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Abstract

Purpose

Precise and reproducible hippocampus outlining is important to quantify hippocampal atro-

phy caused by neurodegenerative diseases and to spare the hippocampus in whole brain

radiation therapy when performing prophylactic cranial irradiation or treating brain metasta-

ses. This study aimed to quantify systematic differences between methods by comparing

regional volume and outline reproducibility of manual, FSL-FIRST and FreeSurfer hippo-

campus segmentations.

Materials and methods

This study used a dataset from ADNI (Alzheimer’s Disease Neuroimaging Initiative), includ-

ing 20 healthy controls, 40 patients with mild cognitive impairment (MCI), and 20 patients

with Alzheimer’s disease (AD). For each subject back-to-back (BTB) T1-weighted 3D

MPRAGE images were acquired at time-point baseline (BL) and 12 months later (M12). Hip-

pocampi segmentations of all methods were converted into triangulated meshes, regional

volumes were extracted and regional Jaccard indices were computed between the hippo-

campi meshes of paired BTB scans to evaluate reproducibility. Regional volumes and Jac-

card indices were modelled as a function of group (G), method (M), hemisphere (H), time-

point (T), region (R) and interactions.

Results

For the volume data the model selection procedure yielded the following significant main

effects G, M, H, T and R and interaction effects G-R and M-R. The same model was found

for the BTB scans. For all methods volumes reduces with the severity of disease.

Significant fixed effects for the regional Jaccard index data were M, R and the interaction

M-R. For all methods the middle region was most reproducible, independent of diagnostic

group. FSL-FIRST was most and FreeSurfer least reproducible.
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Discussion/Conclusion

A novel method to perform detailed analysis of subtle differences in hippocampus segmen-

tation is proposed. The method showed that hippocampal segmentation reproducibility was

best for FSL-FIRST and worst for Freesurfer. We also found systematic regional differences

in hippocampal segmentation between different methods reinforcing the need of adopting

harmonized protocols.

Introduction

The hippocampus is an important brain structure that plays a crucial role in episodic memory

[1]. For instance, longitudinal decline of hippocampal volume is related to memory

impairment and clinical dementia [2,3]. In Alzheimer’s disease (AD) and its prodromal phase,

mild cognitive impairment (MCI), the hippocampus is affected by amyloid and tau pathology

early in the disease course [4,5]. Hippocampal atrophy as measured on T1-weighted volumet-

ric structural magnetic resonance images (MRI) is a sensitive biomarker of AD pathology [6],

but can also be a predictive imaging biomarker of MCI [7]. Knowledge of hippocampal shape

is also an important aspect in radiotherapy, when prophylactic cranial irradiation (PCI) is

used and hippocampal avoidance is executed to limit neurocognitive toxicity [8–12].

Although manual outlining by experts is considered as the gold standard, it requires exten-

sive training and is very labour intensive [13]. Therefore, automatic segmentation tools based

on deformable models, single-, multiple- or probabilistic-atlases have been developed over the

last decades. V. Dill and colleagues give an excellent overview of semi-automatic and auto-

matic hippocampus segmentation methods [14]. The most commonly used publicly available

software tools to the academic community, with active user communities and active support

from the developers, are FreeSurfer [Martinos Center for Biomedical Imaging, Harvard-MIT,

Boston USA] [15,16] and FSL-FIRST [FMRIB Integrated Registration and Segmentation Tool,

University of Oxford, Oxford UK] [17] and therefore we focus on these methods. Previous

studies have shown good but not perfect overall agreement for both methods with manual seg-

mentation, given a dice overlap of FreeSurfer and FSL-FIRST segmentation ranging from 74–

82% and 79–84% respectively and a good volume correlation of both methods with manual

segmentation [16–28]. In a direct comparison, FreeSurfer slightly agreed better with manual

segmentation than FSL-FIRST [29–33].

So far, most studies comparing manual and automatic hippocampus segmentations have

expressed the performance of hippocampus outline methods in terms of global hippocampal

volumes and overlap indices to manual hippocampus segmentation. For instance, Mulder and

colleagues compared reproducibility of longitudinal hippocampal volume changes, as deter-

mined by manual segmentations, FSL-FIRST and FreeSurfer [33]. However, volumes and vol-

ume changes do not contain information about shape and overlap indices only quantify the

total amount of agreement of two segmentation methods. It is very likely that some parts of

the hippocampal structure are easier to segment than others and therefore to study systematic

differences existing global volume and overlap measures need to be extended to regional ones.

