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ABSTRACT. We study the existence of fixed points to a parameterized Hammertstain opera-
tor Hβ , β ∈ (0,∞], with sigmoid type of nonlinearity. The parameter β < ∞ indicates the
steepness of the slope of a nonlinear smooth sigmoid function and the limit case β = ∞ cor-
responds to a discontinuous unit step function. We prove that spatially localized solutions to
the fixed point problem for large β exist and can be approximated by the fixed points of H∞.
These results are of a high importance in biological applications where one often approximates
the smooth sigmoid by discontinuous unit step function. Moreover, in order to achieve even bet-
ter approximation than a solution of the limit problem, we employ the iterative method that has
several advantages compared to other existing methods. For example, this method can be used to
construct non-isolated homoclinic orbit of a Hamiltionian system of equations. We illustrate the
results and advantages of the numerical method for stationary versions of the FitzHugh-Nagumo
reaction-diffusion equation and a neural field model.

1. INTRODUCTION

We study the existence of solutions to the fixed point problem

(1.1) u = Hβu, (Hβu)(x) :=

∫
R

ω(x− y)fβ(u(y))dy.

Here Hβ is the parameterized Hammerstein operator with β ∈ (0,∞], ω(x) is symmetric,
and fβ(u) : R → [0, 1] is a smooth function of sigmoid shape that approaches (in some way
which we specify later) the unit step function f∞ = χ[h,∞) for some h > 0 as β → ∞.
Examples of this type of function are

(1.2) fβ(u) = S(β(u− h)), S(u) :=
1

1 + exp(−|u|)
,

and

(1.3) fβ(u) = S(β(u− h)), S(u, p) :=
up

up + 1
χ[0,∞)(u), p > 0,

see Fig. 1.
This problem arises in several biological applications, e.g., in studying the existence of steady

state solutions to a neural field model and the FitzHugh-Nagumo equation. We give examples
of these models in Section 2.

When the function fβ is such that fβ(u) = 0 for all u < h, i.e., supp(fβ) ⊂ [h,∞),
all solutions to (1.1) can be divided into two categories: (i) localized solutions and (ii) non-
localized solutions (e.g. periodic, quasi-periodic). Here we study the solutions of the first class
which we define in detail in Section 4.2.

For the limit case β = ∞, one often can construct localized solutions analytically, see e.g.
[1] and Chapter 3 in [2]. However, the case β = ∞ is only a simplification of a more realistic
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FIG. 1. Functions fβ given in (1.2) with β = 100 (red curve) and in (1.3) with
β = 20 (blue curve), and f∞ = χ[h,∞) (black line), with h = 0.5.

model where fβ, 0 < β <∞ is a steep yet smooth function. Analytical tools do not work in the
latter case, and the existence of solutions for the case of β <∞ and their continuous dependents
on β as β → 0, is often only conjectured from numerical simulations, see e.g. [3, 4, 5].

The main challenge of a proper justification of the transition between the cases β < ∞
and β = ∞, is discontinuity of f∞ which leads to discontinuity of the corresponding integral
operator in any standard functional space. To avoid this difficulty we suggest to exploit a spatial
structure of localized solutions for β =∞ and construct functional spaces such that the operator
H∞ is not only continuous but Fréchet differentiable and the Implicit Function Theorem can be
used. That is, we show that under the assumption that localized solution of (1.1) for β =
∞ exists and satisfies some properties, solutions to (1.1) for large β < ∞ exist, converge to
a solution of the limit case as β → ∞, and can be iteratively constructed. We emphasize
that this result is quite important as it provides a motivation for a common in applied sciences
approximation of a smooth sigmoid function by the discontinuous unit step function.

While the Implicit Function Theorem is well known to be a useful and powerful tool dealing
with such problems, it has not been used due to the non-trivial choice of spaces for operator
convergence. However there are similar results obtained in [6] and later extended by Burlakov
et. al [7] for the case of a bounded spacial domain in Rn, n ≥ 1, using the topological degree
theory and properties of the Hammerstain operators for a smaller class of solutions and more
strict assumptions on the integral kernel ω.

The degree theory approach has some disadvantages compared to the method based on the
Implicit Function Theorem proposed here. Firstly, it requires calculating the topological degree
of H∞. Though it seems like the necessarily condition on the topological degree being non
zero coincides with an assumption we introduce on the localized solution of (1.1), β = ∞, its
calculation could be involved. Secondly, the degree theory never gives uniqueness for β < ∞
even if it is proven for β = ∞. Thirdly, as in infinite dimensional Banach spaces the degree
is only defined for compact perturbations of the identity operator, see [8], the domain and the
range space of Hβ must be the same. This restrict the choice of ω. Finally, the degree theory
approach does not give a method for constructing solutions numerically.

The paper is organized as follows. In Section 2 we give examples of relevant applications,
that is, the FitzHugh-Nagumo equation (Section 2.1) and the neural field model (Section 2.2),
that we use later to illustrate our results. We give a list of notations we use in Section 3. In
Section 4 we introduce assumptions, describe the problem and state the results. In particular, in
Section 4.1 we describe some properties of the operatorHβ, in Section 4.2 we give a definition
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of a bump and bump solution. The existence and assumptions on the solution to the problem
(1.1) for the limiting case β =∞ is discussed in Section 4.3. We formulate our main results as
Theorem 4.8 in Section 4.4. Section 5 is dedicated to the proof of Theorem 4.8. In Section 6 we
apply our results to prove existence of stationary solutions to the FitzHugh-Nagumo equation
(Section 6.1) and the neural field model (Section 6.2), and numerically construct them. We also
use these examples to discuss the advantages of the method in comparison to other existing
methods. Section 7 contains conclusions and outlook.

2. EXAMPLES

2.1. FitzHugh-Nagumo equation and its caricature. The famous FitzHugh-Nagumo equa-
tion introduced in [9, 10, 11] describes qualitative properties of nerve conduction. The equation
can be written as

(2.1)

∂u

∂t
= g(u)− v +D

∂2u

∂x2

∂v

∂t
= bu− γv,

where g is commonly assumed to be the cubic function

(2.2) g(u) = u(u− h)(1− u), 0 < h < 1,

and b, γ, and D are positive parameters.
McKean in [5] suggested replacing the cubic g with a broken line of the same general shape,

that is,

(2.3) g(u) = −u+ f∞(u), f∞ = χ[h,∞), 0 < h < 1,

see Fig. 2. The equation (2.1) with (2.3) is commonly referred to as a caricature of the FitzHugh-
Nagumo equation. It is believed but not proven that the equation (2.1) with the cubic function
(2.2) and with (2.3) have similar portraits in the large (and indeed they have similar phase por-
traits for the steady state solution equations for some parameter values). However, since discon-
tinuous g = −u+ f∞(u) does not provide a good approximation of the cubic function (2.2) but
only resembles its shape, see Fig.2, it is doubtful that one can draw any rigourous conclusion
about one model from analysing another. And indeed, the analysis of the equation (2.1) with the
function (2.2) and (2.3) are rather disconnected in the literature.

However, a smooth sigmoidal shape function g = −u+ fβ(u) may provide a good approxi-
mation of g = −u+ f∞(u) for large β, see Fig. 2. Thus, one would be able to draw a common
conclusion about existence and behaviour of solutions obtained for either case. This leads us to
study the reaction diffusion system

(2.4)

∂u

∂t
= fβ(u)− (u+ v) +D

∂2u

∂x2

∂v

∂t
= bu− γv.

with β ∈ (0,∞].
The steady states of (2.4) are solutions to

−u′′ + k2u = fβ(u)(2.5a)

v =
b

γ
u,(2.5b)

where k =
√

1 + b/γ.
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FIG. 2. Functions g = u(u− h)(1− u), g = −u+ fβ(u) with fβ(u) given as
in (1.3) with β = 20 and g = −u+ f∞(u) given in (2.3), with h = 0.5.

Any bounded solution of the ordinary differential equation in (2.5a) also satisfies the integral
equation (1.1), i.e.,

(2.6) u(x) =

∫
R

ω(x− y)fβ(u(y)),

with

(2.7) ω(x) =
1

2k
e−k|x|,

see Fig. 3.
Here (2.7) is the Green function to the linear part of the equation in (2.5a) which can be

shown in a similar way as in [12].

2.2. Neural field model. The behavior of a single layer of neurons can be modeled by a non-
linear integro-differential equation of the Hammerstein type,

(2.8) ∂tu(x, t) = −u(x, t) +

∫
R
ω(x− y)f(u(y, t))dy.

