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ABSTRACT: 
 
Passive stereo imaging is capable of producing dense 3D data, but image matching algorithms generally perform poorly on images 
with large regions of homogenous texture due to ambiguous match costs. Stereo systems can be augmented with an additional light 
source that can project some form of unique texture onto surfaces in the scene. Methods include structured light, laser projection 
through diffractive optical elements, data projectors and laser speckle. Pattern projection using lasers has the advantage of producing 
images with a high signal to noise ratio. We have investigated the use of a scanning visible-beam LIDAR to simultaneously provide 
enhanced texture within the scene and to provide additional opportunities for data fusion in unmatched regions. The use of a LIDAR 
rather than a laser alone allows us to generate highly accurate ground truth data sets by scanning the scene at high resolution. This is 
necessary for evaluating different pattern projection schemes. Results from LIDAR generated random dots are presented and 
compared to other texture projection techniques. Finally, we investigate the use of image texture analysis to intelligently project 
texture where it is required while exploiting the texture available in the ambient light image. 
 
 

1. INTRODUCTION 

Stereo imaging remains a popular technique for dense 3D 
reconstruction. However, the performance of stereo matching 
algorithms is strongly dependent on image texture and scene 
illumination. These algorithms compute a similarity cost for 
matching pairs of pixels with the goal of locating pairs of pixels 
with maximal similarity (Scharstein and Szeliski, 2002). Scenes 
with large regions of homogenous intensity, such as painted 
walls, are difficult to match as the similarity cost for pixels in 
these regions tend to be very similar (Hirschmuller and 
Scharstein, 2007).  Although there have been investigations into 
algorithmic methods to infer depth in information-poor regions, 
by far the simplest method to improve match results is to project 
a random or pseudo-random pattern into the scene. With this 
approach even simple correlation algorithms are effective; the 
original Microsoft Kinect device operates on this principle 
although it is not strictly a stereo system (Han et al., 2013). * 
 
This paper presents a novel approach to texture projection by 
using the image of the laser spot from a visible-beam scanning 
LIDAR. The visible laser provides accurate and unique stereo-
LIDAR correspondences by acquiring stereo imagery at every 
step in the scan. If the LIDAR is cross-calibrated to the stereo 
system, random dot patterns may be simulated by acquiring 
dense LIDAR data and projecting the 3D points into each 
image. This avoids any acquisition bottlenecks caused by the 
frame rate of the camera. The accurate ground truth provided by 
the LIDAR can then be used to compare other texture projection 
methods. 
 
First, some common texture projection techniques are reviewed. 
Then, the combined stereo LIDAR system is described, along 
with a simple cross-calibration procedure. Results from LIDAR 
generated random dot textures are compared to ambient light 
alone. Additional results compare LIDAR texture against data 
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projectors and diffractive optical element (DOE) based patterns. 
A strategy for intelligent image texturing using stereo matching 
prediction using a Support Vector Machine (SVM) trained on 
simple image features is finally applied. 
 

2. RELATED WORK 

In this section, current methods for 3D reconstruction using 
light projection are discussed. It should be noted that other 
(more invasive) techniques are available for adding texture to a 
scene. For instance, spray paint can be applied to the surface of 
an object to provide random texture prior to imaging, but clearly 
for most targets this is not practical. 
 
2.1 Structured Light 

Structured light systems project a pattern or sequence of 
patterns which are used to infer depth (Posdamer, 1982) (Batlle 
et al., 1998) (Salvi et al., 2010). Figure 1 shows an example of 
such a structured light pattern. 

  
Figure 1. Monochrome structured light patterns projected onto a 

scene full of 3D objects. 

At a minimum, one view of the scene is required (Scharstein 
and Szeliski, 2003), but structured light may also integrated into 
the stereo camera systems (Jang et al., 2013). A common 
feature of structured light 3D is that there is some underlying 
knowledge about the geometry of the pattern(s) and this 
knowledge is critical for reconstruction. As such, image 
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matching via correlation is generally not required, but a specific 
algorithm is required to derive 3D from a particular pattern 
sequence. Structured light patterns enable each pixel to be 
uniquely labelled or coded and this can be used to generate 
highly accurate ground truth depth maps. This also means that if 
it is not possible to recover the code for a particular pixel, it 
cannot be reconstructed without interpolation. 
 
