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In this paper, fully nonlinear non-symmetric periodic gravity-capillary waves propagating
at the surface of an inviscid and incompressible fluid are investigated. This problem was
pioneered analytically by Zufiria (1987c) and numerically by Shimizu & Shōji (2012). We
use a numerical method based on conformal mapping and series truncation to search for
new solutions other than those shown in Zufiria (1987c) and Shimizu & Shōji (2012). It is
found that, in the case of infinite depth, non-symmetric waves with 2 to 7 peaks within one
wavelength exist and they all appear from symmetry-breaking bifurcates. Fully exploring
those non-symmetric waves by changing the parameters yields the discovery of new types
of solutions. In contrast to the symmetry breaking, these extended solutions form isolated
branches which is a novel bifurcation mechanism. The existence of non-symmetric waves
in water of finite depth is also confirmed, by using the value of the streamfunction at the
bottom as the continuation parameter.
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1. Introduction

It is well acknowledged that a bifurcation can lead to symmetry breaking. Two typical
examples are Hopf bifurcation (see e.g. Moiola & Chen 1996) and Bénard convection (see
e.g. Getling 1999) in physics. The temporal symmetry is destroyed in a Hopf bifurcation,
and so is the spatial symmetry in Bénard convection. Symmetry breaking plays a major
role in pattern formation, and it can be found in many scientific disciplines such as
biology, chemistry, and physics. On the theoretical side, there is an extensive literature
on the analysis of bifurcation and symmetry breaking by using the group-representation
theory, e.g. Sattinger (1980).
The problem of solving the full Euler equations for travelling waves on the surface of

water flows has been widely studied by many authors both analytically and numerically,
however in most works certain symmetry conditions were imposed. The term ‘symmetric
waves’ is defined to be those waves whose shape is symmetric about the vertical axis. If
a wave is symmetric about a vertical line other than the vertical axis, we call this wave a
shifted symmetric wave. Apart from these two kinds of waves, the others are named non-
symmetric waves. Non-symmetric water waves receive considerable attention not only
because symmetry breaking is of scientific interest as mentioned in the first paragraph
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but also because it is a big mathematical challenge to find new types of fully nonlinear
solutions in surface water-wave problems.
For nonlinear capillary waves, Crapper (1957) derived exact symmetric periodic solu-

tions of explicit form in terms of elementary functions on water of infinite depth. The
wave profile becomes steep as the amplitude increases prior to reaching a limiting config-
uration with a trapped bubble at the trough. Beyond that, the profile has a non-physical
self-intersecting structure. Vanden-Broeck & Keller (1980) extended the family of Crap-
per’s solutions beyond the limiting configuration by considering the pressure inside the
trapped bubble as part of solutions. Vanden-Broeck (1996) worked on capillary waves
with variable surface tension and found new solutions by using a collocation method.
Okamoto & Shōji (1991) proved the non-existence of bifurcation from the family in
Crapper (1957). This fact implies that non-symmetric capillary waves are very unlikely
since there are no solutions found other than Crapper’s. Kinnersley (1976) generalised
Crapper’s solutions to the case of capillary waves on fluid sheets of finite thickness.
Crowdy (1999) presented a simple derivation for Kinnersley’s solutions by using complex
variables. Blyth & Vanden-Broeck (2004) found numerically new solutions which have
no horizontal symmetry or anti-symmetry from Kinnersley’s solutions. However these
waves are still symmetric in a sense of ‘symmetric waves’ defined earlier. Whether or not
non-symmetric capillary waves on fluid sheets exist remains an open question.
For pure gravity waves, the problem was studied widely in the case of finite and infinite

depth since the pioneering work of Stokes (1847). For classic gravity solitary waves, a
rigorous proof was carried out by Craig & Sternberg (1988) to show that they can only
exist in symmetric form. The research on non-symmetric periodic waves could be tracked
back to 1980 when Chen & Saffman (1980) found bifurcations to new families of solutions
in deep water. They tried to compute non-symmetric gravity waves but only shifted
symmetric waves were found. Zufiria (1987a) derived a weakly nonlinear Hamiltonian
model to find non-symmetric waves with 6 peaks via a spontaneous symmetry-breaking
bifurcation. Later Zufiria (1987b) used numerical approaches to compute non-symmetric
waves on water of infinite depth in the full Euler equations. Qualitatively similar results
with 6 peaks in one wavelength were produced, but no other solutions were found. It
remains unclear whether there exist non-symmetric progressive gravity waves with peak
number other than 6 in one wavelength.
In the presence of both gravity and surface tension, there is a very rich structure of

