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Abstract 

Parkinson’s disease (PD) is a neurodegenerative disorder caused by loss of dopaminergic 

and serotoninergic signalling. A number of pathogenic mechanisms have been implicated 

including loss of mitochondrial function at the level of complex I, and lysosomal metabolism 

at the level of lysosomal glucocerebrosidase (GBA1). In order to investigate further the 

potential involvement of complex I and GBA1 in PD, we assessed the impact of loss of 

respective enzyme activities upon dopamine and serotonin turnover. Using SH-SY5Y cells, 

complex I deficiency was modelled by using rotenone whilst GBA1 deficiency was modelled 

by the use of conduritol B epoxide (CBE). Dopamine, its principal metabolites, and the 

serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the extracellular medium were 

quantified by HPLC. Inhibition of complex I significantly increased extracellular 

concentrations of 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-HIAA. Comparable results 

were observed with CBE. These results suggest increased monoamine oxidase activity and 

provide evidence for involvement of impaired complex I or GBA1 activity in the 

dopamine/serotonin deficiency seen in PD. Use of extracellular media may also permit 

relatively rapid assessment of dopamine/serotonin metabolism and permit screening of 

novel therapeutic agents. 

 

Keywords: Parkinson disease, complex I, glucocerebrosidase, dopamine metabolism, 

monoamine oxidase (maximum 6). 

Chemical compounds:  dopamine (PubChem CID: 681), DOPAC (PubChem CID: 547), HVA 

(PubChem CID: 1738), 5-HIAA (PubChem CID: 1826), 3-OMD (PubChem CID: 38853).   



3 
 

Abbreviations 

3-MT, 3-methoxytyramine; 

3-OMD, 3-O-methyldopa; 

5-HIAA, 5-hydroxyindoleacetic acid; 

5-HTP, 5-hydroxytryptophan; 

AADC, aromatic amino acid decarboxylase; 

ALDH, aldehyde dehydrogenase; 

BH4, tetrahydrobiopterin; 

CBE, conduritol B-epoxide; 

COMT, catechol-O-methyl transferase; 

DAT, dopamine transporter; 

DOPAC, 3,4-dihydroxyphenylacetic acid; 

ETC, electron transport chain; 

GBA1, lysosomal glucocerebrosidase; 

GSH, reduced glutathione; 

HPLC, high performance liquid chromatography; 

HVA, homovanillic acid; 

L-DOPA, L-dihydroxyphenylalanine; 

MAO, monoamine oxidase; 

PD, Parkinson’s disease; 

PLP, pyridoxal phosphate; 

TH, tyrosine hydroxylase; 

TPH, tryptophan hydroxylase; 

VMAT2, vesicular monoamine transporter 2; 
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1. Introduction 

 

Parkinson’s disease (PD) is a chronic and progressive neurodegenerative disorder of 

dopaminergic neurons with characteristic symptoms that include tremor, rigidity and 

bradykinesia. Despite the considerable research that has been carried out in this field, the 

primary cause of PD is still unknown. Consequently, current therapies provide a temporary 

symptomatic relief by aiming to increase dopamine availability. These treatments vary 

depending on the stage of the disease, but gold standard treatment for PD is the dopamine 

precursor L-dihydroxyphenylalanine (L-DOPA) along with inhibitors of the dopamine 

degradation enzymes (Birkmayer et al., 1975). 

Concerning putative mechanisms, loss of brain mitochondrial complex I activity has been 

reported in patients with PD (Schapira et al., 1990). Observations relating to the 

parkinsonian features associated with  exposure to complex I inhibitors, such as rotenone 

and MPP+, provide credence for deficiency of complex I being a factor in PD. (Dauer and 

Przedborski, 2003). With regards to the consequences of reduced complex I activity, a 

number of mechanisms have been proposed, including reduced ATP formation and 

oxidative stress.  

Neuronal complex I activity appears to exert particular control over mitochondrial ATP 

formation and losses of activity comparable to those seen in PD can be expected to lead to 

compromised brain energy metabolism (Davey and Clark, 1996). Furthermore, in the 

presence of oxidative stress, the magnitude of complex I loss required to inhibit ATP 

generation is significantly less (Davey et al., 1998). Oxidative stress occurs as a result of 

excessive generation of oxidising molecules, such as reactive oxygen and nitrogen species, 
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and/or loss of antioxidant capacity for scavengers such as alpha-tocopherol, ascorbate and 

reduced glutathione (GSH; Barker et al., 1996; Bolanos et al., 1995; Riederer et al., 1989). 