Following Hackert and colleagues we focus on regional differences along the long axis of hip-

pocampi, computing regional volumes and outline reproducibilities by dividing the hippocam-

pus in three regions, the head, body and tail [34]. Furthermore, different automatic

segmentation methods and manual segmentation protocols might be based on different
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underlying anatomical definitions. A systematic regional comparison can reveal such differ-

ences between methods.

There are a few cross-sectional hippocampus studies using FreeSurfer segmentation which

reported that sub-regions undergo differential atrophy in AD [35][36]. These findings further

motivate our objective to evaluate regional longitudinal changes in hippocampal volume as

determined by different segmentation methods.

To our knowledge, there are no papers reporting reproducibility of hippocampal outlines

in a dataset similar to clinical trials. In part the absence of such studies derives from the fact

that comparing voxel-wise segmentations obtained from different scans is challenging, because

of slightly different positions of the head in the voxel space. Considering these small regional

differences between different segmentations, we wish to avoid interpolation errors as much as

possible. For that purpose, in this study a surface reconstruction of each hippocampus is

derived from the scan to which the labelled segmentation was available in its rawest form.

Then, after determining the accurate image registration and applying the corresponding trans-

formation parameters between the reconstructed surfaces overlap measures were computed

directly on the surfaces, avoiding interpolation errors as much as possible. Since the limiting

factor of these computations is accuracy of the image registration we apply the “full circle

method” to test the quality of registration procedures [37].

It remains unclear to what extent the hippocampal segmentations themselves are reproduc-

ible at the most detailed level. Although accuracy of hippocampal segmentations has been

investigated by comparing to manual references [17,20–22,27,29], reproducibility of the seg-

mentations has not been investigated on a large population and different groups. Similar to

Mulder and colleagues we investigate hippocampus segmentation for different disease groups

in different stages and use different segmentation methods [33]. But different to [33], we com-

pare hippocampal volumes and outline reproducibilities in different regions and hemispheres

as determined in baseline and follow-up scans. Because of the many factors and possible com-

bination of factors that may influence the response variables, we propose a novel method,

based on Akaike Information Criterion (AIC) [38], to select the most suitable statistical model

to explain our findings. We test the robustness of this method by performing the same analysis

making use of the back-to-back (BTB) scans.

Materials and methods

Dataset and MRI acquisition

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuro-

imaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a

public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The pri-

mary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), posi-

tron emission tomography (PET), other biological markers, and clinical and

neuropsychological assessment can be combined to measure the progression of mild cognitive

impairment (MCI) and early Alzheimer’s disease (AD).

The dataset used in this study is the same subset of the ADNI dataset that has been used by

Mulder and colleagues [33]. MRI data of 80 subjects were selected, of which 20 are control sub-

jects (CTRL), 40 MCI subjects and 20 subjects were diagnosed as AD. MCI subjects were a pri-

ori selected based on their cerebrospinal fluid (CSF) profile. For the selection we used the ratio

of total tau (t-tau) and Amyloid-β 1 to 42 peptide (Aβ1–42) with an AD-positive cut-off value of

t-tau/Aβ1–42� 0.39 determined by Shaw and colleagues [39]. 20 MCI subjects with an AD-

positive cut-off value (MCI-P; t-tau/Aβ1–42� 0.39) and 20 MCI subjects with an AD-negative
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cut-off value (MCI-N; t-tau/Aβ1–42 < 0.39) were selected from the database. All healthy con-

trols had a t-tau/Aβ1–42 < 0.39 and all AD’s a t-tau/Aβ1–42� 0.39.

For all subjects four volumetric MRI scans were acquired, two scans at time-point baseline

(BL) and two scans one year later, here referred to as M12. Those two MRI BTB scans at each

time-point were acquired in a single session, with the acquisition of the second volumetric

MRI starting only a few minutes after completing the first acquisition. We refer to these scans

as BL-A, BL-B, M12-A, and M12-B. BL scans of all subjects were made between September

2005 and August 2007.

MRI scans were acquired at different locations with 1.5T scanners from various vendors

(Philips, Siemens and GE). For every subject the MRI scanner and protocols were the same for

each of the four acquisitions. The images were acquired with a 3D T1 weighted magnetization

prepared rapid acquisition gradient echo sequence (MPRAGE). All pixels were square and the

slice thickness was 1.2mm. The voxel volume ranged from 1.05mm3 to 2.03mm3 with a

median value of 1.88mm3. The MRI scans were visually inspected for their quality and no

post-processing other than default scanner corrections were performed. A more detailed

description for the MRI acquisition protocol can be found in Jack et al [40].

