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Abstract 

Back ground and Aims: Conventional risk factors like age, gender, blood lipids, hypertension and 

smoking have been the basis of coronary artery disease (CAD) risk prediction algorithms, but provide 

only modest discrimination. A genetic risk score (GRS) may provide improved discrimination over 

and above conventional risk factors alone. The current study analysed the genetic risk of CAD in 

Pakistani subjects using a GRS of 21 loci in 18 genes and examined whether its association with blood 

lipids in this cohort. 

Methods: 625 subjects were genotyped for the variants, NOS3 rs1799983, SMAD3 rs17228212, 

APOBrs1042031, LPArs3798220, LPA rs10455872, SORT1rs646776, APOE rs429358, GLUL 

rs10911021 and FTO rs9939609 (by TaqMan) and MIA3 rs17465637,CDKN2A rs10757274, DAB2IP 

rs7025486, CXCL12 rs1746048, ACE rs4341, APOA5 rs662799, CETP rs708272, MRAS rs9818870, 

LPL rs328,LPL rs1801177, PCSK9 rs11591147and APOE rs7412 (by KASPar technique). 

Results: Individually, risk allele frequencies were not significantly higher in cases than controls 

(p>0.05) except for APOB rs1042031 and FTO rs9939609 (p=0.007 and 0.003 respectively), and did 

not associate with CAD except rs1042031 and rs993969 (p=0.01 and 0.009 respectively). However, 

the GRS of 21 SNPs was significantly higher in cases than controls (17.53±2.52 vs16.64±2.44, 

p<0.001) and was associated with CAD risk. CAD risk in the top quintile of GRS was 2.96 (95% CI 

1.71-5.13).  Atherogenic blood lipid levels showed significant positive association with GRS.  

Conclusion: The GRS was quantitatively associated with d CAD risk and showed association with 

blood lipid levels, suggesting that the mechanism of these variants is likely to be in part at least 

through creating an atherogenic lipid profile in subjects carrying high numbers of risk alleles. 

Key words: Coronary artery disease, Genetic risk score, conventional risk factors  
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Introduction 

Coronary artery disease (CAD) is a chronic disorder progressing silently and usually has 

established to an advance stage by the time symptoms start appearing. Despite all measures, 

CAD remains the single largest killer worldwide. In high income countries, the CAD 

mortality rate has declined since 1980 and has shifted to an older age group, whereas, middle 

and low income countries bear three quarters of the global CAD burden. South Asians are at a 

greater risk and the prevalence is 50% to 300% higher than rest of the world (Enas & Kannan, 

2005). The prevalence of CAD is even higher in Pakistan (Jafar, Jafary, Jessani, & 

Chaturvedi, 2005) with more than 30% of the population above 45 years of age being affected 

by the disease (Gaziano, Bitton, Anand, Abrahams-Gessel, & Murphy, 2010). The disease 

burden has almost doubled in urban Karachi since 1970 (Aziz, Uddin, Faruqui, Patel, & 

Jaffery, 2012). According to latest WHO reports, cardiovascular diseases (CVD) are among 

the biggest non-communicable killers in Pakistan and CAD represents a major type of CVD 

(http://www.who.int/countries/pak/en/). 

CAD is a multifactorial disorder and arises from an interaction between environmental and 

genetic factors. The identifiable environmental risk factors have been identified in about 80% 

of CAD cases (Alwan, 2011). Most of the CAD risk factors are modifiable therefore to target 

life style changes or for drug intervention, those who are at most risk of developing disease 

should be properly identified. The conventional CAD risk factors (CRFs) like age, gender, 

blood lipids, smoking, blood pressure and diabetes have been the basis of CAD risk prediction 

algorithms developed by many consortia. These risk prediction algorithms  include the 

Framingham risk score (Wilson et al., 1998), the Prospective Cardiovascular Munster Heart 

Study (PROCAM) (Assmann, Cullen, & Schulte, 2002), the Systematic Coronary Risk 

Evaluation (SCORE) system (Conroy et al., 2003), the Reynolds risk score (Ridker, Buring, 

Rifai, & Cook, 2007) and QRISK2 (Hippisley-Cox et al., 2008). These CRF algorithms 

calculate 10 years CAD risk and the individuals are then classified according to their risk. The 

high risk category individuals qualify for the preventive treatment (statin), and until recently, 

the cut-off for statin treatment has been set at 20% 10 years CAD risk (Wood et al., 2005). 

Lower cut-off value has been proposed in both UK and USA (10% and 7.5% respectively). 

The use of CAD risk prediction scores has increased the average life time of CAD patients by 

three years in USA (Lenfant, 2003). However, the risk assessment using CRFs provide only 

modest discrimination and do not fully explain the underlying risk (Wang et al., 2006). These 

scores lack accuracy and may overestimate risk in low risk subjects or underestimate risk in 

subjects at high risk (Brindle, Beswick, Fahey, & Ebrahim, 2006; Wilson et al., 1998). 

http://www.who.int/countries/pak/en/
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Almost 15-20% cases who developed the disease in their later life were underestimated 

(Thanassoulis & Vasan, 2010) with most of the cases occurring in intermediate and low risk 

subjects (Collins & Altman, 2009; Cooper, Miller, & Humphries, 2005). 

The variability in disease susceptibility in individuals exposed to similar environmental 

factors and having almost same CRFs can be attributed to the genetic variations (Stranger et 

al., 2007).Genetic testing may improve discrimination over and above the CRFs. Family 

history of early heart disease has long been a known CAD risk factor and heritability of CAD 

has been estimated to be more than 40% (Peden & Farrall, 2011). Historically, the genetic risk 

of a disease was assessed through the presence of the disease in the proband’s relatives and 

the genetic component was described as heritability estimate. Then the ‘candidate gene’ 

approach was used, where common variants were determined in the genes regulating 

biochemical pathways of disease pathogenesis (Wray & Goddard, 2010). Since 2007, 

additional genes associated with CAD have been identified by Genome Wide Association 

studies (GWAS) (I. K. C. Consortium, 2011). Single nucleotide polymorphisms (SNPs) can 

be used as markers of genetic variability. The CAD associated SNPs are common in the 

general population with a minimal to moderate relative risk. Most of them  are located in non-

coding DNA region implying that they influence by regulating the expression of upstream or 

downstream genes. Another striking feature of CAD risk SNPs is that most of them operate 

independently of known CAD risk factors. This indicates that many unknown pathways 

involved in development of CAD still need to be explored (Folkersen et al., 2010). However, 

the risk associated with single SNP is modest, because of the low effect sizes of common 

variants, and therefore a large number of SNPs need to be genotyped for the genetic analysis 

of CAD like complex disease. 

