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Cerebral small vessel diseases (cSVD) often present as sporadic conditions but several 

monogenic families have also been reported (Hagel et al., 2004; Herve et al., 2012). In 1977, 

Sourander and Wålinder described a family with an autosomal dominant cerebrovascular 

disease manifesting with transient ischaemic attacks/strokes, neuropsychiatric symptoms and 

progressive cognitive decline. Thirty years later it was proved that this family did not have 

mutations in NOTCH3, excluding the initially suspected diagnosis of cerebral autosomal 

dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). 

Consequently it was concluded that this family presented a new cSVD, which was named 

hereditary multi-infarct dementia (hMID) of the Swedish type (Low et al., 2007). 

In order to identify the genetic cause of disease in this Swedish hMID family we performed 

whole-exome sequencing (WES) and genetic linkage analysis. Twenty-one family members 

participated in this study: 10 were affected, 10 were unaffected and one participant was an 

unrelated spouse used as a control (Figure 1A). 

 

 
Figure 1: A. Pedigree of the Swedish hMID family. Family members included in the study 

are marked with B-DNA (blood derived DNA) or FFPE (formalin fixed paraffin embedded 



tissue) according to the sample type available. Black symbols represent affected individuals 

and white symbols represent healthy family members. Diagonal lines indicate deceased 

individuals. The arrowhead indicates the proband (Individual II:5). B. Luciferase assay. 

HEK-293T cells were transfected with pMIR-REPORT luciferase wild-type (WT) or mutant 

(mut). Cells were co-transfected either with miR-29b-3p (black bars) or negative control 

microRNA (white bars). Normalized luciferase activity of cells transfected with the WT 

construct was significantly decreased by -miR-29b-3p, compared to cells transfected with a 

mimic-negative control. Luciferase activity was not altered in cells transfected with a 

mutated construct (***p < 0.001, 2-sided Student t test). Error bars indicate mean standard 

deviation.  

 

Blood samples (n=17) were collected and DNA was extracted by standard methods after 

written informed consent was provided by all family members taking part in this study. For 4 

patients only formalin fixed paraffin embedded (FFPE) tissues were available. 

Four patients (III:1c, IV:7, IV:16 and V:3) and 2 unaffected family members (IV:5 and 

IV:14) were selected for WES. Exomes were prepared using the SeqCap EZ Human Exome 

Library version 2.0 (Roche Nimblegen Inc) and sequencing runs were performed on HiSeq 

2000 (Illumina). Sequencing reads were aligned to GRCh37/hg19 using BWA (Li and 

Durbin, 2010) and variants were called according to GATK’s standard best practices v3 

(McKenna et al., 2010; DePristo et al., 2011). Following variant calling, annotation was 

performed using SnpEff (Cingolani et al., 2012). For the linkage study, whole genome 

genotyping was performed for 12 blood-derived DNA samples using HumanOmniExpress 

Bead chips (Illumina). Parametric multipoint linkage analysis was performed using Allegro 

(Gudbjartsson et al., 2000) under a fully penetrant autosomal dominant model.  

Data analyses were based on an autosomal dominant mode of inheritance of the disease and 

the hypothesis that the underlying mutation was not present in neurologically healthy control 

individuals or in the general population (Table 1). Validation of variants found by WES was 

done using Sanger sequencing with BigDye Terminator version 3.1 chemistry (Applied 

Biosystems). 

Parametric multipoint linkage analysis identified four peaks on chromosomes 10, 11, 12 and 

13 achieving LOD scores > 2. When these regions were compared to the WES data we 

identified three variants present in affected family members and absent in healthy relatives: 

one in SPOCK2 and two variants in COL4A1 (Table 1).  

 



Table 1: Linkage regions with LOD >2 and the variants identified by WES located in these 

chromosomal areas. 

Chr Chr location dbSNP LS Variants Gmaf 

10 7349891-76372030 rs10823837-

rs4746209 

2,352 SPOCK2 c.*11G>A  0,379 

11 47929846-

49000550 

rs6485795-

rs11040198 

2,294 No variants identified  

12 85165879-

87281210 

rs11116595-

rs7316774 

2,348 No variants identified  

13 109327788-

111067000 

rs9284246-

rs10851243 

2,407 COL4A1 c.*32G>A 

COL4A1 n.249C>T, 

c.4470C>T  

- 

0,376 

Chr: Chromosome; Chr location: Chromosomal location (hg19); dbSNP: dbSNP accession 

numbers; LS: Logarithm of odds score; Variants: variants identified by WES in the region; 

Gmaf: global minor allele frequency in the Exome Aggregation Consortium (ExAC). Minor 

allele frequencies of 0,4 in the general population for both SPOCK2:c.*11G>A and 

COL4A1:c.4470C>T were considered to be too high for a mutation causative of a rare 

disease as Swedish hMID.  

 

Only one of these variants (COL4A1:c.*32G>A) was found to segregate with the disease in 

the extended family and was absent from population databases. Although the variant is 

located in the 3’UTR of COL4A1 both gnomAD and ExAC databases report variants in this 

locus in a minimum of 117,613 and 44,384 individuals, respectively (Lek et al., 2016). The 

segregation of COL4A1 c*32G>A with the disease was confirmed using Sanger sequencing. 

All affected cases had the variant and none of the older unaffected cases (age > 40 years) 

carried it. One younger, currently unaffected, family member also carried the COL4A1 

c.*32G>A. 

The c.*32G>A mutation is located in the 3’ UTR region of COL4A1, and may affect the 

binding site of miR-29, located in this region. To test this hypothesis we performed a 

microRNA transfection study combined with luciferase reporter assay. 197 bp fragment of 

wild-type and mutated target site were amplified by PCR from patients’ genomic DNA. The 

inserts were validated by sequencing. Amplified target region was digested with Hind 

III/Spe1, cloned into the pMIR REPORT Luciferase plasmid (AppliedBiosystems). 



