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Abstract 

INTRODUCTION: Hippocampal volume is a core biomarker of Alzheimer's Disease (AD). 

However, its contribution over the standard diagnostic workup is unclear. 

METHODS: 356 patients, under clinical evaluation for cognitive impairment, with suspected 

AD and  MMSE≥20, were recruited across 17 European memory clinics. After the traditional 

diagnostic workup, diagnostic confidence of AD pathology (DCAD) was estimated by the 

physicians in charge. The latter were provided with the results of automated hippocampal 

volumetry in standardized format and DCAD was reassessed. 

RESULTS: An increment of one interquartile range in hippocampal volume was associated 

with a mean change of DCAD of -8.0% (95% Credible Interval:[-11.5,-5.0]). Automated 

hippocampal volumetry showed a statistically significant impact on DCAD beyond the 

contributions of neuropsychology, FDG-PET/SPECT and CSF markers (-8.5, CrI:[-11.5,-

5.6]; -14.1, CrI:[-19.3,-8.8]; -10.6, CrI:[-14.6,-6.1]  respectively).  

DISCUSSION: There is a measurable effect of hippocampal volume on DCAD even when 

used on top of the traditional diagnostic workup. 

 

Key Words Alzheimer's disease, hippocampal volume, biomarkers, diagnostic confidence of 

AD, Medial Temporal Lobe Atrophy. 

 

 

 

 



1. Background 

Over the last decade, many steps have been performed to improve and update the diagnostic 

criteria of Alzheimer's disease (AD) [[1], [2], [3]]. The International Working Group [[4], 

[5]] criteria stated that positivity of one or more biomarkers of brain amyloidosis and 

neuronal injury is associated with a high likelihood of AD. 

Specifically, the core AD biomarkers are divided into (1) amyloidosis biomarkers (decreased 

levels of amyloid beta 42 [Aβ42] in the cerebrospinal fluid [CSF] and increased binding of 

amyloid brain imaging ligands on positron emission tomography [PET]) and (2) neuronal 

injury biomarkers such as medial temporal atrophy (MTA), hippocampal volume reduction 

(both assessed on T1-weighted magnetic resonance images [MRIs] [[6], [7]]), increased total 

tau or phosphotau CSF levels, cortical, temporoparietal, and posterior cingulate cortex 

hypometabolism on 18F-fluorodeoxyglucose positron emission tomography (FDG-PET), and 

hypoperfusion on single-photon emission computed tomography (SPECT). 

However, the authors of these revised criteria are extremely cautious on recommending the 

use of these biomarkers in a clinical setting [2]. Indeed, the clinical use of most, if not all, of 

the biomarkers mentioned previously is affected by the lack of standard operating procedures 

for their assessment [[8], [9]]. Furthermore, to show that a proposed biomarker combination 

can significantly enhance the diagnostic accuracy over the pure clinical workup, a proper 

validation is needed [3]. Some longitudinal studies have been promoted to assess whether an 

extended range of biomarkers, added to the traditional clinical assessment, can improve the 

diagnostic accuracy, and their role is still under discussion [10]. Preliminary results suggest 

that a combination of imaging (in particular, the assessment of hippocampal volume and 

regional glucose metabolism by FDG-PET) and CSF biomarkers (in particular, Aβ42 levels) 

can improve prediction of progression from mild cognitive impairment (MCI) to AD 

dementia, compared to baseline clinical testing [[11], [12], [13], [14], [15], [16]]. 



Among these core AD biomarkers, hippocampal volume is one of the most established and 

validated [17], and it is used in research studies to stage the progression of AD 

neurodegeneration across the entire spectrum of the disease [18]. Moreover, there is a 

widespread agreement on its clinical significance, even if its validation process in a clinical 

framework is still ongoing [19]. Recently, an important effort has been made to improve the 

accuracy and reproducibility of manual hippocampal volume measurements thanks to the 

Harmonized Protocol for Hippocampal Segmentation project [[18], [20]]. However, manual 

segmentation is not feasible in routine clinical practice because it is a time-consuming task 

that requires highly trained operators. For this reason, fully automated hippocampal 

volumetry using standardized techniques represents a practical alternative to manual 

methods. 

