

Allogeneic cell therapy process economics for successful development, manufacture and commercialisation

Suzanne S. Farid PhD CEng FIChemE Professor in Bioprocess Systems Engineering Department of Biochemical Engineering University College London <u>s.farid@ucl.ac.uk</u>

World Stem Cells & Regenerative Medicine Congress 2016, 18-20 May

Project Partners & Acknowledgements

Co-Authors:

Suzanne Farid Sofia Simaria UCL UCL

Sally Hassan UCL

Kim Warren ex-Lonza

Dave Smith Lonza

BRITS Project Partner Leads:

- Lonza Biologics
- UCL Biochemical Engineering
- UCL Mgt Science & Innovation
- London Regen Med Network

Kim Warren, Dave Smith, Behzad Mahdavi, J Zurdo Suzanne Farid, Chris Mason Simcha Jong, Hsini Huang Emily Culme-Seymour

Technology Strategy Board, Lonza Biologics

BRITS Project Funding:

BRITS

Setting standards in analytical science

future medicine

Technology Adoption Centre

Technology Strategy Board Driving Innovation

[•]UCL

Challenges for Allo Cell Therapy (CT) Manufacture

- Several CT failures attributed to manufacturing*:
 - High cost of goods (COG), process variability, loss of clinical efficacy upon scale-up, inadequate characterisation

How can cell therapies achieve the manufacturing success of protein biopharmaceuticals?

- 'Allo' CTs: Product-driven business model
- Unique manufacturing & supply chain issues:
 - Limited large-scale bioprocessing options
 - Adherent culture, cells from healthy donors
 - Serum-containing cell culture media
 - Single-use technologies essential
 - Poorly automated, labour-intensive, open
 - Fresh / cryo products
 - Costly cold-chain transportation
 - Point-of-use care

Submitted for testing

USP Challenges for Cell Therapy Manufacture

	mAbs	Cell therapies (MSCs)	
Technologies used in	Bioreactors	10-layer vessels	
clinical / commercial batches			
Dose per admin	100-2000 mg	100 K – 1 B cells	
Annual demand	100-1000 kg	1 B – 100 T cells	
Cell culture yield	1-5 g/L	25,000 cells / cm ²	
Scale required @ max. demand	6 x 10,000 L SS 6 x 2,000 L SUB	100,000 (!) x 10-layer vessels	
	But can only handle	50-100 x 10-layer vessels / batch	

Decisional Tool For Cell Therapy Manufacture

Aim: Create a decisional tool to identify the optimal technologies for commercial cell therapy bioprocesses and the technical innovation required to realize their potential

Case Studies: Cell Therapy Bioprocess Economics

Allogeneic single-use cell expansion decisions

(Simaria et al, 2014)

- Scenario: New build for commercial allogeneic cell therapy manufacture
- Impact of dose, demand, lot size on optimal USP technology

Allogeneic single-use volume reduction decisions (Hassan et al, 2015)

- Scenario: New build for commercial allogeneic cell therapy manufacture
- Impact of dose, demand, lot size on optimal DSP technology

Process change impact on drug lifecycle costs

(Hassan et al, 2016)

- Scenario: Switching from planar to microcarrier technology
- Impact of timing of switch and drug development costs on ranking of strategies

Case Studies: Cell Therapy Bioprocess Economics

Allogeneic single-use cell expansion decisions

(Simaria et al, 2014)

- Scenario: New build for commercial allogeneic cell therapy manufacture
- Impact of dose, demand, lot size on optimal USP technology

ARTICLE

Allogeneic Cell Therapy Bioprocess Economics and Optimization: Single-Use Cell Expansion Technologies

Ana S. Simaria,¹ Sally Hassan,¹ Hemanthram Varadaraju,² Jon Rowley,² Kim Warren,² Philip Vanek,² Suzanne S. Farid¹

¹Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK; telephone: +44 (0) 20 7679 4415; fax: +44 (0) 20 7916 3943; e-mail: s.farid@ucl.ac.uk ²Cell Processing Technologies, Lonza Walkersville, Inc., Walkersville, MD, 21793

ABSTRACT: For allogeneic cell therapies to reach their therapeutic potential, challenges related to achieving scalable

KEYWORDS: allogeneic cell therapy manufacture; stem cells; single-use cell expansion; microcarriers; cell factories; bioprocess economics

Case study: Allogeneic cell expansion decisions Case study setup

Dose: 10⁶-10⁹ cells

Demand: [1,000-500,000] doses/year Lot size: [50-10,000] doses/lot

Max nr technology units/lot = 80

Max nr SUBs/lot=8

Question:

What is the most cost-effective cell expansion technology for each demand-lot size combination?