solutions for water waves. Wilton (1915) showed the non-uniqueness of solutions, even
for waves at small amplitude, which are the so-called Wilton’s ripples. The reader is
referred to Vanden-Broeck (2010) for a quick review. Zufiria (1987c) used again a weak-
ly nonlinear Hamiltonian model to rediscover non-symmetric periodic gravity-capillary
waves with 6 peaks in the case of finite depth. In addition, he computed approximate
non-symmetric solitary waves. Later on, new non-symmetric periodic waves with 2 peaks
were discovered numerically by Shimizu & Shōji (2012). All the literature mentioned on
non-symmetric waves were carried out by investigating spontaneous symmetry-breaking
bifurcations. Wang et al. (2014) worked on non-symmetric solitary waves with a quite
different approach. They began with constructing a special initial guess for Newton’s
method and obtained a convergent solution, then the bifurcation diagram was complet-
ed based on a numerical continuation method. They found that all the non-symmetric
solitary waves finally join the branches of symmetric ones. Despite of a very different
method, their results end up with another example of spontaneous symmetry-breaking
bifurcations.
In the present paper, we aim to discover new non-symmetric periodic gravity-capillary

waves numerically. The problem is formulated in §2. We state the numerical scheme in
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§3 based on a collocation technique which was originally used by Vanden-Broeck (1996).
The numerical solutions and the global bifurcation diagrams are presented in full details
in §4. The concluding remarks are given in §5.

2. Formulation

We consider a two-dimensional irrotational flow of an inviscid and incompressible fluid
of finite depth h with gravity and surface tension both present. The free surface (i.e.
the upper surface of the fluid) is deformed by a train of waves travelling at a constant
velocity c.
We introduce a two-dimensional Cartesian system with the y-axis pointing upwards.

A frame of reference moving with the waves is chosen so that the flow is steady, namely,
we introduce a mean flow of speed c to arrest the wave. We denote by y = η(x) the
equation of the (unknown) free surface. The acceleration of gravity g acts in the negative
y-direction. We introduce a potential function φ so that the velocity is defined by (φx,φy),
therefore the governing equations are as follows

∇2φ = 0 , − h < y < η(x) , (2.1)

φy = φxηx , on y = η(x) , (2.2)
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κ = B , on y = η(x) , (2.3)

φy = 0 , on y = −h , (2.4)

where T is the surface tension, κ is the curvature of the free surface, ρ is the fluid density.
Equations (2.2) and (2.4) are the kinematic boundary conditions on the free surface and
on the bottom respectively. Equation (2.3) is the Bernoulli equation on the free surface or,
in other words, the dynamic boundary condition and B is called the Bernoulli constant. It
is not difficult to obtain the linear dispersion relation for gravity-capillary waves, namely,

c2 =
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ρ
k

)

tanh(kh) , (2.5)

where k is the wavenumber. For the fluid of infinite depth, the dispersion relation (2.5)
reduces to

c2 =
g

k
+

T

ρ
k , (2.6)

It follows immediate that c in (2.6) admits a global minimum c∗ given by

c∗ =

(

4Tg

ρ

)1/4

. (2.7)

This implies that linear periodic gravity-capillary waves can only exist for c > c∗, but
as shown in Vanden-Broeck & Dias (1992), solitary waves bifurcate from c∗ and exist at
subcritical speeds.
In this paper, we focus on periodic waves with wavelength λ. By choosing c and λ/2π

as the reference velocity and length respectively, one can rewrite the dynamic boundary
condition (2.3) as
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where the parameters p and q are defined as

p =
gλ

2πc2
, q =

2πT

ρλc2
. (2.9)

In addition, we should impose the periodic boundary condition η(x+ 2π) = η(x), which
completes the whole system.
We introduce the streamfunction ψ and denotes the complex potential by f = φ+ iψ.

