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� An adaptable, efficient pore network
cutting algorithm is proposed.

� Pore networks with 8 archetypical
shapes are successfully built as
examples.

� Pore networks are applied to simulate
diffusion and reaction in porous
catalysts.

� Shape and randomness of the pore
network could affect catalytic
performance.

� A larger effectiveness factor of
catalysts is found for a regular pore
network.
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A method is established to generate pore networks within domains of arbitrary shape, as long as the
domain can be mathematically described by a set of inequalities. In this method, a stochastic network
algorithm is adopted to construct pore network skeletons, which are then cut into the desired shapes
using a new pore network cutting algorithm. The latter can be embedded into other methods to trans-
plant its ‘pore network cutting’ function. Using this method, pore networks with four archetypical
two-dimensional shapes (namely, cross-sections of one-holed rings, trilobes, four-holed rings, and
wheels) and four three-dimensional shapes (namely, spheres, cylinders, trilobes, and hollow cylinders)
are constructed as examples. Then, some of these pore networks are applied to simulate diffusion and
reaction in Pd/c-alumina catalyst particles for hydrogenation of benzene to cyclohexane. It is shown that
the randomness of the pore network and the external particle shape significantly affect the performance
of catalysts, because of their impact on effective diffusivity and diffusion length, respectively, indicating
that this structural information must be accounted for to achieve a model with high accuracy. The ver-
satile method proposed in this article is ideal to study the effect of particle shape and pore network struc-
ture on the performance of porous materials for catalysis and other applications.
� 2017 The Authors. Published by Elsevier B.V. This is anopenaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Porous materials are widely used in the chemical industry as
catalysts, adsorbents, membranes, etc. Such materials contain a
huge number of pores of different geometry and size, which are
interconnected to form networks of different topology. In addition,
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these materials come in various shapes, depending on their appli-
cations. External shape, pore morphology and pore network topol-
ogy can all strongly affect the overall properties of porous
materials [1–4]. Therefore, accurate pore network representations
are essential for porous material characterization and design.

Many types of pore models have been conceived to describe
porous materials; these have been reviewed by Sahimi et al. [5]
and Keil [6]. Early models include the parallel pore model, tortuous
pore model, cylindrical pore model, model of Wakao and Smith,
and grain model. Although these early models could describe cer-
tain features of the pore space (pore size distribution, porosity,
and, to some extent, tortuosity) and could be extended to account
for morphological features like pore surface roughness, they do not
explicitly account for the pore network topology or pore connectiv-
ity, or for the spatial distribution of the pores. Compared to these
early models, pore network models are more representative of
the pore space [7,8]. At present, pore networks are frequently used
to represent the pore space of rocks [9,10], adsorbents [11], mem-
branes [12–14], fuel cell electrodes [15–17], and porous catalysts
[18–21].
Fig. 1. Schematic illustrating how to generate a disc-shaped pore network. In this illust
applicable to any network, including irregular ones.

Fig. 2. (a) Flowchart for the stochastic network algori
Pore networks can be generated by using regular lattice-based,
stochastic, and image-based methods [22–24]. Bethe lattices with
a connectivity of 3 or more, square lattices with a connectivity of
4, and cubic lattices with a connectivity of 6 have been employed
to build lattice-based pore networks. The connectivity can be
altered by removing or adding bonds. The pore size is assigned
according to some statistical distribution, such as the Gaussian dis-
tribution. Although some irregularities can be introduced in the
lattice-based pore networks by varying the position of sites, these
pore networks are not adequate to describe irregular pore network
structures. Stochastic pore networks are better suited in this case.
Normally, sites are randomly or uniformly distributed in a square
domain or a cubic domain; then, adjacent sites are interconnected
according to connectivity; shapes and sizes of sites and bonds are
assigned in the final step. Finally, image-based pore networks are
extracted from the three-dimensional (3-D) images that can be
obtained by using statistical methods, process-based methods,
and X-ray micro-tomographic characterization [25]. Although this
image-based method yields pore networks closest to the real por-
ous materials, this method is computationally intensive and
ration, a regular network is given as an example, however, this method is actually

thm; (b)–(c) a 2-D illustration for the algorithm.



