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Abstract

TIMEDEL implements the time-delay method of determining resonanceparam-
eters from the characteristic Lorentzian form displayed bythe largest eigenvalues
of the time-delay matrix. TIMEDEL constructs the time-delay matrix from in-
put K-matrices and analyses its eigenvalues. This new version implements multi-
resonance fitting and may be run serially or as a high performance parallel code
with three levels of parallelism. TIMEDEL takes K-matrices from a scatter-
ing calculation, either read from a file or calculated on a dynamically adjusted
grid, and calculates the time-delay matrix. This is then diagonalized, with the
largest eigenvalue representing the longest time-delay experienced by the scatter-
ing particle. A resonance shows up as a characteristic Lorentzian form in the time-
delay: the program searches the time-delay eigenvalues formaxima and traces
resonances when they pass through different eigenvalues, separating overlapping
resonances. It also performs the fitting of the calculated data to the Lorentzian
form and outputs resonance positions and widths. Any remaining overlapping
resonances can be fitted jointly. The branching ratios of decay into the open chan-
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nels can also be found. The program may be run serially or in parallel with three
levels of parallelism. The parallel code modules are abstracted from the main
physics code and can be used independently.

Key words: (overlapping) resonances, scattering, time-delay, K-matrix,
branching ratio, eigenphase, multi-level parallelism.

NEW VERSION PROGRAM SUMMARY
Manuscript Title:TIMEDEL: A program for the detection and parametrization of over-
lapping resonances using the time-delay method
Authors: Duncan A Little, Jonathan Tennyson, Martin Plummer, Clifford J Noble and
Andrew G Sunderland
Program Title:TIMEDEL
Journal Reference:
Catalogue identifier:
Licensing provisions:MIT
Programming language: FORTRAN
Computer:any computer with Fortran 95; MPI, Fortran 2003 for use of all options
Operating system:tested under linux/unix on workstations and on Cray XC30 and IBM
iDataplex, but should be portable.
RAM: small, less than 1 Gb unless very large K-matrices are calculated in the user-
supplied routines (this memory may be replicated across a large number of nodes for
simultaneous calculations in the parallel version).
Number of processors used:from 1 core to 1000s of cores (using MPI) depending on job.
Keywords: resonances, scattering, time-delay, K-matrix, branching ratio, eigenphase,
multi-level parallelism.
Classification:Atomic Physics 2.4 Electron scattering, Molecular Physics 16.5 Electron
scattering and 16.7 Elastic Scattering and Energy Transfer.
External routines/libraries: Lapack [1], Minpack [2], options for alternatives (eg NAG
[3]), option for MPI [4]
Subprograms used:none
Journal reference of previous version:[5]
Does the new version supersede the previous version?:yes
Nature of problem:
TIMEDEL detects and parametrizes resonances, including overlapping resonances when
provided with the K-matrix of the scattering problem.
Solution method:
Resonances are identified by peaks in the largest few eigenvalues of thetime-delay ma-
trix.
Reasons for the new version:
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TIMEDEL includes a new procedure for fitting multiple overlapping resonances. It has
also been parallelized to allow studies of complex systems (atoms and molecules) and
generation of bulk data.
Summary of revisions:
TIMEDEL analyses the largest eigenvalues of the time-delay matrix and identifies those
with resonance features which are then separated and fitted [6]. It hasbeen modularized
with calls to external libraries and user supplied routines abstracted for ease of modifi-
cation. It has been parallelized, with a choice of a specific module allowing multi-level
parallel structures or serial execution if preferred. It can run bulk simulations of ‘similar
but different’ calculations (for example, varying fixed-nuclear geometries).
Restrictions:
When ‘target’ energies are calculated or supplied, the energy of the incident particle (elec-
tron) is currently defined with respect to the lowest supplied target energy (the ground
state), although an expert user or developer would be able to modify this.
Unusual features:
TIMEDEL can be run from a user-supplied file for K-matrices or can be implemented to
generate these as required.
Additional comments:
TIMEDEL has been implemented as part of the UKRMol suite of codes [7].
Running time:
The actual time spent in TIMEDEL is short: however adaptive grid run times are dom-
inated by the job-dependent time taken to generate the K-matrices (in user supplied rou-
tines). The parallelization framework over related calculations, energy sub-ranges and
K-matrix generation compensates for this.
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1. Introduction

Resonances are formed when colliding particles become temporarily trapped
in long-lived states in the continuum. Resonances are important in almost all
low to intermediate energy collision processes and dominant in some of them.
This makes resonance detection and characterisation an important part of many
theoretical procedure used for studying collision physics.

A number of methods are available for characterising resonances; specifically
for electron scattering [1]. These include methods based onthe fitting of eigen-
phase sums [2–4] plus others which exploit the properties ofthe S-matrix [5]
and of the R-matrix formalism [6]. In this work we focus on the use of time-
delays to characterise resonances. The ‘time-delay method’ was found to give the
most reliable and complete determination of the resonance parameters in a recent
comprehensive comparison of resonance detection methods for the electron – N+2
collision problem [7].

The time-delay method was originally proposed by Smith [8] as an alternative
method of characterising resonances to thede factofitting of the eigenphase sum.
In classical terms the time-delay can be thought of as the difference in time a
colliding particle experiences with or without an interaction with the target. The
time-delay matrix is formed at a scattering energyE from the scattering matrix,
S, and the time operator,−i~ d

dE:

Q(E) = −i~S∗
dS
dE
, (1)

and has dimensionsno×no whereno is the number of open channels. By diagonal-
ising the time-delay matrix eigenvalues,qi, and eigenvectors,|ψqi 〉 can be found,
that is,

Q|ψqi 〉 = qi |ψqi 〉. (2)

The largest eigenvalue ofQ, q1, represents the longest time-delay of the incident
electron [8]. The trace ofQ, the sum of the eigenvalues, may be represented as
it varies with energy by a sum of Lorentzian functions describing the resonances
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combined with a non-resonant background (see, for example,[9, 10]). If the res-
onances do not overlap, these Lorentzians show up clearly aspeaks in the largest
eigenvalueq1 which can be fitted for position and width. Additionally, thebranch-
ing ratiosβi, the probability of decay into a different asymptotic channel, can be
found using the squared moduli of the components of the normalized eigenvector
associated withq1, that is, if |ψq1〉 has componentsα j,1, j = 1,. . ., no, then

βi =
∣

∣

∣αi,1

∣

∣

∣

2
. (3)

Recently, there have been a number of other studies on use of the time-delay
method for characterising resonances [9–12]. The method has been successfully
applied to a number of systems with many overlapping resonances [7, 10, 13–17].