We choose ψ = 0 on the free surface and φ = 0 at x = y = 0 (which is assumed to be
a crest or a trough). We denote by −Q the value of ψ on the bottom. We use (φ ,ψ) as
the independent variables and denotes the complex velocity by u− iv. We then introduce
T − iϑ , which is an analytic function of φ+ iψ, as following

u− iv = eT −iϑ . (2.10)

On the free surface, we define τ(φ) ! T (φ, 0) and θ(φ) ! ϑ(φ, 0). It immediately follows
that

xφ + iyφ = e−τ+iθ, (2.11)

whose real part and imaginary part can be used to calculate x and y respectively by
integrating with respect to φ. We substitute (2.10) and (2.11) into (2.8) and differentiate
the result with respect to φ to get

e2ττφ + pe−τ sin θ − q
d

dφ

(

eτθφ
)

= 0 , (2.12)

where we have used κ = eτθφ. An equivalent formulation was used in Shimizu & Shōji
(2012). In the next section, a numerical method based on collocation and truncating
series will be introduced to solve the fully nonlinear steady Euler equations (2.12).

3. Numerical Scheme

The flow domain in the complex potential plane is the strip−Q < ψ < 0. The kinematic
boundary condition (2.4) at the bottom can be satisfied by using the method of images.
We have ψ = −2Q on the image of the free-surface into the bottom, hence the extended
flow domain is the strip −2Q < ψ < 0. Then we perform the conformal mapping

t = e−if , (3.1)

where f = φ+iψ is the complex potential. It maps the strip onto the annulus r20 < |t| < 1
(see figure 1), where

r0 = e−Q. (3.2)

It is clear that w is an analytic function of f , and so is τ − iθ. Therefore τ − iθ is an
analytic function of t which can be expressed by the Laurent series

τ − iθ = α0 +
∞
∑

n=1

αnt
n +

∞
∑

n=1

βnt
−n. (3.3)

where the coefficients αn, βn ∈ C except α0 ∈ R. Hence we write

αn = −an + ibn, (3.4)

with an, bn ∈ R for all n " 1. In particular, the coefficients bn are all zero for symmetric
waves. The minus sign in front of an on the right-hand side of equation (3.4) is chosen
so that the definitions of an and bn are in accordance with those presented in Shimizu &
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Figure 1. The conformal mapping (3.1) maps the strip −2Q < ψ < 0 on to an annulus
r20 < |t| < 1 whose outer boundary corresponds to the free surface in the physical plane and
inner boundary to the image of the free surface into the bottom.

Shōji (2012). Since ψ = −2Q is the image of the surface ψ = 0, we obtain

τ(φ, 0) − iθ(φ, 0) = τ(φ,−2Q) + iθ(φ,−2Q). (3.5)

Combining (3.3) and (3.5) gives

βn = αnr
2n
0 , for n " 1. (3.6)

By substituting (3.4) into (3.3) and truncating after N terms, we obtain

τ = α0 −
N
∑

n=1

an(1 + r2n0 ) cosnφ+ bn(1− r2n0 ) sinnφ , (3.7)

θ =
N
∑

n=1

−an(1 − r2n0 ) sinnφ− bn(1 + r2n0 ) cosnφ . (3.8)

When the fluid is of infinite depth (i.e. h → ∞), the strip in figure 1 becomes the lower-
half f -plane and the annulus extends to a unit disc, i.e. r0 = 0. The Laurent series (3.3)
becomes a Taylor series since all the coefficients βn vanish. The coefficient α0 is also zero
because the velocity at infinite depth equals the phase speed whose value is 1 under the
current scaling.
Since the symmetry-breaking phenomenon occurs as a bifurcation from symmetric

waves, we start with reproducing the results for symmetric waves. The rescaled wave-
length and the phase velocity are always set to be 2π and 1 respectively. Using the
definition of c,

c =
1

2π

∫ 2π

0

φxdx, (3.9)

we obtain

x = 2π, at φ = 2π. (3.10)

The wave is symmetric in the physical plane with respect to x = π and in the complex
potential plane with respect to φ = π. By imposing the symmetry condition on (3.10),
we immediately obtain

x = π, at φ = π . (3.11)
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Then we introduce N collocation points uniformly distributed along φ in (0,π]

