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Potential uses of numerical simulation for the  

modelling of civil conflict 

L. Burton*, S.D. Johnson† and A. Braithwaite‡ 

Abstract 

This paper explores ways in which civil conflict can be simulated using numerical 

methods. A general two-party model of conflict is developed by extending an approach 

proposed by Christia (2012), which is based on a metric of the ‘relative power’ that 

exists between the state and a rebel group. Various definitions of relative power are 

considered and one of these is chosen to illustrate different types of two-sided armed 

conflict, namely direct-fire, guerrilla and asymmetric warfare. The additional 

suggestion of Christia that random or stochastic events can lead to unexpected conflict 

outcomes is also further extended in this paper. The inclusion in the model of terms 

describing concurrent rebel recruitment of civilians and state deployment of troops are 

then described. Examples are presented for various hypothetical cases. It is 

demonstrated that numerical simulation techniques have great potential for modelling 

civil war. The Christia approach is shown to provide an excellent basis from which 

numerical models of civil conflict can be built and from which the progress of a 

conflict can usefully be visualised graphically.  

 

Introduction 

Numerical simulation (or computer-generated modelling) is a useful alternative approach for 

studying complex problems in addition to statistical modelling methods (Gilbert and Terna 

1999; Ostrom 1988). Statistical methods involve the analysis of empirical data with the aim 

of uncovering correlations that are consistent with particular theories or mechanisms. But, 

since statistical approaches are correlational and not experimental, they cannot be used with 

confidence to demonstrate causality. Moreover, since many variables and constructs in civil 

war research are measured using proxy variables, it is difficult to isolate the role of particular 

mechanisms. In general, experimental research approaches allow for more control and reduce 
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issues associated with validity, but are clearly not available, nor ethical, in conflict studies. 

Numerical simulation presents an alternative approach, which aims to uncover the underlying 

mechanisms by generating observed, macro-level phenomena (Smith and Conrey 2007). 

Unlike statistical modelling, where empirical data are processed via a statistical model and 

results produced that describe the relationships that exist within the data, simulation models 

are computer programs that incorporate the critical aspects of the phenomenon being studied 

(Groff 2007). As Doreian (2001) points out, simulation modelling tries to capture the 

generative mechanisms underlying the phenomena under study, whereas statistical modelling 

seeks a numerical summary of relationships between variables. Numerical simulations may 

therefore be regarded as simple representations of real-world systems (Gilbert and Troitzsch 

2005) and a platform to test hypotheses and predict real-world outcomes in cases where data 

are sparse or non-existent. 

Numerical models are generally used to test or falsify a theory or hypothesis and also to 

answer ‘what if?’ questions (Gilbert 2007). They can be used to test whether a theory is 

sufficient to generate an expected outcome, or if other processes are necessary for that 

outcome to be generated (Eck and Lui 2008). To build a numerical model, a theory has to be 

formalised by identifying the relevant parameters of the system, establishing the properties of 

the system and interactions within it and articulating the mechanisms underpinning these 

interactions in the form of programmed rules (Gilbert 2008). The model is validated by 

comparing generated outcomes to theoretical expectations or empirical data. Alternatively, 

numerical models can be used for prediction. In this case a facsimile model can be 

constructed which seeks to replicate the social system under study as accurately as possible 

by ‘tuning’ model parameters to match empirical data (Gilbert 2007). Different parameters 

within the model can then be manipulated so that their impact on model outcomes can be 

evaluated (Gilbert 2007).  

The accuracy of numerical modelling methods is clearly a function of the validity of the 

assumptions on which the model is based and just like statistical models, they therefore 

reflect the quality of the theoretical ideas or empirical data available (Groff 2007). All 

numerical models remain approximations of the complexity of their real world counterpart, 

since certain features of human actors (such as irrationality, perceptions and other 

psychological or emotional factors) are difficult to quantify and incorporate into a numerical 

model (Keller et al. 2010). This means that care must be taken when analysing the findings 

from numerical models. The results obtained do not represent either an absolute empirical test 
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of a theory nor produce guaranteed predictions of future events. Instead, the findings from 

numerical models should be used to indicate the plausibility of a theory or to highlight a 

range of potential outcomes given a certain set of assumptions and conditions (Groff 2007). 

The aim of this paper is to assess the potential of numerical simulation techniques for the 

modelling of civil wars. Numerical approaches have not yet been fully utilised in conflict 

research because previous studies have favoured statistical modelling methods to study 

conflict dynamics such as duration and outcome (Hegre 2004, Karl and Sobek 2004, 

Cunningham 2006, Cunningham, Gleditsch and Salehyan 2009). But statistical approaches 

cannot provide information on the underlying generative mechanisms responsible for these 

macro-effects and they inadequately capture the complex, dynamic processes inherent in civil 

wars that are often qualitatively described in conflict studies. In contrast, numerical models 

have many features that are attractive for conflict modelling. They allow not only for the 

elucidation of bottom-up generative processes, but they also capture the dynamic nature of 

conflict and allow for the influence of stochastic processes to be studied. 

The main contribution made by this paper is to highlight the utility of numerical simulation 

approaches for conflict research. A general two-party conflict model is proposed with the 

intention that it could act as a starting point from which more complex numerical simulations 

of conflict could be developed. The value of numerical models is that they can be validated 

using empirical data, allowing scholars to gain insight into the individual and group level 

generative mechanisms that drive different conflict dynamics. This aspect is particularly 

advantageous in a field, such as conflict research, where characteristics at the individual level 

are seldom specified in empirical models owing to the paucity of micro-level data.  

Numerical models also have potential to assist with out-of-sample forecasting techniques, 

which are of increasing interest to conflict scholars (Hegre et al. 2013). For example, the 

parameters of numerical models of conflict can be ‘tuned’ to match empirical data and 

numerical experiments can be performed to generate predictions under various ‘what if?’ 

scenarios. The results of these experiments could be used as a complementary tool to evaluate 

the plausibility of out-of-sample predictions. An additional advantage of numerical models in 

comparison to statistical models is that stochastic events can be easily incorporated. For the 

purposes of assisting with out-of-sample forecasting, numerical models could be used to 

perform sensitivity studies to test how robust the out-of-sample predictions obtained from 

statistical models are to different degrees of randomness. 
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In this paper, one numerical approach is examined in particular; namely that proposed by 

Christia (2012), who suggests that two-sided conflict might be modelled by using the concept 

of the relative power that exists between the state and a rebel group. In the present paper, the 

relative power concept is explored and used to provide a basis for the development of a 

general simulation model of two-sided conflict, in which different mechanisms of conflict, 

such as asymmetric conflict, are modelled.  

Previous empirical research on asymmetric conflict has focused on how particular strategies 

and conditions allow weaker rebels to prevail against stronger opponents (Arreguin-Toft 

2001, Mack 1975). In such conflicts, the rebel side is at an advantage over the government, in 

spite of their smaller size, because the government must search for their opponents before 

they can make a kill, whilst the rebels are able to make a direct-kill by targeting government 

strongholds. This mechanism was apparent in the recent Afghan conflict, in which the rebels 

were difficult to locate because they were dispersed in mountains and villages but were able 

to make direct attacks on their opponents by placing improvised explosive devices on the 

routine patrol routes of Western forces. Some empirical studies have established a link 

between geographic terrain and conflict duration (Buhaug at al. 2009, Buhaug and Lujala 

2005), but these studies have used statistical modelling methods, which are limited by the 

unavailability of data. The numerical model developed in this paper provides an obvious 

foundation from which the relationship between conflict duration and geographic terrain 

might be explored via bottom-up generative processes. 

