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On the relative performance of edge illumination x-ray phase contrast CT

and conventional, attenuation-based CT
Charlotte Klara Hagen,1, a) Paul Claude Diemoz,1 and Alessandro Olivo1

Department of Medical Physics and Bioengineering, University College London, Malet Place, Gower Street,

London WC1E 6BT, UK

Purpose: This article is aimed at comparing edge illumination (EI) x-ray phase contrast computed tomog-
raphy (PCT) and conventional (attenuation-based) computed tomography (CT), based on their respective
contrast and noise transfer.
Methods: The noise in raw projections obtained with EI PCT is propagated through every step of the data
processing, including phase retrieval and tomographic reconstruction, leading to a description of the noise in
the reconstructed phase tomograms. This is compared to the noise in corresponding attenuation tomograms
obtained with CT. Specifically, a formula is derived that allows evaluating the relative performance of both
modalities on the basis of their contrast-to-noise ratio (CNR), for a variety of experimental parameters.
Results: The noise power spectra of phase tomograms are shifted towards lower spatial frequencies, leading
to a fundamentally different noise texture. The relative performance of EI PCT and CT, in terms of their
CNR, is linked to spatial resolution: the CNR in phase tomograms is generally superior to that in attenuation
tomograms for higher spatial resolutions (tens to hundreds of µm), but inferior for lower spatial resolutions
(hundreds of µm to mm).
Conclusions: These results imply that EI PCT could outperform CT in applications for which high spatial
resolutions are key, i.e. small animal or specimen imaging.
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I. INTRODUCTION

Conventional x-ray computed tomography (‘CT’ in the
following) and x-ray phase contrast computed tomogra-
phy (‘PCT’ in the following) are two imaging modalities
that provide cross-sectional images (‘tomograms’). These
are reconstructed from projections of a sample, which is
rotated over a range of at least 180 degrees. In CT, con-
trast is due to x-ray attenuation caused by photoelectric
absorption or Compton scatter. In PCT, contrast arises
from phase shifts caused by variations of the wave veloc-
ity in different media. Attenuation (A) and phase shifts
(Φ) are commonly expressed as:

Aθ(x, y; k) = 2k

∫ ∞

−∞

β(x′, y′, z′; k)dz (1)

Φθ(x, y; k) = k

∫ ∞

−∞

δ(x′, y′, z′; k)dz, (2)

where z is the beam propagation direction, (x, y) de-
scribes the measurement plane, (x′, y′, z′) = (x · cos(θ) +
z · sin(θ), y,−x · sin(θ) + z · cos(θ)) are the coordinates of
the rotating sample, θ is the rotation angle, k is the wave
number, and δ and β are the real and imaginary compo-
nents of the complex refractive index (n = 1 − δ + iβ).
Tomograms produced by CT and PCT show maps of the
quantities β (‘attenuation tomograms’) and δ (‘phase to-
mograms’), respectively.
CT can be implemented with a relatively simple ex-

perimental setup and a moderate amount of data pro-
cessing. In essence, a detector is placed downstream of
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the sample, where it measures the transmitted inten-
sity (Itr). Raw projections can be described by Beer’s
law: Itr,θ(x; k) = N0 · exp(−Aθ(x; k)), where N0 is
the number of photons incident on the sample. Here,
a transverse cross-section was considered (i.e. y con-
stant). Attenuation images can then be recovered via:
Aθ(x; k) = − log(Itr,θ(x; k)/N0), from which tomograms
can be reconstructed, provided θ covers the necessary
180 degree range. PCT typically requires a more so-
phisticated approach, as phase shifts must be converted
into detectable intensity variations. Several methods to
do this exist1. Propagation-based imaging2–4 exploits
the fact that phase shifted and non-phase shifted beam
portions interfere and give rise to measurable intensity
fringes, provided a sufficient degree of spatial coherence
is present. Talbot/Lau interferometry5–7 is based on the
Talbot effect, which creates an interference pattern in the
form of a self-image at specific distances downstream of
a diffraction grating. Phase shifts by the sample dis-
turb this pattern, which can be detected. Analyzer-
based imaging8–10 exploits the fact that phase shifts lo-
cally change the direction of the beam (refraction) which,
by introducing a crystal in the beam path, is translated
into an increased/decreased intensity reaching the detec-
tor. A similar concept is used by aperture-based methods
(e.g. edge illumination11,12), which employ a single aper-
ture/an array of apertures to convert directional beam
changes into measurable intensity variations. All PCT
methods have in common the fact that phase shifts are
encoded in the raw projections, and that dedicated data
processing (‘phase retrieval’) must be applied prior to
tomographic reconstruction.