Here u(x, t) and f(u(x, t)) represent the averaged local activity and the firing rate of neurons
at the position x ∈ R and time t > 0, respectively, and ω(x− y) describes a coupling between
neurons at positions x and y.

The model above is often referred to as the Amari model and is a version of neural field
models that constitute a special class of models where the neural tissue is treated as a continuous
structure. The model (2.8) has been studied in numerous mathematical papers, for a review see,
e.g., [3, 13] and [2]. In particular, the global existence and uniqueness of solutions to the initial
value problem for (2.8) under rather mild assumptions on f and ω has been proven in [14].

In 1977, Amari studied pattern formation in (2.8) for a model where f is the unit step function
and ω is assumed to be of the lateral-inhibitory type, i.e., continuous, integrable and even, with
ω(0) > 0 and having exactly one positive zero. In particular, he showed the existence of stable
and unstable time independent spatially localized solutions to (2.8) which he referred to as



HAMMERTEIN FIXED POINT PROBLEM 5

bumps. For more general f and ω the existence of solutions of this kind has been shown by
Kishimoto and Amari in [15] and later generalized in [16] and [17].

In what follows we use the Amari terminology, i.e., spatially localized solutions will be called
bumps.

Since the work by Amari the lateral-inhibitory type of connectivity function is the common
choice when one studies pattern formation in neural field models. Examples of this type of
connectivity are

(2.9) ω(x) = (1− |x|)e−k|x|, k > 0

and

(2.10) ω(x) = Ke−(kx)2 −Me−(mx)2 , K > M, k > m,

see Fig. 3.
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FIG. 3. Functions ω given by (2.7) with k = 1.3229 (red curve), ω given by
(2.9) with k = 1 (blue curve) and ω given by (2.10) with K = 3, k = 2,M =
1,m = 0.5 (green curve).

When the Fourier transform of the connectivity function is real and rational, e.g., ω in (2.9),
the time independent version of (2.8) can be converted to a higher order nonlinear differential
equation which in turn can be represented as a Hamiltonian system. Bumps correspond to
homoclinic orbits of this system, [18, 19].

Despite there are some analytical methods for studying existence of homoclinic orbits for
higher order Hamiltonian systems, see e.g. [20, 21], due to the specifics of the considered model
these methods are not straightforwardly applicable here and the most results are numerical, for
details see [18]. Alternatively, the existence of homoclinic orbits for such systems can be studied
using methods of computer assisted proofs, see e.g. [22, 23, 24, 25, 26]. However, for the case
when ω does not admit a real rational Fourier transform, as for example in (2.10), the mentioned
differential equations methods are not available and the other approaches must be used.

For f = fβ, where fβ → f∞ = χ[h,∞] as β → ∞, and supp(fβ) ⊂ [h,∞), the existence
of bumps of a particular kind (so called 1-bumps) and their continuous dependence on the pa-
rameter β has been shown using the topological degree theory and collectively compactness and
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continuity of the Hammerstain operators in [6]. Later these results were extended to the case of
n-dimensional, n ∈ N bounded spacial domain in [7].

3. NOTATION

For readers convenience we give a list of functional spaces and specify other notations we
use. Let Ω be a bounded or unbounded subset in R.

• Lp(Ω), 1 ≤ p ≤ ∞, is the space of all functions such that the pth power of the absolute
value is Lebesgue integrable and the norm is given as

‖v‖Lp(Ω) :=

∫
Ω

|v(x)|pdx

1/p

, 1 ≤ p <∞,

and
‖v‖L∞(Ω) := ess supx∈Ω |v(x)|.

When Ω = R we use the common notation for the norm ‖v‖∞ := ‖v‖L∞(R).

• B(Ω) is the linear space of all bounded functions.

• C(Ω) is the linear space of all continuous (but not necessarily bounded) functions on Ω.

• BC(Ω) is the Banach space of all continuous bounded functions on Ω with the norm

‖v‖C(Ω) := sup
x∈Ω
|v(x)|.

When Ω = R we often use ‖ · ‖∞ notation for the norm above.

• Cn(Ω), n ∈ N, is the linear space of all continuous (but not necessarily bounded) func-
tions with continuous kth derivatives, k = 1, ..., n, on Ω.

• BCn(Ω), n ∈ N, is the Banach space of all continuous bounded functions with contin-
uous and bounded kth derivatives, for k = 1, ..., n, on Ω equipped with the norm

‖v‖Cn(Ω) :=

n∑
k=0

sup
x∈Ω
|v(k)(x)|.

• C0,1(Ω) is the space of all Lipschitz continuous functions on Ω.

• C0,α(Ω) is the space of all Hölder continuous functions on Ω with the exponent 0 <
α < 1.

When Ω is a compact set then we prefer the notation Cn(Ω) over BCn(Ω). Moreover, in this
case we treat C0,α(Ω), 0 < α ≤ 1 as the Banach spaces equipped with the norm

‖v‖C0,α(Ω) := sup
x∈Ω
|v(x)|+ sup

x, y ∈ Ω
x 6= y

|v(x)− v(y)|
|x− y|α

When there is no confusion what Ω is we use the notation ‖ · ‖α instead of ‖ · ‖C0,α(Ω).
We denote Ceven(Ω) the space of all even continuous function on Ω. The same notation

applies for the other spaces, e.g., Lpeven(Ω), 1 ≤ p ≤ ∞ and etc.
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If Ω = R we omit the set specification in the norm notation, i.e., we write ‖ · ‖Cn instead of
‖ · ‖Cn(R).

We use boldface to denote vectors, e.g., a, G, and the textsf font for matrices, e.g., S, I.

4. FRAMEWORK AND MAIN RESULTS

We study existence of solutions to the fixed point problem (1.1) under the following assump-
tions on fβ and ω.

Assumption A. Let h > 0 be fixed, and let {fβ}, β ∈ (0,∞] define a family of functions with
the following properties:

(1) fβ : R→ [0, 1] is non-decreasing for any β ∈ (0,∞],

(2) supp(fβ) ⊂ [h,∞) for any β ∈ (0,∞],

(3) f∞ = χ(h,∞),i.e., the characteristic function of the half-line set (h,∞),

(4) fβ(t) is continuous in β ∈ (0,∞) uniformly in t on any bounded interval,

(5) fβ ∈ C0,1(R) for β <∞, and for any ξ > 0

Cβ(ξ) := ess supt∈(h+ξ,∞) |f ′β(t)| → 0 as β →∞.

The function in (1.3) with p > 1 serves as an example of such a function.
We also notice that from Assumption A(5) fβ has the following convergence property

(4.1) sup
t∈R\(h−ξ,h+ξ)

|fβ(t)− f∞(t)| → 0 as β →∞.

Assumption B. The function ω in (1.1) satisfies the following conditions:

(1) ω is symmetric, i.e., ω(−x) = ω(x),

(2) ω is a Lipschitz function, i.e., ω ∈ C0,1(R),

(3) ω ∈ L1(R), and

(4) ω is bounded, i.e., ω ∈ L∞(R).

The functions in (2.7), (2.9), and in (2.10) clearly satisfy the assumption above.
Since the function fβ is such that fβ(u) = 0 for all u < h, see Assumption A(2), all the

solutions to (1.1) can be divided into two categories: (i) localized solutions (so called bumps,
see e.g. [1, 6]) and (ii) non-localized solutions (e.g., periodic, quasi-periodic).

Here we study the existence of solutions of the first type. We introduce only a few properties
of the operatorHβ that are needed here. For more general description ofHβ we refer to [6] and
[7].

4.1. Properties ofHβ .

Lemma 4.1. Let fβ and ω satisfy Assumption A and Assumption B. Then for any real valued
measurable function u we have Hβu ∈ BC(R) for any β ∈ (0,∞]. Moreover, if u(x) ≤ h
for all x ∈ R except a subset X ⊂ R of a finite measure, then Hβu ∈ L1(R) ∩ BC1(R) and
(Hβu)(x)→ 0 as |x| → ∞.



8 A. OLEYNIK, A. PONOSOV, V. KOSTRYKIN, AND A.V. SOBOLEV

Proof. For a general u we define a set X := {x : u(x) ≥ h} ⊆ R. We have the following
estimate

|(Hβu)(x)| =
∣∣∣∣∫
X
ω(x− y)fβ(u(y))dy

∣∣∣∣ ≤ ∫
X
|ω(x− y)|dy.