Resonance detection and fitting becomes particularly complicated in the case
of multiple, overlapping resonances. For example, in the case of electron colli-
sions with charged targets, such as electron – N+

2 [7], there are many resonances
associated with each Rydberg series converging on each of theexcited states of
the ion; these resonances overlap considerably with each other and valence states
embedded in the continuum. Resonances in an eigenphase sum have a Breit-
Wigner form [2], which has the appearance of an arctan function. Separating
the behaviour of resonances of this form becomes increasingly difficult as their
width and energy separation decreases. The Lorentzian formof resonances in a
time-delay means that isolating a single resonance out of many overlapping res-
onances is greatly simplified. Multiple eigenvalues of the time-delay matrix can
be used so that resonances can be tracked as they move from being the longest
time-delay (the largest eigenvalue) to being the second longest (the second largest
eigenvalue) and so forth. Indeed, this is the principle on which the newly devel-
oped fitting method presented here is based. The alternativeprocedure of directly
fitting a sum of Lorentzian functions plus a background term to the trace ofQ, has
been successfully used by Aibaet al[10] for continuum resonances of He and Ps−.
Additionally, the fitting of the time-delay removes the majority of the background
which can be significant with many channels, a characteristic of electron-molecule
collisions.

Stibbe and Tennyson developed a time-delay procedure whichthey imple-
mented with the UK molecular R-matrix codes [18]. This procedure, which was
designed to detect and fit single resonances, was made available as an indepen-
dent code TIMEDEL [19]. Reference [19] also summarizes the general process
of calculating the time-delay matrix on an adaptive energy grid. In this work we
present an updated version of this code. The new code, TIMEDEL, allows for
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the detection, separation and fitting of overlapping resonances by considering the
largest few eigenvalues of the time-delay matrix. One drawback of the time-delay
method compared to eigenphase fitting with a code such as RESON[3] is that
fitting large numbers of resonance is comparatively expensive computationally;
RESON simply diagonalises the K-matrix whereas TIMEDEL has to construct
both the S-matrix and its derivative, and then perform a diagonalisation. Further-
more, experience shows [7] that in complicated cases TIMEDEL successfully fits
many more resonances than RESON. For these reasons we have also explored
methods of implementing a parallelized version of TIMEDEL. The results of
these studies are also presented here.

2. Implementation

As before [19], TIMEDEL has two distinct sections; the first computes the
time-delay matrix,Q, over a given energy range and requires the input of K-
matrices, the second fits the computed time-delay matrix forposition and width
and finds branching ratios if appropriate. The K-matrices required by TIMEDEL
as its basic input can simply be provided for fitting resonances, or TIMEDEL
can be linked directly into the K-matrix generating code so that it can specify the
energies for which it requires the K-matrices to be computedbased on an adaptive
energy grid. The code is implemented in this fashion as part of the UKRMol codes
[20]. The UKRMol codes are available as freeware from the CCPforge program
repository (http://ccpforge.cse.rl.ac.uk/) and can also be run using the Quantemol-
N expert system [21].

In this implementation the code is also designed to avoid calculations in the
threshold region, that is, just above the energy of the ground state or above or
below the energy of an excited state of the target molecule. The time-delay of
an electron with zero kinetic energy is infinite, thus just above a threshold, where
the kinetic energy of the electron is close to zero, significant numerical problems
are encountered. To avoid this region the time-delay calculation is started at some
energy above a threshold (default 0.05 eV). We note that thiscan cause problems
with Feshbach resonances which lie very close to their parent target state [22].
Furthermore, for charged systems, when approaching a threshold from below, the
width of the Rydberg states converging on the threshold abovebecomes increas-
ingly narrow. As the time-delay matrix is calculated using anumerical derivative
with respect to the energy there is a point at which the width of the resonance
is smaller than the energy gap with which the numerical derivative is calculated.
Therefore a maximum principal quantum number of the Rydberg series is set (de-
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fault n = 10) at which the calculation stops before it reaches the threshold. The
time-delays are calculated within each threshold energy range, analysed for res-
onances and then any resonances detected are fitted. The calculation is stopped
when it reaches the final energy of the overall range to be calculated.

The time-delay matrixQ is found using a numerical derivative of the S-matrix,
see eq. (1). The S-matrix is found from the K-matrix by the wayof

S =
1+ iK
1− iK

. (4)

K-matrices are required or calculated at energiesE+dE/2 andE−dE/2 wheredE
is by default at most 10−5 ‘input energy units’ (eV, Ryd, Hartree) as specified by
the user, who may also change this limit. Tests show that thisvalue gives smooth
time-delays for each threshold energy range. The derivative of the S-matrix with
respect to energy is found using the K-matrices and is multiplied by the complex
conjugate of the average of the two S-matrices to findQ, see eq. (1). Only the
eigenvalues ofQ are calculated at this point; the eigenvectors are calculated in the
fitting process to find branching ratios once the position of aresonance has been
determined. An adaptive grid of energies is used across eachrange. The energy
separation of each grid point is proportional to the inverseof the time-delay; the
narrowest resonances therefore have the highest density ofpoints and areas where
there are no resonances are skipped over. The grid is limitedby default to having
a minimum spacing of 10−15 ‘input energy units’ (the initial, and maximal, grid
spacing has default 0.1 units). Other values may be specified.

