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Abstract 

Going blind is incomprehensible and with an aging population the number of people 

with blinding disease is increasing. Glaucoma and age related macular 

degeneration (AMD) are two major causes of blindness affecting people as they 

age. The only proven treatment for glaucoma is lowering of the intraocular pressure 

(IOP) which is best done by surgically placing a channel from the anterior chamber 

to allow aqueous outflow to drain into the subconjunctival space. The drainage 

channel can be formed by the use of a glaucoma drainage device (GDD) or by 

glaucoma filtration surgery (GFS). Both GFS and the use of a GDD often fail over 

time because local fibrosis (scarring) in the subconjunctival space blocks aqueous 

outflow resulting in the increase of IOP and disease progression. It was 

hypothesised that a more biocompatible GDD could be fabricated from a hydrogel, 

and that the hydrogel material could be used to restrict aqueous outflow to control 

the IOP. Hydrogels are widely used in ophthalmic applications including contact 

lens and intraocular lens.  

Since hydrogels are widely examined for use in drug delivery, it was also 

hypothesised that a hydrogel implant could be made for the subconjunctival space 

after GFS to stop tissue adhesion and to deliver locally an anti-fibrotic or anti-

inflammatory drug to increase the chances for long-term surgical success. For 

AMD, the current treatment is intravitreal (IVT) injections of anti-VEGF antibodies 

approximately every 4-6 weeks. IVT injections are an invasive procedure and 

associated with some complications, but it is also becoming apparent that many 

healthcare systems around the world cannot cope with the increasing demands for 

IVT injections to treat AMD. To reduce the frequency for IVT injections, there is a 

need to develop formulations that allow a longer duration of action for therapeutic 

proteins in the back of the eye. Maintaining protein stability is a major challenge in 

formulation science and clinical use. It was further hypothesied that injectable 

hydrogels could also be used to formulate an antibody for IVT injection to display an 

extended residence time in the vitreous cavity.  

Free radical polymerisations of 2-hydroxyethyl methacrylate (HEMA) and 2-

methacryloyloxyethyl phosphoryl choline (MPC) in the presence of a cross-linker, 

poly(ethylene glycol diacrylate) (PEGDA) were conducted to prepare HEMA-MPC 

co-polymer hydrogel films. Both HEMA and MPC are widely used in ophthalmic 

hydrogel products and MPC is known to be exceptionally biocompatible, although it 

must only be used as a co-polymer to ensure there are suitable processing and 

mechanical properties in the resulting hydrogel. Different HEMA-MPC hydrogels 
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with increasing relative stoichiometries of MPC (0%-100% (w/w)) were prepared 

and characterised to determine if water flow through the gel was possible. 

Unfortunately the hydrogel films formed have low permeability (1.1×10-18 m2 s-1 pas-

1) compared to the permeability required to control flow at a rate of 2 µL/min under 

10-15 mmHg IOP, which is (6 ×10-14 m2 s-1 pas-1). Although the HEMA-MPC 

hydrogel films could not be used for flow control, they were further examined for 

use as potential implants for local tissue site drug delivery in subconjunctiva. 

HEMA-MPC hydrogels with 10% MPC were found to offer the best balance 

between water content, mechanical strength and drug loading and release that was 

required for the possible implantation drug loaded films derived from a range drugs 

(dexamethasone, pirfenidone and doxycycline).  

The process used for drug loading of dexamethasone was optimised by 

using, methanol and the in vitro half-life of DEX was increased from 1.8 to 9.1 days 

with release being sustained for more than 3 weeks. There are other causes of 

subconjunctival scarring, in particular trachoma, which is the main cause of 

blindness due to infection. Doxycycline is thought to be a good candidate drug for 

treating patients after trachoma surgery because it has both anti-bacterial and anti-

fibrotic properties. As a water-soluble drug, doxycycline release could not be 

sustained for more than 3 days, so the 10% MPC films were modified with the 

incorporation of β-cyclodextrin (β-CD) in an effort exploit the possible affinity of 

doxycycline with β-CD to prolong doxycycline release. Several methods were 

examined to introduce β-CD into the HEMA-MPC films including the formation of 

HEMA-MPC films with pendant β-CD, the embedding of β-CD cross-linked particles 

within the hydrogel network and formation of an interpenetrating network (IPN) of β-

CD and HEMA-MPC. Unfortunately, the release profile of doxycycline was similar in 

the modified and non-modified HEMA-MPC hydrogels.  

To evaluate hydrogels for use in IVT injections of antibodies, N-

isopropylacylamide (NIPAAm) thermoresponsive hydrogels were evaluated. Three 

different macromolecular hydrophilic cross-linkers were evaluated; PEGDA, 

phosphorylcholine 3059 (PC 3059) and acrylated hyaluronic acid (Ac-HA). The 

prepared hydrogels were characterised regarding physical properties such as water 

content, water retention thermoresponsivness and protein release. The thermal 

responsiveness decreased with increasing cross-linker percentage. Modification in 

the type and percentage of cross-linker used allowed the preliminary screening of 

the different formulations. Hydrogel formulations made with 40 mg NIPAAm as 

monomer and 8 µL PEGDA, 20 mg PC3059 or 4 mg Ac-HA were able to sustain the 

release of antibodies for a month in a validated in vitro model of the eye.   
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Chapter 1. Introduction 

Barriers to ophthalmic drug delivery: The big challenge 

The aim of any final dosage form is to deliver the drug molecule in a therapeutic 

concentration to the site of action for an optimal period of time. Systemic drug 

distribution is often accompanied by side effects due to off-target effects (Short 

2008; De Souza et al. 2010; Allen & Cullis 2004). Localised drug delivery to the site 

of action has the potential to minimise the amount of dose needed for efficacy.  

Systemic side effects can thus be minimised. Certain modes of administration allow 

for localised treatment, e.g.  pulmonary, transdermal, nasal, rectal, vaginal, buccal 

and ophthalmic routes (Parikh et al. 2014; Jannin et al. 2014; Chai et al. 2013; 

Frank et al. 2014). Local drug delivery to the eye can in some cases be 

accomplished, but there are major anatomical, biological and physicochemical 

barriers that can limit efficacy (Ali & Byrne 2008; Patel et al. 2015).  

Blinding eye disease has a huge impact on the quality of human life 

because vision impairment reduces people’s ability to live and move independently 

(Skalicky et al. 2012; Habtamu et al. 2015; Uchino & Schaumberg 2013). Most 

blindness occurs as people age. With aging population increasing, the number of 

people diagnosed as blind or with visual impairment is expected to increase. It is 

estimated there are approximately 39 million blind people worldwide while there are 

approximately 246 million people suffering visual impairment that ranges from 

moderate to severe (Scott et al. 2016). People with blinding eye diseases and those 

with visual impairment require constant medical care, medication and social care to 

improve their quality of life. The medical costs and the loss of economic output have 

far-reaching social and financial impacts (Köberlein et al. 2013). Worldwide, the 

cost of health care and medication was estimated to be $ 3 trillion in 2010 and 

expected to increase to $ 3.5 trillion by 2020. In addition to health care costs, 

economic loss due to the prevalence of blinding eye diseases in working 

populations is also high (Gordois et al. 2012). It is estimated that by 2020, the 

economic loss due to blinding diseases in the working population will grow to $110 

billion (Eckert et al. 2015).  

Delivery of medicines is often needed at the back of the eye because the 

majority of blinding diseases result in damage to the retina and optic nerve. An 

understanding of the barriers associated with ophthalmic drug delivery requires an 

understanding of the main parts of the eye and the function of each part. The eye 

consists of two compartments; the anterior segment (which is the front of the eye) 

and constitutes 1/3 of the globe while the other 2/3 of the globe is the posterior 



17 
 

segment (which is the back of the eye). The eye is in direct contact with the 

environment and protected by the eyelids, tear film and the cornea (McCaa 1982). 

