
PayBreak : Defense Against Cryptographic Ransomware

Eugene Kolodenker‡⋆, William Koch⋆, Gianluca Stringhini†, and Manuel Egele⋆

⋆Boston University, ‡MITRE, †University College London
{eugenek, wfkoch, megele}@bu.edu, g.stringhini@ucl.ac.uk

ABSTRACT
Similar to criminals in the physical world, cyber-criminals
use a variety of illegal and immoral means to achieve mone-
tary gains. Recently, malware known as ransomware started
to leverage strong cryptographic primitives to hold victims’
computer files “hostage” until a ransom is paid. Victims,
with no way to defend themselves, are often advised to
simply pay. Existing defenses against ransomware rely on
ad-hoc mitigations that target the incorrect use of cryptog-
raphy rather than generic live protection. To fill this gap
in the defender’s arsenal, we describe the approach, proto-
type implementation, and evaluation of a novel, automated,
and most importantly proactive defense mechanism against
ransomware. Our prototype, called PayBreak, effectively
combats ransomware, and keeps victims’ files safe.
PayBreak is based on the insight that secure file encryp-

tion relies on hybrid encryption where symmetric session
keys are used on the victim computer. PayBreak observes
the use of these keys, holds them in escrow, and thus, can
decrypt files that would otherwise only be recoverable by
paying the ransom. Our prototype leverages low overhead
dynamic hooking techniques and asymmetric encryption to
realize the key escrow mechanism which allows victims to
restore the files encrypted by ransomware. We evaluated
PayBreak for its effectiveness against twenty hugely suc-
cessful families of real-world ransomware, and demonstrate
that our system can restore all files that are encrypted by
samples from twelve of these families, including the infa-
mous CryptoLocker, and more recent threats such as Locky
and SamSam. Finally, PayBreak performs its protection
task at negligible performance overhead for common office
workloads and is thus ideally suited as a proactive online
protection system.

Keywords
ransomware, malware, hybrid cryptosystem, key vault, cy-
ber crime

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’17, April 02-06, 2017, Abu Dhabi, United Arab Emirates
c⃝ 2017 ACM. ISBN 978-1-4503-4944-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3052973.3053035

1. INTRODUCTION
The goal of cyber-criminals, akin to real world criminals,

is commonly monetary gain. Thus, over recent years the
underground economy developed a multitude of approaches
that allow cyber-criminals to make money. Attackers sell
exploit kits [21] to infect victims via drive-by-download at-
tacks, they operate exploit-as-a-service schemes [30], estab-
lish and rent out botnets, and even offer off-the-shelf so-
lutions to run spam campaigns including customer service.
Besides such established enterprises, so-called ransomware
(an amalgamation of the words ransom and malware) has
been established as another vector to enhance the profits of
cyber-criminals. Ransomware is malware that prevents the
victim user’s access to a valuable resource and extorts a ran-
som payment to reestablish access. Ransomware comes in
many forms and shapes. This includes, for example, mali-
cious screen lockers on mobile devices or crypto-based ran-
somware that encrypts the victim’s file with state-of-the-
art cryptographic algorithms. It is this crypto-based ran-
somware that we target in this work. Hence, all subsequent
references to ransomware in this paper refer to the class
of ransomware that uses cryptography to encrypt user files
for ransom. As with many benign software projects, early
versions of crypto-based ransomware were unsuccessful be-
cause the malware authors decided to ignore the popular
adage of “don’t roll your own crypto.” For example, weak
home-brew crypto was responsible for the short lifetime of
the first wave of GPCode [38]. However, the malware au-
thors quickly learned their lesson and increasingly employ
strong cryptographic algorithms which lead the Federal Bu-
reau of Investigation to state that “To be honest, we often
advise people just to pay the ransom.” [6].

Recently, ransomware has drawn the attention of the re-
search community and security vendors alike. However, all
existing systems that try to address the threat of ransomware
do so reactively. That is, provided a sample, existing sys-
tems can identify and protect from similar samples. For
example, Kharraz et al. [34] proposed a mechanism that ex-
ecutes malware in an instrumented environment and accu-
rately identifies ransomware. Unfortunately, the proposed
system only detects ransomware after the user’s files have
been encrypted. Thus, files that get encrypted before the
ransomware is identified as such remain inaccessible to the
user. Additionally, collaborations between law enforcement
and security vendors have resulted in tools that can reverse
the encryption performed by some ransomware samples [8].
While such efforts deserve applause, they are inherently non-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/79556369?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/3052973.3053035

scalable as demonstrated by the plethora of successful ran-
somware families.
We deem the existing techniques that address the threat

of ransomware reactively inadequate. Instead, we propose
a system that allows conscientious users to proactively de-
fend themselves from ransomware attacks. The key benefit
of our system is that it allows victims to recover from ran-
somware infections without paying the ransom. To this end,
we propose a key escrow mechanism that securely stores
cryptographic encryption keys in a key vault. Key escrow
systems are consistently rejected by the research community
for very good reasons. For example, government-mandated
key escrow would give government agencies access to the
cryptographic keys, and thus the ability to infringe on the
user’s privacy by decrypting data that is believed to be cryp-
tographically protected. The stark difference between such
key escrow systems and the scheme proposed in this work
is that in our system the user has exclusive access to the
cryptographic keys stored in escrow.
In an initial step, the user must generate an asymmet-

ric key pair and add the public key to the system. This
public key is used to encrypt keys that are placed in the
key vault. During normal operation, our system monitors
the programs that execute on a system and intercepts calls
to functions that implement cryptographic primitives. Fur-
thermore, the system captures symmetric encryption keys,
encrypts them with the public key, and stores the result in
the key vault. Once the user gets infected with ransomware
and learns that she should pay a ransom to get access to her
files, she can simply decrypt the key vault with her private
key and decrypt the files without making any payments.
We implemented PayBreak as a prototype of our ap-

proach for the common ransomware target, Windows 7, al-
though no special features of the Windows 7 operating sys-
tem are used in our system. Additionally, we evaluated its
effectiveness against a set of 107 recent ransomware samples
from 20 distinct families. Furthermore, we performed mi-
cro benchmarks to measure the performance impact of our
instrumentation as well as macro benchmarks to measure
the activity that the key vault would receive during regular
office tasks. While the micro benchmarks result in signifi-
cant overhead for symmetric crypto operations, the macro
benchmarks indicate that cryptographic operations are rare
enough that the overhead created by our system (4.1ms) is
below the human perception threshold.
In summary, this paper makes the following novel contri-

butions:

• We identify salient characteristics that allow us to mit-
igate the threat of modern crypto-based ransomware
(§2).

• We propose a key vault mechanism that pro-actively
protects against the threats posed by crypto-based ran-
somware (§3).

• We implemented the proposed mechanism in a system
called PayBreak for the Windows 7 operating system
(§4).

• We evaluate PayBreak by running 107 ransomware
samples in a controlled environment and demonstrate
that PayBreak successfully recovers all files encrypted
by any of twelve active and economically hugely suc-
cessful ransomware families (§5.2).

• We also assess the performance impact of PayBreak
based on micro benchmarks that target our modifica-
tions specifically and macro benchmarks that capture
the impact of PayBreak on more realistic workloads
(§5.3).

2. BACKGROUND
In this section we first discuss the typical flow of mod-

ern ransomware and the practical limitations that affect the
design space for ransomware authors. We also discuss the
threat model that our system is designed to operate under.

2.1 Practical considerations for ransomware
The goal of ransomware is to deny victims access to their

data and extort a ransom payment in exchange of reestab-
lishing access. The authors of ransomware soon realized
that cryptography provides a reliable way to run such an
extortion racket. Broadly speaking, ransomware can choose
between symmetric (i.e., secret key) and asymmetric (i.e.,
public key) cryptography. Early versions relied on symmet-
ric encryption and the anti-malware community was quick
in reverse engineering the malware and providing decryp-
tion tools [41]. This was only possible because in symmetric
encryption schemes the same key must be used to encrypt
and decrypt data. That is, the attacker did not have an
advantage over the victim as the exact same key material
was available to the attacker and the victim (embedded in
the malware). However, early setbacks did not deter ran-
somware authors. Instead they evolved and turned their
attention to asymmetric cryptography. In an asymmetric
encryption setting the adversary encrypts the victim’s data
under a public key, but knowledge of this key does not allow
the victim to regain access to the data. Instead, the adver-
sary holds on to the private key and offers the private key
to the victim in exchange for the ransom.