Once the eigenvalues have been found over an entire threshold range the mod-
ule enters the fitting routine. Multiple resonances appear as interspersed Lorentzians
in the highest eigenvalue, see figure 1. Discontinuities occur when the length of
the time-delay of one resonance overtakes that of another; the eigenvalues asso-
ciated with each resonance switch. Consequently, if only thefirst eigenvalue is
fitted, information is lost when a resonance becomes the second and third eigen-
value. An example of this is given in figure 1. The original version of TIMEDEL
[19] only fitted the longest eigenvalue, this eigenvalue is plotted against energy
in panel (a) of figure 1. Only two resonances, one at∼ 0.527 eV and another
at ∼0.595 eV, are completely apparent. Another resonance at∼0.52725 eV is
partially obscured by the resonance at∼0.527 eV. If the second and third eigen-
values are included then structure of the wider resonances obscured by the narrow
resonance∼ 0.527 eV is elucidated. Although this extra information is often un-
necessary as Lorentzians are symmetric functions, it becomes important when the
peak of the resonance is in one of the lower eigenvalues. Thisdescription may
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be compared with the discussion by Aibaet al. [10] (see their figures 2-5) on
characterising overlapping resonances.

Indeed, this development reveals resonances that would have been previously
left completely unidentified, those which have a similar position and marginally
larger width to that of another resonance. Finding these resonances becomes
particularly important when working in a lower symmetry group to that of the
molecule being studied; resonances that appear in the same (lower) symmetry
group but actually have different symmetries may be obscured by one another.
The peak of a resonance of this type is within the second eigenvalue and only
the tails switch into the first eigenvalue, for example the lowest resonance feature
shown in panel (c) of figure 1.

A new subroutine, EIGSORT, tracks the resonances as they switch between
eigenvalues by finding avoided crossings. Avoided crossingare detected as min-
ima in the difference between two eigenvalues. When a minimum is detected the
eigenvalues associated with each resonance are switched. Resonances are detected
by searching for maxima, checks are performed to ensure a maximum is the peak
of a resonance and not a discontinuity left by the EIGSORT routine or numerical
noise. Fitting limits are set by a change in sign of the derivative dq

dE on either side
of the resonance peak. The resonances are then fitted with theform:

q(E) =
~Γ

(E − Er)
2 + (Γ/2)2

+ bg(E) (5)

whereq(E) is the fit to the sorted time-delays (ie the sorted combination of eigen-
values),Er is the resonance peak position,Γ is the width andbg(E) is the back-
ground (constant over the range of each resonance: note thatthe output values of
bg(E) and the standard deviation of the fit are given in atomic units with ~ = 1).
If the fitted peak of the resonance is outside the fitting limits then it is clear that
this is false detection or a bad fit and the fit is ignored. Panel(c) of figure 1 gives
an example of fitting the sorted eigenvalues. Although this method is subject to
occasional false detections, extensive testing on N+

2 showed that it was robust and
produced excellent fits [7]. Indeed this work demonstrated that for the electron –
N+2 problem TIMEDEL was capable of successfully characterising many more
resonances than Breit-Wigner fits to the eigenphase sum [3], and that use of the
R-matrix specific QB method [6] did not give accurate results.

TIMEDEL also calculates a standard deviation for the fit, see eq. (6) of [19],
using a sum of squared differences between equation (5) and the actual computed
time-delays, over grid points in the energy rangeEr ± Γ. We note that if the sort-
ing procedure still leaves some resonances overlapping within their fitting limits,
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which should be studied carefully on the equivalent of figure1, then the fit can
revert to a sum over Lorentzians as in eq. (5) of [19] which approximates the trace
of Q with the largest eigenvalue, or the program can be forced to fit resonances
individually. We recommend checking both these options. Inthese cases, visual
inspection of the time-delay eigenvalues, output both before and after sorting, is
strongly recommended to gain insight, see also Aibiet al. [10]. More accurate
K-matrices may be needed to remove inaccuracies, or for genuine resonances, the
program allows data from re-runs over finer localized energygrids to be com-
bined with existing data to aid the correct interpretation of the resonant structure.
In general, the output time-delay eigenvalues should ideally always be inspected
and/or plotted in case of missed resonances, in particular if themain output from
TIMEDEL includes resonance fitting with a high standard deviation, or reports
that possible resonances have been rejected from the fittingprocedure. There are,
however, cases where visually inspecting every resonance is not feasible, for ex-
ample, when calculating potential energy curves of electronic states embedded in
the continuum [7]. In this case plotting the potential energy curves reveals poorly
fitted resonances which appear as discontinuties in otherwise smooth curves. Ad-
ditionally, the magnitude of the resonance width is very sensitive to poor fitting,
thus plotting width against internuclear separation may also reveal poorly fitted
resonances which weren’t apparent when plotting the potential energy curve.

When the position of a resonance has been determined the time-delay matrix
is recomputed at this energy and the peak branching ratios are computed from
eq. (3). The branching ratio gives the probability of the autoionisation of the res-
onant electron to a partial wave of a specific channel associated with an electronic
state of the ion. Partial widths for each partial wave of a channel are calculated
by multiplyingΓ by theβi. The partial width for a specific channel can be found
by summing over the partial widths of the partial waves, as was done by Little
et al [23]. Having autoionisation widths resolved in this way is necessary for a
dissociative recombination cross-section calculation which includes core-excited
bound states, see Littleet al [23]. The extraction of branching ratios using (3) is
accurate when the resonance is isolated and the peak appearsin the largest eigen-
value, as shown by Smith [8]. When resonances are strongly overlapping, the
relationship between the time-delay eigenvalues and the branching ratios is not
given straightforwardly by (3), as investigated by Shimamura [11]. However, we
have found empirically that if the separation leads to clearly defined Lorentzian
peaks (with the peak maxima originally in the largest eigenvalue) then the formula
gives consistent results away from the avoided crossings (see [23], also data from
the current indicative benchmarks and test runs are available from the authors).
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The choice to use the calculated branching ratios should be carefully considered
by the user. Branching ratios are also functions of energy andcan vary across the
resonance, although in the case of [23] the branching ratioswere effectively con-
stant across the narrow resonances (supported by data from the indicative bench-
marks and more broadly from the pyrimidine test run in section 4.3). The code
provides options to calculate branching ratios across a range of energies within
the resonance in the routine BRANCHINGRATIOS.

Extending the fitting method to overlapping resonances in this way is similar
in concept to the approach introduced by Shimamuraet al [9]. In their approach
resonances are parametrised by a mixing parameterβ which describes the level
of avoidance between two eigenvalues ofQ. An expression is then derived to fit
these two resonances as they overlap with each other. The method described here
differs in that it is purely numerical and an expression was not formally derived to
describe overlapping resonances. The fitting routine simply searches for minima
in the difference between the eigenvalues and switches when one is found.