Structured light systems that rely on data projectors suffer from 
illumination constraints: the target environment must be 
uniformly illuminated, the projector must be much brighter than 
ambient and there may be issues with dynamic range if the 
scene contains large depth discontinuities. Laser-based methods 
solve the problem of dynamic range, but current diffractive 
optical elements (DOEs) cannot match the resolution of data 
projectors. 
 
(Scharstein and Szeliski, 2003) used structured light to provide 
accurate, dense ground truth maps for the Middlebury stereo 
benchmark dataset. In the most recent update, (Scharstein et al., 
2014), challenging scenes with reflective surfaces were 
included. However, it was necessary to paint reflective surfaces 
in a matt colour. Structured light is a common tool in industry 
as it enables very accurate depth measurements. However, it is 
severely limited to matt surfaces at short range and with 
sufficient illumination to overcome ambient lighting. 
 
2.2 Random texture projection 

Texture projection is defined here as a means of aiding a stereo 
matcher by providing additional texture in the scene. These 
methods are therefore agnostic to the actual matching algorithm 
used. Since stereo matching often relies on correlation using 
support regions or neighbourhoods around each pixel (Kanade 
and Okutomi, 1994), it is less important that every pixel be 
illuminated. For instance, if a pixel that is not illuminated, but a 
neighbouring pixel is, it may still be matched. Ambient 
illumination is also less of a concern with random patterns since 
they act to augment texture already present in the image. Figure 
2 shows an example of a random dot pattern projected onto 
some kiln bricks. 
 

 
       (a)               (b) 
Figure 2. Random dot texture projection using a data projector. 

(a) with ambient illumination (b) with projector only. 

Texture projectors may be simple devices such as DOEs. A 
popular choice of pattern is a 2D binary random dot pattern. 
Similar drawbacks to structured light apply: DOEs suffer from 
poor spatial resolution and while they are cheap to manufacture, 
the initial tooling and patterning costs are high. The Osela 
(Lachine, Canada)1 RPP random dot projector provides up to 
57446 dots over a 45º x 45º field of view. However, the spatial 
resolution (inter-dot spacing) is not as critical as with structured 
light as the goal is not to cover every pixel in the image. Indeed 
it is necessary to leave some pixels unilluminated to allow 

                                                                    
1 http://www.osela.com/products/random-pattern-projector/ 

strong intensity variation within the image. The Microsoft 
Kinect, for example, uses a repeated pseudo-random dot pattern. 
 
One issue with texture projection involving truly random 
patterns is the possibility that if two small patches of the pattern 
are examined, they will be identical. There has been some 
research in preventing this - (Molinier et al., 2008) compared 
5x5 pixel blocks in their pattern, ensuring that all blocks are 
unique. (Lim, 2009) used non-recurring De Brujin sequences 
(de Brujin, 1975) to generate patterns which have no repetition 
along individual epipolar lines. A De Brujin sequence B = (k, n) 
contains all sequences of length n drawn from an alphabet, A, 
with length k, exactly once. For example if A = {0, 1} a valid 
sequence B(2, 3) = 00010111. Recently (Konolige, 2010) 
presented a technique for generating 'ideal' patterns for block 
matching algorithms also using De Bruijn sequences, but with 
an additional optimisation step. After an initial pattern is 
generated, simulated annealing is used to adjust it such that the 
average similarity between two blocks is minimised. The 
process also aims to generate patterns that are less affected by 
blurring and phase noise introduced by spatial offsets between 
the camera and projector. These patterns exploit the fact that if 
the epipolar constraint is satisfied, and the images are rectified 
such that matches lie along horizontal scanlines, then the pattern 
need only be unique in the horizontal direction (Hartley and 
Zisserman, 2003). 
 
These studies quantify performance in different ways. Lim 
compared results to a ground truth disparity map, but it is not 
specified how the ground truth is generated. Konolige compared 
the drop-out (effectively the percentage of unmatched pixels) 
for various patterns and also performed metric accuracy 
measurements on the final pattern using a planar target. 
 