The cornea is a transparent layer that covers the front of the eye (iris, which 

is the coloured part of the eye); it is highly innervated tissue with no blood supply. It 

refracts and transmits light to the lens and retina. It depends on the aqueous 

humour for nourishment and removal of waste products. The front surface of the 

cornea is covered with a tear film. The cornea consists broadly of three tissue 

layers each separated by a membrane (Molokhia et al. 2013). The cornea is a 

complex barrier for absorption of drugs into the eye. In addition to the cornea; tear 

turnover, nasolacrimal drainage and reflex blinking made topical administration of 

medicines using eye drop is only really appropriate to treat the periocular diseases 

(Figure 1:1) (Gaudana et al. 2010; Davies 2000).  

 

 

Figure 1:1 schematic illustration of the main parts of the anterior and posterior segments, 
barriers to ophthalmic drug delivery and routes of drug elimination from the vitreous. The 
location of ophthalmic barriers (encircled in red) are; I) the cornea and tear film; II) blood-
retinal barriers; III) blood-aqueous barriers. Routes of elimination from the vitreous 
(encircled in blue) are; 1) venous blood flow after diffusing across the iris surface; 2) 
aqueous humour outflow; 3) diffusion into the anterior chamber (1, 2 and 3 are referred to 
diffusion through the blood-aqueous barriers); 4) diffusion through the blood–retinal barrier 
(Nakhlband & Barar 2011).  
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The cornea is connected to the sclera through the limbus region. The sclera 

is the white part of the eye that is tough in nature and is mainly comprised of 

collagen fibres. It preserves the shape of the eye. The sclera is covered by a 

mucous membrane called the conjunctiva (which covers the inside of the eyelid as 

well). The conjunctiva is a thin, transparent, mucous tissue that covers the front of 

the eye, except the cornea. It is enriched with blood and lymph vessels that help to 

nourish the ocular tissues. Its surface is covered by the mucus that helps to 

lubricate the eye ball during movement and impart wettability to the ocular surfaces 

(Willoughby et al. 2010; McCaa 1982).  

The uvea comprises the iris, ciliary body, and the choroid plexus. The iris is 

the coloured part of the eye. The ciliary bodies are tissues located posterior to the 

iris and are responsible for the production of the aqueous humour and control vision 

by adjustment of the lens. The anterior chamber is the space between the iris and 

the cornea while posterior chamber is the space between the iris and the lens 

(posterior to the iris and anterior to the lens); both are occupied by the aqueous 

humour (Rawas-Qalaji & Williams 2012). The aqueous humour is a transparent fluid 

that fills the anterior and posterior chambers (Chowdhury et al. 2010). 

The main parts of the posterior segment are vitreous humour, retina, choroid 

and optic nerve. The vitreous humour is a clear viscous gel that fills the posterior 

cavity of the eye. It is located between the lens and the retina. The vitreous helps to 

maintain the structure of the eye. The retina is a complex tissue that lies between 

the vitreous and sclera. The choroid is the vascularised tissue comprising the 

blood-retinal-barrier and separates the retina from the sclera. The blood-retinal 

barrier is considered the main key barrier for the absorption of drugs into the 

posterior segment after systemic administration (Figure 1:1) (Willoughby et al. 

2010).  

Topical drug delivery through eye drops is the common route for the 

treatment of anterior segment eye diseases due the non-invasive nature of the 

route; however for posterior drug delivery topical route is ineffective (Hughes et al. 

2005). The amount of drug that can reach the posterior segment is below the 

therapeutic dose required. This is caused by drainage and loss of the drug through 

the nasolacrimal ducts and the inability of the drug to penetrate the cornea and 

blood-aqueous barriers of the eye in sufficient amount to induce therapeutic effect 

(Duvvuri et al. 2003; Moisseiev et al. 2014). Systemic administration is also 

ineffective most of the times due to blood-aqueous and blood-retinal barrier that 

restricts drug penetration to the vitreous. High oral doses will be required to allow 
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therapeutic level of the drug to be reached in ocular tissues which will increase 

dose related side effects (Hughes et al. 2005; Eljarrat-Binstock et al. 2010).  

Over the years different routes for posterior drug delivery have been 

investigated such as transscleral, suprachoroidal, posterior subtenon, 

subconjunctival, subretinal and intravitreal (IVT) injection (Figure 1:2). The above 

routes offer the advantage of overcoming the barriers and side effects associated 

with topical and systemic routes such as low penetration and faster elimination from 

ocular surfaces (Kang-Mieler et al. 2016; Yamada & Olsen 2015; Geroski & 

Edelhauser 2001; Holz et al. 2014).   

 

 

 

Figure 1:2 Different routes used and investigated for drug delivery to the anterior and 
posterior segments of the eye. The blue shapes represent the possible location for 
implantation of drug releasing implants or injections of the drug molecules for ophthalmic 
delivery. Topical route is mainly for anterior drug delivery and the other routes are for 
posterior drug delivery (Novack 2009). 

Currently in the clinic, the delivery of large and reproducible drug doses into 

the posterior segment was only achievable using IVT route. The IVT route offers the 

advantage of high intraocular concentration for a longer period of time compared to 

other routes (Nomoto et al. 2009). For example, Wang et al reported that a 

favorable pharmacokinetics was observed with single IVT injection of anti-

inflammatory drug ketorolac compared to suprachoroidal single injection in rabbits 

(Wang et al. 2012). The half-life in the retinal–choroid was (3.09 ± 0.13 hour) after 

IVT injection compared to (1.18 ± 0.27) hour after suprachoroidal Injection. The 
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mean residence time of the injected drug was also higher (4.04 ± 0.12 hour) after 

IVT injection compared to suprachoroidal Injection (1.58 ± 0.21 hour). 

Intravitreal dosage forms 

Drug molecules injected into the vitreous in the clinic are divided into two 

categories; high molecular weight proteins and small molecular weight molecules 

such as anti-inflammatory drugs (Sarao et al. 2014; Krohne et al. 2012; 

Magdelaine-Beuzelin et al. 2010). Injections and implants are the available dosage 

forms in the clinic through IVT route (Kuppermann & Loewenstein 2010).  

IVT injections are widely used in the clinic compared to other routes. IVT 

injections are directly injected into the vitreous which assures the delivery of the 

accurate therapeutic dose into the site of action. However, IVT injected drugs have 

short half-life in the vitreous due to rapid elimination from the vitreous. Drug 

elimination is through two main routes; posterior and anterior elimination (Raghava 

et al. 2004; Shen et al. 2007). Drugs with large molecular weight and high water 

solubility, such as proteins, are eliminated by permeation through blood aqueous 

barriers to the anterior chamber followed by elimination through aqueous turnover 

and uveal blood flow. Hydrophobic drug molecules and small molecular weight 

drugs are eliminated through posterior route by permeation through blood retinal 

barriers (Figure 1:1) (Urtti 2006; Kidron et al. 2012). The short half-life of 

medications in the vitreous requires multiple injections which are often associated 

with complications such as inflammation, vitreous haemorrhage and retinal 

detachment in addition to the burden placed on patients financially and mentally 

(Sampat & Garg 2010; Falavarjani & Nguyen 2013).   

Solid implants are used as drug delivery systems (DDSs) to increase drug 

efficacy in the posterior segment. It is hoped that with the development of IVT 

implants, patients do not have to endure frequent IVT injections. Intraocular 

implants are divided into two types; biodegradable, such as Ozurdex® 

(dexamethasone in poly(lactic-co-glycolic acid) PLGA), and non-biodegradable, 

such as Vitrasert® (ganciclovir with polyvinyl alcohol (PVA) and ethylene vinyl 

acetate), Retisert® (fluocinolone acetonide with silicone and PVA), Iluvien® 

(fluocinolone acetonide with polyimide and PVA) (Figure 1:3) (Haghjou et al. 2011; 

Bansal et al. 2016). 
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Figure 1:3  Examples of IVT implants and the possible position of the implants in the eye 
(Kuno & Fujii 2011). 