Assumption B(3) immediately yields ‖Hβu‖∞ ≤ ‖ω‖L1 < ∞. To show continuity of Hβ let
v = Hβu and x→ x0. Then we obtain

|v(x)− v(x0)| ≤
∫
X

|ω(x− y)− ω(x0 − y)|dy → 0 as x→ x0,

which follows from the continuity of translations in L1(R), see, e.g., Proposition 2.5 in [27].
Assume now thatX has a finite measure µ(X) <∞. From Assumption B(2) and Assumption

B(3) it follows that ‖Hβu‖L1 ≤ ‖ω‖L1 µ(X) < ∞. From Assumption B (4) the derivative of
v = Hβu with respect to x exists and is uniformly bounded, that is,

‖v′‖∞ ≤
∫
X
|ω′(x− y)fβ(u(y))|dy ≤ ‖ω′‖∞ µ(X).

Next, we let x→ x0 and obtain the estimate

|v′(x)− v′(x0)| ≤
∫
X

|ω′(x− y)− ω′(x0 − y)|dy.

Assumption B(2) implies that ω′ ∈ L∞(R) and thus ω′ ∈ L1(X). From the continuity of
translations in L1(X) we deduce that |v′(x)− v′(x0)| → 0 as x→ x0.

Hence we conclude thatHβu ∈ BC1(R) and the the following estimate is valid

‖Hβu‖C1 ≤ (‖ω‖∞ + ‖ω′‖∞)µ(X) <∞.

The property v(x) → 0 as |x| → ∞ follows from Assumption B(2) and Assumption B(3).
�

From the lemma above any solution to (1.1) is continuous and bounded.

Lemma 4.2. Let fβ and ω satisfy Assumption A and Assumption B, respectively, and let the
operator Hβ : BC(R) → BC(R) be defined as in (1.1). Then the following statements are
true. (i) Any solution of (1.1) is translation invariant, i.e., if u(x) is a solution so is u(x− c) for
any c ∈ R. (ii) The operator Hβ preserves the symmetry, i.e., for any u(x) = u(−x) we have
(Hβu)(−x) = (Hβu)(x). (iii) If for a fixed point u(x) the corresponding supp(fβ(u(·))) is a
symmetric set, then u(x) is even.

The proof is straightforward.

Remark 4.3. For Lemma 4.1 and Lemma 4.2 we did not use all the conditions of Assumption
A. It suffices to assume that u 7→ fβ(u) ∈ [0, 1] is measurable and Assumption A (2)-(3) are
satisfied.

As mentioned before we intend to investigate the existence of localized solutions to (1.1). In
the next section we describe the class of functions we are interested in.

4.2. Bumps and regular bumps.

Definition 4.4. Let h ∈ R and {bi}2Ni=1 ⊂ R be an increasing sequence of 2N points. The func-
tion u ∈ C(R) is called a (h; b1, b2, ..., b2N )-bump if the following conditions are satisfied:

(i) {bi}2Ni=1 are the only roots to u(x) = h,
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(ii) there exists γ > 0 and A > 0 such that u(x) < h− γ for all |x| > A.

We call the (h; b1, b2, . . . , b2N ) - bump regular if in addition u ∈ C1(R) and u′(bi) 6= 0 for
all i = 1, . . . , 2N.

When h is assumed to be given and there is no need to specify the roots {bi}2Ni=1, we often
refer to u as a (regular) N-bump or, simply a (regular) bump.

We illustrate the definition with Fig. 4.

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

 

 

2−bump
regular 2−bump
not a bump

FIG. 4. Examples of a bump, regular bump and not a bump, when h = 0 and
assuming that the functions are smooth enough and do not increase outside the
interval [−3, 3].

Regular bumps are stable under small perturbations in C1(R). Indeed, let u be a regular
(h; b1, b2, . . . , b2N ) - bump, and for some l < b1 and L > b2N define the set

(4.2) Kε(u; l, L) := {v ∈ C1(R) : sup
x∈R
|u(x)− v(x)|+ max

x∈[l,L]
|u′(x)− v′(x)| < ε}.

We formulate the following lemma.

Lemma 4.5. Let u andKε(u; l, L) be given as above. Then there exists ε ∈ (0, 1/2 mini |u′(bi)|)
such that for any v ∈ Kε(u; l, L), v is a regular (h; b1(ε), b2(ε), . . . , b2N (ε)) - bump where
bi(ε)→ bi as ε→ 0.

The proof is rather straightforward and can be found in [6].

Corollary 4.6. Observe that there are values b±i (ε) : b−i (ε) < bi < b+i (ε) where
2N⋂
i=1

(b−i (ε), b+i (ε)) =

∅ associated with Kε(u; l, L) such that b±i (ε) → bi as ε → 0, and for any v ∈ Kε(u; l, L) we
have the following estimates

|v(x)− h| > ε, x ∈ R \
2N⋃
i=1

(b−i (ε), b+i (ε))

|v′(x)| > ε, x ∈
2N⋃
i=1

(b−i (ε), b+i (ε))

Definition 4.7. A (regular) bump that is a solution to (1.1) we call a (regular) bump solution.
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Lemma 4.1 implies that any bump solution u(x) of (1.1) is in BC1(R) and |u(x)| → 0 as
|x| → ∞. Thus, the threshold h cannot be chosen negative.

4.3. Bump solutions to (1.1) with β = ∞. In [1] Amari studied the equation (1.1) under
the assumption that fβ = f∞ = χ[h,∞) with some h > 0. In this case one can find analytic
expressions for the bump solutions. Let ω satisfy Assumption B and suppose that (1.1) with
β =∞ has a (h; b1, . . . , b2N )-bump solution, say u∞.

Then it immediately follows from (1.1) that

u∞(x) =
N∑
k=1

b2k∫
b2k−1

ω(x− y)dy

or, rewriting the equation above in terms of the anti-derivative

W (x) =

x∫
0

ω(y)dy,

(4.3) u∞(x) =

N∑
k=1

(
W (x− b2k−1)−W (x− b2k)

)
.

Next, we assume that u∞ is symmetric and, thus, bi = −aN−i+1, and bN+i = ai, for
i = 1, . . . , N. In this new notation, u∞ is a (h; −aN , . . . ,−a1, a1, . . . , aN )-bump and we can
rewrite (4.3) as

(4.4) u∞(x) =
N∑
k=1

(−1)N−k+1
(
W (x− ak)−W (x+ ak)

)
.

The vector a = (a1, . . . , aN )T with ai < ai+1, i = 1, . . . , N − 1, must be a solution of the
system of N nonlinear equations

(4.5) u∞(ai) =

N∑
k=1

(−1)N−k+1
(
W (ai − ak)−W (ai + ak)

)
= h.

Once a is found one can construct u∞ using the formula (4.4) and then verify that the obtained
function is indeed a bump, and thus, a bump solution to (1.1). By Lemma 4.2(iii) the function u
is automatically even.

Alternatively, when ω has a rational real Fourier transform one can obtain an analytical ex-
pression for bump solutions by solving the corresponding piecewise linear ordinary differential
equation, see e.g. [18, 19, 12]. We do not focus on this problem here but refer the reader to
[1, 18, 28] for more details.

Further on we assume that the bump solution exists, it is symmetric, regular, and impose one
extra assumption on the intersection points ai whose role will be more clear later.

Assumption C. Let h > 0 be fixed and u∞ given by (4.4) be a (h;−aN , . . . ,−a1, a1, . . . , aN )-
bump solution to (1.1) with fβ = f∞ = χ[h,∞).

(1) The solution u∞ is a regular bump, that is,

(4.6) |u′∞(ai)| =
N∑
k=1

(−1)k+i(ω(ai − ak)− ω(ai + ak)) > 0, i = 1, ..., N.
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(2) From (4.5) a is a solution to G(a) = 0 where G = (g1, ..., gN )T with gi = (−1)i+1(u∞(ai)−
h).We assume that the Jacobian matrix of G derived at a, J(a) =

(
∂gi/∂aj

)
ij

(a) with

∂gi
∂ai

(a) = |u′∞(ai)| − ω(0)− ω(2ai)

∂gi
∂aj

(a) = (−1)i+j+1(ω(ai − aj) + ω(ai + aj)),

i, j = 1, . . . , N,
i 6= j,

has an inverse, that is, det(J(a)) 6= 0.

In particular, Assumption C(ii) guarantees that a is the isolated solution of G(a) = 0.