Naturally, the coexistence of CT and PCT raises the
question of their relative performance. On the one hand,
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for many weakly attenuating specimens and within the
diagnostic energy range of x-rays, differences in δ (∼
10−7 – 10−6) can be up to three orders of magnitude
larger than differences in β (∼ 10−10 – 10−9), implying
that phase tomograms feature a higher intrinsic contrast
than attenuation ones. On the other hand, image qual-
ity is ultimately determined not by contrast, but by the
contrast-to-noise ratio (CNR), making it necessary to an-
alyze the noise transfer in both modalities in order to
compare them. Detailed noise analyses have been per-
formed for most PCT methods13–19; however, no noise
analysis has so far been performed for edge illumination
(EI) PCT. With this article, we aim to fill this gap. Our
analysis follows the approach by Raupach and Flohr15,
as their formalism can be applied to any differential PCT
method, including Talbot/Lau interferometry, analyzer-
based imaging and aperture-based methods.
This article is organized as follows. After briefly re-

viewing EI PCT in terms of the image formation, phase
retrieval and tomographic reconstruction (Section II), we
analyze theoretically how noise in the raw projections
is propagated into the reconstructed phase tomograms
(Section III). Finally, we exploit our theory to evaluate
the noise performance of EI PCT relative to that of CT
(Section IV). Specifically, we derive formulas that enable
a direct comparison of the two modalities on the basis of
their CNR. The article concludes with a summary and a
discussion of the results (Section V), including the limi-
tations of the presented analysis.

II. EDGE ILLUMINATION PCT

A. Image formation

The working principle of EI PCT is schematically
shown in Fig. 1: a mask in front of the sample (‘pre-
sample mask’) splits the incoming x-ray beam into an
array of individual beamlets, with a lateral inter-beamlet
distance sufficient to keep them physically separated. A
second mask (‘detector mask’), positioned in front of
the detector, creates insensitive regions between adjacent
pixel rows/columns. When the first mask is slightly offset
with respect to the second one, such that each beamlet
falls on the edge of one of the apertures of the detector
mask, directional beam changes caused by refraction are
translated into an increased or decreased detected inten-
sity. Thus, raw projections contain both attenuation and
refraction information, which, assuming that small angle
scattering can be neglected, can be described by21,22:

IL,θ(Mx; k) = N0 ·e−Aθ(x;k) ·C
(

xL +
z2αθ(x; k)

M

)

, (3)

where M is the geometric magnification (M = (z1 +
z2)/z1), z1 and z2 are the source-to-sample mask and
sample mask-to-detector distances, respectively, and
αθ(x; k) is the refraction angle, which is related to the

phase shift via: αθ(x; k) = (1/k) · ∂Φθ(x; k)/∂x. The
symbol C denotes the illumination function, which is
measured before any EI PCT scan (in the absence of
the sample) by step-scanning the pre-sample mask along
the x-direction. For imaging, the pre-sample mask is then
kept in a fixed position xL (the so-called ‘working point’),
which typically corresponds to the steepest point on ei-
ther of its slopes. In Eq. 3, xL was assumed to be on the
left (ascending) slope. An exemplary illumination func-
tion, corresponding to the parameters listed in Table I
(Section IVA), is shown in Fig. 2(a).

FIG. 1. Schematic of an EI PCT setup (not to scale).