There are a number of commercially available stereo systems 
that include texture projectors. The IDS (Obersulm, Germany) 
Ensenso2 series includes either a blue or infrared random dot 
projector and is able to produce depth maps in realtime (30 fps) 
with a modern desktop computer. The Tordivel3 (Oslo, Norway) 
Scorpion Stinger is another short (203 mm) baseline system 
which includes a random dot laser projector.  
 
2.3 Laser speckle 

Laser speckle is a phenomenon caused by the mutual 
interference of monochromatic photons in a laser beam (Imai, 
1986). Speckle is easily generated using either an optical fibre 
or a ground glass diffuser which allows for cheap and compact 
systems (Schaffer et al., 2010). Figure 3 shows an example of 
such a pattern. 

 
Figure 3 Laser speckle pattern produced by a 532 nm laser and a 

200 µm fibre. 

Since the speckle pattern is random, it may be used as a source 
of texture. (Dekiff et al., 2010) used speckle generated using a 
                                                                    
2 https://en.ids-imaging.com/ensenso-stereo-3d-camera.html 
3 http://www.tordivel.no/ 
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ground glass diffuser for in-vivo medical imaging. There are a 
number of parameters which may be varied when using speckle 
projection, primarily the size of the projected speckles which 
may be controlled using focusing optics. In Dekiff's examples, 
speckle spots 8 pixels wide were used leading to low resolution 
(by stereo standards) measurements with only 3900 3D points 
reconstructed. However, the technique was able to achieve 
errors of 0.058 mm when reconstructing a spherical surface 
from a 1 m standoff. 
 

3. LIDAR TEXTURE PROJECTION 

In this section, a novel approach to texture projection is 
discussed, namely the use of a visible-beam scanning LIDAR. 
By imaging the laser spot while the system is scanning, it is 
possible to build up a random dot pattern which may then be 
used with an unmodified stereo matching algorithm. Once 
matching is complete, the LIDAR is able to fill any gaps in the 
resulting disparity map. 
 
A high level overview of the method is as follows: 
 

1. Set the LIDAR to scan within the field of view of the 
two cameras 

2. At each step in the LIDAR scan, acquire a stereo pair 
with a short exposure time such that only the laser 
spot is visible 

3. Once the scan is complete, merge the images together 
to form a stereo pair of the scene with a random dot 
pattern overlaid. 

4. Pass the stereo images to the matcher 
5. Optionally infill any unmatched regions using the 

LIDAR 
 
Although reconstruction using this method is necessarily slower 
than using a static pattern, since it is limited to the camera frame 
rate, it offers several advantages. At each point in the scan, the 
location of the LIDAR spot is determined in the left and right 
images. Once the scan is complete, these locations form a 
ground truth disparity map which can be used to evaluate 
matching results. Since each image in the scan corresponds to a 
single LIDAR range, it is possible to generate bespoke texture 
patterns. If the image is analysed prior to scanning it is also 
possible to identify regions with low texture and preferentially 
scan in these locations. The use of a visible laser beam enables 
texture projection over a large depth of field without 
illumination issues. Finally using a suitable scanning platform 
allows an effective resolution much higher than that of a 
projector or DOE, if desired. 
 
It would also be possible to use a scanned laser beam, however 
the LIDAR allows for robust measurements on a variety of 
surfaces, even if the spot is not visible to the camera due to low 
reflectance. Also, if the LIDAR is cross-calibrated such that the 
locations of measured points can be mapped to 2D image 
coordinates, it is possible to generate simulated random dot 
images. This also allows the use of scanning LIDAR with faster 
acquisition rates than that of the camera (i.e. step 2 is not 
required). 
 
3.1 System model and geometry 

The LIDAR (Dimetix FLS-C 10) and scanning gimbal mount 
(Newmark GM-12) are positioned in-between the two cameras 
(Imaging Source DMK23UM01 with 8mm lenses) as shown in 
Figure 4. 

 
Figure 4. Stereo camera and scanning LIDAR system. 

The Dimetix FLS-C 10 has a specified accuracy of ±1mm on 
natural surfaces at a range of up to 65m. In its highest resolution 
mode, acquisition at up to 20Hz is possible. The Newmark GM-
12 mount has a specified positioning accuracy of 0.02 °. 
 