4.4. Existence and approximation of bump solutions for large β < ∞. We formulate our
main results.

Theorem 4.8. Let h > 0 be fixed and fβ and ω satisfy Assumptions A and B. Moreover, we
assume that ω is such that for β =∞ there exists a symmetric (h;−aN , . . . ,−a1, a1, . . . , aN )-
bump solution u∞ of (1.1) and Assumption C is satisfied. Then we have the following result.

• There is an ε > 0 such that for sufficiently large β > 0 the operatorHβ : Kε(u∞;−d, d)→
BC1(R) for any d > aN has a symmetric fixed point uβ which is a regular bump. More-
over ‖uβ − u∞‖C1 → 0 as β →∞.

• The bump solution uβ ∈ Kε(u∞;−d, d) can be iteratively constructed and the sequence
of successive approximations {un}n∈N∪{0} converges to the solution uβ in BC1(R)-
norm. The sequence un, n = 0, 1, . . . , is defined by

un+1 =

d∫
−d

ω(x− y)fβ(Un+1(y))dy, x ∈ R(4.7a)

Un+1(x) = (Hβ(Un)) (x)− sT (x)(S− I)−1pn, x ∈ [−d, d](4.7b)

with U0 being the restriction of u∞ on [−d, d],

(HβU) (x) :=

d∫
−d

ω(x− y)fβ(U(y))dy ∈ C1([−d, d]),

s(x) =

(
ω(x− a1) + ω(x+ a1)

|u′∞(a1)|
, . . . ,

ω(x− aN ) + ω(x+ aN )

|u′∞(aN )|

)T
,

and S is an N ×N matrix with the elements

Sij =
ω(ai − aj) + ω(ai + aj)

|u′∞(aj)|
, i, j = 1, . . . , N,

and I is the N ×N identity matrix. The vector pn is defined as

pn := (pn(a1), ..., pn(aN ))T , pn(ai) = (HβUn − Un) (ai), i = 1, . . . , N.
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5. PROOF OF THEOREM 4.8

Let h > 0 be fixed and let fβ and ω satisfy Assumption A and Assumptions B, respectively.
Moreover, we assume that ω is such that for β =∞ there exists a symmetric regular
(h;−aN , . . . ,−a1, a1, . . . , aN ) - bump solution u∞ and Assumption C is satisfied.

Let d = aN + δ for some δ > 0 and define a set of even functions

Kε(u∞) := Kε(u∞;−d, d) ∩ C1
even(R)

where Kε(u∞;−d, d) is given as in (4.2). We assume that ε > 0 is small enough that Kε(u∞)
contains only regular symmetric N -bump solutions, see Lemma 4.5.

If u ∈ Kε(u∞) is a solution to (1.1) then due to Corollary 4.6 and the choice of d, it is given
as

u(x) =

∫ d

−d
ω(x− y)fβ(u(y))dy.

Now let T1 : BC1(R)→ B([−d, d]) be the restriction operator given as T1u = u|[−d,d], and
T2 be the reconstruction operator

(5.1) (T2U)(x) =

d∫
−d

ω(x− y)fβ(U(y)− h)dy,

where by Lemma 4.1 we have T2 : B([−d, d])→ BC1(R).
From now on we use capital letters to denote the restriction of u ∈ Kε(u∞), that is, U =

T1u and, in particular, U∞ = T1u∞. Notice that T1Kε(u∞) = Bε(U∞) is the ε-ball in
C1
even([−d, d]), that is,

Bε(U∞) := {U : ‖U − U∞‖C1([−d,d]) < ε} ∩ C1
even(R).

It is obvious that Lemma 4.5 and Corollary 4.6 can be directly reformulated for Bε(U∞) as
ai ∈ [0, d), i = 1, . . . , N . We formulate this as a remark.

Remark 5.1. From Corollary 4.6 there are a±i (ε), i = 1, . . . , N, such that a±i (ε)→ 0 as ε→ 0
and for any U ∈ Bε(U∞)

|U(x)− h| > ε, x ∈ R \
N⋃
i=1

(±a∓i (ε),±a±i (ε)),(5.2a)

|U ′(x)| > ε, x ∈
N⋃
i=1

(±a∓i (ε),±a±i (ε)).(5.2b)

Hence, if u ∈ Kε(u∞) is the solution to (1.1) then u = T2(T1u) and U = T1u ∈ Bε(U∞) is
a solution to the fixed point problem

(5.3) U = HβU, (HβU)(x) :=

d∫
−d

ω(x− y)fβ(U(y))dy.

On the other hand, if U ∈ Bε(U∞) is the solution to (5.3) there is no guarantee that any
T1 - preimage of U is a fixed point of Hβ in (1.1). However, if it is, then it must be given as
u = T2U.

With the next proposition we claim there exist sufficiently small ε > 0 and sufficiently large
β > 0 such that for any solution U ∈ Bε(U∞) of (5.3) the corresponding u = T2U is aN -bump
solution to (1.1). We need an auxiliary lemma.



HAMMERTEIN FIXED POINT PROBLEM 13

Lemma 5.2. The Nemytskii operatorN(β;U) = fβ(U) : (0,∞)×L∞([−d, d])→ Lp([−d, d]),
1 ≤ p ≤ ∞ is jointly continuous in (β0, U0) for any β0 ∈ (0,∞) and U0 ∈ L∞([−d, d]).
Moreover, N(β;U) is jointly continuous in (∞, U0) for any U0 ∈ Bε(U∞) as a map from
(0,∞]×Bε(U∞) to Lpeven([−d, d]) for 1 ≤ p <∞.

Proof. Note that fβ, β ∈ (0,∞] is uniformly bounded and thus, N(β, U) is in Lp([−d, d]) and,
if U is even, in Lpeven([−d, d]), 1 ≤ p ≤ ∞.

Let β, β0 ∈ (0,∞] and U,U0 ∈ L∞([−d, d]) then we have the estimate

‖N(β, U)−N(β0, U0)‖pLp([−d,d]) =

d∫
−d

|fβ(U(x))− f∞(U0(x))|p dx ≤

Σ1(U) + Σ2(β0)

where

Σ1(U) :=

d∫
−d

|fβ(U(x))− fβ0(U(x))|p dx,

and

Σ2(β0) :=

d∫
−d

|fβ0(U(x))− fβ0(U0(x))|p dx.

For β → β0, β, β0 ∈ (0,∞), Σ1(U) → 0 uniformly in U ∈ L∞([−d, d]) by Assumption
A(4). From Assumption A(5)[Lip] we obtain

Σ2(β0) ≤ 2d‖f ′β0‖∞‖U − U0‖L∞([−d,d]) → 0 as ‖U − U0‖L∞([−d,d]) → 0.

Thus, (0,∞)× L∞([−d, d]) 7→ N(β, U) is jointly continuous in (β0, U0).
Now we let β →∞ and show that Σ1(U) converges to zero uniformly for all U ∈ Bε(U∞).

We introduce D :=
⋃N
i=1(a−i (ε), a−i (ε)) with a±i (ε) given as in (5.2). Then we have

Σ1(U) =

∫
[−d,d]/D

|fβ(U(x))− fβ0(U(x))|p dx+

∫
D

|fβ(U(x))− fβ0(U(x))|p dx.
(5.4)

Assumption A, or more precisely (4.1), yields the uniform in U convergence of the first
integral in (5.4) as β →∞.

To estimate the second integral in (5.4) note that |U ′(x)| > ε on (a−i (ε), a+
i (ε)), i =

1, . . . , N, see Remark 5.1, (5.2b). Thus, there exists an inverse ofU(x), ki(t) : (U(a−i (ε)), U(a+
i (ε)))→

(a−i (ε), a+
i (ε)) with |k′i(t)| = 1/|U ′(x)| ≤ 1/ε.

Define M := maxx∈[−d,d] U∞(x) + ε and m := minx∈[−d,d] U∞(x)− ε. We have

a+i (ε)∫
a−i (ε)

|fβ(U(x))− f∞(U(x))|p dx =

U(a+i (ε))∫
U(a−i (ε))

|fβ(t)− f∞(t)| |k′i(t)|dt ≤

ε−p
M∫
m

|fβ(t)− f∞(t)|pdt.
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Hence,∫
D

|fβ(Un(x))− fβ0(U0(x))|p dx ≤ Nε−p
M∫
m

|fβ(t)− f∞(t)|pdt→ 0, β →∞

by the Lebesgue dominant convergence theorem. Thus Σ1(U)→ 0 as β →∞.
Next, we consider Σ2(∞). Let U = Un, U0 ∈ Bε(U∞) and ‖Un − U0‖C1([−d,d]) → 0

as n → ∞. In order to avoid introducing new notation we assume U0 = U∞. For U0 6=
U∞ the same analysis applies. Note that as n → ∞, Un ∈ B1/n(U∞). Define Dn :=⋃N
i=1(a−i (1/n), a+

i (1/n)) with a±i (ε), ε = 1/n, see Remark 5.1. Observe that as n → ∞
the sequences a±i (1/n)→ ai and µ(Dn)→ 0.

