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Abstract 

The considerable genome size variation in Arabidopsis thaliana has been shown largely 

to be due to copy number variation (CNV) in 45S ribosomal RNA (rRNA) genes. 

Surprisingly, attempts to map this variation by means of genome-wide association 

studies (GWAS) failed to identify either of the two likely sources, namely the nucleolar 

organizer regions (NORs). Instead, GWAS implicated a trans-acting locus, as if rRNA 

CNV was a phenotype rather than a genotype. To explain these results, we investigated 

the inheritance and stability of rRNA gene copy number using the variety of genetic 

resources available in A. thaliana — F2 crosses, recombinant inbred lines, the 

multiparent advanced generation inter-cross population, and mutation accumulation 

lines. Our results clearly show that rRNA gene CNV can be mapped to the NORs 

themselves, with both loci contributing equally to the variation. However, NOR size is 

unstably inherited, and dramatic copy number changes are visible already within tens of 

generations, which explains why it is not possible to map the NORs using GWAS. We 

did not find any evidence of trans-acting loci in crosses, which is also expected since 

changes due to such loci would take very many generations to manifest themselves. 

rRNA gene copy number is thus an interesting example of “missing heritability” — a trait 

that is heritable in pedigrees, but not in the general population. 

Introduction 

In eukaryotic genomes, 45S rRNA genes are arranged in clusters termed nucleolus 

organizer regions (NORs) (Long and Dawid 1980). After transcription by RNA 

polymerase I, the primary transcript is processed into 18S, 5.8S and 25S rRNAs that, 
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together with the 5S rRNA (encoded by a separate multi-copy gene), constitute the 

catalytic core of ribosomes (Chambon 1975; Long and Dawid 1980). In A. thaliana, 

each 45S ribosomal RNA (rRNA) gene is over 10 kb long, and the genome contains 

hundreds of tandemly arrayed gene copies at the top of chromosomes 2 (NOR2) and 4 

(NOR4) (Copenhaver et al. 1995; Copenhaver and Pikaard 1996a). Natural inbred lines 

(accessions) vary by well over 10% in genome size (Schmuths et al. 2004; Long et al. 

2013), largely due to differences in 45S rRNA gene copy number (Davison et al. 2007; 

Long et al. 2013). However, besides pulsed-field electrophoresis studies in the 

accession Landsberg indicating that both NORs are similar in size, each spanning 

approximately 3.5-4.0 Mb (Copenhaver and Pikaard 1996b), nothing is known about the 

specific contribution of each locus to the overall copy number variation (CNV) in 45S 

rRNA genes. 

We previously carried out a genome-wide association study (GWAS) to 

investigate the genetics of both the variation in genome size and 45S rRNA gene CNV 

in a population of A. thaliana lines from Sweden. We expected to find significant 

associations in cis — due to strong linkage disequilibrium between NOR haplotypes and 

closely linked single nucleotide polymorphisms (SNPs). Surprisingly, the scans 

identified neither of the two NORs. Instead, the analyses found an association in trans 

on chromosome 1, as if rRNA gene copy number were a phenotype rather than a 

genotype (Long et al. 2013). 

Alternatively, repeat number may change too rapidly to be mapped using GWAS, 

but may still be inherited stably enough to be mapped in crosses (Long et al. 2013). 

Consistent with this, quantitative trait locus (QTL) analyses aimed at understanding the 
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genetics behind NOR methylation in A. thaliana have suggested that CNV at the NORs 

themselves accounts for some of the methylation variation (Riddle and Richards 2002, 

2005). Indeed, rapid changes in 45S rRNA gene copy number have been detected for 

several species. Examples range from a ~2-fold variation in copy number after 400 

generations in fruit fly lines and nematodes (Averbeck and Eickbush 2005; Bik et al. 

2013) or a similar 2.5-fold variation after only 70 generations in maize lines (Phillips 

1978), to differences greater than 4-fold after 90 generations in water flea lines 

(McTaggart et al. 2007) or even greater than 2-fold changes across siblings in humans 

(Gibbons et al. 2015) or 7-fold changes among individual siblings of a self-pollinated 

faba bean parent (Rogers and Bendich 1987). In light of the various degrees of 

instability in rRNA gene copy number displayed by higher plants (Walbot and Cullis 

1985), it is relevant to investigate how rapidly the number of rRNA genes changes in A. 

thaliana.  