In this study, we aimed to investigate the perception of diagnostic utility of automated 

hippocampal volumetry among leading European dementia centers. In the context of Albert 

et al. [2] that proposed “a probabilistic framework for the way in which biomarkers may be 

used to provide increasing levels of certainty that AD pathology is the cause of an 

individual's cognitive decline,” we investigated the physician's confidence in the patient's 

cognitive impairment being due to AD pathology (diagnostic confidence of AD [DCAD]), 

and we evaluated the impact of automated hippocampal volume assessment on this 

confidence level within a multicentric clinical setting. 

In other words, the study aimed to measure how clinicians are influenced in their clinical 

diagnostic confidence by different clinical information and by the available biomarkers, 

hippocampal volumetry in particular. Indeed, because the clinical DCAD is what really 

determines the management of the patients and because the usage of biomarkers is rapidly 

increasing in the clinical practice, even if conclusive validation studies are still ongoing, a 



direct measure that assesses how the recent diagnostic criteria are being considered and 

incorporated in a clinical context is certainly beneficial. 

 2. Methods 

2.1 Data collection 

Three hundred and fifty-six consecutive patients, under clinical evaluation for cognitive 

impairment and suspected AD etiology, were recruited across 17 centers of the European 

Alzheimer's Disease Consortium (EADC www.eadc.info).  

The inclusion criteria in our study were a Mini-Mental State Examination (MMSE) score ≥ 

20, the availability of a volumetric MRI brain scan (T1-weighted volumetric brain scan 

acquired on a 1.5T or a 3T scanner with MPRAGE or IR-SPGR sequences and maximum 

linear voxel dimension of 1.5 mm [20]) and suspected AD pathology.  On the basis of usual 

local practices, physicians provided an initial estimate of DCAD on a structured scale ranging 

from 15% to 85%. We chose to limit the diagnostic confidence to this range in order to 

exclude cases in which the etiological confidence was close to certainty.  

The set of information for each recruited subject, describing physicians' evaluations 

according to the usual local clinical practices, is the following: 

• Age and sex (mandatory); 

• MMSE score (mandatory); 

• Neuropsychological assessment of long term memory, executive functions, language, 

visual spatial abilities domains (possible values normal or pathological according to 

local cutpoints);  

• Visual rating on T1 weighted MRI scan (MTA score 0-4) [6]  



• Visual assessment of FDG-PET or SPECT brain scan (possible values: normal or 

pathological with temporal/parietal pattern, pathological with frontal/temporal 

pattern, pathological with mixed pattern);  

• Aβ42, Tau or phospho-tau CSF levels (possible values: normal or pathological 

according to local cutpoints); 

Physicians were asked to provide the MRI scan to the lead investigators, which then 

proceeded with obtaining  automated hippocampal volumetry using one of the following six 

algorithms: ACM-AdaBoost [21], Freesurfer [22], LEAP [23], GDISeg [24], VolMETRIX 

[25][26] and MorphoBox [27][28]. The specific algorithm was assigned randomly for each 

subject. This random assignment was designed to ensure balance in sample size across 

centers and algorithms. 

A standardized volumetric report, including a graph showing left and right hippocampal 

volumes referenced to the algorithm-specific normative distribution used for the validation of 

the selected algorithm (Figure 1) was provided to the clinicians. These reports were carefully 

standardized irrespective of the algorithm used, to keep the clinicians blind to the algorithms 

and avoid biases. Clinicians then provided a final estimate of DCAD (ranging from 0% to 

100%) by taking the volumetric measurements into account. 

Finally, they reported for each subject whether the hippocampal volumetry had an impact on 

diagnostic confidence with a 4-level Likert scale (Possible answers: YES, significantly; YES, 

somewhat; YES, slightly; NO, not at all). Physicians' evaluations were recorded through ad 

hoc web-based questionnaires. 

The study has been performed with the informed consent of each participant and obtained 

ethics approval from the Ethics Committee of IRCCS San Giovanni di Dio-Fatebenefratelli, 

Brescia (Italy). 



2.2 Data processing 

Hippocampal segmentations with ACM-AdaBoost, Freesurfer, LEAP and GDISeg were 

performed on the neuGRID platform (www.neugrid4you.eu) [29][30]. The MorphoBox 

prototype and VolMETRIX were run on proprietary resources provided by the algorithm 

developers. 