Hippocampus segmentation

Manual. Manual hippocampus segmentations were performed in the Image Analysis

Center (IAC, Amsterdam) using their standard operating procedure (SOP) as previously

described in [33,41,42]. BL scans were reformatted in a plane perpendicular to the long axis of

the left hippocampus, resulting in a pseudo coronal orientation with a slice thickness of 2mm

and the original in-plane resolution using sinc interpolation. This procedure was followed

independently for all four scans. Rigid body registration was applied to all four (both BL and

both M12) reformatted scans to bring them in the same coordinate space for comparison.

Three slices of a hippocampus segmentation in pseudo coronal orientation are shown in Fig 1.

Included in the hippocampal formation are the Ammon’s horn, dentate gyrus, alveus and fim-

bria and the subiculum. To summarize hippocampal boundaries, the most posterior slice is chosen

such the total length of the crux of the fornix is seen. The medial boundary of the hippocampus is

formed by the CSF in the cisterna ambiens and the transverse fissure. The inferior border is

formed by the subiculum and the parahippocampal gyrus. The superior border is defined by the

CSF of the temporal horn and the alveus. Laterally, the hippocampus is bordered by CSF from the

temporal pol of the lateral ventricle. In anterior direction it forms along the amygdala and stops

when an additional amount of CSF appears on the medial side of the hippocampus.

One trained expert technician from the IAC segmented the left and right hippocampus of

all subjects using a locally developed software package (Show_Images 3.7.1.0) from the VU

University Medical Center (VUmc). The technician was blinded to the diagnosis, but used BL

segmentations to segment the follow up M12 scans, as it is part of the workflow of the longitu-

dinal study. However, first and second BTB scans were given in a random order.

FSL-FIRST. In [43] and [17] technical details of FSL-FIRST are described. FSL-FIRST is a

deformable model based segmentation tool, using shape and appearance models which were

constructed from a set of manual segmented subjects provided by the Center for Morphometric

Fig 1. Hippocampus segmentation in reformatted pseudo coronal orientation. Brown colour is the left,

green the right hippocampus. Left: posterior slice close to the crux of the fornix. Middle: one of the middle

slices of the hippocampus. Right: anterior slice with hippocampus next to the amygdala.

doi:10.1371/journal.pone.0166785.g001
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Analysis (CMA), Massachusetts General Hospital (MGH), Boston. The manual segmentations

were parameterized and described as surface meshes from which a point distribution is mod-

elled. Using observed intensity values from the MR image, FSL-FIRST finds the most probable

shape by searching through linear combinations of shape variation modes. FSL-FIRST uses a

two-stage affine transformation to a MNI152 standard space of 1mm resolution before perform-

ing segmentation. Hippocampus meshes are then converted to labelled voxel region of interests

(ROI) after a boundary correction using FAST voxel-wise segmentation software [44]. We used

FSL-FIRST v.5.0.4 and the run_first_all script command, because FSL-FIRST takes adjacent

structures into account. The voxelwise labelled hippocampus segmentation produced by

FSL-FIRST are in native MRI scan space.

For one subject the FSL-FIRST segmentation failed because of an internal registration prob-

lem. To include this subject, we pre-processed it by extracting the subjects brain using BET

before running the FSL-FIRST script. The BET extraction corrected the registration problem

and enabled us to include this subject.

FreeSurfer. In [16] the technical procedure for subcortical segmentation is described in

detail. Briefly, FreeSurfer brings the MRI to a conformed 1mm3 2563 space, performs intensity

normalization to correct for intensity non-uniformity in the MR image, saves an affine trans-

formation to Talairach space, corrects intensity fluctuations using another normalization and

strips the skull leaving only the brain. To apply segmentation labels FreeSurfer transforms the

subject’s volume to the FreeSurfer atlas and assigns voxels to subcortical structures using prior

probabilistic intensity and tissue class information.

We used the FreeSurfer version 5.3 to perform hippocampus segmentations using the longi-

tudinal processing stream. This requires a prior cross-sectional processing of each MRI. Free-

Surfer’s labelled hippocampus segmentations from the cross-sectional and longitudinal stream

were converted back to the native MR image space using the procedure provided by FreeSurfer

(mri_label2vol).

Surface extraction. All volumetric hippocampi labels from each method were converted

to triangulated meshes with the marching cube algorithm to avoid interpolation errors intro-

duced by registrations. Those generated hippocampi meshes were used to compute regional

volumes and outline reproducilbities. If the segmentations consisted of multiple connected

components the surface reconstruction would also consists of multiple surfaces of which the

total volume was taken to correspond to the hippocampus.