The stereo system was calibrated using Zhang's method (Zhang, 
2000) as implemented in the OpenCV library (Bradski, 2000) 
with a reprojection error of 0.10 pixel for each camera. The 
LIDAR was cross-calibrated using the method described in 
(Veitch-Michaelis et al., 2015), giving the rotation R and 
translation T between the two systems. The geometric 
relationship between the two coordinate systems is shown in 
Figure 5. 

 
Figure 5 Geometric relationship between the stereo camera 
coordinate system, centred on the left camera (A) and the 

LIDAR coordinate system (B). 

3.2 LIDAR spot location 

The LIDAR spot was modelled as a 2D Gaussian. The beam 
that the Dimetix FLS-C 10 produces is not rotationally 
symmetric. Due to different beam divergences in each axis, the 
spot appears to be slightly rectangular though this is more 
pronounced at ranges under 1m. Coarse peak location was 
obtained by locating the maximum pixel in the image, subject to 
an intensity threshold of 60. 
 
This threshold was chosen experimentally and worked well in 
testing. The camera exposure settings were chosen to supress 
ambient illumination so the laser spot was always the brightest 
feature in the image. The peak location was then refined to sub-
pixel using a least-squares fit to a 2D Gaussian function. It was 
necessary to model the peak with variable width, height and 
rotation due to perspective effects. 
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3.3 Ground truth generation 

A ground truth disparity map is necessary in order to evaluate 
the performance of different texture projection techniques and 
indeed stereo match performance in general. Counting the 
number of matched pixels that satisfy a left-right consistency 
check is not ideal as this assumes a priori that the stereo 
matcher is returning correct results. Since the LIDAR scan is 
sparse, it is not possible to obtain a ground truth disparity for 
every pixel without interpolation. Therefore, two ground truth 
measures are given. The first uses the sparse LIDAR points and 
is considered a 'gold standard' as it is based on direct 
observation of the LIDAR spot in each image. The second 
method for ground truth generation is based on interpolation of 
these sparse points using inpainting (Bertalmio et al., 2001). 
 
Figure 6a shows a scene which was specifically arranged to be 
difficult to match. The rear wall and hemispherical chair contain 
little intensity variation. Sparse LIDAR ground truth from 
35,000 measurements is shown in Figure 6b. It was necessary to 
mask image regions which were occluded. The occlusion mask 
was created by binning the LIDAR disparity map by a factor of 
five to reduce the spacing between measurements. 
Morphological greyscale opening was applied to fill small holes 
while ignoring occluded regions. This image was then up-
sampled to the original image size and any pixel with a disparity 
of zero was defined as occluded. The final result is shown in 
Figure 6c. This mask is combined with the inpainted ground 
truth, Figure 6d, to produce the final ground truth shown in 
Figure 6e. 
 
The interpolated ground truth appears to be a reasonable 
representation of the scene, although fine details are inevitably 
lost. For evaluating texture projection, coarse ground truth is 
still useful as homogenously textured regions tend to have 
smoothly varying depth. Higher resolution scans would provide 
more accurate ground truth, but the example in Figure 6 shows 
that even with only 3% of the pixels labelled with a known 
ground truth, inpainting is an effective approximation. 

 
3.4 Random dot pattern generation 

Random dot patterns were generated from LIDAR by 
combining images obtained at every step in the scan. A random 
sample of these images was stacked to form the desired dot 
pattern. Starting with an empty image, the pattern was updated 
by taking the element-wise maximum of the current pattern and 
each new image. An example pattern created using this method 
is shown in 
Figure 7. 
 

 
Figure 7 Random dot pattern generated by stacking 35,000 

LIDAR spot images. 

Acquiring several tens or even hundreds of thousands of images 
may be impractical. With compression the storage requirements 
are modest, storing intermediate images limits the process to the 
frame rate of the camera. Commercial scanning LIDAR, such as 
the Leica ScanStation P30/P404, are available with capture rates 
up to 1M pt/sec. Since the LIDAR was cross-calibrated with the 

                                                                    
4 http://www.leica-geosystems.co.uk/ 

 
 (a)                             (b)             (c) 

 
               (d)     (e) 
Figure 6 (a) Left stereo image (1.23 MP)  (b) Sparse LIDAR ground truth (35000 points) (c) Occlusion mask, black = occluded (d) 
Inpainted LIDAR ground truth (e) Inpainted and masked LIDAR ground truth. The colour map in (e) is consistent for (b) and (d). 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B5, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B5-599-2016

 
602



 

stereo system, it was possible to generate simulated random dot 
patterns. 
 