Modern ransomware borrows techniques from well estab-
lished benign cryptography suites such as OpenPGP [23] or
S/MIME [39] and employs so-called hybrid cryptosystems.
In a hybrid cryptosystem, the sender chooses a random sym-
metric key for each message (e.g., for each file that needs to
be encrypted) and encrypts each message (or file) under this
key. This one time symmetric key is commonly referred to
as a session key. Subsequently, a hybrid cryptosystem will
encrypt the symmetric message-specific key with the (asym-
metric) public key of the recipient. Thus, the performance
hungry asymmetric cryptographic operations are only re-
quired to encrypt the small symmetric key regardless of the
size of the encrypted content. For example, AES, arguably
the most popular contemporary block cipher, supports key
sizes of 128, 192, and 256 bits which can be trivially en-
crypted with RSA. The encrypted symmetric key is then
combined with the encrypted content and transmitted to
the receiver. To decrypt the data, the receiver first uses her
private key to decrypt the encrypted symmetric key. With
the symmetric key in hand, the recipient can then simply de-
crypt the cipher text of the data into its original plain text.
In a ransomware attack, the attacker generates the asym-
metric key pair on his command and control infrastructure.
On the victim’s machine, the malware generates (and more
importantly uses) a unique symmetric session key for each
file that is encrypted. The session key is encrypted with the
attacker’s public key and stored together with the encrypted

file contents. The attacker then offers to sell the private key
for the stated ransom.

2.2 Hybrid Cryptography
More formally, an asymmetric encryption scheme
AE = (K, E ,D) consists of three algorithms where K is a key
generation algorithm, E is the encryption algorithm, and D
is a decryption algorithm. An asymmetric key pair consist-
ing of public key pk and private key sk is generated as

(pk, sk)
$← K (1)

A plain text message M is encrypted into a cipher text
message C by an encryption algorithm E under public key
pk as

C = Epk(M) (2)

while adhering to the above stated limitation that |M | <
|pk|1. Of course, to be considered correct, an asymmetric
encryption scheme must also correctly decrypt encrypted
messages and thus satisfy

Dsk(Epk(M)) = M (3)

As explained above, a hybrid cryptosystem combines an
asymmetric encryption scheme AE = (K, E ,D) and a sym-

metric encryption system SE = (K̇, Ė , Ḋ), such that for each

message M a new symmetric encryption key K
$← K̇ is gen-

erated at random and

C′ = Epk(K)||ĖK(M) (4)

As Equation 4 illustrates, the symmetric key K is pro-
tected (encrypted) with the public key pk. In a ransomware
setting the messages encrypted under the hybrid cryptosys-
tem are files on a victim’s computer. Thus, if the attacker
generates (pk, sk) according to Equation 1 on his command
and control infrastructure and only communicates pk to the
malware infecting the victim, the strength of the result-
ing ransomware racket is equal to the security of the hy-
brid cryptosystem. It is based on this observation that a-
posteriori rescue attempts of user files held ransom is chal-
lenging at best. Therefore, instead of simply detecting that
a victim computer is infected with ransomware, we provide
a protection mechanism that sidesteps the challenges of the
strong cryptographic primitives employed by modern ran-
somware samples.
To this end, we leverage the following insights. On the

victim’s machine we cannot observe the asymmetric key gen-
eration algorithm K. However, frequently we have access to
the symmetric key generation algorithm K̇ and, more im-
portantly, we can observe the use of the session key during
ĖK(M) which must be executed to form C′ in the algorithm
implementing Equation 4. These observations allow us to
capture the symmetric encryption keys that are used to en-
crypt the files and thus reverse the damage done by the
ransomware by trimming off E(K) from the ciphertext and

applying ḊK to the remainder.
While the above discussion seems rather theoretic, mod-

ern ransomware families leverage exactly such hybrid cryp-
tosystems. Strong cryptography must persist through con-
sistent attacks [42]. Thus, many operating system distribu-
tions and platforms contain battle tested implementations

1The inequality for the RSA asymmetric encryption scheme
is slightly stricter: |M | < |pk| − 11 bytes.

of cryptographic algorithms. On Windows, one such imple-
mentation is Microsoft’s CryptoAPI. The CryptoAPI is a
secure interface for cryptographic functionality that is guar-
anteed to be present on every Windows installation and thus
makes it trivial for ransomware authors to leverage the ex-
isting functionality.

Appendix A, provides ransomware pseudocode using Mi-
crosoft’s CryptoAPI. Note that both CryptoWall and Cryp-
toLocker, two of the most successful ransomware families,
use exactly the same APIs for their nefarious purposes.

2.3 Threat model
The threat model and assumptions for our proposed sys-

tem are captured in this section. A detailed discussion of
the assumptions and why we deem them realistic is deferred
to the discussion section in §6. Our threat model is based on
modern economically successful ransomware families. Thus,
the threat model considers an attacker who installs malware
on victim computers through an established malware distri-
bution channel. Furthermore, the operating system in our
threat model is trusted and updated. Thus, we assume that
the malware does not elevate privileges, as this would de-
feat any existing in-host protection mechanisms (e.g., anti-
malware solutions) too. While we assume the ransomware
only executes with user-level privileges, most contemporary
malware is packed. Therefore, our threat model assumes
that the malware is packed with common-off-the-shelf pack-
ers. More precisely, the threat model only considers packers
that unpack the whole binary at once and not those that ap-
ply advanced strategies such as incremental unpacking and
repacking or emulation-based packers such as Themida [14].
We acknowledge that more sophisticated packers and obfus-
cation techniques can defeat our proposed system. While
such techniques have been known in scientific literature for
years (e.g.,[43]), these techniques have not gained traction in
the malware community at large. Whatever the reason for
the slow uptake, we argue that our proposed approach sig-
nificantly raises the bar for malware authors to evade detec-
tion (i.e., attackers would have to overcome these reasons).
Finally, we assume the user can create an uncompromised
asymmetric keypair to activate our system and does so be-
fore being infected with ransomware.

3. OVERVIEW
PayBreak consists of three different components which

are combined to form a cohesive system that is able to re-
verse file encryption performed by hybrid cryptosystem ran-
somware. In this section we provide an overview of these
components and their roles in the system. Figure 1 shows
a working scenario of PayBreak. Upon installation, the
user configures PayBreak with the public key (pku) of an
asymmetric key pair (pku, sku), while the private key (sku)
is secured off site. The system continuously stores encrypted
session keys used on the machine in a secure key vault. In
the unfortunate event that the user’s machine is infected
with ransomware, the system’s key vault is accessed with
the private key, sku. The data stored in the key vault is
then used to decrypt ransomed files granting the user a pay
break.

The system leverages the fact that in a hybrid cryptosys-
tem the session key must be used during the symmetric en-
cryption. In a practical ransomware attack this encryption
must happen on the user’s machine. Because of this char-

acteristic, we can sidestep the challenges imposed by the
strong cryptography employed by modern ransomware.

Crypto Function Hooking.
Ransomware authors require secure cryptography for long

term success. The reason is that, historically, developing
their own implementations was met with cryptographic de-
feat. Thus, today’s malware authors can choose to either
dynamically link against (system-provided) cryptographic li-
braries, or statically link external libraries into their code.
PayBreak supports both types of linking behaviors and
identifies procedures in dynamically linked libraries by their
name and address, whereas statically linked procedures are
identified based on fuzzy byte signatures. Hooks are then
created at the location of these procedures. The hook redi-
rects control from these cryptographic procedures and ex-
ports session keys, and any parameters for the symmetric
encryption scheme. Once data is exported, the system then
returns control back to the original cryptographic procedure,
and flow continues as normal. The details of this component
are discussed in §4.1.

Key Vault.
The key material and algorithm details (recovered from

hooked procedures as explained above) to recover symmet-
rically encrypted data are stored in a safe and securely en-
crypted key vault. Due to the threat of ransomware target-
ing the key vault, our implementation stores the harvested
key material into an append-only file protected with Admin-
istrator privileges. This integrity mechanism has shown to
be sufficient in our evaluation. However, we discuss further
key vault integrity improvements in §6. The contents that
enter the key vault are securely encrypted with the user’s
public key. By encrypting the data prior to storing it, we
ensure that the key vault is secure for the user. The details
of this component are discussed in § 4.2.

File Recovery.
In the unfortunate, but rare situation where a user gets

infected with ransomware and her files are held ransom, the
key vault is accessed with the user’s private key, sku. Pay-
Break is used to access the key material and algorithm de-
tails used to encrypt the files being held ransom. The algo-
rithm details are used to configure the appropriate symmet-
ric encryption scheme and the key material is used with this
configuration to attempt recovery. Because, ransomware
typically stores meta data, such as the original file length,
the date of encryption, and encrypted key data, at the be-
ginning of encrypted files the actual encrypted file data is
often offset by this meta data. Prior to decryption with
vaulted symmetric keys, PayBreak determines the correct
offset into the encrypted file. The details of this component
are discussed in § 4.3.