From (5.2a) f∞(Un(x)) = f∞(U∞(x)) for all x ∈ [−d, d] \Dn and therefore

Σ2(∞) =

∫
Dn

|f∞(Un(x))− f∞(U0(x))|pdx ≤ 2p+1µ(Dn)→ 0 as n→ 0.

Convergence properties of Σ1(U) and Σ2(∞) result in the joint continuity of (0,∞] ×
Bε(U∞) 7→ N(β, U) at (∞, U0). �

Proposition 5.3. Let fβ and ω satisfy Assumptions A and Assumptions B, respectively. More-
over, assume there exists an (h;−aN , . . . ,−a1, a1, . . . , aN )-bump solution u∞ of (1.1) for
β = ∞ that satisfies Assumption C, and U∞ = T1u∞ being its restriction on [−d, d]. Then
there exists ε > 0 such that starting from sufficiently large β, if Uβ ∈ Bε(U∞) is a solution to
(5.3) then uβ := T2Uβ is the solution to (1.1).

Proof. It is sufficient to show that uβ ∈ Kρ(u∞) where ρ > 0 is small enough so that uβ is a
regular N -bump, see Lemma 4.5. We derive the estimate

‖uβ − u∞‖∞ ≤
d∫
−d

|ω(x− y)(fβ(uβ(y))− f∞(u∞(y)))dy| ≤

‖ω‖∞

 d∫
−d

|fβ(uβ(y))− fβ(u∞(y))|dy +

d∫
−d

|fβ(u∞(y))− f∞(u∞(y))|dy

 ≤
‖ω‖∞

(
2d‖f ′β‖∞‖Uβ − U∞‖∞ + ‖N(β, U∞)−N(∞, U∞)‖L1([−d,d])

)
.

From Lemma 4.2N(β, U∞) is continuous in β and, thus, ‖N(β, U∞)−N(∞, U∞)‖L1([−d,d]) ≤
ε for sufficiently large β > 0.

Thus, we have

‖uβ − u∞‖∞ + ‖u′β − u′∞‖C([−d,d]) ≤ ε
(

1 + ‖ω‖∞ + 2d‖f ′β‖∞‖ω‖∞
)
.

Assigning ε < ρ/
(

1 + ‖ω‖∞ + 2d‖f ′β‖∞‖ω‖∞
)

we secure that uβ ∈ Kρ(u∞). This com-
pletes the proof. �

In the view of the proposition above we can study existence of solutions to (1.1) with Hβ :
Kρ(u∞)→ C1

even(R) by studying existence of the solutions to (5.3) on Bε(U∞).
We make use the following classical result.

Theorem 5.4 (Implicit Function Theorem, e.g., Section 4.7 in [8]). Let V , U , andW be Banach
spaces, (v0, u0) ∈ V × U , and Ω ⊂ V × U be a neighbourhood of (v0, u0). Let the operator
P : Ω→W satisfy the following properties
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(i) P (v0, u0) = 0,

(ii) P is continuous at (v0, u0),

(iii) there exist Ω 7→ P ′u[v, u] such that it is continuous in (v0, u0), i.e.,

lim
(v,u)→(v0,u0)

‖P ′[v, u]− P ′[v0, u0]‖W = 0

(iv) the operator P ′u[v0, u0] : U → W is a bounded linear operator with the bounded inverse

Γ = (P ′u[v0, u0])−1 :W → U .

Then the following are true:

• There exist an operator F : O → U , where O ⊂ V is some neighbourhood of v0, with
the following properties
(a) P (v, Fv) = 0 for all v ∈ O

(b) Fv0 = u0

(c) F is continuous in v0.
Moreover, the operator F is uniquely defined, i.e., if there exists F1 that satisfies (a)-(c)
then there is ε > 0 such that F1v = Fv for all ‖v − v0‖V < ε.

• The sequence of successive approximations {Fn} defined by F0v ≡ u0 and

(5.5) Fn+1v = Fnv − (P ′u[v0, u0])−1 ◦ P (v, Fnv)

converges to the solution Fv as n→∞ for all v ∈ O.

Define the operator P (β, U) : (0,∞]→ C0,α
even([−d, d]) for some 0 < α < 1 as

(5.6) P (β, U) = −U +Hβ(U).

Using the notations in Theorem 5.4 we have V = R, U = C1
even([−d, d]),W = C0,α

even([−d, d])
and Ω = (0,∞]× Bε(U∞). Though it follows from Lemma 4.1 and Lemma 4.2 that (0,∞]×
Bε(U∞) 7→ P (β, U) ∈ C1

even([−d, d]) we were not able to prove the condition (iii) of Theorem
5.4 for C1

even([−d, d]) but C0,α
even([−d, d]). We will comment on it later.

We outline the idea of the proof of Theorem 4.8.

Step 1. We verify the conditions (i)-(iiv) of Theorem 5.4 for the operator P in (5.6).

Step 2. We prove the first part of Theorem 4.8. First, we apply the first part of Theorem 5.4 to
the operator P to obtain existence and uniqueness of the fixed point Uβ ∈ Bε(U∞) of
the operator Hβ for large β > 0 and ‖Uβ − U∞‖C1([−d,d]) → 0 as β → ∞. Next, we
define uβ = T2Uβ with T2 given in (5.1) and use Proposition 5.3 to obtain the results
for uβ.

Step 3. We prove the second part of Theorem 4.8. Firstly, we validate (4.7b) using Theorem
(5.4). Secondly, we show that un = T2Un converges to uβ .
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Step 1. The condition (i) of Theorem 5.4 follows directly for β = ∞ and U = U∞, that is,
P (∞, U∞) = 0. The condition (ii) follows from Lemma 5.2. Indeed,

‖Hβ(U)−H∞(U∞)‖C1([−d,d]) ≤
(
‖ω‖∞ + ‖ω′‖∞

)
‖N(β;U)−N(∞;U∞)‖L1([−d,d]) → 0

as ‖U −U∞‖C1([−d,d]) → 0 and β →∞ due to Lemma 5.2 which implies the continuity of the
operator P (β;U) at (∞, U∞).

Next we show Fréchet differentiability of the operator Hβ for β <∞.

Lemma 5.5. The operator Hβ : Bε(U∞) ⊂ C1
even([−d, d]) → C1

even([−d, d]), β < ∞, given
in (5.3) is Fréchet differentiable at U ∈ Bε(U∞) with the derivative

(5.7) H ′β(U) = S[β, U ], S[β, U ]v =

d∫
−d

ω(x− y)f ′β(U(y))v(y)dy.

Proof. Computing the Gâteaux derivative of Hβ at U ∈ Bε(U∞) we obtain dHβ(U ; v) =
S[β, U ]v, with S[β, U ] given in (5.7). The operator Hβ is Fréchet differentiable if

lim
t→0

∥∥∥∥Hβ(U + tv)−Hβ(U)

t
− S[β, U ]v

∥∥∥∥
C1([−d,d])

= 0

uniformly for all ‖v‖C1([−d,d]) < 1, see [Proposition 4.8 (b), [8]].
We obtain the estimate∥∥∥∥Hβ(U + tv)−Hβ(U)

t
− S[β, U ]v

∥∥∥∥
C1([−d,d])

≤

(
‖ω‖∞ + ‖ω′‖∞

) d∫
−d

∣∣∣∣fβ(U(y) + tv(y))− fβ(U(y))

t
− f ′β(U(y))v(y)

∣∣∣∣ dy.(5.8)

From fβ ∈ C0,1(R), see Assumption A(5),

fβ(U(y) + tv(y))− fβ(U(y))

t
→ f ′β(U(y))v(y)

almost everywhere on [−d, d] uniformly in v on {v : ‖v‖C1([−d,d]) < 1}, and

|fβ(U(y) + tv(y))− fβ(U(y))| /|t| ≤ ‖f ′β‖∞‖v‖C1([−d,d]).

Thus, by the Lebesgue Dominated Convergence theorem the integral in (5.8) converges to zero
uniformly. �

To show the Fréchet differentiability of the operator H∞ we must proceed in a different way
due to the discontinuity of f∞.