HEK293T cells (DMEM, 10% FCS serum with penicillin (100 U/ml) and streptomycin (100 

µg/ml) in humidified air containing 5% CO2 at 37°C) were plated in 24-well plates. At 80% 

confluence, 100 ng of empty, wild-type, or mutated plasmids were cotransfected with 25 

pmol of either miRIDIAN hsa-miR-29b-3p or negative control (Dhmarcon), using 

DharmaFECT Duo 2.5 µl in each well (Dharmacon). The triplicate samples were lysed with 

1% NP40, 150 mM NaCl and 25 mM Tris, pH 7.6, and firefly luciferase activities were 

measured 36 hours after transfection using the 1000 Assay System (Promega) and analyzed 

with BioTek, Cytostation 5. The results suggested that the COL4A1 c.*32G>A mutation 

affects miR-29 binding and hence leads to upregulation of COL4A1 (Figure 1B). 

COL4A1 mutations have been reported as the cause of a wide variety of autosomal dominant 

diseases being associated with variable phenotypes (Lemmens et al., 2013). These include: 

porencephaly 1 (OMIM #175780); small vessel disease of the brain with or without ocular 

anomalies (BSVD, OMIM #607595); retinal arterial tortuosity (RATOR, OMIM #180000); 

hereditary angiopathy with nephropathy, aneurysms and muscle cramp (HANAC, OMIM 

#611773); Walker-Warburg syndrome (Labelle-Dumais et al., 2011) and pontine autosomal 

dominant microangiopathy with leukoencephalopathy (PADMAL) (Verdura et al., 2016).  

Swedish hMID is a cerebral small vessel disease characterized by multifocal impaired 

cerebral blood flow resulting in multiple infarctions. Clinically and pathologically it fits 

within the expanding phenotypic group of COL4A1 related disorders, most closely 

resembling PADMAL with lacunar infarcts in the subcortical and pontine areas (Sourander 

and Walinder, 1977; Hagel et al., 2004; Verdura et al., 2016).   

The 3’UTR COL4A1 variant identified here presented complete segregation with the disease 

in this family, being identified in all affected and absent in all older (>40 years of age) 

unaffected family members. One younger, healthy subject (V:7a) carried the COL4A1 

c*32G>A variant, suggesting the possibility of currently being in an asymptomatic stage of 

the disease.  

A recent publication by Verdura and colleagues identified mutations in COL4A1 3’UTR as 

the cause of cSVD in six families, including PADMAL cases. The mutations identified also 

affected the binding site for miR-29 micro-RNA located within the 3’UTR of COL4A1, and 

were shown to lead to upregulation of COL4A1 mRNA expression (Verdura et al., 2016). 

Although the variant found in this Swedish hMID family is novel, it disrupts the same miR-

29 binding site, adding support to the pathogenicity of the mutation and suggesting that 

COL4A1 upregulation is a central pathogenic mechanism both in Swedish hMID and 

PADMAL. The similarities at clinical and pathological levels also support this view: both 



diseases are characterized by fibrohyalinosis and elastosis of small arterioles with atrophy of 

media and proliferation of the intima. These changes result in multiple lacunar infarcts in the 

basal ganglia, thalamus, periventricular white matter and pons, and in cortical and white 

matter atrophy. At the EM level, thickening of the basement membrane is observed in both 

diseases (Sourander and Walinder, 1977; Hagel et al., 2004; Low et al., 2007; Verdura et al., 

2016), and the clinical findings include cognitive impairment and progressive dementia, 

strokes, as well as mood and gait disturbances (Hagel et al., 2004; Low et al., 2007; Craggs et 

al., 2013). In our previous study, immunostaining of COL4 revealed increased levels of 

staining in walls of small cerebral arteries both in PADMAL and Swedish hMID cases. 

However, the investigation of the sclerotic index showed some regional differences between 

the diseases: PADMAL seemed to affect the vessels of the frontal region more than those of 

the basal ganglia, whereas hMID cases showed the opposite effect (Craggs et al., 2013). 

Furthermore, no haemorrhages have been described in subjects with PADMAL, while one 

hMID subject with anticoagulative treatment was reported to suffer from a massive 

haemorrhage (Sourander and Walinder, 1977).  

As previously proposed, perturbations of the cerebrovascular matrisome (the group of 

proteins both constituting and associated with the extracellular matrix) can represent a 

convergent pathologic pathway in monogenic small vessel diseases (Joutel et al., 2016). Still, 

further studies are needed to clarify the detailed pathogenic molecular mechanisms behind 

these diseases and to understand the phenotypic differences arising from mutations in the 

same micro-RNA binding site. 

 

Legends for figures 

Figure 1: A. Pedigree of the Swedish hMID family. Family members included in the study 

are marked with B-DNA (blood derived DNA) or FFPE (formalin fixed paraffin embedded 

tissue) according to the sample type available. Black symbols represent affected individuals 

and white symbols represent healthy family members. Diagonal lines indicate deceased 

individuals. The arrowhead indicates the proband (Individual II:5). B. Luciferase assay. 

HEK-293T cells were transfected with pMIR-REPORT luciferase wild-type (WT) or mutant 

(mut). Cells were co-transfected either with miR-29b-3p (black bars) or negative control 

microRNA (white bars). Normalized luciferase activity of cells transfected with the WT 

construct was significantly decreased by -miR-29b-3p, compared to cells transfected with a 



mimic-negative control. Luciferase activity was not altered in cells transfected with a mutated 

construct (***p < 0.001, 2-sided Student t test). Error bars indicate mean standard deviation. 
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