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QUASI-CLASSICAL ASYMPTOTICS FOR FUNCTIONS
OF WIENER–HOPF OPERATORS: SMOOTH VERSUS

NON-SMOOTH SYMBOLS

Alexander V. Sobolev

Abstract. We consider functions of Wiener–Hopf type operators on the Hilbert
space L2(Rd). It has been known for a long time that the quasi-classical asymptotics
for traces of resulting operators strongly depend on the smoothness of the symbol:
for smooth symbols the expansion is power-like, whereas discontinuous symbols (e.g.
indicator functions) produce an extra logarithmic factor. We investigate the transi-
tion regime by studying symbols depending on an extra parameter T ≥ 0 in such
a way that the symbol tends to a discontinuous one as T → 0. The main result is
two-parameter asymptotics (in the quasi-classical parameter and in T ), describing a
transition from the smooth case to the discontinuous one. The obtained asymptotic
formulas are used to analyse the low-temperature scaling limit of the spatially bipar-
tite entanglement entropy of thermal equilibrium states of non-interacting fermions.
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1 Introduction

The present paper is devoted to the study of (bounded, self-adjoint) operators of
the form

Wα := Wα(a; Λ) := χΛ Opα(a)χΛ, α > 0, (1.1)

on L2(Rd), d ≥ 1, where χΛ is the indicator function of a set Λ ⊂ R
d. The notation

Opα(a) stands for the α-pseudo-differential operator with symbol a = a(ξ), which
acts on Schwartz functions u on R

d as

(
Opα(a)u

)
(x) :=

αd

(2π)d

∫∫
eiαξ·(x−y)a(ξ)u(y)dydξ , x ∈ R

d.

Integrals without indication of the integration domain always mean integration over
R

d with the value of d which is clear from the context. We call the operator (1.1)
a (truncated) Wiener–Hopf operator. We are interested in the asymptotics of the
trace of the following operator difference

Dα(a, Λ; f) := χΛf(Wα(a; Λ))χΛ − Wα(f ◦ a; Λ), (1.2)

as α → ∞, with some suitably chosen functions f . The reciprocal parameter α−1 can
be interpreted as Planck’s constant, and hence the limit α → ∞ can be regarded
as the quasi-classical limit. Sometimes a different point of view is convenient: by
changing the variables one easily sees that the operator (1.2) is unitarily equivalent
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to D1(a, αΛ; f), so that the asymptotics α → ∞ can be interpreted as a large-scale
limit.

The second operator on the right-hand side of (1.2) can be viewed as a regulariz-
ing term: it makes the operator (1.2) trace class even if f(0) �= 0 and Λ is unbounded,
see Condition 2.4 for precise assumptions on Λ. On the other hand, if f(0) = 0, Λ
is bounded and the symbol a decays fast at infinity, then Wα(f ◦ a; Λ) is trace class
itself and an elementary calculation shows that

tr Wα(f ◦ a; Λ) =
αd

(2π)d
|Λ|

∫
f
(
a(ξ)

)
dξ, (1.3)

where |Λ| is the d-dimensional Lebesgue measure of Λ.
Asymptotic properties of Dα(a, Λ; f) depend strongly on the smoothness of the

symbol a. For smooth symbols a, smooth functions f and smooth bounded regions
Λ, the full asymptotic expansion of trDα(a, Λ; f) in powers of α−1 was derived by
Budylin–Buslaev [BB91] and H. Widom [Wid85], and we refer to these papers for
the history of the problem and further references. We are concerned only with the
leading term asymptotics: they have the form

tr Dα(a, Λ; f) = αd−1Bd(a) + O(αd−2), α → ∞, (1.4)

where the coefficient Bd(a) = Bd(a; ∂Λ, f) is defined in (10.5).
For symbols a with jump discontinuities the asymptotics have a different form.

For instance, for a = χΩ with a bounded piece-wise region Ω, it was found that

tr Dα(χΩ, Λ; f) = UV1 αd−1 log α + o(αd−1 log α) , α → ∞, (1.5)

for a bounded region Λ ⊂ R
d, with explicitly given coefficients U = U(f) and

V1 = V1(1, ∂Λ, ∂Ω), see (2.11) and (2.12) for the definitions. Discontinuous symbols
came into prominence after the papers by M. E. Fisher and R. E. Hartwig, see e.g.
[FH98], on determinants of truncated Toeplitz matrices. Ever since, discontinuity of
the symbol is sometimes referred to as one of the two Fisher–Hartwig singularities.
The formula (1.5) for smooth functions f was proved by Landau–Widom [LW80],
Widom [Wid82b] (for d = 1) and by A.V. Sobolev [Sob13,Sob15] (for arbitrary
d ≥ 1). These issues have been exhaustively studied for the Toeplitz matrices, see
e.g. survey [Kra11] for references.

In the present paper we study the transition from the smooth to discontinuous
symbols. Precisely, we consider smooth symbols a = aT depending on the additional
parameter T > 0, in such a way that aT (ξ) → χΩ(ξ), as T → 0 pointwise, with
a region Ω ⊂ R

d, and satisfying some mild regularity conditions, see (2.8), (2.9).
The objective is to investigate the asymptotics of tr Dα(aT , Λ; f) as T → 0 and
α → ∞ simultaneously and independently. The sharp bounds for this quantity are
stated in Theorem 2.6, and the asymptotic results are collected in Theorem 2.7. The
function f is not assumed to be globally smooth, but is allowed to have finitely many
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points of non-smoothness. A typical example of such a function, with one point of
non-smoothness, is

f(t) = |t − z|γ , t ∈ R, (1.6)

with some fixed z ∈ R, where γ > 0. The inclusion of non-smooth functions f is far
from trivial, but the relevant tools have been developed earlier (see [Sob,LSS16b]),
and we use them with minor modifications.

The study of such a two-parameter behaviour seems to be an interesting natural
problem of asymptotic analysis in its own right. Our motivation however comes from
the analysis of large-scale behaviour of the spatially bipartite entanglement entropy
of free fermions in thermal equilibrium. This question amounts to studying the trace
of the operator (1.2) with a specific choice of the symbol aT and function f . The
symbol is taken to be the Fermi symbol

aT (ξ) := aT,μ(ξ) :=
1

1 + exp h(ξ)−μ
T

, ξ ∈ R
d, (1.7)

where T > 0 is the temperature, and μ ∈ R is the chemical potential. The function
h = h(ξ) is the free Hamiltonian and we assume that h(ξ) → ∞ as |ξ| → ∞,
so that the Fermi sea Ω = {ξ ∈ R

d : h(ξ) < μ} is a bounded set. Note that
aT,μ → χΩ, T → 0, pointwise.

The function(1.7) is a typical representative of the symbols aT featuring in The-
orem 2.7, so for the sake of discussion in this introduction, we assume that aT is
simply given by the symbol (1.7). The form of the asymptotics in the main theorem
depends on the relation between α and T , the regime αT = const being the critical
one. If αT ≤ const, then the asymptotics have exactly the form (1.5), i.e. the same
as in the case a = χΩ. If however αT ≥ const, then

tr Dα(aT , Λ; f) = UV1 αd−1 log
1
T

+ o

(
αd−1 log

1
T

)
, T → 0. (1.8)

As proved in Theorem 10.1, the asymptotic formula (1.8) can be recast in the form
(1.4) as follows:

tr Dα(aT , Λ; f) = αd−1Bd(aT ) + o

(
αd−1 log

1
T

)
, T → 0, αT ≥ const. (1.9)

Therefore the asymptotic results in Theorem 2.7 do indeed bridge the dichotomy
between smooth and discontinuous symbols.

Returning to the large-scale asymptotics of the entanglement entropy, they follow
from Theorem 2.7 with the symbol (1.7), and with the function f which is chosen to
be one of the γ-Rényi entropy functions ηγ , γ > 0, that are defined in (3.5) and (3.6).
Thus our results provide low-temperature scaling limit of the entanglement entropy
in all dimensions d ≥ 2. These formulas were announced in the article [LSS16a]
without underlying mathematical details. The case of zero temperature, i.e. that of
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a = χΩ was studied in [LSS]. The two-parameter asymptotics for the entropy were
obtained in [LSS16b] for d = 1. The formulas found there hold for α → ∞ and
αT ≥ const. In particular, these conditions allow the limit α → ∞, T = const. On
the other hand, Theorem 2.7 always requires T → 0, but allows αT ≤ const.

The idea is to prove the main result for smooth functions f first. In the case
αT ≤ const an elementary argument allows us to replace the symbol aT by its limit
χΩ, and subsequently use the known asymptotic results for discontinuous symbols,
see [Sob13,Sob15]. This produces a formula of the form (1.5). The case αT ≥ const
is substantially more difficult. Here we observe that different parts of the region Λ
give different contribution to the trace asymptotics. Namely, the boundary layer of
width (αT )−1 gives the main input into the answer. This input is found again by
replacing the symbol aT with the function χΩ, and using the results of [Sob13,Sob15].
However, in contrast to the αT ≤ const case, due to the small size of the boundary
layer, the resulting asymptotic formula contains log 1

T instead of log α. The extension
of these results to non-smooth functions f follows the classical idea of asymptotic
analysis: we approximate f by smooth functions, and for the error we use bounds for
the trace norm of (1.2) that explicitly depend on the function f and the parameter
T . In the abstract setting such bounds had been proved in [Sob], and later they were
used for pseudo-differential operators in [LSS16b] for the case αT ≥ const.

The first principal technical ingredient is estimates for pseudo-differential oper-
ators in the Schatten–von Neumann classes Sq, q > 0. Since the symbol aT depends
on the extra parameter T , the main effort goes into controlling the dependence of
the estimates on the symbol, or at least on the parameter T . Here we rely mostly
on the bounds obtained in [Sob14] and [LSS16b], but also derive some new ones, see
e.g. (5.11). Although the main results are concerned with traces and trace norms,
one should also stress that some intermediate results require bounds in the classes
Sq with q ∈ (0, 1). The need for this becomes transparent if in the operator (1.2)
one takes, as an example, the function (1.6) with 0 < γ < 1.

The second ingredient is the trace asymptotics for the operator (1.2) with a
discontinuous symbol of the type a = χΩ. As mentioned earlier, these were obtained
in [Sob13,Sob15]. Again, it is crucial that these results are uniform in the region Λ
in some suitable sense.

Different parts of the proof have different degree of detail. In maximal detail we
present new arguments, in particular those involving explicit control of the depen-
dence on the parameter T . At the same time, the parts of reasoning that repeat
previously known proofs in new circumstances, are just sketched and sometimes,
omitted.

The plan of the paper is as follows: in Section 2 we provide some basic infor-
mation on Schatten–von Neumann classes, including the useful q-triangle inequality
(2.1), and state the main results, see Theorems 2.6 and 2.7. The whole of Section 3
is devoted to applications of the main theorems to the study of various entropies of
fermionic systems. Some elementary estimates for smooth functions of self-adjoint
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operators are presented in Section 4. In Sections 5 and 6 we collect the necessary
Schatten–von Neumann estimates for pseudo-differential operators and Wiener–Hopf
operators, and prove Theorem 2.6. Section 7 contains preliminary information about
trace asymptotics for discontinuous symbols. The main theorems are proved in Sec-
tions 8 and 9. Rewriting the results for αT � 1 in the form (1.9) takes a lot of
technical work, which is done in Sections 10 and 11.

Throughout the paper we adopt the following convention. For two non-negative
numbers (or functions) X and Y depending on some parameters, we write X � Y (or
Y � X) if X ≤ CY with some positive constant C independent of those parameters.
If X � Y and X � Y , then we write X 
 Y . For example, αT 
 1 means that
c ≤ αT ≤ C with some constants C, c, independent of α and T . To avoid confusion
we often make explicit comments on the nature of (implicit) constants in the bounds.

The notation B(z, R) ⊂ R
d, z ∈ R

d, R > 0, is used for the open ball of radius R,
centred at the point z.

For any vector v ∈ R
n, n = 1, 2, . . . we use the standard notation 〈v〉 =√

1 + |v|2.

2 Preliminaries: main result

2.1 Schatten–von Neumann classes. We use some well-known facts about
Schatten–von Neumann operator ideals Sq, q > 0. Detailed information on these
ideals can be found e.g. in [BS87,GK69,Pie78,Sim05]. We shall point out only some
basic facts. For a compact operator A on a separable Hilbert space H denote by
sn(A), n = 1, 2, . . . its singular values, i.e., the eigenvalues of the operator |A| :=√

A∗A. We denote the identity operator on H by I. The Schatten–von Neumann
ideal Sq, q > 0 consists of all compact operators A, for which

‖A‖q :=
[ ∞∑

k=1

sk(A)q

] 1
q

< ∞.

If q ≥ 1, then the above functional defines a norm. If 0 < q < 1, then it is a quasi-
norm. There is nevertheless a convenient analogue of the triangle inequality, which
is called the q-triangle inequality:

‖A1 + A2‖q
q ≤ ‖A1‖q

q + ‖A2‖q
q, A1, A2 ∈ Sq, 0 < q ≤ 1, (2.1)

see [Rot67] and also [BS87]. Thus ‖A‖q is sometimes called a q-norm. Note also the
Hölder inequality

‖A1A2‖q ≤ ‖A1‖q1 · ‖A2‖q2 , q−1 = q−1
1 + q−1

2 , 0 < q1, q2 ≤ ∞.

Further on we need some Sq-estimates for functions of self-adjoint operators that
were established in [Sob]. As indicated in the Introduction, we are interested in
functions that lose smoothness at finitely many points. Without loss of generality,
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for almost all estimates we may assume that f has only one non-smoothness point.
Below χR denotes the indicator function of the interval (−R, R), R > 0. We impose
the following condition.

Condition 2.1. For some integer n ≥ 1 the function f ∈ Cn(R\{t0})∩C(R) satisfies
the bound

f n = max
0≤k≤n

sup
t�=t0

|f (k)(t)||t − t0|−γ+k < ∞ (2.2)

with some γ > 0, and is supported on the interval [t0 − R, t0 + R] with some R > 0.

A function f satisfying (2.2) with n = 1 is Hölder-continuous:

|f(t1) − f(t2)| ≤ 2 f 1|t1 − t2|κ, κ = min{γ, 1}, (2.3)

for all t1, t2 ∈ R. In what follows, all the bounds involving functions from Condi-
tion 2.1, are uniform in t0, and contain explicit dependence on the quantity (2.2),
and on the radius R.

Now we can quote one abstract result following from [Sob, Theorem 2.10].