Comparison methods

The marching cubes algorithm applied to the segmented images resulted in closed triangulated

surfaces. Regional volumes from surfaces were computed by adopting a fine regular grid

enclosing two surfaces A and B, and by testing for each point whether it was inside either of

the surfaces. To speed up these computations, KD trees and some other optimizations were

used [45]. The Jaccard index of the surface pair (A, B), defined as

Jacc A;Bð Þ ¼
jA \ Bj
jA [ Bj

ð1Þ

was approximated as

Jacc A;Bð Þ �
NðA \ BÞ
NðA [ BÞ

ð2Þ

where N(V) is the number of grid points inside surface V. These grid points were derived from

a submillimetre mesh that was fine enough to capture all surface details.

Regional analysis of hippocampal segmentation
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To quantify regional specific reproducibility and systematic differences in shape definition,

a regional overlap index was computed as follows:

JaccROI ¼
jðA \ BÞ \ ROIj

jðA \ ROIÞ [ ðB \ ROIÞj
ð3Þ

where ROI represents a region of interest. This equation is an overlap between surfaces A and

B, both constrained to a third region ROI. To compute regional volumes and Jaccard indices

in practice, a hippocampus mask was derived from MNI152 standard-space provided by FSL

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases, MNI152_T1_1mm_Hipp_mask_dil8.nii). This

mask was big enough to cover any hippocampus and was split into three parts for each hemi-

sphere along the long hippocampal axis and converted to triangulated meshes resulting into

six mesh regions, hereafter named left and right anterior, middle and posterior. The regions

have no specific anatomical definition, but they are similar to Hackert and colleagues’ regional

definition and approximate to an anterior region of 35%, middle region of 45% and posterior

region of 20% [34]. To register this six regional hippocampus mask in MNI152 space to each

subject image space, we performed a similar procedure as FSL-FIRST, i.e. brain extraction, a

two-stage affine registration to MNI152, followed by visual inspection. Fig 2. is a flowchart

illustrating the hippocampal mesh conversion and the registration procedure of the six

regional mask to the hippocampus mesh. All other triangulated hippocampi segmentation

meshes (BL-B, M12-A and M12-B) were rigid body registered to scan BL-A with the registra-

tion matrices described in Registrations and registration quality control.

Pre-processing

Before regional volumes and reproducibilities could be computed, MRI scans were mapped to

each other so that the segmentations were in the same imaging space. Although BTB scans are

very similar to the original, there is still the possibility of subject motion in between the BTB

scans, and therefore image registration was also applied between these image pairs.

Registrations and registration quality control. Rigid body transformations were used to

map BL-B to BL-A, M12-B to M12-A and M12-A scan to BL-A scan. Our registrations were all

performed using FSL-FLIRT. To check the quality of these registrations, a consistency test was

done on the registration parameters using the full circle method introduced by van Herk and

Fig 2. Procedure to make a regional analysis. Top and bottom rows show the conversion from a

hippocampus segmentation and the six regional mask to a triangulated mesh respectively. The right part of

the figure illustrates the registration procedure to map the six regional hippocampus mask to the left and right

hippocampus mesh.

doi:10.1371/journal.pone.0166785.g002
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colleagues [37]. By registering images in a cyclic fashion and multiplying all transformation

matrices the product should result in the identity matrix, when registration errors were absent.

Hence, we computed the “full circle” matrix RM = ∏Tij, where Tij is the transformation from

image i to image j. We analysed four full circles which resulted into residual matrices given by:

RMCircle1 ¼ TBLA� M12B � TM12B� M12A � TM12A� BLA ð4Þ

RMCircle2 ¼ TBLA� M12A � TM12A� BLB � TBLB� BLA

RMCircle3 ¼ TBLA� M12B � TM12B� BLB � TBLB� BLA

RMCircle4 ¼ TM12B� M12A � TM12A� BLB � TBLB� M12B

and determined the residual translation and rotation errors as:

TranslationTotal ¼ kTransVectorðRMÞk ð5Þ

RotationTotal ¼ acos
TraceðRMÞ � 1

2

� �

ð6Þ

In addition, the effect of registration errors was directly quantified by computing the Jac-

card index between a hippocampal surface and its transformed version obtained by applying

RM:

Consistency ¼ JaccðShip;RMðShipÞÞ ð7Þ

The more consistent all registrations, the closer the matrix RM is to the identity, and the

higher this Consistency index. Therefore, we use 1- Consistency to quantify the registration

error.

Visual quality control. Next to the full circle analysis as an additional quality check, we

inspected the results of the outline reproducibility analysis and visually reviewed subjects’ reg-

istered scan pairs which had low Jaccard indices to be sure that there were no registration

errors.