Importantly, no superimposed specific criteria were required for the automated methods, such 

as segmenting the hippocampus in a common space, but the hippocampal volumetry 

providers were free to use their specific settings. Indeed, each algorithm uses different 

methods to normalize the volumetric information across subjects: some methods (e.g. 

Freesurfer and LEAP), after providing the segmented hippocampal structures in native space, 

standardize the volumes by using the total intracranial volume, others (e.g. ACM-AdaBoost, 

GDISeg, VolMETRIX) primarily register the brain scan with affine registration techniques to 

a common brain template, thus allowing inflation or deflation of the structures with 

normalization effects on the volumes across subjects during the following segmentation steps. 

This implies that the final outcome of each algorithm cannot be directly compared to others 

in terms of volume. Accordingly, the information provided to the clinicians was the 

volumetric data of a single subject by contrasting it with an algorithm-specific normative 

distribution (one algorithm out of six had a gender-specific normative distribution) described 

in terms of percentiles curves (Figure 1). Therefore, what really could impact the DCAD in 

our setting was not the hippocampal volume value itself, but its relative position with respect 

to the represented population of healthy controls. For this reason, we chose to derive a new 

measure, called Normalized Volume Distance (NVD), defined as the distance between the 

measured hippocampal volume (HV) and the median hippocampal volume at the 

corresponding age, divided by the Inter Quartile Range at that age.  



𝑁𝑉𝐷 =
𝐻𝑉 − 𝐻𝑉'()
𝐼𝑄𝑅'()

 

The IQR is defined as the difference between the 75th percentile and the 25th at each age. 

IQR is a well-known measure of statistical dispersion and it can be defined in non-normal 

distributions. Obviously this definition can be problematic with very skewed distributions, 

but in our case 5 algorithms out of 6 had a symmetric distribution and the remaining had a 

very slight asymmetry with maximum absolute value of Bowley’s coefficient=0.17 (range (-

1,1) where 0 means perfect symmetry) [31]. 

Thus the NVD represents the relative position of a single volume with respect to a normal 

distribution taking into account the age and the width of the normative distribution. 

Hereinafter, we will consider the NVD as the main outcome of the automated methods for 

hippocampal segmentation. 

2.3 Statistical analysis 

Considering the violation of the postulates for normal distribution of the target outcome 

DCAD, all analyses regarding this variable as dependent variable were performed 

accordingly. In particular, the distribution of diagnostic confidence (i.e. DCAD expressed on 

the scale 0-100) was heteroskedastic and skewed with a range 0-100 (Figure 2), 

corresponding (by rescaling for 100 and without loss in generalization) to a Beta distribution. 

Thus, in order  to evaluate the impact of both traditional clinical assessment and hippocampal 

volume assessment on DCAD, a special case of generalized linear models known as Beta 

regression models [32] was adopted.  

Due to the complexity of the performed models (univariate, multiple and for repeated 

measures beta regression models), Bayesian inference, based on Markov Chain Monte Carlo 

(MCMC) method, was adopted as model estimation procedure [33]).  The goodness of fit of 



the models was evaluated by pseudo-R2 (ranges 0-1) computed as the square of the 

correlation between the fitted values (drawn from the posterior predictive distribution) and 

the observed values [34]. Therefor the greater the magnitude of the correlation between the 

predicted values and the actual values, the greater the R-squared. Coherently with Bayesian 

inference, the significance of the parameter estimates was evaluated by 95% posterior 

credibility interval [95% CrI] (interval not including zero detects significant estimate). 

Convergence of MCMC chains of Bayesian models was assessed by potential scale reduction 

factor [35].  

 

All the analyses were performed in R, a language and environment for statistical computing 

(version 3.2.5, R Core Team, 2015). Univariate Beta regression models and Beta regression 

models for repeated measures were carried out by ‘betareg’ and  ‘zoib’ R packages. 

 

3. Results 

3.1 Dataset description 

Among 356 recruited subjects 45% were male; the mean age  was 69.0 (SD 11.1) years and 

mean MMSE score was 24.9 (SD 3.1). The overall frequencies of the considered clinical 

measures and biomarkers assessed for the patients are reported in Table 1. Almost all patients 

underwent a neuropsychological assessment including tests for long-term memory, executive 

functions, language and visuospatial abilities. About one third of patients were evaluated by 

FDG-PET (28%) or perfusion SPECT (6%) and 53% of the subjects were assessed for MTA 

on MRI. About a fourth underwent a lumbar puncture with evaluation of CSF-biomarkers, 

including Aβ42, tau or phospho-tau analyses. 