3. Program structure

The parallel structure of TIMEDEL has been carefully written so that the
physics modules contain no direct calls to parallel routines and use a minimal
number of control parameters: the majority of the parallel calls and structure con-
trol is kept within a module serialparallel which in turn calls routines in a module
commmpi, the latter containing interfacing routines to direct MPI [24] calls, and
to module sgcmod which contains a scalable global counter. In the supplied code,
serial parallel comes in two versions, the full parallel version and a serial imple-
mentation version which contains dummy routines and sets benign values of the
public control parameters. Thus the file ptimedel.f90 whichcontains the actual
resonance finding and fitting (PTIMEDEL and subsidiary routines) is identical
for serial and parallel runs.

The only other direct communication with the parallel and other control rou-
tines is in the ‘main’ program. The serial version simply calls PTIMEDEL (and
any other sub-programs the user may also wish to run) whereasthe parallel main
code first changes to multiple sub-directories for simultaneous runs as required
by the user, splits the   communicator to match these subdirec-
tory calculations, calls PTIMEDEL and finally calls MPIFinalize: again, other
sub-program calls may be inserted by the user (expert user-developers may wish
to return to the initial directory for other work). This initial parallelization allows
controlled task-farming of many ‘similar but different’ jobs and was originally de-
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veloped to allow bulk production of resonance data for the N2 calculations (as in
[23, 25]) at various fixed internuclear separations in a single job, independently of
the hardware and operating system. More generally it can be used for bulk calcu-
lations for different molecular geometries, or different irreducible representations,
although it is up to the user to make sure the ‘similar but different’ rule applies, to
maintain reasonable load balancing.

In addition, for serial and parallel cases the calls to the user supplied routines
for producing K-matrices, and to the mathematical method library routines for
linear algebra and minimization are in distinct interfacing modules, respectively
timedeluserk matrices and timedelmathslibrary calls.

timedeluserk matrices contains the storage arrays for the K-matrices andtar-
get energies, and interface routines KMATRIX SETUP and GETK MATRICES,
called from PTIMEDEL, which respectively call the user-supplied routines SE-
TUPKMAT (energy-independent preparation) and GETKMAT (the K-matrix at a
given energy, called twice within GETK MATRICES for the pair of energies).
Any modifications of the user supplied routines and calls arethus restricted to
this module: the K-matrix call can be parallelized within a supplied MPI sub-
communicator (the supplied code includes an example parallel call).

timedelmathslibrary calls contains interfacing routines called from PTIMEDEL
and its subsidiary routines which directly call library routines. The module rou-
tines supplied contain options for LAPACK [26] (ZHEEV, ZGESV) and MIN-
PACK [27] (LMDIF1) or the NAG library [28] (f02haf, f04adf, e04fyf), the NAG
calls are commented in the version supplied. The use of the interfacing module
again allows straightforward modifications or replacements by the user.

We note that a module timedeldatafor minimization contains data arrays and
subsidiary subroutines (in a choice of scalar and vectorized form) required for the
LMDIF1/e04fyf routines. This is separate from the main ptimedelmod module
to maintain a straightforward compilation structure. There is also a module pre-
cisn which sets the required precision of real variables andcertain others (details
are in the accompanying program user’s manual), a module timedeldatamodule
which stores the namelist input data and some associated arrays and parameters,
and a module readserial parallel which reads in the input namelist (one task) and
calls routines in serialparallel to cascade the information through the commu-
nicators (or do nothing) as required. A utility routine STDEV, which evaluates
the standard deviation of each fit, is supplied in both simplescalar and vector al-
ternative versions, to make use of current architectures which include automatic
vectorization.

Finally, at various points in PTIMEDEL, the system routinesCPU CLOCK
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and SYSTEMCLOCK are called to get cpu and elapsed timing information re-
spectively. These calls play no part in the calculation. Thestructure of TIMEDEL
is shown in figures 2 and 3.

3.1. Serial (‘physics code’) structure: PTIMEDEL

The current implementation of PTIMEDEL was tested and used with the UKR-
mol code suite, in particular a module kadapt. This module is essentially a cus-
tomized stripped down version of UKRMol module rsolve [20] and contains the
necessary routines to set up the K-matrix calculation (SETUPKMAT ) and calcu-
late the K-matrices at the energies required by the adaptivegrid (GETKMAT ).
This module also reads in the target state energies used to calculate thresholds1.

PTIMEDEL starts by reading in the namelist TIME (see description of in-
puts below). The user is required to input an initial and finalenergy; all other
inputs have default values. The K-matrix calculation is then set up by the subrou-
tine K MATRIX SETUP. TIMEDEL then finds threshold energy ranges using the
target state energies returned by KMATRIX SETUP. The time-delay calculation
then begins with the first energy point in the first threshold.Apart from the initial
energy, which is specified by the user, the limits of each threshold-to-threshold
grid are chosen as described in section 2, in order that disruptive behaviour is
avoided: precise definitions are given in section 4.1 so thatthe user may control
these limits.

The first set of K-matrices are calculated by passing the firsttwo energy val-
ues (E + dE/2 and E − dE/2) to the subroutine GETK MATRICES, which
calls GETKMAT twice to return two K-matrices. FINDTIMEDEL takes the
K-matrices and passes them to the subroutine KTOSMAT which converts them
to S-matrices (see eq. (4)) using the SOLVELINEAR EQUATIONS routine in
timedelmathslibrary calls. Using the S-matrices the subroutine TIMED, con-
tained in FINDTIMEDEL, then finds and diagonalises the time-delay matrix (see
eq. (1)) using the library module routine DIAGONALIZEDESCENDINGORDER.
The highest five eigenvalues (orno if no ≤ 5, whereno is the number of open chan-
nels) are stored (the user may change the default value from 5). The program then

1For general users also using the UKRmol suite, kadapt requires the rsolve namelist RSLVIN
to run, which should be placed after the TIMEDEL namelist TIME in the input file ‘timedel.inp’.
We note that the kadapt routine SETUPKMAT reads in the target and channel dataset (by default
fort.10) and the R-matrix poles, amplitudes and the multipole expansion of asymptotic potentials
(by default fort.21). It also sets up the energy-independent parts of the scattering calculations to
be performed by GETKMAT.
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recalculates the grid-spacing and an associated new value of dE based on the size
of the longest time-delay (the first eigenvalue) using an inversely proportional
relationship and moves on to the next energy pointE (see [19]). This method
ensures the number of grid points for each resonance is closeto a required (input
or default) number [19].