A genetic risk score (GRS) of a disease is calculated by summing up the number of risk 

alleles at all the loci included in the genetic risk of that disease. The GRS is a multi-locus 

profile used to transpose the discoveries from candidate gene studies and GWASs into 

population health tools (Belsky et al., 2013; Fava et al., 2014). A GRS summarizes the effect 

of multiple variants in a quantitative manner and hence is superior over the predictive power 

of a single SNP. The use of GRS information into risk prediction of CAD can bridge up the 

genomic research with more applied clinical practice. Different researchers have used varying 

number and types of loci for inclusion in CAD genetic risk scoring, the number ranging from 

less than 10 to more than 100 (Anderson et al., 2010; Paynter et al., 2010; Qi et al., 2011; 

Ripatti et al., 2010; Thanassoulis et al., 2012). 
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The majority of genetic studies and GWAS have been conducted on European/Caucasian 

people. It remained a routine practice to transpose the results obtained from such studies 

conducted in developed countries to the rest of the world, but there remains an immense 

requirement to extend genetic studies to other ethnicities also. The allele frequencies of many 

common variants vary widely between ethnicities. For example, the association of the 9p21 

region with CAD has not been replicated in African Americans (Assimes et al., 2008; 

McPherson et al., 2007). Similarly, the linkage disequilibrium and effect size of common 

variants may vary across ethnicities. Moreover, a genetic marker may not be associated with a 

trait in all ethnicities and in such cases the applicability is limited to only those populations 

where the genotype to phenotype association is clearly seen (Ioannidis, 2009). The Pakistani 

population, like other Asian countries is under represented in international genetic studies like 

HAP MAP or 1000 genomes project. To date the genetic architecture of CAD has not been 

evaluated properly for this population. A preliminary report of the use of a 19 SNPs GRS in 

CAD risk analysis in the Pakistani subjects has been published (Beaney et al., 2015), but the 

study was underpowered to detect the same effect as observed in Europeans. In the current 

study, we included two additional SNPs to construct a CAD GRS and increased the sample 

size. We hypothesized that to predict CAD risk; the GRS of 21 SNPs will be superior over 

single SNPs having small effect size and modest association. 

 

Materials and methods 

The study comprised of 405 diagnosed cases of CAD and 220 healthy controls. The selection 

criteria for the subject recruitment has been described previously (Shahid, Cooper, Rehman, 

& Humphries, 2016). The CAD cases were recruited from tertiary care hospitals in Lahore 

during February 2012 to June 2013. These selected subjects had suffered from a non-fatal 

myocardial infarction, with  diagnosis of myocardial infarction made by the consultant 

cardiologist based on the reports of ECG, cardiac echo, angiography, troponine T/I and 

clinical history. Only those CAD cases were selected which were recently diagnosed and had 

not started lipid lowering or antihypertensive drugs therapy. The controls were apparently 

healthy subjects, not having any family history of CAD. It was taken care that cases and 

controls represented all the socioeconomic groups.  Subjects with obesity (BMI> XXX) were 

also excluded from the study but not those with Type 2 diabetes because  the number of CAD 

subjects with type 2 diabetes was high and the sample size would have become too small to 

have adequate power. All participants gave a written informed consent. The study was 
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approved by the ethics committee, University of the Punjab, Lahore and all the procedures 

were in compliance with the Helsinki declaration. 

Genotyping 

The DNA was extracted from whole blood leucocytes using  Wizard genomic DNA 

purification Kit (Promega, USA). The DNA samples were quantified using nanodrop (ND-

8000, USA). The concentration of DNA samples was standardized to 1.25ng/ul. The 

genotyping was carried out in specially designed 384 well plates (Micro Amp). The DNA 

samples were arrayed by an automated robotic liquid handling system (Biomerk-FX, 

Beckman Couter). Two high throughput florescent based genotyping techniques, TaqMan and 

KASPar, were used for genotyping the SNPs. The details of genotyping techniques have been 

given somewhere else (Shahid, Cooper, Beaney, et al., 2016). The information on SNPs 

included is provided in supplementary table 1. 

The SNPs NOS3 (rs1799983), SMAD3 (rs17228212), APOB (rs1042031), LPA (rs3798220), 

LPA (rs10455872), SORT1 (rs646776), APOE (rs429358), GLUL (rs10911021) and FTO 

(rs9939609) were genotyped by TaqMan technique using qPCR master mix (KAPA 

Biosystems, USA). The SNPs MIA3 (rs17465637), CDKN2A (rs10757274), DAB2IP 

(rs7025486), CXCL12 (rs1746048), ACE (rs4341), APOA5 (rs662799), CETP (rs708272), 

MRAS (rs9818870) LPL (rs328), LPL (rs1801177), PCSK9 (rs11591147) and APOE (rs7412) 

were genotyped by KASPar technique with touchdown thermal cycler programme. The SNP 

LPL (rs1801177) was monomorphic in this population but data from this SNP is shown for 

completeness. The list of primers and probes used for TaqMan and KASPar are given in 

supplementary tables 2 and 3 respectively. After amplification, the results were analysed on 

ABI Prism 7900HT (Applied Biosystems/Life Technologies) and the genotypes were called 

using sequence detection software (SDS), version 2.0. The quality check of genotyping 

techniques was maintained by the inclusion of non-template controls (NTCs). There were 16 

NTCs included in each plate of 384 wells. Only those runs were included in the analysis 

where none of the NTCs crossed the amplification cut-off line. Only the samples which were 

clearly clustered were included in the study. While genotyping the variants with very low risk 

allele frequency like APOE rs7412, LPA rs3798220, LPA rs10455872 and LPL rs1801177, 

known heterozygotes were added to avoid false negative calls.  The genotypes were also 

randomly confirmed by the conventional direct DNA sequencing, and  10-15% of samples 

from each run were outsourced (source biosciences, UK) for direct sequencing and the results 
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were always similar to that of TaqMan/KASPar. The list of primers used for direct DNA 

sequencing is given in supplementary table 4. 