Table 1. Descriptive statistics of the clinical variables and biomarkers used in the assessment 
of the 356 enrolled patients. 



 n 
(%) 

 Mean (SD) or 
Frequency/n (%) 

Sociodemographics    

Sex  356 
(100) 

F 197 (55) 

Age 356 
(100) 

Years 69.0 (11.1) 

Cognitive variables    

MMSE 356 
(100) 

Score 24.9 (3.1) 

Long-Term Memory Test 350 
(98) 

Abnormal 268 (77) 

Executive Functions Test 350 
(98) 

Abnormal 223 (64) 

 Language Test 350 
(98) 

Abnormal 119 (34) 

 Visuospatial Abilities Test 350 
(98) 

Abnormal 167 (48) 

Biomarkers    

FDG-PET visual assessment 
101 
(28) 

Normal 
   Frontal-Temporal Pattern  

Mixed pattern 
Temporal-Parietal Pattern 

18 (18) 
7 (7) 
24 (24) 
52 (51) 

SPECT visual assessment 
21 
(6) 

Normal 
   Frontal-Temporal Pattern  

Mixed pattern 
Temporal-Parietal Pattern 

1 (5) 
5 (24) 
5 (24) 
10 (47) 

MTA Visual Assessment 
(MTA score [6]) 189 

(53) 

0 
1 
2 
3 
4 

18 (10) 
47 (25) 
72 (38) 
42 (22) 
10 (5) 

CSF tau or CSF phospho-tau 93 
(26) 

Abnormal 65 (70) 

CSF Aβ42 94 
(26) 

Abnormal 55 (58) 

 

 

3.2 Diagnostic confidence of AD (DCAD) before hippocampal volumetry 

Table 2 reports the parameters of the univariate models that describe the DCAD expressed by 

clinicians before disclosing automated hippocampal volumetry. When considered one by one, 

the variables included in the clinical assessment have a statistically significant impact on the 



diagnostic confidence in the vast majority of the cases. However, if we consider the explained 

variance, we observe that neuropsychological test scores in executive, language and 

visuospatial domains provided a poor explanation of DCAD variability (pseudo R2 less than 

0.05 for all). Among neuropsychological tests, MMSE and Long Term Memory domain tests 

had the biggest effect on variance: an increment of one point of MMSE caused an average 

decrease of 4% (β = -4.2) of confidence that the reported cognitive impairments were actually 

due to AD, while an abnormal score in a long-term memory test increased AD diagnostic 

confidence by 24% (β = 24.2) on average. The variables, which were more explanatory for 

the DCAD variability were the CSF Aβ42 analysis (pseudo-R2=0.46, β=29.4) and the visual 

assessment of FDG-PET brain scans (pseudo-R2=0.45 and β>30 for all the categories and 

with higher β for temporal-parietal and mixed patterns). Similarly, MTA scores and CSF tau 

levels showed a remarkable impact (pseudo-R2=0.32 and β>33 for MTA scores > 2; pseudo-

R2=0.35 and β=27.6 for CSF tau levels). 

 

Table 2. Univariate Beta regression models for initial diagnostic confidence of AD (DCAD). 

The variables explaining the DCAD variability better (higher pseudo-R2) are CSF Aβ42 

analysis, visual assessment of FDG-PET brain scans, CSF tau analysis and MTA scores. 