The numerical model proposed in this paper is extended to include terms for rebel group 

recruitment and the state deployment of troops. Previous empirical research has shown that 

rebel groups typically start out weak relative to the state and launch a rebellion with the 

expectation that they will be able to mobilise troops. If the government is unable to defeat the 

rebels in the early stages of conflict, the chances of a swift resolution are remote (Bapat 2005, 

Regan 2002) and if rebels have a high mobilisation capacity relative to the state’s deployment 

of troops, rebels are more likely to win decisive victories (Cunningham, Gleditsch and 

Salehyan 2009). Conflict research has already started using survey data at the individual level 

to understand rebel group recruitment patterns, participation and attitudes, and how these 

influence civil war dynamics (Humphreys and Weinstein 2008). The present paper describes 

how these feature might be incorporated into numerical models, so that numerical 

experiments can be performed to test the effects of different rebel group mobilisation 

capabilities and strategies on civil conflict dynamics.  
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Previous numerical models of civil conflict 

The first computational models of armed conflict appeared during the Cold war era (Cioffi-

Revilla and Rouleau 2010). These early models were implemented using a system dynamics 

approach and utilised ordinary differential equations (ODEs) to model two-sided conflicts 

between a state and a rebel group (Forrester 1968; Hanneman 1988). These equations contain 

time derivatives (of troop numbers for example) and are used to describe dynamic 

phenomena, evolution and variation. ODE models have been used to model the progression 

of different types of two-sided conflict over time, including; direct-fire warfare (a type of 

battle in which each side shoots directly at the other), guerrilla warfare (where each side has 

to search for their enemy before attempting a kill) and asymmetric warfare (where one side 

adopts a direct-fire approach while the other adopts a guerrilla approach). See Lanchester 

(1956) for an early overview of these types of conflict. ODE models were often empirically 

informed by prominent insurgencies of the time, such as the Vietnamese War or the Soviet 

invasion of Afghanistan (Milstein and Mitchell 1969; Ruloff 1975; Allan and Stahel 1985) 

and they attained their greatest success in representing asymmetric two-sided conflict at a 

national level (Gilbert and Troitzsch 2005).  

Mathematical and numerical modelling of armed conflict using a systems dynamics approach 

has remained dominant until the more recent introduction of object-oriented approaches such 

as agent-based models (ABM), a particularly useful method for representing for many real-

world systems. ABM’s involve the simulation of automated agents in the context of an 

artificial environment and the analysis of macro-level patterns emerging from these micro-

level agent behaviours and interactions (Epstein and Axtell 1996; Gilbert and Troitzsch 

1999). Agents are ‘autonomous, goal-directed software entities’ that engage in behaviours 

described as condition-action-rules (O’Sullivan and Haklay 2000). Agents commonly 

represent people, but may also represent groups, organisations or governments for example. 

The characteristics and behavioural rules of agents can be assigned according to agent-type 

(i.e. government agents, civilian agents), or they can be assigned according to a known 

distribution observed in the population, or at random, so that specific societal averages can be 

modelled. Thus, ABM’s allow for heterogeneity among individuals that more closely 

approximates reality than many other computational modelling methods (Groff 2007).  

Agents interact with each other on the basis of their condition-action-rules and their 

characteristics can be dynamically changed as a result of those interactions. In effect, agents 



6 
 

are able to pass information to each other and react to that information on the basis of their 

programmed preferences, which may be fixed or acquired. This allows an examination of the 

evolution and history of the process under study, since information on the dynamics of the 

system can be collected as the ABM computer model runs (Axtell 2000). ABM is a bottom-

up approach that models global behaviour as emergent properties of local interactions 

between agents. As such it is well suited for studying complex and non-linear social 

processes, such as armed conflict, where cumulative effects are produced over a protracted 

time scale (Keller et al. 2010). 

The SUGARSCAPE model of Epstein and Axtell (1996) was one of the first ABM 

simulations of social unrest. By formalising a few simple rules, SUGARSCAPE allowed for 

the experimental investigation of some of the theorised micro-level mechanisms responsible 

for the dynamics of civil war. Subsequently, Epstein (2002) produced the first ABM 

simulations of armed conflict. These simulations modelled the emergence of rebellion and 

ethnic-cleansing behaviour as a product of the rebel agent’s perception of the police force 

numbers (i.e. the size of government forces) and intervention tactics at individual (civilian) 

level. This research was notable in that it was the first to examine the citizen-based impetus 

for rebellion and the model was generative, analysing civil conflict from an individual level 

up, as opposed to simply identifying state-level variables that increased the likelihood of civil 

war. Epstein’s model of civil conflict has subsequently been extended (Ilachinski 2004). The 

ISAAC and EINSTEIN models use a similar technique to model combat at the level of 

individual soldiers and Doran (2005) has constructed the IRUBA model which represents a 

meso-scale replication of Epstein’s model. The IRUBA model uses simple geographic 

features, such as terrain and the spatial distribution of rebel resources and troops, to test the 

impacts on model outcomes of various insurgency and counterinsurgency tactics. In a further 

model, Bennett (2008) omits variations in terrain but instead includes social emotions in the 

civilian population such as fear and anger felt against the state. This was an attempt to model 

the US military’s strategy of appealing to the ‘hearts and minds’ of the US population.  

Bhavnani et al. (2008) have created the first simulations of civil war involving state 

repression and Cioffi-Revilla and Rouleau (2010) have devised the MASON model which 

considers how political freedom within a state (i.e. the polity index) results in different 

emergent conflict outcomes. All of these numerical simulations examine the macro-level 

conflict dynamics emerging from rebel and civilian agent behaviours in two-sided conflicts.  
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The present paper builds on these previous insights by extending the approach proposed by 

Christia (2012) which is based on the metric of the ‘relative power’ between two sides. Terms 

for rebel recruitment of civilians and state deployment of troops are incorporated and ways in 

which stochastic processes can be implemented into the model are explored. 