Lemma 5.6. The operator H∞ : Bε(U∞) ⊂ C1
even([−d, d])→ C0,1

even([−d, d]) given in (5.3) is
Fréchet differentiable at U ∈ Bε(U∞) with the derivative

(5.9) H ′∞(U) = S[∞, U ], S[∞, U ]v =
N∑
i=1

ω(x− bi) + ω(x+ bi)

|U(bi)|
v(bi).

where bi ∈ (a−i (ε), a+
i (ε)), i = 1, ..., N, are the positive solutions to U(x) = h.

Proof. We start by calculating the Gâteaux derivative of H∞ at U ∈ Bε(U∞). Consider

(5.10) H∞(U + tv)−H∞(U) =

∫
O+(t)

ω(x− y)dy −
∫
O−(t)

ω(x− y)dy
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where
O+(t) = {y : U(y) ≤ h and U(y) + tv(y) ≥ h}

and
O−(t) = {y : U(y) ≥ h and U(y) + tv(y) ≤ h}.

Since U ∈ Bε(U∞) is a restriction of a regular (h;−bN , . . . ,−b1, b1, . . . , bN ) bump on [−d, d]
it is clear that ±bi for all i = 1, . . . , N, belongs either to O+(t) or O−(t). As U and v are even
function, the sets O±(t) are symmetric. Thus, without loss of generality we further consider
y ∈ O±(t) such that y ≥ 0.

Let bi, i ∈ {1, . . . , N} belong to eitherO−(t) orO+(t) and y 6= bi be a limiting point of this
set, and hence U(y) + tv(y) = h. By the mean value theorem

y = bi −
tv(bi)

U ′(ξ) + tv(ξ)

where ξ lies in between of y and bi. Then we get

lim
t→0

|y − bi|
t

= lim
t→0

|t|
t

|v(bi)|
|U ′(bi)|

.

If bi ∈ O+(t) then either v(bi) < 0, t > 0 or v(bi) > 0, t < 0 and therefore

lim
t→0

|y − bi|
t

=
v(bi)

|U ′(bi)|
, bi ∈ O+(t).

Similarly, for bi ∈ O−(t) we conclude that

lim
t→0

|y − bi|
t

= − v(bi)

|U ′(bi)|
, bi ∈ O−(t).

Making use of (5.10) and limits above we obtain the Gâteaux derivative of H∞ at U ∈
Bε(U∞),

dH∞(U ; v) = lim
t→0

H∞(U∞ + tv)−H∞(U)

t
=∑

±bi∈O+(t)∪O−(t)

ω(±bi − x)

|U ′(bi)|
v(bi) =

N∑
i=1

ω(bi − x) + ω(bi + x)

|U ′(bi)|
v(bi) = S[∞, U ]v.

As dH∞(U ; v) is continuous at U for any U ∈ Bε(U∞) we conclude that H∞ is the Fréchet
differentiable at U with H ′∞(U)v = dH∞(U ; v), see Proposition 4.8(c) in [8]. �

Remark 5.7. When U = U∞ the derivative H ′∞(U∞) is given as

(5.11) H ′∞(U∞) = S[∞, U∞], S[∞, U∞]v =
N∑
i=1

ω(x− ai) + ω(x+ ai)

|u′∞(ai)|
v(ai).

From Lemma 5.5 and Lemma 5.6 the Fréchet derivative with respect to the second variable
at (β, U) exists and is given as P ′U [β, U ] = I − S[β, U ] with S[β, U ] given in (5.7) for β <∞
and (5.9) for β =∞.

Now we turn to the proof of the norm convergence of P ′U [β, U ], see (iv) in Theorem 5.4. As

‖P ′U [β, U ]− P ′U [∞, U∞]‖C0,α([−d,d]) ≤ ‖U − U∞‖C0,α + ‖S[β, U ]− S[∞, U∞]‖C0,α([−d,d]),

it suffices to show that ‖S[β, U ] − S[∞, U∞]‖C0,α([−d,d]) as (β, U) → (∞, U∞). Before we
prove this operator convergence we need the following lemma.
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Lemma 5.8. Let O(ai) ⊂ (a−i (ε), a+(ε)), i = 1, . . . , N, be an open neighbourhood of ai(ε)
and O non empty subset of [0, d]/

⋃N
i=1O(ai). Then for any ϕ ∈ C([−d, d]) we have

(5.12)
∫
O

f ′βn(Un(x))ϕ(x)dx→ 0

and

(5.13)
∫

O(ai)

f ′βn(Un(x))ϕ(x)dx→ ϕ(ai)

|u′∞(ai)|

for βn →∞ and Un → U∞ in the C1([−d, d]) norm as n→∞.

Proof. We first prove (5.12). Let η < ε be such that [a−i (η), a+
i (η)] ⊂ O(ai), i = 1, . . . , N. As

n→∞we haveUn ∈ Bη(U∞) and thus |Un(x)−h| > η on the setDη := [0, d]/
⋃N
i=1[a−i (η), a+

i (η)],
see Remark 5.1. From Assumption A(5) and 4.1 we have |f ′βn(Un(x))| ≤ Cη(βn) → 0 as
n→∞. Hence, we conclude that∣∣∣∣∣∣
∫
O

f ′βn(Un(x))ϕ(x)dx

∣∣∣∣∣∣ ≤ ‖ϕ‖L∞([−d,d])

∫
Dη

|f ′βn(Un(x))|dx ≤ d ‖ϕ‖L∞([−d,d])Cη(βn)→ 0.

Now we turn our attention to proving (5.13). Due to (5.12) we can without loss of generality
assume that O(ai) = (a−i (ε), a+

i (ε)), i = 1, . . . , N. Let us fix some i = 1, . . . , N. Due to [29],
U∞ and Un have the inverse functions k∞(t) and kn(t), respectively, defined on [h− ε, h+ ε].
Moreover, by the Implicit Function Theorem ‖kn − k∞‖C1([h−ε,h+ε]) → 0 as n→∞. Using a
change of variables and (5.12) we obtain

(5.14)
∫

O(ai)

f ′βn(Un(x))ϕ(x)dx−
h+ε∫
h−ε

f ′βn(t)|k′n(t)|ϕ(kn(t))dt→ 0, n→∞.

We note that for any positive η < ε

(5.15)

h+η∫
h−η

f ′βn(t)|k′∞(h)|ϕ(k∞(h))dt =
ϕ(ai)

|u′∞(ai)|

and

(5.16) I(η, n) =

h+η∫
h−η

f ′βn(t)
(
|k′n(t)|ϕ(kn(t))− k′∞(h)ϕ(k∞(h))

)
dt.

Let I(η, n) = I1(η, n) + I2(η, n) where

I1(η, n) =

h+ε∫
h−ε

f ′βn(t)
(
|k′n(t)|ϕ(kn(t))− |k′∞(t)|ϕ(k∞(t))

)
dt

and

I2(η, n) =

h+ε∫
h−ε

f ′βn(t)
(
|k′∞(t)|ϕ(k∞(t))− |k′∞(h)|ϕ(k∞(h))

)
dt.

We observe that |I1(η, n)| → 0 and |I2(η, n)| → o(η) as n→∞ since
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|I1(η, n)| ≤ max
t∈[h−η,h+η]

(
ϕ(kn(t))|k′n(t)| − ϕ(k∞(t))|k′∞(t)|

)
→ 0

due to ‖kn − k∞‖C1([−d,d]) → 0 and

|I2(η, n)| ≤ max
t∈[h−η,h+η]

(
ϕ(k∞(t))|k′∞(t)| − ϕ(k∞(h))|k′∞(h)|

)
→ o(η).

Thus, we obtain

lim
n→0
|I(η, n)| ≤ lim

n→0
|I1(η, n)|+ lim

n→0
|I2(η, n)| = o(η)

that combined with (5.16) and (5.15) results in

(5.17) lim
n→0

h+η∫
h−η

f ′βn(t)|k′n(t)|ϕ(kn(t))dt =
ϕ(ai)

|u′∞(ai)|
+ o(η).

From (5.12) we get

a+i (ε)∫
a−i (ε)

f ′βn(Un(x))ϕ(x)dx−

a+i (η)∫
a−i (η)

f ′βn(Un(x))ϕ(x)dx→ 0, n→∞,

independently on η. This observation and (5.14) yields o(η) ≡ 0 in (5.17) which completes the
proof. �

Proposition 5.9. Let Assumption A, Assumption B and Assumption C be satisfied and U∞ =
T1u∞ be a restriction of u∞ on [−d, d]. Then the map (0,∞]× Bε(U∞) 7→ S[β, U ] is contin-
uous at (∞, U∞), that is,

‖S[β, U ]− S[∞, U∞]‖C0,α([−d,d]) → 0

as β →∞ and ‖U − U∞‖C1([−d,d]) → 0.

