector of mean function evaluations and K is
a matrix of covariance function values. We will focus here on
the case m = 0 for simplicity, and without loss of generality.

In GP regression, we have a data set D = {xi, yi}i=1...N ,
an observation model yi|f(xi), and a Gaussian process
prior on f . We seek to compute the posterior p(f |D) ∝
p(f)p(y|f) and the marginal likelihood p(y) =

´
df p(y, f).

Two main difficulties arise when trying to compute the
posterior. First, even in the simplest case of the conjugate
likelihood yi = f(xi) + εi, εi

iid∼ N (0, σ2), for which the
marginal likelihood can be obtained analytically: p(y) =
N (y|0,Knn + σ2I) with Knn = K(X,X), computations
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require the expensive inversion of an N ×N matrix. Second,
when the likelihood is not conjugate estimates are not avail-
able in closed form and must be approximated, for example
by expectation propagation [8] or variational inference [9].
Such approximations often scale poorly.

Irrespective of the likelihood, sparse approximations to
the GP prior have been proposed; see [10, 11]. These ap-
proximations extend the GP model with m additional random
variables u drawn from the same GP prior as f at pseudo-
input locations Z, sometimes called inducing points. The
form of the approximation is to modify the joint prior p(f ,u)
by forcing conditional independencies — for example set-
ting p (f |u) =

∏
i p (fi|u). Thus, the u (and set Z) become

parameters, yielding a new parametric prior on f . Writing
Kmm = K(Z,Z) and Knm = K(X,Z), the independence
assumption induces a low rank form for the covariance matrix
Knn = KnmK−1mmKmn, with the rank governed by the size
of the inducing set. In this form, the approximation modifies
the prior on f , in effect encoding different expectations about
the form of the function. An alternative is to treat the induc-
ing points instead as variational parameters in an approximate
variational inference framework [4]. In this view it is the joint
posterior that is approximated rather than prior, assuming the
form p (f ,u|y) = p (f |u) q (u). This approach proves rela-
tively easy to extend to the non-conjugate case [5]. The ap-
proximation does not change the assumed prior model and
has a number of appealing theoretical properties [12].

2.2. Additive Gaussian Processes

Nonparametric regression on a high-dimensional domain suf-
fers from the curse of dimensionality: neighbourhoods be-
come more and more local as the dimensionality of the space
increases. Thus, estimating high dimensional functions re-
quires either a very large number of data points or prior as-
sumptions of extreme smoothness.

This problem may be alleviated if the target function can
be assumed to be formed from the sum of lower-dimensional
mappings. [6, 7]. In the GP framework, such additiv-
ity can be imposed implicitly by composing an additive
kernel. Thus, if k(x, x′) =

∑
d k

(d)
(
x(d), x′(d)

)
, then

the associated GP functions will have additive structure
f (x) =

∑
d f

(d)
(
x(d)

)
, where each f (d) is drawn from

a GP with covariance kernel k(d). Thus, one approach to
tractable additive GP regression might be to simply combine
an additive kernel with a sparse approximation.

In the variational inducing point framework, the posterior
is a low-dimensional process given by p (f |y) ≈ q(f) =´
du p (f |u) q (u). In the case where q (u) = N (µ,Σ) , the

posterior is a GP with non-additive covariance structure

q(f) = N (µf ,Σf )

µf (x) = KxZK
−1
ZZµ

Σf (x, x′) = Kxx′ +KxZK
−1
ZZ

[
ΣK−1ZZ − I

]
KZx′

To recover the marginal posterior distributions over the in-
dividual functions fd requires the extra step of comput-
ing the joint multivariate posterior GP q

(
f (1), ..., f (d)

)
=

q(f)
p(f)p

(
f (1), ..., f (d)

)
and marginalizing. Writing q

(
f (1), ..., f (d)

)
=

N (v,V), we have

V (d,d′) = K(d) −K(d)K̃−1K(d′)

ν(d) =
(
K(d) −K(d)K̃−1Ksum

)
Σ−1f µf

where Ksum =
∑D
d=1K

(d) and K̃ =
[
Σ−1f −K−1sum

]−1
+

Ksum

This marginalisation step is needed because the induc-
ing points do not immediately provide the information to re-
construct the individual components (indeed, they were opti-
mized to reconstruct the summed GP). The posterior cannot
be computed separately for individual input points: this would
require splitting the mean and variance according to the rela-
tive prior variances of each underlying function at that point,
and so would be blind to the rest of both the prior and poste-
rior GP structure. Instead the joint must be constructed over
a large set of points (ideally the full initial dataset) and those
data points should not share any coordinate. Thus, this final
step is computationally expensive.