Predictors 

Explained            
variance 

pseudo-R2 
 

Impact on initial DCAD 
 
Estimates#  [95% CrI] 
 

Age (+1) 0.05 β = 0.4     [0.2, 0.6]*  

Gender (M vs F) 0.005 β = -3.2    [-7.8, 1.5] 

MMSE (+1) 0.28 β = -4.2    [-4.1, -3.3]* 

NPSY Long-Term Memory (abnormal vs normal) 0.23 β = 24.3   [20.0, 27.6]* 

NPSY Executive Functions (abnormal vs normal) 0.05 β = 10.2   [4.9, 14.7]* 

NPSY Language (abnormal vs normal) 0.02 β = 6.9     [1.7, 12.4]* 

NPSY Visuospatial Abilities (abnormal vs normal) 0.04 β = 8.9     [4.3, 13.2] * 

FDG-PET 0.45  

   Temporal-Parietal Pattern vs normal  β = 35.9   [29.6, 40.9]* 



   Frontal-Temporal Pattern vs normal  β = 30.7   [18.8, 39.4]* 

   Mixed Pattern vs normal  β = 34.9   [28.2, 40.3]* 

SPECT 0.28  

   Temporal-Parietal Pattern vs normal  β = 36.6   [-3.2, 48.6] 

   Frontal-Temporal Pattern vs normal  β = 31.6   [-11.7, 48.2] 

   Mixed Pattern vs normal  β = 41.1   [-0.1, 49.1] 

MTA Visual Assessment 0.32  

   1 vs 0  β = 24.2   [15.2, 32.8]* 

   2 vs 0  β = 32.6   [25.6, 38.0]* 

   3 vs 0  β = 35.8   [29.9, 40.5]* 

   4 vs 0  β = 33.7   [23.3, 40.9]* 

CSF tau (abnormal vs normal) 0.35 β = 27.6   [20.1, 33.7]* 

CSF Aβ42 (abnormal vs normal) 0.46 β = 29.4   [23.8, 34.5]* 
 

# The β values indicate the mean variation in confidence (range 0-100) for one unit increase of  the independent  

continuous variables or for change of category in categorical predictors. *β significantly differs from 0 with a 

posterior probability > 95%. Pseudo-R2 estimates the goodness of fit (ranges 0-1) 

 

3.3 Impact of hippocampal volumetry on DCAD 

3.3.1 Perceived impact on DCAD 

When directly asked about the impact of hippocampal volumetry on the DCAD, in 24.4% of 

cases (87/356) clinicians reported that the additional information “significantly” changed 

their initial diagnostic confidence. In 27.0% (96/356) and in 28.4% (101/356) of cases they 

felt “somewhat” or “slightly” impacted, respectively. In 20.2% (72/356) of cases they didn’t 

change their initial belief “at all”. 

3.3.2 Measured impact on DCAD 

In Figure 3, the DCAD before and after the disclosure of hippocampal volumetric 

information (NVD) is described in a scatter plot. Points drawn in cooler colors, which denote 

a negative distance from the median of the normative distribution, are in most of the cases 



located below the bisector of the plane, thus showing that lower NVD values generally 

increased clinicians’ DCAD. On the contrary, points drawn in warmer colors are in the 

majority of the cases above the bisector or in any cases close to it. Therefore, non-atrophic 

NVD in general diminished or at least did not increase clinicians’ DCAD. The impact of 

NVD looks more evident when the initial confidence of AD was low (≤50%) and weaker 

when the initial confidence of AD was >50%. In particular, we had 12 cases out of 356 for 

which the confidence of AD changed from ≥50% to <50% and 35 cases for which the 

confidence of AD changed from ≤50% to >50%. 

3.3.3 Impact evaluation of hippocampal volumetry alongside other clinical variables on 

DCAD: repeated measures Beta regression models  

The evaluation of the impact of automated hippocampal volume information was carried out 

by modelling the DCAD variable, gathered pre and post hippocampal volume information, in 

a repeated measures Beta regression model framework. The regression coefficient of 

hippocampal NVD alone on DCAD is β=-8.0 (95% CrI:[-11.5, -5.0]), i.e. a decrease of 1 

Interquartile Range (IQR) in the NVD induced a mean increase of 8.0% in the confidence 

level of AD in the clinicians’ opinion.  

The quantification of the impact of the automated hippocampal volume information together 

with the other clinical variables is reported in Table 3.  

 

Table 3. Repeated measures Beta regression models for diagnostic confidence of AD 

(DCAD). Hippocampal volumetry, expressed in terms of Normalized Volume Distance 

(NVD), is perceived as a significant biomarker for AD in combination with 

neuropsychological assessment (model a), visual assessment of brain FDG-PET/SPECT 



(model c), CSF markers (model d) and visual medio-temporal atrophy (MTA) score (model 

b). 