For non-biodegradable implants the main advantage is relatively better 

control over the release of the drug compared to biodegradable ones over 

prolonged period of time (Bansal et al. 2016). The implants are formulated as 

reservoir systems in which a pellet of drug is surrounded by a semipermeable 

polymeric membrane to control drug diffusion (with the exception of Iluvien® which 

is in matrix form). The main disadvantage is surgery which is required for 

implantation and removal of the empty implant and surgery is often associated with 

side effects such as inflammation and infection (Choonara et al. 2010). The only 

exception is Iluvien® which could be injected through 25G needle and remain in the 

vitreous when the entire drug loaded is released. Iluvien® was developed to deliver 

a very low dose of fluocinolone acetonide to the retina for up to 3 years as a 

treatment for diabetic macular edema (Kane et al. 2008). Non-biodegradable 

implants are often used for the treatment of chronic conditions in the eye (da Silva 

et al. 2010). For biodegradable implants the need of surgery for removal and 

application is eliminated; however they offer relatively less control over drug release 

compared to non-biodegradable implants and it is very difficult to retrieve the 

implant when side effects start to show (Bansal et al. 2016; da Silva et al. 2010).  
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Several new approaches for IVT implants have been investigated such as 

the use of refillable delivery systems and cell encapsulated technology (Chen 

2015). Ciliary neurotrophic factor (CNTF) delivery through cell encapsulated 

technique has been investigated for the treatment of dry age related macular 

degeneration (AMD) and retinitis pigmentosa. The device is composed of sealed 

semipermeable membrane of polyethylene terephthalate surrounding human retinal 

pigment epitheliums cells (ARPE-19) genetically modified to secrete recombinant 

human CNTF (Kuno & Fujii 2011). Microelectromechanical systems (MEMS) are 

intraocular DDS that can be refilled with drug solution for long term therapy. The 

device consists of refillable drug reservoir with flexible canula. The device would be 

implanted in the subconjunctival space and allow the canula to be directed into the 

vitreous or the anterior chamber (Figure 1:3)  (Bansal et al. 2016). 

Clinically registered implants or implants under development for the 

posterior segment have been predominantly developed with steroids as the active 

drug agent. Current ocular implants that utilise steroids can provide a sustained 

release from months to over two years. The choice of steroids is due to the 

favorable properties of the drug molecules (Falavarjani 2009). Steroids inhibit 

inflammation and would be expected to minimise a foreign body response to an 

implant. Steroids are generally poorly water soluble, low MW actives that are stable 

within an implant. For the delivery of proteins Intravitreal (IVT) injections are the 

only available dosage form in the clinic (Hariprasad et al. 2006; Stewart et al. 2011).   

 Over 68% of the leading causes of blindness and severe visual impairment 

in older population are related to two diseases; glaucoma and AMD and the number 

is subjected to increase due to improvement of quality of life and diagnosis 

techniques in developed countries (Bunce & Wormald 2006). Understanding these 

two conditions will help in improving treatments available. 

Glaucoma 

Glaucoma is defined as a group of disorders that leads to optic nerve neuropathy. 

Glaucoma is one of the main causes of irreversible blindness in the world with more 

than 66 million people having high prevalence of glaucoma (Quigley & Broman, 

2006; Jonas et al., 2014). There are several types of glaucoma but the main 

modifiable risk factor is the increase in the intraocular pressure (IOP) of the 

eye(Coleman & Miglior 2008). The IOP is controlled by a balance between the 

secretion and drainage of the aqueous humour, so the pressure inside the eye is 

maintained at normal level (around 12 mmHg). The aqueous humour consists of 

98% water, electrolytes, ascorbic acid, amino acids, oxygen, carbon dioxide, low 
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amount of proteins and glutathione. It nourishes the lens and the cornea, removes 

waste products and stabilises the ocular structure (Brubaker 1982). The aqueous 

humour is secreted from the ciliary bodies, which are located behind the lens, into 

the posterior chamber and the aqueous flows into the anterior chamber through the 

pupil of the iris. The aqueous humour fills the posterior and anterior cavity of the 

eye and maintains the eye structure. The aqueous humour is in continuous 

production at a rate of approximately 2-2.5 µL/min. Aqueous drains from the eye 

into the blood circulation through two pathways. The first is through the trabecular 

meshwork, which is located in the limbal region (the limbal region is where the 

cornea and sclera meet). The trabecular meshwork is a spongy tissue that is 

converted into the schlemm’s canal which is connected to the episcleral vein and 

venous circulation, this is called conventional pathway (Figure 1:4) (Goel et al. 

2010). 

  

Figure 1:4 The release of aqueous humour from the ciliary body and its movement towards 
trabecular meshwork for drainage through conventional pathway. The aqueous humour is 
released from the ciliary muscles behind the lens and move to the anterior chamber 
followed by elimination through the trabecular meshwork and schlemm’s canal (the dotted 
arrow). Adapted from (Goel et al. 2010). 

The trabecular meshwork acts as a resistance barrier for the flow of the 

aqueous humour. A positive intraocular pressure in the eye is needed for the 

aqueous humour to drain from the eye. Drainage through the trabecular meshwork 

is considered the major pathway for aqueous drainage. The second drainage 

pathway is through the uveal meshwork into the ciliary muscles and out through the 

sclera. This is called non-conventional pathway (Siggers & Ethier 2012).  

Problems with drainage of the aqueous humour from the conventional 

pathway, such as blockage of the trabecular meshwork, will cause an increase in 

pressure inside the eye (Tomarev 2001). Over time the elevated pressure affects 
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the retinal ganglionic cells, retinal cell axons and blood vessels, which lead to the 

death of the nerve ganglions and to optic nerve damage. The loss of vision does 

not happen instantly but gradually. First the peripheral vision is lost followed by 

deterioration in the central vision and blindness (Lee & Higginbotham 2005). 

Current glaucoma treatments 

Glaucoma treatments range from eye drops to surgery depending on the stage of 

the disease and the complications associated with each patient. Medication in the 

form of eye drops is often the first choice to control the elevated IOP (Babić 2015). 

Several drugs are available for the control and management of increased 

intraocular pressure. Beta-receptors play an important role in the regulation and the 

production of aqueous humour from the ciliary body. Blocking these receptors 

reduce the production of aqueous humour. Selective and non-selective beta-

blockers (such as betaxolol) are used to treat glaucoma (Rait 1999). Carbonic 

anhydrase inhibitors also reduce the production of aqueous humour but by different 

mechanism. Carbonic anhydrase is an enzyme important in the production of the 

aqueous humour; therefore by inhibiting its effects, the rate of aqueous production 

is reduced (Supuran & Scozzafava 2000).  

Prostaglandin analogues (such as latanoprost) increase the flow of the 

aqueous humour through the non-conventional pathway. Adrenergic agonists (such 

as epinephrine) are also used. They act by both reducing rate of production of 

aqueous humour and increase rate of flow through the trabecular meshwork 

through complex processes that involves the activation of both alpha and beta 

receptors (Sambhara & Aref 2014). Miotics (such as pilocarpine) are a class of 

drugs that act by improving the drainage efficiency of the aqueous humour through 

the trabecular meshwork. They cause contraction of the ciliary muscle, which leads 

to relaxation of the trabecular meshwork (Alward 1998). 