4. IMPLEMENTATION
We implemented our prototype system, PayBreak, to

target hybrid cryptosystem ransomware on the Windows 7
operating system. Our implementation is configured to hook
encryption performed by Microsoft’s Crypto APIs and the
Crypto++ library. The implementation additionally uses
the strong cryptography in Microsoft’s CryptoAPI to se-
curely store session keys employed by ransomware. In the

unfortunate event of a ransomware infection, these keys may
be retrieved by the user of PayBreak to be used for the de-
cryption of files held for ransom.

4.1 Crypto Function Hooking
Hooking is a scheme that is used to modify application be-

havior by augmenting original functions with arbitrary new
functionality. In Windows, functions can be hooked by vari-
ous means, ranging from modifying a processes’ Import Ad-
dress Table, to injecting DLLs [19]. Our prototype employs
Microsoft Research’s Detours library for hooking. Detours
hooks a function by first saving a minimum of 5 bytes (the
size of an unconditional JMP instruction in x86 assembly)
from the beginning of the original function’s memory ad-
dress into a new hook function. This specific amount saved
might extend past 5 bytes due to variable length instructions
in the x86 architecture. The hook function also contains the
new functionality that is added. For PayBreak this is the
code that exports the session keys and algorithm parame-
ters to the key vault. At the end of the newly created hook
function, Detours creates an unconditional jump instruction
that transfers control to the original function skipping over
the bytes already saved into the hook function. To activate
the hook and redirect control from the original function to
the hook function, an unconditional jump instruction to the
hook function overwrites the first five bytes in the original
function. This completes the hook, and any calls made to
the original function, will now be redirected to the hook
function. Our system employs this scheme for hooking and
injects itself into every new process launched on a Windows
7 machine.

Ransomware authors include cryptography into their mal-
ware by dynamically linking against system provided cryp-
tographic libraries, or statically linking external libraries.
These two linking behaviors pose different challenges to the
hooking portion of the system.

Hooking in dynamically linked libraries.
Windows has included feature rich cryptographic libraries

as part of their platform for decades. This ubiquitous pres-
ence makes it easy for malware to dynamically link to the
cryptographic libraries found on Windows machines. Mi-
crosoft’s CryptoAPI hides sensitive information such as keys
and their locations in memory by only allowing operation
through a set of subroutines that have special access to it.
The security, platform consistency, and API completeness of
the CryptoAPI makes it a common choice for local file en-
cryption by ransomware authors. Microsoft’s CNG library,
is the long term replacement for the classic CryptoAPI (both
are included in Windows 7), but operates much the same
way, and is seamlessly handled by PayBreak too.

Due to the abstract and opaque design of the CryptoAPI,
usage and exportation of the session key can only be ac-
complished through specific CryptoAPI procedures. All en-
cryption through the CryptoAPI must be performed via the
CryptEncrypt function, or be exported (i.e., for external
use) via the CryptExport function. CryptoAPI based ran-
somware uses the CryptEncrypt function of the CryptoAPI
to perform local encryption of files. Because, the CryptoAPI
is dynamically linked, adding a hook is completely indepen-
dent of the calling process, and malware obfuscation does
not impact this capability. Through a hook configured in
CryptEncrypt, PayBreak securely exports the session key

Figure 1: Overview of PayBreak.

using the CryptExport API function. While the hook in
CryptEncrypt successfully exports the session key, details
such as the cipher mode, and the initialization vector are not
included. To obtain these parameters and then recreate the
appropriate configuration, our system hooks the CryptAc-

quireContext, and CryptSetKeyParam functions. The hook
into CryptAcquireContext provides PayBreak with knowl-
edge of the algorithm that was used for encryption, includ-
ing the default parameters. Changes to these parameters
are performed with the CryptSetKeyParam function, as such
this API function is hooked as well.
Alternatively to encrypting with the CryptoAPI, a user

may wish to generate a cryptographically secure random
number with the API instead. The random number can
then be used to derive a session key for another encryption
function. In Window’s case, the supported API to gener-
ate a random number is CryptGenRandom, and many crypto-
graphic libraries (OpenSSL, NaCl, LibTomCrypt, and more)
leverage this API for their cryptographically secure pseu-
dorandom number generator (CSPRNG). By dynamically
hooking, and recording this system function, PayBreak
stores the base material used to generate many session keys
used by ransomware linking these libraries either dynami-
cally, or statically.

Hooking in statically linked libraries.
Ransomware that statically links a cryptographic library

forces PayBreak to follow a slightly different approach.
Statically linked libraries are embedded into the executable
code of the application, and thus are affected by obfusca-
tion. Thus, PayBreak identifies cryptographic procedures
at runtime in a process’ memory, and subsequently hooks
them. To this end, our system uses 32-byte fuzzy func-
tion signatures to identify statically linked library functions.
This approach is similar to IDA’s Fast Library Identifica-
tion and Recognition Technology (FLIRT) [7]. A signature
consists of the first 32 bytes of a known procedure and a
procedure is identified when a threshold percentage of these
32 bytes is identified contiguously in memory. Because, mal-

ware is typically packed, PayBreak scans executable mem-
ory of all executed processes for function signatures. Our
prototype implementation performs a scan after the first
NtReadFile system call in each process. The rationale is,
that in order to encrypt user data, the malware must read
the data first. When a signature is identified, a hook is
placed at its address through the use of Detours. This hook
securely exports the session key, and encryption algorithm
details. While our current prototype is effective against con-
temporary ransomware, advanced packing and obfuscation
can thwart the system (§6). An avenue to strengthen the
detection of cryptographic code could leverage the semantic
detection of cryptographic functionality such as the analysis
presented in [35].

Our prototype implementation is outfit with signatures
for the Crypto++ statically linked library. These signatures
consist of the first 32 bytes of Crypto++’s SetKey, Cipher-
ModeBase, and SymmetricCipherBase class methods. The
export of Crypto++’s session key, and algorithm details is
done with the CryptoAPI’s CryptExport API function. We
evaluate and discuss the robustness of our signatures in §5.2.

4.2 Key Vault
The system’s key vault asserts that symmetric keys used

by Microsoft’s CryptoAPI and Crypto++ are securely stored
only to be accessed by the ransom victim when necessary.
The details about the symmetric encryption schemes are
stored as well. Ironically, PayBreak’s key vault system
is designed similarly to the hybrid cryptosystems that ran-
somware deploys. Session keys are encrypted and exported
using the user’s public key (pku) generated during installa-
tion of the system. Our implementation uses 2048-bit RSA
keys for this step. The large key size of 2048 bits guarantees
secure encryption of data in size less than or equal to the
key size —– more than enough for typical 256-bit symmetric
keys.

As explained in the previous section, a call to CryptEn-

crypt is augmented with the behavior of the CryptExport

function. The auxiliary CryptExport call takes as arguments
the handle to a session key that is passed to the CryptEn-

crypt function, as well as our system’s exchange key (i.e.,
the user’s pku) to securely export the session key. Keys
being used by CryptEncrypt also contain algorithm (i.e.,
AES, 3DES, RC4, etc.) information, and as such this in-
formation is exported as well. Additionally, in order to re-
construct the symmetric encryption configuration used by a
ransomware infection, algorithm parameters such as the ini-
tialization vector (IV), and the block cipher mode used must
be saved. This information is extracted from hooks that
perform recording of the parameters passed to the CryptAc-
quireContext and CryptSetKeyParam functions. Akin to
the Cryptographic Message Syntax2, these parameters are
concatenated to the session key material in cleartext, as their
disclosure does not affect the security of modern crypto sys-
tems. This concatenated ‘blob’ is appended to PayBreak’s
key vault. Additionally, as described in §4.1, our prototype
implementation stores the cryptographic key material (sim-
ple byte arrays) passed to Crypto++’s functions into the key
vault. The system also stores the outputted random bytes
from CryptGenRandom function calls. These bytes can be
used on a reverse engineered ransomware family to recreate
session keys used to encrypt files.
As a safety precaution to prevent the vault itself from

being encrypted by ransomware, the vault is configured to
be append-only and all other access is only allowed to the
Windows Administrator group. In the unfortunate event
that the key vault requires access, the private key (sku) set
up during installation of PayBreak is used to decrypt the
key material stored. This yields access to the individual
session keys, and encryption scheme parameters.