Statistical analysis

We used linear mixed models for the statistical analysis of the data. The analysis of the regional

volume data was performed with the volumes as response variable (V). The models consisted

of fixed main effects and fixed interaction effects which we selected due to their suspected

influence on hippocampal volume and shape. Fixed main effects were segmentation method

(M) with levels (Manual, FSL-FIRST, FreeSurfer), Group (G) with levels (CTRL, MCIN,

MCIP, AD), hemisphere (H) with levels (Left, Right), region (R) with levels (Anterior, Middle,

Posterior) and time-point (T) with levels (BL, M12). A complete model would include all com-

binations of pairs, triples, etc. of these effects. To reduce the model complexity we started our

search for a physiologically reasonable descriptive model by only considering the following

interactions: group-method (G-M), group-region (G-R), method-region (M-R), method-hemi-

sphere (M-H), time-point-group (T-G), time-point-region (T-R), time-point-group-region

(T-G-R) and group-region-method (G-R-M). Individual subject effects (S) were modelled as

random effects. This yielded the mixed model:

V � M þ GþH þ Rþ T þ GM þ GRþMRþMH þ TGþ TRþ TGRþ GRM þ rðSÞ ð8Þ

Regional analysis of hippocampal segmentation
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where r() indicates a random effect. This model was fitted to the pair of longitudinal A scans

and the pair of B scans separately. Then a model selection algorithm was run that selected sig-

nificant effects amongst fixed effects present in the model. This was done by minimizing the

Akaike Information Criterion (AIC) in a backward elimination set up, i.e. least significant

terms were dropped from the model until the AIC started to increase. The AIC is a commonly

used statistical measure that balances the goodness of fit and model complexity (i.e. number of

free parameters). Significance of each term was computed according to an ANOVA analysis

with Satterthwaite’s approximation for degrees of freedom using R-package lmerTest [46]. The

model selection is illustrated with a flowchart in Fig 3.

For the analysis of whole hippocampus outline reproducibilities we transformed the Jaccard

index in (2) to Jacc9 as response variable (J) in order to fulfil the assumption of Gaussian errors

in the linear model. Fixed main effects were segmentation method (M), group (G), hemisphere

(H), time-point (T). Fixed interaction effects fitted were group-method (G-M) and method-

hemisphere (M-H). Individual Subject effects (S) were modelled as random effects. In all this

yielded the mixed model:

J � GþM þH þ T þ GM þMH þ rðSÞ ð9Þ

The regional hippocampus outline reproducibilities were analysed in a similar way. The

Jaccard index in (3) was again transformed to Jacc9 as response variable in order to meet the

Fig 3. Flowchart of the model selection procedure.

doi:10.1371/journal.pone.0166785.g003
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Gaussian assumption. Compared to the whole hippocampus analysis we added the fixed main

effect Region (R) and interaction effects R-M and R-G:

JROI � GþM þH þ T þ Rþ GM þMH þ RM þ RGþ rðSÞ ð10Þ

The model selection for (9) and (10) was performed using the same algorithm as used for

the volume data analysis. For the volume data analysis FreeSurfer’s segmentations from the

longitudinal stream have been used, but for comparison we also analysed segmentations from

the cross-sectional stream. The reproducibility analysis was only performed with FreeSurfer’s

segmentations from the cross-sectional stream.

Results

Registration quality control

Quality of the registrations for all subjects was analysed using the full circle method to evaluate

the transitivity error. Taking all subjects into account, for the full circles of the primary analy-

sis, described by equations in (4) the maximum total rotation and translation calculated were

0.12deg and 0.4mm respectively. The mean translation and rotation were 0.01 mm and 0.04

degrees, which is the result of three registration steps, so that each registration will be more

Fig 4. Quality control for MRI scan registration. Results obtained from the residual matrix after the full circle approach.

Jaccard error computed for circles defined by Eq 7.

doi:10.1371/journal.pone.0166785.g004
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accurate than this. In Fig 4. the registration error is plotted in boxplots showing the error for

each circle on the basis of Eq (7). In general, all values are quite small, demonstrating the con-

sistency and accuracy of registrations. Additionally, registrations of outliers shown in Fig 4.

were reviewed visually and showed no noticeable registration errors, which indicated together

with rotation and translation results that all registrations were of good quality.

Regional hippocampus volume comparison

For the regional analysis segmented hippocampi of all segmentation methods, shown in Fig 5,

have been processed as described in chapter 2.3. Regional volumes have been extracted and

used for our statistical analysis.