Statistical analysis 

The results were statistically analysed using statistical package for social sciences (SPSS) 

IBM, version 22. The continuous variables were compared between cases and controls using 

independent sample student t test. Hardy Weinberg equilibrium was accessed by a χ² 

goodness of fit test. The categorical variables such as risk allele frequencies (RAFs) were 

compared between cases and controls by χ² test. All the analyses were adjusted for age, 

gender, BMI, hypertensive and diabetic status. Since CAD is a binary variable, the association 

of the SNPs with CAD was examined using binary logistic regression. The effect of 

increasing GRS values on CAD was calculated through GRS quintile analysis. The 

distribution of GRS in cases and controls was compared visually by histograms. The power of 

the GRS to discriminate between CAD cases and controls was examined by receiver operative 

curve (ROC) analysis. Blood lipid levels across different number of risk allele in GRS were 

calculated by one way analysis of variance (ANOVA). The effect size/beta effect which is per 

risk allele effect of of GRS on lipid levels was calculated by linear regression.  

Constructing a GRS 

The un-weighted GRS was calculated by simply summing up the number of risk alleles at all 

the loci included in the study. The risk alleles were considered to be acting in additive manner 

i.e., each risk allele had equal contribution to the outcome and each risk allele was coded as 1. 

So the protective homozygous genotype with no risk allele was coded 0, heterozygous 

individual carrying one risk and one normal allele was coded as 1 and the risk homozygous 

individual having both risk alleles was coded as 2. In this way the GRS of an individual can 

range from 0 (no risk allele) to 42 (with all the alleles being risk alleles for 21 loci). 

 

Results 

The baseline biochemical and anthropometric parameters of the subjects under study are 

given in supplementary table 5. The cases were more diabetic and hypertensive, smoking rate 

was also high in cases than controls. Total cholesterol (TC), triglycerides (TG) and LDL-C 

were significantly higher whereas, HDL-C was lower in cases than controls. Individually, the 

RAFs of the studied SNPs were higher in CAD cases compared to controls but the difference 
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was only statistically significant (p<0.05) forAPOB rs1042031 and FTO rs9939609. The 

RAFs in cases versus controls, the p-values for statistical difference between frequencies and 

confidence interval (C.I) are shown (supplementary Table 6). 

The association of SNPs with CAD was assessed by deriving their odds ratios (OR). The 

CAD odds of all the SNPs were greater than 1 (except APOE rs7412) but were not 

statistically significant in the studied sample size. Only,APOB rs1042031 and FTO rs9939609 

were significantly associated with CAD (Table 1). However, the GRS of 21 SNPs was 

significantly higher in CAD cases than controls and was also significantlyassociated with 

CAD risk (supplementary Table 7).The GRS quintile analysis showed that the increase in 

GRS was significantly associated with CAD as shown by inter-quintile p value for CAD 

association. Compared to those in the bottom quintile of the score, CAD risk in the top quintile 

of the GRS was 2.96 (95% CI 1.71-5.13) (Table 2).   

The GRS in whole sample set including cases and controls was normally distributed 

(Supplementary Fig. 1). The GRS histogram for cases exhibited a shift to the right with higher 

GRS values more prevalent. Comparatively, a left shift of GRS was observed in controls with 

the lower GRS being more prevalent. The most prevalent GRS in controls was 17 and 40% 

individuals had this value. In cases, 18 GRS was the most prevalent, present in 65% subjects 

followed by GRS value of 19 which was present in 60% subjects. Similarly, the upper GRS 

quintiles were more prevalent in cases and lower quintiles were more prevalent in controls 

(Fig. 1).  A ROC analysis was conducted to estimate whether the gene score had potential to 

discriminate between cases and controls. The ROC was discriminating between cases and 

controls and the area under ROC was 0.602 (0.56-0.65) which was statistically significant 

(p<0.001) (Supplementary Fig. 2). 

The mean lipid levels along different GRS values are shown in table 3. There is  a significant  

increase in atherogenic lipids and a decrease in atheroprotective lipids with increase in gene 

score. The mean TC, LDL-C and TG increased and HDL-C decreased with gene score. The 

effect size of GRS on TC was 3.7±0.7mg/dl i.e. addition of each risk allele in GRS increased 

TC by 3.7±0.7mg/dl.The effect size of GRS on LDL-C was 4±0.5mg/dl which was 

statistically highly significant. Similarly, lower HDL-C values were observed towards higher 

GRS levels and the effect size of GRS on HDL-C was 2±0.3mg/dl which was a decrease in 

HDL-C per risk allele held by that individual. Similarly, TG levels increased with increase in 

GRS and the effect size of each risk allele in GRS on TG was 4.2±1mg/dl (Table 4). 
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Discussion 

The genetics of complex diseases like CAD is an interplay of different factors because the 

outcome is probabilistic by definition. The statistical parameters which have been used 

include risk prediction (relative risk, odds ratio, hazard ratio), family analysis (liability, 

threshold models) and regression (linear/logistic) (Cordell, 2009). The potential validity of a 

GRS can be examined on the merits of discrimination, risk reclassification and its clinical 

utility. However, due to modest risk associated with individual variants, low power of 

discrimination and lack of replication in different ethnicities, the genetic analysis could 

explain only a small part of heritability, leaving their clinical utility questionable (Carreras-

Torres et al., 2013). In the present study, we have studied SNPs at 21 loci to examine their 

combined effect and utility in genetic risk analysis in the Pakistani population and the 

combined GRS was significantly higher in cases than controls and was associated with CAD. 