 Variables in the model n 
subjects pseudo-R2 Clinical variable 

Predictors 
Impact on initial DCAD 
Estimates#  [95% CrI] 

a 
Neuropsychology 

Hippocampal volumetry (NVD) 
 

350 0.29 

NVD (+1IQR) β = -8.5   [-11.0, -5.6]* 

MMSE (+1) β = -2.3  [-3.1, -1.5]* 

NPSY Long-Term Memory (abn vs n) β = 16.8   [12.2, 21.1]* 

NPSY Executive Functions (abn vs n) β = -2.8   [-7.4,1.5] 

NPSY Language (abn vs n) β = 2.5   [-1.7, 6.4] 

NPSY Visuospatial Abilities (abn vs n) β = 5.4   [1.4, 9.5] * 

b 

Neuropsychology 
Hippocampal volumetry (NVD) 

MTA Visual Assessment 
 

184 0.32 

NVD (+1IQR) β = -5.7   [-9.9,-1.8] * 

MMSE (+1) β = -1.0   [-2.1, 0.5] 

NPSY Long-Term Memory (abn vs n) β = 8.5   [1.8, 14.8]* 

NPSY Visuospatial Abilities (abn vs n) β = 6.9   [1.4, 12.0]* 

MTA Visual Assessment   

      1 vs 0 β = 28.2   [20.3, 34.3]* 

      2 vs 0 β = 36.4  [30.1, 41.0]* 

      3 vs 0 β = 36.6   [29.7, 41.0]* 

      4 vs 0 β = 32.8  [21.2,40.1]* 

c 

Neuropsychology 
Hippocampal volumetry (NVD) 

FDG-PET/SPECT 
 

116 0.50 

NVD (+1IQR) β = -14.1   [-19.3, -8.8]* 

MMSE (+1) β = -2.0   [-3.4, -0.8]* 

NPSY Long-Term Memory (abn vs n) β = 13.9  [6.7, 20.7]* 

NPSY Executive Functions (abn vs n) β = -4.7  [-11.8, 2.9] 

NPSY Language (abn vs n) β = -3.7   [-9.9, 2.6] 

NPSY Visuospatial Abilities (abn vs n) β = 2.7   [-3.9, 9.2] 

FDG-PET/SPECT (abn vs n) β = 27.9   [21.1, 32.9]* 

d 

Neuropsychology 
Hippocampal volumetry (NVD) 

CSF measures 
 

92 0.59 

NVD (+1IQR) β = -10.6   [-14.6, -6.1]* 

MMSE (+1) β = -1.7   [-2.9, -0.5]* 

NPSY Long-Term Memory (abn vs n) β = 15.9 [6.8, 23.6]* 

CSF tau (abn vs n) β = 18.1   [11.5, 24.3]* 

CSF Aβ42 (abn vs n) β = 21.7   [16.2, 27.0]* 

e 
Neuropsychology 

Hippocampal volumetry (NVD) 
(subjects not evaluated for MTA) 

166 0.52 

NVD (+1IQR) β = -12.5   [-15.7, -9.3]* 

MMSE (+1) β = -3.1  [-3.9, -2.2]* 

NPSY Long-Term Memory (abn vs n) β = 24.2  [18.3, 29.2]* 

NPSY Executive Functions (abn vs n) β = -8.2   [-13.8, -2.2]* 

NPSY Language (abn vs n) β = -0.1  [-4.5, 5.0] 

NPSY Visuospatial Abilities (abn vs n) β = 0.5  [-4.7, 5.6]  

f 
Neuropsychology 

Hippocampal volumetry (NVD) 
(subjects evaluated for MTA) 

184 0.22 

NVD (+1IQR) β = -6.0   [-9.9, -1.6]* 

MMSE (+1) β = -2.22   [-3.3, -1.2]* 

NPSY Long-Term Memory (abn vs n) β = 14.3   [7.1, 20.2]* 

NPSY Executive Functions (abn vs n) β = -0.7   [-6.4, 5.0] 

NPSY Language (abn vs n) β = 1.9   [-4.4, 9.3] 

NPSY Visuospatial Abilities (abn vs n) β = 9.1   [3.0, 15.3]* 

 



# The β values indicate the mean variation in confidence (range 0-100) for  one unit increase  of the independent  

continuous variables or for change in categories in categorical predictors. The sample size can vary in the 

construction of the different models depending on the availability of the included predictors (e.g. the model 

which includes neuropsychological assessment and CSF measurements can rely on 92 subjects that have both 

information available). *β significantly differs from 0 with a posterior probability > 95%. Pseudo-R2 estimates 

the goodness of fit (ranges 0-1) 

 

The impact of NVD on DCAD remained significant, also if added to other clinical variables. 