φj =
2j − 1

2N
π , j = 1, 2, ...N. (3.12)

The dynamic boundary condition (2.12) is satisfied at these points, which yields N alge-
braic equations. The final equation is to fix the value of a specific coefficient, e.g.

am = α , (3.13)

wherem and α are suitably chosen. By fixing the values of p and am , the resulting system
with N + 2 equations and N + 2 unknowns (α0, a1, ..., aN , q) can be solved by Newton’s
method. During the numerical calculations, we monitor the value of the Jacobian. When
its value changes sign, a bifurcation can occur and a new branch of symmetric waves may
emanate. We call this operation the symmetric Jacobian test to ease referring. We note
that (3.13) is particularly useful for computing the solutions near bifurcation points. For
non-symmetric waves, the coefficients bn are non-zero. We need to introduce another N
collocation points in (π, 2π]

φj =
2j − 1

2N
π , j = N + 1, N + 2, ...2N. (3.14)

The dynamic boundary condition (2.12) is also satisfied on these points, which yields
extra N algebraic equations. Meanwhile, (3.11) is replaced by (3.10). The final control
equation is to fix one of the coefficients bn, e.g.

bm = β , (3.15)

where m and β are suitably chosen. We have a system with 2N + 2 equations and
2N + 2 unknowns (α0, a1, ..., aN , b1, b2, ..., bN , q) which can again be solved by Newton’s
method. To avoid small shifted symmetric waves, we replace one of the algebraic equations
associated with the dynamic boundary condition by

N
∑

n=1

bn = 0 . (3.16)

This condition is to make sure that a crest or a trough lies at the origin as explained
in Shimizu & Shōji (2012). The wave profile can be computed by integrating xφ and yφ
once the Fourier coefficients are obtained. This numerical method was successfully used
in several different problems, e.g. see Blyth & Vanden-Broeck (2004), Shimizu & Shōji
(2012) and Gao & Vanden-Broeck (2014). The accuracy of this numerical method was
discussed in Gao & Vanden-Broeck (2014).
The challenge here is to find suitable initial guesses to jump on branches of non-

symmetric waves. To find a symmetry-breaking point, we interpolate a symmetric so-
lution (α0, a1, ..., aN , q) with zero bn coefficients. Then (α0, a1, ..., aN , q, 0, 0, ..., 0) is still
an exact solution of a symmetric wave. We perform this operation along the symmetric
branches and evaluate the Jacobian of the enlarged system with an and bn all involved
(see Shimizu & Shōji (2012) for more details). We name this operation the full Jaco-
bian test. Symmetry-breaking takes place when the full Jacobian test shows the change
of sign but the symmetric Jacobian test does not. By using (3.15) near a symmetry-
breaking point, the solution converges after several iterations and a non-symmetric wave
is obtained. Afterwards the whole bifurcation diagram can be completed by using the
continuation method. In this paper, we choose N = 500 for computing symmetric waves
and N = 1000 for non-symmetric waves. There are no significant changes in solutions by
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Figure 2. A non-symmetric wave profile with 6 peaks in one wavelength with p = 1.41 and
q = 0.1376. The dotted lines are used as visual guides for asymmetry.

using a larger N . A solution is considered to be converged if the l∞-norm of the residual
error of Newton’s method is less than 10−9.

4. Numerical results

4.1. Non-symmetric waves in deep water

Shimizu & Shōji (2012) discovered numerically non-symmetric waves with 6 peaks and 2
peaks per wavelength in deep water resulting from the spontaneous symmetry-breaking
bifurcations. As presented in their paper, a branch emanating from a linear wave solution
which satisfies the dispersion relation for some integer wavenumber m is called a primary
branch of modem. For the branch of modem, am is the most dominant Fourier coefficient
of the periodic solution. If a further bifurcation occurs on a primary branch, it leads to
a new family of solutions and is called a secondary branch of mode (m,n), which means
there are two dominant coefficients am and an. Analogously, a branch bifurcating from
a secondary branch is called a tertiary branch. We denote the primary branch of mode
m by Pm, the secondary branch of mode (m,n) by Smn and the tertiary branch of mode
(m,n, j) by Tmnj. The order of the index essentially shows the solution structure, e.g. a
Tmnj bifurcates from a Smn which originates from Pm (see the following schematic)