Laser surgery is also used in certain cases. There are three types of laser 

surgery; the first is called argon laser trabeculoplasty. In this type of treatment the 

laser makes small burns (holes) in the trabecular meshwork to increase fluid 

drainage and open the blocked channels (Heijl et al. 2011). The second type of 

laser surgery is selective laser trabeculoplasty which selectively targets the 

pigmented cells of the trabecular meshwork, thus preserving the trabecular 

meshwork structure (Mahdy 2008). It is safer and there are fewer side effects 

compared to the argon laser trabeculoplasty (Kramer & Noecker 2001). The third 

type of laser therapy is called transscleral diode laser cyclophotocoagulation, which 
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destroys the tissues responsible for the formation of aqueous humour (Ansari & 

Gandhewar 2007). 

If the progression of glaucoma is not halted, then a type of drainage surgery 

is required. The most widely used surgical procedure is known as trabeculectomy 

or glaucoma filtration surgery (GFS) (Chiselita 2001). This surgery involves creating 

a new channel to drain the aqueous humour into the subconjunctival space. A small 

space called the bleb is often formed to allow the aqueous humour to drain from the 

eyeball and be absorbed into the systemic circulation (Figure 1:5) (Yu et al. 2009). 

The GFS is a complex surgery and often associated with complications such as 

endophthalmitis, hypotony, bleb leakage, scarring and corneal complications 

(Watson et al. 1990). In patients where the risk of GFS complications is high or the 

patient underwent previous failed GFS, glaucoma drainage devices (GDDs) were 

introduced.  

   

 

Figure 1:5 Glaucoma filtration surgery (GFS); the red arrow represent the alternative flow 
pathway created during the surgery where the fluid directed to the subconjunctival space.  

GDDs are implants used to create an alternative aqueous drainage pathway 

from the anterior chamber. A new drainage channel is formed by the tube to direct 

the aqueous flow into the subconjunctival space (Gedde et al. 2007). Generally 

these devices are designed with a tube that is attached to a spacer plate. One end 

of the tube goes into the anterior chamber and the other end is attached to the 

plate, which is placed in the subconjunctival space (Figure 1:6) (Minckler et al. 

1987). The tube is approximately 300 microns in diameter. This size of tube does 

not offer pressure control, so many GDDs had values designed to better control 

outflow and to provide pressure resistance. The spacer plate is designed to disrupt 

subconjunctival fibrosis that often occurs after surgery. The spacer plate serves to 

provide a drainage pathway for the aqueous after it drains from the eyeball (Patel & 

Pasquale 2010).  

A fibrovascular capsule develops around the spacer and acts as the primary 

pressure resistance mechanism that controls the aqueous flow from the anterior 
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chamber. The inner layer of the capsule is collagen and the outer layer is 

vascularised tissue. The aqueous humour is directed from the anterior chamber to 

the capsule and cleared through the vascularised tissues to the systemic circulation 

(Dempster et al. 2011). The formation of the capsule varies between (4-6) weeks 

after implantation depending on the patient response (Mills et al. 1996). 

Early stage pressure control is often achieved by temporarily suturing the 

tube until the capsule develops around the spacer. There is a need to develop other 

strategies for long term pressure control rather than rely on the formation of a 

fibrovascular capsule around the spacer plate since the foreign body reactions 

necessary for capsule formation can vary widely in patients.  

 

                                

Figure 1:6 The position of the tube and plate of GDD in the eye. The tube is placed in the 
anterior chamber while the plate is placed in the subconjunctival space. The tube will direct 
the aqueous humour from the anterior chamber to the subconjunctival space.  

The first glaucoma drainage device was developed by Molteno in 1969 

(Molteno et al. 1976). The Molteno GDD had a tube without a valve. Unless 

considerable care is taken by sutering the tube, there is a lack of control over the 

IOP that can result in hypotony (very low IOP), which can result in the eye 

collapsing. The problems observed with non-valved devices led to the development 

of the valved GDD. The first valved GDD was introduced in 1976 by Krupin (Krupin, 

1976), which was a unidirectional valve to provide resistance to the aqueous flow to 

prevent hypotony after the implantation of the device. When the IOP reaches (11-

14) mmHg the valve opens. In 1993, the Ahmed glaucoma device (AGD) was 

introduced. The valve in the AGD is designed to open when the IOP is (8-12 

mmHg). These devices have been developed over the years in different shapes 

and sizes (Figure 1:7 and Table 1:1) (Molteno et al. 1976; Schwartz et al. 2006; 

Wilson-Holt et al. 1992; Good & Kahook 2011; Nyska et al. 2003; Rivier et al. 2007; 

Knowlton 2009; Hueber et al. 2013; Acosta et al. 2006; Siegner et al. 1995; 

Ceballos et al. 2002; Ayyala, Zurakowski, et al. 1998). 

Unfortunately many of the valved GDDs fail because a fibrovascular capsule 

still develops around the spacer plate resulting in IOP increases (Thieme et al. 
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2011). The only recourse for the patient is to have the site of surgery ‘needled’ 

where an ophthalmologist must try to break up the capsule to allow aqueous to 

flow. In severe cases another surgery is required where another GDD is implanted, 

but this strategy is not ideal since a non-functioning device often remains in the eye. 

Continued foreign body response occurs and the need to implant the second device 

in a suboptimal place in the eye all contribute to there being a greater chance for 

long term problems requiring considerable follow up to ensuring there is control of 

IOP. 

 

 

Figure 1:7 Different types of glaucoma drainage devices that are available in the clinic, A) 
Ahmed device, B) Cypass stent, C) Hydrus stent, D) AqueSys stent, E) Gold Micro Shunt, 
F) Double Molteno device and G) ExPress shunt device, H) Baerveldet device, I) Istent. All 
the devices have a tube and spacer to control the IOP while stents have no spacer and the 
inner diameter of the device itself is the resistant mechanism to control IOP. The choice of 
the device is based on the medical condition of the patient.  
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Table 1:1 Different GDDs and the description of each device. The table highlights the materials used for each device, the mechanism of control of pressure 
and the size of each device.   

Device name Description 
Valved / 

Non- valved 
Size of the device 

Molteno single plate and 
double plate 

Silicone tube attached to a single or 
double polypropylene end plate 

Non-valved 
134 mm

2
 size of the single end  plate and 268 mm

2
 for the double end  

plate, 340 µm inner diameter of the tube 

Baerveldet 
Silicone tube attached to a barium 

impregnated silicone end plate 
Non-valved 

The end plate is of three sizes 250 mm
2
, 350 mm

2
 and 500mm

2
, 300 

µm inner diameter of the tube 

ExPress R50 
Stainless steel tube with no end plate 
with disc like flange at one end and 
spur like projection at the other end 

Non-valved 3 mm long, 50 µm and 200 µm inner diameter of the tube available 

Ahmed GV 
Silicon tube connected to a 

polypropylene end plate 
Valved End plate is 185 mm

2
, 300 µm inner diameter of the tube 

Krupin 
Silicone tube attached to a silicone end 

plate 
Valved End plate is 180 mm

2
, 300 µm inner diameter of the tube 

AqueSys Cross-linked gelatin tube Non-valved 6 mm long, 50 μm inner diameter, 150 μm outer diameter 

MIDI-Arrow 
Poly(styrene-b-isobutylene-b-styrene) 

[SIBS] tube 
Non-valved 8.5 mm long, 70 μm inner diameter, 350 μm outer diameter 

SOLX Gold shunt 24 carat gold Non-valved 
flat implant with numerous microtubular channels (5.2 mm long and 

3.2 mm wide) 

Schocket Silicone Non-valved 
Width 4 mm (#20 band), 6 mm (#220 band), circumferential diameter 

24 mm (at equator) 
Optimed PMMA Valved Width 10 mm, length 14 mm, plate thickness 1.3 mm 

Istent Titanium Non-valved Length 1 mm (body), 250 µm (snorkel), Length 360 µm 
Hydrus Nitinol Non-valved Length 15 mm 
Cypass Polyimide Non-valved Length 6.35 mm 

Aquashunt Polypropylene Non-valved Width 4 mm, length 10 mm, plate thickness 0.75 mm 
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Recently developed devices are based on different design concepts 

compared to the Molteno and Ahmed devices. These included the ExPress R50, 

Gold Micro Shunt, Istent, InnFocus and AqueSys (Table 1:1). The ExPress R50 is a 

stainless steel tube with no end plate and a disc like flange at one end and spur like 

projection at the other end. These modifications were introduced to prevent 

migration and extrusion of the tube. First it was placed underneath the conjunctiva 

(similar to the previous devices). Problems such as conjunctival erosion and 

hypotony were predominant so now it is placed under the sclera. Pressure 

resistence in the ExPress tube is achieved because the diameter of the tube is 

blocked to have an inner diameter of approximately 50 µm (Filippopoulos & Rhee 

2008).  