Simulated random dot patterns were produced by taking the 
LIDAR 3D points, 𝑿𝑳, and mapping them to the 2D left and 
right image locations, 𝒙𝒄𝒍 and 𝒙𝒄𝒓. Given the rotation and 
translation between the two systems, 𝑹 and 𝑻, and the 
projection matrix of each camera 𝑷𝒍,𝒓 the transformation is 
given in Equation 1: 
 

𝒙𝒄𝒍,𝒄𝒓 = 𝑷𝒍,𝒓(𝑹𝑿𝑳 + 𝑻)   (1) 
 
A white circle with a radius of 5 pixels was placed at each 
location in the image. A Gaussian filter with a 3x3 pixel kernel 
was applied so that each point resembled a laser spot. If the 
LIDAR used, returns intensity information, this can be used to 
colour each point according to its surface reflectance.  
Figure 8 shows such a simulated dot pattern, it appears very 
similar to the real one, but does not account for distortion of the 
laser spot on the angled surfaces. 
 

 
Figure 8 Simulated random dot pattern, generated from 35,000 
LIDAR points mapped to image coordinates. Each point is a 5 

pixel white circle and a Gaussian convolution was applied to the 
image. 

3.5 Stereo matching 

Matching was performed using the Gruen-Otto-Chau Adaptive 
Least Squares Correlation (Gotcha) algorithm (Gruen, 1985), 
(Otto and Chau, 1989), (Shin and Muller, 2012). Gotcha is a 
region growing stereo matcher that has been demonstrated to be 
highly accurate on both terrestrial and planetary images (Day 
and Muller, 1989) as well as close-range and medical imagery 
(e.g. Deacon et al., 1991). The version used was a 5th  
generation implementation developed at Mullard Space Science 
Laboratory (MSSL). Gotcha takes as input a number of seed 
correspondences from which a disparity map is 'grown'. 
Unusually among stereo matchers, Gotcha is not constrained by 
a maximum or minimum disparity since the search location for 
a particular pixel is derived from an initial correspondence 
generated using a feature detector like SIFT (Lowe, 2004). In 
well textured regions, Gotcha is able to produce dense disparity 
maps from only a few seed points. However, in weakly texture 
regions, reconstruction is liable to fail. In this regard, Gotcha 
could be considered accurate, but cautious; if there is a low 
confidence that a match is correct it will not be returned. Gotcha 
was used with default settings: 8-connected neighbours, a patch 
size of 12, and a confidence (eigenvalue) threshold of 100 (see 
(Shin and Muller, 2012) for explanations of these parameters). 

 
4. RESULTS 

Stereo pairs and LIDAR scans for three test scenes were 
acquired: Corner (Figure 9a), Chair (Figure 10a) and Bricks 
(Figure 11a). In the corner and chair scenes, ambient, real 
LIDAR random dot (RLRD) and simulated LIDAR random dot 
(SLRD) were acquired. In the brick scene, additional stereo 
pairs were captured with a Kinect pseudo-random dot pattern 
(KIN) and a random dot image, generated from a data projector 
(DP).  
 
Performance was evaluated in several ways: 
 

1. Percentage of successfully matched pixels (PM) 
2. Mean disparity error and standard deviation compared 

to the LIDAR (sparse) ground truth (DES) 
3. Mean disparity error and standard deviation compared 

to the inpainted ground truth (DEI) 
4. Percentage of matched pixels with a disparity error  

<= 2 px (PM2) and <= 1 px (PM1) 
 
Quantitative results for each scene are shown in Table 1 (Chair), 
Table 2 (Corner) and Table 3 (Bricks). Top performances are 
marked in bold. Note that the data projector did not cover the 
full field of view. 
 