There was a graded and continual increase in CAD risk with increasing number of CAD risk 

SNP alleles carried and individuals in the top quintile of the GRS had a CAD risk of 2.96 (95% CI 

1.71-5.13). Even though the score distribution overlaps between cases and controls, the GRS is 

significantly associated with CAD risk and as such can be used as a tool to identify subjects at 

highest risk for lifestyle or therapeutic interventions. 

 

The approach of using a GRS in CAD risk analysis is relatively new in Pakistani subjects; 

however, their use is well established in western countries. In the developed countries where 

CAD CRFs of people are well documented and monitored, CAD risk prediction algorithms 

based on CRFs are available. The GRS in these subjects can then be examined to check 

whether the inclusion of genetic risk information is able to improve the risk prediction over 

and above CRFs. In Pakistani subjects, data on routine CRF monitoring was not available and 

we used the GRS to examine whether it improves the discrimination power over the use of 

single SNPs. 

These SNPs except GLUL rs10911021 and FTO rs9939609 were previously genotyped as a 

group in NPHSII and the 19 SNPs GRS is available for use in CAD risk prediction along with 

10 years Framingham risk score in UK (Beaney et al., 2015). The SNPs included in this study 

were taken from meta-analysis of candidate gene studies (mostly belonging to lipid 

metabolism genes) or were CAD GWAS hits. All the included SNPs were not in LD even if 

present in the same gene.  
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The rationale behind selecting rs9939609 is that it has been reported that the presence of two 

alleles at the rs9939609 site of the FTO gene increased BMI by about 1 kg/m2, body mass by 

2.3Kg and 1.3-fold higher risk of overweight and obesity in both adults and children. It has 

been estimated that per unit increase in BMI increase cardiovascular disease morbidity by 8% 

(Li et al., 2006). However, we found significant association of the risk allele of rs9939609 

with CAD in Pakistani subjects independent of BMI (Shahid, Shabana, Rehman, & Hasnain, 

2016). The variant rs10911021 is a new locus identified to be associated with diabetes in 

subjects with coronary heart disease (Qi et al., 2013). Since its identification, only a few 

studies have investigated its role in different diseases. One study identified this variant to be a 

predictor of all cause mortality in diabetic subjects (Prudente et al., 2015). This intergenic 

SNP is approximately 270 Kb from the gene encoding glutamate ammonia ligase (GLUL) 

enzyme belonging to the glutamine synthase family. It has been found that individuals 

homozygous for the risk allele (C) have a lower plasma pyroglutamic acid/glutamic acid ratio 

resulting in impairment of the γ-glutamyl cycle which consequently increases oxidative 

predisposing diabetic individuals to CHD (Qi et al., 2013). We have confirmed the association 

of this SNP with CHD in subjects with T2D but not non-diabetic subjects (Beaney et al 2016)  

but have no further information on the possible risk mechanism of this SNP. .  

When tested directly for CAD risk prediction , different  GRSs have  shown varying results in 

different  studies. In a study using 24 variants in a sample of European ancestry, the authors 

failed to prove an association between GRS and subclinical atherosclerosis (Hernesniemi et 

al., 2012).  A GRS including 101 variants failed to improve the prediction over and above 

family history (Paynter et al., 2010). Recently, a GRS including 13 SNPs was reported to be 

associated with CAD (Mehta & N, 2011) and in another study GRS of 6 lipid metabolic genes 

improved the discrimination of angiographically proven coronary disease (Anderson et al., 

2010). Similarly in another study, a 13 SNPs score was associated with the first MI event 

(Ripatti et al., 2010). While some researchers were able to improve the net reclassification by 

the inclusion of GRS, the improvement remained modest (Davies et al., 2010; Lluís-Ganella 

et al., 2010), and even some failed to show a significant change in net reclassification 

index(Paynter et al., 2010; Ripatti et al., 2010). 

In this study, the GRS was calculated assuming that all the SNPs had equal effect on the 

outcome and worked additively. However, this may not always be the case because the effect 

size of some SNPs is relatively high while some have more modest effects. This problem may 

be solved by the use of an externally weighted GRS, where the coded genotype is first 
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multiplied by an already estimated effect size of that SNP from a large study,  such as a meta-

analysis of GWASstudies, with the effect size being the log natural of odds ratio (OR). The 

effect sizes calculated from studies on such large number of samples are yet not available in 

Pakistan, and the only available effect sizes of the SNPs are from studies on Caucasians. The 

effect sizes of the SNPs may vary among ethnicities as linkage disequilibrium and allele 

frequencies vary (Wang & Tao Elston, 2007). We therefore,used the unweighted GRS which 

is also the most commonly used one (Lluís-Ganella et al., 2010; Yiannakouris, Katsoulis, 

Trichopoulou, Ordovas, & Trichopoulos, 2014). The SNP coding (0,1,2) was adjusted in such 

a way that all the SNPs were positively associated with the outcome.  

We previously described the 19 SNPs score and a 13 SNPs score derived from it using only 

those SNPs present in genes/loci more robustly associated with CAD in the 

CARDIoGRAMplusC4D using 308 cases and 130 controls (Deloukas et al., 2013). The 

weighted GRS did not significantly differ between cases and controls and we found that the 

study may be adequately powered by increasing the samples to 340 cases and 340 controls 

(Beaney et al., 2015). Therefore, by increasing the number of samples (405 cases and 220 

controls) and genotyping two new SNPs, FTO rs9939609 and GLUL 10911021, the GRS 

became higher than previously reported and was significantly associated with CAD. We 

already have reported the association of FTO rs9939609 with CAD in Pakistani people which 

was independent of blood lipid levels (Shahid, Rehman, & Hasnain, 2016) and the SNP 

GLUL rs10911021 was reported to be v associated with CAD risk in type 2 diabetes mellitus 

(Prudente et al., 2015).  