The Gold Micro Shunt is based on different approach which directs the 

aqueous humour to the suprachoroidal space (Hueber et al. 2013). The Istent is a 

(1 mm) long heparin coated titanium tube that is inserted surgically into the eye 

through the trabecular meshwork into the schlemm’s canal. This creates a 

permanent opening in the trabecular meshwork to direct the aqueous humour 

directly to the schlemm’s canal. AqueSys is a gelatin tube inserted into the eye 

through a specialised inserter without dissection to drain the aqueous humour from 

the anterior chamber to the subconjunctival space (Saheb & Ahmed 2012).  

The use of a spacer with a tube may give better long term outcomes 

because aqueous can be channelled away from the drainage point from the 

eyeball. The formation of the fibrovascular capsule can vary widely, so there is an 

opportunity to develop a more biocompatible spacer. The choice of the biomaterial 

used for the synthesis of the spacer is important because it affects the initial 

inflammatory response to the implant (Ayyala 2000). Materials that are used for a 

GDD design should have biocompatibility, flexibility and the mechanical strength for 

implantation. The consideration of a more biocompatible spacer requires that there 

also be consideration for how outflow resistance will be achieved to control IOP.      

Problems with current glaucoma treatments 

As mentioned earlier glaucoma treatments are available in the form of eye drops, 

laser surgery, GDD and GFS. Most of the dosage forms available for glaucoma 

treatments are eye drops; however there are several barriers for topical drug 

delivery. First is the low efficacy because of the removal of the administered eye 

drops by tears and nasal drainage and poor penetration through the corneal 

barriers (Ghate & Edelhauser 2008). Since glaucoma is a chronic disease, cost and 

low patient adherence also play an important role in reducing the benefits of using 
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eye drops (Friedman et al. 2007; Rylander & Vold 2008). The eye drops need to be 

used several times a day which is inconvenient for patients and half of them 

discontinue the treatment or do not use the eye drops regularly (Tsai 2009; Sleath 

et al. 2006). The long term use of eye drops increases the sensitivity of the eye 

tissues and renders the eye more susceptible to inflammation and less responsive 

to treatment over time. This is mainly due to the chronic use of preservatives (such 

as benzalkonium chloride), which is a common component in eye drops (Noecker 

2001).  

Implantable drug delivery devices that can provide medication for prolonged 

time to overcome these problems have been investigated for years but they also 

offer a great challenge in terms of safety and prolong effect (Manickavasagam & 

Oyewumi 2013). Laser surgeries have short term and variable effect depending on 

the patient and still some of the patients need medication after the surgery. Irregular 

IOP after the surgery is noticed in many patients. This is due to the blockage of 

some of the newly formed channels (Wise 1987). 

The main problem associated with current GDDs is lack of control on flow in 

the first few weeks before the fibrous capsule formation, which may cause hypotony 

(which is IOP lower than 5 mmHg). To overcome these problems certain surgical 

techniques are used, such as using external absorbable ligatures or internal 

removable suture stents to temporary control the aqueous flow over the first 4 

weeks until the capsule is formed (Melamed & Fiore 1990; Molteno et al. 1986). 

Modifications in the design of the implant such as increasing surface area of the 

end plate and designing a subsidiary pressure ridge to reduce post-operative 

hypotony was also introduced but still no significant improvement were observed 

(Molteno 1990; Luong et al. 2014). Elevated IOP also may occur due to tube 

obstruction caused by excessive capsule formation and fibrosis around the tube 

and the end plate due to foreign body response to the material used for the device 

(Chaudhry et al. 2012). Modification in the devices was introduced but still no 

significant improvement observed (Luong et al. 2014). 

 Most of the available GDD devices are made of silicone or polypropylene. 

Stainless steel and gold are also used for tubes and drainage channel (Hueber et 

al. 2013; Rivier et al. 2007). Although these materials have been used for years 

they still produce inflammation, irritation and scarring due to foreign body response 

(Ayyala 2000). Recently other materials have been used such as cross-linked 

gelatin and poly (styrene-b-isobutylene-b-styrene) [SIBS] (Pinchuk et al. 2008). 

There is still a need for the development of a biocompatible material that could be 

used in a GDD and produce less inflammation and less fibrous capsule formation 
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(Knowlton 2009; Acosta et al. 2006). In general devices available in the clinic now 

lack the consistency to control the IOP in patients (Chaudhry et al. 2012).  

The major problem with GFS is the wound healing. During the wound 

healing process inflammation, collagen deposition and scarring occur at the surgical 

site. This may cause the closure of the newly formed channel and failure of the 

operation (Skuta & Parrish 1987). A scar is a fibrous tissue that replaces a 

damaged tissue and considered as the last part of the wound healing process and 

could also be a result of pathological condition such as myocardial infarction and 

trachoma (Gurtner et al. 2008). Trachoma is main cause of blindness due to 

infection. Inflammation and fibrosis cause the eyelid to contract and the eyelashes 

to turn inward, so that blinking causes damage to the cornea resulting in blindness.  

While a scar in the skin is not usually a function problem, a scar in the eye 

tissues often causes a loss of function resulting in blindness (Hsu et al. 2000; Tovell 

2011; Bowman 1999). Most blinding conditions are characterised by fibrosis. 

Wound healing is broadly characterised by four phases which are the i) coagulative 

phase, (ii) inflammatory phase, (iii) proliferation and tissue repair (iv) remodelling 

(scar formation) phase. Although these phases are distinct from each other, they 

overlap during the healing process  which can last for a long time (Figure 1:8) 

(Gurtner et al. 2008). 

 

 

Figure 1:8 The wound healing process is recognised by four phases which are i) 
coagulative phase, (ii) inflammatory phase, (iii) proliferation and tissue repair (iii) 
remodelling (scar formation) phase. These phases overlap with each other during the 
healing process (Van Bergen et al. 2014). 
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During coagulation there will be the release of inflammatory mediators 

causing inflammation to occur. The inflammatory response involves several 

inflammatory mediators secreted from immune cells, e.g. macrophages and 

neutrophils. Inflammation plays an important role in regulation of the healing 

process during the first week after surgery (Eming et al. 2007). Proliferation starts in 

parallel with the inflammation phase, and includes epithelialisation, angiogenesis 

and the formation of a temporary extracellular matrix ECM. Proliferation will result in 

the activation of fibroblasts that will cause wound contraction to close the exposed 

area of the wound. The final phase includes tissue remodelling and scar formation. 

This process could start as early as 8 days after surgery and continue for months. 

The main cell responsible for this phase is the fibroblast. Targeting any of these 

phases will in principle modulate wound healing to potentially mediate scar 

formation (Witte & Barbul 1997).   

Several approaches and medications have been investigated to modulate 

wound healing and to achieve a greater chance for bleb survival after GFS (Seibold 

et al. 2012). The most widely used medicines are the off label use of mitomycin C 

(MMC) and 5-fluorouracil during GFS or GDD implantation. Both of these medicines 

are cytotoxic agents used to treat malignant disease. The mechanism of action of 

both medications is by inhibiting DNA synthesis, which leads to cell apoptosis, 

including fibroblasts. Fibroblasts play an important role in collagen synthesis and 

fibrosis.  