Candidate cell expansion technologies:

Case study: Allogeneic cell expansion decisions Results: optimal technologies across demand/lot size matrix and dose

Optimal technologies:

Tool identified where

- planar technologies cease to be feasible
- microcarrier-SUBs become the only option

Gap at higher doses: Current cells/ml value does

not allow making 10¹³ cells/lot

Here, the use of microcarriers was allowed only when the maximum number of units was exceeded for all planar technologies.

Case study: Allogeneic cell expansion decisions Technology S-curve for cell therapy manufacture

S-curve illustrates performance limits of each technology

Technology Gap:

Microcarrier-SUBs require x2 increase in performance for high demand scenarios

Planar capacity capped at ~500B cells/lot (MSCs)

Simaria, Hassan, Varadaraju, Rowley, Warren, Vanek, Farid. 2014. Biotechnol. Bioeng. 111(1) 69-83

Case Studies: Cell Therapy Bioprocess Economics

Allogeneic single-use volume reduction decisions

(Hassan et al, 2015)

- Scenario: New build for commercial allogeneic cell therapy manufacture
- Impact of dose, demand, lot size on optimal DSP technology

Research Article

For reprint orders, please contact: reprints@futuremedicine.com

Allogeneic cell therapy bioprocess economics and optimization: downstream processing decisions

Alm: To develop a decisional tool to identify the most cost-effective process flowsheets for allogeneic cell therapies across a range of production scales. Materials & methods: A bioprocess economics and optimization tool was built to assess competing cell expansion and downstream processing (DSP) technologies. Results: Tangential flow filtration was generally more cost effective for the lower cells/lot achieved in planar technologies and fluidized bed centrifugation became the only feasible option for handling large bioreactor outputs. DSP bottlenecks were observed at large Sally Hassan¹, Ana S Simaria¹, Hemanthram Varadaraju^{2,3}, Siddharth Gupta², Kim Warren² & Suzanne S Farid^{*,1} ¹The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, UK

DSP Challenges for Cell Therapy Manufacture

- Current volume reduction processes typically use:
 - Benchtop centrifuges
- Quantities of cells required for commercial products:

•	To meet max. demand need	25,000 benchtop centrifuges!
•	Cells per lot:	10 ⁸ – 10 ¹³ cells/lot
•	Annual cell demand:	10 ⁹ – 10 ¹⁴ cells/yr
•	Potential market demands:	10,000 – 500,000 patients /yr
•	Doses:	10 ⁵ – 10 ⁹ cells/patient

Case Study: Allogeneic DSP Decisions

Candidate Volume Reduction Technologies:

Max nr volume reduction units/lot =1 Max volume reduction time = 4 h Target concentration: 10 M cells/ml

Question:

What is the most cost-effective cell volume reduction technology for each demand-lot size combination?

Case study: Allogeneic DSP decisions

Results: optimal technologies across demand/lot size matrix and dose

Case study: Allogeneic process decisions Cost of goods as %sales

- Typical biologics COG = 15% sales
- Assumption: cell therapies will have similar gross margins to biologics

*Assumption: reimbursement value of \$40K/dose @dose=10⁹cells, 50 doses/lot, demand = 10,000 doses/y

Case Studies: Cell Therapy Bioprocess Economics

Process change impact on drug lifecycle costs

(Hassan et al, 2016)

- Scenario: Switching from planar to microcarrier technology
- Impact of timing of switch and drug development costs on ranking of strategies

Research Article

For reprint orders, please contact: reprints@futuremedicine.com

Process change evaluation framework for allogeneic cell therapies: impact on drug development and commercialization

Alms: Some allogeneic cell therapies requiring a high dose of cells for large indication groups demand a change in cell expansion technology, from planar units to microcarriers in single-use bioreactors for the market phase. The aim was to model the optimal timing for making this change. Materials & methods: A development lifecycle cash flow framework was created to examine the implications of process changes to microcarrier cultures at different stages of a cell therapy's lifecycle. Results: The analysis performed under assumptions used in the framework predicted that making this switch earlier in development is optimal from a total expected outSally Hassan¹, Hsini Huang², Kim Warren³, Behzad Mahdavi³, David Smith³, Simcha Jong⁴ & Suzanne S Farid^{*,1}

¹Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, UK

Case study: Process change decisions

Planar v Microcarriers: COST OF DEVT v COG savings

Microcarriers: 45-75% COG savings Will the COG savings outweigh the COST OF DEVT? (Commercial scale) COG/dose (\$/dose) PL MC PL MC PL MC 50 000 10 000 100 000 Market size (number of patients) PL = planar technology MC = microcarriers in SUBs