Proposition 2.2. Suppose that f satisfies Condition 2.1 with some γ > 0, n ≥ 2
and some t0 ∈ R, R ∈ (0, ∞). Let q be a number such that (n − σ)−1 < q ≤ 1 with
some number σ ∈ (0, 1], σ < γ. Let A be a bounded self-adjoint operator and let P
be an orthogonal projection such that PA(I − P ) ∈ Sσq. Then

‖f(PAP )P − Pf(A)‖q � f nRγ−σ‖PA(I − P )‖σ
σq, (2.4)

with an implicit constant independent of the operators A, P , the function f , and the
parameters R, t0.

Later in the proofs we apply this proposition to the operator (1.2).
We also need a version of Proposition 2.2 for smooth functions f , see [Sob,

Corollary 2.11].

Proposition 2.3. Suppose that g ∈ Cn
0 (−r, r), with some r > 0 and n ≥ 2.

Assume q ∈ (0, 1] and σ ∈ (0, 1] are such that (n − σ)−1 < q ≤ 1. Let the operator
A and orthogonal projection P be as in Proposition 2.2. Then

‖g(PAP )P − Pg(A)‖q � ‖g‖Cn‖PA(I − P )‖σ
σq,

with an implicit constant independent of the operator A, projection P and the
function g.



GAFA QUASI-CLASSICAL ASYMPTOTICS 683

2.2 The domains and regions. We always assume that d ≥ 2. We say that Λ
is a basic Lipschitz (resp. basic Cm, m = 1, 2, . . . ) domain, if there is a Lipschitz (resp.
Cm) function Φ = Φ(x̂), x̂ ∈ R

d−1, such that with a suitable choice of Cartesian
coordinates x = (x̂, xd), the domain Λ is represented as

Λ = {x ∈ R
d : xd > Φ(x̂)}. (2.5)

We use the notation Λ = Γ(Φ). The function Φ is assumed to be globally Lipschitz,
i.e. the constant

MΦ = sup
x̂�=ŷ

|Φ(x̂) − Φ(ŷ)|
|x̂ − ŷ| , (2.6)

is finite. Throughout the paper, all estimates involving basic Lipschitz domains Λ =
Γ(Φ), are uniform in the number MΦ.

A domain (i.e. connected open set) is said to be Lipschitz (resp. Cm) if locally it
coincides with some basic Lipschitz (resp. Cm) domain. We call Λ a Lipschitz (resp.
Cm) region if Λ is a union of finitely many Lipschitz (resp. Cm) domains such that
their closures are pair-wise disjoint.

A basic Lipschitz domain Λ = Γ(Φ) is said to be piece-wise Cm with some
m = 1, 2, . . . , if the function Φ is Cm-smooth away from a collection of finitely many
(d − 2)-dimensional Lipschitz surfaces L1, L2, · · · ⊂ R

d−1. By (∂Λ)s ⊂ ∂Λ we denote
the set of points where the Cm-smoothness of the surface ∂Λ may break down. A
piece-wise Cm region Λ and the set (∂Λ)s for it are defined in the obvious way. An
expanded version of these definitions can be found in [Sob14,Sob15], and here we
omit the details.

The minimal assumptions on the sets featuring in this paper are laid out in the
following condition.

Condition 2.4. The set Λ ⊂ R
d, d ≥ 2, is a Lipschitz region, and either Λ or R

d\Λ
is bounded.

Some results, including the main asymptotic formulas in Theorem 2.7, require
extra smoothness of Λ. Note that if Λ is a Lipschitz (or Cm) region, then so is the
interior of R

d\Λ.

2.3 The main result. We study the operator Dα(aT , Λ; f), see (1.2) for the
definition, with the symbol aT approximating the indicator function of an open set
Ω ⊂ R

d. To state the precise definition of aT denote

ρ(ξ) = dist(ξ, ∂Ω), ρ̃(ξ) = min{ρ(ξ), 1}, 〈t〉 =
√

1 + t2, t ∈ R. (2.7)

Condition 2.5. Let Ω ⊂ R
d, d ≥ 2, satisfy Condition 2.4. The symbol aT = aT,Ω ∈

C∞(Rd), depending on the set Ω and parameter T ∈ (0, T0], is a function satisfying
the properties

|aT (ξ) − χΩ(ξ)| � 〈ρ(ξ)T−1〉−β , β > d, (2.8)
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and

|∇maT (ξ)| � (T + ρ̃(ξ))−m〈ρ(ξ)T−1〉−β , m = 1, 2, . . . . (2.9)

The implicit constants are independent of T , but may depend on T0 and region Ω.

Although aT,Ω depends on two parameters, i.e. the number T ∈ (0, T0] and the
region Ω ⊂ R

d, we usually omit the dependence on Ω, since Ω is fixed.
The main results of this paper are contained in the next two theorems.

Theorem 2.6. Let d ≥ 2. Suppose that Λ ⊂ R
d and Ω ⊂ R

d satisfy Condition 2.4.
Let aT = aT,Ω ∈ C∞(Rd) be a real-valued symbol depending on the parameter
T : 0 < T � 1, and satisfying Condition 2.5. Suppose also that α � 1.

Suppose that f satisfies Condition 2.1 with n = 2 and some γ > 0. If β >
max{d, dγ−1}, then for any σ ∈ (dβ−1, min{γ, 1}), we have

∥∥Dα(aT , Λ; f)
∥∥

1
� Rγ−σαd−1 log

(
min

{
α,

1
T

}
+ 1

)
f 2, (2.10)

with an implicit constant independent of T, R, t0, α and the function f .

For the main asymptotic result we need some more notation. For any two Lips-
chitz regions Λ, Ω and a continuous function b = b(x, ξ) define the quantity

V1(b) = V1(b; ∂Λ, ∂Ω) =
1

(2π)d+1

∫

∂Λ

∫

∂Ω

b(x, ξ)|nξ · nx|dSξdSx, (2.11)

where nx,nξ are the exterior unit normals to the surfaces ∂Λ and ∂Ω at the points x
and ξ respectively. For a Hölder-continuous function f : C �→ C, define the integral

U(f) =
∫ 1

0

f(1 − t) − (1 − t)f(1) − tf(0)
t(1 − t)

dt. (2.12)

Now we can describe the asymptotics of Dα(aT , Λ; f).

Theorem 2.7. Let d ≥ 2. Suppose that Λ ⊂ R
d and Ω ⊂ R

d satisfy Condition 2.4.
Suppose also that Λ is piece-wise C1, and Ω is piece-wise C3.

Let X = {z1, z2, . . . , zN} ⊂ R, N < ∞, be a collection of points on the real line.
Suppose that f ∈ C2(R\X) is a function such that in a neighbourhood of each point
z ∈ X it satisfies the bound

|f (k)(t)| ≤ Ck|t − z|γ−k, k = 0, 1, 2, (2.13)

with some γ > 0.
Suppose that aT = aT,Ω ∈ C∞(Rd), 0 < T � 1, is a real-valued symbol as in

Theorem 2.6.



GAFA QUASI-CLASSICAL ASYMPTOTICS 685

Then

lim
T→0
αT�1

1
αd−1 log 1

T

tr Dα(aT , Λ; f) = U(f)V1(1; ∂Λ, ∂Ω), (2.14)

and

lim
α→∞
αT�1

1
αd−1 log α

tr Dα(aT , Λ; f) = U(f)V1(1; ∂Λ, ∂Ω). (2.15)

Remark 2.8. Note that in Theorems 2.6 and 2.7 either one or both regions Λ or Ω
are allowed to be unbounded, as long as the complements Ωc and/or Λc are bounded.
Nevertheless, it suffices to prove Theorems 2.6 and 2.7 for a bounded Ω only. Indeed,
suppose that Ω is a Lipschitz region such that Ωc is bounded. Denote

bT = bT,Ωc = 1 − aT,Ω, g(t) = f(−t + 1).

The symbol bT satisfies Condition 2.5 with Ωc instead of Ω. The function g satisfies
Condition 2.1 with 1 − t0 instead of t0 (for Theorem 2.6), or it satisfies the bound
(2.13) for all z ∈ X̃ with X̃ = 1 − X (for Theorem 2.7). Moreover,

f
(
Wα(aT ; Λ)

)
χΛ = g

(
Wα(bT ; Λ)

)
χΛ, f

(
Opα(aT )

)
= g

(
Opα(bT )

)
,

so that Dα(aT,Ω, Λ; f) = Dα(bT,Ωc , Λ; g). Thus Theorems 2.6 and 2.7 for the symbol
aT and function f follow from themselves for the symbol bT and function g.

This observation has no bearing on many intermediate estimates as our argument
usually goes through equally well for bounded or unbounded Ω. Nevertheless, it will
be useful to us since some of the results that we borrow from the literature, have
been formally proved for bounded Ω only.

Remark 2.9. If the regions Λ and Ω are bounded, and f(0) = 0, then the second
operator on the right-hand side of (1.2) is trace class, and its trace is easily found
from the formula (see (1.3))

tr Wα(f ◦ aT ; Λ) =
αd

(2π)d

∫

Λ

∫

R
d

f(aT (ξ))dξdx =: αdW0(aT χΛ; f),

and thus the formulas (2.14) and (2.15) give two-term asymptotics for tr f(Wα). For
instance, (2.14) can be rewritten as

tr f
(
Wα(aT ; Λ)

)
=αdW0(aT χΛ; f)

+ αd−1 log
1
T

U(f)V1(1; ∂Λ, ∂Ω)

+ o

(
αd−1 log

1
T

)
, αT � 1, T → 0. (2.16)

In this paper we discuss two possible realizations of the symbol aT . The first
example is given in the next subsection.
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2.4 Anti-Wick quantization. Let Ω be a Lipschitz region. One way to ap-
proximate χΩ by a smooth function is to use the following standard procedure. Let
ζ ∈ C∞

0 (Rd) be a non-negative function with a support in the unit ball B(0, 1), such
that ‖ζ‖L1 = 1. Define

aT (ξ) =
∫

Ω
ζT (ξ − η)dη, ζT (ξ) =

1
T d

ζ

(
ξ

T

)
. (2.17)

It is straightforward that aT (ξ) − χΩ(ξ) = 0 for all ξ with the property ρ(ξ) > T ,
and |∇maT (ξ)| � T−m, m = 1, 2, . . . , if ρ(ξ) ≤ T . Thus aT satisfies (2.8) and (2.9)
for any β > 0, and hence Theorems 2.6 and 2.7 hold.

Clearly, the smoothing function ζ does not need to have a compact support.
One can pick, for instance ζ(ξ) = cd exp(−|ξ|2) with the appropriate normalizing
coefficient cd. In this case the conditions (2.8) and (2.9) are also readily verified.
With this choice of the smoothing ζ, the symbol resembles the definition of the anti-
Wick quantization of a pseudo-differential operator, see e.g. [Shu01, Ch. 4, §24].
Recall that if the anti-Wick symbol is given by b(x, ξ), then the “quasi-classical”
Weyl symbol bW of the same operator is found via the formula

bW
T (x, ξ) =

1
(πT 2)d

∫
exp

(
−|x − y|2

T 2
− |ξ − η|2

T 2

)
b(y, η)dydη.

Since (2.17) does not contain any dependence on the spatial variable, the symbol
aT in fact is the Weyl symbol associated with the anti-Wick symbol χΩ(ξ). At the
same time, the indicator function χΛ in the definition (1.1) is not smoothed-out.
Thus the operator Wα(aT ; Λ) can be loosely described as a “partial” anti-Wick
quantization. Therefore it seems appropriate to compare our results, e.g. formula
(2.16), with the known asymptotic formulas for anti-Wick operators. These operators
were introduced (see [Ber71]) and subsequently extensively studied in the case T =
α−1/2. We do not intend to discuss these studies in detail, and cite only the latest
asymptotic result in this area, found in [Old15]. This paper was concerned with
potentially discontinuous anti-Wick symbols of the form b(x, ξ) = χM (x, ξ)b̃(x, ξ)
where M ⊂ R

2d is a bounded smooth domain, and b̃ is a smooth symbol. For the
sake of precision one should say that the paper [Old15] considered generalized anti-
Wick-operators, i.e. those with arbitrary decreasing smoothing functions ζ, but we
do not elaborate on this point here. The main result of [Old15] states that for smooth
functions f , such that f(0) = 0, one has

tr f(Opα(bW
T )) = αdW0(bW

T ; f) + O(αd−1) with T =
1√
α

, as α → ∞.

This formula, in contrast to (2.16), does not have a log-term.
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3 The Fermi symbol: entanglement entropy and local entropy

This section is focused on our second example of the symbol aT . As mentioned earlier,
the asymptotical problems studied in this paper are partly motivated by the study
of entanglement entropy of free fermions both for positive and zero temperature T .
In particular, for the positive temperature T > 0 the relevant symbol aT is the Fermi
symbol (1.7) with temperature T > 0 and chemical potential μ > 0. The parameter
μ is always assumed fixed. The assumptions on the function h = h(ξ) are as follows:

Condition 3.1. (1) The function h ∈ C∞(Rd) is real-valued, and for sufficiently
large ξ we have

h(ξ) � |ξ|β1 , (3.1)

with some constant β1 > 0. Moreover,

|∇nh(ξ)| � (1 + |ξ|)β2 , n = 1, 2, . . . , ∀ξ ∈ R
d, (3.2)

with some β2 ≥ 0.
(2) On the set S = Sμ = {ξ ∈ R

d : h(ξ) = μ} the condition

∇h(ξ) �= 0, ∀ξ ∈ S. (3.3)

is satisfied.
(3) The set Ωμ = {ξ ∈ R

d : h(ξ) < μ} has finitely many connected components.

Because of (3.1) the set Ω = Ωμ is bounded, i.e. Ω ⊂ B(0, R0) with some R0 > 0.
Furthermore, due to the condition (3.3), the set Sμ is a C∞-surface (called the Fermi
surface), and we have the bounds:

|h(ξ) − μ| 
 ρ(ξ), ∀ξ ∈ B(0, R0). (3.4)

By virtue of (3.1) we also have the lower bound

h(ξ) − μ � |ξ|β1 , |ξ| ≥ R0.

Note the straightforward bound:

|aT,μ(ξ) − χΩ(ξ)| ≤ exp
(

−|h(ξ) − μ|
T

)
, ξ ∈ R

d.

This allows us to extend the definition (1.7) to T = 0:

a0,μ(ξ) = lim
T→0

aT,μ(ξ) = χΩ(ξ), a.e. ξ ∈ R
d.