During glaucoma surgery a sponge soaked with MMC is placed in the 

subconjunctival space at the site of surgery for 5 minutes. The MMC will prevent 

excessive scarring by reducing cell growth and division during the healing process. 

Although the success of GFS was significantly improved by the treatment with 

MMC, the risk of side effects such as infection was also increased due to the 

toxicity of these drugs (Wu et al. 2013; Khaw et al. 2012). Topical corticosteroids 

such as dexamethasone and prednisolone have been reported to effectively 

improve the outcomes of GFS by supressing the inflammation process. In the clinic 

topical eye drops of corticosteroids are prescribed after surgery. Dexamethasone 

drops are used between 2-4 weeks after surgery. 

Other strategies have been investigated over the years to modulate the 

scarring process. These include targeting one or more of the overlapping wound 

healing phases and the mediators involved in the phases (Lockwood et al. 2013; 

Georgoulas et al. 2008; Schlunck et al. 2016; Masoumpour et al. 2016). A wide 

range and number of drugs have been evaluated preclinically for subconjunctival 

use after glaucoma surgery including ilomastat, pirfenidone, doxycycline and anti-
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vascular endothelial growth factor (VEGF) proteins in different dosage forms; 

however none are yet available in the clinic (Jung & Park 2016; Cui et al. 2008; Wu 

et al. 2013; Fakhraie et al. 2016; Martorana et al. 2015). 

Age related macular degeneration 

In England and Wales approximately 57% of blindness is related to age related 

macular degeneration (AMD) because of the aging population. Approximately 9% of 

global blindness is caused by AMD (Bunce & Wormald, 2006; Jonas et al., 2014). 

With age, the macula (which is the part of the retina responsible for central vision) 

degenerates and damaged due to local angiogenesis that damages the retinal 

tissue. Localised inflammation and fibrosis also occurs and the tissue damage 

cause loss of central vision. Often a patient has blurred vision and an inability to 

clearly see objects in detail.  

There are two types of AMD; dry and wet AMD. Dry AMD is characterised 

by deposition of yellow debris comprised of lipids and fatty proteins (drusen) under 

the retina causing damage to the macula (Coleman et al. 2008). Wet AMD is 

characterised by excessive growth of abnormal blood vessels underneath the 

macula. These new blood vessels will leak blood and fluids in the area surrounding 

the retina and damage the macula (Figure 1:9). While dry AMD slowly progresses 

and take years to develop, wet AMD, if untreated, may end with severe vision loss 

within days (Kulkarni & Kuppermann 2005). This growth of blood vessels is driven 

by growth factors including vascular endothelial growth factor (VEGF). 

Overexpression of VEGF is observed in wet AMD (Coleman et al. 2008). 

 

Figure 1:9 Normal macula and diseased one (wet and dry AMD). In dry AMD deposition of 
yellow debris is observed. In wet AMD excessive growth of abnormal blood vessels 
underneath the macula is observed. Adapted from (Patel 2016). 
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There is no available treatment for patients with dry AMD. Patients with wet 

AMD were previously treated by laser surgery (photodynamic therapy), but first line 

treatment is the intravitreal (IVT) injection of anti-VEGF antibodies. Photodynamic 

therapy can be used in an effort to halt the progression of the disease by destroying 

the abnormal blood vessels. The treatment involves the intravenous infusion of 

photosensitising agent (verteporfin) followed by laser activation of the drug.  

Unfortunately there is a high recurrence of angiogenesis (50%) and restoration of 

vision is limited after the photodynamic therapy (Lim et al. 2012; Yonekawa et al. 

2015). 

 Currently the most widely used treatment is the IVT injection of anti-VEGF 

antibody based medicines Lucentis (ranibizumab; Genentech) and Eylea 

(aflibercept; Regeneron). These medicines are approved around the world for the 

treatment of wet AMD and are now widely used in the clinic (Meadows & Hurwitz 

2012). Avastin (bevacizumab; Genentech) is a full antibody that targets VEGF and 

is licensed to treat angiogenesis in malignant disease.  Bevacizumab is widely used 

unlicensed to treat AMD because it is much cheaper per dose than either 

ranibizumab or aflibercept (Avery et al. 2006). An early anti-VEGF drug derived 

from a poly(ethylene glycol) conjugated aptamer called Macugen (pegaptanib; 

Valeant Ophthalmics) was the first anti-VEGF drug to market, but is not widely used 

since the antibody based drugs have been approved. Since AMD is a chronic 

condition, it is often necessary to treat patients for many years. Ranibizumab is 

labelled for monthly administration and aflibercept is administered about every 6-8 

weeks. Repeat IVT injections can be associated with several problems such as 

infections, retinal detachment and poor patient compliance (van Wijngaarden et al. 

2005). The frequency of IVT injections is also costly. There is a need to determine if 

it is possible to increase the duration of action for these antibodies based medicines 

so that the frequency of IVT injections can be decreased.  

Hydrogels a possible solution to current treatment problems 

Glaucoma and AMD are considered as the main causes of preventable blindness 

worldwide. For each condition different treatments are available; however all the 

current treatments have limitations and problems.  

GDDs were considered as a second line treatment in glaucoma and now 

they have been introduced as a first line treatment (Ayyala, Pieroth, et al. 1998). 

The main problem associated with GDDs is the lack of control on flow in the first 

few weeks before the fibrous capsule formation, which may cause hypotony. The 

other problem is foreign body response to the material used for the device 
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manufacture which often causes too much scarring around the device resulting in 

the failure of the device to control pressure (Chaudhry et al. 2012).  

Implantable devices generally have sub-optimal biocompatibility with an 

associated foreign body response (Anderson 2001). When an implant is placed in 

the human body the initial inflammatory reactions often result in the formation of a 

fibrous capsule to encapsulate the implant.  In drug delivery, encapsulation can 

completely ruin the release profile of the drug from the implant. In the case of 

GDDs, encapsulation often results in surgical failure by an increase in IOP that 

allows progression of the glaucoma. The foreign body response is varied based on 

many factors related to the material that is to fabricate the implant and the physical 

properties of the implant itself (e.g. surface smoothness, lack of sharp edges) 

(Onuki et al. 2008).  

To overcome the problem of foreign body response, implants can potentially 

be coated with a biocompatible polymer (e.g. coronary stents).  It is also possible to 

fabricate an implant from a biocompatible material (e.g. intraocular lens). Yu et al 

reported that coating a polyurethane glucose sensor with poly (hydroxyethyl 

methacrylate-2,3-dihydroxypropyl methacrylate-N-vinyl-2-pyrrolidone) hydrogels 

reduce the inflammatory response around the implant. The glucose sensor was 

subcutaneously implanted in rats for 28 days. There was a thin fibrous capsule and 

less inflammatory cells surrounding the sensor after 28 days implantation compared 

to non coted sensors (Yu et al. 2008).  

An ideal GDD will (i) have minimal foreign body response, (ii) be able to 

control the IOP over a wide range of patients for a prolonged period of time, (iii) be 

easily implanted with minimum incision and (iv) be affordable for patients around 

the world. A GDD made from hydrogels may offer a better solution to the problems 

associated with the current devices available in the clinic. Hydrogels are known to 

be biocompatible materials that may elicit a decreased fibroblast reaction commonly 

seen with other materials (Poppas et al. 2016). Reduction in the inflammatory 

response will minimise scarring in the conjunctiva around the spacer plate if coated 

or fabricated from a hydrogel.  