Cell type: MSCs. Example dose: 2 x 10⁸ cells

[•]UCL

Case study: Process change decisions

Technologies used in each phase and case

- Scenario: Switching from planar to microcarrier technology
- Impact of timing of switch and drug development costs on ranking of strategies

	Phase I	Phase II	Phase III	Market
Planar technologies throughout PL	CF-10	CF-10	CF-40	CF-40
Change to MC-SUB post-approval MC-P	A CF-10	CF-10	CF-40	MC-SUB
Change to MC-SUB at Phase III MC-P	3 CF-10	CF-10	MC-SUB	MC-SUB
Change to MC-SUB at Phase II MC-P	2 CF-10	MC-SUB	MC-SUB	MC-SUB
MC-SUB throughout MC-P	MC-SUB	MC-SUB	MC-SUB	MC-SUB

- In all cases DSP includes TFF and cryopreservation.
- Each switch to MC-SUB involves parallel arm with cell factory equivalent.
- CF = Cell Factory, MC-SUB = Microcarrier in SUB

Case study: Process change decisions

Process Change Lifecycle Cash Flow Model

Case study: Process change decisions

Results: Total phase costs and profitability for each process change case

COST OF DEVT

DRUG DEVT PERSPECTIVE:

- Switch to MC-SUB early best
- Switch to MC-SUB post-approval worst

DRUG LIFECYCLE PERSPECTIVE:

Sticking to planar worst

Switch to MC-SUB post approval best

PROFITABILITY

Hassan, Huang, Warren, Mahdavi, Smith, Jong, Farid. 2016. Regen Med 11(3), 287-305

Case study: Process change decisions Results: Impact of COST OF DEVT v COG savings on PROFITBAILITY

Summary

Cell therapy company

Cell therapy candidate in early phase development with:

- Early clinical data
 - e.g. cell type, dose estimate, patient numbers
- Early process data
 - e.g. yields

UCL Decisional Tools researchers

UCL Decisional Tools outputs can be used to help with decision-making:

- Compare the cost-effectiveness of alternative manufacturing processes / supply chains
- □ Identify the most **cost-effective** and **GMP-ready** process for
 - current scale of operation
 - future scales for late phase / commercial manufacture
- Predict and manage the risk of process changes as products proceed through development pathway
- □ Identify most promising technologies and targets to reach for future R&D investment

UCL cell therapy process economics publications

Decisional Tools industry collaborators include: Lonza, Pall, Pfizer, GSK

s.farid@ucl.ac.uk

Allogeneic MSCs

Process change evaluation framework for allogeneic cell therapies: impact on drug development and commercialization. Hassan S, Huang H, Warren K, Mahdavi B, Smith D, Jong S, Farid SS. **2016**. Regenerative Medicine, 11(3), 287-305. DOI 10.2217/rme-2015-0034

Allogeneic cell therapy bioprocess economics and optimization: downstream processing decisions. Hassan S, Simaria AS, Varadaraju H, Gupta S, Warren K, Farid SS. **2015**. Regenerative Medicine 10 (5), 591-609. DOI 10.2217/rme.15.29

Allogeneic cell therapy bioprocess economics and optimization: single-use cell expansion technologies. Simaria AS, Hassan S, Varadaraju H, Rowley J, Warren K, Vanek P, Farid SS. **2014**. Biotechnology & Bioengineering 111(1) 69-83.

iPSCs

Patient-specific hiPSC bioprocessing for drug screening: Bioprocess economics and optimisation. Jenkins, M.J., Bilsland, J., Allsopp, T.A., Ho, S.V., Farid, S.S. **2016.** Biochemical Engineering Journal, 108, 84–97. DOI 10.1016/j.bej.2015.09.024

Human pluripotent stem cell-derived products: Advances towards robust, scalable and cost-effective manufacturing strategies. Jenkins MJ, Farid SS. **2015.** Biotechnology Journal. 10, 83–95. DOI 10.1002/biot.201400348

CAR T-cells and RPE cells

Tania Chilima et al & Michael Jenkins et al coming soon...

Allogeneic cell therapy process economics for successful development, manufacture and commercialisation

Suzanne S. Farid PhD CEng FIChemE Professor in Bioprocess Systems Engineering Department of Biochemical Engineering University College London <u>s.farid@ucl.ac.uk</u>

World Stem Cells & Regenerative Medicine Congress 2016, 18-20 May