As pointed out in [LSS16b, Section 8], as a consequence of (3.1), (3.2) and (3.4), we
also have

|∇naT,μ(ξ)| �(T + ρ(ξ))−n exp
(

−c1
ρ(ξ)
T

)
, n = 1, 2, . . . , ∀|ξ| ≤ R0,

|∇naT,μ(ξ)| � exp
(

−c1
|ξ|β1

T

)
, n = 1, 2, . . . , ∀|ξ| ≥ R0,
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with some positive constant c1. Thus the symbol (1.7) satisfies the bounds (2.8) and
(2.9) for any β > 0. Consequently, the trace tr Dα(aT,μ, Λ; f) satisfies (2.14) and
(2.15). In order to study the entropy we use these asymptotic formulas with the
γ-Rényi entropy function ηγ : R �→ [0, ∞) defined for all γ > 0 as follows. If γ �= 1,
then

ηγ(t) :=
{ 1

1−γ log
[
tγ + (1 − t)γ

]
for t ∈ (0, 1),

0 for t �∈ (0, 1),
(3.5)

and for γ = 1 (the von Neumann case) it is defined as the limit

η1(t) := lim
γ→1

ηγ(t) =
{−t log(t) − (1 − t) log(1 − t) for t ∈ (0, 1),

0 for t �∈ (0, 1).
(3.6)

For γ �= 1 the function ηγ satisfies condition (2.13) with γ replaced with κ =
min{γ, 1}, and with X = {0, 1}. The function η1 satisfies (2.13) with an arbitrary
γ ∈ (0, 1), and the same set X.

We begin with reminding definitions of the entropies in the form given in [LSS16b,
Section 10]. If Λ ⊂ R

d is bounded, then the local (thermal) γ-Rényi entropy of the
equilibrium state at temperature T ≥ 0 and chemical potential μ ∈ R is defined as

Sγ(T, μ; Λ) := tr
[
ηγ(W1(aT,μ; Λ))

]
. (3.7)

For arbitrary Λ ⊂ R
d we define the γ-Rényi entanglement entropy (EE) with respect

to the bipartition R
d = Λ ∪ (Rd\Λ), as

Hγ(T, μ; Λ) := trD1(aT,μ, Λ; ηγ) + tr D1(aT,μ, Rd\Λ; ηγ). (3.8)

These entropies were studied in [LSS] (for T = 0) and [LSS16b] (for T > 0). In
particular, in [LSS16b] it was shown that for any T > 0 the EE is finite, if Λ satisfies
Condition 2.4.

We are interested in the behaviour of the above quantities when T → 0 and Λ is
replaced with αΛ, with a large scaling parameter α. The next theorem establishes
sharp bounds for the entropies (3.7) and (3.8).

Theorem 3.2. Let d ≥ 2. Suppose that Λ satisfies Condition 2.4. Suppose that
0 < T � 1 and α � 1. Then the γ-Rényi entanglement entropy satisfies

|Hγ(T, μ; αΛ)| � αd−1 log
(
min

{
α, T−1

}
+ 1

)
. (3.9)

If Λ is bounded, then the local γ-Rényi entropy satisfies
∣
∣Sγ(T, μ; αΛ) − αdsγ(T, μ)|Λ|∣∣ � αd−1 log

(
min

{
α, T−1

}
+ 1

)
, (3.10)

where

sγ(T, μ) :=
1

(2π)d

∫
ηγ(aT,μ(ξ))dξ.

The constants in (3.9) and (3.10) are independent of α and T , but may depend on
the function h, parameter μ and the region Λ.
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The coefficient sγ(T, μ) is called the γ-Rényi entropy density (cf. [LSS]). For
αT � 1 the bounds (3.9) and (3.10) were derived in [LSS16b].

Proof of Theorem 3.2. In view of additivity of the operator Dα(a, Λ; f) in the func-
tional parameter f , the bound (3.9) follows from Theorem 2.6.

In order to prove (3.10), we rewrite (3.7):

Sγ(T, μ; αΛ) = tr[χΛηγ(Opα(aT,μ))χΛ] + trDα(aT,μ, Λ; ηγ).

For the first trace we use the identity (1.3), and for the second one—the bound (3.9).
This yields (3.10). ��

The next theorem establishes the asymptotic behaviour of the local entropy and
of the EE.

Theorem 3.3. Suppose that Λ ⊂ R
d, d ≥ 2, satisfies Condition 2.4, and is piece-

wise C1. Then the EE satisfies

lim
T→0
αT�1

1
αd−1 log 1

T

Hγ(T, μ; αΛ) = 2π2 1 + γ

6γ
V1(1; ∂Λ, ∂Ω), (3.11)

and

lim
α→∞
αT�1

1
αd−1 log α

Hγ(T, μ; αΛ) = 2π2 1 + γ

6γ
V1(1; ∂Λ, ∂Ω). (3.12)

If the region Λ is bounded, then the local entropy satisfies

lim
T→0
αT�1

1
αd−1 log 1

T

(
Sγ(T, μ; αΛ) − αdsγ(T, μ)|Λ|

)
= π2 1 + γ

6γ
V1(1; ∂Λ, ∂Ω), (3.13)

and

lim
α→∞
αT�1

1
αd−1 log α

(
Sγ(T, μ; αΛ) − αdsγ(T, μ)|Λ|

)
= π2 1 + γ

6γ
V1(1; ∂Λ, ∂Ω). (3.14)

Proof. Formulas (3.11) and (3.12) follow from (2.14) and (2.15) respectively upon
observing (cf. [LSS]) that

U(ηγ) =
∫ 1

0

ηγ(t)
t(1 − t)

dt = π2 1 + γ

6γ
.

Formulas (3.13) and (3.14) also follow from (2.14) and (2.15), and from (1.3). ��
For d = 1 and αT � 1 Theorem 3.3 was proved in [LSS16b]. We also re-iterate

that the formulas above agree with the large-scale asymptotics of the entropies Hγ

and Sγ for the zero temperature case, which were found in [LSS].
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4 Smooth functions of self-adjoint operators

4.1 The Helffer–Sjöstrand formula. When studying functions of self-adjoint
operators we rely on the Helffer–Sjöstrand formula (see [HS89]) which holds for
arbitrary operator X = X∗ and arbitrary smooth function f ∈ Cn

0 (R), n ≥ 2:

f(X) =
1
π

∫∫
Z(x, y)(X − x − iy)−1dxdy, Z(x, y) =

∂

∂z̄
f̃(x, y), (4.1)

where f̃ = f̃(x, y) is a quasi-analytic extension of the function f , see [Dav95, Ch. 2].
A quasi-analytic extension of f ∈ Cn(R) is a C1(R2)-function f̃ , such that f(x) =
f̃(x, 0) and |Z(x, y)| ≤ C|y|. For the sake of brevity we use the representation (4.1)
for compactly supported functions only, so that that the integral (4.1) is norm-
convergent.

Let us describe a convenient quasi-analytic extension of a function f ∈ Cn
0 (R).

For an arbitrary r > 0 introduce the function

U(x, y) =

{
1, |y| < 〈x〉,
0, |y| ≥ 〈x〉, 〈x〉 =

√
x2 + 1. (4.2)

The next proposition can be found in [Dav95, Ch. 2].

Proposition 4.1. Let f ∈ Cn(R), n ≥ 2. Then the function f has a quasi-analytic
extension f̃ = f̃( ·, ·) ∈ C1(R2) such that f̃(x, y) = 0 if |y| > 〈x〉. Moreover, the
derivative

Z(x, y) =
∂

∂z
f̃(x, y),

satisfies the bound

|Z(x, y)| � F (x)|y|n−1U(x, y) (4.3)

where

F (x) =
n∑

l=0

|f (l)(x)|〈x〉−n+l.

The constant in (4.3) does not depend on f .

Denote

Nn(f) =
∫

F (x)〈x〉n−2dx. (4.4)
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4.2 Quasi-commutators. Let H be a Hilbert space. Let A, B : H �→ H be some
bounded self-adjoint operators, and let J : H �→ H be a bounded operator. Here we
make some elementary observations about the “quasi-commutator”

f(A)J − Jf(B)

with a smooth function f . We are interested in estimates in the normed ideal S of
compact operators with the norm ‖ · ‖S.

Theorem 4.2. Let A, B be two self-adjoint bounded operators, and let J be a
bounded operator. Suppose that f ∈ Cn

0 (R) with n ≥ 3. Let S be a normed ideal of
compact operators acting on H. Then

‖f(A)J − Jf(B)‖S � Nn(f)‖AJ − JB‖S. (4.5)

The constant in (4.5) does not depend on f or A, B, J .

Proof. Let us consider the function f(t) = rz(t) = (t − z)−1 with Im z �= 0, and
prove that

‖rz(A)J − Jrz(B)‖S ≤ 1
| Im z|2 ‖AJ − JB‖S. (4.6)

By the resolvent identity

rz(A)J − Jrz(B) = −rz(A)(AJ − JB)rz(B),

we have

‖rz(A)J − Jrz(B)‖S ≤ 1
| Im z|2 ‖AJ − JB‖S,

whence (4.6).
By formula (4.1) and Proposition 4.1, we have

‖f(A)J − Jf(B)‖S
�

∫∫

|y|<〈x〉
F (x)|y|n−1‖rx+iy(A)J − Jrx+iy(B)‖Sdxdy

� ‖AJ − JB‖S
∫∫

|y|<〈x〉
F (x)|y|n−3dxdy, (4.7)

where we have used (4.6). The right-hand side is clearly estimated by Nn(f)‖AJ −
JB‖S, as required. ��
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From now on, unless otherwise stated we always assume that f ∈ Cn
0 (R) with

some n ≥ 3. We apply the above simple result to the operators of the form

D(A1, P1; f)J − JD(A2, P2; f),

involving two pairs of self-adjoint bounded operators A1, A2 and P1, P2, where

D(A, P ; f) = Pf(PAP )P − Pf(A)P.

We do not consider the most general case, but concentrate on a very special one,
which is used later in the proof of the main theorem.

As before, the constants in the estimates below depend neither on the function
f nor operators involved.

Corollary 4.3. Let A1, A2 be bounded self-adjoint operators, and let P1, P2 be
bounded self-adjoint operators such that ‖P1‖, ‖P2‖ ≤ 1. Let J be a bounded
operator. Suppose that

[P1, J ] = [P2, J ] = 0, (4.8)

and

(P1 − P2)J = 0. (4.9)

Then

‖D(A1, P1; f)J − JD(A2, P2; f)‖S
� Nn(f)

[‖(A1 − A2)J‖S + ‖[A2, J ]‖S
]
, (4.10)

and

‖JD(A1, P1; f) − JD(A2, P2; f)‖S
� Nn(f)

[‖(A1 − A2)J‖S + ‖[A1, J ]‖S + ‖[A2, J ]‖S
]
. (4.11)

Proof. Observe first that (4.11) follows from (4.10) due to the following equality:

JD(A1, P1; f) − JD(A2, P2; f)
= [J,D(A1, P1; f)] + D(A1, P1; f)J − JD(A2, P2; f).

Proof of (4.10). By (4.8),

‖[P1A2P2, J ]‖S ≤ ‖[A2, J ]‖S.

Also, by (4.5),

‖[f(P2A2P2), J ]‖S � Nn(f)‖[A2, J ]‖S.
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Thus, in view of (4.8) and (4.9),

P1f(P1A1P1)P1J − JP2f(P2A2P2)P2

= P1

(
f(P1A1P1)J − Jf(P2A2P2)

)
P1

+ P1[f(P2A2P2), J ]P2 − P1[f(P2A2P2), J ]P1.

By (4.5) and (4.8), (4.9), the first term on the right-hand side does not exceed

Nn(f)‖P1A1P1J − JP1A2P2‖S
≤ Nn(f)

(‖P1A1P1J − P1A2P1J‖S + ‖[P1A2P2, J ]‖S
)

≤ Nn(f)
(‖(A1 − A2)J‖S + ‖[A2, J ]‖S

)
.

The second and the third terms are bounded by Nn(f)‖[A2, J ]‖S. This leads to
(4.10). ��

Corollary 4.4. Let A be a bounded self-adjoin operator, and let P be an orthog-
onal projection. Let J be an operator such that [P, J ] = 0. Then

‖JD(A, P ; f)‖S + ‖D(A, P ; f)J‖S � Nn(f)
(‖JPA(I − P )‖S + ‖[A, J ]‖S

)
.

(4.12)

The constant in (4.12) is independent of A, P, J or f .

Proof. It suffices to prove (4.12) for the operator D(A, P ; f)J only. Rewrite it:

D(A, P ; f)J = Pf(PAP )PJ − Pf(A)JP

= Pf(PAP )PJ − PJf(A)P − P [f(A), J ]P
= P

(
f(PAP )PJ − PJf(A)

)
P − P [f(A), J ]P.

By (4.5), the S-norm of the second term is bounded by Nn(f)‖[A, J‖S. By (4.5),
the S-norm of the first term is bounded by

Nn(f)‖PAPJ − PJA‖S ≤ Nn(f)
(‖JPA(I − P )‖S + ‖[A, J ]‖S

)
.

This completes the proof of (4.12). ��

4.3 Elementary estimates for pseudo-differential operators. Now we ap-
ply Corollaries 4.3 and 4.4 to pseudo-differential operators. As above we assume that
f ∈ Cn

0 (R) with some n ≥ 3. The quantity Nn(f) is defined in (4.4).
Below we always assume that ϕ ∈ C∞(Rd) is a bounded function. Often we also

assume that for some sets Λ and Π,

supp ϕ ∩ Λ = supp ϕ ∩ Π. (4.13)
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Lemma 4.5. Let b, b̃ be some real-valued symbols, and let Λ and Π be some sets.
Then

‖ϕDα(b, Λ; f)‖1 � Nn(f)
(‖χΛϕ Opα(b)(I − χΛ)‖1 + ‖[Opα(b), ϕ]‖1

)
. (4.14)

Suppose that (4.13) is satisfied. Then

‖ϕDα(b, Λ; f) − ϕDα(b̃, Π; f)‖1

� Nn(f)
(‖[ϕ, Opα(b)]‖1 + ‖ϕ Opα(b − b̃)‖1 + ‖ Opα(b − b̃)ϕ‖1

)
. (4.15)

If, in addition, Π = R
d, then

‖ϕDα(b, Λ; f)‖1 � Nn(f)‖[ϕ, Opα(b)]‖1. (4.16)

The constants in the above bounds do not depend on the function f , ϕ, sets Λ, Π
or symbols b, b̃.

Proof. The bound (4.14) follows from Corollary 4.4 with P = χΛ, A = Opα(b),
J = ϕ.

The bound (4.16) follows from (4.15) used with b = b̃, since Dα(b, Rd; f) = 0.
Proof of (4.15). Use Corollary 4.3 with

A1 = Opα(b), A2 = Opα(b̃), P1 = χΛ, P2 = χΠ, J = ϕ.