A general numerical model of two-sided conflict 

Modelling relative power between the state and a rebel group 

Christia (2012) has proposed that the progress and outcome of a civil war can be modelled 

using a metric p, which relates to the relative power between the groups involved. In 

Christia’s model it is assumed that there are two sides at war; the government and a rebel 

group. Rebel groups are assumed to have two objectives: (i) to win the war (or at least sustain 

conflict against the state) and (ii) to maximise their returns. The metric of interest is relative, 

rather than overall, power and the basis of the model is that the evolution of relative power 

over time defines the progress of a conflict. The conflict between the government and a rebel 

group starts at t = 0, when the relative power of the government is p0 and the relative power 

of the rebel group is 1 – p0. Christia proposes that the change in the value of p throughout a 

conflict can be described by an expression that contains the sum of a deterministic component 

f(p)dt and a stochastic component Ψ(p,t). Thus; 

),()( tpdtpfdp          (1) 

where dp is the change in p over a time increment dt and f(p) is a drift term that depends on 

the current level of p, which in the absence of the stochastic term, is simply the derivative of 

p with respect to time dp/dt. Based on this deterministic component in equation (1) alone, if 

the level of p at time t0 were known, it would be possible to ascertain how p would evolve 

over time. In the model, a rebel group with an initial value p > 0.5, would eventually be 

expected to win because it would keep increasing its relative power over time eventually 

reaching p = 1. Conversely, if a rebel group were to start with p < 0.5, the rebels would 

eventually lose with the relative power reaching a value p = 0. Evidently, the rebel group 

would prefer to have a higher p at the start of the conflict because that would ensure a quicker 

victory. The deterministic function proposed by Christia (2012) must be continuously 

increasing and symmetric about p = ½ such that  f(p) > 0 for p > ½,  f(p) < 0 for p < ½ and 

f(p) = 0 for p = ½.  
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An important aspect of the concept is that the evolution of p over time is not just 

deterministic. If it were (assuming complete and symmetric information), then rational parties 

would never go to war simply because they would be able to predict the outcome of the 

conflict in advance and act accordingly. But, as represented by the second term in equation 

(1), there must also a stochastic component. This is intended to capture the inevitable 

randomness that arises in conflicts and might include battlefield mistakes, or other exogenous 

factors such as changes in external support, unexpected weather conditions, disease or other 

factors beyond the control of the actors involved. The random change in p over some time 

interval, dt, is represented by the term Ψ(p,t), where Ψ determines the amount of randomness 

in the relative power change dp. Lower values of Ψ correspond to a lower random 

component, with no randomness if Ψ = 0. Thus, for the rebel side with p > 1/2 at t0 with the 

deterministic component only, rebel victory would always be expected. But, if a stochastic 

component is included, victory need not necessarily occur. If victory does occur, it may be 

either quicker, or slower to attain than in the deterministic case alone, or indeed it is possible 

for the side that starts out weaker to emerge victorious. Christia (2012) suggests that the 

trajectory of a conflict resembles one of biased random walk, where at each time interval, 

there is a step in a direction of increased or decreased relative power that is random in part, 

but also influenced by the initial value of the relative power. 

It is thus clear that equation (1) has attractive general features that make it suitable for 

modelling conflict, namely (i) it can be used to model a range of different scenarios relating 

to power-based theories of conflict, (ii) it models civil war as a dynamic process, (iii) it 

allows randomness to be implemented in the simulation of conflict and (iv) the expression is 

highly amenable to graphical representation which means that simulated conflict processes 

can be visualised to great effect.  

If the expression is to be used effectively, the general concept proposed by Christia (2012) 

needs to be extended to include more specific aspects as follows (i) the development of 

mathematical descriptions of the deterministic function and the selection of the most 

promising possibilities, (ii) defining relative power in terms of actual parameters that could 

be used in a numerical model and that might also be amenable to statistical analysis of 

empirical conflict data, (iii) exploring the ability and utility of the expression to illuminate 

different types of warfare and (iv) investigating how terms might be included in the 

expression that account for other conflict characteristics such as government troop 

deployment and rebel group growth. These aspects are considered in the following sections.  
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Mathematical descriptions of the deterministic function  

A specific mathematical description of the deterministic function is not given by Christia 

(2012) but various functions can be chosen that satisfy the required properties of the 

deterministic component f(p). One obvious possibility is the relationship: 

)12()(  p
dt

dp
pf          (2) 

where β is a constant having units time-1. The function (2p – 1) has the properties required by 

Christia, namely that it is zero at p = ½, positive when p > ½ and negative when p < ½. For 

victory to occur when p = 1 and defeat when p = 0, the function takes the values + 1 and - 1 

respectively. It is required dimensionally to insert the term β into equation (2). This gives 

equivalent values of dp/dt of + β and - β respectively. Victory or defeat then corresponds to 

the situation where the critical rates of change ± β are reached. Although the inclusion of the 

function (2p – 1) into the expression is in accord with Christia’s proposal and provides a 

promising way forward, the symmetry of the function about the value p = ½ is arbitrary. An 

alternative and simpler representation may be useful as described by the relationship: 

ppf )(           (3) 

Unlike equation (2), which is symmetrical about p = ½, this function is symmetrical about p 

= 0, such that dp/dt = 0 when p = 0 with dp/dt > 0 for p > 0 and dp/dt < 0 for p < 0. 

Physical interpretations of ‘relative power’ 

The general concept of relative power is not defined by Christia (2012) in terms of actual 

parameters that could be used in conflict modelling, but an obvious first approach is to 

assume that relative power is related simply to the numbers of group members. Thus if there 

are N1 and N2 members in group-1 and group-2 respectively, the relative power may then be 

defined in several ways, such as the fractional values f1 = N1/(N1 + N2) and  f2 = N2/(N1 + 

N2), the differences Δ1 = N1 – N2 and Δ2 = N2 – N1, or the ratios R1 = N1/N2 and R2 = N2/N1. It 

may also be useful to normalise the Δ terms as follows:  (N1 – N2)/(N1 + N2) and (N2 – N1)/(N1 

+ N2), where the reference value is the total number N1 + N2. The implications of these 

various definitions of p are now given. If p is defined as the number of group members 

represented as a fraction of the total number of troops in the conflict, then: 
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These definitions have the properties required by suggestion of Christia, namely that p2 = 1 – 

p1, there is symmetry about p = ½ (i.e. when N1 = N2 then p1 = p2 = ½). The victory/defeat 

criteria are also identical. Thus, when N2 << N1 then 11 p , 02 p  and group-1 wins. On 

the other hand when N1 << N2 then 02 p , 12 p and group-2 wins.  

The second representation of the relative power is in terms of the (normalised) difference: 
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In this case, p2 ≠ 1 – p1 and there is symmetry about p = 0 (i.e. when N1 = N2 then p1 = p2 = 

0). When N2 << N1 then 1p  and 12 p and group-1 wins. When N1 << N2 then 

11 p and 2p and group-2 wins.  

The third representation of the relative power is in terms of the difference (N1 – N2), 

normalised instead by the total number (N1 + N2). Thus: 
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In this case, p1 + p2 = 0 and there is symmetry about p = 0 (i.e. when N1 = N2 then p1 = p2 = 

0). When N2 << N1 then 11 p  and 12 p and group-1 wins. When N1 << N2 then 

11 p and 12 p and group-2 wins. 

Finally, a simple ratio may be used to represent the relative power between groups. Thus: 
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In this case, p2 ≠ 1 – p1 and there is symmetry about p = 1 (i.e. when N1 = N2 then p1 = p2 = 

1). When N2 << N1 then 1p  and 02 p and group-1 wins. When N1 << N2 then 

01 p  and 2p and group-2 wins.  
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Use of ‘relative power’ in the theoretical analysis of conflict 

In a two-sided conflict, fatalities are incurred by both sides and if there is no concurrent 

replenishment of forces, each side must suffer a decrease in their number of troops over time. 