Fig. 3. (a) The flowchart for the pore network cutting algorithm; (b)–(c) a 2-D illustration of the algorithm.

Table 1
Parameters for generating the pore networks in Section 3 (arbitrary units of length).

T1 pore networks
Standard deviation of pore size distribution (rp) 0.05
Volume-averaged pore radius (rpa) 0.15
Lower limit of pore radius (rpl) 0.05
Upper limit of pore radius (rpu) 0.25

T2 pore networks
Standard deviation of pore size distribution (rp) 0.10
Volume-averaged pore radius (rpa) 0.25
Lower limit of pore radius (rpl) 0.10
Upper limit of pore radius (rpu) 0.40
Standard deviation of throat size distribution (rt) 0.03
Volume-averaged throat radius (rta) 0.10
Lower limit of throat radius (rtl) 0.05
Upper limit of throat radius (rtu) 0.15

58 G. Ye et al. / Chemical Engineering Journal 329 (2017) 56–65
involves complicated network extraction algorithms, such as the
thinning algorithm [26], the medial axis based algorithm [27,28],
and the maximal ball algorithm [29,30].

The three methods mentioned above are mainly used to gener-
ate square and cubic pore networks, and not designed to build pore
networks of arbitrary shape. Up to now, a method for generating
pore networks of arbitrary shape has not been reported in the
literature.

Constructing pore networks of arbitrary shape is of industrial
importance. The porous materials used in the chemical industry
usually have different shapes. The shape of porous materials can
significantly affect mass transfer in them, flow around them, and
their mechanical strength. Mohammadzadeh and Zamaniyan [31]
evaluated the effect of particle shape on the performance of cata-
lysts for steam reforming of methane. They found that the catalyst
effectiveness decreases with particle shape in the order: hollow
cylinders > cylinders > spheres. Brunner et al. [32] obtained the
same result for Fischer-Tropsch synthesis catalysts. Brunner et al.
[32] also reported that the pressure drop of a fixed-bed reactor
can be significantly reduced by using trilobes instead of spheres.
Šolcová and Schneider [33] and Šolcová et al. [34] investigated
the effect of particle shape on the axial dispersion in a column
packed with porous particles. They found that, besides the particle
size, the particle shape significantly affects the axial dispersion.
Wu et al. [35] evaluated the mechanical properties of porous par-
ticles with different shapes. They observed that a trilobe particle is
easier to break than a cylindrical particle under mechanical stress.
The most suitable particle shape depends on the application.
Therefore, a method for building pore networks of arbitrary shape
is very useful in evaluating or designing industrial porous materi-
als, especially porous catalysts.

In this article, we propose a method to generate pore networks
of arbitrary shape. The algorithms involved in this method are
described, and some archetypical shapes, which are commonly
used in the chemical industry, are constructed as examples. After
that, some pore networks are applied to simulate hydrogenation
of benzene to cyclohexane in catalyst particles, and the effects of
pore-network randomness and external shape on the performance
of catalysts are studied.
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2. Methodology

The method consists of three steps: (1) building an original pore
network skeleton within a square or cubic domain (the details are
explained in Section 2.1), (2) changing this original skeleton into a
new skeleton of the desired shape by using the pore network cut-
ting (PNC) algorithm proposed in this work, (3) assigning geomet-
rical information (shapes and sizes) to sites and bonds. Fig. 1
illustrates these procedures with a 2-D example. The key, new step
is using the PNC algorithm.

2.1. Generating original pore network skeletons

A stochastic network algorithm [36] is employed to generate
original pore network skeletons. The flowchart of this algorithm
is presented in Fig. 2a, and a 2-D illustration for this algorithm is
also given in Fig. 2b and c. A detailed description is as follows:

(1) Establish a 2-D (X, Y) or 3-D (X, Y, Z) Cartesian coordinate
system, and define a square (L � L) or cubic (L � L � L)
domain with the origin in the center and the edges parallel
to one axis.