In order to examine whether we have correctly genotyped the SNPs and to confirm the allele 

frequencies for these SNPs, we compared the allele frequencies of our subjects with PJL, 

which is a Pakistani Punjabi population from Lahore, in which 96 subjects were genotyped 

for many SNPs in the 1000 genomes project phase III (G. P. Consortium, 2012). The allele 

frequencies in our subjects did not significantly differ from those observed in PJL 

(Supplementary Table 8).  

In conclusion, the 21 SNPs risk score can be used for genetic risk analysis in the Pakistani 

people but the results need to be replicated with bigger sample sizes and meta-analysis of 

individual SNPs for CAD association in the Pakistani population. The GRS of these 21 loci is 

also strongly associated with lipid profile, suggesting that the mechanism of these risk SNPs 

is likely to be in part at least through creating a more atherogenic lipid profile in subjects 

carrying high numbers of risk alleles.  



12 
 

 

  

Conflict of Interest: The authors declare that they have no competing interests. 

Financial support 

SS is supported by HEC Pakistan through grant number IRSIP 24 BMS 41.KB is supported by an 

MRC case award (1270920) with Randox Laboratories. SEH is a British Heart Foundation Professor, 

he and JC are supported by the British Heart Foundation (RG008/08) and by the National Institute for 

Health Research, University College London Hospitals Biomedical Research Centre. 

Author contribution: 

Saleem Ullah Shahid, Designed the study, performed the experiments, analysed the results 

and wrote the manuscript. Shabana, Katherine Beaney and Kawah Li helped in performing 

experiments, result analysis and manuscript writing. Jackie A Cooper helped in statistical 

analysis. Abdul Rehman, provided technical support and supervised the study. Steve E. 

Humphries, Provided logistic support, designed and supervised the project.  



13 
 

Table 1:Observed coronary artery disease odds ratio of the studied SNPs. 

Gene SNP OR C.I p-value 

MIA3 rs17465637 1.14 0.89-1.5 0.29 

CDKN2A rs10757274 1.18 0.93-1.5 0.17 

DAB2IP rs7025486 1.01 0.79-1.3 0.91 

CXCL12 rs1746048 1.22 0.95-1.6 0.12 

ACE rs4341 1.22 0.97-1.5 0.09 

NOS3 rs1799983 1.15 0.86-1.5 0.33 

APOA5 rs662799 1.02 0.75-1.4 0.9 

SMAD3 rs17228212 1.22 0.91-1.6 0.19 

APOB rs1042031 1.62 1.1-2.4 *0.01 

CETP rs708272 1.03 0.82-1.3 0.81 

LPA rs3798220 2.2 0.24-19.63 0.49 

LPA rs10455872 1.25 0.49-3.2 0.64 

MRAS rs9818870 1.09 0.73-1.6 0.68 

LPL rs328 1.5 0.98-2.3 0.06 

LPL rs1801177 - - - 

SORT1 rs646776 1.2 0.92-1.5 0.19 

PCSK9 rs11591147 3.71 0.34-41.2 0.29 

APOE rs429358 1.14 0.79-1.65 0.48 

APOE rs7412 1 0.56-1.77 0.98 

GLUL rs10911021 1.3 1-1.6 0.053 

FTO rs9939609 1.43 1-2.1 *0.009 

OR: Odds ratio,*Statistically significant association of the SNP with CAD.  
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Table 2: Association of genetic risk score quintiles with CAD risk. 

*p:Inter quintile p-value. Analyses were adjusted for age, gender, BMI, hypertensive and 

diabetic status. 

 

Table 3:Lipid levels in subjects with increasing number of genetic risk score alleles. 

Gene score Number TC±SD LDL-C±SD HDL-C±SD TG±SD 

9 1 135.6 79.5 72.2 155.7 

11 8 150.3±10.3 82.3±21 71.3±16.3 156.1±37 

12 11 170.3±28.6 88.6±12.8 66.1±19.5 175.8±44.1 

13 20 185.1±33.5 90.6±21.4 62.8±11.8 196.1±74.2 

14 48 190.2±40.3 94.1±26 58.1±12.6 203.7±65.2 

15 65 195.8±48.8 95.8±25.8 60.9±17.1 205.9±62.4 

16 87 196.3±43.8 98.4±25 53.1±15.8 205±71.9 

17 98 196.3±35.4 98.7±26.7 55.3±17.9 205.7±76.8 

18 97 191.6±40.1 101.4±29.8 49.7±13.7 207.6±54.4 

19 84 196±44.6 101.8±27.5 48.9±17.3 210.3±71.8 

20 40 207.9±55 114.4±28.3 48.7±16.4 215.2±49.4 

21 32 214.8±50 124.6±25.4 48.3±15.6 219.8±71.5 

22 23 218.2±55.5 134.3±23.3 46.5±14.7 231±45.1 

23 6 239.2±39.3 134.5±7.3 43.5±9.5 268.8±63.1 

24 1 243 143 39 280 

25 2 255.3±7.1 146.5±9.2 30±4.2 302.5±24.7 

  

Genetic risk ScoreQuintiles Allele ranges 
OR 

(95% CI) 
*p-value 

1 <13 1  

2 13 to 15 1.54 (0.99-2.38) 0.052 

3 15 to 16 
2.19 

(1.28-3.76) 
0.004 

4 16 to 17 
2.81 

(1.56-5.05) 
0.001 

5 >17 
2.96 

(1.71-5.13) 
<0.001 
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Table 4: Effect size of genetic risk score on blood lipid levels. 