If the attrition rate of one group depends only on the size of the other, this is known as a 

‘direct-fire’ conflict. In its simplest form this involves each side firing directly at its 

adversary, for example in a long-bow battle with lines of opposing archers, or a modern 

direct-fire tank battle (Lanchester 1956). Direct-fire conflict is governed by the coupled 

solution of the two differential equations: 

22
1 NB

dt

dN
           (8) 

11
2 NB

dt

dN
           (9) 

where (dN1/dt) and (dN2/dt) are the rates of change in numbers in groups 1 and 2 respectively. 

The killing rate experienced by one group depends only on the number in the opposing group.  

The proportionality constants B1 and B2 relate to the respective killing effectiveness of each 

side. Coupled differential equations are often difficult to solve analytically and commonly 

require numerical methods of solution. For this specific case however, the analytical solution 

of a similar system of differential equations does exist§.  

A numerical solution of equations (8 and 9) can be achieved by using the following 

computational scheme. Values of the constants B1 and B2 and the initial numbers in both 

groups (N1)0 and (N2)0 are user-defined and the numbers in each group can be set to these 

values. Using a small time increment Δt, the incremental changes in the numbers in each 

group during this interval can be computed as follows: 

tNBNN tttt  )()()( 2211        (10) 

tNBNN tttt  )()()( 1122        (11) 

                                                           
§ The solutions adapted from Kreysig (1983) are:  )cosh()()sinh()()( 01011 mtNmtNmtN    and 

 )cosh()()sinh()()( 02022 mtNmtNmtN   , where
2/1

21 )(  BBm and (N1)0, (N2)0 are the initial 

values of group size and
01)(N ,

02 )(N are the initial rates.  
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These expressions are sequentially iterated repeatedly in the computer program and the 

elapsed time is calculated by the continuous summation of the values of Δt. The program 

output gives the time-dependence of N1 and N2 and the computation is terminated when either 

N1 or N2 reaches zero (or any other pre-defined value). The total summed time represents the 

duration of the conflict. The computational flow diagram is shown in Appendix I. 

To validate the above numerical method, the predicted variation of N1 and N2 with time were 

compared to the values obtained by evaluation of the analytical expression given in the 

Footnote. Excellent agreement was obtained. This validation of the numerical method, gives 

confidence when extending it to other types of conflict. Note that, although an analytical 

solution is available in this direct-fire case, it is regarded that the numerical scheme is 

preferable for the present purpose, since it is more amenable to modifications such as the 

inclusion of stochastic terms and the inclusion of other terms describing government troop 

deployment and rebel group recruitment. Both of these features are considered later in this 

paper.  

To investigate the utility of the various definitions of relative power given by equations (5 – 

7), the time dependence of N1 and N2 determined from numerical method can be used to 

calculate the values and time dependences of p1 and p2 as follows: 
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The values of p1(t) and p2(t) for these four definitions were generated to simulate a simple 

direct-fire conflict using the computational method described above. The initial size of the 

government side was taken to be N2 = 1000 in all four cases and the initial size of the rebel 

side (N1) was varied for each computation. The progress of each hypothetical conflict is 

shown graphically in Figures 1 – 4 using the four definitions of p(t) from equations (12 – 15). 
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It was assumed that B1 = B2 = 0.01 and time is represented in the normalised form (mt), 

where m = (B1B2)
-1/2, to ensure consistency with the analytical solution in the previous 

Footnote.  

 

Figure 1 Graphical representation of a direct-fire conflict using the variation of p1(t) 

and p2(t) with time from equation (12). Values for initial group sizes are N2 = 1000 and 

N1 = 800, 600, 400 & 200 respectively and the curves are labelled as values of N1/N2 
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Figure 2 As for the previous figure but using p1(t) and p2(t) values given by equation (13) 
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Figure 3 As for the previous figure but using p1(t) and p2(t) values given by equation (14) 
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Figure 4 As for the previous figure but using p1(t) and p2(t) values given by equation (15) 

0.1 0.5 0.9 1.3

time

-1.5

-1.0

-0.5

0.0

0.5

1.0

re
la

ti
v
e
 p

o
w

e
r

0.9

0.8

0.7

0.6

 

Figures 1 and 2 are similar in shape, but differ in the range and symmetry of p. The range is 

between +1 and -1 with symmetry about the value p = 0 in Figure 1, but the range is between 

0 and 1 with symmetry about the value p = ½ in Figure 2. Both figures show that rebel 

groups with a large initial size (e.g. troop ratio 0.8) are able to sustain conflict longer than 

rebel groups with a small initial size (e.g. troop ratio 0.2). The rebels suffer a defeat in all 

cases because they start the conflict weaker than the government.  

Figures 3 and 4 show illustrations of the same conflict but with p values defined by equations 

14 and 15 respectively. Inspection of the graphs suggests that these are less satisfactory for 

illustrating conflicts. In Figure 3, p ranges between 0 and 2, but the curves are asymmetric 

around the value 1. In Figure 4, p ranges between 1 and -2, again with the curves being 

asymmetric about the value 0. This asymmetry arguably makes this representation less 
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desirable because the curves do not convey the progress of relative power during a conflict in 

an intuitive or aesthetic manner. The definitions given by equations (12 and 13) are thus 

considered more suitable for modelling relative power and as such, the definition given by 

equation (13) is used for all subsequent simulations performed in this paper.  

Interpretation of the rate constants B1 and B2 

The constants B1 and B2 in equations (8 and 9) relate to the fighting capabilities (expressed in 

terms of the killing ‘effectiveness’) of each side in a direct-fire conflict. The products B1N1 

and B2N2 may thus be regarded as weighted numbers. Thus, for the example given by 

equations (8 and 9), the rates of loss dN1/dt and dN2/dt are equal, not when N1 = N2, but 

rather when B1N1 = B2N2. The implication is that a small group with a high B-value can 

emerge victorious over a larger group with a low B-value. In the initial proposal by Christia 

(2012), war is assumed to be equally costly for both sides and indeed in the above initial 

numerical simulations, this was implicit, in that the same killing effectiveness was used for 

both sides in all calculations (B1 = B2 = 0.01). In general this will not be the case in real 

conflicts and in this respect the present approach extends that of Christia (2012). Amongst 

other possibilities the terms B1 and B2 may also contain a time dependence reflecting the 

actor’s learning and perceptions over the course of conflict.  

In cases where B1 ≠ B2, the relative power can be represented in a modified form of equation 

(6) as follows: 
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The other representations of relative power given by equations (4, 5 and 7) can also be 

modified in a similar way. For simplicity in all subsequent simulations, the values are kept 

constant at B1 = B2 = 0.01 and the definition of normalised time is mt, where m = (B1B2)
-1/2. 

The next section considers how the relative power concept may be utilised for illustrating 

other types of conflict, namely guerrilla and asymmetric warfare.   