Our aim in this study was threefold: first, to test if the trans association detected 

by GWAS (Long et al. 2013) has an effect in a segregating F2 population; second, to 

confirm that CNV in rRNA genes can be mapped to the NORs themselves in crosses; 

third, to investigate how copy number in rRNA genes of A. thaliana changes on a 

generational time scale. 
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Materials and Methods 

DNA extraction and library preparation 

We harvested leaves from ~3 weeks old plants grown under long day conditions (16 

hrs. light and 8 hrs. at 10°C). We extracted DNA in 96-well plates with the NucleoMag® 

96 Plant (Macherey-Nagel) kit according to the manufacturer’s instructions. 

We prepared libraries using a slightly modified version of the Illumina Genomic 

DNA Sample preparation protocol. Briefly, 100 to 200 ng of DNA were fragmented by 

sonication with Bioruptor (Diagenode). End-repair of sheared DNA fragments, A-tailing 

and adapter ligation were done with Spark DNA Sample Prep Kit (Enzymatics).  

NEXTflex-96™ DNA Barcodes (Bioo Scientific) were used to attach indexes to the 

sample insert during adapter ligation. Size selection, with median insert size around 400 

bp, and library purification were performed with Agencourt AMPure XP Beads 

(Beckman Coulter). Paired-end (PE) DNA libraries were amplified by PCR for 10-12 

cycles. After PCR enrichment, libraries were validated with Fragment Analyzer™ 

Automated CE System (Advanced Analytical) and pooled in equimolar concentration for 

96X-multiplex. Libraries were sequenced on Illumina HiSeq™ 2000 Analyzers using 

manufacturer’s standard cluster generation and sequencing protocols in 100 bp PE 

mode at the VBCF NGS unit in Vienna, Austria (http://www.vbcf.ac.at). 

Genotyping by sequencing 

For each segregating F2 or RIL population analysed in this study (1002x6244, 

6106x6071, 8426x6193, 6911x7213) we applied the following pipeline separately. We 

extracted both known indels and biallelic homozygous SNPs of the parental accessions 
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from the 1001 Genomes Consortium (1001 Genomes Consortium 2016) with 

SelectVariants from Genome Analysis Toolkit (GATK; v3.5) (DePristo et al. 2011; Van 

der Auwera et al. 2013). We combined only segregating SNPs between parental 

accessions in a single variant call format (VCF) file with GATK/CombineVariants for 

later genotyping of individual samples (see below).  

For each low-coverage sample we mapped PE reads to the Arabidopsis thaliana 

TAIR10 reference genome with BWA-MEM (v0.7.4) (Li and Durbin 2009; Li 2013). We 

used Samtools (v0.1.18) to convert file formats, sort and index bam files (Li et al. 2009), 

while to remove duplicated reads we used Markduplicates from Picard (v1.101) 

(http://broadinstitute.github.io/picard/). We performed local realignment around indels by 

providing to the GATK/RealignerTargetCreator function known indels from the parental 

accessions to generate the set of intervals required by the GATK/IndelRealigner 

function. We called SNPs at the segregating sites determined in the combined VCF of 

the parental accessions with GATK/UnifiedGenotyper in genotyping mode with 

parameters ‘-glm SNP -gt_mode GENOTYPE_GIVEN_ALLELES -stand_call_conf 0.0 -

G none -out_mode EMIT_ALL_SITES’. 

For the construction of individual genetic maps we binned marker SNPs in 100 

kb windows using R software with help of the package R/xts (Ryan and Ulrich 2011; 

Team 2014). We discarded windows with either less than 100 segregating SNPs or less 

than 40 called SNPs. The former for considering them regions of low diversity between 

parental accessions, while the latter for considering them regions not well supported 

by reads. We assigned genotype ‘A’ or genotype ‘B’ to windows with more than 90% 

of SNP calls for the maternal or paternal accessions, respectively. We determined as 
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genotype ‘H’ windows with either more than 25% heterozygous calls or where the 

absolute difference between maternal and paternal SNP calls were less than 30%. 