Pm → Smn → Tmnj. (4.1)

We continue to investigate this problem by reproducing first the results in Shimizu &
Shōji (2012) and then by searching for new types of non-symmetric waves. We fix the
value of p and change q in the continuation method. As described in §3, we depart from
P6 and perform the symmetric and full Jacobian tests along the branch at the same time.
A S62 is found but there is no non-symmetric branch. We continue the same process on
S62 and find a T621, but still non-symmetric branch is not found. Finally, on the tertiary
branch T621, we manage to find a symmetry-breaking point from which a non-symmetric
branch emanates. A typical wave profile is shown in figure 2. The detailed bifurcation
diagrams are shown in figure 4 and figure 5 of Shimizu & Shōji (2012).
There are two types of non-symmetric waves with 2 peaks: (1) those bifurcating from

the primary branch P2; (2) those bifurcating from the secondary branch S23. Examples
for both types are shown in figure 3. By fixing q and varying p for non-symmetric waves
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Figure 3. Top: non-symmetric waves of 2 peaks on the branch bifurcating from the primary
branch P2 for q = 0.2208 and p = 1.2, 1.1197, 1.18, 1.12 respectively (from 1⃝ to 4⃝). Bottom:
non-symmetric waves of 2 peaks on the branch bifurcating from S23 for q = 0.2487 and p = 1.2,
1.01, 1.007, 1.006 respectively (from 5⃝ to 8⃝). The profiles are plotted in the physical x-y plane.
The dotted lines are used as visual guides for asymmetry. As p decreases, the wave profiles finally
turn to be symmetric ( 4⃝ and 8⃝).

with 2 peaks, we observe that the asymmetry vanishes as the value of p decreases to a
certain number. The ratio of gravity to surface tension becomes smaller along with the
decrease of the value of p, since p/q = ρgλ2

/

(4π2T ). This phenomenon is coincident with
the conjecture made by Okamoto & Shōji (1991) (also emphasised by Shimizu & Shōji
(2012)) that Crapper’s waves are the only nontrivial solutions for steady pure capillary
waves.
In Dias (1994) the author obtained symmetric capillary-gravity solitary waves by ex-

tending the wavelength of periodic waves. Inspired by this work, we perform the same
procedure to see whether it is possible to find new non-symmetric solitary waves. This
can be achieved in our problem by fixing the value of pq and enlarging p/q of a solution.
Since in deep water gravity-capillary solitary waves can only exist below the minimum
of the phase speed (c < c∗), we should choose the parameters p and q such that

pq =
gT

ρc4
>

gT

ρc∗4
=

1

4
. (4.2)

In figure 4, the numerical experiments show that the asymmetry gradually disappears
as the value of p/q is further increased, and the solution finally ends up with a shifted
depression or elevation solitary wave. However this approach is found to be extremely
useful for discovering new non-symmetric waves with more peaks. This will be discussed
in §4.1.1 and §4.1.2.

4.1.1. New non-symmetric waves

An immediate question arising from the work of Shimizu & Shōji (2012) is: can we
find non-symmetric waves with a number of peaks other than 2 or 6 ? The answer is
positive. We start with presenting the results for 3 peaks. The symmetry-breaking point
is found to be on an S32 branch (point (i) in figure 5(a)). By following the solid curve
(i)→(1)→(2)→(3)→(4), the asymmetry gradually fades out after the point (4) and even-
tually joins a branch of shifted symmetric waves (dotted line in figure 5(a)). A detailed
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Figure 4. Top: non-symmetric waves of 2 peaks on the branch bifurcating from P2 for
pq = 0.2782 and p/q =5.1764, 21, 35, 89 respectively (from 1⃝ to 4⃝). Bottom: non-symmetric
waves of 2 peaks on the branch bifurcating from S23 for pq = 0.2908 and p/q = 4.9527, 8.4527,
11.9527, 79.5 respectively (from 5⃝ to 8⃝). The profiles are plotted in the physical x-y plane.
The dotted lines are used as visual guides for asymmetry. As p/q increases, the wave profiles
finally turn to be symmetric ( 4⃝ and 8⃝).
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Figure 5. (a) Bifurcation diagram of non-symmetric waves with 3 peaks for p = 1.2. The solid
curve is a branch of non-symmetric waves with 3 peaks in one wavelength. The dash-dotted
curve is a branch of symmetric waves of mode (3,2) whereas the dotted curve corresponds to a
branch of shifted symmetric waves. (b) Continuation of the dotted branch of shifted symmetric
waves. The solid curve is a branch of non-symmetric waves with 4 peaks.