(2) Place sites within the domain regularly or irregularly as
desired, label all these sites, and assign connectivity (Z) to
each site. The number of sites determines the size of the pore
network skeleton. In this work, the connectivity is 4 for 2-D
pore networks and 6 for 3-D ones.

(3) Start with the site No.1 and connect this site with its adja-
cent sites to generate bonds, according to the connectivity.
Then move to the next site and do the same thing, which
Fig. 4. (a) T1R 2-D one-holed ring pore network, (b) T2R 2-D one-holed ring pore netw
network. The details of these pore networks are shown in the insets.
is repeated until the last site has been well connected. It is
worth noting that the solution can be different, depending
on the order in which the sites are selected.

(4) Output the data of the original pore network skeleton.

2.2. Pore network cutting algorithm

The PNC algorithm is proposed to change the original pore net-
work skeleton into a desired shape. The flowchart of this PNC algo-
rithm is shown in Fig. 3a. It consists of the following steps:

(1) Describe the new domain of a desired shape by using a set of
inequalities.

(2) Remove the sites and bonds outside the new domain, and
adjust the bonds across the domain boundary by breaking
these bonds on the boundary and then removing their parts
outside the new domain. This step is repeated until the last
site and bond have been checked.

(3) Output the data of the pore network skeleton with a desired
shape.

With the PNC algorithm, the original pore network skeleton can
be ‘cut’ into arbitrary shapes, as long as these shapes can be math-
ematically described by a set of inequalities. The skeleton can be
reused as often as necessary, which reduces the computational cost
significantly when pore networks within domains of many differ-
ent shapes need to be generated. Besides, this PNC algorithm can
be embedded into other methods for pore network generation to
transplant its ‘pore network cutting’ function.
ork, (c) T1IR 2-D one-holed ring pore network, (d) T2IR 2-D one-holed ring pore
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2.3. Assigning shapes and sizes to sites and bonds

Two types (T1 and T2) of pore networks are generated in this
work. For T1, the sites are treated as zero-volume intersections
and the bonds are replaced by cylindrical pores; the pore radius
is randomly assigned to each pore according to a statistical pore
size distribution. For T2, the sites and bonds are replaced by spher-
ical pores and cylindrical throats, respectively. The pore radius and
throat radius are allocated according to a statistical pore size distri-
bution and throat size distribution, and the radius of each pore
should be larger than the radii of the throats connected with this
pore [36]. It is worth noting that the radius of a pore on the bound-
ary is assumed to be the radius of one throat connected with this
pore; this assumption would not affect most applications of the
pore networks.

In this work, pore radius (rp) and throat radius (rt) are dimen-
sionless and follow a modified Gaussian distribution [37], as
described by Eq. (1):

f ðrÞ ¼
1ffiffiffiffiffiffiffi
2pr

p exp � ðr�raÞ2
2r2

h i
R ru
r1

1ffiffiffiffiffiffiffi
2pr

p exp � ðr�raÞ2
2r2

h i
dr

r1 6 r 6 ru ð1Þ

where r is the standard deviation, ra is the volume-averaged radius,
and rl and ru are the lower and upper limits of the radius. Table 1
shows the parameters used to construct the T1 and T2 pore net-
works in Section 3.

The algorithms of this method are implemented in MATLAB
2010b, and these pore networks are displayed by using Rhinoceros
4.0. On a Dell desktop with a 3.06 GHz Intel Core i3 CPU and 4 GB of
RAM, it takes 8 min to construct an original square pore network
skeleton with 2601 sites and 16 min to construct a cubic one with
Fig. 5. (a) T1R 2-D trilobe pore network, (b) T2R 2-D trilobe pore network
15,625 sites, but only several seconds to ‘‘cut” this original pore
network into a desired shape.
3. Results