An alternative might be to seek the best additive approxi-
mation to the posterior GP according to a chosen metric, but
this amounts to solving an additional regression problem.

Here we propose instead to extend the variational induc-
ing point framework for additive GP models by directly con-
structing a parametric posterior approximation to each com-
ponent GP. We do so by assuming a factorized approxima-
tion to the joint posterior p

(
f (1), ..., f (d),u(1), ...,u(d)|Y

)
≈∏

d q
(
u(d)

)
p
(
f (d)|u(d)

)
. A similar approach has been pro-

posed independently by Saul et al [13] to allow the non-linear
combination of an arbitrary collection of GPs. However, they
did not recognize the computational advantage induced by the
additive structure.

Our approach provides the following advantages: Each
GP has separate inducing points, allowing the number to be
adjusted to the complexity of the specific domain and prior.
Furthermore, the inducing variables are readily interpretable
as conditional variables for the prediction of each function.
This comes however at the cost of losing the covariance struc-
ture across functions, but readily applicable methods exist to
recover covariance estimates [14].

3. SPARSE ADDITIVE GAUSSIAN PROCESS
REGRESSION

To simplify notation, we write F = [f (1), ..., f (d)] and U =
[u(1), ...,u(d)]. Consider an augmented model p(F,U) =∏
d p(f

(d),u(d)) where the u(d) are associated with pseudo-
inputs Z(d), and assume a variational approximation to the
posterior of the form p(F,U|y) ≈

∏
d p(f

(d)|u(d))q(u(d))



3.1. Variational lower bound

We apply Jensen’s inequality twice. First, we use the standard
free-energy lower bound on the evidence under the factorized
posterior approximation q(U) =

∏
d q
(
u(d)

)
:

log p(y) ≥ E∏
d q(u(d)) [log p(y|U)]−KL (q)

whereKL (q) =
∑
dKL

[
q(u(d))||p(u(d))

]
. Second, we fol-

low [4] to obtain a lower bound on the conditional log likeli-
hood log p(y|U)

log p(y|U) = log E∏
d p(f (d)|u(d))

[
p (y,F|U)∏
d p
(
f (d)|u(d)

)]

≥ E∏
d p(f (d)|u(d))

[
log

p (y,F|U)∏
d p
(
f (d)|u(d)

)]

=
∑
i

E∏
d p
(
f
(d)
i |u(d)

)
[

log plik

(
yi

∣∣∣∑
d

f
(d)
i

)]
=
∑
i

Ep(ρi|U) [log plik (yi|ρi)]

with ρi|U =
∑
d f

(d)
i |u(d), the conditional additive predictor.

Combining the two inequalities, we obtain:

log p (y) ≥ E∏
d q(u(d)) [log p (y|U)]−KL (q)

≥
∑
i

E∏
d q(u(d))

[
Ep(ρi|U) [log plik (yi|ρi)]

]
−KL (q)

≥
∑
i

Eq(ρi) [log plik (yi|ρi)]−KL (q)

where q (ρi) = E∏
d q(u(d)) [p (ρi|U)]

Finally, we assume a Gaussian parametric form for
q(u(d)) = N (m(d), S(d)). This assumption implies that
q(ρi) will also be Gaussian, and thus expecations can be
evaluated rapidly and accurately by Gaussian quadrature
methods. Writing A(d) = K

(d)
nmK

(d)−1
mm , we have

f (d)|u(d) ∼ N
(
A(d)u(d),K(d)

nn −A(d)K(d)
mmA

(d)T
)

ρ|U ∼ N

(∑
d

A(d)u(d),
∑
d

K(d)
nn −A(d)K(d)

mmA
(d)T

)
and so

q(ρ) = E∏
d q(u(d)) [p (ρ|U)] = N

(∑
µ
(d)
add,

∑
d

Σ
(d)
add

)
,

with,

µ
(d)
add = A(d)m(d)

Σ
(d)
add = K(d)

nn +A(d)
(
S(d) −Kmm

)
A(d)T

3.2. Optimization

The lower bound may be optimized numerically with respect
to m(d), S(d), the inducing point locations and any kernel
hyperparameters. The structure of the bound lends itself to
stochastic gradient descent using minibatches, which allows
massively scaled inference.