The condition (4.8) is trivially satified. By (4.13), the condition (4.9) is also satisfied.
Thus (4.15) follows from (4.11). ��

5 Estimates for Wiener–Hopf operators

In this section we collect some Schatten–von Neumann bounds for Wiener–Hopf
operators with symbols satisfying some general conditions. Our main objective is to
ensure the explicit dependence of the bounds on the symbols.

5.1 Some basic bounds. To control the scaling properties of functions we
introduce the following norms:

N(n)(η; τ) = max
0≤k≤n

sup
ξ

τk|∇k
ξη(ξ)|, n = 1, 2, . . . . (5.1)

First we give some bounds in Schatten–von Neumann classes Sq, q ∈ (0, 1], estab-
lished in [Sob14], but adjusted for our purposes in the current paper.

Unless specified otherwise, below each of the sets Λ, Ω ⊂ R
d is a Lipschitz region.

If Λ (or Ω) is a basic Lipschitz domain, i. e. Λ = Γ(Φ) with a globally Lipschitz
function Φ, then the constants in the estimates obtained below are uniform in Λ in
the sense that they depend only on the constant M in the bound MΦ ≤ M .

Below we often use a test-function ϕ ∈ C∞
0 (Rd) such that

support of the function ϕ is contained in B(z, �), (5.2)
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with some constant � > 0 and some z ∈ R
d. The bounds below are uniform in z, since

by translation one can always assume that z = 0. The constants in all estimates are
independent of the parameters α, � and τ .

Lemma 5.1. Suppose that ϕ satisfies (5.2), and that the support of η ∈ C∞
0 (Rd) is

contained in a ball of radius τ > 0. Let q ∈ (0, 1] and

r = rq = [(d + 1)q−1] + 1. (5.3)

(1) Let Λ and Ω be Lipschitz regions. If α�τ � 1, then

‖[ϕ Opα(η), χΛ]‖q + ‖[ϕ Opα(η), Opα(χΩ)]‖q

� (α�τ)
d−1

q N(r)(ϕ; �)N(r)(η; τ). (5.4)

(2) Let Λ be a Lipschitz region, and let Ω satisfy Condition 2.4. Suppose that
α� � 1. Then

‖χΛχB(z,�) Opα(χΩ)(I − χΛ)‖q �
[
(α�)d−1 log(α� + 1)

] 1
q . (5.5)

(3) Let Λ and Ω satisfy Condition 2.4. If α� � 1, then

‖[ϕ, Opα(χΩ)]‖q � (α�)
d−1

q N(r)(ϕ; �). (5.6)

If ατ � 1, then

‖[Opα(η), χΛ]‖q � (ατ)
d−1

q N(r)(η; τ). (5.7)

If Λ (or Ω) is basic Lipschitz, then the relevant bounds are uniform in Λ (or Ω).

Proof. The bounds (5.4) follow from [Sob14, Theorem 4.2 and Corollary 4.4].
For bounded Ω the bound (5.5) is easily deduced from [Sob14, Theorem 4.6 and

Corollary 4.7]. We omit the details. If Ωc = R
d\Ω is bounded, then

χΛϕ Opα(χΩ)(I − χΛ) = −χΛϕ Opα(χΩc)(I − χΛ),

and we can use [Sob14] again.
For bounded Λ and Ω the bounds (5.6) and (5.7) follow from (5.4) by using

a suitable partition of unity, or one can use the appropriate result from [Sob14,
Corollary 4.4]. In the case of bounded complements Λc and Ωc we use the obvious
identities

[ϕ, Opα(χΩ)] = −[ϕ, Opα(χΩc)], [Opα(η), χΛ] = −[Opα(η), χΛc)],

and [Sob14, Corollary 4.4] again. ��
Lemma 5.2. Let a = a(ξ) be a symbol, and let �, α > 0 be some numbers. Then for
any m ≥ d + 1 and any s ≥ s0 > 1,

‖χB(z,�) Opα(a)
(
1 − χB(z,s�)

)‖1 � ((s − 1)α�)d−m‖∇ma‖L1 . (5.8)

The implicit constant does not depend on �, α, ϕ and a, but may depend on s0.
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Proof. Without loss of generality we may assume that z = 0. The operator in (5.8)
is unitarily equivalent to

χB(0,1) Op1(ã)
(
I − χB(0,s)

)
, ã(ξ) = a(ξ(α�)−1).

Since the sets B(0, 1) and R
d\B(0, s) are separated by a positive distance s − 1, it

follows from [Sob14, Theorem 2.6] that

‖χB(0,1) Op1(ã)
(
I − χB(0,s)

)‖1 � (s − 1)d−m‖∇mã‖L1 ,

for any m ≥ d + 1. The L1-norm on the right-hand side coincides with (α�)d−m‖∇m

a‖L1 , which leads to (5.8). ��
5.2 Bounds for more general operators. For methodological purposes it is
also necessary to introduce more general pseudo-differential operators. For a function
p = p(x,y, ξ), which we call amplitude, define the operator

(
Opa

α(p)u
)
(x) =

αd

(2π)
d

2

∫∫
eiαξ·(x−y)p(x,y, ξ)u(y)dydξ, u ∈ S(Rd).

We need a very simple-looking bound for the trace norm of Opa
α(p) which we borrow

from [Sob14, Theorem 2.5]:

Lemma 5.3.

‖ Opa
1(p)‖1 �

d+1∑

n,l=0

∫∫∫
|∇n

x∇l
yp(x,y, ξ)|dxdydξ, (5.9)

and

‖ Opa
α(p)‖1 � αd

d+1∑

n,l=0

∫∫∫
|∇n

x∇l
yp(x,y, ξ)|dxdydξ, (5.10)

for any α > 0. The implicit constants in (5.9) and (5.10) do not depend on α or
amplitude p.

Proof. The bound (5.9) is a direct consequence of [Sob14, Theorem 2.5]. The bound
(5.10) follows from (5.9) by rescaling ξ �→ ξα−1. ��

The above estimates are convenient for us because they do not contain any
derivatives w.r.t. ξ.

Lemma 5.4. Let a = a(ξ), and let ϕ = ϕ(x) satisfy (5.2). Then for any α > 0 and
� > 0, we have

‖[Opα(a), ϕ]‖1 � (α�)d−1N(d+2)(ϕ; �)
[‖∇a‖L1 + (α�)1−m‖∇ma‖L1

]
, (5.11)

with an arbitrary m ≥ d + 1. The implicit constant in (5.11) does not depend on
α, �, ϕ or a.
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Proof. Without loss of generality assume that z = 0 and � = 1. Let ϕ̃ ∈ C∞
0 (Rd) be

a function such that ϕ̃(x) = 1 for |x| < 2. Denote

p̃(x,y, ξ) = a(ξ)ϕ̃(x)
(
ϕ(x) − ϕ(y)

)
ϕ̃(y).

Then by (5.8),

‖[ϕ, Opα(a)] − Opa
α(p̃)‖1 � αd−mN(d+1)(ϕ; 1)‖∇ma‖L1 , (5.12)

for any m ≥ d + 1. Further proof we conduct for d = 1, although we do not replace
d by its value in the estimates below. The case of arbitrary d is done in a similar
way with obvious modifications. Integrate by parts in ξ, so that

Opa
α(p̃) = − 1

iα
Opa

α(p), p(x, y, ξ) =
∂ξp̃(x, y, ξ)

x − y
.

Rewrite

p(x, y, ξ) = a′(ξ)ϕ̃(x)ϕ̃(y)
∫ 1

0
ϕ′(x + t(y − x)

)
dt.

Thus by (5.10),

‖ Opa
α(p̃)‖1 � αd−1N(d+1)(∇ϕ; 1)‖∇a‖L1 ,

where the implicit constant depends on ϕ̃. Together with (5.12) this gives (5.11). ��
5.3 Multi-scale symbols. The bounds above are very convenient as they con-
tain easily computable quantities, such as integral norms of symbol’s derivatives.
We also need other types of bounds where the dependence on the symbol a is less
explicit, but still sufficient for our needs. Following [LSS16b], we achieve this by
placing ourselves in the context of multi-scale symbols.

Let v = v(ξ) and τ = τ(ξ) be some continuous, positive functions on R
d. Consider

a symbol a ∈ C∞(Rd) satisfying the bounds

|∇k
ξa(ξ)| � τ(ξ)−kv(ξ), k = 0, 1, 2, . . . , ξ ∈ R

d. (5.13)

It is natural to call τ a scale (function) and v the amplitude (function). We always
assume that ‖v‖L∞ ≤ 1 and

τinf := inf
ξ∈R

d
τ(ξ) > 0. (5.14)

Introduce the notation

Vσ,ω(v, τ) :=
∫

v(ξ)σ

τ(ξ)ω
dξ, σ > 0, ω ∈ R. (5.15)

Apart from the continuity we need some extra conditions on the scale and the
amplitude. First we assume that τ is globally Lipschitz, i.e., for some ν ∈ (0, 1),

|τ(ξ) − τ(η)| ≤ ν|ξ − η|, ξ, η ∈ R
d, (5.16)
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with some ν > 0. By adjusting the implicit constants in (5.13) one may choose for ν
an arbitrary positive value. We assume that this value can be picked in such a way
that the amplitude v satisfies the relation

v(η)
v(ξ)


 1, η ∈ B
(
ξ, τ(ξ)

)
. (5.17)

In the next result we establish some bounds that depend explicitly on the functional
parameters v and τ .

The following result follows from [LSS16b, Lemma 3.4 and Theorem 3.5].

Proposition 5.5. Let a be a symbol satisfying (5.13) with some scaling function
τ and some amplitude v(ξ) for which (5.16), (5.14) and (5.17) hold. Suppose that Λ
is a Lipschitz region, and that α�τinf � 1. Then

‖χΛχB(z,�) Opα(a)(I − χΛ)‖q
q � (α�)d−1Vq,1(v, τ). (5.18)

If Λ is basic Lipschitz, then this bound is uniform in Λ.
Suppose in addition that

– Λ satisfies Condition 2.4,
– the function f satisfies Condition 2.1 with some γ > 0, R > 0 and n = 2,

and that ατinf � 1.

Then for any σ < min{1, γ}, we have

‖Dα(a, Λ; f)‖1 � αd−1 f 2R
γ−σVσ,1(v, τ). (5.19)

The implicit constants in (5.18) and (5.19) do not depend on α, f and R, but
depend on the region Λ, on the implicit constants in (5.13), (5.17), and on the
parameter ν.

6 Bounds involving the symbol aT : Proof of Theorem 2.6

6.1 Elementary bounds for the symbol aT . Let aT = aT,Ω be a symbol
satisfying Condition 2.5, with a bounded Ω. In order to derive some integral bounds
for aT we need to obtain estimates for the function ρ(ξ) (see (2.7)) in terms of the
Lipschitz functions responsible for the local representation of ∂Ω.

Since the region Ω is bounded and has finitely many connected components, we
can cover the boundary S = ∂Ω with finitely many open balls {Dj} of equal radii
r ≤ 1, centred at some ξj ∈ S, such that in each of the balls Dj the boundary S,
with an appropriate choice of coordinates, is the graph of a Lipschitz function Ψj

on R
d−1:

S ∩ Dj = {ξ ∈ R
d : ξd = Ψj(ξ̂)} ∩ Dj . (6.1)

We may also assume that

Ω ∩ Dj = {ξ ∈ R
d : ξd > Ψj(ξ̂)} ∩ Dj . (6.2)
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Let D̃ be an open subset of R
d\S, such that

R
d = (∪jDj) ∪ D̃, (6.3)

It is clear that one can choose the balls Dj so that
{

ρ(ξ) 
 |ξd − Ψj(ξ̂)|, ξ ∈ Dj ,

ρ(ξ) 
 〈ξ〉, ξ ∈ D̃.
(6.4)

It is natural to view aT as a multi-scale symbol (see Subsect. 5.3 for the definition).
Indeed, the bounds (2.8) and (2.9) imply that

|∇maT (ξ)| � (T + ρ̃(ξ))−m〈ξ〉−β , m = 0, 1, 2, . . . , (6.5)

so aT satisfies (5.13) with

v(ξ) = 〈ξ〉−β , τ(ξ) =
1
2
(ρ̃(ξ) + T ). (6.6)

Since |∇ρ̃| = 1 a.e., the thus defined scale τ satisfies (5.16) with ν = 1/2. Further-
more, the function v satisfies (5.17). Note also that τinf 
 T .

Lemma 6.1. Let aT = aT,Ω be as in Condition 2.5, and let 0 < T � 1. Then for any
δ > dβ−1,

‖|aT − χΩ|δ‖L1 � T, (6.7)

and for any m ≥ 1,

‖∇maT ‖L1 � T−m+1. (6.8)

Furthermore, let v and τ be as defined in (6.6). Then for any σ > dβ−1,

Vσ,1(v, τ) � log
(

1
T

+ 1
)

, (6.9)

and

Vσ,ω(v, τ) � T−ω+1, ∀ω > 1. (6.10)

The implicit constants in (6.7), (6.8), (6.9) and (6.10) depend only on the constants
in (2.5).

Proof. Proof of (6.7). We estimate separately the integrals over domains Dj and D̃.
By (2.8) and (6.4), the integral over D̃ does not exceed

∫

D̃

〈|ξ|T−1〉−δβdξ � T d

∫ ∞

0
〈s〉−δβsd−1ds � T d.
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In the same way, in view of (6.4), the integral over Dj is bounded by
∫

Dj

〈|ξd − Ψj(ξ̂)|T−1〉−δβdξ �
∫ ∞

0
〈sT−1〉−δβds � T.

The bound (6.8) is proved in a similar way: using (6.4) and (2.9) we conclude that
∫

D̃

|∇maT (ξ)|dξ �
∫

〈|ξ|T−1〉−βdξ � T d,

and
∫

Dj

|∇maT (ξ)|dξ �
∫

Dj

(T + |ξd − Ψj(ξ̂)|)−m〈|ξd − Ψj(ξ̂)|T−1〉−βdξ

�T 1−m

∫ ∞

0
(1 + s)−m−βds,

as required.
Proof of (6.9) and (6.10). As above, we use the covering (6.3) and estimate the

integrals over Dj , D̃ separately, so that
∫

Dj

(T + ρ̃(ξ))−ω〈ξ〉−σβdξ �
∫

Dj

(T + |ξd − Ψj(ξ̂)|)−ωdξ

�
∫ 1

0

1
(T + s)ω

ds �

⎧
⎨

⎩
log

(
1
T + 1

)
, ω = 1,

T 1−ω, ω > 1,

and
∫

D̃

(T + ρ̃(ξ))−ω〈ξ〉−σβdξ �
∫

〈ξ〉−σβdξ � 1.