3.1. Two-dimensional pore networks

The original square pore network skeleton (domain size:
50 � 50, dimensionless) holds 2601 sites, which are regularly or
irregularly distributed. Using this skeleton, 2-D pore networks with
four archetypical shapes (namely, cross-sections of one-holed
rings, trilobes, four-holed rings, and wheels) of industrial catalysts
are generated as examples. Four groups of pore networks are con-
structed, namely: T1 pore network with sites regularly distributed
(T1R), T1 pore network with sites irregularly distributed (T1IR), T2
pore network with sites regularly distributed (T2R), and T2 pore
network with sites irregularly distributed (T2IR). To avoid repeti-
tion, only 2-D one-holed ring pore networks and 2-D trilobe pore
networks are shown in this section, while the other pore networks
are presented in the Supporting Information.

Fig. 4 shows 2-D one-holed ring pore networks, and the 2-D
one-holed ring domain can be described by a set of inequalities:
x2 þ y2 6 R2
1

AND
x2 þ y2 P R2

2

8><
>: ð2Þ
where R1 and R2 are the radii of the outer circle and the inner circle,
respectively.
, (c) T1IR 2-D trilobe pore network, (d) T2IR 2-D trilobe pore network.
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Fig. 5 shows 2-D trilobe pore networks; the corresponding
domain is formed by merging one central circle and three circles
around it, overlapping with this central circle:

x2 þ y2 6 R2
2

OR

ðx� x1Þ2 þ ðy� y1Þ2 6 R2
1

OR

ðx� x2Þ2 þ ðy� y2Þ2 6 R2
1

OR

ðx� x3Þ2 þ ðy� y3Þ2 6 R2
1

8>>>>>>>>>>><
>>>>>>>>>>>:

ð3Þ

where R2 is the radius of the center circle; (x1, y1), (x2, y2), and (x3,
y3) are the center coordinates of the three other circles with radius
R1.

3.2. Three-dimensional pore networks

The original cubic pore network skeleton (domain size:
24 � 24 � 24, dimensionless) holds 15,625 sites. With this original
skeleton, 3-D pore networks with four archetypical shapes (i.e.,
sphere, cylinder, trilobe, and hollow cylinder) are constructed as
examples, and four groups (T1R, T1IR, T2R, and T2IR) of pore net-
works are presented. To avoid repetition, only pore networks
within the sphere and the cylinder are shown in this section, while
the other pore networks are presented in the Supporting
Information.

Fig. 6 shows pore networks within a spherical domain that is
described by the inequality:

x2 þ y2 þ z2 6 R2 ð4Þ
Fig. 6. (a) T1R pore network, (b) T2R pore network, (c) T1IR pore network, (d) T2IR pore n
where R is the radius of the sphere.
Fig. 7 shows pore networks within a cylindrical domain that is

described by the following set of inequalities:

x2 þ y2 6 R2

AND
Z 6 0:5L
AND

Z P �0:5L

8>>>>>><
>>>>>>:

ð5Þ

where R is the radius of the cylinder, and L is the axial length.
4. Application to hydrogenation of benzene

4.1. Modelling of diffusion and reaction in the catalyst particles

Some of the T1 pore networks built in this work are applied to
simulate hydrogenation of benzene to cyclohexane in Pd/c-
alumina catalyst particles with various shapes. Gas-phase diffusion
and reaction are simulated using a pore network model, which is
similar to the one in our previous papers [20,21], therefore, only
the principal equations are given here. For the cylindrical pore n,
the continuity equation for component i is:

dJi;n
dln

rn
2
� Ri ¼ 0 ð6Þ

where Ji,n is the diffusion flux of component i in pore n, ln and rn are
the length and the radius of pore n, Ri is the reaction rate per pore
surface area of component i. For an inner site, Kirchhoff’s law is
employed:
etwork within a sphere. The details of these pore networks are shown in the insets.



Table 2
Parameters for simulating hydrogenation of benzene to cyclohexane in the catalyst
particles.