Inhibition of the mitochondrial respiratory chain is associated with increased generation of 

reactive oxygen species, a situation that appears to precede impairment of energy 

metabolism (Jacobson et al., 2005). 

With regards to antioxidant status, decreased GSH levels have been reported in the brain of 

patients with PD (Perry et al., 1982; Sian et al., 1994). Furthermore, comparable losses have 

been reported in patients deemed to have pre-symptomatic PD (Jenner et al., 1992). 

Although GSH levels in the pre-PD patients are decreased to comparable level to those seen 

in PD, it is of note that complex I activity was not decreased (Jenner et al., 1992). This raises 

the possibility that GSH loss precedes and contributes to the loss of complex I activity, a 

hypothesis that is supported by a number of observations in both cellular and animal 

models (Barker et al., 1996; Bolanos et al., 1996; Heales et al., 1994; Heales et al., 2011). 

Another potential mechanism implicated in PD pathogenesis is failure of lysosomal 

autophagy (Lynch-Day et al., 2012) leading to impaired protein processing, e.g. alpha-

synuclein and formation of Lewy bodies that  are characteristic of PD (Beyer, 2007). In post 

mitotic neurons, this failure of autophagy may also lead to the accumulation of defective 

mitochondria and provides a further potential mechanism for the compromised 

mitochondrial function in PD. Support for lysosomal involvement in PD comes from the 

study of patients with either homozygous mutations (Gaucher disease) or heterozygous 

mutations in lysosomal glucocerebrosidase (GBA1). Such individuals have a significantly 

increased risk of developing PD (Neumann et al., 2009). A number of mechanisms have been 

proposed to link the increased risk of PD with impairment of GBA1. Amongst these are 
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aberrant alpha-synuclein processing, oxidative stress and mitochondrial defects including 

loss of mitochondrial respiratory chain activity (Cleeter et al., 2013; Mazzulli et al., 2011; 

Osellame et al., 2013; Sidransky and Lopez, 2012). The link between PD and loss of GBA1 

activity is further evidenced by reports of altered dopamine metabolites in CSF of patients 

with Gaucher/PD (Alonso-Canovas et al., 2010; Machaczka et al., 2012). In such studies, 

compromised serotonin metabolism was also implicated. 

In view of the fact that loss of dopaminergic neurons is the ultimate consequence for all the 

possible mechanisms considered in PD, its metabolism will be briefly reviewed. Serotonin 

metabolism will also be considered, due to the possible involvement of this 

neurotransmitter in PD (Olivola et al., 2014) and the clear overlap between dopamine and 

serotonin metabolism. 

Synthesis of dopamine commences with the transformation of the amino acid L-tyrosine 

into L-DOPA by the tetrahydrobiopterin (BH4)-dependent tyrosine hydroxylase (TH). This is 

then converted by aromatic amino acid decarboxylase (AADC), a pyridoxal phosphate (PLP) 

requiring enzyme, to dopamine [Fig 1]. L-DOPA that is not metabolised via AADC can be 

converted to 3-O-methyldopa (3-OMD) via catechol-O-methyl transferase (COMT) [Fig 1]. As 

dopamine is not stable at physiological pH, it is internalised and stored in synaptic vesicles 

by vesicular monoamine transporter 2 (VMAT2; Chaudhry et al., 2008). This transporter uses 

a proton gradient generated by the vacuolar-type ATPase proton pump. In these vesicles the 

pH is two units lower than in the cytosol, so dopamine does not spontaneously oxidise 

(Guillot and Miller, 2009). It has been proposed that TH, AADC and VMAT2 interact forming 

a complex to make dopamine internalisation in vesicles as efficient as possible (Cartier et al., 

2010). When acting as a neurotransmitter, dopamine is released into the synaptic cleft and 
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binds to receptors. After its release, dopamine is removed from the synaptic cleft by the 

pre-synaptic neuronal terminal cells which capture the dopamine via the dopamine 

transporter (DAT; reviewed by Eriksen et al., 2010). The internalised dopamine can be either 

recycled or degraded. For recycling, dopamine is sequestered into synaptic vesicles by 

VMAT2. The non-recycled neurotransmitter is further metabolised via two parallel 

pathways. In the first route, monoamine oxidase (MAO) and aldehyde dehydrogenase 

(ALDH) metabolise dopamine to 3,4-dihydroxyphenylacetic acid (DOPAC). Then, DOPAC is 

subsequently converted to homovanillic acid (HVA) by COMT. In the second route, COMT 

first transforms dopamine to 3-methoxytyramine (3-MT). HVA is then formed by the 

consecutive action of MAO and ALDH [Fig 1]. 