Once all the energy grid points have been found for the given threshold en-
ergy range, all of the eigenvalues (5 orno per point) are passed to the subroutine
EIGSORT. EIGSORT tracks resonances as they move through different eigenval-
ues by switching every time an avoided crossing is detected (see figure 1). Once
the eigenvalues are sorted they are passed to DISCONRM which removes discon-
tinuities left by the sorting process by replacing them witha linear interpolant,
this reduces the number of false resonance detections.

The eigenvalues are now ready to be fitted and are passed to thefitting sub-
routine FITTING. By default TIMEDEL considers the first threeeigenvalues for
fitting; testing showed this to be sufficient. The number of eigenvalues can be in-
creased to five orno (if no < 5) but this should not be necessary. FITTING searches
the sorted eigenvalues for maxima and performs a number of checks to ensure that
the maxima are not numerical noise or artefacts left by EIGSORT or DISCONRM.
The positions of the maxima are then passed to FOUNDRES. FOUNDRES finds
fitting limits by looking for a change in sign of the gradient either side of the max-
ima2; FITLORS then fits the resonance with the form given in eq. (5) using the
maths library module routine MINIMIZESUM OF SQUARES. The branching
ratios are then found at the fitted resonance position using GET K MATRICES
(an appropriate smalldE is set for this) and FINDTIMEDEL. The branching ratio
calculation is isolated in routine BRANCHINGRATIOS, contained in FOUNDRES.
There are options for calculating a range of values across the resonance, and the
user may customize this routine, for example, to produce average values if de-
sired, without affecting the rest of the code. Once the FITTING subroutine has
completed, PTIMEDEL moves onto the next threshold. When all thresholds have
been calculated PTIMEDEL returns to the ‘main’ program.

We note that the work performed once a threshold to thresholdgrid has been
defined and time-delays calculated, is performed in a contained routine in PTI-
MEDEL called SORTAND FIT TIME DELAYS. This coding allows the same

2if the sorted eigenvalues still contain overlapping resonances, as discussed in section 2 and
also in section 4.3, the code can, if desired, revert to the ‘sum of Lorentzians’ procedure of [19]
using the parameternes (see section 4.1) to determine the limits
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routine to be called if energy values and pairs of K-matrices, and optionally target
energies, are read in rather than calculated using the adaptive grid. This option
has been retained from the original TIMEDEL code [19] but nowthe sorting pro-
cedure is also applied. The option of reading in K-matrices is purely serial once
the split of   across ‘geometries’ has been made.

3.2. Parallel structure

The parallel version of TIMEDEL supplied has a hierarchy of three levels of
parallelization, with scope for further low-level parallelization. As already noted,
an overall wrapper, controlled in the main program, allows several calculations
to be run as a single job. The main program is compiled from within a script
 . which takes in three parallel control parameters: the number
of geometries, the number of tasks per geometry and the number of tasks per
pair of K-matrices. At runtime, the main program checks the consistency of the
number of MPI tasks with the control parameters. The global communicator is
then split into NGEOMS sub-communicators for the separate calculations: files
cwrapper.f90 and chdirc.c allow the code to change to an individual directory,
created and with input files in place as part of the script, to run the calculation.
This parallelism is present for ease of producing bulk data:we remind the user
that load-balancing, while carried out within a calculation, is not checked between
calculations.

The second layer of parallelization is designed for optimumload-balancing
within a calculation. Whereas the serial code scans successively between thresh-
olds in energy order, the parallel code uses the target statethresholds to assign
energy ranges to groups of tasks (or single tasks if the thirdparallelization layer
is not used). The resonance finding and fitting within one range (between two
thresholds) is independent of that in the other ranges. The output file names given
in the next section are chosen so that a set of files is producedfor each task group.
Once a task group has finished its current energy range, it moves on to the next
available range from the Fortran do loop over energy ranges.The code provides
two options for this, either a simple round-robin in which each task group leader
works through loop iterations in order, or preferably a scalable global counter (file
sgcmod.f90, written in Fortran 2003 and based on an example fromthe MPICH
package examples [29]) in which each task group leader is assigned the next avail-
able iteration by inspecting and updating the global counter on an MPI-IO data
window. This scalable global counter approach means that short or smooth energy
ranges with few adaptive grid points may be passed through rapidly while another
task group has been assigned a more intensive range, for example the initial range
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from low energy to the first threshold, or a range with detailed resonance structure
and a dense grid. Thus the full calculation should only take as long as the most
time-consuming energy range plus a small amount of machine-dependent parallel
overhead. The round-robin approach has minimal overhead but has the disadvan-
tage that two (or more) time-consuming ranges may be assigned to the same task
group.

The third layer of parallelization involves splitting the calculation commu-
nicator, called , into several sub-communicators labelled 
whose group leaders form a communicator  (this splitting procedure
also produces other communicators equivalent to  between correspond-
ing ‘other ranks’ in , but these are not used in the current scheme). The
  tasks are assigned energy ranges and use the counter, and then broad-
cast the information to their members. The  communicator
may then be used to form the user-supplied K-matrices. The K-matrix genera-
tion is assumed to involve the most effort as it effectively involves performing a
scattering calculation for each of the pair of K-matrices atthat energy point (with
the UKRMol R-matrix method used by the authors and collaborators, ‘outer re-
gion’ calculations are required here [20]). In the module timedeluserk matrices
which contains the call to the user-supplied routine GETKMAT,   may
be used to generate the K-matrix pair in parallel (replacing   as
the top-level communicator in the user-supplied routines)with a final broadcast
of the pair of K-matrices to all members of . The code supplied con-
tains a simple example in which the first two tasks in  perform serial
calculations forE + dE andE − dE respectively and broadcast the results within
 , halving the serial run-time for this operation.