The linear mixed models fitted on the BL-A and M12-A scans on the one hand and those

fitted on the BL-B and M12-B scans on the other hand yielded identical selections of fixed

effects. That means that in both cases the model selection procedure reduced the model of Eq

(8) to the following:

V � GþM þH þ T þ Rþ GRþMRþ rðSÞ ð11Þ

We then performed the model selection on all scans BL-A, M12-A, BL-B and M12-B

together, and obtained again the same selection of fixed effects. In the sequel, parameter esti-

mates from the combined data set will be mentioned. All fixed main effects and fixed interac-

tion effects in (11) were significant, with the highest p-value (Satterthwaite’s approximation)

in the selected model of 0.0001082 (main effect Group (G)), all other p-values were lower. The

dropped fixed main effect and fixed interaction effect were insignificant and had a higher Sat-

terthwaite’s approximation p-value than 0.05. For the factors hemisphere (H) and time-point

(T) only the main effects are present in the final model and the interaction effects of these

dropped. The left hippocampus was on average 0.0332cm3 smaller than the right hippocam-

pus. Hippocampi from time-point M12 were on average 0.0326cm3 smaller than from time-

point BL. Predictions of the estimated model for the three segmentation methods are shown in

Table 1 for the left hemisphere and time-point BL.

Using the average volume difference between left and right (0.0332cm3) or between BL and

M12 (0.0326cm3) hippocampi, all other predicted volumes can be reconstructed by adding

these values to the predicted volumes in Table 1. For example, to obtain the predicted volume

from the FSL-FIRST segmentations in the MCIP group of the middle region for the right hip-

pocampus, 0.0332cm3 need to be added to 1.207cm3. Tables for right hippocampus at time-

point BL and left and right hippocampus at time-point M12 can be found in the supporting

information (Table in S1 Table, Table in S2 Table and Table in S3 Table). The decrease of vol-

ume from BL to M12 could be predicted by all methods, but could not be differentiated

between different group types. In general, the middle part for both automatic segmentation

methods was the largest part, while for manual segmentations the anterior and middle parts

seem to be of almost equal size. Moreover, the anterior volume of manual segmentations was

systematically bigger than the anterior volume of the automatic segmentations. Also noticeable

is that for all three methods the posterior part was predicted to be the smallest part, which is

Fig 5. Left and right hippocampus segmentations in coronal view. Left: manual segmentation. Middle:

FSL-FIRST segmentation. Right: FreeSurfer segmentation.

doi:10.1371/journal.pone.0166785.g005
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the result of our definition of the ROIs within the mask. Furthermore, the predicted volumes

from Table 1 shows that for all methods all three regions showed a decrease in hippocampal

volume for increasing severity of disease. Fig 6 illustrates regional hippocampal volume differ-

ences for all three methods and regions discriminated in groups and by both time-points,

while left and right hippocampi were grouped together.

Following the same procedure, using FreeSurfer’s segmentation from the cross-sectional

stream resulted in the same model with very similar predicted volumes, which can be found in

the supporting information (Table in S4 Table).

Whole hippocampus outline reproducibility

The fitted and selected linear mixed model for the hippocampus outline reproducibility only

contains the fixed effect method (M), with p-value <2.2x10-16. The predicted Jaccard indices

for the three segmentation methods are shown in Table 2. This table shows that FSL-FIRST

segmentation is the most and FreeSurfer segmentation the least reproducible.

Table 1. Predicted volumes (cm3) for the left hippocampus at time-point BL for all segmentation

methods.

Group CTRL MCIN MCIP AD

Region

Manual Segmentation

Anterior 1.317 1.171 1.088 1.066

Middle 1.282 1.252 1.120 1.006

Posterior 0.790 0.747 0.731 0.618

FSL-FIRST Segmentation

Anterior 1.259 1.113 1.031 1.008

Middle 1.369 1.340 1.207 1.093

Posterior 0.964 0.920 0.905 0.792

FreeSurfer Segmentation

Anterior 1.186 1.040 0.957 0.935

Middle 1.324 1.294 1.162 1.048

Posterior 1.000 0.957 0.942 0.828

doi:10.1371/journal.pone.0166785.t001

Fig 6. Regional volume comparison for all methods and both time-points. Left and right hippocampus

and scan A and B were grouped together.

doi:10.1371/journal.pone.0166785.g006
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Fig 7 illustrates Jaccard indices of outline reproducibility for all three methods for BL and

M12 scan pairs, separated by left and right hippocampus and differentiated into groups. The box-

plots show the same tendency as predicted by the mixed model. Even though it was not signifi-

cant, the boxplots also show a trend that for all methods Jaccard indices decrease with increasing

disease severity, and both automatic segmentations show larger variations than manual segmen-

tations. Also, it should be noted that only the automatic segmentations have large outliers.

Regional hippocampus outline reproducibility

Regional hippocampus Jaccard indices have been computed by using Eq (3). The fitted linear

mixed models contain as fixed effects the main effects method and region and interaction

effect region-method, resulting into the model:

JROI � M þ Rþ RM þ rðSÞ ð12Þ

The p-values of all three fixed effects in the selected model were similar to the p-values of

the analysis of the whole hippocampus outline reproducibility. The predicted Jaccard indices

for all method-region combinations are shown in Table 3.