Estimating rRNA gene copy number through NGS 

For each individual, we mapped all reads separately to a single reference 45S rRNA 

gene (extracted from GenBank: CP002686.1 coordinates 14195483-14204860; File S1) 

and to the A. thaliana TAIR10 reference genome as described in the section 

‘Genotyping by sequencing’. For our reference 45S rRNA gene (File S1), we based the 

annotations of the 18S, 5.8S and 25S subunits (coordinates 2195-4002, 4271-4434 

and 4623-8009, respectively) in previous reports (Gruendler et al. 1989; Unfried et al. 

1989; Unfried and Gruendler 1990; Cokus et al. 2008). We retrieved per-base read 

depth with the function Depthofcoverage from GATK (Van der Auwera et al. 2013) 

before and after removal of duplicated reads. Since the correlation between NGS and 

qPCR estimates of 45S rRNA gene copy number has been shown to be better before 

removal of duplicated reads (Long et al. 2013), we performed further quantitative 

analysis with NGS estimates accordingly. 

Since estimates of the 18S and 25S subunits of the 45S rRNA gene are in good 

agreement (Davison et al. 2007), we estimated 45S rRNA gene copy number in F2s, 

RILs, MAGIC lines and MA lines through next generation sequencing (NGS) by dividing 

the average coverage along the 18S rRNA gene by the average coverage along the first 

10 Mb of chromosome 3 (File S2). We have chosen that region of chromosome 3 for not 

containing centromeres, 5S or 45S rRNA genes that due to natural variation in their 
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copy number among accessions (Davison et al. 2007; Long et al. 2013) could affect our 

sequencing depth estimates. 

In the RIL population (Cvi-0 x Ler-0), Cvi-0 was the donor female of RILs CVL1-

CVL147, while Ler-0 was the donor female of RILs CVL148-CVL193 (Alonso-Blanco et 

al. 1998; Lewis et al. 2004). The direction of the cross had no significant effect on rRNA 

gene copy number (results not shown). Since the 134 individuals of the RIL population 

were sequenced in separate Illumina lanes, we fitted a simple linear regression model 

on 18 technical replicates to account for the plate effect and obtain a single rRNA gene 

copy number estimate per line.  

Estimating rRNA gene copy number through qPCR 

We estimated 45S rRNA gene copy number in the MA lines through quantitative PCR 

(qPCR) by comparing the abundance of the 18S rRNA subunit with the single copy 

gene At3g18780 (ACT2) according to: 

rRNA gene copy number = 2Ct(At3g18780 gene) - Ct(18S rRNA gene), where Ct(𝑥) stands for the 

threshold cycle for 𝑥. 

For the 18S rRNA gene we used primers 5'-CCT GCG GCT TAA TTT GAC TC-3' 

and 5'-GAC AAA TCG CTC CAC CAA CT-3', while for ACT2 primers 5'-TGC CAA TCT 

ACG AGG GTT TC-3' and 5'-TTA CAA TTT CCC GCT CTG CT-3' (Davison et al. 2007). 

We employed the FastStart Essential DNA Green Master kit (Roche) according to 

manufacturer's instructions in a LightCycler® 96 (Roche) with the following thermal 

profile: preincubation at 95°C for 600 seconds; 45 cycles at 95°C for 10 seconds, 60°C 

for 15 seconds (in acquisition mode) and 72°C for 15 seconds; melting step at  95°C for 
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10 seconds, 65°C for 60 seconds and 97°C for 1 second. No primer dimers were 

detected in the melting curve. 

4-5 biological replicates of MA lines 29, 39, 49, 59, 69, 79, 89, 99, 109 and 119 

(Shaw et al. 2000; Ossowski et al. 2010) were propagated one generation by single-

seed descent. We carried out qPCR of each line in 4 technical replicates (both for the 

18S rRNA gene and ACT2) per plate. With the help of a Bravo Automated Liquid 

Handling Platform from Agilent Technologies, we distributed all lines in 14 96-well plates 

with some lines present in more than one plate. Ct Errors of technical replicates were on 

average 0.038 (range 0.01 - 0.14). We included a common DNA control (accession id: 

1002) to all plates for the purpose of standardization. Raw 18S rRNA gene copy number 

estimates and standardized values are provided in File S2. For the purpose of 

visualization we plotted 18S rRNA gene abundance relative to the lowest line mean 

value in generation 32 (line 69).   

Linkage mapping 

Simple interval mapping (SIM) was performed with the R package R/qtl (Broman et al. 