Hydrogels are also polymer networks where the polymer chains are cross-

linked by covalent bonds or non-covalent associations. Cross-linking the polymer 

chains can render them to be a permeable network capable to transfer molecules 

such as oxygen and loaded drugs through the entangled polymer chain structure 

(Brennan et al. 1987). A GDD made from a hydrogel could control the IOP by 

restricting the flow of the aqueous humour at a constant rate from the anterior 

chamber. For example using an existing tube, it might be possible to allow outflow 
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into a spacer fabricated from a hydrogel. Depending on the character of the 

hydrogel (e.g. cross-link density, polymer molecular weight, water association 

properties), it might be possible to restrict aqueous flow through to control IOP.  

Hydrogels could also be used to improve the outcome of GFS which is 

jeopardised by the excessive scarring after the surgery. A GDD could be made 

entirely from a hydrogel or a hydrogel could be used to fabricate a spacer 

connected to a tube (Figure 1:10). A drug could also be loaded into the device for 

the synthesis of GDD that have the ability to release drugs (combination device) to 

further decrease the foreign body response. The use of a hydrogel film made with 

biocompatible polymers for the delivery of anti-scarring or anti-inflammatory agents 

for subconjunctival implantation after GFS could also be considered as a way of 

improving success rate of GFS by reducing inflammation and scarring associated 

with GFS. A hydrogel film could also help to mechanically separate and prevent 

adhesion between the conjunctiva and episcleral surface after GFS (Figure 1:10).  

 

Figure 1:10 The position of a hydrogel GDD and releasing spacer (green) after GFS. For a 
GDD one end of the tube will be in the anterior chamber and the other end attached to a 
hydrogel plate placed in the subconjunctival space. For the spacer the drug will be released 
to the surrounding area of the implant in GFS (black arrows).   

For the treatment of wet AMD, longer, more extended release formulations 

of anti-VEGF antibodies are required to reduce the frequency of injections. 

Extended release in the vitreous body could potentially be achieved either by 

formulating the protein into a solid implant or into a highly concentrated form 
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(Stewart 2016; Agarwal & Rupenthal 2013; Li et al. 2012; Rauck et al. 2013). 

Formulating a protein into a solid implant is challenging due to protein instability and 

the sensitivity of these molecules to aggregate and misfold (Mitragotri et al. 2014; 

Jiskoot et al. 2012). It would be also difficult to maintain the activity of the protein 

throughout device fabrication and so it is not surprising that no implants of 

therapeutic protein have been approved for clinical use in the eye or elsewhere in 

the body (Frokjaer & Otzen 2005).  

Injectable hydrogels could be used to overcome the problems associated 

with solid implants. They have long been examined to encapsulate drugs for 

sustained local release. Due to the hydrophilic nature of the hydrogels they could 

help in preserving the activity of the protein while sustaining its release through the 

formation of semisolid implant. In order to explore the potential of hydrogels as 

delivery systems in the eye general knowledge on hydrogels is required. 

Understanding the unique properties, types, and the potential issues of hydrogels in 

drug delivery is important.  

What are hydrogels 

Hydrogels are three dimensional polymeric cross-linked networks that have the 

ability to absorb hundred to thousand times the dry weight of the hydrogels of water 

in the dry state and swell without dissolving or changing chemical structure (the 

swelling behaviour is a reversible process) (Figure 1:11). Hydrogels can be soft to 

display similar mechanical properties to tissues and extracellular matrix (they 

contain large amount of water and highly flexible). Hydrogels preserve the three 

dimensional shape upon swelling due to the presence of cross-linking points 

(junction points) (Buwalda et al. 2014). These points are physical or chemical cross-

linking points that will form a meshwork structure which will prevent complete 

solubilisation of the polymer matrix. 

The cross-links in hydrogels can either be covalent or non-covalent (e.g. 

ionic, metal chelated). Covalently cross-linked hydrogels can be prepared during 

polymerisation by the addition of cross-link monomers, which possess more than 

one polymerisable function. An example of covalently cross-linked hydrogels are 

those used in contact lenses. Many contact lenses are made using 2-hydroxyethyl 

methacrylate (HEMA). HEMA monomers are acrylates which undergo free-radical 

polymerisation. HEMA can be covalently cross-linked using a diacrylate (e.g. 

ethylene glycol dimethacrylate) (Han et al. 2009). Schmedlen et al described 

another chemical hydrogel using poly(vinyl alcohol) (PVA) prepared by 

photopolymerisation as tissue engineering scaffolds. The PVA was modified by 
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introducing photosensitive group into the PVA structure and mixed with 

photoinitiator. Once the mixture exposed to long wavelength a hydrogel is formed 

(Schmedlen et al. 2002).  

  

 

 

 

 

 

 

Figure 1:11 Swelling and deswelling behaviour of hydrogels. Dry hydrogel once placed in 
water swollen due to the formation of hydrogen bonds. The hydrogel increases in size 
several times. Once the water is removed the hydrogel returns to its original size and shape. 

Hydrogels that are cross-linked by non-covalent interactions are sometime 

referred to as physical hydrogels. Non-covalent interactions between the polymer 

chains that can occur to give a material with hydrogel-like properties include ionic, 

hydrophobic, entanglement, hydrogen or van der Waals bonds. PVA hydrogels can 

be formed by physical cross-linking through freeze/thaw cycles. These cycles will 

help to generate intermolecular hydrogen bonds between the hydroxyl groups in the 

polymer chains and formation of the hydrogel (Stasko et al. 2009). Alginate 

hydrogels have been synthesised by physical cross-links through the formation of 

an ionic bond between alginates and multivalent cations (e.g. Ca+2) (Bruchet & 

Melman 2015).  

In both covalent and non-covalent hydrogels these bonds can be called 

junction points. The number of junction points is also referred to as the degree of 

cross-linking or the cross-linking density determines the many physical and 

mechanical properties of the hydrogel. The amount of polymer chain entanglement 

and the internal volume of the hydrogel, often referred as the hydrogel pore size 

can often be correlated to the cross-link density which is usually determined by the 

percentage of cross-linker used during the polymerisation reaction. Generally the 

higher formed and the cross-link density, the smaller the pore size or less 

permeable will be the hydrogel (Jadhav et al. 2012). Often the cross-link density is 

varied in an effort to vary hydrogel properties. For example, alginate hydrogels with 

different pore sizes were synthesised by varying the percentage of Ca+2 (cross-

linking agent). An increase of Ca+2 concentration from 36 mM to 72 mM cause a 

reduction in the pore size from 247 µm to 52 µm. A further increase of Ca+2 

Junction point 
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concentration to144 mM resulted in a decrease in pore size to 30 µm (Jang et al. 

2014). Another factor that could be affected by the degree of cross-linking is the 

rheological and flow properties of the prepared hydrogels. Generally hydrogels 

made with a relatively low cross-linking density may be partially soluble and 

injectable. In contrast hydrogels with a higher cross-linking density would require 

implantation as if being a device.  

Types of hydrogels 

Hydrogels were first described in 1960 by Wichterle and have since been 

extensively investigated. Many types of hydrogels have now been described 

(Hoffman 2001). Hydrogel classification can be done by considering fabrication 

(e.g. cross-linker/monomer composition and process method) and by considering 

the intended use (e.g. degradable/non-biodegradable, stimuli responsive, drug 

release/tissue regeneration). 

As mentioned previously hydrogels are cross-linked polymers. Based on the 

starting polymer hydrogels can be classified as natural, semisynthetic and 

synthetic. Natural polymers such as polysaccharides, cellulose, starch, chitin, 

gelatin and hyaluronic acid (HA) are widely used for food and pharmaceutical 

applications (Shanmugam et al. 2005). These natural polymers are often used in 

the manufacture of different dosage forms (such as tablets, micro and 

nanoparticles, films, beads) being used as binders, fillers, stabilisers, thickening 

agents and disintegrators. For example, gelatin is used in food, tablet coating and 

hard and soft gelatin capsule synthesis. Hyaluronic acid (in the form of sodium 

hyaluronate) is used as in eye drops to treat dry eye (Shanmugam et al. 2005). 