The results related to the segmentation method are similar to that in the whole hippocam-

pus analysis: FSL-FIRST segmentation is most and FreeSurfer segmentation least reproducible.

It can also be seen in Fig 8 that for all methods with the severity of the disease in all regions the

reproducibility decreased. Additionally, Table 3 shows that the middle region has highest Jac-

card indices and the posterior region lowest Jaccard indices.

Table 2. Predicted Jaccard indices for the whole hippocampus for the different segmentation

methods.

Method Jaccard

Manual 0.795

FSL-FIRST 0.829

FreeSurfer 0.754

doi:10.1371/journal.pone.0166785.t002

Fig 7. Whole hippocampus Jaccard indices for all methods, both time-points and left and right

hippocampi to show segmentation reproducibility between BTB scans.

doi:10.1371/journal.pone.0166785.g007
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Discussion and conclusion

With our approach to automatically and precisely extract regional hippocampal volumes and

outline reproducibilities from the BTB scans’ segmentations we were able to detect systematic

differences in volumes among three different segmentation methods and showed that

FSL-FIRST was the most reproducible segmentation method.

In several applications, the quantification of global hippocampal volumes is of limited appli-

cability. For instance, when studying anatomical changes accompanying the development of

neurodegenerative diseases or when testing drugs against these diseases, it is well possible that

these changes occur in specific regions of the hippocampus and then global measures such as

volume would be too coarse to notice them. For clinical applications in radiotherapy where

hippocampus avoidance is aimed for, it is insufficient to know that volume of the delineated

object is correct, but also accuracy of shape is required. Finally, the need for local shape infor-

mation is required to determine whether differences in hippocampus segmentation by differ-

ent methods are caused by hidden systematic differences in the underlying anatomical

definitions of the hippocampus.

The present study developed a method to investigate regional effects in shape differences.

Confirming with other literature [26,47–51], also our analysis showed a global left and right

hippocampus difference. Furthermore, global hippocampal atrophy could be detected, but it

could not be distinguished in between groups (G) or regions (R), because the interaction of

these with the time-point (T) were not significant. The regional volume analysis showed that

both automatic segmentations revealed similar results, while manual segmentations had sys-

tematically larger anterior, and smaller middle and posterior volume predictions, which

Table 3. Predicted Jaccard indices for the regional hippocampus for the different segmentation methods.

Region Anterior Middle Posterior

Method

Manual 0.794 0.825 0.756

FSL-FIRST 0.829 0.855 0.798

FreeSurfer 0.756 0.784 0.721

doi:10.1371/journal.pone.0166785.t003

Fig 8. Regional hippocampus Jaccard indices for all methods and left and right hippocampi. We

combined both time-points, i.e. BL-A–BL-B and M12-A– M12-B, because both time-points by themself gave

similar results.

doi:10.1371/journal.pone.0166785.g008
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indicates that the hippocampus segmentation protocol for manual segmentations is different

than the definition of the hippocampus underlying the automatic segmentation methods.

Both, FSL-FIRST and FreeSurfer subcortical segmentations are based on manually labelled

training data sets following the outline protocol from the Center of Morphometric Analysis

(CMA, http://www.cma.mgh.harvard.edu/). The intention of both the hippocampal outlining

protocol of the CMA and that of Jack and colleagues [41] used in this study for manual seg-

mentation, is to include: dentate gyrus, cornu ammonis, subiculum, fimbria and alveus. Alter-

ations of regional volume distributions among methods shows that with our analysis more

subtle differences in segmentation protocols were detectable. Therefore, it would be beneficial

to use a standardized protocol like the harmonized protocol for hippocampus volumetry, the

outcome of a project to define a standard protocol for hippocampus segmentation [52][53]

[54].

With our regional volume data we also compared FreeSurfer’s results from the cross-sec-

tional and longitudinal stream. For both we obtained the same model with the same selection

of fixed effects, only the predicted volumes differed: FreeSurfer’s anterior and posterior volume

predictions were slightly larger for results from the longitudinal stream. Even though Reuter

and colleagues [15] showed an improvement in distinguishing diagnostic groups using the

longitudinal stream, with our approach the selected model using either the cross-sectional or

longitudinal stream was identical, i.e. neither increased reproducibility nor accelerated

decrease of hippocampal volume in AD subjects were found when using the a priori knowl-

edge that scans form a longitudinal series. This might be due to the smaller number of subjects

used in this study, as Reuter and colleagues used three times as many non-demented and

demented subjects.