 DES (px) DEI (px) PM 

(%) 
PM1 
(%) 

PM2 
(%) 

AMB 1.2 ± 5.6 2.3 ± 7.5 8.5 61.2 84.9 
RLRD 0.6 ± 8.6 1.5 ± 9.9 46.3 67.2 93.0 
SLRD 0.8 ± 23.5 2.1 ± 32.0 54.0 77.6 94.8 

Table 1 Match performance for Chair scene. 

 DES (px) DEI (px) PM 
(%) 

PM1 
(%) 

PM2 
(%) 

AMB 3.0 ± 3.2 2.3 ± 7.5 16.2 18.5 34.8 
RLRD -0.3 ± 1.2 1.3 ± 14.9 53.4 71.3 96.3 
SLRD -0.3 ± 1.6 1.4 ± 16.5 54.1 70.3 93.8 
Table 2 Match performance for Corner scene. 

 DES (px) DEI (px) PM 
(%) 

PM1 
(%) 

PM2 
(%) 

AMB 0.5 ± 6.8 1.3 ± 6.3 38.6 43.1 63.2 
RLRD 0.6 ± 2.9 1.7 ± 2.6 53.1 71.3 96.3 
KIN 1.25 ± 20 2.5 ± 13 57.4 26.0 54.4 
DP -0.6 ± 4.2 1.68 ± 2.6 51.3 42.9 64.7 
SLRD 0.5 ± 5.9 1.6 ± 4.3 54.1 33.8 55.4 

Table 3 Match performance for Bricks scene 

In the Corner and Chair scenes, Gotcha struggles to match the 
ambient light image alone. This is not surprising given the 
general lack of texture in each of the stereo pairs. Using the 
RLRD texture, the back wall in both images is well matched. 
There are still difficulties with some surfaces, for example the 
chair edge and the left wall in Corner are challenging due to 
large changes in perspective between views. The differences 
between simulated and real LIDAR random dots are small. 
 
In some cases, such as the bowl of the chair, SLDR texture 
provides more matches. In others, such as the doll's head, 
RLDR performs better. Both methods show a significant 
improvement over passive stereo, with 4-5 times more pixels 
matched. 
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Figure 9 Chair scene. (a) Ambient light (b) LIDAR random dot (30 k points) (c) Ground truth disparity. Match results from Gotcha 

(d) Ambient, (e) LIDAR random dot (f) Simulated LIDAR random dot.  

 

 
Figure 10 Corner scene. (a) Ambient light (b) LIDAR random dot (80 k points) (c) Ground truth disparity. Match results from 

Gotcha (d) Ambient, (e) LIDAR random dot (f) Simulated LIDAR random dot. 

 

 

 
Figure 11 Bricks scene. (a) Ambient (b) LIDAR random dot (25 k points) (c) Kinect projector (d) Data projector (e) Ground truth 

disparity. Match results from Gotcha are shown on the second row (f) Ambient, (g) LIDAR random dot (h) Kinect projector (i) Data 
projector (j) Simulated LIDAR random dot. 
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In the Bricks scene, there are good match results on the brick 
surfaces.  The surface behind the bricks (a computer chassis) 
presents a challenging, specularly reflective, target. The 
projected patterns are all able to match some of the rear surface, 
though the DP texture suffers with specular reflection far more 
than the laser-based methods. Aside from this, the DP produced 
the cleanest results visually and almost all the illuminated 
regions are matched. This scene was at a closer range than 
Corner and Chair and the laser spot size was larger, even with 
very short exposure times. This manifests as coarser disparity 
maps using RLDR and SLDR. 
 
Overall, active stereo matching can produce superior match 
results to passive stereo matching. LIDAR random dot patterns 
are an effective alternative to other projection methods. The 
ground truth data was also shown to be accurate, with most 
textures giving sub-pixel mean disparity errors. The inpainted 
ground truth is a useful metric for dense disparity map 
evaluation, but tended to have an error of 1-2 pixels. 
 

5. TEXTURE ANALYSIS 

One approach to more intelligent image texturing is to attempt 
to predict which regions of the image are likely to be matched. 
These regions may not require additional texture and may even 
be more poorly matched with additional texture. The problem is 
to determine whether there is sufficient local texture for the 
image to be matched with high probability. This can be posed in 
the form of binary classification, with the goal of labelling each 
pixel with a predicted 'match' or 'no match' label. 
 