FIG. 2. (a) Illumination function C simulated for parame-
ters listed in Table I (Section IVA) with indicated left and
right slope working points (xL, xR), (b) the first derivative of
the illumination function with indicated maxima and minima,
which correspond to xL and xR, (c) the function F , which
relates the refraction angle to the ratio of two raw EI PCT
projections. The injective part is indicated by the non-dashed
part of the line
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Note that, while in Eq. 3 the x-coordinate was as-
sumed to be a continuous variable, in practice projections
are sampled at discrete locations xi = x0+ id, with d be-
ing the sampling step. If no additional sample movement
is applied except rotation, d is equal to the pre-sample
mask period. However, this can be artificially increased
through ‘dithering’, i.e. displacing the sample multiple
times for each projection by a fraction of the pre-sample
mask period, acquiring data for each displacement, and
combining them into a single dataset featuring a higher
sampling rate23. In that case, d is equal to the sample
displacement. Dithering can be performed in a discrete
(the sample is kept stationary while the detector is ac-
quiring, and is displaced during read-out) or continuous
manner (the sample is moved continuously throughout
the acquisition)24. In the following, it is assumed that
EI PCT data are acquired with continuous dithering.

B. Phase retrieval and tomographic reconstruction

The refraction contribution to Eq. 3 must be extracted
as a prerequisite for the reconstruction of phase tomo-
grams. Previous work21,22 has demonstrated that this
can be achieved if, at each rotation angle, two raw pro-
jections (IL,θ, IR,θ) are acquired with working points on
the left and right slopes of the illumination function. The
refraction angle image (αθ), can then be obtained accord-
ing to:

αθ(xi; k) ≈ F−1

(

IL,θ(Mxi; k)

IR,θ(Mxi; k)

)

, (4)

where F is a function that, apart from αθ, depends only
on known parameters:

F (αθ) =
C
(

xL + z2αθ

M

)

C
(

xR + z2αθ

M

) . (5)

Before its inversion, F has to be restricted to its injective
part, which defines the range of retrievable refraction an-
gles. Figure 2(c) shows this function for the parameters
listed in Table I (Section IVA).
Following the extraction of αθ, the phase shift image

(Φθ) can be recovered via a one-dimensional discrete in-
tegration:

Φθ(xi; k) = k ·∆x

i
∑

i′=0

αθ(xi′ ; k), (6)

where the multiplicative weight is given by the sampling
step (∆x = d). The application of tomographic recon-
struction methods to Φθ (acquired over at least 180 de-
grees) then provides phase tomograms25. Note that the
explicit integration of αθ to recover Φθ is not strictly
necessary, as phase tomograms can also be reconstructed
from αθ directly if the integration step (Eq. 6) is in-
corporated into the reconstruction process. This can be

done, for example, by using the filtered back projection
(FBP) algorithm in combination with the Hilbert filter26.
However, in order to be consistent with the analysis by
Raupach and Flohr15, in the following the recovery of
Φθ is treated as a separate step, which is mathematically
equivalent to the Hilbert filter approach.

III. NOISE PROPAGATION

A. Methodology and assumptions

In order to analyze the noise performance of EI PCT,
it is important to understand how noise in the raw pro-
jections (IL,θ, IR,θ) is propagated by the various steps
of the data processing, which include the extraction of
the refraction angle image (Eq. 4), recovery of the phase
shift image (Eq. 6), and eventually tomographic recon-
struction. In the following, this is separately discussed
for each step. The noise is generally described by its
variance (σ2) and noise power spectrum (NPS). Further,
the following assumptions are made:

• The noise in raw projections can be described ac-
cording to an uncorrelated Poisson model, i.e. the
variance is given by the mean number of detected
photons, and the NPS is constant across all spatial
frequencies.