The parallelism has been deliberately abstracted away fromPTIMEDEL so
that firstly, the same PTIMEDEL is used for serial and parallel calculations, and
secondly, the parallel structures can be applied more generally and beyond the
current resonance fitting application. The module serialparallel controls the par-
ticular communicator splitting and provides the interfaceto the abstracted parallel
routines required for TIMEDEL. The module also handles parallel I/O. The input
namelists are read in by the group leader of  and cascaded to 
tasks and then to their  members. Separate output files are produced
from each  task, with a stub plus numerical label naming convention.
We intend to publish expanded versions of the module files comm mpi.f90 and
sgcmod.f90 separately as they are also in use in other applications (see, for ex-
ample [30]), so a brief description of their properties as required for TIMEDEL
is given in the program user’s manual.
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We note that the three-way parallel functionality may be extended by addi-
tional splitting of the  communicator by the user, or any of the com-
municators may be set to have one MPI task for simplified calculations. The user-
supplied routine may use, for example, OpenMP [31] threads for each 
task rather than, or in addition to, a multiple-task  MPI solution. The
user may also wish to introduce appropriate parallelism forheterogeneous accel-
erator architectures within the K-matrix calculations (see, for example, [32]).

The general case for which pre-calculated pairs of K-matrices are read in has
been left as serial code, as the actual resonance finding and fitting is fast using the
library routines (which could themselves be linked to OpenMP parallel versions).
However, for the test run we have included an option whereby aset of pre-prepared
K-matrices are read-in during a parallel run rather than calculated. This parallel
test run will only work for a specific resonance calculation as the energy grid
spacing needs to match that derived from the adaptive grid, however the user may
test various parallelization strategies (replicating data in separate directories for
the top level): in each directory the K-matrices are contained in a single file and
are selected by the MPI tasks as required. This option may also be used to refine
parameters controlling the sorting and fitting procedures for a given grid without
having to recalculate K-matrices.

4. The code package

The code package contains the Fortran files, makefiles and a manual on how
to use the code, as well as data and output for serial and parallel test runs.

The main TIMEDEL code comes in three Fortran files found in directories
libouter and libouterserial (along with example Makefiles): serialparallel p.f90,
serial parallel s.f90 and ptimedel.f90, plus the two scripts ptimedelcreate.sh and
stimedelcreate.sh in the top-level directory which contain the ‘main program’
and linking commands. The file precisn.f90 is needed in libouter for parallel set-
up: this simple module is included in serialparallel s.f90. The additional files for
parallel runs are described in the user’s manual. All the files compile with Fortran
95 compliant compilers except the scalable global counter file sgcmod.f90 which
requires Fortran 2003, however we have not had problems compiling this file on
the compilers noted in the test run section. If necessary, the file can be omitted, the
limited number of calls to module sgc in serialparallel p.f90 may be commented
and the round-robin technique (sgc choice false, see 4.1 below) used.

The sample Makefiles have various options. Three example Makefiles, (for
Intel, Cray and GNU compilers respectively) are included forboth libouter and
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the parallel linking compilation, and assume a consistent compilation through-
out with ‘standard’ definitions of integer type, assumed as supplied to be 4-byte
(Fortran integer*4), to be compatible with the MPI routinesin commmpi.f90 and
sgcmod.f90: the parallel machines the code has been tested on all assume that
type ‘MPI Integer’ is equivalent to Fortran integer*4. An additionalsample In-
tel Makefile allows the use of 8-byte integers outside MPI calls, requested by the
UKRmol community.

We note that adapting the example Cray and GNU Makefiles (for local systems
or other compilers) is usually straightforward as the basicflags and links needed
are simple to adjust. Intel Makefiles, particularly links tothe correct system and
mathematical libraries, tend to be much more complicated unless local system
engineers have built in automatic links. The illustrationsin the user’s manual use
the example Intel Makefiles to help ‘scratch-builds’ of the package.

4.1. Input data

The input required for basic use of TIMEDEL is fairly brief and is contained
in the namelist TIME, read by the program from file ‘timedel.inp’. This namelist
also contains a fairly large number of other parameters which the more experi-
enced user may use to change default settings from run to run.The user’s manual
provides a detailed description of each of the input parameters which supersedes
that given for the original TIMEDEL [19], as well as other coded parameters
which can be altered before compilation. In the manual and this article, these
namelist and other parameters are written in bold typeface.

4.2. Parallel famework development and indicative benchmarks

The parallelization of TIMEDEL was partly developed, using an early test
version of the electron – N+2 data previously referenced, as part of a PRACE opti-
mization and development project [33] with an aim of producing a code that could
also be practically applied to resonance studies of biological molecules such as
DNA and RNA bases and introduced the round robin approach. Benchmark re-
sults [34] showed that the task farm allowed 1024 e-N+

2 geometries to run at a
time 1.64 relative to 16 geometries (the ideal would be 1, butload-imbalance in-
creases as internuclear separation varies). For a single geometry, 4 tasks using the
round robin approach gave a speed-up of 3.3 compared to 1 task[34]. The full
abstracted parallel framework was developed subsequent tothis proof of concept
work incorporating the already available commmpi and sgcmod modules.

A benchmark test for a truncated electron – N+
2 test limited to 4 threshold to

threshold groups, treated here as an abstract example, gavethe following results
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using the Intel compiler on the UK system ARCHER [35]. The thresholds of the
benchmark N+2 ‘target’ states are at 0.89 eV, 3.6 eV, 5.5 eV with initial andfinal
energies 0.05 eV and 6 eV respectively, thus we have 1 large range, 1 medium
range and 2 short ranges. However the actual time taken depends on the num-
ber of resonances and the adaptive grid. and in fact the low energy region, with
relatively high time-delay values, dominates: with two (orthree with two active)
tasks in  the run took 29-30 minutes. With more than one active task
in  , the runs took at total of 19-20 minutes, with the lowest energy range
handled by one  and the other ranges bundled together according to
the number of tasks in , with individual times around∼11 minutes (two
active tasks in ), and∼6 and∼7 minutes (three active tasks in ).
The apparent overhead includes some genuine overhead due towriting to standard
output and remaining inefficiency with MPI-IO, but also shows some disparity
with some very narrow near-threshold resonances detected in some runs but not in
others according to precise values of the grid positions (iefor scientific purposes
close to threshold a finer study would be needed) We note that the overall tim-
ings for runs with a single task in  took∼56 minutes and∼36 minutes
respectively (K-matrix energy-independent set-up time was negligable).