2003). Multiple QTL mapping (MQM) was done with a 2 centimorgan step size and 10 

as window size (Arends et al. 2010). 1000 permutations were applied to estimate 

genome wide significance. QTL mapping in MAGIC lines and multiple imputation to 

determine estimated founder accession effects were performed with R/happy (Mott et 

al. 2000; Kover et al. 2009).  
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CAPS analysis 

Cleaved amplified polymorphic sequence (CAPS) analysis of RILs derived from the 

cross Cvi-0 x Ler-0 was performed as described elsewhere (Lewis et al. 2004). Briefly, 

DNA from each RIL was amplified by PCR in a 30 µl reaction with primers 5'-AGG GGG 

GTG GGT GTT GAG GGA-3' and 5'-ATC TCG GTA TTT CGT GCG CAA GAC G-3', 

and the following thermal profile: 32 cycles at 95°C for 20 seconds, 62°C for 20 seconds 

and 72°C for 40 seconds. Resulting PCR products were incubated with restriction 

enzyme RsaI (New England Biolabs Inc.) for 4hrs at 37°C and subjected to agarose gel 

electrophoresis. Cleaved PCR products correspond to Cvi-0 derived rRNA genes, while 

intact PCR products to Ler-0 derived rRNA genes. Results were summarized in File S2. 

Fluorescence in situ hybridization (FISH) 

The preparation of root-tip meristem chromosome spreads followed the protocol 

published by Mandáková and Lysak (2016) (Mandáková and Lysak 2016). Seedlings 

were germinated on filter paper soaked in distilled water in a Petri dish at 21 °C. Cut, 

approx. 1 cm long, roots were pretreated with ice-cold water for ca. 24 hrs, then fixed in 

ethanol:acetic acid (3:1) fixative at 4 °C for 24 hrs. The fixed roots were rinsed in 

distilled water and 1x citrate buffer (10 mM sodium citrate, pH 4.8), and digested by 

0.3% pectolytic enzymes (cellulase, cytohelicase and pectolyase) in 1x citrate buffer at 

37 °C for 90 min. Individual root-tip meristematic tissues were dissected in ca. 20 µl of 

60% acetic acid on a clean microscopic slide. Then the cell material was covered with a 

coverslip, evenly spread by tapping, and the slide gently heated over a flame. The slide 

was frozen in liquid nitrogen, coverslip flicked off, fixed in ethanol:acetic acid (3:1) 

fixative and air-dried. The suitable slides selected after inspection under a phase-
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contrast microscope were processed as described by Lysak and Mandáková (2013) 

(Lysak and Mandáková 2013). In brief, the slides were pretreated by ribonuclease A 

(100 µg/ml in distilled water) at 37 °C for 1 hr and by pepsin (0.1 mg/ml in 10 mM HCl) 

for at 37 °C for 1 - 3 min, and postfixed in 4% formaldehyde in 2x SSC (20x SSC: 3 M 

NaCl in 0.3 M sodium citrate, pH 7.0) at room temperature for 10 min. The slides were 

washed in 2x SSC between the steps and eventually dehydrated in an ethanol series 

(70%, 80%, and 96% ethanol, 3 min each). 

A. thaliana BAC clone T15P10 containing 45S rRNA genes was used to identify 

the NORs. To identify A. thaliana chromosomes 2 and 4, eleven BAC clones from the 

upper arm of chromosome 2 (F2I9, T8O11, T23O15, F14H20, F5O4, T8K22, F3C11, 

F16J10, T3P4, T6P5, and T25N22) and 15 BACs from the upper arm of chromosome 4 

(F6N15, F5I10, T18A10, F3D13, T15B16, T10M13, T14P8, T5J8, F4C21, F9H3, 

T27D20, T19B17, T26N6, T19J18, and T1J1) were used. The 45S rRNA gene probe 

was labeled with Cy3-dUTP, chromosome 2 BACs with biotin-dUTP and chromosome 4 

BAC clones with digoxigenin-dUTP by nick translation (Lysak and Mandáková 2013). 