This proves (6.9) and (6.10). ��
6.2 Bounds for pseudo-differential operators with aT . Without delay we
infer the following useful consequence of the above bounds.

Lemma 6.2. Let Ω be a bounded Lipschitz region. Let α, � > 0 be some numbers
and let 0 < T � 1. If ϕ satisfies (5.2), then for arbitrary m ≥ d + 1, and any s > 1,

‖χB(z,�) Opα(aT )
(
I − χB(z,s�)

)‖1 � (α�)d−1(α�T )1−m, (6.11)

and

‖[ϕ, Opα(aT )]‖1 � (α�)d−1N(d+2)(ϕ; �)
(
1 + (α�T )1−m

)
. (6.12)

The implicit constants in (6.11) and (6.12) are independent of α, �, T or ϕ.



GAFA QUASI-CLASSICAL ASYMPTOTICS 701

Proof. The bound (6.11) follows from (5.8) and (6.8). The bound (6.12) follows from
(5.11) and (6.8). ��

Let us use Proposition 5.5 for the symbol aT .

Proposition 6.3. Suppose that Λ is a Lipschitz region, and that Ω is a bounded
Lipschitz region. If α�T � 1, then for any q ∈ (dβ−1, 1] we have

‖χΛχB(z,�) Opα(aT )(I − χΛ)‖q
q � (α�)d−1 log

(
1
T

+ 1
)

. (6.13)

If Λ is basic Lipschitz, then this bound is uniform in Λ. Suppose in addition that

– Λ satisfies Condition 2.4,
– f satisfies Condition 2.1 with some γ > 0, R > 0 and n = 2, and that

β > max{dγ−1, d}.
If αT � 1, then for any σ ∈ (dβ−1, γ), σ < 1:

‖Dα(aT , Λ; f)‖1 � αd−1 f 2R
γ−σ log

(
1
T

+ 1
)

. (6.14)

The implicit constants in (6.13) and (6.14) are independent of α, �, T and f .

Proof. Since τinf 
 T , we have α�τinf 
 α�T � 1. So the bounds (5.18) and (6.9) lead
to (6.13). Under the condition ατinf 
 αT � 1 the bounds (5.19) and (6.9) lead to
(6.14). ��
6.3 Lattice norm bounds for pseudo-differential operators. For a func-
tion u : R

d �→ C denote

u q =
[ ∑

n∈Z
d

( ∫

n+[0,1)d

|u(x)|2dx
) q

2
] 1

q

.

If q ≥ 1, this formula defines a norm, sometimes called a lattice norm, and if
q < 1, then—quasi-norm, called lattice quasi-norm. The following result is well-
known, see [BS77, Theorem 11.1], [BKS91, Section 5.8], and for q ∈ [1, 2)—[Sim05,
Theorem 4.5].

Proposition 6.4. If w q, b q < ∞ for some q ∈ (0, 2], then

‖w Op1(b)‖q � w q b q.

Corollary 6.5. Let α, � > 0 and 0 < T � 1 be such that α� � 1 and αT� � 1. Let
Ω ⊂ R

d and aT = aT,Ω be as in Condition 2.5. Then for any q ∈ (dβ−1, 1]

‖χB(z,�) Opα

(
aT − χΩ

)‖q
q � (α�)d−1, (6.15)

with an implicit constant independent of z ∈ R
d or α, �, T .
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Proof. Let {φj}, φ̃ be a partition of unity subordinate to the cover (6.3). Denote for
brevity a = aT . Estimate separately the operators

Zj = χB(z,�) Opα

(
φj(a − χΩ)

)
and Z̃ = χB(z,�) Opα

(
φ̃(a − χΩ)

)
.

Let Ψ = Ψj ∈ Lip(Rd−1) be a function describing the surface S inside Dj , see (6.1).
Recall that we always assume that ‖∇Ψ‖L∞ � 1. Without loss of generality assume
that z = 0. By rescaling, the operator Zj is unitarily equivalent to

Z ′
j = χB(0,1) Op1(b), b(ξ) =

[
a
(
ξ(α�)−1

) − χΩ

(
ξ(α�)−1

)]
φj

(
ξ(α�)−1

)
,

By Proposition 6.4,

‖χB(0,1) Op1(b)‖q � χB(0,1) q b q.

It is clear that χB(0,1) q < ∞ and it is independent of any parameters. Let us
estimate b q. By (2.8),

|b(ξ)| �
〈 |ξd − Ψ̃(ξ̂)|

α�T

〉−β

χB(0,α�)(ξ), Ψ̃(ξ) = α�Ψ
(
ξ̂(α�)−1

)
.

Define the sets

Os = {ξ ∈ B(0, α�) : s ≤ |ξd − Ψ̃(ξ̂)| < s + 1}, s = 0, 1, . . . .

Since ‖∇Ψ̃‖L∞ = ‖∇Ψ‖L∞ � 1, the number

#{n ∈ Z
d : n + [0, 1)d ∩ Os �= ∅}

does not exceed (α�)d−1, uniformly in s. As a result,

bχOs q � 〈s〉−β(α�)
d−1

q ,

where we have used the property α�T � 1. Thus, by the q-triangle inequality, we
have

b q
q ≤

∑

s

bχOs

q
q � (α�)d−1

∑

s

〈s〉−βq � (α�)d−1.

Let us now consider the operator Z̃ = χB(0,�) Opα(b̃), b̃ = φ̃(a−χΩ). By rescaling,
the operator Z̃ is unitarily equivalent to

Z̃ ′ = χB(0,α�) Op1(b̃),

By virtue of (6.4), ρ(ξ) � |ξ|, ξ ∈ D̃, and hence (2.8) implies that

b̃ q
q �

∑

n∈Z
d

〈nT−1〉−βq �
∫ ∞

0

〈
s

T

〉−βq

sd−1ds = T d

∫ ∞

0
〈s〉−βqsd−1ds � T d.
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Furthermore, since α� � 1, we have

χB(0,α�)
q
q � (α�)d.

By Proposition 6.4,

‖Z̃‖q
q � (α�)dT d � (α�T )d � 1.

Collecting the contributions from all Dj ’s and D̃, we get the bound (6.15), as claimed.
��

Corollary 6.6. Let ϕ satisfy (5.2), and let Ω be a bounded Lipschitz region. Sup-
pose that α� � 1. Then for any 0 < T � 1 we have

‖[ϕ, Opα(aT )]‖1 � N(d+2)(ϕ; �)(α�)d−1. (6.16)

Moreover, for any Lipschitz region Λ, and any q ∈ (dβ−1, 1] we have

‖χΛχB(z,�) Opα(aT )(I − χΛ)‖q
q � (α�)d−1 log

(
min

{
α�,

1
T

}
+ 1

)
. (6.17)

The constants in (6.16) and (6.17) are independent of α, �, T or ϕ.

Proof. The bound (6.16) holds for α�T � 1, due to (6.12). For α�T � 1 we use (6.15)
and (5.6) to get

‖[ϕ, Opα(aT )]‖1 ≤ ‖[ϕ, Opα(χΩ)]‖1 + 2‖ϕ Opα(aT − χΩ)‖1

� N(d+2)(ϕ; �)(α�)d−1.

Thus (6.16) is proved.
Proof of (6.17). If α�T � 1, then (6.17) follows directly from (6.13). For α�T � 1

estimate using the q-triangle inequality (2.1):

‖χΛχB(z,�) Opα(aT )(I − χΛ)‖q
q ≤ ‖χB(z,�) Opα(aT − χΩ)‖q

q

+ ‖χΛχB(z,�) Opα(χΩ)(I − χΛ)‖q
q.

By (6.15) and (5.5), the right-hand side satisfies the required bound. ��
6.4 Proof of Theorem 2.6. Recall that by Remark 2.8 it suffices to prove
Theorem 2.6 for a bounded Ω. In this case the bound (2.10) for αT � 1 is already
proved in Proposition 6.3.

Suppose that αT � 1. It immediately follows from Proposition 2.2 with P =
χΛ, A = Opα(aT ), that

‖D(aT , Λ; f)‖1 � f 2R
γ−q‖χΛ Opα(aT )(I − χΛ)‖q

q,

for any q < min{1, γ}. Let B(0, R) be a ball such that either Λ ⊂ B(0, R) or
R

d\Λ ⊂ B(0, R). Thus the Sq-norm on the right-hand side is estimated either by

‖χB(0,R)χΛ Opα(aT )(I − χΛ)‖q
q
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or by

‖[χΛ Opα(aT )χB(0,R)(I − χΛ)‖q
q.

For q ∈ (dβ−1, γ), q ≤ 1 both (quasi-)norms are bounded as in (6.17). This leads to
the proclaimed bound (2.10). ��

Remark 6.7. In the proof of the main Theorem 2.7 we also need a version of
the bound (2.10) for smooth functions f . Suppose that g ∈ C2

0(−r, r), r > 0.
Then,arguing as in the proof above but using Proposition 2.3 instead of Propo-
sition 2.2, we obtain the bound

‖D(aT , Λ; g)‖1 � ‖g‖C2‖χΛ Opα(aT )(I − χΛ)‖q
q,

for any q < 1, with an implicit constant independent of g, but dependent on the
number r. As in the proof above, this bound in combination with (6.17) leads to the
estimate

‖D(aT , Λ; g)‖1 � ‖g‖C2 αd−1 log
(

min
{

α,
1
T

}
+ 1

)
. (6.18)

7 Asymptotics for discontinuous symbols

In the proof of the main theorem we use two types of asymptotics for Dα(χΩ, Λ; gp)
for polynomials gp(t) = tp, p = 1, 2, . . . , established in [Sob13] and [Sob15]. Recall
that the integrals V1(b; ∂Λ, ∂Ω) and U(f) are defined in (2.11) and (2.12) respec-
tively.

In the case αT � 1 we need the following fact, see [Sob15, Lemma 4.3].

Proposition 7.1. Let Λ and Ω be regions in R
d satisfying Condition 2.4, and let

Ω be bounded. Assume also that Ω is piece-wise C3 and Λ is piece-wise C1. Then for
any function ϕ ∈ C∞

0 (Rd), we have

lim
α→∞

1
αd−1 log α

tr
(
ϕDα(χΩ, Λ; gp)

)
= U(gp)V1(ϕ; ∂Λ, ∂Ω).

Under the condition αT � 1 we appeal to more subtle results from [Sob13]. These
are not stated in [Sob13] exactly in the required form, hence we need to do some
extra work. Let Λ = Γ(Φ) be a basic C1-domain. We need to control the modulus of
continuity of ∇Φ, hence we assume that

sup
x̂,ŷ:|x̂−ŷ|<r

|∇Φ(x̂) − ∇Φ(ŷ)| ≤ ε(r), (7.1)

for some non-negative function ε such that ε(r) → 0 as r → 0.
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Remark 7.2. The asymptotic formula stated in the next Proposition is uniform in
the basic domain Λ in the sense that the convergence is uniform in all functions Φ
satisfying the bound MΦ ≤ M and (7.1) with some constant M and some function
ε = ε(r). In particular, the domain Λ is allowed to depend on the large parameter
α as long as the bounds MΦ ≤ M and (7.1) hold with some α-independent M and
ε(r).

Proposition 7.3. Let Λ be a basic C1-domain, and let Ω be a bounded C3-region.
Let gp(t) = tp, t ∈ R, p = 1, 2, . . . , and let ϕ = ϕ(x), η = η(ξ) be functions such
that ϕ ∈ C∞

0 (B(z, R)) and η ∈ C∞
0 (B(μ, R1)) with some z, μ ∈ R

d, and some fixed
R, R1 > 0. Then

lim
α→∞

[
1

αd−1 log α
tr

(
ϕ Opα(η)Dα(χΩ, Λ; gp)

) − U(gp)V1(ϕη; ∂Λ, ∂Ω)
]

= 0. (7.2)

The convergence is uniform

(1) in the domain Λ in the sense specified in Remark 7.2,
(2) in the functions h and η in the sense that it is uniform in the functions ϕ,

η satisfying the bounds N(k)(ϕ; R),N(k)(η; R1) � 1 for all k = 0, 1, 2, . . . ,
with some fixed constants.

This proposition follows from [Sob13, Theorem 11.1].
The next Proposition makes a statement similar to (7.2), but uniform in the

radius R.

Lemma 7.4. Suppose that Λ and Ω are as in Proposition 7.3. Let ϕ ∈ C∞
0 (B(z, R))

with some R ≤ 1. Then

lim
αR→∞

R1−d

[
1

αd−1 log(αR)
tr

(
ϕDα(χΩ, Λ; gp)

) − U(gp)V1(ϕ; ∂Λ, ∂Ω)
]

= 0. (7.3)

The convergence is uniform in the domain Λ and the function ϕ as specified in
Proposition 7.3.

Proof. First we note that (7.2) with an arbitrary η ∈ C∞
0 (Rd), implies (7.2) with

η ≡ 1. Indeed, Let η ∈ C∞
0 be such that ηχΩ = χΩ. Write:

ϕ Opα(η)χΛ Opα(χΩ) = [ϕ Opα(η), χΛ] Opα(χΩ) + ϕχΛ Opα(χΩ),

so that

ϕ Opα(η)
(
χΛ Opα(χΩ)χΛ

)p − ϕ
(
χΛ Opα(χΩ)χΛ

)p

= [ϕ Opα(η), χΛ] Opα(χΩ)
(
χΛ Opα(χΩ)χΛ

)p−1
,

for any p = 1, 2, . . . . Therefore

‖ϕ Opα(η)Dα(χΩ, Λ; gp) − ϕDα(χΩ, Λ; gp)‖1 ≤ 2‖[ϕ Opα(η), χΛ]‖1.
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By (5.4), the right-hand side does not exceed N(d+2)(ϕ; R)(αR)d−1, uniformly in the
domain Λ. Therefore (7.2) leads to (7.2) with η ≡ 1, as claimed.

By rescaling, the operator in (7.3) is unitarily equivalent to

ϕ̃Dν(χΩ, Λ̃; gp), ν = αR → ∞,

with

ϕ̃(x) = ϕ(Rx), Λ̃ = Γ(Φ̃), Φ̃(x̂) = R−1Φ(Rx̂).