The best models (in terms of explained DCAD variability) were those including CSF 

biomarkers (model d), pseudo-R2=0.59) and visual assessment of FDG/SPECT (model c), 

pseudo-R2=0.50) and the mean confidence variations, due to an increase of 1 IQR of NVD 

measured on the respective age-matched normative population, are β=-10.6%  (95% CrI:[-

14.6, -6.1]) and β=-14.1% (95% CrI:[-19.3, -8.8]), respectively. Likewise, the impact was 

remarkable when the hippocampal volumetric information was added to neuropsychological 

assessment only (β=-8.5%, 95% CrI:[-11.0, -5.6]), although the model fit decreases to 

pseudo-R2=0.29 (model a). 

The impact was weaker when automated hippocampal volumetry was added as predictor to 

MTA scores (model b): β=-5.7%, 95% CrI:[-9.9,-1.8] and pseudo-R2=0.32). More precisely, 

the impact of NVD on DCAD was significantly different when hippocampal volumetry 

information was added to neuropsychological assessment of subjects which were already 

visually assessed for MTA (model f) with respect to subjects without MTA assessment 

(model e). Indeed, the pseudo-R2 increases from 0.22 to 0.52 when the NVD was available as 

the sole atrophy measure of the medial temporal lobe. The correspondent β increases from -

6.0% to -12.5%. 



Among neuropsychological variables, MMSE and Long Term Memory domain remained the 

variables that affected diagnostic confidence of AD the most, while language domain did not 

show any significant impact on it. Differently, visuospatial and executive function domains 

showed a less robust influence on clinicians’ confidence, depending on the combination of 

variables included in the model and on the underlying sample: regression coefficients for 

visual domain were significant in models a, b, f and not significant in c and e. 

 

4. Discussion 

Results show that physicians perceive automated hippocampal volumetry, in combination 

with neuropsychological assessment, visual assessment of brain FDG-PET/SPECT, and CSF 

biomarkers as a valuable biomarker for AD. 

To assess the contribution of automated hippocampal volume, we started by evaluating which 

were the usual local practices in EADC centers for cognitive impairment evaluation in 

suspected AD patients. In a recent work, Bocchetta et al. [37] investigated through a survey 

the use of AD biomarkers in the EADC centers and assessed their perceived usefulness for 

the etiologic diagnosis of MCI. In this work, we performed instead a direct measure of the 

frequency of use and the perceived usefulness in terms of diagnostic confidence. As 

expected, we found that almost all patients underwent a neuropsychological assessment 

inclusive of evaluation on different domains. With respect to the 16% reported in [37], in our 

sample, 28% (FDG-PET) plus 6% (SPECT) of subjects were evaluated for the detection of 

hypometabolism areas, and 53% of the subjects were rated for atrophy of the medial temporal 

lobe (75% were estimated by the survey in [37]). The frequency of usage of CSF markers 

instead (26%) is very similar to that reported in [37] (22%). 



In Bocchetta et al., the 45% of participants of the survey perceived MTA scores as 

“moderately” contributing to DCAD. Moreover, 79% of the responders felt “very/extremely” 

comfortable delivering a diagnosis of MCI due to AD when both amyloid and neuronal injury 

biomarkers were abnormal, results that are in line with the criteria developed by the 

International Working Group. In our work, we measured how those beliefs corresponded to 

the real variability of DCAD with respect to the clinical variables and available biomarkers. 

In particular, the best models explaining the DCAD were those where CSF markers (both 

amyloid and tau), FDG-PET/SPECT, and MTA scores were included. This confirms that, 

when both amyloid and neuronal injury biomarkers were abnormal, the clinicians were very 

confident that cognitive impairment was due to AD. 