4.3 File Recovery
The last component of PayBreak is the actual recovery

of the files encrypted during a ransomware infection. File
recovery works in three phases. First, the key vault is ac-
cessed using the stowed away private key. Second, the data
in the vault is parsed into the symmetric keys and the cor-
responding encryption scheme parameters such as, block ci-
pher mode, and initialization vector. Finally, the retrieved
session keys are then used to decrypt the victim’s files.
Each file encrypted by ransomware is typically concate-

nated with meta data, such as the ransomware version, and
original size of the encrypted file. Because of this meta data
the actual encrypted file data is often offset in files held for
ransom. Without knowledge of each ransomware family’s
individual meta data structure, our system is forced to test
decryption at every possible offset in the files held for ran-
som. Our system leverages dynamic programming to lower
the effort required for subsequent file decryption, once a suc-
cessful offset is found, future file decryption attempts will be
attempted at the previously successful offset.
PayBreak iteratively attempts decryption of a file with

each escrowed key and each offset, until a decryption state
is reached that is not identified as ‘data’ by libmagic3. Once
a decryption state is identified as a common office document
file type, such as a Microsoft Word Document, JPEG image,
or PDF file, the state is saved as the actual decrypted file. Of
course, if the resulting file is incorrectly flagged as decrypted,
the user can instruct the system to continue its search until
the right key and offset is identified. While this possibility
exists, we did not encounter it during our evaluation. Fur-

2CMS, http://www.ietf.org/rfc/rfc5652.txt
3Fine Free File Command, http://www.darwinsys.com/file/

thermore, albeit this unoptimized brute-force approach can
be improved, it is successful in recovering encrypted user
files as detailed in § 5.2.

5. EVALUATION
As illustrated in §4, we implemented PayBreak for the

Windows 7 operating system. Based on this prototype im-
plementation we performed the evaluation described in this
section. The goal of the evaluation was to answer a set of
research questions:

RQ1 Can PayBreak protect users from the threat of real-
world ransomware (i.e., can PayBreak restore files
encrypted by the malware)?

RQ2 Are malware family specific modifications necessary
to revert the encryption employed by different ran-
somware families?

RQ3 What are the performance impacts caused by run-
ning PayBreak as a proactive online protection mech-
anism?

These questions are geared toward answering practicality
concerns of the proposed technique. RQ1 addresses whether
the technique is effective. Clearly, a system that cannot
answer RQ1 in the affirmative, would be of limited help
in the fight against ransomware. RQ2 explores the versa-
tility of the proposed system. Here a versatile approach
is preferable over a technique that requires continuous re-
finement to address the challenges of previously unknown
ransomware families. Finally, RQ3 addresses a practical de-
ployment question. Similar to popular anti-virus solutions,
we designed PayBreak as an online protection mechanism.
Thus, high performance impacts on common use-cases and
workloads would pose significant hurdles to the adoption of
such a mechanism in the field.

5.1 Dataset
To test the functionality and effectiveness of PayBreak,

we needed access to actively encrypting ransomware sam-
ples. To collect these samples, we developed the Real-time
Automation to Discover, Detect and Alert of Ransomware
(RADDAR) system. This project will be made open source
to help further research in ransomware. RADDAR crawls
various locations for malware samples. More precisely, we
obtained samples from VirusTotal Intelligence4 which pro-
vides advanced search features and download functionality
for malware samples. We searched for newly submitted sam-
ples (i.e. submitted within a week of analysis) that were also
flagged by at least two anti-virus vendors, and whose labels
contained known ransomware defined in [10]. Beyond these
popular ransomware family names, we also download sam-
ples for the generic search terms: ransom, crypt, or lock. In
addition to VirusTotal, we crawl various malware reposito-
ries including Malc0de5, and VXVault6 similar to the efforts
presented in [33].

Once RADDAR discovers a malware sample, it detects
whether or not the malware sample is crypto-based ran-
somware and whether it is actively performing its malicious
duties. To this end, we leverage the Cuckoo Sandbox7 dy-
namic analysis framework where each sample is run for 20
4VirusTotal, https://www.virustotal.com
5Malc0de, http://malc0de.com/rss
6VXVault, http://vxvault.siri-urz.net/URL List.php
7Cuckoo Sandbox, https://cuckoosandbox.org/

http://www.ietf.org/rfc/rfc5652.txt
http://www.darwinsys.com/file/
https://www.virustotal.com
http://malc0de.com/rss
http://vxvault.siri-urz.net/URL_List.php
https://cuckoosandbox.org/

minutes. We use Cuckoo to analyze and output a behav-
ior report of each sample by executing it in a monitored
Windows 7 virtual machine (VM) running in KVM8. Fur-
thermore, in addition to the default files found on a clean
Windows 7 installation, we placed typically ransomed file
types (PDFs, images, source code, and Word documents)
across various directories on the machine. Finally, we added
PayBreak to the VM which allowed us to perform the mea-
surements presented in this evaluation. We took a snapshot
of the file system, and refer to these files found on the system
prior to an infection as “honey files.”
After a malware sample is analyzed by Cuckoo, RADDAR

performs an analysis on the Cuckoo results to generate a
report containing a variety of metrics including if the sample
is active, and if PayBreak extracted the keys used during
encryption. We consider a ransomware sample active if it:
(1) overwrites, or deletes and recreates at least one honey
file, and (2) the new file is identified as data by libmagic.
Note that libmagic successfully identifies the true content of
the honey files in their original state, thus if the type changes
to data the sample must have modified it.
To determine the ransomware’s family, we perform major-

ity voting of AV labels (i.e., following the same approach as
Kharraz, et al. [34]).
We let RADDAR run for 4 months to collect and generate

reports for 1,691 malware samples, 713 of which match ran-
somware labels used by AV companies. Figure 2 presents a
detailed breakdown of this analysis.
Consistent with previous malware research, many of the

samples in our dataset did not show any malicious function-
ality (i.e., they were inactive) for a variety of reasons. Thus,
we performed the following two step analysis. First, iden-
tify active samples, and second try to infer the reason why
inactive samples did not show any malicious behavior. As
previously discussed in §2, ransomware that uses hybrid en-
cryption securely must retrieve the public key pk from the
command and control infrastructure (C&C). Therefore, if
the malware does not produce any network traffic, it cannot
apply hybrid encryption securely. We classify a sample as
“No Network” if all observed TCP and UDP traffic exclu-
sively targets Windows affiliated domains, such as ones for
time keeping and updating.
Furthermore, we classify a sample as “Disabled C&C” if

either (1) all DNS queries (beyond those for the Microsoft
domains) return negative, or (2) all HTTP requests result
in a 404 status code. Of the inactive samples analyzed,
those reported as having a disabled C&C are all due to DNS
queries returning negative. However, we did not introspect
into HTTPS protected network traffic generated by the mal-
ware.
Finally, even if the C&C is operational and reachable, en-

vironment sensitive malware will refrain from executing if it
detects that it is run in a sandboxed environment. “Envi-
ronment” indicates that the malware may be analyzing its
environment to detect if it is running in a virtual environ-
ment such as KVM or VirtualBox. A sample is labelled
“Environment” if Cuckoo’s built-in detection identifies it as
such.
The reason for the inactivity of the remaining samples

could not be determined. Previous experience suggests, this
could be due to advanced environment fingerprinting, depen-

8KVM, http://www.linux-kvm.org/page/Main Page

Sheet2

Page 1

No Network
 (241)

Disabled C&C
 (75)

Environment
 (17)

Other
 (272)

 Active
(107) 20 Families

Inactive
 (606)

Unknown
 (978)

 Ransomware
(713) 52 Families

1691
Samples

Figure 2: Summary of analysis results. Sample count for
each category is in parentheses.

dency on user activity, or the use of logic (time) bombs that
delay execution beyond our 20 minute evaluation threshold.
In the end, we evaluated our system against 20 active ran-
somware families, the largest study of ransomware we are
aware of.

5.2 PayBreak Effectiveness
In this section we answer RQ1, can PayBreak revert

the encryption performed by real-world ransomware? And
RQ2, are malware family specific modifications necessary
to revert the encryption employed by different ransomware
families?

PayBreak is able to recover ransomed files from all ran-
somware families with known encryption signatures. Our
results confirm that we are able to successfully hook into
the encryption functions of real-world ransomware samples
and extract session keys, and all materials necessary to be
used for file recovery.

More specifically, PayBreak defeated 12 of the 20 active
ransomware families, 9 of which, according to our knowl-
edge, have not been previously defeated. We define a ran-
somware family as defeated if there exists a method or tech-
nique for which the ransomed files can be fully recovered.
PayBreak successfully recovers files encrypted by Cryp-
toWall, and Locky, two of the three economically most suc-
cessful ransomware families of 2016 [2]. CryptoWall alone
has netted more than $325 million in revenue [3].