Modelling other types of two-sided armed conflict 

A second type of conflict is guerrilla warfare (Lanchester 1956; Deitchman 1962). This 

differs from direct-fire warfare in that each opposing side has to ‘search’ for their opponent 

before firing (e.g. in jungle warfare). This means that the overall killing rate must contain a 
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term similar to that in a direct-fire type of conflict, but also reflect the fact that it must be 

moderated as the number of opponents decrease and therefore become progressively more 

difficult to find. This type of conflict is described by the following coupled equations: 

)( 1122
1 NDNC

dt

dN
           (17) 

)( 2211
2 NDNC

dt

dN
           (18) 

These equations are similar to equations (8 and 9) in that the terms C1N1 and C2N2 are 

equivalent to B1N1 and B2N2. However, the equations contain the additional terms D1N1 and 

D2N2 to describe the decrease in killing rate as the remaining number decreases. The 

corresponding constants are D1 and D2 and may be regarded as ‘search’ probabilities. The 

analytical solution of these coupled equations is complex, but numerical analysis can be 

performed relatively easily by using a method similar to that described earlier for the direct-

fire conflict. The modified forms of equations (10 and 11) shown below: 

tNNDCNN ttttt  )()()()( 121211
       (19) 

tNNDCNN ttttt  )()()()( 212122
       (20) 

The computational flow diagram is similar to the previous case, except that equations (19) 

and (20) are used instead of equations (10) and (11). 

In the previous case of direct-fire war, ABM’s have little advantage over numerical 

computational methods. In the case of guerrilla warfare however, ABM can be more suitable. 

One facility of ABM is that the virtual agents can be instructed to move around their 

environment randomly. They can then be instructed to engage in certain behaviours when 

they interact (collide) with other (specified) agents. Thus for a conflict involving two groups, 

government and rebel agents may be instructed to move randomly and on interaction, 

prescribed killing probabilities for both types of agent can be enabled, so that each side 

experiences a decrease in numbers of troops over time. ABM is an ideal method for 

modelling guerrilla conflict because the random motion of agents in two-dimensional space 

can be used as an analogue of the search-and-kill sequence that characterises guerrilla war.  

Both the numerical computational method and the ABM method were used to model guerrilla 

conflict. The results of the numerical method based on equations (19 and 20) are shown in 
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Figure 5, using an assumed initial size of the government forces N2 = 1000, with four 

different initial rebel sizes; N1 = 800, 700, 600 & 500. For illustration purposes, the values of 

the killing probability constants C1 and C2 were taken to be identical to the constants B1 and 

B2 used earlier for the direct-fire case. In the numerical models the search parameter values 

D1 = D2 = 0.0003 were used. These were selected by performing sensitivity analyses until the 

numerical computational method and ABM were calibrated to give identical results.  

The variation of the relative power with normalised time predicted by the numerical method 

is illustrated in Figure 5. This reveals a striking difference in the shape of the curves to those 

in shown in Figure 2 for the direct-fire conflict. The curvatures of the lines are of opposite 

sign in these two figures and this characteristic emphasises the utility of the current approach 

in the visual representation of conflict type. The ‘long-tailed’ curves for guerrilla conflicts 

reflect strikingly the increasing difficulty of eliminating the last few rebels in this type of 

conflict and demonstrate clearly why such conflicts are protracted. This contrasts sharply 

with the abrupt termination revealed for the direct-fire conflicts. 

Figure 5 Variation of p1(t) and p2(t) with normalised time for N2 = 1000 and N1 = 800, 

700, 600 & 500 respectively during a guerrilla-conflict.  
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Values of p1(t) and p2(t) were also generated using an ABM. The flow diagram for the 

computation is shown in Appendix II. The variation of relative power with time for the rebel 

groups and the government is plotted in Figure 6, derived by assuming the same parameters 

as described in the above numerical model. Although the characteristic curvatures of these 

ABM plots are similar to those derived from the numerical model, a significant difference is 

that the curves derived from the ABM are ‘noisy’. This feature results from the inherent 

stochastic nature of ABM and arises because the agents are programmed to move randomly 
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and the collisions between agents from each side, is a proxy for killing, which occurs 

according to an input value of probability. Because one set of agents have to randomly 

‘search’ for enemy agents before killing them, this effect naturally reflects guerrilla conflict. 

This ‘noisy’ nature of the curves illustrates this effect clearly. Thus, the ‘built-in’ stochastic 

effects of ABM modelling illustrate how the progress of conflicts with the same starting 

conditions can have different trajectories. Towards the end of the conflict when the numbers 

of troops are small, the level of noise increases. When values for the state and rebel groups 

sizes are small, it is clear that in some circumstances, the random features that result from 

ABM modelling, could lead to relative power curves for the state and rebel groups to ‘cross 

over’, so that an initially weaker side might emerge victorious.  

Figure 6 Results generated from an Agent-Based Model for the variation of p1(t) and 

p2(t) with normalised time for N2 = 1000 and N1 = 800, 700, 600 & 500 respectively 

during a guerrilla conflict. Note that one run for each rebel size (N1) is shown.  
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A third type of conflict is asymmetric conflict (Lanchester 1956; Schaffer 1968). Typically 

this might occur when a large force, such as the government, is matched against a smaller 

force such as a rebel group, with the latter employing guerrilla tactics and the former 

employing direct-fire tactics. In such asymmetric conflicts, the rebel side can have an 

advantage over the government, in spite of their smaller size, because the government must 

search for their opponents before they can make a kill, whilst the rebels use direct fire tactics. 

The extent of this rebel advantage depends on how difficult it is for the government to locate 

the rebels. The corresponding differential equations describing an asymmetric conflict are as 

follows: 
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)( 1122
1 NDNC

dt

dN
          (21) 

11
2 NC

dt

dN
           (22) 

Once again, a numerical solution can be achieved by using a method similar to those used 

previously. The finite difference equations corresponding to equations (21 and 22) are: 

  tNDNCNN ttttt  )()()()( 112211       (23) 

tNCNN tttt  )()()( 1122                     (24) 

Values of relative power, p1(t) and p2(t), were generated to simulate asymmetric warfare 

using equations (23 and 24). The computational flow diagram is again similar to the previous 

case except for the use of these two equations. In this evaluation, the government side was 

assumed to adopt a search-then-kill strategy (with a search probability D1 = 0.0003) and the 

rebels a direct-fire approach. The initial size of the government side was N2 = 1000 and four 

different initial rebel sizes were assumed; N1 = 800, 600, 400, 200. The results are plotted in 

Figure 7.  

An important feature of asymmetric warfare (Figure 7) compared to direct-fire (Figure 1) and 

guerrilla warfare (Figure 5), is that the rebels can emerge victorious despite starting out 

weaker than the government. Figure 7 shows, for the present choice of parameters, that rebel 

victory ensues in all cases, even when they start the conflict with a troop size ratio of 0.2. The 

victory of the initially weaker side also manifests itself in Figure 7 by the curves intersecting 

and crossing. This figure again illustrates the use of the present relative-power approach in 

producing highly visually-effective representations of conflict progress. The classic empirical 

case of asymmetric conflict is the Vietnamese-US war (Mack 1975; Paul 1994; Arreguin-Toft 

2001). The present analysis produces a new representation of asymmetric concept based on 

the current extension to the relative-power approach proposed by Christia (2012).  
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Figure 7 Variation of p1(t) and p2(t) for N2 = 1000 and N1 = 800, 600, 400 & 200 during 

an asymmetric conflict with a ‘search’ probability D1 = 0.0003. Each pair of lines cross 

in this example, indicating that rebel victory occurs in all cases 
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Figure 8 illustrates the results of a repeat evaluation of that represented in Figure 7 using 

identical parameters, except that D1 is increased by a factor of 5. This causes a major change 

of conflict outcome compared to that illustrated in Figure 7. Only the single case (where N1 = 

800) now results in a rebel victory. These curves clearly illustrate the expectation that when 

rebels are easier to find (i.e. for larger D), their advantage is diminished. A further important 

point is that the curves in Figure 8 for cases where rebels suffer defeat have the same sign for 

their curvature as those for guerrilla warfare (see Figure 5). Thus for cases where rebel defeat 

ensues, the curves for asymmetric warfare and guerrilla warfare are similar.   