bifurcation diagram is presented in figure 5(a), and typical wave profiles are shown in
figure 6.
By following further the branch of shifted symmetric waves (dotted curves in figure

5(a,b)), we discover a new branch of non-symmetric waves with 4 peaks. The full bifur-
cation diagram is shown in figure 5(b) and typical wave profiles are sketched in figure 7.
We notice that the dotted curve in figure 5(b) finally tends to the origin, which implies
that this type of shifted waves with 4 peaks can only bifurcate from the uniform stream.
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Figure 6. Wave profiles for the points indicated in figure 5(a). They are plotted in the x-y
plane where p = 1.2 fixed and q = (i) 0.2160 (1) 0.2289, (2) 0.2756, (3) 0.3285, (4) 0.3082, (ii)
0.2817.
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Figure 7. Wave profiles for those points indicated in figure 5(b). They are plotted in the x-y
plane where p = 1.2 fixed and q = (iii) 0.2333, (iv) 0.2156, (v) 0.2027, (vi) 0.1852, (5) 0.1831,
(6) 0.2019, (7) 0.2290, (8) 0.2431.

This is the reason why one cannot obtain these results by the routine approach for the
symmetry-breaking study.
The bifurcations for non-symmetric waves with 5 and 7 peaks are qualitatively similar

to those with 3 peaks. They both emanate from a secondary branch (S54 and S76 respec-
tively) and end at a branch of shifted symmetric waves (see figure 8). Due to large wave
amplitudes, overhanging structures (multivalued profiles) are observed, and the typical
waves are shown in figure 9 and figure 10. On physical grounds, the overhanging structure
in capillary/gravity-capillary waves is of interest due to its important role in air bubble
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Figure 8. (a) Bifurcation diagram of non-symmetric waves with 5 peaks in one wavelength and
p = 1: the branch of non-symmetric waves with 5 peaks (solid curve), part of the S54 branch
(dotted curve), part of a branch of shifted symmetric waves (dashed curve). The sharp nature
near the point (i) is shown in more details. (b) Bifurcation diagram of non-symmetric waves
with 7 peaks in one wavelength and p = 1.05: the branch of non-symmetric waves with 7 peaks
(solid curve), part of the S76 branch (dashed curve), part of a branch of shifted symmetric waves
(dotted curve).

formation and air-water gas exchanges therefrom (Longuet-Higgins (1988)). The limiting
configuration occurs when the profile develops a point of contact pinching off a ‘trapped
bubble’. Further down the bifurcation curve, the solutions become unphysical since they
feature a self-intersecting structure, though they are admitted mathematically by the full
Euler equations. A large number of collocation points is required to maintain the high
accuracy near the dotted curves in both graphs of figure 8. A typical value for N there
is 3000.
A further extension is to find non-symmetric waves with more peaks. It can be achieved

by fixing the value of pq and increasing the value of p/q (as seen in figure 4). We apply the
approach to those non-symmetric waves presented above. We perform our first numerical
experiment with the non-symmetric wave given in figure 7(7), and observe that a large
peak evolves to two ripples with a long flat platform generated in between as shown in
figure 11(a). We stop at some value of p/q and take the solution as the initial guess.
Three examples are presented in figure 11(a,b,c) for different values of p/q. Then by
fixing the value of p and varying q, some new waves can be found. It is shown in figure
11(d,e,f) that as the value of p/q increases, the number of peaks generated increases.
Therefore a further increase of p/q leads to a new solution with more peaks. We have
a reason to believe that non-symmetric waves can exist with any integer number of
peaks. Although no rigorous proof is provided, the results show very strong numerical
evidence. This approach can also be applied to other non-symmetric waves. We take a
non-symmetric wave with 5 peaks (figure 12(a), p = 1.3113, q = 0.2110) for example.
This wave bifurcates from a branch of shifted symmetric waves. Here we do not present
the detailed bifurcation structure since it is qualitatively similar to the one with 3 peaks.
We fix the value of pq and change p/q to 52.3146 as shown in figure 12. Then we use
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Figure 9. Wave profiles for the points indicated in figure 8(a). They are plotted in the x-y plane
with p = 1 fixed and q = (i) 0.2012, (1) 0.2173, (2) 0.2460, (3) 0.3242, (4) 0.3907, (ii) 0.4424.
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Figure 10. Wave profiles for the points indicated in figure 8(b). They are plotted in the x-y
plane where p = 1.05 and q = (iii) 0.1865, (5) 0.2194, (6) 0.2342, (iv) 0.2573.