Dopamine metabolism is closely related to serotonin synthesis and degradation, because 

both pathways share some enzymes [Fig 1]. Serotonin synthesis starts with the oxidation of 

L-tryptophan by tryptophan hydroxylase (TPH) and the cofactor BH4. This reaction is the 

rate limiting step in this pathway and produces 5-hydroxytryptophan (5-HTP). 5-HTP is 

decarboxylated by AADC with PLP as cofactor, synthesising serotonin. As with dopamine, 

serotonin has to be quickly degraded after its action. To accomplish this, MAO and ALDH 

transform serotonin into 5-hydroxyindoleacetic acid (5-HIAA), its final degradation 

metabolite. 

In view of the clear link between PD and loss of mitochondrial and lysosomal function, in 

this study we have examined the effects of loss of complex I or GBA1 upon dopamine and 

serotonin metabolism. Extracellular media was evaluated to ascertain whether relatively 

rapid insight into the metabolism of these neurotransmitters could be achieved. 
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2. Materials and methods 

2.1. Materials 

All the chemicals were supplied by Sigma Aldrich (Poole, UK), Thermo Fisher Scientific UK 

Ltd (Loughborough, UK) and VWR International Ltd (Lutterworth, UK). C18HS column, 250 

mm × 4.6 mm with a pore size of 100A and a particle size of 5um, was purchased from 

Kromatek (Dunmow, UK).  

2.2. Tissue culture and L-DOPA treatment 

Undifferentiated SH-SY5Y cells obtained from the European Collection of Cell Cultures 

(Public Health England, Salisbury, UK) were used in this study, as they have been widely 

used for PD research (Alberio et al., 2014; Hong-rong et al., 2010; Khwanraj et al., 2015; 

Lopes et al., 2010; Noelker et al., 2015). SH-SY5Y cells between passage 21 and 24 were 

seeded at a density of 6×103 cells/cm2 with DMEM/F-12 supplemented with 10% FBS and 2 

mM L-glutamine. Cells were grown at 37°C in a 5% CO2 incubator. On day 6 after seeding, 

SH-SY5Y cells were treated with rotenone at concentration of 100 nM (Aylett et al., 2013). In 

parallel, SH-SY5Y cells were seeded in supplemented DMEM/F-12 media containing 100 μM 

conduritol B-epoxide (CBE), a selective and irreversible GBA1 inhibitor. On day 7 after 

seeding, the cells were exposed to L-DOPA, the immediate precursor of dopamine, to assess 

dopamine metabolism [Fig 1] (Woodard et al., 2014). SH-SY5Y cells were treated for 1 hour 

with 100 μM L-DOPA in DMEM/F-12 phenol red free media, supplemented with 10% of FBS. 

Media was collected and mixed with perchloric acid to a final concentration of 0.4 M. 

Samples were incubated for 10 min at 4°C in the dark and centrifuged at 12000×g for 5 min 

at 4°C. Supernatant was collected and analysed by high performance liquid chromatography 
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(HPLC) coupled to an electrochemical detector. The appearance of dopamine and its 

metabolites in the cell culture medium was considered as a reflection of cellular dopamine 

metabolism. To assess serotonin turnover, the MAO product 5-HIAA was also quantified in 

the cell culture medium. 

In order to confirm that L-DOPA was being converted to dopamine through AADC, cells were 

incubated with 10 μM 3-hydroxybenzylhydrazine dihydrochloride (NSD-1015) for 24 hours 

before L-DOPA treatment. 

 

2.3. High performance liquid chromatography 

Dopamine, 3-OMD, HVA, DOPAC and 5-HIAA were quantified using reverse-phase HPLC with 

an electrochemical detector, following the method of Allen et al. (2013) with some 

modifications for the contemporary detection of all five compounds. The stationary phase 

was maintained at 27°C. The mobile phase (flow rate of 1.5 ml/min) was aqueous with 16% 

methanol, 20 mM sodium acetate trihydrate (pH 3.45), 12.5 mM citric acid monohydrate, 

0.1 mM EDTA sodium and 3.35 mM 1-octanesulfonic acid. 50 µl of each sample were 

injected into the system. At voltage of 450 mV for the detector electrode and 20 mV for the 

screening electrode, sample quantification was calculated against an external standard 

mixture of 500 nM of all five compounds made in ultrapure water with few drops of 12 M 

hydrochloric acid. Peak area from the electrochemical detector was quantified with 

EZChrom EliteTM chromatography data system software, version 3.1.7 (JASCO UK Ltd., Great 

Dunmow, UK). 
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2.4. GBA1 Activity 

GBA1 activity was measured using the synthetic substrate 4-methylumbelliferone-b-

glucopyranoside as previously described (Burke et al., 2013). 