The KL divergences in the bound take O
(
DM3

)
opera-

tions to compute. Computing predictions q(f) to evaluate the
likelihood term of the bound takes O

(
DM2N

)
.

The expectation computation Eq(ρi) [log plik (yi|ρi)] can
be performed either by Monte-Carlo sampling or by quadra-
ture methods. One key feature here is that the expectation is
under a one-dimensional random variable (the additive pre-
dictor) irrespective of the number of latent functions, thus
avoiding the poor scaling of quadrature methods and Monte
Carlo sampling for Gaussian expectations.

We implemented and optimized the objective function us-
ing the GPflow1 framework based on Tensorflow [15].

3.3. A GAM perspective

In the GAM literature, parametric assumptions on the form of
the individual components are typically based on regression
smoothing splines, leading to functions of the form f(x) =∑
k wkφk(x). Parameters are estimated by optimizing a pe-

nalized likelihood of the form l(f) +
∑
d λ

(d)‖f (d)‖2. The
regularization parameters λ(d) provide a trade-off between
goodness of fit and smoothness. This approach yields a point
estimate for the best fitting functions. Asymptotic arguments
are then used to derive approximate ’Bayesian’ confidence
intervals or to generate objectives to select the regularization
parameters [16]. The form of the inferred functions is thus
set in advance. Recent work extended this approach by pre-
determining the form of the posterior on the functions [17],
adding priors on the spline parameters and computing the
marginal posterior on those parameters. However, the priors
in this approach are difficult to interpret, and the approximate
inference schemes required do not scale well. For examples,
see [18, 19].

Our approach is similar in spirit, in that we assume inde-
pendent GP priors for each function f (d) ∼ GP and choose
a parametric form for the marginal posterior on each GP of
the form q(f (d)) =

´
du(d) p(f (d)|u(d))q(u(d)). However, by

contrast to the spline-based methods of [17], our method ex-
ploits the rich expressive power of GPs, and scales very well.

The Gaussian Process approach may be seen as a gener-
alization of a fixed basis expansion. For example, assuming
f(x) =

∑K
k wkφk (x) amounts to setting a prior GP of the

form k(x, x′) ∝ Φ(x)Φ(x′)T where Φ = [φ1, ..., φK ]T . Such
kernels define finite dimensional function spaces, the dimen-
sionality of which determines an upper bound to the number
of inducing points required for the associated approximate

1https://github.com/GPflow/GPflow
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Fig. 1. (a) Posterior over individual latent function in the ad-
ditive regression analysis of the airline data (shaded). Maxi-
mum Penalized likelihood estimate with 95% confidence in-
terval (dashed). (b) RMSE of predicted delays for both meth-
ods.

posterior. As a concrete example, if a component with a one-
dimensional domain is linear, one can use a linear kernel and
only two inducing points.

4. EXPERIMENTS

We investigated the validity of our approach in two experi-
ments, corresponding to two different application domains. In
the first experiment, a GAM model was fit to a large dataset,
to yield interpretable posteriors over the individual functions
composing the additive predictor. In a second experiment, we
used the approach to efficiently separate sources mixed into a
single time-series.

4.1. Generalized additive model

We performed an additive regression analysis on a dataset de-
rived from every commercial flight in the USA for the year
2008. The dataset comprised more than 2 million entries,
from which we selected a training set and a test set both con-
tainingN = 50000 data points. Following [20], we attempted
to predict the delay of flights using the following 6 covariates:

age of the aircraft, planned airtime, planned departure time,
planned arrival time, day of the week, month.