Match prediction was investigated using a support vector 
machine (SVM) (Suykens and Vandewalle, 1999). An SVM 
takes a set of labelled multi-variable training data, and attempts 
to find the hyperplane that has, on average, the largest distance 
between the nearest points in each output class (i.e. match or no 
match). The proposed method was specifically developed for 
use with Gotcha. Since Gotcha takes as input a list of seed 
points, intuitively there is a low probability that a pixel far from 
any seed point will be matched. On the other hand, if there is a 
lone seed point in a large image region with good texture the 
matcher should be able to grow the disparity map into that 
region. Two per-pixel features were used for classification: the 
Euclidean distance to the nearest seed point and the image 
entropy. The distance to the nearest seed point (DNSP), a 
nearest-neighbour search, can be performed exactly on a 
Graphics Programming Unit (GPU) very quickly, around 50 ms 
for a 1 MP image on an AMD Radeon 6970M. 
 
(Egnal et al., 2004) found that entropy (Shannon, 1948) was a 
good metric for predicting unmatched pixels. Entropy, 𝐻, is 
defined for an image as 𝐻 = − 𝑝2 log6 𝑝22  where 𝑝2 is the 
probability that a pixel has a particular intensity value and I runs 
from 0-255 for an 8-bit image. 
 
Training data was generated using 15 stereo pairs from the 
Middlebury data set (Scharstein, 2002), with 14.8 Mpx of 
classified pixels. These images were matched with Gotcha, and 
the entropy and DNSP calculated for each left image. A 2D 
histogram of the data is shown in Figure 12. Results for 
different neighbourhood sizes (3 x 3, 5 x 5, 7 x 7 and 9 x 9) 
were produced, but there was little difference beyond 5 x 5. 
Both entropy and DNSP alone are quite effective at predicting 
whether pixels will be matched or not. Few pixels are matched 
with a DNSP > 30 or a local entropy of < 1.8. 
 

 
Figure 12. Histogram of matched pixels given local entropy and 
distance to nearest seed point, generated from 15 stereo pairs. 

The SVM classifier trained on this data performed with an 
unmatched prediction rate of 90.26% and a matched prediction 
rate of 53%. This result is acceptable since it is the unmatched 
pixels that are of interest. After the SVM was used to classify 
pixels in an input image, morphological dilation was used to fill 
holes in the prediction map. The prediction result for Bricks is 
shown in Figure 13. 
 

 
Figure 13 (a) Predicted matched pixels for Bricks scene (white 

= match) (b) Actual Gotcha disparity map for Bricks scene. 

The unmatched classification accuracy was 91% and the 
matched classification accuracy was 61%. Using this prediction, 
texture projection was limited to the predicted unmatched 
regions, giving a final disparity map shown in Figure 14. 
 

 
Figure 14 Bricks scene, Gotcha disparity map generated using a 

combination of ambient illumination and LIDAR random dot 
texture. 

The image contains both the smooth reconstruction on the brick 
faces from ambient illumination and the additional 
reconstruction from LIDAR random dot texture on the rear 
surface. The central gap in the disparity map remains since the 
prediction map is incorrect there. The number of LIDAR points 
used was reduced from 73970 to 43741, a 40% decrease. 
Intelligent image texturing is most effective if the image 
contains regions of both strong and weak texture. 
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6. CONCLUSIONS 

This paper proposes the use of a visible beam scanning LIDAR 
for evaluating texture projection methods, as well as generating 
artificial texture using the LIDAR laser spot itself. A cross-
calibrated LIDAR can provide sub-pixel accurate sparse ground 
truth and pixel-accurate dense ground truth using interpolation. 
Cross-calibration allows either direct imaging of the LIDAR or 
simulated imaging of the laser spot.  Texture generated from a 
LIDAR scan, both real and simulated, provides comparable 
stereo match performance to texture generated via random dot 
patterns or DOEs with more flexibility over dynamic range, 
resolution and scan size. For scenes that contain a mixture of 
well- and poorly-textured regions, it is possible to predict which 
pixels will be matched with high enough accuracy that the 
number of additional LIDAR points is significantly reduced. 

Further experiments will compare additional texture projection 
methods such as laser speckle and investigate ways to improve 
simulated texture patterns.   
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