100 ng from each labeled BAC DNA was pooled together, ethanol precipitated, 

dissolved in 20 µl of 50% formamide in 10% dextran sulfate in 2� SSC and pipetted on 

the selected microscopic slides. The slides were heated to 80 °C for 2 min and 

incubated at 37 °C overnight. Hybridized DNA probes were visualised either as the 

direct fluorescence of Cy3-dUTP (yellow) or through fluorescently labeled antibodies 

against biotin-dUTP (red) and digoxigenin-dUTP (green). DNA labeling and 

fluorescence signal detection was carried out using a previously published protocol 

(Lysak and Mandáková 2013). Chromosomes and nuclei were counterstained with 4,6-
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diamidino-2-phenylindole (DAPI, 2 µg/ml) in Vectashield antifade. Fluorescence signals 

were analyzed and photographed using a Zeiss Axioimager epifluorescence microscope 

and a CoolCube camera (MetaSystems), and pseudocolored/inverted using Adobe 

Photoshop CS5 software (Adobe Systems). The size of fluorescence signals 

corresponding to the 45S rRNA gene probe was measured in Photoshop as a number 

of pixels per a defined area. 

Data Availability 

DNA sequencing data from F2s and RIL populations have been deposited at the U.S. 

National Center for Biotechnology information (https://www.ncbi.nlm.nih.gov/bioproject) 

under BioProject: PRJNA326502. DNA sequencing data from the MAGIC lines and MA 

lines were downloaded from the European Nucleotide Archive 

(http://www.ebi.ac.uk/ena) under accession numbers PRJEB4501 (Imprialou et al. 

2016) and PRJEB5287 (Hagmann et al. 2015), respectively. 

Results 

45S rRNA gene CNV can be mapped to specific NORs in F2s 

To better understand the genetics of 45S rRNA gene CNV, we generated an F2 

population from a cross between a large copy number accession from northern Sweden 

— TRÄ-01 (6244), with ~2,500 units per haploid genome — and a small copy number 

accession from southern Sweden — Ale-Stenar-64-24 (1002), with ~500 units. We used 

next generation sequencing (NGS) to phenotype (we estimated the copy number of the 

18S rRNA gene, which is strongly correlated with the copy number of the full gene) and 

genotype the population simultaneously (Figure 1A; see Methods). In sharp contrast to 
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GWAS, linkage mapping identified the distal end region at the top of chromosome 2 as 

the sole source of variation in rRNA gene copy number in this population (Figure 1B). 

The trans-association identified by GWAS in chromosome 1 (Long et al. 2013) was not 

captured by this analysis, despite the fact that the alleles responsible for the presumed 

association segregate in the parental accessions. 

 

 

Figure 1. rRNA gene copy number variation in an F2 population is driven by NOR2. 

(A) The distribution of 18S rRNA gene copy number estimated by NGS in an F2 population of 93 

individuals derived from the cross Ale-Stenar-64-24 (1002) x TRÄ-01 (6244). Blue, green and red 

vertical lines represent phenotypic values of accession Ale-Stenar-64-24, an F1 individual and 

accession TRÄ-01, respectively. (B) QTL mapping of 18S rRNA gene copy number in the same F2 

population. Black and red lines indicate simple interval mapping (SIM) and multiple-QTL mapping 

(MQM) models, respectively (Broman et al. 2003; Arends et al. 2010). (C) FISH results for the parental 
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lines Ale-Stenar-64-24 and TRÄ-01. Images in black and white show DAPI-stained nuclei (upper 

panels) and mitotic chromosomes (lower panels). Probes hybridizing the 45S rRNA gene cluster, 

chromosomes 2 and 4 are highlighted in yellow, red and green, respectively. Bar = 10 µm. 

 

To corroborate that NOR2 is indeed responsible for the difference in rRNA gene 

copy number, we performed fluorescence in situ hybridization (FISH) in both parental 

accessions. The results showed that NOR2 and NOR4 in the southern accession Ale-

Stenar-64-24 are of similar size to each other — NOR4 is on average 1.49x larger 

(106.5/71.17 pixels; n=29) than NOR2 in mitotic chromosomes — while in the northern 

accession TRÄ-01, NOR2 is 2.39x larger than NOR4 (299.64/125.27 pixels; n=26) 

(Figure 1C).  