A summary of the active ransomware families is shown in
Table 1. The number of active samples for a given family is
specified in the Samples column. For ransomware samples
that have previously been defeated, a corresponding refer-
ence is included in the column. We do not consider leaked
cryptographic keys (e.g., obtained from a confiscated com-
mand and control server) as defeated due to this being spe-
cific to a ransomware campaign, and does not imply a weak
implementation of the ransomware family. PayBreak has
demonstrated the ability to defeat ransomware using mul-
tiple cryptographic libraries including Microsoft CryptoAPI
and Crypto++. The cryptographic algorithms used for en-
cryption were extracted at runtime by PayBreak for sam-
ples that PayBreak defeats and are listed in the Algorithm

9Razy cryptographic information identified by Jakub
Kroustek, malware analyst at Avast.

http://www.linux-kvm.org/page/Main_Page

Families # Samples Previously Defeated by Defeated Library Algorithm
defeated PayBreak

Almalocker 1 ✓ [1] ✓ ✓ CryptoAPI RSA+AES-128-CBC
Cerber 14 ✓ [4] ✓ ✓ CryptoAPI RSA+RC4-256
Chimera 1 7 ✓ ✓ CryptoAPI RSA+AES-256-ECB
CryptoFortress 2 7 ✓ ✓ CryptoAPI RSA+AES-256-ECB
CryptoLocker 33 7 ✓ ✓ CryptoAPI RSA+AES-256-CBC
CryptoWall 7 7 ✓ ✓ CryptoAPI RSA+AES-256-CBC
CrypWall 4 7 ✓ ✓ CryptoAPI RSA+AES-256-CBC
GPcode 2 ✓ [38] ✓ ✓ CryptoAPI RSA+AES-256-ECB
Locky 7 7 ✓ ✓ CryptoAPI RSA+AES-128-CTR
SamSam 4 7 ✓ ✓ CryptoAPI RSA+AES-128-CBC
Thor Locky 1 7 ✓ ✓ CryptoAPI RSA+AES-128-CTR
Tox 9 7 ✓ ✓ Crypto++ RSA+3DES-128-CBC
DXXD 2 ✓ [5] 7 ✓ Unknown XOR with Constant Key [5]
MarsJokes 1 ✓ [12] 7 ✓ Unknown ECC+AES-256-ECB [12]
PokemonGo 1 ✓ [9] 7 ✓ .NET Crypto AES with Constant Key [9]
Troldesh 5 ✓ [13] 7 ✓ Unknown RSA+AES-256-CBC [13]
VirLock 4 ✓ [15] 7 ✓ Unknown XOR with Constant Key [15]
Androm 2 7 7 7 Unknown RSA+AES-256-CBC [11]

Razy 3 7 7 7 .NET Crypto AES-1289

TeslaCrypt 4 7 7 7 Unknown ECC+AES-256-CBC [16]

Total 20 107 8 12 17

Table 1: Active Ransomware Samples

column. For undefeated samples, the column contains infor-
mation reported by other researchers, gathered to the best
of our ability with a corresponding reference. Additionally,
the Defeated column identifies all families that have been
defeated, either by a previous technique or PayBreak.
Of the 20 active families in our dataset, PayBreak does

not defeat eight. Three of these, DXXD, PokemonGo, and
VirLock, are previously defeated and use trivial constant
keys for encryption, i.e., they are not using hybrid cryptog-
raphy. Two other families, MarsJokes and Troldesh, have
also been defeated previously. These families, contrary to
popular reason, rolled their own pseudorandom number gen-
erators instead of using the battle tested CryptGenRandom

API. Their näıve implementations lead to their defeat by
researchers [12, 13]. The remaining undefeated families, An-
drom, Razy, and TeslaCrypt use a cryptographic library that
our prototype implementation was not set up to hook. Pay-
Break can be expanded to defeat all eight of the remaining
families by hooking their respective statically linked encryp-
tion functions, and either exporting their constant keys (in
the case of the trivial families), or their session keys into
the key vault. We next discuss the robustness of the used
signatures.

Signature Robustness.
To identify statically linked crypto libraries, PayBreak

relies on signatures. Thus, one obvious concern is the ro-
bustness of these signatures against obfuscation. Identically
to all practical online anti-malware solutions, sufficient lev-
els of obfuscation and deception can evade the protections
afforded by PayBreak. Note, however, that packers that
unpack the entire binary at runtime do not pose a problem
for PayBreak. To evaluate the robustness of our signatures,
we assess them against the syntactic changes introduced by
different compilers and optimization levels as these charac-
teristics can be easily changed by the attacker. To this end,

we compiled 12 programs that use the Crypto++ encryp-
tion library with different compilers and optimization set-
tings. More precisely, our sample programs statically link
Crypto++ versions 5.6.3, 5.6.2, and 5.6.1, spanning half a
decade of development of this popular cryptographic library
for Windows. Furthermore, we compiled our programs with
the tdm-gcc10 and the mingw32-gcc11 compilers, each with
disabled optimization, and maximum optimization levels.
To identify all 12 variants of the encryption functions, we
had to develop two signatures. The reason is that the differ-
ences between artifacts is large when using different compil-
ers, but smaller for different optimization levels. In essence,
we had to create one signature per compiler, and each sig-
nature was robust across all tested optimization levels and
library versions.

File Recovery.
PayBreak is able to fully recover encrypted files from

twelve families. Due to the large amount of samples we’re
working with, our RADDAR system executes each sample
for 20 minutes. However, to evaluate the performance, and
ability to recover entire file systems we executed three ran-
somware families for four hours each in a resettable test
environment. To develop this test environment, first, we
spread across the standardized document corpus, Govdocs1
threads [28], randomly across the entire file system of a vir-
tual machine. The document corpus contained 9,876 files
primarily of common office types, such as .xls, .docx, and
.pdf. For each of the files we recorded their original SHA1
file hash. By comparing these file hashes we can determine
if our recovered file is the original file. We then executed
a ransomware family and let it run for four hours without
intervention. After this infection, we extracted all files on
the system to a safe environment. PayBreak attempted re-

10TDM-GCC, http://tdm-gcc.tdragon.net/
11MinGW, http://www.mingw.org/

http://tdm-gcc.tdragon.net/
http://www.mingw.org/

covery on these files using the key vault extracted off of the
system. We then reset the virtual machine, and repeated
this process for each family.
After ransomware encryption of the file system we exe-

cuted PayBreak decryption. Our system was able to re-
cover 100% of the original encrypted files from each of the
attacks. Comparing to the previously generated original file
hashes is not essential for the recovery, and using the file
hashes previously generated only serves as a confirmation of
successful file recovery. The Locky sample encrypted 9,821
files which were recovered in 360m40s. The Cryptowall sam-
ple encrypted 204 files from our document corpus, and files
were recovered in 86s. The Alma Locker sample encrypted
271 files from our document corpus, and the affected files
were recovered in 26s. The Cryptowall, and Alma Locker
samples encrypted a low amount of files probably due to
malware software instability, i.e. they crashed during their
execution; however, nonetheless these tests prove that Pay-
Break is able to fully recover all files from a ransomware
attack in a short amount of time, i.e. on the scale of a few
hours for a full file system.

5.3 Performance Impacts
In this section we answerRQ3 which assesses performance

impacts caused by PayBreak. For this question we are
interested in two characteristics. (1) what slowdown does
PayBreak introduce for a single call to the encryption API
(i.e., micro benchmark), and (2) with what frequency are
calls to the encryption API made during regular office work-
loads (i.e., macro benchmark). We assessed performance on
a consumer grade laptop, running aWindows 7 32-bit virtual
machine, with 2GB of RAM, and 2 CPU cores at 2.20GHz.

Micro benchmark.
In order to measure the overhead of our system on Cryp-

toAPI functions hooked with Detours, we performed a micro
benchmark of 10 million invocations of the CryptEncrypt

API on a 1KB file. We found that it takes 4.02s without our
hooks in place. With PayBreak enabled, exporting session
keys and encryption scheme information to the key vault,
the tight encryption loop took 1,242s. Thus, on average one
call to the CryptEncrypt API takes 124µs (i.e., a slowdown
of a factor 310x). However, the majority of the performance
impact results from the I/O operations that write to the key
vault. Omitting the disk I/O from the measurement reduces
the slowdown to a factor of 1.5x. Thus, a simple perfor-
mance optimization of PayBreak could be to perform the
write operation to the key vault in a dedicated I/O thread.
We will now show that realistic workloads suffer from signifi-
cantly less performance impact than the synthetic worst-case
benchmark discussed above.

Macro benchmark.
While relative performance impact on a single invocation

of the cryptographic APIs is significant, such operations are
extremely rare in regular office workloads. For our macro
benchmark we used common Windows software on a vir-
tual machine provisioned with PayBreak. The Windows
software we executed included: 7zip, AVG, Dropbox, Fire-
fox, Gimp 2, Google Chrome, Google Drive, Internet Ex-
plorer (IE), iTunes, KeePass 2, LibreOffice, Microsoft Ex-
cel, Microsoft Powerpoint, Microsoft Word, Pidgin, Putty,
RealVNC, Skype, SumatraPDF, WinSCP, WinZip.