• Phase and attenuation tomograms are acquired
with the same number of photons (N0) incident on
the sample (i.e. with the same dose). The num-
ber of photons downstream of the sample is thus:
N = N0·exp(−Aθ(xi; k)). Since in EI PCT two raw
projections (IL,θ, IR,θ) are acquired at each angle,
half of the total number of photons must be used
for each of them, therefore:

IL,θ(xi; k) =
N

2
· C

(

xL +
z2αθ(xi; k)

M

)

(7)

IR,θ(xi; k) =
N

2
· C

(

xR +
z2αθ(xi; k)

M

)

. (8)

• Phase and attenuation tomograms are acquired
with the same detection efficiency. This allows ne-
glecting factors relating to the detection efficiency
in the subsequent formulas.

• Phase and attenuation tomograms are recon-
structed with FBP with the Shepp-Logan filter.

• The spatial resolution in EI PCT and CT raw pro-
jections is the same, i.e. the setups have the same
point spread function (PSF). In EI PCT, the PSF
can be expressed as a multiplication of the source
distribution (projected onto the sample plane) with
a box function representing the pre-sample mask
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aperture, which is then convolved with an addi-
tional box function representing the sample move-
ment by distance d (sampling step) employed dur-
ing the continuous dithering24,27. Notably, it is in-
dependent from the pixel size, provided the pixel
response is approximately constant over the width
of the detector mask aperture. Thus, if d is large
compared to the pre-sample mask aperture and the
projected source, the PSF in EI PCT is approxi-
mately square with width d. In CT, this can be
matched with a point source and pixels of size d
with a perfectly square response.

To demonstrate that the spatial resolution in EI PCT
and CT is indeed the same under the above assumptions,
images of a 500 µm diameter wire were simulated for
the respective modalities. For EI PCT, the parameters
listed in Table I and a sampling step of d = 68 µm were
assumed. For CT, a matching pixel size and perfectly
square response were assumed. The images and profile
plots are shown in Fig. 3.

FIG. 3. Simulated EI PCT and CT images of a 500 µm diam-
eter wire and horizontal plots across the respective images.

B. Extraction of the refraction angle image

In the following, the dependency on the rotation angle
(θ) is dropped from the expressions for simplicity’s sake.
The propagation of noise from the raw EI PCT projec-
tions (IL,IR) into the extracted refraction angle image
(α) can be estimated via the error propagation formula
20:

σ2
α =

(

∂α

∂IL

)2

· σ2
IL

+

(

∂α

∂IR

)2

· σ2
IR

=

(

∂(F−1)

∂IL

)2

· σ2
IL

+

(

∂(F−1)

∂IR

)2

· σ2
IR
. (9)

Applying the chain rule and the rule of inverse functions
and differentiation, this can be written as:

σ2
α =

(

1

IRF ′(α)

)2

· σ2
IL

+

(

− IL
(IR)2F ′(α)

)2

· σ2
IR
. (10)

Inserting:

F ′(α) =
z2
M

· C
′
(

xL + z2α
M

)

C
(

xR + z2α
M

)

− C
(

xL + z2α
M

)

C ′
(

xR + z2α
M

)

(

C
(

xR + z2α
M

))2 , (11)

as well as σ2
IL

= IL and σ2
IR

= IR, yields:

σ2
α =

K

N
, (12)

where K is a factor that depends on the refraction angle
and the EI PCT setup:

K =
2M2

(z2)2
· C

(

xL + z2α
M

)

C
(

xR + z2α
M

)2
+ C

(

xL + z2α
M

)2
C
(

xR + z2α
M

)

(

C ′
(

xL + z2α
M

)

C
(

xR + z2α
M

)

− C
(

xL + z2α
M

)

C ′
(

xR + z2α
M

))2 . (13)

Note that for the special case of α = 0, working points
|xL| = |xR| and a symmetric illumination function, Eq.

12 reduces to:237

σ2
α =

M2

N(z2)2
· C(xR)

C ′(xR)2
, (14)
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matching previously published results21.
According to Beer’s law and Poisson statistics, in CT,

the noise propagation from raw projections (Itr) into at-
tenuation images (A) is described by: σ2

A = 1/N . This
allows expressing the variance of α in terms of the vari-
ance of A:

σ2
α = K · σ2

A. (15)

Due to the assumption of uncorrelated noise, both α and
A have a constant NPS, and Eq. 15 implies the relation:

NPSα(ρ) = K ·NPSA(ρ), (16)

where ρ denotes the spatial frequency.