Effect size (β)± standard error and p-values 

TC p-value LDL-C p-value HDL-C p-value TG p-value 

3.7±0.7 1.37x10-7 4±0.5 1.9x10-20 2±.3 3.6x10-15 4.2±1 7.1x10-5 

β is the increase/decrease in lipid levels perallele increase in genetic risk score . 
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Supplementary Table 1: Basic features of the SNPs used for gene score 

Gene Chromosome SNP number 
Base 

change 

Risk 

allele 
SNP type References 

MIA3 1q41 rs17465637 C>A C GWAS 
(Kathiresan et al., 

2009) 

CDKN2A 9p21,3 rs10757274 A>G G GWAS 
(Kathiresan et al., 

2009) 

DAB2IP 9q33,2 rs7025486 G>A A GWAS 
(Harrison et al., 

2012) 

CXCL12 10q11,21 rs1746048 C>T C GWAS (Samani et al., 2007) 

ACE 17q23,3 rs4341 C>G G Candidate 

(Casas, Cooper, 

Miller, Hingorani, & 

Humphries, 2006) 

NOS3 7q36,1 rs1799983 G>T T Candidate (Casas et al., 2006) 

APOA5 11q23,3 rs662799 A>G G Candidate 
(Sarwar & N Sandhu 

M.S, 2010) 

SMAD3 15q22,33 rs17228212 T>C C GWAS (Samani et al., 2007) 

APOB 2p24,1 rs1042031 G>A G Candidate 
(J. Casas, P et al., 

2006) 

CETP 16q13 rs708272 C>T C Candidate 
(J. Casas, P et al., 

2006) 

LPA 6q25,3 rs3798220 T>C C Candidate (Clarke et al., 2009) 

LPA 6q26 rs10455872 A>G G Candidate (Clarke et al., 2009) 

MRAS 3q22,3 rs9818870 C>T T GWAS 
(Erdmann et al., 

2009) 

LPL 8p21,3 rs328 C>G C Candidate 
(J. Casas, P et al., 

2006) 

LPL 8p21,3 rs1801177 G>A A Candidate (Sagoo et al., 2008) 

SORT1 1p13,3 rs646776 A>G A Candidate 
(Kathiresan et al., 

2009) 

PCSK9 1p32,3 rs11591147 G>T G Candidate 

(Benn, Nordestgaard, 

Grande, Schnohr, & 

Tybjærg-Hansen, 

2010) 

APOE 19q13,32 rs429358 T>C C Candidate (Bennet et al., 2007) 

APOE 19q13,32 rs7412 C>T T Candidate (Bennet et al., 2007) 

GLUL 1q25,3 rs10911021 C>T C Candidate (Qi et al., 2013) 

FTO 16q12,2 rs9939609 T>A A Candidate (Frayling et al., 2007) 
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Supplementary table 2: List of primers and probes used in TaqMan assay 

Gene SNP 40x Primer & probe Sequence of primers 

eNOS 

(E289D) 
rs1799983 

ENOS_G894T_F Primers GGCTGGACCCCAGGAAA 

ENOS_G894T_R Primers CACCCAGTCAATCCCTTTGGT 

ENOS_G894T_VIC Probe VIC =T CCCAGATGATCCCCCA 

ENOS_G894T_FAM Probe FAM=G CCAGATGAGCCCCCA 

SMAD3 rs17228212 

CT17228212_F Primers TCACACTGTCTTTGCCGTCATT 

CT17228212_R Primers AGGGACGTGTCCTCACTCA 

CT17228212_VIC Probe VIC = C AGTTAGGTTGCGAGTTC 

CT17228212_FAM Probe FAM = T TTAGGTTGCAAGTTC 

APOB 

(E4154K) 
rs1042031 

GA1042031_F Primer GGATAACGTGTTTGATGGCTTGGTA 

GA1042031_R Primer ATCAATGAGTGAGTCAATCAGATGCTT 

GA1042031_V Probe VIC =G AGTTACTCAAGAATTCCA 

GA1042031_M Probe FAM=A AGTTACTCAAAAATTCCA 

LPA 

(I1891M) 
rs3798220 

LPA_I1891M-205F Primers CACCAAGAAGTGAACCTCGAATCT 

LPA_I1891M-205R Primers TGTGTGGGCTCCAAGAACAG 

LPA_I1891M-205V1 Probe VIC = A CATGTTCAGGAAATAGAAGT 

LPA_I1891M-205M1 Probe FAM =G ATGTTCAGGAAATGGAAGT 

LPA rs10455872 

TC10455872_F Primers GTCTTGGGTAACAAGTGAAGGATATCT 

TC10455872_R Primers ACACATAGCTTTTCAGACACCTTGT 

TC10455872_V Probe VIC = A CTCAGAACCCAATGTGTTT 

TC10455872_M Probe FAM = G CAGAACCCAGTGTGTTT 

CELSR2/ 

PSRC1/ 

SORT1 

rs646776 

AG599839-143F Primers CTGGGTGACAGAGCAAGATTCT 

AG599839-143R Primers 
GCTTACTCTATGAGTCTTCATTTTTCTAA 

AATAAAGTG 

AG599839-143V1 Probe VIC = A CAGGATCAACTTCC 

AG599839-143M1 Probe FAM =G CAGGATCGACTTCC 

APOE 

112 
rs429358 

Pre -designed 
GCTGGGCGCGGACATGGAGGACGTG[C/T] 

GCGGCCGCCTGGTGCAGTACCGCGG 

C-3084793_20 Reverse chromosome 19 
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Supplementary table 3:List of primers and probes used in KASPar assay 

  