At the IAC Amsterdam, technicians undergo yearly reliability trainings with training sets of

five cases. In the most recent test sets, the intra-rater variability score of the hippocampal vol-

ume—ICC with absolute agreement—was 0.985–0.99 using identical images. Determining the

ICC with absolute agreement measure using the BTB dataset of the current study, the techni-

cian obtained an ICC of 0.98 and 0.99 for hippocampal volumes of BL-A–BL-B and M12-A–

M12-B scans respectively. For FSL-FIRST the ICC was 0.98 and 0.98 and for FreeSurfer it was

0.99 and 0.98 for BL and M12 BTB scans respectively. Even though hippocampal volumes have

high correlations, our outline reproducibility analysis showed that comparing volumes alone

does not reflect the complete picture of the quality of the outline. We determined outline

reproduciblities for the whole hippocampus, but also for anterior, middle and posterior hippo-

campus sections. For both left and right hippocampus, whole hippocampus and in all three

subregions, in all diagnostic groups and at both time points, FSL-FIRST consistently gave sig-

nificant higher Jaccard indices, followed by manual, followed by FreeSurfer. This confirms the

finding of Morey and colleagues, who also found that FSL-FIRST had higher outline reproduc-

ibilities than FreeSurfer [30]. However, it should be mentioned that only automatic segmenta-

tion methods had large outlier Jaccard indices, as can be seen in Figs 7 and 8. To confirm that

these truly resulted from poor segmentations and not by registration errors we visually

inspected the MRI scan pairs of these outliers as described in 2.4. No visual noticeable registra-

tion errors could be detected, but poor segmentations could be confirmed by inspecting the

mesh segmentations of these outliers. The hippocampal volumes of these outliers were also

reviewed but they did not show outlier values.

With our regional reproducibility analysis we were also able to determine that for all seg-

mentation methods the middle region had highest Jaccard indices. The middle region shares

common borders with the anterior and posterior region, which means the border surface of

the middle region to other structures is smaller compared to the anterior and posterior

regions. Due to similar grey values the hippocampus is hard to distinguish from adjacent

Regional analysis of hippocampal segmentation
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structures, which means the regions with a larger surface to adjacent structures most probably

have a poorer reproducibility, as it can be seen from the anterior and posterior region. It

should also be noted that overlap indices in general are sensitive to size differences. The size

differences between anterior and posterior parts amounted to between 15 to 20% (Table 1),

which could therefore also provide a partial explanation for the observed differences in Jaccard

indices.

Given that reproducibility is an important requirement for segmentation methods,

FSL-FIRST meets the requirement and exhibits even better results than manual outlining,

which is the choice of many clinical trials. Nevertheless, this finding should be treated with

care, because outline reproducibility is necessary, but not sufficient to imply that the hippo-

campus was outlined accurately. In contrast, E. Mulder and colleagues [33] found that Free-

Surfer obtains most reproducible volume atrophy measurements compared to manual and

FSL-FIRST segmentations. Considering that we found that FreeSurfer has worst outline repro-

ducibilities atrophy measurements FreeSurfers’ hippocampus segmentations should be inter-

preted with care. Furthermore, results show that for all methods and subregions, and for both

hemispheres and both time points, AD patients tend to exhibit poorer reproducibilities than

healthy controls, while especially FreeSurfers’ results have larger decrease in Jaccard indices

with disease severity than manual and FIRST segmentations; and only automatic segmentation

methods showed extreme Jaccard indices. This finding was not detected as a significant effect

by our statistical model because the variation was too large for our sample size. But it is an

indication that the training sets of the automatic methods might not be optimized for diseased

subjects, which is confirmed by several other studies [20][22][31].

In this study we also proposed a novel method to extract regional Jaccard indices by con-

verting label images to meshes and by using registration parameters on these meshes to map

them to a common space. This approach is particularly useful when comparing small struc-

tures, because interpolation and registration errors are avoided. The full circle method allowed

us to quantitatively estimate registration accuracy by computing rotation and translation com-

ponents, but we also extended this method to a consistency measure using the Jaccard index.

We suggest that this methodology can be a useful tool in other (brain) imaging studies where

small structures are compared between scans with different image orientations.

For a better disease understanding and more sophisticated analysis it would be an idea to

extend the regional analysis to more specific hippocampal subfields (cornu ammonis fields,

dentate gyrus and subiculum). This is an ongoing field of interest and usually high field scan-

ners over 3T with high resolution T2 or proton density sequences are necessary to distinguish

boundaries between those regions [55]. We suggest that for the analysis of such datasets the

methodology proposed in this study would be particularly suited.
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