C. Recovery of the phase shift image

Considering that the integration operation (Eq. 6) re-
quired to recover the phase shift image from the refrac-
tion angle image correlates individual data points with
each other, it is to be expected that the NPS of the phase
shift image is not constant. Indeed, a one-dimensional
discrete integration modulates the NPS at spatial fre-
quency ρ by a factor (∆x)2/4 · sin2(πρ∆x) that depends
on the multiplicative weight ∆x. This is a combined ef-
fect of the integration itself, which corresponds to a mul-
tiplication with 1/(2πiρ) in Fourier space, and the modu-
lation transfer of the sampling process, which is given by
πρ∆x/sin(πρ∆x). Multiplying and squaring both yields
the above factor. Therefore, in the case of EI PCT, where
the multiplicative weight is given by the sampling step
(∆x = d), this yields:

NPSΦ(ρ) =
d2k2

4 · sin2(πρd)
·NPSα(ρ). (17)

The additional factor k2 comes in because a multiplica-
tion by k is required to recover Φ from α. Equation 17
implies that NPSΦ is shifted towards lower frequencies,
and that it diverges for ρ → 0. As discussed in Section
IV, this ultimately affects the noise texture in the recon-
structed phase tomograms.
Finally, by inserting Eq. 16 into Eq. 17, we can again

express the NPS of Φ in terms of the NPS of A:

NPSΦ(ρ) =
d2k2

4 · sin2(πρd)
·K ·NPSA(ρ). (18)

The variance of Φ can be calculated as σ2
Φ =

∫

NPSΦ(ρ)dρ.

D. Tomographic reconstruction

Having described the noise in the recovered phase shift
image, we now analyze how the noise propagates into the
phase tomograms. As was shown previously28, the vari-
ance of tomograms reconstructed with the FBP can be

described by: σ2 = 2π ·
∫∞

0
NPSrad(ρ)ρdρ, assuming the

sample is radially symmetric. NPSrad is the radial NPS
given by: NPSrad(ρ) = |ρ| · |Malg(ρ)|2 · NPSin(ρ). Here,
NPSin refers to the NPS of the input data, and Malg is
the modulation transfer function of the FBP, which de-
pends on the used filter function. With this formalism,
the noise in the reconstructed phase tomograms (maps
of δ) can be expressed as:

σ2
δ = 2π ·

∫ ∞

0

ρ2 · |Malg(ρ)|2

· d2k2

4 · sin2(πρd)
·K ·NPSA(ρ)dρ (19)

NPSrad,δ(ρ) = |ρ| · |Malg(ρ)|2

· d2k2

4 · sin2(πρd)
·K ·NPSA(ρ) (20)

These equations are the first key result of this paper, as
they enable characterizing the noise in EI PCT.

Analogously, the noise in attenuation tomograms
(maps of β) reconstructed from CT data can be expressed
as:

σ2
β = 2π ·

∫ ∞

0

ρ2 · |Malg(ρ)|2 ·NPSA(ρ)dρ (21)

NPSrad,β(ρ) = |ρ| · |Malg(ρ)|2 ·NPSA(ρ). (22)

IV. ANALYSIS

A. Validity limits

Before using Eqs. 19 – 22 for a comparison of EI PCT
and CT, we explore the validity limits of the error propa-
gation formula (Eq. 9), which provided the basis for the
above theory. For this purpose, theoretical predictions
made via Eq. 15 were compared to results obtained from
an EI PCT simulation code29, for parameters match-
ing an experimental setup installed in our labs at UCL.
While a detailed description of the setup can be found
elsewhere21, the relevant simulation parameters are sum-
marized in Table I. The detector pixel size is assumed to
match the detector mask period. Note that the working
points correspond to the steepest points on the illumi-
nation function, as indicated by the derivative shown in
Fig. 2(b).