Figure 8 As for the previous figure but with D1 increased by a factor of 5. In this case, 

rebel victory now occurs only for the largest rebel group size  
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Inclusion of stochastic effects 

Christia (2012) suggests that the time variation of the relative power p during a conflict is 

unlikely to be smooth, but may be likened to a biased random walk, where random changes 

occur in the direction of increased or decreased relative power. The general ‘drift’ direction is 

driven at the onset by the initial values of p, but random influences are likely to occur over 

time. The ABM for guerrilla conflict illustrated in Figure 6 clearly shows the importance of 

such stochastic effects, but the numerical evaluations performed so far have not included any 

attempts to model stochastic terms. It is important to re-emphasize the importance of the 

stochastic term in equation (1). In its absence, conflict outcomes would always be predictable 

if the initial conditions were known. In principle, there would be no need for a conflict.  

Christia does not suggest how the stochastic term could be implemented practically for the 

purposes of illustrating conflict dynamics. This section examines some specific ways in 

which such a term might be applied to deterministic models of two-sided conflict. These are 

not intended to model actual physical processes that might occur, but are simply used to 

illustrate the above important point, namely that random events can produce unexpected 

outcomes. The next section considers how randomness might be introduced into the value of 

the probability parameters (B1 and B2 or C1 and C2) and is followed by a consideration of how 

randomness could be introduced via sudden changes that might occur in the number of 

troops. 

In the first instance, random changes were incorporated into the term describing the ‘killing’ 

probability. This is achieved by putting a degree of randomness into the constants B1 or B2 in 

equations (8) and (9). Since these are related to the fighting capability of a group, the real-life 

interpretation of this might be the unexpected acquisition of military equipment and arms 

from an external source, or indeed the unexpected loss of equipment and arms as a result of 

bad weather, bombardment or looting. One way in which the randomness can be incorporated 

is by changing the values of B1 and B2 after each time step Δt in the numerical computation, 

using the uniform distributions defined by the relationships: 

      
lowerupperlower

BBUBB 1111        (25) 

      
lowerupperlower

BBUBB 2222        (26) 
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where 0 ≤ U ≤ 1 is a random number and (B1)lower, (B2)lower, (B1)upper and (B2)upper  are the 

lower and  lower limits for the range of values for any given illustration.  

Figures 9 – 11 show the effect of applying the above stochastic variation to the killing 

probability of just the rebel side, for the cases of direct-fire, guerrilla and asymmetric warfare 

respectively. A random increase or decrease in the killing probability of the rebels was 

introduced after each time step of the computation according to equation (25). In the previous 

simulations constant values B1 = B2 = 0.01 were assumed. In this simulation it was assumed 

that (B1)lower = 0 in all cases and (B1)upper = 0.05 for the direct-fire conflict (Figure 9) and 

(B1)upper = 0.04 for the guerrilla and asymmetric conflicts (Figures 10 and 11). Once again N2 

= 1000 and N1 = 800, 600, 400 & 200.  

Consider the results obtained for the specific evaluation illustrated in Figure 9. Comparing 

this to the equivalent but entirely deterministic case shown in Figure 1, reveals that the 

stochastic contribution described above does not change the rebel outcome for N1 = 600, 400 

& 200, but slightly increases the timescale over which the conflict is sustained. For the 

largest rebel group (N1 = 800), inclusion of the stochastic term now results in rebel victory. 

Inspection of Figures 10 and 11 (compared with Figures 5 and 8) reveals a similar effect. For 

the case of guerrilla warfare shown in Figure 10, the rebels have emerged victorious for N1 = 

800 & 600, unlike the outcome illustrated in Figure 5, where all rebel groups suffered defeat. 

In Figure 11, for the case of asymmetric conflict, the rebels achieve victory for N1 = 800, 600 

& 400, unlike the outcome in Figure 8, where victory occurred only for the largest rebel 

group, N1 = 800.  

Figure 9 Variation of p1(t) and p2(t) for N2 = 1000 and N1 = 800, 600, 400 and 200 during 

a direct-fire conflict with a stochastic element applied to killing probability (B1) of the 

rebel side, resulting in rebel victory for the largest group 
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Figure 10 Variation of p1(t) and p2(t) for N2 = 1000 and N1 = 800, 600, 400 & 200 during 

a guerrilla conflict with a stochastic element applied to killing probability (C1) of the 

rebel side only. Rebel victory occurs for the two largest groups 

0 20 40 60

time

-1.0

-0.5

0.0

0.5

1.0

re
la

ti
v
e
 p

o
w

e
r

0.8

0.6

0.4

0.2

 

 

Figure 11 Variation of p1(t) and p2(t) for N2 = 1000 and N1 = 800, 600, 400 & 200 during 

an asymmetric conflict with a stochastic element applied to killing probability (C1) of 

the rebel groups only. A search probability is applied to just the government side with 

the value 1.5 10-3. Rebel victory occurs in three cases 
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An alternative approach to implementing stochastic effects is to introduce random changes to 

the number of troops of one or both sides (i.e. add randomness to either N1 or N2). The real-

world interpretation of this might be a sudden increase in troops as a result of access to 

mercenaries, or a decrease in troops as a result of disease. Unlike the previous case, where 

randomness was applied to the search probability, a different strategy is necessary in the case 

of adding stochastic changes to group numbers. An obvious possibility is to simply add or 

subtract a fixed random component ±ΔN to the troop and/or rebel group size after each time 
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increment Δt of the computation. It is unlikely however that this ‘Brownian-type’ of 

randomness would occur in the real-world situation and a power-law relationship is more 

likely. A power law distribution is described by the function: 





x
xf )(           (27) 

where κ is a constant and α is the power law exponent. This type of distribution is common in 

nature and is characterised by a high frequency of small values, an intermediate frequency of 

medium-sized values, with large values occurring more rarely. Power-law distributed random 

values of a variable z in the range zmin ≤ z ≤ zmax can be generated from the standard 

relationship: 
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where 0 ≤ U ≤ 1 is a uniformly distributed random number.  

To obtain the stochastic contribution for incorporation into the present model, values of z 

were calculated from equation (28) after each time step (Δt) in the computation. The random 

value ΔN = z(N1)init was then determined, where (N1)init is the initial number in the rebel 

group. A second (uniformly distributed) random number in the range 0 ≤ U ≤ 1 was then used 

such that if U ≥ 0.5, then ΔN was added to N1 or was subtracted otherwise. It was assumed 

that α = 2, zmin = 0.0001 and zmax = 1.   