Gene SNP 
Sequence ( 50bp either side, allele label = [A/T], Other SNPs = 

N or IUPAC Code ) 
FAM VIC 

MIA3 rs17465637 

GAACCAAACCATATCACTTTTTAAAACCATAATAGTTA

TGCTGAGAAGTT[C/A]TTTTTTGTCATAGTGCAAGATA

ACATGTCTTTGCTGCTGATACATTGGGT 

C A 

CDKN2A rs10757274 

GGTATTACAAAAAGCTTCTCCCCCGTGGGTCAAATCTA

AGCTGAGTGTTG[A/G]GACNTAATTGAAATTCACTAGA

TAGATAGGAGATAGGGGTAGGGAATTCT 

A G 

DAB2IP rs7025486 

GGGNCTTGAGTGGTGAGCAAAGAGGGGAGAACAGCC

CCTGGCAGACCACT[A/G]GGAATCAAAGGAAGGATTTT

GAAAATAACAGGAATGATAACAGTGATCTC 

A G 

CETP rs708272 

TTTACCCCCTGACTCAACCCCCTAACCTGGCTCAGATC

TGAACCCTAACT[C/T]GAACCCCANTGATTCTGGGTCT

CAGACAAACACAAATCCCTATACCTGGC 

C T 

APOA5 rs662799 

AAGAGGCATCTGGGCCAGNGACTCTGAGCCCCAGGAA

CTGGAGCGAAAGT[A/G]AGATTTGCCCCATGAGGAAA

AGCTGAACTCCACTCGCAGGGCCTCTGAGG 

A G 

LPL 

(S474X) 
rs328 

GGCACCTGCGGTATTTGTGAAATGCCATGACAAGTCTC

TGAATAAGAAGT[C/G]AGGCTGGTGAGCATTCTGGGCT

AAAGCTGACTGGGCATCCTGAGCTTGCA 

C G 

MRAS rs9818870 

TCTCTTGCTGCNTTTTCACATCAGCTGTGCTGCTTGGTG

CCTCTCTGATA[C/T]NAATACACTGACACGTCAAAGTA

ACCTAATGTGGACACCATCCAGAAAAC 

C T 

APOE158 rs7412 

TGNNNAAGCTGNNTNAGCNGCTCCNCCNCGATGCCGA

TGACCTGCAGAAG[C/T]GCCTGGCAGTGTACCAGGCCG

GGNCCCGCGAGGGCGCCNAGCGCGGCCTC 

C T 

SLCO1B1 rs4149056 

NATCTACATAGGTTNTTTAAAGGAATCTGGGTCATACA

TGTGGATATNTG[T/C]GTTCATGGGTAATATGCTTNNT

GGAATAGGGGAGACTCCCATAGTACCANT 

T C 

CXCL12 rs1746048 

ATTTCAGGACTGAACAGAGACTGAGAAGGGTAAAGGG

TGGTAGGATTGAG[C/T]GAGTCAGGCCAGAAACCTCTA

GTTAGCTACCATGACAGAAGGGAAACATG 

C T 

ACE rs4341 

TCTCTGAGCTCCCCTTACAAGCAGARGTGAGCTAAGG

GCTGGARCTYAAG[C/G]CATTCMAMCCCCTACCAGAT

STGACGAATRTGATGGCCRCRTCCCGGAAA 

C G 

LPL rs1801177 

CAGTTAACCTCATATCYAATTTTTCCKTTCCAGAAAGA

AGAGATTTTATY[G/A]ACATYGRAAGTAAATTTGCCCT

AAGGAMCCCTGAAGWCACAGSTGARGAC 

G A 

PCSK9 rs11591147 

TGCGCAGGAGGACRAGGACGGCGACTACGAGGAGCT

GGTGCTAGCCTTGC[G/T]TTCYGAGGAGGACGGCCTGG

YCGAAGCACCCRAGCACGGAACCACASCCA 

G T 
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Supplementary table 4:Sequence of primers used in PCR 

Primer Sequence 

MIA3_F 5'-ATCCAATCACCTTCCACCAG-3' 

MIA3_R 5'-CCCAATGTATCAGCAGCAAA-3' 

CDKN2A_F 5'-GTTTCTGCACATGGTGATGG-3' 

CDKN2A_R   5'-CATTCCCCAACATTTGTCCT-3' 

DAB2IP_F 5'-GCAGATGGTGTGACTGGAAA-3' 

DAB2IP_R 5'-AACCCCTGGTGCTGTGTAAG-3' 

ACE_F   5'-CCCCTTACAAGCAGAGGTGA-3' 

ACE_R 5'-TCGGGTAAAACTGGAGGATG-3' 

CETP_F 5'-GTGACCCCCAACACCAAATA-3' 

CETP_R 5'-TCGCCTTCAAGGTCAAGTTC-3' 

APOA5_F 5'-GCAGGGTGAAGATGAGATGG-3'   

APOA5_R 5'-TAGACGGAGTGGGTGTGTCA-3' 

SMAD3_F 5'-CTCAGATCCTTTGCGGGTAG-3' 

SMAD3_R 5'-TCTTCTGTGCAGACCAGGTG-3' 

LPArs3798220_F 5'-GAAGGGGCTGGACCATATTT-3' 

LPArs3798220_R 5'-AAGACCACAGGTGAGCGAGT-3' 

eNOS_F 5'-ACTCCCCACAGCTCTGCAT-3' 

eNOS_R 5'-CAGTCAATCCCTTTGGTGCT-3' 

LPLrs328_F 5'-CTTCCACAGGGTGATCTTCTG-3' 

LPLrs328_R 5'-CATGAAGCTGCCTCCCTTAG-3' 

LPLrs180_F 5'-AAATAGCATCAGCGGTGGTT-3' 

LPLrs180_R 5'-ATGAGGTGGCAAGTGTCCTC-3' 

SLCO1B1_F 5'-GAATCTGGGTCATACATGTGG-3' 

SLCO1B1_R 5'-AAGGGAAAGTGATCATACAATTTAATA-3' 

PCSK9_F 5'-GACTACGAGGAGCTGGTGCT-3' 

PCSK9_R 5'-CCTGCACTCCACTTCCTCTC-3' 

MRAS_F 5'-TCTTGCTGCGTTTTCACATC-3' 

MRAS_R 5'-TTGACTCCAAGGGAAGATGG-3' 

APOB_F 5'-GCCCAGAATCTGTACCAGGA-3' 

APOB_R 5'-TGGAATCTGGGGAAGTTCAG-3' 

CXCL12_F 5'-GTCCAGATGAGGCCATCAAG-3' 

CXCL12_R 5'-TGCCAAGAAAATGACACAGC-3' 

LP(a)rs10455872_F 5'-GCATAGCCAGACATGGGTTT-3' 

LP(a)rs10455872_R 5'-TGCCATGTTTGTCTTGGGTA-3' 

CELSR2_F 5'-TGGTGAAAAGGACACCTTCC-3' 

CELSR2_R 5'-CTGTCCGCTTCTGTGTGGTA-3' 

APOE158_F   5'-CTGCGTAAGCGGCTCCTC-3' 

APOE158_R 5'-CTGCCCATCTCCTCCATC-3' 

APOE112_F 5'-GCCTACAAATCGGAACTGGA-3' 

APOE112_R 5'-CAGCTCCTCGGTGCTCTG-3' 
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Supplementary Table 5: Anthropometric and biochemical parameters of study subjects. 