Clearly, ϕ̃ ∈ C∞
0 (R−1z, 1), and N(k)(ϕ̃; 1) � 1 for all k = 0, 1, 2, . . . . Furthermore,

MΦ̃ = MΦ, and, because of the restriction R ≤ 1 the functions ∇Φ and ∇Φ̃ satisfy
(7.1) with the same modulus of continuity ε(r). Thus one can use formula (7.2) with
η ≡ 1:

lim
ν→∞

[
1

νd−1 log ν
tr

(
ϕ̃Dν(χΩ, Λ̃; gp)

) − U(gp)V1(ϕ̃; ∂Λ̃, ∂Ω)
]

= 0.

Observing that

V1(ϕ̃; ∂Λ̃, ∂Ω) = R1−dV1(ϕ; ∂Λ, ∂Ω),

we get (7.3), as claimed. ��

8 Proof of Theorem 2.7 for αT � 1

In this section we begin the proof of Theorem 2.7.

8.1 Localization estimates for the operator Dα(a, Λ; f). Using Lemma 4.5,
here we convert the bounds obtained previously in Sect. 6 into appropriate bounds
for the operator (1.2). In Lemmas 8.1 - 8.3 we assume that f ∈ Cn

0 (R) with n ≥ 3.
Unless otherwise stated, the constants in the estimates below do not depend on the
function f or parameters α, �, T .

Lemma 8.1. Let the symbol a be either aT = aT,Ω or χΩ with a bounded Lipschitz
region Ω. Suppose that the sets Λ, Π satisfy

B(z, 2�) ∩ Λ = B(z, 2�) ∩ Π. (8.1)

Suppose also that α� � 1, 0 < T � 1. Then

‖χB(z,�)

(
Dα(a, Λ; f) − Dα(a, Π; f)

)‖1 � Nn(f)(α�)d−1. (8.2)

If Π = R
d, then

‖χB(z,�)Dα(a, Λ; f)‖1 � Nn(f)(α�)d−1. (8.3)

The constants in (8.2) and (8.3) do not depend on the sets Λ and Π.
If, in addition, Π is a Lipschitz region, then

‖χB(z,�)Dα(aT , Λ; f)‖1 � Nn(f)(α�)d−1 log
(

min
{

α�,
1
T

}
+ 1

)
. (8.4)

If Π is a basic Lipschitz domain, than the constant in (8.4) is uniform in Π.
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Proof. The bound (8.3) is a direct consequence of (8.2), since Dα(a, Rd; f) = 0.
To prove (8.2) let ϕ ∈ C∞

0 be a function such that ϕ(x) = 1, x ∈ B(z, �), ϕ(x) = 0
for x /∈ B(z, 2�), and �m|∇mϕ| � 1 for all m = 1, 2, . . . . Since χB(z,�)ϕ = ϕ, in view of
(8.1), the relation (4.13) is satisfied, and hence we can use Lemma 4.5 with b̃ = b = a.
It follows from (5.6) or (6.16) that

‖[ϕ, Opα(a)]‖1 � (α�)d−1.

Now (4.15) leads to (8.2).
Proof of (8.4). We use the same function ϕ as above. By (8.2) we may assume

that Λ = Π. Due to (4.14), the left-hand side of (8.4) does not exceed

Nn(f)
(‖ϕχΠ Opα(aT )(I − χΠ)‖1 + ‖[ϕ, Opα(aT )]‖1

)
.

It remains to apply (6.16) and (6.17). ��
Lemma 8.2. Let the sets Λ and Π satisfy (8.1). Suppose that Ω is a bounded Lips-
chitz region. Let α� � 1 and α�T � 1. Then

‖χB(z,�)

(
Dα(aT , Λ; f) − Dα(χΩ, Π; f)

)‖1 � Nn(f)(α�)d−1. (8.5)

The constant in (8.5) is independent of the sets Λ and Π.

Proof. We use Lemma 4.5 with b = aT , b̃ = χΩ, with the function ϕ defined in the
proof of the previous lemma. By (6.16),

‖[Opα(aT ), ϕ]‖1 � (α�)d−1.

Furthermore, by Corollary 6.5,

‖ϕ Opα(aT − χΩ)‖1 � (α�)d−1.

Now (4.15) leads to (8.5). ��
Lemma 8.3. Suppose that Ω is a bounded Lipschitz region. Suppose that R

d\Λ ⊂
B(0, R0) with some R0 > 0, and let ϕ ∈ C∞(Rd) be a bounded function such that
ϕ(x) = 0 for x ∈ B(0, R0) and ϕ(ξ) = 1 for |x| > 2R0. Let α � 1, 0 < T � 1. Then

‖ϕDα(aT , Λ; f)‖1 � Nn(f)αd−1. (8.6)

The constant in (8.6) is independent of Λ, but may depend on R0 and ϕ.

Proof. We use Lemma 4.5 with Π = R
d, so that Λ and Π satisfy (4.13). Thus we can

use the bound (4.16) with b = aT , and hence the left-hand side of (8.6) is bounded
from above by

‖[ϕ, Opα(aT )]‖1 = ‖[I − ϕ, Opα(aT )]‖1.

The function 1 − ϕ is compactly supported. Now using (6.16) we arrive at (8.6). ��
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8.2 Proof of Theorem 2.7 for αT � 1. We assume that Λ and Ω satisfy
conditions of Theorem 2.7, and that Ω is bounded (see Remark 2.8). For brevity,
in the proof we often use the short-hand notation Dα(f) = Dα(aT , Λ; f) and V1 =
V1(1; ∂Λ, ∂Ω). As in the previous section, we use the notation gp(t) = tp, p =
1, 2, . . . .

Remark 8.4. It is clear that we can use for the operator Dα(f) all the bounds,
established earlier, with arbitrary smooth functions f without the assumption that
f is compactly supported. Indeed, since ‖aT ‖ � 1 we have f(aT ) = f(aT )ζ(aT ) and
f(Wα) = f(Wα)ζ(Wα), Wα = Wα(aT ; Λ), with some fixed ζ ∈ C∞

0 (R). In particular,
this observation applies to the polynomial functions gp.

We precede the proof with some bounds for the integral (2.12), see [Sob, Lemma
4.6]:

Proposition 8.5. If f ∈ W1,∞(R), then

|U(f)| ≤ 2‖f ′‖L∞ . (8.7)

If f satisfies (2.2) with n = 1 and some 0 < R ≤ 1, then

|U(f)| � R
γ

2 f 1. (8.8)

Now we can proceed with the proof of Theorem 2.7. It follows the idea of [Sob],
and consists of three parts: first we consider polynomial functions f , then extend it
to arbitrary C2-functions, and finally complete the proof for functions satisfying the
conditions of the Theorem.

Step 1. Polynomial f . Let f = gp. Let R0 be such that either Λ ⊂ B(0, R0) or
R

d\Λ ⊂ B(0, R0). Let ϕ ∈ C∞
0 (Rd) be a function such that ϕ(x) = 1 for |x| ≤ R0,

and ϕ(x) = 0 for |x| > 2R0. Since αR0 � 1 and αR0T � 1, from Lemma 8.2 we
obtain that

‖ϕDα(aT , Λ; gp) − ϕDα(χΩ, Λ; gp)‖1 � (αR0)d−1,

with an implicit constant depending on p. In combination with Proposition 7.1 this
gives the equality

lim
α→∞
αT�1

1
αd−1 log α

tr
(
ϕDα(aT , Λ; gp)

)
= U(gp)V1. (8.9)

If Λ ⊂ B(0, R0), then ϕχΛ = χΛ, and hence these asymptotics coincide with the
sought formula (2.15). If R

d\Λ ⊂ B(0, R0), then we invoke Lemma 8.3 which implies
that

lim
α→∞
αT�1

1
αd−1 log α

tr
(
(I − ϕ)Dα(aT , Λ; gp)

)
= 0.

Together with (8.9) this gives (2.15) for f = gp again.
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Step 2. Arbitrary functions f ∈ C2(R). The extension from polynomials to more
general functions is done in the same way as in [Sob], and we remind this argument
for the sake of completeness.

Let ζ ∈ C∞
0 (R) be the function introduced before Proposition 8.5. Let g be a

polynomial such that

‖(f − g)ζ‖C2 < δ.

For g we can use the formula (2.15) established previously:

lim
α→∞
αT�1

1
αd−1 log α

tr Dα(g) = U(g)V1. (8.10)

On the other hand, by virtue of (6.18), we have

‖Dα(f − g)‖1 = ‖Dα

(
(f − g)ζ

)‖1 � ‖(f − g)ζ‖C2 αd−1 log α � δαd−1 log α,

for αT � 1, and also, by (8.7),

|U(f) − U(g)| = |U(f − g)| = |U(
(f − g)ζ

)| ≤ 2‖((f − g)ζ
)′‖L∞ < 2δ.

Thus, using (8.10) and the additivity

Dα(f) = Dα(g) + Dα(f − g), U(f) = U(g) + U(f − g),

we get

lim sup
α→∞
αT�1

∣
∣
∣∣

1
αd−1 log α

tr Dα(f) − U(f)V1

∣
∣
∣∣ � δ.

Since δ > 0 is arbitrary, we obtain (2.15) for arbitrary f ∈ C2(R).
Step 3. Completion of the proof. Let f be a function as specified in Theorem 2.7.

Without loss of generality suppose that the set X consists of one point, and this
point is z = 0.

Let ζ ∈ C∞
0 (R) be a real-valued function, such that ζ(t) = 1 for |t| ≤ 1/2.

Represent f = f
(1)
R + f

(2)
R , 0 < R ≤ 1, where f

(1)
R (t) = f(t)ζ

(
tR−1

)
, f

(2)
R (t) =

f(t) − f
(1)
R (t). It is clear that f

(2)
R ∈ C2(R), so one can use the formula (2.15)

established in Step 2 of the proof:

lim
α→∞
αT�1

1
αd−1 log α

Dα(f (2)
R ) = U(f (2)

R )V1. (8.11)

For f
(1)
R we use Theorem 2.6 taking into account that f

(1)
R 2 � f 2:

| tr Dα(f (1)
R )| � Rγ−σ f 2α

d−1 log α, α � 1, αT � 1,
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for any σ ∈ (dβ−1, γ), σ ∈ (0, 1]. Moreover, by (8.8),

|U(f (1)
R )| � R

γ

2 f 1.

Thus, using (8.11) and the additivity

Dα(f) = Dα(f (2)
R ) + Dα(f (1)

R ), U(f) = U(f (2)
R ) + U(f (1)

R ),

we get the bound

lim sup
α→∞

∣
∣
∣
∣

1
αd−1 log α

Dα(f) − U(f)V1

∣
∣
∣
∣ � f 2

(
Rγ−σ + R

γ

2
)
.

Since R is arbitrary, by taking R → 0, we obtain (2.15) for the function f . ��

9 Proof of Theorem 2.7 for αT � 1

9.1 Proof of Theorem 2.7: basic smooth domains Λ. We begin with an
asymptotic formula for the trace

tr
(
ϕDα(aT , Λ; gp)

)
,

with a basic C1-domain Λ, a function ϕ ∈ C∞
0 (Rd), and a polynomial gp(t) = tp,

p = 1, 2, . . . . As before we assume that Ω is bounded. We assume that f ∈ Cn
0 (R)

with some n ≥ 3. Our immediate objective is to prove the following result.

Theorem 9.1. Let Λ be a basic C1-domain, and let Ω be a bounded C3-region.
Suppose that αT � 1, and that ϕ ∈ C∞

0 (Rd). Then

lim
T→0
αT�1

1
αd−1 log 1

T

tr
(
ϕDα(aT , Λ; gp)

)
= U(gp)V1(ϕ; ∂Λ, ∂Ω). (9.1)

By rescaling and translating we may assume that in Theorem 9.1 the support of
ϕ is contained in the ball B(0, 1). We also assume that

N(d+2)(ϕ; 1) ≤ 1. (9.2)

If the support of ϕ has an empty intersection with the boundary ∂Λ, then by (8.3),

| tr(ϕDα(aT , Λ; f)
)| � Nn(f)αd−1, (9.3)

and hence (9.1) automatically holds.
It remains to consider the case where supp ϕ∩∂Λ �= ∅. For this case we construct

a convenient partition of unity. For Λ = Γ(Φ) let xn̂ =
(
�n̂, Φ(�n̂)

)
, n̂ ∈ Z

d−1,
� = (αT )−1, be the points on the boundary ∂Λ. Then the balls B(xn̂, r), n̂ ∈ Z

d−1,
with r = �

√
(1 + M)2 + 1 form a covering of the strip

Λ� = {x ∈ R
d : Φ(x̂) < xd < Φ(x̂) + �} ⊂ Λ.
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Let φn̂ ∈ C∞
0 (Rd) be a partition of unity subordinate to this covering. We may

assume that

N(n)(φn̂; �) � 1, n = 0, 1, 2, . . . , (9.4)

uniformly in n̂ ∈ Z
d−1. Denote

w1(x) = ϕ(x)
∑

n̂∈Z
d−1

φn̂(x), w2(x) = ϕ − w1(x). (9.5)

Note that

#{n̂ ∈ Z
d−1 : xn̂ ∈ supp ϕ} � �1−d. (9.6)

Lemma 9.2. Let Λ be a basic Lipschitz domain, and let Ω be a bounded Lipschitz
region. Let 0 < T � 1, αT � 1. Then

∣
∣tr

[
w1

(
Dα(aT , Λ; f) − Dα(χΩ, Λ; f)

)]∣∣ � Nn(f)αd−1, (9.7)

uniformly in Λ.

Proof. The trace on the left-hand side of (9.7) coincides with
∑

n̂

tr
[
ϕφn̂

(
Dα(aT , Λ; f) − Dα(χΩ, Λ; f)

)]
.

The support of φn̂ is contained in B(xn̂, r), r 
 �, and also α� = T−1 � 1, α�T = 1.
Thus from Lemma 8.2 for each summand we obtain the bound by

Nn(f) N(d+2)(ϕφn̂; �) (α�)d−1.

In view of (9.2), (9.4) and (9.6), this leads to (9.7). ��
Lemma 9.3. Let Λ be a basic Lipschitz domain, and let Ω be a bounded Lipschitz
region. Suppose that 0 < T � 1, αT � 1. Then

∣
∣tr

(
w2Dα(aT , Λ; f)

)∣∣ � Nn(f)αd−1, (9.8)

uniformly in Λ.

Proof. Since the function w2 satisfies (4.13) with Π = R
d, the bound (4.16) implies

that the left-hand side is bounded (up to the factor Nn(f)) by

‖[w2, Opα(aT )]‖1 ≤ ‖[ϕ, Opα(aT )]‖1 +
∑

n̂

‖[ϕφn̂, Opα(aT )]‖1. (9.9)

By (6.16),

‖[ϕ, Opα(aT )]‖1 � N(d+2)(ϕ; 1)αd−1,

‖[ϕφn̂, Opα(aT )]‖1 � N(d+2)(ϕφn̂; �)(α�)d−1.