Once again, it was assumed that the group sizes were N2 = 1000 and N1 = 800, 600, 400 & 

200. A direct-fire conflict was assumed for illustration and results are shown for a typical 

evaluation in Figure 12. By comparison with the direct-fire conflict with no stochastic term 

illustrated in Figure 1, it is clear that inclusion of the stochastic term can lead to rebel 

victories (intersecting curves are observed for two cases) that would not be expected from 

predictions based on deterministic calculations alone. No equivalent illustrations are given 

here for guerrilla and asymmetric conflict, but the general message is clear, namely that 

stochastic effects can give rise to radically different conflict outcomes.  

It is important to reiterate that the examples shown are driven by parameter values, which 

were selected by performing sensitivity studies. Their purpose is to demonstrate the scope of 

the various models, not to demonstrate what might happen over a number of experimental 
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runs. That is, with the parameter values selected for the experiment shown in Figure 12, it is 

possible to observe a cross-over effect, where the group who starts off weaker (in this case, 

the rebels) may emerge victorious as a result of stochastic effects. 

Figure 12 Variation of p1(t) and p2(t) for N2 = 1000 and N1 = 800, 600, 400 & 200 during 

a direct-fire conflict with a stochastic element applied to the rebel groups only (N1). 

Rebel victory ensues for the two largest rebel groups 
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Inclusion of rebel recruitment and government deployment 

The types of conflict described above, involve only the attrition of two opposing groups and 

in the absence of stochastic changes in troop numbers, it is assumed that there is no 

replenishment of state or rebel group members during the conflict. In most real-world cases 

however, numbers are likely to be replenished in various ways. This can be modelled by 

including one or more of the following possibilities: i) instantaneous increments of troop 

numbers occur, ii) time-dependent increases of troop numbers occur iii) increases of troop 

numbers occur in response to the size of the opposing group and iv) time-dependent increases 

of troop numbers occur either in response to (or independent of) the size of the opposing 

group, but with a time-lag.   

In either ABM or ODE models, items i) and ii) can be modelled simply by allowing either an 

instantaneous step increase in numbers at specific times, or enabling a time-dependent 

increase as the computation progresses. Items iii) and iv) can be modelled by incorporating a 

term that allows for a rate of increase in group numbers that is driven by the number in the 

opposing group. Note that the inclusion of troop replenishment in conflict models represents 

an important novel contribution of the present work. This represents an important 
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contribution that emphasises the efficacy of the Christia relative power concept in graphically 

representing the progress of conflicts. 

Consider first the growth of a rebel group with no attrition by an opposing force. If the 

growth follows the ‘limited growth equation’ described in Appendix III, then the growth rate 

is given by the expression: 

)( 1max11
1 NNNA

dt

dN
         (29) 

where Nmax is the maximum number of potential rebel recruits in the population and A1 is a 

recruitment rate constant. Thus, in order to model an asymmetric conflict with concurrent 

rebel recruitment, the growth rate can be incorporated into equation (21) to give the overall 

rate of change of rebel group numbers as follows: 

11221max11
1 )()( NDNCNNNA

dt

dN
       (30) 

During a conflict it is likely that the state will respond to increases in the rebel threat by 

increasing its own strength. One of the possible strategies listed at the beginning of this 

section is for the state to increase its troop numbers at a rate proportional to the current 

number of rebels (i.e. proportional to A2N1, where A2 is a deployment rate constant). This 

response term can be incorporated into equation (22) to give the overall rate of change of 

state troop numbers as follows: 

1112
2 NCNA

dt

dN
          (31) 

Note that the ‘loss’ terms (C2N2), D1N1 and C1N1 in equations (30 and 31) are those described 

earlier in this paper for an asymmetric conflict. That is, the state troops are killed by a direct-

fire process and the rebels by a search-and-kill, guerrilla strategy. Since asymmetric fighting 

is common to contemporary civil wars this is assumed for all subsequent numerical 

experiments. 

The progress of a hypothetical conflict with concurrent recruitment of the rebel group and 

deployment of state troop numbers in response is shown in Figure 13. The various constants 

were chosen to illustrate the important case that even if the state initially outnumbers the 

rebels (in this case by a ratio 20:1) the rebels can emerge victorious because of their high rate 
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of concurrent recruitment. The following values were used: Nmax = 2000, N1 = 100, N2 = 

2000, A1 = 10-5, A2 = 5 x 10-2, C1 = C2 = 1 x 10-2 and D1 = 3 x 10-4. In Figure 14, the time-

dependence of the state and rebel numbers during the course of the above conflict are shown 

represented as a fraction of their initial numbers.  

Figure 13 Variation of relative power for the state and a rebel group in an asymmetric 

conflict with concurrent rebel recruitment and state deployment. In this example the 

rebel group gains victory even though it is outnumbered initially in the ratio 20:1  
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Figure 14 Time-dependence of the state and rebel numbers during the course of the 

conflict illustrated in the previous figure. Numbers are represented in terms of the 

fractions of their initial values 
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A further evaluation was performed, identical to that above, except that D1 was increased by 

a factor of ten, which means that rebels are easier to locate by the state. Results are plotted in 

Figure 15, which shows that the outcome changes from a rebel victory to a state victory. In 

Figure 16, results are re-plotted in terms of the variation of troop numbers with time. In this 

particular case, state numbers remain almost unchanged throughout the conflict.  
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Figure 15 As for the hypothetical conflict illustrated in the previous two figures, except 

that the constant D1 was increased by a factor of ten. This now results in state victory 

since rebel troops are now easier to find 
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Figure 16 Results for the previous figure, plotted as the variation of troop numbers, 

normalised in terms of the initial number, as a function of time 
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The influence of reducing the initial state strength on the outcome of a conflict otherwise 

similar to that described above is illustrated in Figure 17, where the ratio of state to rebels 

was changed from 20:1 to 6:1. The state still emerges victorious, but the conflict is more 

protracted than in the previous example. Figure 18 shows the variation of troop numbers, 

normalised in terms of the initial number, as a function of the normalised time. Figure 19 

illustrates the effect on the outcome of the previous conflict if the value of the state 

deployment constant (A2) is reduced by a factor of 10. The rebels are now victorious because 

the state cannot deploy enough troops to successfully overcome the rebels. Figure 20 shows 

the variation of troop numbers with time for this conflict. Comparison with Figure 18 shows 

that the curves representing the state and for rebels become inverted.  
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Figure 17 Effect of decreasing the initial state strength. The value of the rebel/state ratio 

is 1/6, compared to the value 1/20 used for the previous conflict 
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Figure 18 Results for the previous figure, plotted as the variation of troop numbers, 

normalised in terms of the initial number, as a function of time 
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Figure 19 Influence of reducing the state deployment constant by a factor of 10, in the 

previous conflict. Compared to Figure 17, the outcome is reversed; rebel victory occurs 
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Figure 20 Variation of normalised state and rebel troop numbers with normalised time 

for the previous conflict  
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Concluding remarks 

This paper has explored various ways in which two-sided civil conflict can be modelled using 

numerical simulation techniques. The approach proposed by Christia (2012) based on a 

metric of relative power has been extended. General numerical models of two-sided conflict 

were developed to test the efficacy of the Christia approach in illustrating the progress of 

conflict. Various aspects were investigated, including the optimal definition of relative 

power, the different mechanisms of two-sided conflict (direct-fire, guerrilla and asymmetric 

warfare), the inclusion of a stochastic element (both to the number of rebel troops and the 

rebel group killing constant) and inclusion of terms for rebel recruitment and the deployment 

of government troops.  