Mapping in two further F2 populations showed that it is not always NOR2 varying 

in size. CNV mapped to NOR2 in the cross Ull1-1 (8426) x TDr-7 (6193) (Figure S1, A 

and B), but to NOR4 in the cross T460 (6106) x Omn-5 (6071) (Figure S1, C and D). In 

neither population was there evidence of any trans-acting loci. Taken together, these 

results show that both NORs vary in size, and that this size is stable enough to be 

readily traced over two generations. Given this stability, it is not unexpected that we saw 

no evidence of trans-acting loci, because such loci would by necessity modify the copy 

number. 

Size heterogeneity of rRNA gene loci in a worldwide population 

Two of our F2 populations identified NOR2 as the major source of CNV; one identified 

NOR4. To improve our understanding of CNV in the general population, beyond a few 

biparental crosses, we employed the multi-parent advanced-generation inter-cross 
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(MAGIC) population that is derived from intercrossing 19 world-wide accession (Kover 

et al. 2009). Mapping of 18S rRNA gene copy number in 393 individuals of the MAGIC 

population revealed that both NORs contribute to the variation to a similar extent (Figure 

2A), with the contribution varying greatly among founder lines (Figure 2B). For example, 

on average, MAGIC lines carrying NOR2 from accessions Bur-0 (7058) and Zu-0 (7417) 

have fewer copies than do lines that carry NOR4 from these lines instead, because — 

as confirmed by FISH — founder accessions Bur-0 (Figure 2C) and Zu-0 (Figure 2D) 

have larger NOR4 than NOR2. Remarkably, we were unable to detect any fluorescence 

corresponding to 45S rRNA genes in chromosome 2 of Bur-0, suggesting that NOR2 is 

almost absent in this line (Figure 2C). 
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Figure 2. Mapping in the MAGIC lines reveals both NORs in A. thaliana contribute to the 

variation in rRNA gene copy number. 

(A) QTL mapping of 18S rRNA gene copy number variation in 393 individuals of the MAGIC population 

estimated by NGS. (B) Estimated founder accession effect by multiple imputation using R/happy (Mott 

et al. 2000; Kover et al. 2009) at significant QTLs on both chromosomes 2 and 4. (C) FISH results for 

the founder line Bur-0. Images in black and white show DAPI-stained nuclei. Probes hybridizing the 

45S rRNA gene cluster, chromosomes 2 and 4 are highlighted in yellow, red and green fluorescence, 

respectively. Bar = 10 µm. (D) FISH results for the founder line Zu-0 as described in (C). 

 

Unstable inheritance of rRNA gene copy number in a RIL population 

While rRNA gene copy number appeared relatively stable in F2 progeny (Figure 1 and 

Figure S1, A-D), we thought it might be possible to observe changes in recombinant 

inbred line (RIL) populations, which have typically undergone at least eight generations 

of inbreeding since the original cross. Mapping in a RIL population derived from a cross 

between Cvi-0 and Ler-0 (Alonso-Blanco et al. 1998) — two accessions that differ by as 

few as ~100 rRNA gene copies (Riddle and Richards 2002) (Figure S1E) — showed 

that rRNA gene CNV maps to NOR2 (Figure S1F). However, after splitting the 

estimates of rRNA gene copy number by parental origin for each NOR, aberrant  values 

became apparent (Figure 3A). Most notably, CVL45 carried ~200 rRNA gene copies 

less than other individuals with Cvi-only NORs, while CVL168 and CVL102 have ~150 

and ~250 fewer copies, respectively, than other individuals carrying Ler-only NORs 

(Figure 3A).  
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Figure 3. Instability of the rRNA gene repeats is manifested in a small number of generations.  

(A) 18S rRNA gene copy number in the Cvi-0 x Ler-0 RIL population estimated by NGS split by NOR 

parental identity as determined by genotyping by sequencing (GBS). (B) 18S rRNA gene copy number 

in the Cvi-0 x Ler-0 RIL population estimated by NGS split by NOR parental identity as determined by 

CAPS assay. (C) 18S rRNA gene copy number in the Mutation Accumulation lines estimated by qPCR 

in two consecutive generations (32 and 33). 