Proof. Let β < ∞, βn → ∞ and ‖U − U∞‖C1([−d,d]) → 0 as n → ∞. We introduce the
partition of [0, d], 0 = y0 < y1 < ... < yN = d where yi = (ai + ai−1)/2, i = 1, . . . , N and
represent S[βn, Un] as

S[βn, Un] =
N∑
i=1

(S+
i (n) + S−i (n))

with

S±i (n)v = ±
±yi+1∫
±yi

ω(x− y)f ′βn(Un(y))v(y)dy.

For β =∞ we have

S[∞, Un] =
N∑
i=1

(S+
i + S−i ), S±i v =

ω(x± ai)
|u′∞(ai)|

v(ai).

Next we prove that ‖S+
i (n)− S+

i ‖C0,α([−d,d]) → 0, n→ 0, for any i = 1, ..., N.
For an arbitrary fixed i ∈ {1, . . . , N}

(S+
i (n)v)(x)− (S+

i v)(x) = g1(x, n) + g2(x, n)
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where

g1(x, n) =

yi+1∫
yi

(ω(x− y)− ω(x− ai))f ′βn(Un(y))v(y)dy

and

g2(x, n) = ω(x− ai)
yi+1∫
yi

f ′βn(Un(y))
(
v(y)− v(ai)

u′∞(ai)

)
dy.

Next we show that ‖gk(·, n)‖α = o(1/n)‖v‖α, k = 1, 2, as n→∞. We start with g1(x, n).
Let x ∈ [yi, yi+1] then

|g1(x, n)| ≤
yi+1∫
yi

|ω(x− y)− ω(x− ai)|f ′βn(Un(y))|v(y)|dy ≤

L‖v‖α

yi+1∫
yi

|y − ai|f ′βn(Un(y))dy

with L ≤ ‖ω′‖∞ being the Lipschitz constant of ω(x) on the interval [−d− yi+1, d+ yi+1].
Using (5.12) with ϕ(y) = |y−ai| the integral on the right hand side tends to zero as n→∞.

In order to bound the Hölder constant of g1(x, n) we use two different estimates

|ω(x− y)− ω(x− ai)− ω(z − y) + ω(z − ai)| ≤ 2L|y − ai|
and

|ω(x− y)− ω(x− ai)− ω(z − y) + ω(z − ai)| ≤ 2L|x− z|
so that

|ω(x− y)− ω(x− ai)− ω(z − y) + ω(z − ai)| ≤ 2L|y − ai|1−α|x− z|α.
Thus for x 6= z we have

|g1(x, n)− g1(y, n)|
|x− z|α

≤ 2L‖v‖α

yi+1∫
yi

|y − ai|1−αf ′βn(Un(y))dy.

Again by (5.12) the integral on the right hand side tends to zero as n→ 0.
To handle the term g2(x, n) we represent it as a sum g2(x, n) = ω(x − ai)(I1(n) − I2(n))

with

I1(n) =

yi+1∫
yi

f ′βn(Un(y))(v(y)− v(ai))dy

and

I2(n) = v(ai)

 yi+1∫
yi

f ′βn(Un(y))dy − 1

|u′∞(ai)|

 .

We have the estimates

|I1(n)| ≤ ‖v‖α

yi+1∫
yi

f ′βn(Un(y))|y − ai|dy

and

|I2(n)| ≤ ‖v‖α

 yi+1∫
yi

f ′βn(Un(y))dy − 1

|u′∞(ai)|

 ,
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where from Lemma 5.8 both integrals on the right hand sides tend to zero as n→ 0.
It follows that for any x ∈ (yi, yi+1),

|g2(x, n)| ≤ ‖ω‖∞(|I1(n)|+ |I2(n)|) = o(1/n)‖v‖α, as n→ 0,

and
|g2(x, n)− g2(z, n)|

|x− z|α
≤ sup

x, z ∈ [yi, yi+1]
x 6= z

|ω(x− ai)− ω(z − ai)|
|x− z|α

‖v‖α(|I1(n)|+ |I2(n)|) ≤

L sup
x,z
|x− z|1−α(|I1(n)|+ |I2(n)|) < (d)1−αL‖v‖αo(1/n), n→∞.

Collecting the estimates for ‖g1(x, n)‖α and ‖g2(x, n)‖α we conclude that ‖S+
i (n)− S+

i ‖α =

o(1/n), n→∞. Due to the symmetry ‖S−i (n)− S−i ‖α = o(1/n) as well. �

Remark 5.10. Notice that the need for C0,α([−d, d]) space with 0 < α < 1 comes when
estimating the convergence of |gi(x, n) − gi(z, n)|/|x − z|α, n → 0, i = 1, 2, as similar
arguments would fail for α = 1.

With the next proposition we prove that the condition (iv) of Theorem 5.4 is satisfied.

Proposition 5.11. Let u∞ be a symmetric bump solution to (1.1), U∞ = T1u∞ be its restriction
on [−d, d], and assume that Assumptions B and Assumption C are satisfied. Then the Fréchet
derivative of P (∞, U) at U∞, P ′[∞, U∞] = I − S[∞, U∞] : C1

even([−d, d])→ C0,α([−d, d])
with S[∞, U∞] defined in (5.9) is invertible.

Proof. We will show that Assumption C(2) implies P ′[∞, U∞] has no zero eigenvalue. Fist we
notice that the operator S[∞, U∞] has the same eigenvalues as the N ×N matrix S = (Sij)

Sij =
ω(ai − aj) + ω(ai + aj)

|u′∞(aj)|
, i, j = 1, . . . , N.

Introduce the real diagonal matrix C := diag(|u′∞(a1)|, . . . , |u′∞(aN )|). The matrix S can
be made symmetric as C1/2SC−1/2 and thus has only real eigenvalues. The operator P ′[∞, U∞]
has in turn the same eigenvalues as the matrix P := I − S with I being the identity matrix. We
notice that the elements of P = (Pij), i, j = 1, . . . , N are

(5.18)

Pii =
|u′∞(aj)| − ω(0)− ω(2ai)

|u′∞(ai)|
=

1

|u′(ai)|
∂gi
∂ai

(a),

Pij = −ω(ai − aj) + ω(ai + aj)

|u′∞(aj)|
=

(−1)i+j

|u′(ai)|
∂gi
∂aj

(a), i 6= j,

with ∂gi/∂aj(a) defined in Assumption C(2).
Let J be the Jacobian matrix defined in Assumption C(2), D := diag((−1)1, . . . , (−1)N ),

and C given as above. Then we have P ∼ PC = DJD ∼ J. As det(J) 6= 0 we conclude that
the matrix P has no zero eigenvalue as well as the operator P ′[∞, U∞]. �

Thus, we are ready to apply Theorem 5.4 for the operator P in (5.6).

Step 2. Theorem 5.4 (a)-(c) yields the existence and uniqueness of the fixed pointUβ ∈ Bε(U∞)
of the operator Hβ for large β > 0 and the convergence ‖Uβ − U∞‖C1([−d,d]) → 0 as β →∞.

Next, we apply the reconstruction operator T2 given in (5.1) to Uβ, that is, uβ = T2Uβ. From
Proposition 5.3 uβ is then a N-bump solution to (1.1). Let β →∞, from the estimate

‖uβ − u∞‖C1 ≤
(
‖ω‖∞ + ‖ω′‖∞

)
‖N(β, Uβ)−N(∞, U∞)‖L1([−d,d]),

Lemma 5.2, and ‖Uβ − U∞‖C1([−d,d]) → 0 the convergence ‖uβ − u∞‖C1 → 0 follows.
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Step 3. From the second part of Theorem 5.4 the fixed point Uβ ∈ Bε(U∞) of Hβ for suf-
ficiently large β can be obtain by the sequence of successive approximations {Un}, ‖Un −
Uβ‖C1([−d,d]) → 0, n→∞, as

Un+1 = Un − (P ′U [∞, U∞])−1 ◦ P (β, Un), U0 = U∞,

or, using (5.6) and (5.11)

(5.19) Un+1 = Un − (I − S[∞, U∞])−1 ◦ (I −Hβ(Un)), U0 = U∞.