wave (b) as an initial guess, fix the value of p and vary q to follow the bifurcation branch
where a new non-symmetric wave with 9 peaks is obtained (see figure 12(c)).
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Figure 11. Examples of extending the non-symmetric wave (7) in figure 7. The value of pq is
fixed to be 0.2847 and p/q is equal to (a) 55, (b) 60, (c) 70. These solutions lead to non-symmetric
waves with (d) 8 peaks, (e) 9 peaks and (f) 10 peaks respectively. The profiles are plotted in
the x-y plane.
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Figure 12. Example of extending a non-symmetric wave with 5 peaks. (a) p = 1.3113
q = 0.2110, (b) p = 3.8045 q = 0.0727, (c) p = 3.8045 and q = 0.0660. The profiles are
plotted in the x-y plane.

4.1.2. Isolated branches of non-symmetric waves

We now focus on the non-symmetric wave with 8 peaks as shown in figure 11(d). By
numerical continuation, we obtain the whole family of solutions and sketch them by
using b1 and q as the bifurcation parameters in figure 13. Upon the branch, the wave
tries to balance both sides but fails (see figure 14), as a consequence, it has no choice but
to rejoin its own branch. As shown in figure 13 the branch of non-symmetric waves is
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Figure 13. The isolated branch of a family of non-symmetric waves plotted in the b1-q plane.
The value of p is fixed to be 3.7560. All the waves from this branch are non-symmetric. Some
typical wave profiles are sketched in figure 14.
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Figure 14. Wave profiles for the points indicated in figure 13. They are plotted in the physical
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Figure 15. Other bifurcations occurring on the isolated non-symmetric branch which was pre-
sented in figure 13. We plot in the a5-a6 plane instead of the b1-q plane to make the bifurcations
easier for view.

found to be a closed loop which is isolated without the presence of branches of symmetric
waves. Several bifurcation points have been found on this isolated non-symmetric branch,
which are marked as (1)-(5) in figure 15. The new bifurcation branches (dotted and dash-
dotted lines shown in figure 15) are also non-symmetric waves. In particular, a simple
closed branch which bifurcates from the point (4) or (5) has been observed (dashed curve
in figure 15). We have not completed the branches which bifurcate at points (1) and (2)
or (3) but we expect that they will form an isolated branch of non-symmetric waves or
join a branch of (shifted) symmetric waves. Besides we also investigated the branches
arising from the non-symmetric waves with 9 and 10 peaks (figure 11(e,f)). The solution
structures are qualitatively similar, and isolated non-symmetric branches are also found.

4.2. Non-symmetric waves on water of finite depth

To generalise the results to water of finite depth, we use a solution in deep water as an
initial guess and treat the value of the streamfunction at the bottom Q as a parameter in
the continuation method. Without much effort, many different non-symmetric waves are
obtained. Some typical profiles for Q = 3 are plotted in figure 16, therefore the existence
of non-symmetric periodic gravity-capillary waves in water of finite depth is confirmed.
We apply the same approach to the dotted loop from the bottom right of figure 15 to
obtain the results for different values of Q. They are presented in a b6-q parametric space
in figure 17. As the value of Q decreases, the solution branch shrinks and eventually
vanishes when Q < 2.5. It indicates clearly that the asymmetry may disappear due to
finite-depth effects.