Raw projections (IL, IR) were simulated for differ-
ent refraction angles (α = -10, 0, 10 µrad) covering a
broad but realistic range when imaging biological sam-
ples. Each simulated signal contained 105 independent
data points. Since the simulation code is based on an
analytic model and does not replicate statistical fluctu-
ations, uncorrelated Poisson noise was applied in a sep-
arate step for photon numbers in the range of N = 101

This article is protected by copyright. All rights reserved. 
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FIG. 4. The variance in the extracted refraction angle as a
function of the variance in corresponding attenuation projec-
tions, as predicted by simulations and Eq. 15 for: (a) α = -10
µrad, (b) α = 0 µrad, (c) α = 10 µrad.

– 105. Next, refraction angle images were extracted via
Eq. 4, their variance calculated, and plotted against the
variance in corresponding attenuation images (σ2

A).

Fig. 4 shows the results obtained from the simulations,
and those predicted by Eq. 15. As can be seen, both
agree well up to a certain point, from which onward a
deviation is apparent. This marks the validity limit of the
error propagation formula (Eq. 9), which is applicable
only when the noise transfer is linear. For low levels of
noise, this assumption is met as the function F , which
is used to extract α, can be approximated by a linear
function (see Fig. 2(c)). However, this no longer holds for
high noise levels; in that case, noise propagation follows
the curvature of F , causing a disproportionate increase
of the variance. Note that for the considered parameters,
this occurs only for N < 100, a number that is exceeded

TABLE I. Parameters used for the EI PCT simulations
Source-to-sample distance (z1): 1.6 m
Sample-to-detector distance (z2): 0.4 m
Pre-sample mask period: 68 µm
Pre-sample mask aperture: 12 µm
Detector mask period: 85 µm
Detector mask aperture: 20 µm
X-ray energy: 18 keV
Source focal spot (FWHM): 70 µm
Left slope working point (xL): -8.90 µm
Right slope working point (xR): 8.90 µm

FIG. 5. Radial NPS in EI PCT and CT as predicted by Eqs.
20 and 22, displayed in arbitrary units.

FIG. 6. Simulated tomograms of a PMMA cylinder of 2 cm
diameter: (a) attenuation tomogram simulated for CT, (b)
phase tomogram simulated for EI PCT.

in most practical situations.

B. Comparison of NPS

Equations 20 and 22 provide a description of the noise
in EI PCT and CT across all spatial frequencies, allow-
ing a comparison. The theoretical radial NPS curves for
both modalities are shown in Fig. 5. These plots were
created by evaluating Eqs. 20 and 22 for the parame-
ters listed in Table I. In this example, the sampling step
was assumed to match the pre-sample mask period (d =
68 µm). It was further assumed that NPSA = constant
(a.u.) and Malg = |sinc3(ρd)|, which is the modulation
transfer function of the FBP with the Shepp-Logan fil-

This article is protected by copyright. All rights reserved. 
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ter and linear interpolation on a raster with spacing d
during back projection 30. It is apparent that the radial
NPS in phase tomograms is shifted towards the lower
frequencies and, notably, diverges for ρ → 0. As already
noted above, this is due to the integration step required
for the recovery of the phase shift image (Eq. 6), which
is not necessary for the reconstruction of attenuation to-
mograms.

The effect of this shift is a fundamentally different noise
texture in phase and attenuation tomograms, which has
been observed previously for other PCT methods13,15,16.
To illustrate this point, phase tomograms of a PMMA
cylinder (2 cm diameter) were simulated according to the
routines and parameters described in Section IVA. Cor-
responding attenuation tomograms were simulated via
Beer’s law. The δ- and β-values of PMMA at the sim-
ulated energy (18 keV) were obtained from an online

database31. The sampling step in EI PCT, and hence
the pixel size in CT (see Section IIIA), was assumed
to be d = 68 µm. The number of photons was N0 =
103, and the number of rotation angles was 1800, equally
spaced over 180 degrees. The results are shown in Fig.
6; the contrast in the zoomed regions was adjusted to
fully reveal the texture of the noise. As can be seen, the
phase tomogram has a “blobbier” appearance, reflecting
the higher proportion of low-frequency noise. NPS curves
calculated from the central 80 x 80 pixels of the simulated
images are shown as insets in the respective panels.