Standard deviation (rp) 2.0
Volume-averaged pore radius (rpa) 3.5 nm
Lower limit of pore radius (rpl) 1.0 nm
Upper limit of pore radius (rpu) 6.0 nm
Pore network connectivity (Z) 4 (2-D), 6 (3-D)
Partial pressure of benzene in the bulk (PB,b) 2 bar
Partial pressure of hydrogen in the bulk (PH,b) 8 bar
Partial pressure of cyclohexane in the bulk (PC,b) �0 bar
Total pressure (Pt) 10 bar
Temperature (T) 433 K
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Xn¼Z

n¼1

pr2nJi;n ¼ 0 ð7Þ

where Z is the pore network connectivity. For the boundary sitem, a
Dirichlet boundary condition is assumed:

Ci;m ¼ Ci;b ð8Þ

where Ci,m is the concentration of component i in site m and Ci,b is
the bulk concentration of component i.

The parameters for the simulations in Sections 4.2 and 4.3 are
presented in Table 2. If the partial pressure of benzene and cyclo-
hexane are high or the temperature is low, capillary condensation
can occur in the catalyst particles, which would make the pore net-
work modeling substantially more difficult, but can be done using
the same networks provided in this paper. To avoid this additional
complication, the pressure and temperature in Table 2 are chosen
such that all components in the catalyst particles are in the vapor
phase. In practice, for the same reaction, the catalyst particles
loaded in a fixed-bed reactor can be completely dry, i.e., only
vapor-filled [38,39]. Finally, Eqs. (6)-(8) are simultaneously and
iteratively solved by using the function ‘fsolve’ in Matlab, and the
computation time is 1.5 min for a pore network with 1152 sites.
It is worth mentioning that the numbers of sites adopted in Sec-
tion 4 are reasonable, because the simulation results are almost
the same, but the computing cost increases significantly when add-
ing more sites, even though these numbers of sites result in artifi-
cially long pores [20].
Fig. 7. (a) T1R pore network, (b) T2R pore network, (c) T1IR pore
4.2. Effect of pore-network randomness

By using T1R and T1IR 2-D pore networks within a trilobe-
shaped domain (R1 = 2.5 mm, R2 = 1.5 mm, see Fig. 5a and c), the
effect of pore-network randomness on the performance of the cat-
alyst particles is investigated. The partial pressure gradients of
benzene and cyclohexane in the T1R network are smaller than
the ones in the T1IR network, so that the effectiveness factor for
the T1R network (g = 0.92) is larger than the one for the T1IR net-
work (g = 0.88), as shown in Fig 8. These results indicate that pore-
network randomness can affect the performance of catalysts, and
the catalysts with regular pore network perform better.

The irregular pore network has more tortuous diffusion paths
[40] and, therefore, the effective diffusivities of all components
network, (d) T2IR pore network within a cylindrical domain.



Fig. 8. Partial pressure profiles of (a) benzene and (b) cyclohexane in the T1R 2-D trilobe pore network; partial pressure profiles of (c) benzene and (d) cyclohexane in the T1IR
2-D pore network. The partial pressure profiles of hydrogen are presented in the Supporting Information.

Table 3
Effectiveness factors for pore networks with different external shapes.

Shapes Dimensions Characteristic particle length
(Lp = V/S)

Effectiveness factor for regular pore
network (gR)

Effectiveness factor for irregular pore
network (gIR)

Sphere R = 5.5 mm (See Eq. (4)) 1.83 mm 0.82 0.79
Cylinder R = 4.2 mm, L = 12.6 mm (See Eq. (5)) 1.57 mm 0.86 0.83
Hollow

cylinder
R1 = 7.2 mm, R2 = 3.6 mm, L = 5.7 mm
(See Eq. S4)

1.10 mm 0.96 0.94
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are lower (see Table S1 in the Supporting Information), resulting in
the relatively lower effectiveness factor. In addition, the difference
in effectiveness factor between the two pore networks should be
more significant when their connectivity is poor (e.g., Z = 3),
according to the work of Hollewand and Gladden [7,8]. Therefore,
to achieve a model with high accuracy, the pore-network random-
ness should be accounted for, even though the pore-network ran-
domness is not as important as the connectivity in affecting
conductivity [41–43].