 

To rule out that these drastic changes were due to interchromosomal exchange 

(recombination) between homologous NORs of different parental origin, we performed 
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CAPS analysis that discriminates between rRNA genes of the parental accessions Cvi-0 

and Ler-0 (Lewis et al. 2004) (Figure 3B). This analysis revealed that the low copy 

number phenotypes of CVL102 and CVL168 cannot be the product of recombination 

with Cvi-0 NORs, since no traces of Cvi-like NORs were identified. Similarly, CVL45 

contains exclusively Cvi-0 NORs (Figure 3B). Copy number must thus have mutated in 

these lines, perhaps via unequal crossing-over. Indeed, our observations are consistent 

with numerous studies suggesting that unequal crossing over is the prevalent 

mechanism in the evolution and dynamics of rRNA genes (Eickbush and Eickbush 

2007); with sister chromatid exchange being more frequent than exchange between 

homologs in budding yeast (Petes 1980; Szostak and Wu 1980), fruit flies (Williams et 

al. 1989; Schlötterer and Tautz 1994) and humans (Seperack et al. 1988). Worth 

noticing is that the distribution of rRNA gene copy number in this RIL population, which 

has undergone at least 9 generations of inbreeding, shows an apparent lack of F1-like 

phenotypes (Figure S1E), further supporting the notion that NORs in homologous 

chromosomes do not readily recombine in A. thaliana (Copenhaver et al. 1995). This is 

in apparent contrast to humans, where presumably meiotic recombination accounts for 

the striking variability observed at single NORs in parent-child trios (Schmickel et al. 

1985; Kuick et al. 1996; Stults et al. 2008). 

Changes in rRNA gene copy number may be associated with changes in 

heterochromatin formation (Paredes and Maggert 2009). Relative to Ler-0, Cvi-0 has 

reduced chromatin compaction, and QTL mapping (using the same RIL population used 

here), pointed to PHYTOCHROME-B (PHYB) and HISTONE DEACETYLASE 6 (HDA6) 

as regulators of light-mediated chromatin compaction (Tessadori et al. 2009). 
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Furthermore, the decreased levels of DNA and histone H3K9 methylation at the NORs 

resembled those seen in the hda6 mutant in the Col-0 background (Riddle and Richards 

2002; Earley et al. 2006, 2010; Tessadori et al. 2009). Although our mapping did not 

identify significant trans-acting QTL for rRNA gene CNV in this RIL population (Figure 

S1F), we tested the effect of NOR-of-origin as a function of the allele (Ler-0 or Cvi-0) 

inherited at either PHYB or HDA6 directly (using a linear model). This analysis revealed 

no significant contribution of PHYB (Figure S2A), and only a marginally significant 

interaction for the role of HDA6 at NOR genotypes Ler-Cvi and Ler-Ler — p-value = 

0.0298 and p-value = 0.0125, respectively (Figure S2B).   

Unstable inheritance of rRNA gene copy number in mutation accumulation lines 

We next turned to mutation accumulation (MA) lines: independent descendants of the 

reference accession Col-0 that have been maintained by single-seed descent for over 

30 generations in the absence of selection (Shaw et al. 2000). Note that since these are 

inbred lines, changes in copy number due to recombination between copy-number 

variants can definitely be ruled out. We quantified 18S rRNA gene copy number by 

qPCR for two consecutive generations in ten lines that have diverged for 31 generations 

(Ossowski et al. 2010; Schmitz et al. 2011; Becker et al. 2011) (Figure 3C). We 

considered a full linear mixed-effects model in which ‘line’ and ‘generation’ were added 

as fixed effects, while ‘replicates’ per line across generations were added as random 

effects. We used likelihood ratio tests to compare the full model and two reduced 

models: (1) omitting ‘line’ — the effect of 30 generations since divergence — or; (2) 

‘generation’ — the effect of one subsequent propagation by single seed descent. While 

‘line’ significantly affected rRNA copy number (𝜒2 (1)=298.19,  p-value < 2.2e-16), 
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‘generation’ had a negligible impact (𝜒2 (2)=3.6,  p-value = 0.057). In other words, the 

difference among independent MA lines accumulated in the 31 generations since 

divergence is much greater than the one manifested in only one generation — or the 

intrinsic error of our measurement.  That these estimates are reliable is also evidenced 

by the good correlation between qPCR and NGS estimates for generation 31 (R-

squared = 0.88, p-value = 6.105e-05) (Figure S3) (Becker et al. 2011; Hagmann et al. 

2015). There is thus clear evidence for instability of rRNA gene copy number over as 

few as 30 generations. 