Due to space limitation, we are unable to thoroughly dis-
cuss our testing procedure for each application we tested.
However, we provide insight into the analysis of five appli-
cations. We found no significant slowdown in any of the
applications, and on average less than 100 cryptographic
API calls during regular application usage. The number in
parentheses following each applications name is the number
of CryptoAPI calls we recorded stemming from the applica-
tion during its testing.
KeePass 2 (28). We created a new password database and
randomly generated 3 passwords using the application. We
deleted that database, and created a new empty database.
We then imported an old database. We noticed no slowdown
in any of these operations, and the application worked com-
pletely normally. KeePass 2 appears to be a diverse user of
the CryptoAPI, as we observed six different functions from
the CryptoAPI being called.
Dropbox (127). We logged into a Dropbox account using
the program. We then synchronized 3 files from that account
previously placed there onto the local machine. We then
synchronized 5 files from the local machine onto the cloud
by dragging the files into the Dropbox folder. We noticed
no slowdown during the synchronizations, and no program
instability. Most CryptoAPI calls made by Dropbox during
our testing were to CryptGenRandom.
Putty (2). We connected to a remote SSH server. Upon
connect, we executed several commands. We then discon-
nected from the server. This application is a sparse user
of the CryptoAPI. We observed no slowdown, or program
instability.
Skype (19,418). We created a Skype account. We then
added and messaged 2 contacts. We then called 1 of those
contacts. Skype is a very heavy user of the CryptoAPI,
more than any other program that we observed. However,
even with such heavy usage, far above any other program,
we noticed no slowdown, or program instability.
Internet Explorer (3,328). We utilized the AutoIt12 pro-
gram to automate IE to visit the Alexa Top 100 most pop-
ular websites on their HTTPS front pages. We stayed on
each page for 5 seconds to allow page loading. On average,
we found 33 calls to the CryptoAPI per webpage (including
all resources). Thus, even at an unoptimized slowdown of
124µs per cryptographic operation, this resulted in 4.1ms
overhead for page loads and is clearly below the human per-
ception threshold [37].

6. DISCUSSION AND LIMITATIONS
In this section we discuss challenges, open problems, and

limitations that exist despite or due to our system. A triv-
ial and seemingly effective defense against ransomware is a
reliable backup regime. With such a system in place, users
have little to fear from a ransomware attack. All it takes to
recover is wiping and reinstalling the infected machine and
restore the data from backup. Although simple, it is fair to
assume that users who fell victim to ransomware and payed
the ransom in the past, did not have this simple mechanism
in place. Unfortunately, comprehensive use of backups by
all users seems unrealistic.

Furthermore, some recent ransomware families (e.g., Ran-
somWeb or CryptoWall) are reported to encrypt files imme-
diately upon infection and providing access to the data for a

12AutoIt, https://www.autoitscript.com/site/autoit/

https://www.autoitscript.com/site/autoit/

limited amount of time (e.g., a few months) by transparently
decrypting the data when accessed [32, 26]. Once this initial
period expires, the malware destroys the key that is neces-
sary for the decryption and asks for ransom. At this point,
all backups taken since the infection (i.e., months worth)
contain only encrypted data and are thus useless to recover
from the infection.
At its core, PayBreak is a key escrow system. Govern-

ment proposed and mandated key escrow systems have con-
sistently been met with well founded criticism from the re-
search community and privacy advocates. We absolutely
sympathize with this opinion and strongly oppose govern-
ment mandated key escrow systems. However, there is a
fundamental difference between such government mandated
proposals and PayBreak. In PayBreak there exists ex-
actly one entity who has access to the keys kept in the key
vault — the legitimate user herself. That is, besides the user
herself, there are no trusted third parties.
Our prototype implementation of PayBreak defeats ran-

somware using several dynamically or statically linked li-
braries. Ransomware authors may be tempted to roll their
own cryptographic libraries in an effort to evade PayBreak;
however, this is often a recipe for easy cryptographic de-
feat (for example, simple encryption used by botmasters
made their C&C protocol easy to reverse engineer [40]).
As such, leveraging secure third party libraries is appealing
to ransomware authors. However, secure crypto libraries
are scarce, and only a limited pool to choose from exists.
Nonetheless, for our system, creating signatures for third
party libraries, or custom libraries is not any different. Our
experience working with three different libraries suggests
that adding support for further libraries can be achieved eas-
ily, and quickly. For example, we developed the signatures
required to detect Crypto++ within one day. Additionally,
our prototype hooks the Windows standard CSPRNG func-
tion, CryptGenRandom. By dynamically hooking, and record-
ing this system function PayBreak stores the base material
for session keys used by any ransomware leveraging many of
these alternative cryptographic libraries. Regardless what
code is used, malware analysts only have to identify the en-
cryption implementation once, and add it to PayBreak to
add support. Identification of cryptographic code does not
have to be a manual effort. Instead, the process may be
automated through a variety of means (e.g., [31]). Once
cryptographic code is identified, a wealth of work (e.g., [7,
17, 20, 27]) exists that aides in identifying similar code. To
sidestep the use of symmetric keys altogether, ransomware
authors might be tempted to encrypt data with exclusively
asymmetric primitives. While such a strategy is possible,
the high resource requirement and uncharacteristically fre-
quent use of asymmetric encryption could be addressed with
heuristics that monitor for these aspects. Despite Pay-
Break’s demonstrated effectiveness against contemporary
cryptographic ransomware, a practical deployment would
have to address several issues that are out of scope for this
paper. These issues include, for example, teaching users
to keep private keys secure, or implement a secure rotation
system for the key vault to prevent unlimited growth of the
vault.
As evaluated in §5.2 PayBreak is able to recover from a

ransomware attack in hours. As described in §4.3, file re-
covery is independent of the ransomware family by means
of exhaustive search. This exhaustive search is an embar-

rassingly parallel workload and thus can be optimized al-
most arbitrarily with additional compute resources, such as
a cloud deployment. Furthermore, needing to recover from
a ransomware infection should be a rare and exceptional
situation. We submit that for a regular ransomware vic-
tim regaining access to encrypted data is paramount when
compared to the speed with which encrypted files can be
recovered.

We acknowledge that, identically to all practical online
protection systems, obfuscation and evasion can thwart the
protections afforded by PayBreak. However, obfuscation
is only a concern for malware that statically links against
cryptographic libraries. Protection from families that use
the system-provided CryptoAPI is unaffected, as PayBreak
hooks the implementations of the API functions in the un-
obfuscated system DLLs. Furthermore, as our evaluation
shows, PayBreak is perfectly capable of protecting users
from malware that statically links cryptographic libraries, as
long as the malware is obfuscated with contemporary pack-
ers. In fact, all malware samples used for the evaluation in
this work were packed. Moreover, the samples from the Tox
family statically link the Crypto++ library. The academic
literature (e.g., [43]) and commercial sources (e.g., [14]) have
offered advanced obfuscators for years. However, these ad-
vanced techniques have not gained significant traction in the
malware ecosystem at large. For example, Sun [44] reports
that 91% of the 103,392 analyzed samples were packed with
simple packers, such as UPX or ASPack, which do not in-
hibit the protections afforded by PayBreak. Unfortunately,
we do not know the reasons that prevent malware authors
from making wide-spread use of more advanced obfuscation
techniques. PayBreak thus raises the bar for malware au-
thors and forces them to use evasive techniques that they so
far have resisted to employ.

Another evasive strategy that malware can implement to
evade PayBreak is to detect that PayBreak is running in
the victim’s computer, and accordingly jump over the in-
serted hooks. However, there is no reason that PayBreak
must install the hooks at the beginning of the targeted cryp-
tographic functions. We could modify PayBreak to insert
the hooks are arbitrary points in the function as long as the
relevant data structures (e.g., keys and encryption scheme
parameters) are still in scope. Similar to the obfuscation
scenario, PayBreak cannot provide guarantees against mal-
ware that specifically aims to evade PayBreak. But Pay-
Break can significantly raise the bar for attackers’ success.

Finally, ransomware that is aware of PayBreak could try
to launch a denial of service attack by either corrupting the
public key used to escrow data in the vault or simply fill the
vault with nonsensical information. PayBreak can be mod-
ified to have a dedicated (privileged i.e., running as SYSTEM)
process that appends to the vault and therefore protect the
integrity of the public key. An attack that fills the vault
with garbage before encrypting the victim’s files can only
hope to increase the time it takes to recover encrypted files.
The privileged process mentioned above could detect that
such an attack is ongoing and alert the user, or terminate
the offending process. If this attack were to occur unno-
ticed, recall that getting infected with ransomware is a rare
circumstance and identifying the correct key and encryption
offset is embarrassingly parallel. As such, even with a large
vault (a 1TB vault can hold roughly 17 billion entries), re-
covery would only be delayed, but not prevented.