As in the proof of Lemma 9.2, the number of summands does not exceed �1−d, so
that the right-hand side of (9.9) is bounded by Nn(f)αd−1, as claimed. ��
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Proof of Theorem 9.1. By Lemmas 9.2, 9.3 and Remark 8.4,
∣
∣tr

(
ϕDα(aT , Λ; gp)

) − tr
(
w1Dα(χΩ, Λ; gp)

)∣∣

=
∣
∣tr

(
w2Dα(aT , Λ; gp)

)∣∣ � αd−1, (9.10)

with an implicit constant depending on p. Thus it suffices to find the asymptotics
of the required form for the second term on the left-hand side. To analyse the
asymptotics for each term in the definition of w1( see (9.5)) we use the formula (7.3)
with the function φn̂ϕ and R = �. Since � = (αT )−1, and α� = T−1 the formula
(7.3) rewrites as follows:

lim
T→0,
αT�1

�1−d

[
1

αd−1 log 1
T

tr
(
φn̂ϕDα(χΩ, Λ; gp)

)

− U(gp)V1(φn̂ϕ; ∂Λ, ∂Ω)
]

= 0, (9.11)

uniformly in n̂ ∈ Z
d−1. Therefore

lim sup
∣∣
∣∣

1
αd−1 log 1

T

tr
(
w1Dα(χΩ, Λ; gp)

) − U(gp)V1(w1; ∂Λ, ∂Ω)
∣∣
∣∣

≤ lim sup
∑

n̂

∣
∣∣
∣

1
αd−1 log 1

T

tr
(
φn̂ϕDα(χΩ, Λ; gp)

) − U(gp)V1(φn̂ϕ; ∂Λ, ∂Ω)
∣
∣∣
∣

� lim sup �1−dmax
n̂

∣
∣∣
∣

1
αd−1 log 1

T

tr
(
φn̂ϕDα(χΩ, Λ; gp)

) − U(gp)V1(φn̂ϕ; ∂Λ, ∂Ω)
∣
∣∣
∣,

as T → 0, αT � 1. Here we have used (9.6) again. Given the uniformity in n̂ ∈ Z
d−1

and the bound (9.6), the formula (9.11) implies that

lim
T→0

[
1

αd−1 log 1
T

tr
(
w1Dα(χΩ, Λ; gp)

) − U(gp)V1(w1; ∂Λ, ∂Ω)
]

= 0.

Taking into account (9.10) and that w1(x) = ϕ(x) for x ∈ ∂Λ, this leads to (9.1). ��

9.2 Proof of Theorem 2.7: basic piece-wise smooth domains Λ. Here
we extend the formula (9.1) to piece-wise smooth domains Λ. Our argument follows
the proof of [Sob15, Theorem 4.1]. For simplicity we assume that only Λ is piece-
wise smooth, whereas Ω remains smooth. This simplification preserves the idea of
[Sob15], but allows one to avoid some routine technical work that would have been
just a modified repetition of the proof from [Sob15].

Theorem 9.4. Let Λ be a basic piece-wise C1-domain, and let Ω be a bounded
C3-region. Suppose that ϕ ∈ C∞

0 (Rd). Then the formula (9.1) holds.
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Proof. Assume as before that ϕ(x) = 0 for |x| > 1 and (9.2) holds. We follow
the idea of the proof of [Sob15, Theorem 4.1]. Cover the ball B(0, 1) with open
balls of radius ε > 0, such that the number of intersections is bounded from above
uniformly in ε. Introduce a subordinate partition of unity {φj}, j = 1, 2, . . . , such
that N(n)(φj ; ε) � 1 uniformly in j = 1, 2, . . . . By (9.3) contributions to (9.1) from
the balls having empty intersection with ∂Λ, equal zero.

Let Σ be the set of indices such that the ball indexed by j ∈ Σ has a non-empty
intersection with the set (∂Λ)s, see Subsect. 2.2 for the definition. Since the set (∂Λ)s
is built out of (d − 2)-dimensional Lipschitz surfaces, we have

#Σ � ε2−d. (9.12)

By (8.4), for each ball we have the bound

∣
∣tr

(
ϕφjDα(aT , Λ; gp)

)∣∣ � (αε)d−1 log
1
T

,

with an implicit constant depending on p, uniformly in j = 1, 2, . . . , if αε � 1. By
virtue of (9.12), this implies that

∑

j∈Σ

∣
∣∣
∣tr

(
ϕφjDα(aT , Λ; gp)

)
∣
∣∣
∣ � εαd−1 log

1
T

, if αε � 1.

As
∑

j∈Σ

∣∣V1(ϕφj , ∂Λ; ∂Ω)
∣∣ � ε

(see (2.11) for the definition of V1), we can rewrite the last two formulas as follows:

lim sup
T→0
αT�1

∑

j∈Σ

∣∣
∣
∣

1
αd−1 log 1

T

tr
(
ϕφjDα(aT , Λ; gp)

) − U(gp)V1(ϕφj , ∂Λ, ∂Ω)
∣∣
∣
∣ � ε. (9.13)

Let us now turn to the balls with indices j /∈ Σ. We may assume that they are
separated from (∂Λ)s. Thus in each such ball the boundary of Λ is C1. By (8.2), we
may assume that the entire Λ is C1, and hence Theorem 9.1 is applicable. Together
with (9.13), this gives

lim sup
T→0
αT�1

∣
∣
∣∣

1
αd−1 log 1

T

tr
(
ϕDα(aT , Λ; gp) − U(gp)V1(ϕ, ∂Λ, ∂Ω)

∣
∣
∣∣ � ε.

Since ε > 0 is arbitrary, this proves the Theorem. ��
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9.3 Proof of Theorem 2.7: completion. Theorem 9.4 extends to arbitrary
piece-wise C1 region Λ by using the standard partition of unity argument based on
Lemma 8.1. Also, as mentioned earlier, one can extend Theorem 9.4 to the piece-wise
C3-regions Ω. We omit this argument since it repeats the proofs in [Sob15].

The extension of Theorem 9.4 to arbitrary functions f specified in Theorem 2.7,
is done in the same way as in the proof of Theorem 2.7 for αT � 1, with the help of
the bounds (2.10) and (6.18). We omit the details. ��

10 Comparison with known asymptotic formulas

10.1 Coefficient Bd. The asymptotics of tr Dα(a, Λ; f) for a fixed symbol a as
α → ∞ have been studied rather extensively in the 1980’s by H. Widom and R.
Roccaforte, e.g. [Wid85] and references therein. It is interesting and instructive to
compare there findings with the asymptotics in Theorem 2.7. As shown in [Wid85,
BB91], for a fixed smooth symbol a, smooth f and smooth Λ one can write out a
complete asymptotic expansion in powers of α−1. In this section we focus only on the
first coefficient of this expansion that we denoted by Bd(a; ∂Λ, f) in the Introduction,
see (1.4). It has a more complicated form than the coefficient V1 defined in (2.11)
and featuring in Theorem 2.7, and it is described below.

For a function f : C → C and any s1, s2 ∈ C define the integral

U(s1, s2; f) =
∫ 1

0

f
(
(1 − t)s1 + ts2

) − [(1 − t)f(s1) + tf(s2)]
t(1 − t)

dt. (10.1)

The integral U(f) defined in (2.12) is easily expressed as U(f) = U(1, 0; f). It is
clear that U(s1, s2; 1) = U(s1, s2; t) = 0, for all s1, s2 ∈ C. This integral is finite for
functions f ∈ C0,κ(C), κ ∈ (0, 1]. It is also Hölder-continuous: for any δ ∈ (0, κ) we
have

|U(s1, s2; f) − U(r1, r2; f)| � Lip
κ
(f)

(|s1 − r1|δ + |s2 − r2|δ
)
, (10.2)

where

Lip
κ
(f) = sup

z �=w

|f(z) − f(w)|
|z − w|κ .

Note also that

U(s1, s1; f) = 0, U(s1, s2; f) = U(s2, s1; f), ∀s1, s2 ∈ C. (10.3)

For a symbol a = a(ξ), ξ ∈ R define

B(a; f) :=
1

8π2
lim
ε→0

∫∫

|ξ1−ξ2|>ε

U
(
a(ξ1), a(ξ2); f

)

|ξ1 − ξ2|2 dξ1dξ2. (10.4)



GAFA QUASI-CLASSICAL ASYMPTOTICS 715

If f is smooth, then this definition coincides with the standard double integral. In
particular, if f ′′ is bounded, then

|B(a; f)| � ‖f ′′‖L∞

∫∫ |a(ξ1) − a(ξ2)|2
|ξ1 − ξ2|2 dξ1dξ2.

This estimate was first pointed out in [Wid82a]. Note that B(a; f) is invariant under
the change a(ξ) → a(τξ) with an arbitrary τ > 0. If f is allowed to be non-smooth,
as in Condition 2.1, then the finiteness of the limit in (10.4) is not trivial, and we
comment on this later, in Proposition 10.2.

As shown in [Wid82a], see also [LSS16b], in the case d = 1, for smooth f and
a we have tr Dα(a, R+; f) → B(a; f) as α → ∞. For the multi-dimensional case
the asymptotic coefficient Bd(a; ∂Λ, f) is defined as follows. For a unit vector e ∈
R

d, d ≥ 2, introduce the hyperplane

Πe := {ξ ∈ R
d : e · ξ = 0}.

Introduce the orthogonal coordinates ξ = (
◦
ξ, t) such that

◦
ξ ∈ Πe and t ∈ R. Then

we set

Bd(a; ∂Λ, f) :=
1

(2π)d−1

∫

∂Λ
Ad(a,nx; f)dSx, Ad(a, e; f)

:=
∫

Πe

B
(
a(

◦
ξ, · ); f

)
d

◦
ξ. (10.5)

For the smooth symbol a and smooth function f it was proved by H. Widom (see
[Wid80] and [Wid85]), that the trace of Dα(a, Λ; f) satisfies (1.4). Clearly, the for-
mula (1.4) describes the asymptotics of tr Dα for the symbol a = aT , as α → ∞
and T > 0 is fixed. On the other hand, Theorem 2.7 offers an asymptotic formula
in two parameters: α → ∞ and T → 0. Our aim now is to compare the asymptotic
coefficient defined in (2.11), with the coefficient Bd(aT , ∂Λ; f) as T → 0. The rele-
vant calculations are quite involved, and to avoid further complications, we assume
that Ω is smooth. In fact, for these purposes it will be sufficient to assume that Ω is
C2-smooth.

Theorem 10.1. Let Λ satisfy Condition 2.4, and let Ω ⊂ R
d be a bounded C2-

region.
Let the function f satisfy Condition 2.1 with n = 2 and some γ > 0.
Let a = aT be the symbol defined in Subsection 2.3 with some β > max{dγ−1, d}.
Then

lim
T→0

1
log 1

T

Bd(aT ; ∂Λ, f) = U(f)V1(1; ∂Λ, ∂Ω). (10.6)

As pointed out in the Introduction, due to this theorem, the formula (2.14) can be
rewritten in the form (1.9), and hence it can be viewed as an extension of (1.4) to the
asymptotics in two parameters, α and T . Such an asymptotic formula was obtained
in [LSS16b] for the one-dimensional case. Note that (2.15) cannot be rewritten in
the same way.
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10.2 Coefficient Bd for the symbol aT . We begin our analysis of the co-
efficient Bd(a; ∂Λ, f) with studying the multi-scale symbols introduced in Subsec-
tion 5.3. Let the symbol a satisfy (5.13) with the scale τ and amplitude v that satisfy
(5.16) and (5.17) respectively. Assume that (5.14) holds. As the region Λ is always
fixed, for brevity we omit ∂Λ from the notation and write simply Bd(a; f).

From now on we assume that f satisfies Condition 2.1 with some γ > 0 and
n = 2. We use the notation κ = min{1, γ}. The next proposition is borrowed from
[Sob16, Theorem 6.1].

Proposition 10.2. Suppose that f satisfies Condition 2.1 with n = 2, γ > 0 and
some R > 0. Let the symbol a ∈ C∞(R) be a real-valued symbol described above.
Then for any σ ∈ (0, κ] we have

|B(a; f)| � f 2R
γ−σVσ,1(v, τ), (10.7)

with a constant independent of f , uniformly in the functions τ, v, and the symbol a.

We note another useful result from [Sob16]. It describes the contribution of
“close” points ξ1 and ξ2 in the coefficient (10.4). For r > 0 define

B(1)(a; f ; r) =
1

8π2
lim
ε→0

∫∫

ε<|ξ1−ξ2|<r

U
(
a(ξ1), a(ξ2); f

)

|ξ1 − ξ2|2 dξ1dξ2, (10.8)

B(2)(a; f ; r) =
1

8π2

∫∫

|ξ1−ξ2|≥r

U
(
a(ξ1), a(ξ2); f

)

|ξ1 − ξ2|2 dξ1dξ2. (10.9)

The integral (10.8) is estimated in the following proposition.

Proposition 10.3. Suppose that f satisfies Condition 2.1 with n = 2, γ > 0 and
some R > 0. Let a ∈ C∞(R) be as above. Suppose also that r ≤ τinf/2. Then for any
δ ∈ [0, κ), the following bound holds:

|B(1)(a; f ; r)| � f 2R
γ−κrδV

κ,1+δ(v, τ), (10.10)

uniformly in the functions τ, v, and the symbol a.

This bound follows from [Sob16, Corollary 6.5].
For the case d ≥ 2, using the notations (10.8) and (10.9) define

A
(k)
d (a, e; f ; r) :=

∫

Πe

B(k)
(
a(

◦
ξ, · ); f ; r

)
d

◦
ξ, k = 1, 2. (10.11)

We can estimate the quantities Ad and A
(1)
d similarly to (10.7) and (10.10):

|Ad(a, e; f)| � f 2Vκ,1(v, τ), (10.12)
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and

|A(1)
d (a, e; f ; r)| � f 2r

δV
κ,1+δ(v, τ), ∀δ ∈ [0, κ), r ≤ τinf

2
, (10.13)

uniformly in τ , v, a and e ∈ S
d−1. Indeed, the symbol b(t) := a(

◦
ξ, t) satisfies condi-

tions (5.13) and (5.17) with the amplitude ve(t) = v(
◦
ξ, t) and the scaling function

τe(t) = τ(
◦
ξ, t). By (10.7),

|B(b; f)| � f 2Vκ,1(ve, τe),

uniformly in e, and in the functions v, τ . Integrating over
◦
ξ we get (10.12).