4.3. Effect of pore-network external shape

By employing T1R and T1IR 3-D pore networks within a spher-
ical, cylindrical, and hollow cylindrical (see Figs. 6a and c, 7a and c,
S4a and c, respectively), the effect of the external shape on the per-
formance of the catalyst particles is investigated. The dimensions
of these shapes (see Table 3) are selected to achieve the same vol-
ume (i.e., 697 mm3), hence the effect of particle volume on the per-
formance of catalysts can be eliminated. The effectiveness factor
increases with shape in the order: sphere < cylinder < hollow cylin-
der, and gR is larger than gIR for all the shapes, as shown in Table 3.

The generalized Thiele modulus (U), defined on the basis of a
characteristic particle length (Lp = V/S) can be employed to explain
the different effectiveness factors of the catalysts with different
shapes [44], according to the g-U relation (g decreases with the
increase of U).

U ¼ V
S
rðPB;bÞffiffiffi

2
p

Z PB;b

PB;e

Deff rðPBÞdPB

" #�1=2

ð9Þ

Here, V and S are the volume and external surface area of the
catalyst particle; r is the reaction rate; Deff is the effective diffusiv-
ity; PB is the partial pressure of benzene; PB,e is the partial pressure
of benzene in equilibrium. In this work, since the gradients of tem-
perature [20] and partial pressure of hydrogen (see Fig. S5 in the
Supporting Information) can be assumed to be negligible, r is a
function of only the partial pressure of benzene [45]:

ri ¼ v ikPB

1þ KPB
ð10aÞ

k ¼
0:0199 exp �28250

RT

� � PH;b
10

� �0:5

1þ 2:95� 10�2 exp �9370
RT

� � PH;b
10

� �0:5
� � ð10bÞ

K ¼ 1:80� 10�5 exp
41170
RT

	 

ð10cÞ



64 G. Ye et al. / Chemical Engineering Journal 329 (2017) 56–65
Here, ri and vi are the reaction rate and stoichiometric number
of component i, and R is the universal gas constant. The character-
istic particle length decreases with shape in the order:
sphere > cylinder > hollow cylinder (see Table 3), and, therefore,
the effectiveness factor increases with shape in the same order
according to Eq. (9) and the g-U relation. Since Deff for a compo-
nent in the T1R pore network is larger than the one in the T1IR pore
network, as indicated in Section 4.2, the effectiveness factor for the
regular pore network is larger than the one for the irregular pore
network, according to Eq. (9) and the g-U relation. It should be
noted that this Thiele modulus method may not be applicable
when the kinetics are too complex (network of reactions) and
the effective diffusivity changes with time (e.g., deactivation of
the catalyst by coke).

5. Conclusions

In this work, a method was described to construct pore net-
works of arbitrary shape, provided that the shape of the domain
can be described by a set of inequalities. The pore network cutting
algorithm, which is the centrepiece of the method, was proposed to
transform the square or cubic pore network skeletons into various
shapes. By employing this pore network cutting algorithm, the
original pore network skeletons can be reused infinitely, and this
algorithm can be easily embedded into other methods for generat-
ing pore networks to transplant its ‘pore network cutting’ function.
Pore networks with four 2-D shapes and four 3-D shapes were con-
structed as examples, and their corresponding domains were
described by sets of inequalities. Then, some of these pore net-
works were applied to simulate hydrogenation of benzene to
cyclohexane in porous catalysts. The simulation results show that
the catalyst with the irregular pore network performs worse than
the one with the regular network, because the irregular network
has more tortuous diffusion paths. In addition, the effectiveness
factor increases with pore-network shape in the order:
sphere < cylinder < hollow cylinder, which is explained by the gen-
eralized Thiele modulus method. Therefore, to achieve a model
with high accuracy, the pore-network randomness and shape
should be accounted for.

The method proposed in this work adds external shape infor-
mation of porous materials to pore networks, and expands the
applications of pore networks to domains of arbitrary shape.
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