Variables Cases Controls p-value 

Number 405 220 
 

Age (years) 59.1±12.6 56 ± 10.5 0.002 

Sex 

Males (n) 

Females (n) 

 

216 

189 

 

120 

100 

0.27 

Diabetes (%) 64.6 13.6 5.1x10-34 

Hypertension (%) 62.1 16.4 8.9x10-28 

Smoking (%) 29.5 10.5 7.3x10-08 

Total cholesterol 207.5±53.7 175.4±43 8.8x10-14 

Triglycerides 212.4±70 188±66.3 2.6x10-5 

LDL-C 106±28.9 84.7±17 6.3x10-22 

HDL-C 45.2±11.9 67.4±16.3 1.8x10-66 
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supplementary Table 6: Comparison of RAFs between cases and controls 

 

Gene 

 

SNP 

RAFs (C.I) 

Cases Controls p-value 

SORT1 rs646776 
0.75 

(0.72-0.78) 

0.72 

(0.67-0.76) 
0.19 

APOB rs1042031 
0.92 

(0.90-0.94) 

0.87 

(0.84-0.91) 
*0.007 

APOE rs429358 
0.12 

(0.10-0.14) 

0.11 

(0.08-0.13) 
0.46 

APOE rs7412 
0.04 

(0.03-0.05) 

0.04 

(0.02-0.06) 
0.98 

LPL rs328 
0.94 

(0.92-0.95) 

0.91 

(0.88-0.93) 
0.06 

LPL rs1801177 - - - 

APOA5 rs662799 
0.17 

(0.14-0.20) 

0.167 

(0.13-0.20) 
0.89 

CETP rs708272 
0.551 

 (0.52-0.59) 

0.543 

(0.50-0.59) 
0.8 

LPA rs3798220 
0.005 

 (0.0-0.01) 

0.002 

(0.00-0.01) 
0.66 

LPA rs10455872 
0.017 

 (0.01-0.03) 

0.014 

(0.00-0.02) 
0.81 

CDKN2A rs10757274 
0.505 

(0.47-0.54) 

0.463 

(0.42-0.51) 
0.162 

MIA3 rs17465637 
0.651 

 (0.62-0.68) 

0.621 

(0.58-.67) 
0.292 

DAB2IP rs7025486 
0.318 

 (0.29-0.35) 

0.315 

(0.27-0.36) 
0.913 

SMAD3 rs17228212 
0.207 

(0.18-0.23) 

0.176 

(0.14-0.21) 
0.19 

MRAS rs9818870 
0.094 

 (0.07-0.11) 

0.087 

(0.06-0.11) 
0.67 

CXCL12 Rs1746048 
0.675 

 (0.64-0.71) 

0.63 

(0.58-0.68) 
0.114 

ACE rs4341 
0.577 

(0.54-0.61) 

0.525 

(0.48-0.57) 
0.079 

NOS3 rs1799983 
0.202 

(0.17-0.23) 

0.178 

(0.14-0.21) 0.312 

PCSK9 rs11591147 
0.999 

(1-1) 

0.995 

(0.99-1) 
0.252 

GLUL rs10911021 
0.68 

(0.64-0.70) 

0.62 

(0.61-0.70) 
0.055 

FTO rs9939609 
0.35 

(0.32-0.39) 

0.28 

(0.25-32) 
*0.003 

C.I: Confidence interval, RAFs: Risk allele frequencies, * significantly high RAF in cases than 

controls.   
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Supplementary Table 7: Genetic risk score in cases and controls and its association with 

CAD. 

Mean gene score Cases Controls p-value OR 95% C.I p-value 

Un-weighted 17.53±2.52 16.64±2.44 2.4x10-5 1.16 1.08-1.23 <0.0001 

All the analyses were adjusted for age, gender, BMI, hypertensive and diabetic status, 

supplementary Table 8: Comparison of risk allele frequencies in studied samples with 

Pakistani Punjabi population from Lahore (PJL) in 1000 genomes project phase III. 

 

Gene 

 

SNP 

Risk allele frequencies 

Current study PJL *p-value 

MIA3 rs17465637 0.64 0.62 0.5 

CDKN2A rs10757274 0.49 0.495 0.9 

DAB2IP rs7025486 0.317 0.26 0.1 

CXCL12 rs1746048 0.659 0.635 0.5 

ACE rs4341 0.559 0.63 0.06 

NOS3 rs1799983 0.193 0.151 0.2 

APOA5 rs662799 0.169 0.151 0.5 

SMAD3 rs17228212 0.196 0.13 0.03 

APOB rs1042031 0.905 0.906 0.9 

CETP rs708272 0.548 0.547 0.97 

LPA rs3798220 0.004 0.005 0.81 

LPA rs10455872 0.016 0.005 0.25 

MRAS rs9818870 0.091 0.115 0.31 

LPL rs328 0.925 0.948 0.26 

LPL rs1801177 0 0 
 

CELSR2 rs646776 0.739 0.745 0.87 

PCSK9 rs11591147 0.998 0 0.5 

APOE rs429358 0.114 0.083 0.2 

APOE rs7412 0.04 0.036 0.77 

* is p value between risk allele frequencies in subjects from this study and that of from PJL.   
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Supplementary Figure 1: Histogram showing comparison of genetic risk score in cases and 

controls. 

Controls 
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                   Supplementary Figure 2: Receiver operator curve, area under ROC=0.602 (C.I=0.56-0.65, 

P<0.001).  
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