We used an additive Gaussian Process prior (one function
per covariate) with RBF kernel, assuming a conjugate likeli-
hood with independent Gaussian noise in each measured de-
lay. The inducing-point variational approximation was based
on M = 10 inducing points per covariate, and we learned
both the variational parameters (the inducing values) and the
noise parameter of the likelihood. The pseudo-input locations
were fixed to a homogenous grid for each dimension, with
kernel hyperparameters controlling the prior variance and the
smoothness of each GP.

The posterior marginals, shown in Figure 1(a), provide a
visualisation of the impact of the individual covariates on de-
lay. Note that additivity makes the offset of each function ar-
bitrary: the critical features are the pattern of variation and the
relative magnitude of variation across the different functions.
We found the dominant predictors to be, in decreasing order
of importance: arrival time, departure time, and airtime. The
marginal posteriors suggest, for instance, that greater delays
can be expected for night flights.

We compared our method with bam, the scalable version
of the gam toolbox contained in the R package mgvc [21],
using the same model structure and setting all parameters to
their default values. Inferred functions shown in Figure 1(a)
are broadly similar, as is the reconstruction error. However,
root mean squared error in predicted delays for 20 repetitions
of the experiment are shown in Figure 1(b), and demonstrate
a distinct advantage for the proposed GP approach.

4.2. Additive source separation

The second experiment investigated the capacity of the addi-
tive GP approach to: handle non-homogenous sampling grids,
incorporate rich priors over sources, allocate a variable num-
ber of inducing points to different sources, and handle obser-
vation non-linearities.

We created an artificial mixture of partially overlapping
locally periodic sources with a slowly varying background.
This mixture was mapped through a monotone non-linearity
and corrupted by Gaussian white noise. The two sources had
the Gabor form sxc,σ,f (x) = e−

|x−xc|
σ cos(2πfx), while the

slowly varying background source was taken to be the func-
tion cos(5x). The combination yielded the mixture signal
m(x), which was passed through a compressing non-linearity
g(x) = sign(x)|x|1/2 and combined with white noise. The
resulting signal can be seen in Figure 2(a).

For inference, the locally periodic sources were assumed
to be sampled from stationary GPs with kernel kτ,ω (x, x′) =

e−
|x−x′|
τ cos(2πω|x−x′|). We sampled N=5000 input points

from a uniform distribution between 0 and 1. For each we
computed a corresponding output yi = g(m(xi)) + εi where
εi ∼ N

(
0, σ2

n

)
.

The periodicity parameter of the kernel was fixed to the



true generating value. Inducing point pseudo-inputs were
initialized by randomly selecting corresponding coordinates
from the actual data points: 30 pseudo-inputs were used for
each of the two local sources and 10 for the smooth one. We
sought to learn the kernel hyperparameters, the pseudo-input
locations, the likelihood noise parameter and the variational
parameters.

Figure 2(b) shows how the inferred marginals match the
sources well, with inducing points spread across the signal
support. Inducing points and variational parameters shape
the variational posterior both on the ’active’ portion of the
sources and where it is close to zero. On this latter part, they
ensure the posterior variance does not fall back to the prior
variance, which must be set to a high value for all sources to
capture their range.

The identified mixture contains local tonal components.
A common method suited to the extraction of similar compo-
nents is called Empirical Mode Decomposition (EMD). Al-
though it is not designed to deal with observation non linear-
ity, it is regarded as being robust to noise. We applied the
ensemble version of EMD (EEMD) as implemented in the
package libeemd [22] to decompose the signal. For this ex-
ample, using 6 Intrinsic Mode Functions (IMF) led to the best
results, but these were still inferior to the GP approach.

5. CONCLUSION

We have demonstrated a scalable algorithm to infer an un-
derlying set of signals or functions, given noisy, transformed
observations of their sum. The approach depends on cap-
turing the statistical structure of the underlying signals us-
ing Gaussian processes. Scalability is addressed by using an
inducing-point based variational inference approach, tailored
specifically to provide robust reconstructions of the individual
processes. The same approach has applications to a range of
problems, from signal decomposition to generalised additive
regression modelling.
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