First we obtain the expression for (I − S[∞, U∞])−1. Let (I − S[∞, U∞])v = w and intro-
duce v = (v(a1), . . . , v(aN ))T and w = (w(a1), . . . , w(aN ))T . Then v = (I − S)−1w and
v(x) = w(x) + S[∞, U∞]v(x) = w(x) + sTv where I, s and S are as in Theorem 4.8.

From the last two formulae we derive

(5.20) v(x) = w(x) + sT (I− S)−1w.

Combining 5.20 and (5.19) we arrive at (4.7).
On each iteration step we can obtain the corresponding un = T2Un with T2 given in (5.1). It

remains to notice that

‖un−uβ‖C1 = ‖T2Un−T2Uβ‖C1 ≤ (‖ω‖∞+‖ω′‖∞)‖N(β, Un)−N(β, Uβ)‖L1([−d,d]) → 0

as n→∞ due to Lemma 4.5.

6. ADVANTAGES FOR NUMERICAL CONSTRUCTION

In this section we apply Theorem 4.8 to demonstrate the existence of 1-bump solutions of the
FitzHugh-Nagumo equation (2.4) and 2-bump solutions to the Amari model (2.8) with ω given
in (2.10) and fβ as in (1.3). We also compute the approximations of the bump solutions using
(4.7) and discuss the advantages of this numerical approximation compared to other approaches.

6.1. 1-bump solution of FitzHugh Nagumo equation. Let us investigate the equation (2.5a)
with fβ given by (1.3) with p = 2 and its corresponding integral equation (2.6), for the existence
and numerical construction of bump solutions. A bump solution corresponds to the homoclinic
orbit in the phase plane of the equation

(6.1)
u′ = v
v′ = k2u− fβ(u)

which exists when k < 1/
√

2h. Any bounded solution to (6.1) is confined in the closure of the
bounded open region D of the phase plane with the homoclinic orbit being its boundary ∂D,
see e.g. Fig.5a.

Notice that the system (6.1) is reversible and conservative. From the reversibility it follows
that any solution of (6.1) with the initial conditions in D is a periodic orbit and thus periodic
orbits are dense in D, see Fig. 5a. This fact causes some difficulties to obtain the homoclinic
orbit numerically. We have plotted in Fig.5b the bump solution obtained analytically (red line)
and by solving (6.1) numerically with (u(0), v(0)) = (h, kh) (blue dashed line). This illustrates
that in order to obtain a good approximation of the bump solution on a large interval using the
shooting method one must increase the precision of the method accordingly. Moreover, the
shooting method would not be straightforwardly applicable if fβ does not satisfy Assumption
A(2). This supports our argument for replacing the cubic g(u) in (2.1) with−u+fβ, see Section
2.1.

The proof of existence and rigorous construction of homoclinic orbits for (6.1) and the equa-
tions of a higher order with even more general types of nonlinearity can be studied using com-
puter assisted proofs, see e.g. [22, 23, 24, 25, 26]. We however do not consider this approach
here.
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FIG. 5. For β = ∞, k = 1.339, and h = 0.2 we plot (a) periodic orbits
(black) and the homoclinic orbit (red) of (6.1) and (b) periodic solutions (black
and blue) and the bump solution (red) to (2.5a)

Now we analyse the equation (2.6) where Assumption A and Assumption B are satisfied.
For β = ∞ one can obtain an explicit formula for the (h; a)-bump solution u∞ to (2.6) using
the Amari technique [1] or by solving the ordinary differential equation (2.5a). We calculate
a = − ln(1−2k2h)/2k and u′∞(a) = kh > 0, that is the bump is regular and Assumption C(1)
is satisfied. The condition (2) of Assumption C is reduced to ω(0) 6= 0 which is also fulfilled.
Thus, by Theorem 4.8 there exists a regular 1-bump solution to (2.6) that converges in C1(R)-
norm to u∞ and can be constructed using the iteration scheme (4.7). In Fig.6a we have plotted
the approximation of the restriction of bump solution, that is, Uβ. In Fig. 6b we have plotted the
base 10 logarithm of the relative error

(6.2) error(n+ 1) =
‖Un+1 − Un‖C1([−d,d])

‖Un‖C1([−d,d])
, n = 0, 1, . . . .

where Un is given in (4.7b).
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FIG. 6. (a) Approximation of the bump solution to (2.6) on [−d, d] with d =
a + 0.5 and β = 100 after the 15th iteration. (b) The logarithm of the relative
error (6.2) of the iteration process.

Notice, that despite the bump solution u∞ is non-isolated fixed point of (1.1) with β = ∞
on C1(R), it is isolated in Kε(u∞). Consequently, Uβ = T1uβ is an isolated fixed point of
the operator Hβ already in the whole space C1([−d, d]). Thus, the proposed method allows
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us to isolate solutions which can be extremely useful when dealing with higher order ordinary
differential equations.

6.2. 2-bump solutions of the neural field model. In this section we illustrate the obtained
result for the Amari model with the firing rate function fβ, β ∈ (0,∞] as in (1.3), p = 2 and
the connectivity function ω given as in (2.10) with K = 3, k = 2, M = 1, and m = 0.5, see
Fig.3. Hence, Assumption A and Assumption B are satisfied. When β = ∞ one can employ
the Amari technique [1, 28] to show that there exist 2-bump solutions. In particular, for h = 0.3

there is a pair of 2-bump solutions u(1)
∞ and u(2)

∞ : the first one is the (h;−a2,−a1, a1, a2)-bump
with a1 = 0.2948, a2 = 0.8506 and the second one is with a1 = 0.3786, a2 = 0.6782. We
verified numerically that Assumption C is fulfilled for both bump solutions, thus Theorem 4.8
can be applied.

In Fig.7a we have plotted the restriction of u(i)
∞ , i = 1, 2, on [−1, 1] and the restriction of the

approximation of the bump solutions of (1.1) with β = 100.

For both cases we have computed the relative error using (6.2) with Un = U
(i)
n and have

plotted the base 10 logarithm of the error in Fig. 7b.

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

x

U

 

 

U(1)
∞ U(1)

β U(2)
∞ U(2)

β

0 2 4 6 8 10
−7

−6

−5

−4

−3

−2

−1

0

iteration number

lo
g(

er
ro

r)

FIG. 7. (a) Approximation of the 2-bump solutions to (2.6) on [−d, d] with
d = a2 + 0.5 and β = 100 after the 10th iteration. (b) The logarithm of the
relative error (6.2) of the iteration process.

As the Fourier transform of ω(x) is not a real rational function, the ordinary differential
methods cannot be used here. Yet, when fβ is such that χ[h+1/β,∞) ≤ fβ < χ[h,∞) it might
be possible to iteratively construct uβ using the theory of monotone operators in Banach spaces
similarly as it has been done for 1-bump solutions in [16]. However,this method can be tricky
(or not even possible) to use for N -bumps solutions when N is large. Moreover, some of the
bump solutions cannot be obtained by this method as e.g. already for the case of 1-bumps, the
limiting solution u∞ is required to be linearly stable. As one of the 2-bump solutions is unstable,
see [18], it is doubtful the iterative method as in [16] can be successful.

7. CONCLUSIONS AND OUTLOOK

To summarize, we would like to emphasize few important points: (i) With Theorem 4.8 we
justify the approximation of a smooth sigmoid function by the discontinuous unit step function
for (1.1) on the class of bump solutions. In particular, one can be assured that a bump solution
uβ for large β exists and can be approximated by u∞. (ii) Theorem 4.8 does not require ω
to be smooth nor to have a real rational Fourier transform. (iii) In order to obtain a better
approximation of uβ than u∞ one may utilize the iteration scheme in Theorem 4.8. Compared
to the ordinary differential methods it allows us to isolate the solution and thus does not require
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a high numerical precision to secure that the found solution is indeed localized. However it
might not be as efficient as e.g. the shooting method.

The technique presented in this paper could be fruitful in more general situations, for instance,
to study existence and uniqueness of spatially localized solutions in two and three dimensional
neural field models. Moreover, this method can be turned into a computer assisted proof which
could be an interesting topic of future study. However, the most serious obstacle to develop such
a theory is the absence of a general scheme for studying bumps in the limit (discontinuous) case,
the only exception being the theory of radially symmetric bumps [30, 31].

Within the framework of the neural field model (2.8), the next step would be to study Lya-
punov stability of found bumps (the work under preparation). This can be done using the prop-
erties of spectral asymptotic that follows from the norm convergence of the Fréchet derivatives,
see Proposition 5.9.
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