Additional benchmarking results for electron collisions with both N+2 and pyrim-
idine may be found in [32].

4.3. Test Run

The test run provided, in the form of pre-calculated K-matrices, is of low-
energy electron pyrimidine collision (irreducible representation A1) resonances.
The original scientific calculation is described in detail in [17]: the authors of this
paper provided R-matrix method data allowing us to generate adaptive grid time
delays, and the scattering case is now also part of the UKRmol test suite [20].
The data is for a single geometry, however the test case can beset up for multiple
identical geometries, thus with artificially good load balancing at this level of
parallelism. A full description of the test run is given in the user’s manual. Data
is supplied for both a serial and a full parallel test with pre-calculated K-matrices
provided to reproduce a previous adaptive grid calculation(namelist parameter
adapt set true), and also for a separate non-adaptive run with pairs of K-matrices
read in (adapt set false) as in [19]. Here we provide a shorter description of
the parallel test: some of the code parameters described in the user manual are
mentioned (and assumed to be known) here: for example the hard-coded logical
parametertest para in module timedeluserk matrices must be set true for the
pre-calculated ‘adaptive’ test runs and set false for new adaptive grid calculations.
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The case, with incident electron energy varying from 0.01 eVto 7 eV, involves
11 threshold to threshold energy grid groups, two of which are large: the first
large group is from 0.01 eV to just below the first excited threshold at 4.54 eV, the
second large group is from just above 5.63 eV to just below 6.46 eV and contains a
double resonance. The other threshold groups have no resonances and can also be
quite narrow with target energy levels close together (but not degenerate). Thus if
sgc 0 sleeper3 is not required to be true, the  communicator should give
good results with 2 task groups (one large grid for each task group, smaller grids
shared) and ideally fastest time to solution results with 3 (and above, up to 11 task
groups) though the third and additional task groups will spend time idle. In the
actual tests,sgc 0 sleeper set true was needed, so that the minimum number of
task groups needed for parallel work is 3, with fastest time to solution for 4 task
groups in , though we recall that the ‘sleeper’ task group consists of a
single task holding the MPI-IO window. Since the energy gridcontaining the res-
onances is the 9th energy grid, the round robin approach willgive bad results for
even numbers of task groups and good results for odd numbers.All benchmark
results for the generation of the data followed this pattern(details are available
from the authors, see also [32]). The simple 2-active-tasksparallel generation of
K-matrices halved the execution time as hoped for (factor 0.5-0.55 for various
communicator groupings on an ARCHER node). A fully parallelized ‘k adapt’
module with  having (for example) 64-128 tasks (or more) would sig-
nificantly reduce overall execution time from the∼51-55 minutes (dominated by
the 0.01 eV to 4.54 eV sub-range) taken using the two-way parallelization.

To avoid over-large data-files, the test run data uses a relatively large value
of gridmin, 5.0e-3 eV. Figure 4 shows time-delay results over the first energy
range in three forms: the actual time-delays, the sorted values after EIGSORT
and the further modifications after DISCONRM. This illustrates the changing of
eigenvalue labels and further partial linearization, deliberately more crudely than
the detailed ‘final’ results presented in figure 1. The overall effect on this energy
sub-grid is to stop the program from mistaking unphysical behaviour for reso-
nances: the artificial distortions that appear after sorting are deliberate (note also
that in practice the defaultnoise barrier will stop false resonance fitting). Figure
5 presents similar results for the sub-grid with the two resonances. Here it may be

3sgc 0 sleeper is included in the namelist to activate additional coding which overcomes de-
ficiencies in certain implementations of MPI-IO: if activated the single MPI task associated with
the scalable global counter window plays no other direct part in the calculation to avoid unwanted
blocking of other tasks: details are in the manual.
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seen that the EIGSORT routine separates the resonances as expected. We present
these results to emphasize that the user should study these outputs carefully in new
calculations, in order to interpret what may be complex patterns of resonances.

The actual numbers for fitted resonance position, width and background are
given in the output files in the Testruns directory and are reproduced below. The
resonance output appears in the main output files (these are named and generated
in PTIMEDEL as timedel.out.{00, 01,. . .}) as:

Considering energies between threshold energies:

5.63162389115563 6.45526394557738

Energy range considered=

5.65662389115563 -> 6.36078170823800

Fitting resonance set with e-value label: 1

In this fitting, call 0 noisy local maxima were ignored

1 maxima were found in fitting call

Attempting to fit resonance set 1 as 1 resonance(s)

Fitting limits: 5.65662389115563 -> 6.35662389115567

Position (eV ) Width (eV )

Resonance: 1. 1 0.5966776558743D+01 0.7474072108737D-01

Fitted with background=-.5300D+01 and St. Dev.=0.2057D-03

Effective P.Q.N.= 0.5277517150085D+01

Peak branching ratios: 4.103020919284603E-005 1.681294746867281E-004

with further values for the peak branching ratios (here there are 84 open channels),
and

Fitting resonance set with e-value label: 2

In this fitting, call 0 noisy local maxima were ignored

1 maxima were found in fitting call

Attempting to fit resonance set 1 as 1 resonance(s)

Fitting limits: 5.65662389115563 -> 6.35662389115567

Position (eV ) Width (eV )

Resonance: 1. 1 0.6131940164156D+01 0.8855301679824D-01

Fitted with background=-.3336D+01 and St. Dev.=0.6364D-03

Effective P.Q.N.= 0.6486904521421D+01
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Peak branching ratios: 1.746261984742436E-003 8.295745778172306E-003

The ‘effective principal quantum number’ value relates the resonance position to
the next threshold (threshold energy− (Effective Q.N.)−2 in Rydbergs: see the
defnition of input variablemaxn).

The labelling shows details of the reordered ‘eigenvalue’ label, the number of
groups of resonances for that value and the number of resonances associated with
that group. Ideally there should only be 1 resonance per group, but with closely
spaced resonances within each other’s width there may be several, in which case
the Lorentzian fit is applied to the group unlessforce single is invoked (fitting
limits should be checked here). Also, if the background structure has a broad
maximum associated with it, this may be considered as a resonance: the user
should examine the calculated time-delays carefully and consider if this is physi-
cal. Running identical calculations with or withoutforce single is straightforward
with thetest para parameter.