7. RELATED WORK
Decades ago (in 1996) Young and Yung were the first

to introduce the concept of a cryptovirus [46, 47]. Their
description is a perfect blueprint of today’s most effective
crypto-based ransomware families that leverage hybrid en-
cryption to blackmail users into paying ransom for regain-
ing access to their data. The only difference between the
proposed cryptovirus and modern ransomware is that the
Internet made it trivial for malware authors to generate an
individual asymmetric key pair for each infected victim and
communicate the public key to the malware via a command
and control channel. In 2005, the same authors presented a
proof-of-concept implementation of their cryptovirus, using
the Microsoft Cryptographic API [48]. As possible mitiga-
tions against this attack they proposed to restrict access to
the cryptographic API, by for example only allowing en-
cryption with keys that come from a trusted certificate. As
the authors’ call to control access to cryptographic tools was
ignored, it comes at no surprise that malware authors lever-
aged cryptography for their malign purposes.
In 2010, Gazet studied three early families of ransomware,

highlighting how this threat was not mature for mass extor-
tion at the time [29]. In 2015, Kharraz et al. [34] presented
a longitudinal study of 1,359 ransomware samples collected
between 2006 and 2014. While their study included four
families that encrypt user data, the majority of the ana-
lyzed families were either deleting files or exfiltrating infor-
mation. Furthermore, the paper presents measurements of
I/O characteristics of ransomware samples and states that
these characteristics are sufficient for a monitoring mecha-
nism to distinguish ransomware from benign applications.
However, the paper does not evaluate such a mechanism.
In follow up work, Kharraz et al. [33] implemented and

evaluated the proposed mechanism as an offline malware
analysis system and found it to have a 96.3% accuracy in de-
tecting ransomware. However, the monitoring mechanism is
inherently reactive. That is, repeated file operations leading
to frequent I/O could indicate that ransomware is actively
attacking the system. Scaife et al. [18] built upon this mech-
anism as well, and produced an early-warning detection sys-
tem. They evaluated their system against 14 ransomware
families. By detecting file system changes characteristic
of ransomware they were able to detect 100% of the ran-
somware families, however, detection only happened after a
median loss of 10 files before detection. They additionally
tested their system for false-positives against 30 benign ap-
plications, of which only 1 produced a false-positive. Using
similar insights, Continella et al [25] developed ShieldFS,
a driver that profiles the typical activity of a Windows sys-
tem and can identify anomalous I/O activity generated by
ransowmare, allowing the system to roll back the malicious
changes. ShieldFS was developed concurrently and inde-
pendently of PayBreak.
A framework to promote awareness and to educate indi-

viduals about the ransomware threat was proposed by Luo
et al. as a proactive prevention solution [36]. Although
teaching users how to safely and securely access the Inter-
net can decrease the likelihood of a ransomware infection
through spam and drive-by downloads, it does not elimi-
nate the threat. As we have seen with the SamSam family
(§5.2), ransomware now has worm capabilities to self propa-
gate and infect vulnerable machines. In the case of zero-day
vulnerabilities, no amount of education will protect a user.

Previous work has investigated methods to identify cryp-
tographic functions within a binary. Calvet et al. devel-
oped a technique to achieve this within obfuscated programs
and evaluated the system on known malware samples [24].
Although their technique could be a valuable asset for re-
searchers to identify ransomware’s encryption functions, the
poor performance makes it impractical to include in an on-
line defense. Furthermore, Caballero et al. [22] and Wang
et al. [45] developed approaches to obtain plain text from
encrypted communications.

Of the previously discussed work, PayBreak is the only
solution providing an online protection scheme against ran-
somware, allowing a victim to fully recover their ransomed
files. The negligible performance overhead proves our de-
fense to be a practical solution.

8. CONCLUSION
PayBreak is a novel protection mechanism that defeats

the threat of crypto-based ransomware. Early ransomware
families failed because of their incorrect use of cryptographic
functionality. Successful families switched to using the cor-
rect cryptographic approach – hybrid encryption. We iden-
tify that the symmetric session keys have to be used on the
victim’s host to perform file encryption. Thus, PayBreak
implements a key escrow mechanism that stores session keys
in a key vault. Keys in the vault are encrypted with the
user’s public key and thus, only the user’s private key can
unlock the vault. As opposed to government-mandated key
escrow systems, PayBreak ensures that only the legitimate
user has access to the keys held in escrow. We evaluated
PayBreak on 107 ransomware samples and demonstrate
that PayBreak can successfully recover from the damage
caused by twelve different ransomware families. Further-
more, the runtime overhead of PayBreak is far below the
human perception threshold and thus allows the use of Pay-
Break on production systems. Lastly, PayBreak will be
released as a publicly available open source project.

Acknowledgements
We would like to thank the anonymous reviewers for their
insightful comments and our shepherd Guofei Gu for help-
ing us improve the quality of this manuscript. This paper
was supported by an EPRSC-funder Future Leaders in Engi-
neering and Physical Sciences Award, by the EPSRC under
grant EP/N008448/1, and by the Office of Naval Research
under grant N00014-15-1-2948. Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect those
of the sponsor.

9. REFERENCES
[1] Alma ransomware: Analysis of a new ransomware threat

(and a decrypter!).
https://info.phishlabs.com/blog/alma-ransomware-
analysis-of-a-new-ransomware-threat-and-a-decrypter.

[2] Cryptowall, teslacrypt and locky: A statistical perspective.
http://blog.fortinet.com/post/cryptowall-teslacrypt-and-
locky-a-statistical-perspective.

[3] Cybercriminals rake in $325m from cryptowall ransomware:
report. http://www.washingtontimes.com/news/2015/nov/
2/cybercriminals-rake-in-325m-cryptowall-ransomware/.

[4] Downloading and using the trend micro ransomware file
decryptor.
https://success.trendmicro.com/solution/1114221.

https://info.phishlabs.com/blog/alma-ransomware-analysis-of-a-new -ransomware-threat-and-a-decrypter
https://info.phishlabs.com/blog/alma-ransomware-analysis-of-a-new -ransomware-threat-and-a-decrypter
http://blog.fortinet.com/post/cryptowall-teslacrypt-and-locky-a-statistical-perspective
http://blog.fortinet.com/post/cryptowall-teslacrypt-and-locky-a-statistical-perspective
http://www.washingtontimes.com/news/2015/nov/2/cybercriminals-rake-in-325m-cryptowall-ransomware/
http://www.washingtontimes.com/news/2015/nov/2/cybercriminals-rake-in-325m-cryptowall-ransomware/
https://success.trendmicro.com/solution/1114221

[5] Dxxd ransomware decrypter.
https://github.com/eugenekolo/dxxd-decrypter.

[6] Fbi suggests ransomware victims to pay ransom money.
http://thehackernews.com/2015/10/fbi-ransomware-
malware.html.

[7] Ida f.l.i.r.t. https://hex-rays.com/products/ida/tech/flirt/.
[8] Kaspersky announces ’death’ of coinvault, bitcryptor

ransomware.
http://www.theregister.co.uk/2015/11/02/kaspersky
announces death of coinvault bitcryptor ransomware/.

[9] Pokemongo ransomware comes with some clever tricks.
https://blog.malwarebytes.com/threat-analysis/2016/08/
pokemongo-ransomware-comes-with-some-clever-tricks/.

[10] Ransomware.
http://www.trendmicro.com/vinfo/us/security/definition/
ransomware#List of Known Ransomware Families.

[11] Remove gerkaman@aol.com ransomware.
http://www.virusresearch.org/remove-gerkamanaol-com-
ransomware/.

[12] Researchers break encryption of marsjoke ransomware.
http://www.securityweek.com/researchers-break-
encryption-marsjoke-ransomware.

[13] The story of yet another ransom-fail-ware.
http://esec-lab.sogeti.com/posts/2016/06/07/the-story-of-
yet-another-ransomfailware.html.

[14] Themida. http://www.oreans.com/themida.php.
[15] This weird ransomware strain spreads like a virus in the

cloud. https://blog.knowbe4.com/new-virlock-ransomware-
strain-spreads-stealthily-via-cloud-storage.

[16] Threat spotlight: Teslacrypt – decrypt it yourself.
http://blogs.cisco.com/security/talos/teslacrypt.

[17] Zynamics bindiff. https://www.zynamics.com/bindiff.html.

[18] Cryptolock (and drop it): Stopping ransomware attacks on
user data. In IEEE 36th International Conference on
Distributed Computing Systems, 2016.

[19] J. Berdajs and Z. Bosnić. Extending applications using an
advanced approach to dll injection and api hooking.
volume 40, pages 567–584. John Wiley & Sons, Ltd.

[20] M. Bourquin, A. King, and E. Robbins. Binslayer:
Accurate comparison of binary executables. In Proceedings
of the 2Nd ACM SIGPLAN Program Protection and
Reverse Engineering Workshop, PPREW ’13.

[21] J. Caballero, C. Grier, C. Kreibich, and V. Paxson.
Measuring pay-per-install: The commoditization of
malware distribution. In Usenix security symposium, 2011.