Discussion 

This study was motivated by our observation that rRNA gene copy number, the major 

determinant of genome size variation in A. thaliana, behaved very strangely in GWAS 

(Long et al. 2013). Specifically, although the variation was likely to be due to CNV at the 

NORs, we were not able to map them in cis. Instead, we mapped what appeared to be 

a trans-acting locus, which prompted us to consider rRNA gene CNV as a phenotype 

rather than a genotype, at least in part (Long et al. 2013). To help make sense of these 

findings, we decided to study the pattern of inheritance using F2s and inbred lines. As 

opposed to the case in humans (Schmickel et al. 1985; Kuick et al. 1996; Stults et al. 

2008), we found that rRNA gene copy number clearly behaves like a genetic trait in 

pedigrees, with the trait mapping either to NOR2 or NOR4 depending on the parents 

(Figure 1, Figure S1 and Figure 2). However, we also found that the trait is unstably 

inherited: by amassing estimates of rRNA gene copy number from F2s, RILs and MA 

lines in sets of individuals sharing the same genotypes at both NORs, we were able to 

show that progressive copy number changes are evident already in tens of generations 
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(Figure 4). Together, these two observations provide an explanation for why we were 

not able to map the NORs using GWAS: copy number is simply too unstable, and hence 

not heritable over the time scales relevant in GWAS. This is thus a bona fide case of 

“missing heritability” — a trait that is heritable in families, but cannot possibly be 

mapped using GWAS (Manolio et al. 2009). 

 

 

Figure 4. Coefficient of variation in rRNA gene copy number along generations since 

divergence. 

Coefficient of variation in rRNA gene copy number along generations since divergence for sets of 

individuals sharing the same genotypes at both NOR loci. For generations 2 and 9 data was collected 

from F2 and RIL populations, respectively; while for the latest generations data was collected from 

Mutation Accumulation lines. Black and red dots represent estimates by NGS and qPCR, respectively.  
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We did not find any evidence for trans-acting loci affecting rRNA gene copy 

number in any of the artificial mapping populations used in this study. Since we now 

know that the trait behaves like a genotype rather than a phenotype on this time scale, 

this is not surprising. It also does not imply that the reported association (Long et al. 

2013) is a false positive, because a trans-acting locus that works by biasing the 

mutation process, predisposing carriers to acquire more or less copies, would not have 

any effect over a few generations. Such a locus may still affect genome size in local 

populations of A. thaliana, and be mappable using GWAS (this would thus be exactly 

the opposite of missing heritability — a phenotype that is only heritable on a population 

scale but cannot be observed in pedigrees). Resolving this through crosses may be 

difficult in a plant with relatively long life cycle.  

 Does all this variation have any biological relevance? It has been recently shown 

that in A. thaliana Col-0, only NOR4 derived rRNA genes are actively transcribed and 

associated with the nucleolus, while NOR2 is silent (Pontvianne et al. 2010, 2013; 

Chandrasekhara et al. 2016). However, our cytological analysis showed that, in TRÄ-

01, NOR2 is the NOR associated with the nucleolus, indicating that in this accession 

NOR2 rRNA genes might be the active ones (Figure 1C, Table S1). Furthermore, using 

transcriptome analysis (F.A. Rabanal and M. Nordborg, manuscript under review), we 

identified great variation among accessions in which NOR is utilized, and demonstrated 

that a complex dominance hierarchy appears to exists among NOR haplotypes. Thus, 

not only do both clusters contribute to genome size variation (Figure 1, Figure S1, 

Figure 2), they also contribute to rRNA expression in natural populations. A large 

megabase-scale deletion at an rRNA gene cluster in the allotetraploid plant Tragopogon 
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mirus led to a breakdown of nucleolar dominance patterns (Dobešová et al. 2015), and 

rRNA gene copy number shifts can even affect genome-wide euchromatic expression 

patterns in flies (Lemos et al. 2008; Paredes et al. 2011). Whether this is the case in A. 

thaliana remains unexplored. 

In conclusion, we have shown that rRNA gene copy number is semi-

conservatively inherited and starts to diverge over a time-scale of tens of generations. 

As a result, the trait is heritable in pedigrees, but cannot be mapped using GWAS. This 

resolves the seemingly paradoxical GWAS results for rRNA gene CNV in A. thaliana, 

and lays the ground for trying to understand whether any of the observed variation has 

functional importance, as suggested by its geographic distribution (Long et al. 2013). 
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