2.5. Statistical analysis 

Results are expressed as mean ± standard error of the mean (SEM). Between 5 and 16 

independent cell culture preparations were utilised. Individual comparisons of means were 

made using unpaired Student’s t-test and multiple comparisons of means was made using 

one-way ANOVA followed by Tukey’s post hoc test using GraphPad Prism software 

(GraphPad Software INC. San Diego, CA, USA). In all cases p<0.05 was considered to be 

significant. 

 

3. Results 

In the absence of L-DOPA treatment, it was not possible to detect dopamine and its 

metabolites in the cell culture medium (data not shown). However, treatment with L-DOPA 

for 1 hour permitted clear quantification [Fig 2]. NSD-1015 treatment (n=5) significantly 

decreased dopamine formation confirming L-DOPA conversion to dopamine via AADC 

(control mean 953±142.3 nmol/L vs. NSD-1015 treated mean 135±34.8 nmol/L; p<0.01). In 

contrast to dopamine metabolism, 5-HIAA was detectable in the cell culture medium and 

did not require addition of a precursor. 

Rotenone was used to model of complex I deficiency. A concentration of 100 nM was used 

as this has recently been demonstrated by our group to create an approximate 50% loss of 
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complex I activity in SH-SY5Y cells (Aylett et al., 2013). Although 3-OMD and dopamine 

concentrations were unaffected by rotenone treatment [Fig 2], a significant increase in the 

concentration of DOPAC was observed [Fig 2]. On the contrary, HVA was significantly lower 

when compared with the control cells [Fig 2]. Concerning serotonin, 5-HIAA was also 

significantly increased in the cell culture medium of the rotenone treated cells [Fig 2]. 

Treatment of the cells with CBE resulted in abolition of GBA1 activity (control = 280 

nmol/hr/mg of protein vs CBE treated = 2 nmol/hr/mg protein). GBA1 inhibition, similarly to 

rotenone, resulted in a significant decrease in HVA and a significant increase in 5-HIAA 

compared with control cells [Fig 2]. However, GBA1 inhibition led to a significantly lower 

concentration of 3-OMD compared with complex I inhibition and a marked elevation in 

DOPAC compared with both controls and complex I inhibition [Fig 2]. 

 

4. Discussion 

PD is a neurodegenerative condition affecting dopaminergic and serotonergic systems 

(Dauer and Przedborski, 2003; Olivola et al., 2014). In view of this and the evidence for 

compromised mitochondrial and lysosomal function in PD, we studied the effects of loss of 

complex I or GBA1 activity on dopamine and serotonin turnover. To achieve this we 

analysed the cell culture medium bathing SH-SY5Y cells neural cell line derived from 

neuroblastoma that has been widely used in PD studies (Hong-rong et al., 2010; Khwanraj et 

al., 2015; Lopes et al., 2010). Cell culture medium was considered as a potential means for 

rapid assessment of cellular dopamine and serotonin turnover, i.e. analogous to the use of 

CSF to evaluate CNS dopamine and serotonin metabolism (Kurian et al., 2011).   
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Although SH-SY5Y cells have the potential to become dopaminergic, this cell line does not 

synthesise or store appreciable amounts of intracellular dopamine under basal conditions 

(Balasooriya and Wimalasena, 2007). This is also reflected here by the lack of detectable 

extracellular dopamine, DOPAC and HVA in cells not incubated with L-DOPA. However, as 

expected, provision of L-DOPA resulted in an AADC-dependent appearance of dopamine and 

its metabolites in the extracellular medium. In contrast, endogenous serotonin metabolism 

appeared able to proceed, as evidenced by the detection of 5-HIAA in the cell culture 

medium. This suggests that serotonin precursors are available under basal conditions and is 

consistent with the reported ability of these cells to synthesise serotonin (Islahudin et al., 

2014).   