[22] J. Caballero, P. Poosankam, C. Kreibich, and D. Song.
Dispatcher: Enabling active botnet infiltration using
automatic protocol reverse-engineering. In ACM conference
on Computer and communications security (CCS), 2009.

[23] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer.
RFC2440: OpenPGP Message Format, 1998.

[24] J. Calvet, J. M. Fernandez, and J.-Y. Marion. Aligot:
cryptographic function identification in obfuscated binary
programs. In Proceedings of the 2012 ACM conference on
Computer and communications security. ACM, 2012.

[25] A. Continella, A. Guagnelli, G. Zingaro, G. De Pasquale,
A. Barenghi, S. Zanero, and F. Maggi. Shieldfs: a
self-healing, ransomware-aware filesystem. In Annual
Computer Security Applications Conference (ACSAC),
2016.

[26] Darren Pauli. Cryptowall 4.0: Update makes world’s worst
ransomware worse still - The Register.
http://www.theregister.co.uk/2015/11/09/cryptowall 40/.

[27] M. Egele, M. Woo, P. Chapman, and D. Brumley. Blanket
execution: Dynamic similarity testing for program binaries
and components. In 23rd USENIX Security Symposium
(USENIX Security 14), 2014.

[28] S. Garfinkel, P. Farrell, V. Roussev, and G. Dinolt.
Bringing science to digital forensics with standardized
forensic corpora, 2009.

[29] A. Gazet. Comparative analysis of various ransomware
virii. Computer virology.

[30] C. Grier, L. Ballard, J. Caballero, N. Chachra, C. J.
Dietrich, K. Levchenko, P. Mavrommatis, D. McCoy,
A. Nappa, A. Pitsillidis, et al. Manufacturing compromise:
the emergence of exploit-as-a-service. In ACM conference
on Computer and Communications Security (CCS), 2012.

[31] F. Gröbert, C. Willems, and T. Holz. Automated
identification of cryptographic primitives in binary
programs. In RAID, volume 6961, pages 41–60, 2011.

[32] High-Tech Bridge Security Research. RansomWeb:
emerging website threat that may outshine DDoS, data
theft and defacements? https://www.htbridge.com/blog/
ransomweb emerging website threat.html.

[33] A. Kharraz, S. Arshad, C. Mulliner, W. Robertson, and
E. Kirda. Unveil: A large-scale, automated approach to
detecting ransomware. In 25th USENIX Security
Symposium (USENIX Security 16), Austin, TX, Aug. 2016.
USENIX Association.

[34] A. Kharraz, W. Robertson, D. Balzarotti, L. Bilge, and
E. Kirda. Cutting the Gordian Knot: A Look Under the
Hood of Ransomware Attacks. In Proceedings of the
International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA), volume
9148 of Lecture Notes in Computer Science, Milan, Italy,
July 2015. Springer International Publishing.

[35] P. Lestringant, F. Guihéry, and P.-A. Fouque. Automated
identification of cryptographic primitives in binary code
with data flow graph isomorphism. In Proceedings of the
10th ACM Symposium on Information, Computer and
Communications Security, ASIA CCS ’15, 2015.

[36] X. Luo and Q. Liao. Awareness education as the key to
ransomware prevention. Information Systems Security,
2007.

[37] R. B. Miller. Response time in man-computer
conversational transactions. In Proceedings of the December
9-11, 1968, fall joint computer conference, part I, pages
267–277. ACM, 1968.

[38] D. Nazarov and O. Emelyanova. Blackmailer: The story of
gpcode. https://securelist.com/analysis/publications/
36089/blackmailer-the-story-of-gpcode/.

[39] B. Ramsdell. RFC3851: Secure/Multipurpose Internet Mail
Extensions (S/MIME) Version 3.1 Message Specification,
2004.

[40] G. Saito and G. Stringhini. Master of puppets: Analyzing
and attacking a botnet for fun and profit. arXiv preprint
arXiv:1511.06090, 2015.

[41] K. Savage, P. Coogan, and H. Lau. The evolution of
ransomware. http://www.symantec.com/content/en/us/
enterprise/media/security response/whitepapers/the-
evolution-of-ransomware.pdf.

[42] B. Schneier. Memo to the Amateur Cipher Designer.
[43] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee. Impeding

Malware Analysis Using Conditional Code Obfuscation. In
Proceedings of Network and Distributed Systems Security
Symposium (NDSS), San Diego, CA, Feb. 2008. Internet
Society. bibtex:sharif:conditional-code-obfuscation.

[44] L. Sun. Reform: A framework for malware packer analysis
using information theory and statistical methods, 2010.

[45] Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace.
Reformat: Automatic reverse engineering of encrypted
messages. In Computer Security–ESORICS 2009, pages
200–215. Springer, 2009.

[46] A. Young and M. Yung. Cryptovirology: Extortion-based
security threats and countermeasures. In IEEE Symposium
on Security and Privacy, Oakland, CA, May 1996.

[47] A. Young and M. Yung. Malicious cryptography: Exposing
cryptovirology. John Wiley & Sons, 2004.

[48] A. L. Young and M. M. Yung. An implementation of
cryptoviral extortion using microsoft’s crypto api. 2005.

https://github.com/eugenekolo/dxxd-decrypter
http://thehackernews.com/2015/10/fbi-ransomware-malware.html
http://thehackernews.com/2015/10/fbi-ransomware-malware.html
https://hex-rays.com/products/ida/tech/flirt/
http://www.theregister.co.uk/2015/11/02/kaspersky_announces_ death_of_coinvault_bitcryptor_ransomware/
http://www.theregister.co.uk/2015/11/02/kaspersky_announces_ death_of_coinvault_bitcryptor_ransomware/
https://blog.malwarebytes.com/threat-analysis/2016/08/pokemongo-ransomware-comes-with-some-clever-tricks/
https://blog.malwarebytes.com/threat-analysis/2016/08/pokemongo-ransomware-comes-with-some-clever-tricks/
http://www.trendmicro.com/vinfo/us/security/definition/ransomware#List_of_Known_Ransomware_Families
http://www.trendmicro.com/vinfo/us/security/definition/ransomware#List_of_Known_Ransomware_Families
http://www.virusresearch.org/remove-gerkamanaol-com-ransomware/
http://www.virusresearch.org/remove-gerkamanaol-com-ransomware/
http://www.securityweek.com/researchers-break-encryption-marsjoke-ransomware
http://www.securityweek.com/researchers-break-encryption-marsjoke-ransomware
http://esec-lab.sogeti.com/posts/2016/06/07/the-story-of-yet-another-ransomfailware.html
http://esec-lab.sogeti.com/posts/2016/06/07/the-story-of-yet-another-ransomfailware.html
http://www.oreans.com/themida.php
https://blog.knowbe4.com/new-virlock-ransomware-strain-spreads-stealthily-via-cloud-storage
https://blog.knowbe4.com/new-virlock-ransomware-strain-spreads-stealthily-via-cloud-storage
http://blogs.cisco.com/security/talos/teslacrypt
https://www.zynamics.com/bindiff.html
http://www.theregister.co.uk/2015/11/09/cryptowall_40/
https://www.htbridge.com/blog/ransomweb_emerging_website_threat.html
https://www.htbridge.com/blog/ransomweb_emerging_website_threat.html
https://securelist.com/analysis/publications/36089/blackmailer-the-story-of-gpcode/
https://securelist.com/analysis/publications/36089/blackmailer-the-story-of-gpcode/
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the-evolution-of-ransomware.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the-evolution-of-ransomware.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the-evolution-of-ransomware.pdf

APPENDIX
A. RANSOMWARE PSEUDOCODE

1 c2 = ConnectToCommandAndControl();

2 // Private key kept secret on C2

3 pubkey = c2.ReceivePubKey();

4 hPubkey = CryptImport(pubkey);

5 hCsp = CryptAcquireContext();

6 while (filename = FindNextFile()) {

7 // Read

8 ptFile = ReadFile(filename);

9 // Generate random session key per file

10 hSymkey = CryptGenKey(hCsp);

11 // Then encrypt

12 ctFile = CryptEncrypt(hSymkey, ptFile);

13 keyblob = CryptExportKey(hPubkey, hSymkey);

14 DeleteFile(filename);

15 // Write encrypted session key

16 WriteFile(filename, keyblob);

17 // Append the encrypted file

18 AppendFile(filename, ctFile);

19 }

	Introduction
	Background
	Practical considerations for ransomware
	Hybrid Cryptography
	Threat model

	Overview
	Implementation
	Crypto Function Hooking
	Key Vault
	File Recovery

	Evaluation
	Dataset
	PayBreak Effectiveness
	Performance Impacts

	Discussion and Limitations
	Related Work
	Conclusion
	References
	Ransomware Pseudocode