C. Comparison of CNR

Equations 19 and 21 enable the calculation of the CNR
in phase and attenuation tomograms for any pair of ad-
jacent materials (M1, M2), as well as their ratio:

CNRδ =
k · |δM1

− δM2
|

σδ

=
k · |δM1

− δM2
|

√

2π ·
∫∞

0
|ρ|2 · |Malg(ρ)|2 · d2k2

4·sin2(πρd)
·K ·NPSA(ρ)dρ

(23)

CNRβ =
2k · |βM1

− βM2
|

σβ

=
2k · |βM1

− βM2
|

√

2π ·
∫∞

0
|ρ|2 · |Malg(ρ)|2 ·NPSA(ρ)dρ

(24)

CNRδ

CNRβ

=
|δM1

− δM2
|

|βM1
− βM2

| ·
1

dk
√
K

·

√

√

√

√

∫∞

0
|ρ|2 · |Malg(ρ)|2dρ

∫∞

0
|ρ|2·|Malg(ρ)|2

sin2(πρd)
dρ

. (25)

Equation 25 is the second key result of this article, as it
allows a direct comparison of EI PCT and CT. It also
shows that the relative performance of these modalities
is very complex, and generally depends on the sample
composition (via δM1

, δM2
, βM1

and βM2
), the parame-

ters of the EI PCT setup (via K), the x-ray energy (via
the wave number k), the filter function of the FBP (via
|Malg|) and, finally, on the spatial resolution (via the
sampling step d). Note that δM1

, δM2
, βM1

, βM2
and K

also implicitly depend on the wave number k. As tomo-
graphic reconstruction via FBP with the Shepp-Logan
filter was assumed, Eq. 25 can be somewhat simplified;
as was shown previously15, in this case the expression
under the square root takes on the value of 3/8.

When fixing the parameters in Table I, Eq. 25 becomes
a function of the sampling step (d), allowing analyzing
the relative CNR as a function of spatial resolution. It
can be seen that the relative CNR drops reciprocally with
increasing sampling step; therefore, the coarser the spa-
tial resolution, the lower the relative CNR. To evaluate
the relative performance of EI PCT and CT, the so-called
break-even point (CNRδ = CNRβ) must be considered,

which is reached when:

d =
|δM1

− δM1
|

|βM1
− βM1

| ·
1

k
√
K

·
√

3

8
. (26)

The break-even point is generally sample dependent. To
illustrate this, Eq. 25 was evaluated for three material
combinations: PMMA/air, water/air and PMMA/water.
These have been chosen as they approximate commonly
encountered interfaces in biological tissues: PMMA is
often considered a tissue-equivalent material and water
and air are naturally present in biological systems. In all
cases, it was assumed that the sample is radially sym-
metric, made of the first material, and embedded in the
second. Again, the δ- and β-values of PMMA, air and
water at the simulated energy (18 keV) were obtained
from an online database31. The results are shown in Fig.
7. In all three panels, the arrow points to the break-
even point, i.e. where EI PCT and CT perform equally
well and below/above which the performance of EI PCT
is superior/inferior to that of CT. As can be seen, the
CNR ratio shows a strong dependence on the sampling
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FIG. 7. Relative CNR of EI PCT and CT as a function of
the sampling step (d) for three different material interfaces:
(a) PMMA/air, (b) water/air, (c) PMMA/water.

step (i.e. the spatial resolution), with a general decrease
for larger ones. Moreover, the dependence on the ma-
terial combination can be observed, most apparently via
the different break-even points, reached for d = 390 µm,
268 µm and 205 µm in the three cases. In addition to
the theoretical curves for CNRδ/CNRβ , each panel in
Fig. 7 contains numerical results, which were obtained
by simulating phase tomograms via the routine described
in Section IVA and by assuming the parameters listed
in Table I. The number of photons was N0 = 103. Cor-
responding attenuation tomograms were again simulated
using Beer’s law.