Furthermore, since inf τe ≥ τinf, from (10.10) we get that

|B(1)(b; f ; r)| � f 2r
δV

κ,1+δ(ve, τe), ∀r ≤ τinf

2
,

for any δ ∈ [0, κ), uniformly in e, v, τ , as above. Integrating over
◦
ξ, we get (10.13).

As we have pointed out previously, in view of (6.5), the symbol aT satisfies (5.13)
with the functions v and τ defined in (6.6). Recall also that τinf 
 T . Together with
(6.9) and (6.10), the estimates (10.12) and (10.13) yield the bounds

|Ad(a, e; f)| � f 2 log
1
T

(10.14)

and

|A(1)
d (a, e; f ; r)| � f 2, ∀r ≤ τinf

2
, (10.15)

uniformly in e ∈ S
d−1. From now on we take r = θT where θ > 0 is chosen to satisfy

r ≤ τinf
2 . The parameter θ is fixed, and we are not concerned about the dependence

of the forthcoming estimates on θ.
Let us now take care of the integral A(2)

d .

Lemma 10.4. Let r = θT , with a θ > 0 described above. Then for all 0 < T � 1 we
have

∣
∣A(2)

d (aT , e; f ; θT ) − A
(2)
d (χΩ, e; f ; θT )

∣
∣ � f 1, (10.16)

uniformly in e ∈ S
d−1.

Proof. By definitions (10.9) and (10.11), the bounds (2.3) and (10.2) imply that

∣
∣A(2)

d (aT , e; f ; θT )−A
(2)
d (χΩ, e; f ; θT )

∣
∣ � f 1

∫

R
d−1

∫∫

|t−s|>θT

|aT (
◦
ξ, t) − χΩ(

◦
ξ, t)|δ

|s − t|2 dsdtd
◦
ξ

�T−1 f 1

∫
|aT (ξ) − χΩ(ξ)|δdξ, (10.17)

for any δ ∈ (0, κ). By (6.7), for δ ∈ (dβ−1, κ) the integral on the right-hand side is
finite and it does not exceed T , whence (10.16). ��
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11 Coefficient A
(2)
d (χΩ, e; f ; θT )

11.1 Smooth surfaces. In order to study the integral A(2)
d we need to investi-

gate the following model problem. For ρ > 0, let

C(n)
ρ := (−2ρ, 2ρ)n

be the n-dimensional cube. We use two ways of labelling the coordinates:

ξ =(ξ̂, ξd), ξ̂ := (ξ1, ξ2, . . . , ξd−1),

ξ =(
◦
ξ, ξl),

◦
ξ := (ξ1, . . . , ξl−1, ξl+1, . . . ξd), (11.1)

where l = 1, 2, . . . , d. If l = d, then, clearly, ξ̂ =
◦
ξ. Let Ψ ∈ C2

(
C

(d−1)
ρ

)
be a function

with values in the interval (−2ρ, 2ρ). We focus on the surface

S = S(Ψ) := {ξ ∈ C(d)
ρ : ξd = Ψ(ξ̂)}. (11.2)

For each
◦
ξ ∈ C

(d−1)
ρ define the set

Xl(
◦
ξ) := Xl(

◦
ξ; Ψ) := {ξl ∈ (−2ρ, 2ρ) : (

◦
ξ, ξl) ∈ S}. (11.3)

Let us record some useful facts about the set Xl(
◦
ξ):

Lemma 11.1. Let el be the unit basis vector along the direction l, and let nξ be a
unit normal to S at the point ξ ∈ S. For any function u, continuous on the cube

C
(d)
ρ and any l = 1, 2, . . . , d we have

∫

C
(d−1)
ρ

∑

ξ:ξl∈Xl(
◦
ξ)

u(ξ)d
◦
ξ =

∫

S

u(ξ)|nξ · el| dSξ. (11.4)

In particular, the function #
(
Xl(

◦
ξ)

)
counting the number of elements is finite for

a.e.
◦
ξ ∈ C

(d−1)
ρ and

∫

C
(d−1)
ρ

#
(
Xl(

◦
ξ)

)
d

◦
ξ =

∫

S

|nξ · el| dSξ. (11.5)

Proof. Equality (11.5) follows from (11.4) with u ≡ 1.
Let us prove now (11.4). We denote by Ξ : C(d−1)

ρ → C
(d−1)
ρ the mapping

Ξ(ξ̂) :=
(
ξ1, . . . , ξl−1, ξl+1, . . . , ξd−1, Ψ(ξ̂)

)
.
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Then by the Change of Variables Formula (see, e.g., [EG92, Theorem 2, p. 99]), for

any continuous function u on the cube C
(d)
ρ , we have

∫

C
(d−1)
ρ

∑

ξ:ξl∈Xl(
◦
ξ)

u(ξ)d
◦
ξ =

∫

C
(d−1)
ρ

∑

ξ̂∈Ξ−1(
◦
ξ)

u(ξ̂, Ψ(ξ̂))d
◦
ξ

=
∫

C
(d−1)
ρ

u(ξ̂, Ψ(ξ̂))JΞ(ξ̂)dξ̂, (11.6)

where JΞ is the Jacobian of the map Ξ. A direct calculation shows that

JΞ = |∂ξl
Ψ| =

|∂ξl
Ψ|

√
1 + |∇Ψ|2

√
1 + |∇Ψ|2 = |nξ · el|

√
1 + |∇Ψ|2.

Thus the equality (11.6) becomes (11.4). ��

11.2 Function m. For
◦
ξ ∈ C

(d−1)
ρ define the following function m = m(

◦
ξ): if

Xl(
◦
ξ) = ∅, then we define

m(
◦
ξ) := (4ρ)−1, (11.7)

If #
(
Xl(

◦
ξ)

)
= N ≥ 1, then we label the points ξ ∈ Xl(

◦
ξ) in increasing order:

ξ(1) < ξ(2) < . . . < ξ(N), and define

m(
◦
ξ) :=

N∑

j=1

ρj(
◦
ξ)−1,

{
ρj(

◦
ξ) := dist{ξ(j),Xl(

◦
ξ)\{ξ(j)}}, N ≥ 2,

ρ1 := 4ρ, N = 1.
(11.8)

The function m is well-defined since #
(
Xl(

◦
ξ)

)
< ∞ for a.e.

◦
ξ ∈ C

(d−1)
ρ .

In all the bounds obtained below the constants are independent of the function

Ψ ⊂ C2 and parameter ρ > 0. We begin with an estimate for m(
◦
ξ), see [Wid90,

p. 185] or [Sob13, Chapter 13].

Proposition 11.2. Let Ψ ∈ C2
(
C

(d−1)
ρ

)
, d ≥ 2, with some ρ > 0. Then the

function m satisfies the bound

∫

C
(d−1)
ρ

m(
◦
ξ)d

◦
ξ � ρd−2

(
1 + ρ‖∇2Ψ‖L∞

)
. (11.9)

Here is a useful consequence of this proposition:
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Lemma 11.3. Let the function Ψ be as in Proposition 11.2. Let ρj(
◦
ξ) be the dis-

tances defined in (11.8) for the set Xl(
◦
ξ). Let ρ0(

◦
ξ) = infj ρj(

◦
ξ) if #

(
Xl(

◦
ξ)

) ≥ 1,

and ρ0(
◦
ξ) = 4ρ, if Xl(

◦
ξ) = ∅. For all ε ∈ (0, 4ρ) denote

Mε := Mε(Ψ) := {
◦
ξ ∈ C(d−1)

ρ : ρ0(
◦
ξ) < ε} (11.10)

Then

|Mε| � ερd−2
(
1 + ρ‖∇2Ψ‖L∞

)
. (11.11)

Proof. By the definition (11.7), (11.8),

m(
◦
ξ) ≥ ρ0(

◦
ξ)−1,

so by virtue of Chebyshev’s inequality, we get from (11.9) that

ε−1

∫

Mε

d
◦
ξ ≤

∫

Mε

m(
◦
ξ)d

◦
ξ ≤ Cρd−2

(
1 + ρ‖∇2Ψ‖L∞

)
.

This leads to (11.11). ��
It immediately follows from the above lemma that

#
(
Xl(

◦
ξ)

)
< ∞, ∀

◦
ξ /∈ M(Ψ) ≡

⋂

ε>0

Mε(Ψ), and |M(Ψ)| = lim
ε→0

|Mε(Ψ)| = 0.

(11.12)

11.3 Asymptotics of A
(2)
d (χΩ, e; f ; θT ). In order to use the conclusions of

Lemma 11.3, we adopt the following conventions.

• We always assume that the Cartesian coordinates in R
d are chosen in such a

way that the unit vector e coincides with the basis vector el, so that the vector
◦
ξ featuring in (10.5) is given by (11.1).

• In each set Dj of the covering (6.3), we re-label the remaining coordinates
to ensure that the part of the surface ∂Ω inside Dj is given by the equality

ξd = Ψj(ξ̂). The coordinates ξ̂ and
◦
ξ do not necessarily coincide, and the choice

of ξ̂ may be different in different Dj ’s.

Denote by {φj}, φ̃ a partition of unity subordinate to the covering (6.3). Thus we
split A

(2)
d (χΩ, e; f ; θT ) into the sum

A
(2)
d (χΩ, e; f ; θT ) =

∑

j

Kj(T ) + K̃(T ),
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where

Kj(T ) :=
1

8π2

∫

R
d−1

∫∫

θT<|t−s|
φj(

◦
ξ, t)

U
(
χΩ(

◦
ξ, t), χΩ(

◦
ξ, s); f

)

|t − s|2 dsdt d
◦
ξ, (11.13)

and the integral K̃(T ) is defined in a similar way with the function φ̃.
The properties U(0, 0; f) = U(1, 1; f) = 0 and U(1, 0; f) = U(0, 1; f) allow one

to rewrite Kj(T ), K̃(T ) in the form

Kj(T ) =
U(1, 0; f)

4π2

∫

R
d−1

Sj(
◦
ξ; T )d

◦
ξ, K̃(T ) =

U(1, 0; f)
4π2

∫

R
d−1

S̃(
◦
ξ; T )d

◦
ξ, (11.14)

where

Sj(
◦
ξ; T ) :=

∫

t/∈Ω(
◦
ξ)

φj(
◦
ξ, t)

∫

s∈Ω(
◦
ξ):θT<|t−s|

1
|s − t|2 dsdt,

with

Ω(
◦
ξ) := {t ∈ R : (

◦
ξ, t) ∈ Ω},

and S̃(
◦
ξ; T ) is defined in a similar way with the function φ̃. Since the set D̃ is

separated from the surface S, the integral S̃(
◦
ξ; T ) is taken over the set where |s| � 1,

|s − t| � 1, and therefore

K̃(T ) � 1, (11.15)

for all T > 0. Let us now analyse Sj(
◦
ξ; T ). First we quote the following elementary

statement, proved in [LSS16b, Lemma 9.4].

Proposition 11.4. Let Jk = (sk, tk) ⊂ R, k = 1, 2, . . . , N be a finite collection
of open intervals, such that their closures are pairwise disjoint, and let J = ∪kJk.
Suppose that 0 < T � 1 and |Jk| ≤ d1, k = 1, 2, . . . , N , with some d1 > 0. Then

N∑

k=1

∫

t/∈J

∫

|t−s|≥T,s∈Jk

1
|t − s|2 dsdt � N log

(
1
T

+ 1
)

, (11.16)

with a constant depending only on d1.

Assume in addition that

|Jk| ≥ d0, k = 1, 2, . . . , N, min
j �=k

dist{Jk, Jj} ≥ d0.
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with some d0 ∈ (0, d1]. Let ϕ ∈ C(R) ∩ L∞(R) be a function. Then

N∑

k=1

∫

t/∈J

ϕ(t)
∫

|t−s|≥T,s∈Jk

1
|t − s|2 dsdt

= log
1
T

N∑

k=1

(
ϕ(sk) + ϕ(tk)

)
+ N‖ϕ‖L∞O(1), T → 0, (11.17)

where O(1) depends only on d0 and d1.

Now we can derive the following property of Sj(
◦
ξ; T ).

Lemma 11.5. Let us fix a vector e ∈ S
d−1 and the index j. Let S = S(Ψj) and

M = M(Ψj) be as defined in (11.2) and (11.12) respectively. Then for all
◦
ξ /∈ M we

have

Sj(
◦
ξ; T ) = log

1
T

∑

ξ:(
◦
ξ,t)∈S

φj(ξ) + #
(
Xl(

◦
ξ; Ψj)

)
O(1), T → 0. (11.18)

Moreover,

lim
T→0

1
log 1

T

Kj(T ) =
U(1, 0; f)

4π2

∫

S
φj(ξ)|nξ · e| dSξ. (11.19)

Proof. Let ρ > 0 be such that Dj ⊂ C
(d)
ρ . By (11.12) the set

Xl(
◦
ξ) = Xl(

◦
ξ; Ψj) = {t ∈ (−2ρ, 2ρ) : (

◦
ξ, t) ∈ S}

is finite for each
◦
ξ /∈ M . Now the asymptotics (11.18) follow from (11.17). Further-

more, (11.16) implies that

|Sj(
◦
ξ; T )| � #

(
Xl(

◦
ξ)

)
log

1
T

, ∀
◦
ξ /∈ M.

Thus, by the Dominated Convergence Theorem, (11.18) leads to the formula

1
log 1

T

∫

C
(d−1)
ρ

Sj(
◦
ξ; T )d

◦
ξ →

∫

C
(d−1)
ρ

∑

ξ:(
◦
ξ,t)∈S

φj(ξ)d
◦
ξ, T → 0.

According to (11.4), the right-hand side coincides with
∫

S

φj(ξ)|nξ · e| dSξ,

and hence (11.19) holds. ��
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11.4 Proof of Theorem 10.1. Now we put together the formula (11.19) and
the bounds (11.15), (10.16). This leads to the asymptotic formula

lim
T→0

1
log 1

T

A
(2)
d (aT , e; f ; θT ) =

U(f)
4π2

∫

∂Ω
|nξ · e|dSξ.

In view of the bound (10.15) the same formula formula holds for the coefficient
Ad(aT , e; f). On the other hand, this coefficient satisfies the bound (10.14) uniformly
in e ∈ S

d−1. Therefore, by the Dominated Convergence Theorem, we get for the
integral Bd(see (10.5)) the asymptotics

lim
T→0

1
log 1

T

Bd(aT ; f) =
U(f)

(2π)d+1

∫

∂Λ

∫

∂Ω
|nξ · nx|dSξdSx,

which coincides with the claimed formula (10.6). ��
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