In this framework, we assessed the added contribution of automated hippocampal volumetry 

on DCAD. The results show that hippocampal volumetry in combination with 

neuropsychological assessment, visual assessment of FDG/SPECT, CSF biomarkers, and 

MTA scores had a statistically significant impact. The results were confirmed by the 

perception of clinicians who declared to be influenced by hippocampal volume with an 

impact rated from “slight” to “significant” in 80% of the cases. However, our models suggest 

that clinicians considered hippocampal volume information in a similar way as MTA score. 

Indeed, when MTA score was not available, clinicians were more confident on AD diagnosis 

when the hippocampal volumetric report showed a low volume in comparison to the 

normative population. On the contrary, when MTA score was available, clinicians rarely 

modified their DCAD even when the automated hippocampal volumetry was added. 

Moreover, when considered together (model b), the MTA score appeared to have more 

impact on DCAD than hippocampal NVD. In addition, the models including MTA showed a 

very similar model fit (pseudo-R2 = 0.32) both before and after disclosure of NVD. Given the 

fact that automated hippocampal volumetry is by definition a simple, quantitative, 



reproducible measure that does not require a specific training, and because the estimated 

impact on DCAD is similar to that provided by MTA score, it can provide a significant added 

value in the diagnostic process of AD, especially in centers which do not include neuronal 

injury biomarkers in their clinical routine. This also points to the potential need for volumetry 

measurements on other structures, such as cortices and ventricles. 

This study has some limitations. First, our sample represents a fraction (17/66) of the EADC 

centers. Therefore, even if the participating centers are well distributed across Europe, we 

cannot generalize our findings as representative of the real-life clinical activities across 

Europe in the assessment of cognitive impairment and suspected AD. Moreover, the fact 

itself to be part of the EADC entails that the participating centers are part of a selected group 

more likely to use biomarkers for diagnosis. 

Second, except for the MMSE score, our study aggregated outcomes coming from 

neuropsychological tests that were acquired and dichotomized in normal/abnormal according 

to local clinical practices and protocols. The same caveat is valid for CSF biomarker. Even if 

it seemed reasonable to aggregate such information in the scope of this work, we cannot rule 

out that different tests or protocols may have different impact on DCAD. 

In our study, we included only one biomarker of amyloidosis (CSF Aβ42 levels), and we did 

not consider amyloid-PET imaging. We chose not to include amyloid imaging because this 

examination was not available in many of our participating centers, and even if available, it 

was prescribed for a specific subtype of patients [38]. Once the use of amyloid imaging will 

be more widespread, future similar works will need to integrate amyloid imaging, as already 

done by Grundman et al. [39] that reported a significant alteration in physicians' diagnostic 

thinking due to amyloid imaging results. 



In this work, we used six different methods for hippocampal segmentation (randomly 

assigned and balanced on the involved centers and patients), but we did not separate the 

results on the diagnostic confidence by algorithm. Our aim was to verify whether the 

automated volumetry in general had an impact on DCAD and how the information on the 

hippocampal volume was treated by clinicians during the diagnostic process. For this reason, 

the design of the study prescribed a standard and uniform template to present hippocampal 

volumetry to clinicians, even if extracted by different methods. However, in principle, we 

cannot exclude that different methods for hippocampus segmentation, once known by the 

clinicians in terms of accuracy, could have a different impact on the diagnostic process. 

Comparisons between outcomes provided by different algorithms were out of the scope of 

this work and will be the subject of a different study. 
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Figure 1: Example of hippocampal volumetric report provided to the clinicians: the left and 
right hippocampal volumes of the subject are shown compared to algorithm-specific 
normative populations (for more details see methods) 
 



 

Figure 2: Distribution of confidence for the diagnosis of AD (DCAD) before automated 
hippocampal volumetry assessment. 
 

 

 

Figure 3: Scatter plot describing the diagnostic confidence of AD (DCAD) before and after 
the disclosure of hippocampal volumetric information (NVD). Points that lay on the bisector 
of the plane are those for which there was no change in DCAD, whereas points that are 



further from the bisector are those for which the change in DCAD was larger. Warmer colors 
denote a positive distance from the median of the age-matched normative population (i.e. no 
hippocampal atrophy). Cooler colors denote a negative distance from the median of the age-
matched normative population (i.e. hippocampal atrophy) 
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