5. Conclusion

We started by reproducing the non-symmetric, deep-water, gravity-capillary waves of
2 peaks and 6 peaks in one wavelength, in excellent agreement with the results of Shimizu
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Figure 16. Non-symmetric waves in water of finite depth for Q = 3 where (1) p = 1.2,
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& Shōji (2012), confirming the validity and capability of our numerical procedure. By
using the same mechanism for symmetry-breaking investigation, we have found new
branches of non-symmetric waves with 3, 4, 5 and 7 peaks. These waves are in general
of large amplitudes, and all appear, via spontaneous symmetry-breaking bifurcations.
Furthermore, an approach which is equivalent to the method of extending the wavelength
is introduced to discover more new solutions. Besides, we have found isolated closed
branches of non-symmetric waves without symmetry breaking involved. It illustrates the
fact that the presence of non-symmetric waves cannot only be from symmetry breaking
but also in the form of isolated loops. Finally, the numerical results were generalised to
the finite-depth case, where the existence of non-symmetric solutions were also confirmed,
as well as the isolated bifurcation branches.

The stability of all these solutions is an interesting question, for both physical and
theoretical reasons. Symmetric periodic gravity-capillary waves were found to be unstable
(see e.g. Deconinck & Trichtchenko (2014)) , so we conjecture that asymmetric solutions
are unstable as well, and we leave this as the subject for a future study. Of course,
numerical evidence cannot replace the mathematical proof, therefore it is of interest to
rigorously prove the existence of asymmetric periodic/solitary gravity-capillary waves.

Three-dimensional fully localised solitary waves, which are commonly referred to as
‘lumps’, were observed recently in the experiments by Diorio et al. (2009, 2011). Therefore
the results presented in this paper naturally bring up the question of the possible existence
of non-symmetric progressive waves in three dimensions. In fact, non-symmetric gravity-
capillary lumps have been found in a reduced model by Wang & Vanden-Broeck (2015),
however, it is more interesting to investigate the problem in the three-dimensional full
Euler equations.

Acknowledgment This work was supported by National Natural Science Foundation of
China, under grant no. 11232012 (Z.W.), and by EPSRC, under grant no. EP/J019569/1
(J.-M.V.B.). Part of the work of J.-M.V.B. was done during a visit in April 2015 at the
Institut des Hautes Études Scientifiques.

REFERENCES

Blyth, M. G. & Vanden-Broeck, J.-M. 2004 New solutions for capillary waves on fluid
sheets. J. Fluid Mech. 507, 255-264.

Chen, B. & Saffman, P. G. 1980 Numerical evidence for the existence of new types of gravity
waves of permanent form on deep water. Stud. Appl. Math. 62, 1-21.

Craig, W. & Sternberg, P. 1988 Symmetry of solitary waves. Comm. PDE 13, 603-633.
Crapper, G.D. 1957 An exact solution for progressive capillary waves of arbitrary amplitude.

J. Fluid Mech. 2, 532-540.
Crowdy, D. G. 1999 Exact solutions for steady capillary waves on a fluid annulus. J. Nonlinear

Sci. 9(6), 615-640.
Deconinck, B. & Trichtchenko, O. 2014 Stability of periodic gravity waves in the presence

of surface tension. Euro. J. Mech. - B/Fluids 46, 97-108.
Dias, F. 1994 Capillary-gravity periodic and solitary waves. Phys. Fluids 6, 2239-2241.
Diorio, J. D., Cho, Y., Duncan, J. H. & Akylas, T. R. 2009 Gravity-capillary lumps

generated by a moving pressure source. Phys. Rev. Lett. 103, 214502.
Diorio, J. D., Cho, Y., Duncan, J. H. & Akylas, T. R. 2011 Resonantly forced gravity-

capillary lumps on deep water. Part 1. Experiments. J. Fluid Mech. 672, 268-287.
Gao, T. & Vanden-Broeck, J.-M. 2014 Numerical studies of two-dimensional hydroelastic

periodic and generalised solitary waves. Phys. Fluids 26, 087101.
Moiola, J. L. & Chen, G. Hopf Bifurcation Analysis. World Scientific, 1996.



18 T. Gao, Z. Wang and J. -M. Vanden-Broeck

Kinnersley, W. 1976 Exact large amplitude capillary waves on sheets of fluid. J. Fluid Mech.
77(02), 229-241.

Longuet-Higgins, M. S. 1988 Limiting forms for capillary-gravity waves. J. Fluid Mech. 194,
351-375.
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