In order to model the partial complex I deficiency reported in PD, cells were pre-treated 

with the established complex I inhibitor, rotenone. Using this approach, complex I inhibition 

had no effect on levels of dopamine or 3-OMD. This suggests that rotenone is not having 

generalised effects resulting, e.g. from loss of cell viability, in non-specific discharge of 

cellular contents into the extracellular medium. However, when considering dopamine 

metabolites, DOPAC was significantly increased and HVA decreased. Whilst the mechanism 

for this differential effect is not known, inspection of the metabolic pathway for dopamine 

[Fig 1] could point to an increase in MAO activity and/or a reduction in COMT activity. 

Further insight into the potential mechanism may come by considering the serotonin 

metabolite, 5-HIAA. In rotenone treated cells, this metabolite was significantly elevated. 

Formation of 5-HIAA also occurs via MAO activity. Although further work is clearly required 

to ascertain whether these findings are occurring as a result of increased MAO activity, this 

suggestion is supported by the report of increased MAO activity in post mortem PD brain 
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and intracellular studies following rotenone treatment (Birkmayer et al., 1975; Sai et al., 

2008). 

MAO is located in the outer mitochondrial membrane and exists in two isoforms, MAO-A 

and MAO-B (Youdim and Bakhle, 2006). Whilst the different isoforms have different abilities 

to act upon substrates, there is overlap (Youdim and Bakhle, 2006). When considering MAO 

activity, it is important to note that a by-product of its activity is formation of hydrogen 

peroxide. Generation of the latter, in the presence of transition metals, such as iron, can 

generate highly oxidising species such as the hydroxyl radical [Fig 3]. This is of interest as 

iron is also reported to accumulate within the brain of PD patients (Riederer et al., 1989). 

Thus increased MAO activity may contribute to the oxidative stress observed in PD. 

However, further research is required to explain why such an increase might occur and, as 

implied here, in response to loss of complex I activity. 

Within neuronal cells, complex I activity may exert particular control over mitochondrial ATP 

generation (Davey et al., 1998). Thus the loss of complex I, as created here, may limit 

neuronal ATP availability. Since loading of monoamines, such as dopamine, into vesicles via 

VMAT2, is ATP dependent (Chaudhry et al., 2008), it is possible that this process could be 

compromised [Fig 3]. This is supported by reports of impaired intracellular VMAT2 activity in 

rotenone treated cells (Watabe and Nakaki, 2008). Whilst a scenario whereby dopamine is 

prevented from entering vesicles could explain increased DOPAC formation, the observed 

decreased HVA concentration requires explanation. Studies on the effects of complex I 

inhibition on COMT activity are therefore required, particularly as CSF HVA levels are 

reported to be decreased in PD  and Gaucher patients (Hartikainen et al., 1992). 
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In view of the fact that assessment of extracellular media may provide reliable insight into 

dopamine and serotonin metabolism this approach was extended to the evaluation of a 

GBA1 deficiency. CBE has been extensively used to model Gaucher disease (Cleeter et al., 

2013; Noelker et al., 2015; Ridley et al., 2013). Using this inhibitor, our findings again point 

to increased dopamine and serotonin catabolism. As for rotenone above, the lack of any 

significant effect upon dopamine release suggests that CBE is also not causing generalised 

release of intracellular contents. Concerning the mechanism for the observed increased 

dopamine and serotonin catabolism, this is not known. Loss of mitochondrial respiratory 

chain function has been reported in both CBE treated SH-SY5Y cells and in a GBA1 deficient 

animal model (Cleeter et al., 2013; Manning-Bog et al., 2009; Osellame et al., 2013). In view 

of these reports and the comparable results between rotenone and CBE treated cells, 

further work is required to ascertain whether the CBE effects are occurring via secondary 

alterations in mitochondrial function. The finding that DOPAC levels achieved in the CBE 

model were markedly greater and 3-OMD lower to those observed with rotenone could 

point to additional mechanisms. Concerning this point, it should be noted that whilst CBE is 

a documented inhibitor of GBA1, off target effects have been reported (Ridley et al., 2013). 

These will also need to be considered with regards to identifying the mechanism(s) 

responsible for the results reported here. 