The resonance positions and widths are written separately in Hartrees to a file
with stub name ‘resonances’ (see the definition ofwritbr). If writbr is set true,
then additional files are produced for the peak branching ratios, all partial widths
and the first 3 partial widths. The format for these files (which requireadapt to
be true) is set in FOUNDRES as follows:

write(iw_res,’(2e22.13)’) < position, width> ! in Hartrees

if (writbr) then

write(iw_br,’(30e22.13)’) br(1:nopen)

! in Hartrees, adjust format if nopen > 30

write(iw_xbr,’(32e22.13)’) < position, width> &

& (br(l) * < width > ), l = 1, nopen

! in Hartrees, adjust format if nopen > 30

write(iw_gwid,’(5e22.13)’) < position, width> &

& (br(l) * < width > ), l = 1, 3 ! in Hartrees

In addition, if writbr is true and a parameternum b ratios is set greater than
the default value 1, then branching ratios across the resonance are calculated and
written to files with stub name ‘resonancerangebranchingratios’(details are in
the manual). Note that for this test runwritbr is set false as supplied. The K-
matrix data needed to calculate the peak branching ratios isincluded in fort.20
(parallel test). To run the test runs, follow the instructions in the program manual.

For the parallel test, the user should compare timings to seeif sgc 0 sleeper
is required (if it is required, setting it to false will effectively serialize the calcula-
tion).

21



The output files should be compared with the supplied files andreasonable
agreement should be obtained. The resonance data, and branching ratio data in
the adaptive grid test, are written to the main output files and to separate files. In
the parallel case, note that each  task writes a separate file, so that sets of
output files are produced which together contain all the datain the supplied output
files.

5. Conclusion

We have implemented the fitting of additional eigenvalues inthe resonance
fitting process of the original TIMEDEL program [19] as well as parallelizing the
code. The three-level MPI framework includes a scalable global counter to load-
balance adaptive grid calculations and a simple communicator presented to the
user for the user-supplied K-matrix calculations. The result is a method of detect-
ing and fitting resonances which can deal with complex overlapping resonances,
such as those prevalent in ionic targets. A disadvantage of the time-delay method
when compared to fitting the eigenphase sum is inability to scan an energy range
to locate the position of resonances. Enough K-matrices need to be calculated
to locate the resonances by direct examination of the Q matrices. The addition
of parallelization alleviates this issue by significantly speeding up the calculation
so that an initial scan need not be necessary; the time-delaycan be speedily cal-
culated at a large number of energy points and the resonancesthen located and
fitted. The top-level parallelism allows simultaneous bulkgeneration of data for
‘similar but different’ calculations such as varying molecular geometries.The par-
allel framework has been abstracted from the physics code with simple interfacing
routines and may be used for other purposes: the same physicscode is used for
both parallel and serial compilations. Calls to external libraries have also been
abstracted to separate modules so that these may be edited bythe user without
disturbing the resonance-finding code.
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Figure 1: An example of fitting overlapping resonances usingmultiple eigenval-
ues. The original version of TIMEDEL only fitted the longest eigenvalue (dashed
line) of the time-delay matrix, this eigenvalue is plotted against energy in panel
(a). If the second (solid line) and third (dashed-dot line) longest eigenvalues are
included, as shown in panel (b), it becomes clear that a significant amount infor-
mation is being ignored if only the longest eigenvalue is fitted. That is, the green
and magenta resonances shown in panel (c) would have been badly fitted or missed
entirely. This example is taken from a calculation on electron - N+2 collisions [7].
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timedel_data_for_minimization

timedel_module timedel_maths_library_calls

serial_parallel

comm_mpi sgc_mod

timedel_data_module

public: SOLVE_LINEAR_EQUATIONS,

LAPACK+MINPACK (or NAG etc)
External libraries:

timedel_user_k_matrices

public: FCN (scalar, vector versions), plus required arrays

public data: k-matrix and target energy arrays
public: K_MATRIX_SET_UP, GET_K_MATRICES

DIAGONALIZE_DESCENDING_ORDER,
MINIMIZE_SUM_OF_SQUARES

read_serial_parallel

user supplied (k_adapt)
SETUPKMAT, GETKMAT

public: PTIMEDEL

public: READ_NAMELIST,
DISTRIBUTE_NAMELIST

Figure 2: The module structure of TIMEDEL. Details of the parallel modules are
given in the program user’s manual. Links to minor modules and routines (such
as module precisn and module serialparallel routine STOPRUN) are omitted for
space and clarity. Dashed line boxes represent external routines.
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PTIMEDEL

timedel_user_k_matrices

read_serial_parallel

FINDTIMEDEL

KTOSMAT

TIMED

SORT_AND_FIT_TIME_DELAY

(or read in K-matrices)

contains

contains

EIGSORT

DISCONRM

FITTING

FOUNDRES FITLORS

FINDTIMEDEL

timedel_maths_library_calls

SOLVE_LINEAR_EQUATIONS

DIAGONALIZE_DESCENDING_ORDER

MINIMIZE_SUM_OF_SQUARES
(for branching ratios)

timedel_maths_library_calls

contains
BRANCHING_RATIOS

Figure 3: The ‘physics code’ call structure for routine PTIMEDEL. Dashed line
boxes represent routines outside module timedelmodule. The calls to module
serial parallel are omitted for space and clarity, and are described in the text.
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Figure 4: Time-delay output for the pyrimidine test run for the first energy sub-
grid, as described in the text. The top graph shows the first three calculated eigen-
values, the middle graph shows the first three ‘mixed’ eigenvalues after the rou-
tine EIGSORT and the bottom graph shows the slightly modifiedvalues following
DISCONRM. Note that in EIGSORT the first 5 time-delay eigenvalues are sorted
to produce the ‘mixed’ values.
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Figure 5: Time-delay output for the pyrimidine test run for the energy sub-grid
containng resonances, as described in the text. The top graph shows the first three
calulated eigenvalues, the middle graph shows the first three ‘mixed’ eigenvalues
after the routine EIGSORT, with the resonances separated, and the bottom graph
shows the values following DISCONRM. Note that in EIGSORT, thefirst 5 time-
delay eigenvalues are sorted to produce the ‘mixed’ values.
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