The above results were obtained for a specific set of
parameters which was kept fixed; more generally, the best
performance of EI PCT over CT can be obtained when
these parameters are optimized for the specific imaging
task. For example, Eq. 25 shows that a decrease of
the setup-specific factor K also increases the CNR ratio,
similarly to the sampling step. A theoretical analysis
of how K is affected by system parameters such as the
source and mask characteristics has been presented in
previous work 21,32. For example, it has been shown that
K scales with the steepness of the illumination function,
and that a steeper illumination function can be obtained
for smaller source focal spots or smaller apertures in the
pre-sample mask.

V. SUMMARY AND DISCUSSION

A description of the noise (through NPS and variance)
in EI PCT was provided and related to that in conven-
tional, attenuation-based CT. Importantly, this revealed
that the NPS in phase tomograms is characterized by a
shift towards the lower spatial frequencies, as well as a
divergence for ρ → 0. This is a result of the integration
step involved in the reconstruction process (recovery of
the phase shift image), which is not needed for the re-
construction of attenuation tomograms. Consequently,
phase tomograms contain a higher proportion of low fre-
quency noise, which explains their slightly “blobby” ap-
pearance. The presented theory further allowed relating
the CNR in phase tomograms to that in corresponding
attenuation tomograms, enabling a direct comparison of
EI PCT and CT. It was found that the relative perfor-
mance of the two modalities depends in a complex way on
the imaging setups, the reconstruction algorithm and the
sample itself. Evaluating the relative CNR as a function
of the spatial resolution has revealed that EI PCT has a
superior performance for higher spatial resolutions (tens
to hundreds of µm), and an inferior one for lower spa-
tial resolutions (hundreds of µm to mm). These results
follow the same trend that was observed previously for
Talbot/Lau interferometry15. Note though that, for any
spatial resolution, the CNR in EI PCT can be optimized
through setup modifications that lead to a reduction of
the factor K (see Eqs. 12 and 25).

In previous studies, the link between CNR and spa-
tial resolution in PCT had been considered a drawback
regarding its potential use for the clinical imaging of hu-
man patients33. In such applications, spatial resolutions
are typically bound to exceed hundreds of µm or even
mm, in order to limit the delivered radiation dose and
access large fields of view. While agreeing on this as-
pect, we would however like to emphasize the positive
implications of this link on small animal and/or speci-
men imaging. In these areas, spatial resolutions of tens
to hundreds of µm are often necessary to resolve features
of interest, and are already encountered in conventional
(attenuation-based) micro-CT scanners. In these appli-
cations, such high spatial resolutions can be achieved,
since the associated increase in radiation dose is a lesser
concern, and fields of view are typically smaller. There-
fore, phase contrast micro-CT, if used as an alternative or
addition to conventional micro-CT, could provide a real
benefit, with substantial CNR improvements potentially
achievable. In this context, note that spatial resolutions
of tens of µm down to a few µm have been demonstrated
to be feasible with EI, even when implemented in stan-
dard laboratories23,34.

Finally, we would like to draw attention to the limi-
tations of the presented analysis. First, it is based on
assumptions (Section IIIA) that may not always be met
in realistic imaging scenarios. For example, uncorrelated
Poisson noise was assumed to be the only source of error
in raw projections, while in practice contributions from
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pixel cross-talk, vibrations or mask defects/misalignment
could be present. Moreover, the theory was derived for a
monochromatic x-ray beam, and it was assumed that EI
PCT and CT are operated at the same energy. In prac-
tice, scans are typically performed with polychromatic
beams and different spectra. These factors will have to
be thoroughly studied in order to fully understand their
effect on the relative performance of EI PCT and CT.
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