 

5. Conclusion 

We have created a model system to interrogate cellular dopamine and serotonin 

metabolism by assessment of extracellular media. Our results support previous intracellular 

findings around the use of rotenone to model PD and suggest the need to further consider 



15 
 

the potential role of MAO and serotonin in disease pathogenesis. Expanding the study to the 

potential link between GBA1 deficiency and PD, evidence has been provided to also 

implicate disruption of dopamine/serotonin and homeostasis. Finally, use of extracellular 

media could enable screening of potential therapeutic agents that are targeted to correct 

dopamine, serotonin, mitochondrial and lysosomal metabolism. 
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Figure 1: Dopamine and serotonin pathways. Synthesis of dopamine is catalysed by tyrosine 

hydroxylase (TH) and the cofactor tetrahydrobiopterin (BH4), producing L-

dihydroxyphenylalanine (L-DOPA). L-DOPA is then transformed to dopamine by the aromatic 

L-amino acid decarboxylase (AADC) and its cofactor pyridoxal phosphate (PLP). Alternatively, 

L-DOPA can be transformed to 3-O-methyldopa (3-OMD) by catechol-O-methyl transferase 
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(COMT). Dopamine can be then catabolised by two pathways. In the first route, 3,4-

dihydroxyphenylacetic acid (DOPAC) is produced by the serial action of monoamine oxidase 

(MAO) and aldehyde dehydrogenase (ALDH); to be further metabolised by COMT to produce 

the final product of the pathway, homovanillic acid (HVA). In the second route, dopamine is 

first metabolized by COMT, producing 3-methoxytyramine (3-MT). Then, 3-MT is 

transformed to HVA by MAO and ALDH. Serotonin pathway starts with the production of 5-

hydroxytryptophan (5-HTP) by tryptophan hydroxylase (TPH), which also belongs to the 

BH4-dependent family. 5-HTP is transformed to serotonin by AADC and PLP. Finally, it is 

metabolised by MAO and ALDH producing 5-hydroxyindoleacetic acid (5-HIAA). 

 

 

COLOR Figure 2: Release of dopamine and metabolites to the culture media by SH-SY5Y cells 

with impaired complex I and GBA1. Cells were treated with 100 nM rotenone for 24 hours to 

model complex I impairment (n=14). Separately, 100 μM CBE treatment was carried out for 

one week to model GBA1 deficiency (n=9). In both cases, along with control (n=16), cells 
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were treated with L-DOPA 100 μM for 1 hour on day 7 after seeding. Results are expressed 

as mean ± SEM; and statistics were determined by ANOVA followed by a Tukey’s test 

(*p<0.05; **p<0.01; ***p<0.001). 

 

 

COLOR Figure 3:  Potential pathogenic mechanisms in PD. Impairment of the electron 

transport chain (ETC) might lead to an ATP deficient state and increased generation of ROS.  

Lower levels of ATP could result in dopamine accumulation in the cytosol, as dopamine 

internalisation into vesicles is an energy-dependent event (Chaudhry et al., 2008). This 

increase in cytosolic dopamine can then be then either catabolized (MAO) or autooxidised. 

The catabolism produces hydrogen peroxide (H2O2) that, in presence of metals, produces 

reactive oxygen species (ROS) that oxidize several cellular components (Aguirre et al., 2012). 

On the other hand, it has been described that autoxidation products, such as aminochrome, 

can damage complex I and stabilize alpha-synuclein (Aguirre et al., 2012; Munoz et al., 

2012). Alpha-synuclein accumulation has been proposed to enhance dopamine leaking from 

vesicles, reinforcing the presence of dopamine in the cytosol (Beyer, 2007). As the most 
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common genetic risk factor in PD is lysosomal glucocerebrosidase (GBA1) mutation 

(Neumann et al., 2009), it has been proposed that the link between GBA1 and PD is alpha-

synuclein. This is because decreased GBA1 activity reinforces alpha-synuclein accumulation 

(Mazzulli et al., 2011). Additionally loss of GBA1 may lead to a failure of mitophagy, further 

ROS production and contribute further to loss of mitochondrial function. It has also been 

described that enhanced nitric oxide synthase (NOS) activity, which produces nitric oxide 

(NO) along with other reactive nitrogen species (RNS), can ultimately inhibit the ETC 

(Bolanos et al., 1994), intensifying the ATP deficiency status. Both ROS and RNS increase the 

oxidative stress which, in healthy patients, is countered by antioxidant molecules such as 

reduced glutathione (GSH). However, GSH levels are decreased in PD brains (Sian et al., 

1994). All this events would be jointly increasing oxidative stress leading to the 

dopaminergic neurodegeneration characteristic in PD. 
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