A comparison of ordinary differential equation (ODE) modelling and agent-based modelling 

(ABM) allowed an assessment of the suitability of these two types in different contexts. 

ABM was found to be particularly suited to the modelling of guerrilla warfare due to an 

inherent feature of ABM programming software, where agents can be programmed to move 

randomly and collide with other agents (thus replicating the search-and-kill characteristic of 

guerrilla warfare). ABM was found to be less advantageous to modelling direct-fire and 

asymmetric warfare because both of these types of warfare involve a direct-fire mechanism 

on at least one side. Since a direct-fire mechanism does not require the agents to search for 

their opponent before more making a kill, the random movement of agents around an 

artificial environment (which is inherent in ABM) is superfluous.  
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Overall, this paper has shown that Christia’s general concept provides a sound basis from 

which numerical models of conflict can be developed. The metric of relative power and how 

it varies throughout a conflict, provides a highly effective and clear visual representation of 

conflict dynamics, namely duration and outcome. Striking visual differences are apparent in 

the characteristic curves representing the different types of conflict.  

Contemporary civil wars are often asymmetric; meaning that conflicts last longer because the 

rebel agents become increasingly difficult to locate as they decrease in number. This means 

that rebels are at a significant advantage despite their small number. This mechanism explains 

why some conflicts involving weak rebels become protracted. This paper has shown that 

implementing a random element to numerical models of conflict can dramatically change the 

duration and outcome of war. Similarly, the effects of rebel recruitment and government 

deployment are shown to have important influences on conflict dynamics in ways that might 

be expected intuitively.   

Future research should also utilise the models of two-sided conflict presented in this paper to 

uncover the micro-level mechanisms underlying real-life conflicts. To accomplish this, 

sensitivity studies could be performed and the various model parameters could be tuned, or 

set according to empirical distributions, so that the simulated conflict outcomes match those 

observed in empirical data. It might then be possible to gauge what micro-level factors lead to 

certain macro-level war dynamics. Future research could also utilise numerical models to 

assist with out-of-sample forecasting. In this case, numerical models could be used to assess 

the plausibility of predictions obtained from statistical models and to ascertain how robust 

predictions are to random events.  

The numerical models presented in this paper are limited to the assumption of two-sided 

conflict, but they are highly amenable to be extended to consider the case of multi-party 

conflict, with multiple rebel groups fighting the state simultaneously (or sequentially).  Such 

multi-party models can be extended further to simulate rebel group interaction strategies 

during conflicts. These include strategies such as alliance formation and inter-rebel violence. 

The influence of group interactions on conflict dynamics could then be compared to the 

results of statistical analyses of real conflicts. 

The current models are also limited to wars of total attrition and as such, they represent 

conflict progression in situations where bargaining has failed and negotiated settlements are 



32 
 

not reached. However, the models have the flexibility to be easily adapted to explore 

bargaining theories of war. This presents obvious avenues for further research, where 

negotiation subgames between the actors could be incorporated with ease. These outcomes of 

these bargaining subgames could be explored by incorporating them with various assumed 

scenarios. For example, they could be assumed to occur at arbitrary time points, or when the 

relative power between the two sides reaches some defined threshold, or possibly when the 

rate-of-change of relative power exceeds a threshold. Probabilities within these bargaining 

subgames could then be tuned so that the occurrence of negotiated peace settlements 

predicted by the numerical models match those observed in empirical data. 

It is clear that the models provide a firm foundation from which to build-in a wide variety of 

further adaptations and incorporate other aspects. The extension of the models to multi-party 

conflict is an obvious step forward, but amongst many other possibilities, the constants used 

in the models for illustration in this paper, may themselves have a time (or even group size) 

dependences. These may be associated with the change in perceptions, learning and skills of 

actors throughout the conflict. These features can be incorporated with ease and provide a 

further flexibility when tuning the model to real empirical data.  
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Appendix I. Flow diagram of computational scheme used to generate p1(t) and p2(t) 

values for equations (12 – 15) plotted in Figures 1 – 4.  
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Appendix II. Flow diagram for ABM used to generate p1(t) and p2(t) values for guerrilla 

warfare plotted in Figure 6.  
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Appendix III. The modelling rebel group growth 

The growth of a rebel group can be likened to the spread of an infection through a population, 

such that existing group members (or infected individuals) recruit (or infect) others. Such a 

process can be described by the logistic (or limited growth) equation (Turner et al. 1976). 

The rate of growth of recruited members (dN/dt) might then be modelled by the equation: 

NNNA
dt

dN
)( max1          (A.1) 

where Nmax is the maximum number in the population available to be recruited and A1 is a 

rate constant. In the early stages, when N << Nmax, this equation takes the approximate form: 

NNAdtdN max1)/(  , which has the solution: )(exp max10 tNANN  , where N0 is the group 

size at t = 0. This exponential growth continues until the term (Nmax – N) in equation (A.1) 

becomes increasingly important and the growth rate then decreases, eventually approaching 

zero as maxNN  . Note that when N = N0 the initial growth rate is (dN/dt)0 (= 0N ), so that 

the rate constant can be expressed in the form
00max01 )( NNNNA    and equation (A.1) can 

then be rearranged to give:  

maxmax0
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


       (A.2) 

The solution of this equation gives the time dependence of the group size as follows (Turner 

et al. 1976): 















)/1(
exp)1(1

1)(

max00

0

0

maxmax

NNN

tN

N

NN

tN


     (A.3) 

This equation represents an S-shaped growth curve and is illustrated in Figure A.1. The group 

size and time are plotted in the normalised forms )/()( 0max0 NNNN  and 

)/1/()/( max000 NNNtN   respectively.  
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Figure A.1 Group size as a function of time according to equation (A.3). The size and 

time are expressed in the normalised forms as given in the text 
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Agent-Based Modelling of Group Growth 

Agent-based modelling (ABM) can be used as an alternative to the deterministic method 

described above. Here the growth of a single rebel group is modelled to reproduce and 

therefore validate the deterministic method described above. At the onset (t = 0), Nmax agents 

were programmed to move by random motion over a two-dimensional surface. Of these 

agents, a number N0 carried the attribute ‘recruited’. On collision with a ‘non-recruited’ 

agent, that agent was recruited and therefore gained the attribute ‘recruited’ according to a 

user-input value of the probability 0 ≤ P ≤ 1. The program produced an output of rebel 

number versus time.  

A set of growth curves obtained by this ABM are shown in Figure A.2 using the values Nmax 

= 1000 and N0 =50. The initial rate
0N was determined from the average initial rate 

determined from 15 runs of the program. The value of A1 was then calculated from the 

expression given earlier, namely: 
00max01 )( NNNNA   . The growth curve determined from 

deterministic methods, reproduced from Figure A.1, is shown for comparison. The curves are 

in good agreement, thus validating the compatibility of the two methods. 
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Figure A.2 Comparison of rebel group growth curves obtained by ABM and those 

predicted by equation (A.3) 
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