Hydrogels made from common natural polymers already used in healthcare 

applications tend to be more biocompatible, available for sourcing, safe and can 

have minimal (if no) side effects. However; many of these polymers are found to 

suitable lack mechanical properties, are subjected to batch to batch variability and 

may cause immunogenic reaction in parenteral applications (Vishakha Kulkarni, 

Kishor Butte 2012) .  

Semisynthetic and synthetic polymers are also widely examined, sometimes 

in an effort to overcome the limitations of natural polymers. Semisynthetic polymers 

are derived by the modification of natural polymers. The resulting hydrogels can 

display more tunable mechanical properties (Zhu & Marchant 2011). An example is 

chitosan, which is the deacetylated derivative of natural polymer chitin. While chitin 

is poorly soluble in both aqueous and organic solvents, the deacetylated form of 
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chitin (chitosan) has been widely investigated and is much more commonly used in 

drug delivery due to its improved solubility (Dash et al. 2011). 

The use of synthetic polymers offers the potential to further control the 

properties such as pore size, degradation time and mechanical strength of 

hydrogels (Ahmad et al. 2012). Many synthetic hydrogels are prepared by the free 

radical polymerisation of acrylate and methacrylate derived monomers. Examples 

of widely used monomers to makes synthetic polymers include derivatives of 

phosphoryl choline (PC) and acrylic acid (especially HEMA), and PVA and poly (N-

vinyl pyrrolidone) (Gong et al. 2012; Kim et al. 2015). 

Hybrid hydrogels synthesised from a mixture of synthetic and natural 

polymers can possess the advantages of both. Nguyen et al reported the synthesis 

of polyvinyl alcohol (PVA)-gelatin hydrogel for bone regeneration (Nguyen et al. 

2016). Although PVA has low toxicity and good mechanical strength for 

implantation, it is limited for allowing proliferation and growth of cells. By combining 

PVA with gelatin, the hydrogel has 32% increased bone formation after 15 weeks 

compared to control. 

Hydrogels can further be classified based on how they are prepared. The 

polymer chains can be homopolymers (derived from a single monomer), 

copolymers, block copolymer and interpenetrating networks (IPN). An IPN is the 

cross-linking of a polymer chain in the presence of another polymer (semi-IPN) or 

another monomer mixture (IPN) (Figure 1:12) (Dragan 2014). The two polymer 

chains are entangled with each other without chemical cross-linking between them 

(Aminabhavi et al. 2015). 

For the synthesis of IPN two monomer mixtures are used. They are either 

polymerised together in the same time at the same pot (in situ) or sequentially 

polymerised. In both methods the two monomer systems should not undergo 

polymerisation with each other. In sequential polymerisation the first monomer 

mixture is polymerised. Following the polymerisation the mixture is impregnated in 

the other monomer mixture and polymerised again allowing the formation of 

entangled matrix of two different hydrogels. For in situ IPN synthesis the two cross-

linkers used for one monomer mixture should not interact with the other monomer 

mixture (Aminabhavi et al. 2015). Park & Kim reported that a IPN made from glycol 

chitosan and PVA will have higher mechanical strength compared to glycol chitosan 

hydrogels alone (Park & Kim 2006).  

For semi-IPN synthesis a polymer and a monomer mixture are used. The 

monomer mixture is polymerised in the presence of the polymer. Mixing two 

different polymers is often difficult to achieve, so a semi-IPN offers the chance to for 
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two polymers to be more intimately entangled. A cross-linked IPN hydrogel often 

has better mechanical properties, e.g. greater strength than non-IPN hydrogels. IPN 

hydrogels can be prepared in one pot (in situ) or the monomer mixture cross-linked 

first then impregnated in the polymer solution (which is called sequential synthesis) 

(Samanta & Ray 2014). Mahdavinia et al reported that when chitosan is 

polymerised around polyacrylic acid (PAA) to form semi-IPN hydrogels the swelling 

behaviour of the synthesised hydrogel was affected by the degree of cross-linking 

of chitosan. The swelling ratio of the semi-IPN hydrogel increased in acidic pH and 

decreased in neutral pH with increasing chitosan ratio (Mahdavinia et al. 2008). 

 

  

 

 

 

 

Figure 1:12 Classification of hydrogels based on hydrogel preparation method. They are 
divided into homopolymer, copolymer, multipolymer, full IPN and semi-IPN hydrogels. 
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Hydrogels can also be classified into Non-biodegradable and biodegradable. 

Non-biodegradable hydrogels are often covalently cross-linked hydrogels, and a 

well-known example is soft contact lenses (López-Alemany et al. 2002). The 

resistance of some hydrogels to degradation made them good candidates for some 

applications in tissue replacement, coating of medical devices and wound healing 

dressings (Bach et al. 2013; Butruk et al. 2012). Ma et al reported that a non-

biodegradable hydrogel synthesised using PVA and PVP polymers could be used 

as articular cartilage replacement (Ma et al. 2009).   

Degradable or resorbable hydrogels are designed to clear from the human 

body after a specified period of time (Stauffer & Peppast 1992). The degradation 

products must be biocompatible and non-toxic. There are examples of hydrogels 

that have been designed to clear either within days or months (Lawyer et al. 2012; 

Bhattarai et al. 2010; Lee et al. 2015). The degradable element can be either in the 

polymer main chain or within the cross-links of a hydrogel. For example Bryant and 

Anseth reported that the degradation behaviour of a poly(lactic acid)-b-

poly(ethylene glycol)-b-poly(lactic acid) diacrylate cross-linker could be modified 

using poly (ethylene glycol) dimethacrylate (PEGDM) to support the growth of 

chondrocytes and the formation of extracellular matrix that is similar to human 

tissues (Bryant & Anseth 2003). 

Hydrogels can also be classified into non-responsive (conventional 

hydrogels) and stimuli responsive (smart hydrogels). Non-responsive hydrogels 

once swollen will remain in the same shape and size with changing conditions such 

as pH, temperature and ionic strength. This type of hydrogel is often used for tissue 

replacement applications and coating of medical devices (Gonzalez & Alvarez 

2014). PVA hydrogels have been widely investigated for the repair and replacement 

of articular cartilage because of similar physical properties (e.g strength, and 

frictional and lubricating behaviour to articular cartilage) (Spiller et al. 2011).  

Stimuli responsive hydrogels change conformation with changes in 

surroundings (e.g. pH and ionic strength). The physical and mechanical properties 

of stimuli responsive hydrogels can be changed, including swelling and pore size 

when there is a change in the local environment surrounding the hydrogel. Change 

in hydrogel properties can be reversible once the stimulus is removed. In addition to 

changes in pH and ionic strength, other stimuli include changes in temperature, 

electricity, magnetic field, pressure, and biological changes such as enzyme, 

antibody, and glucose concentrations (Figure 1:13) (Soppimath et al. 2002). 
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Figure 1:13 Factors affecting the swelling and collapsing process of smart hydrogels. The 
swelling and deswelling is reversible and depending on the stimuli such as pH, temperature, 
radiation and ionic strength.   

Stimuli responsive hydrogels have been examined to develop gels that 

undergo conformational change, such as collapsing after injection to form a semi-

solid depot to prolong the release of drug from the hydrogel. Known as in situ 

forming gels, these collapsing hydrogels have been evaluated in many applications, 

e.g. eye drops (Kumar et al. 2013). Stimuli responsive hydrogels that change 

properties at a pH have widely investigated due to the different range of pH values 

in body. Polymers with basic groups, such as poly (2-vinylpyridine), and with acidic 

groups, such as polyacrylic acid (PAA) have been examined (Li et al. 2016; Sensitif 

et al. 2015).  

Hydrogels that collapse at a specific temperature are known as thermo-

responsive hydrogels.  Much effort has focused on hydrogels that are swollen at 

ambient temperature but which collapse at physiological temperature entrapping 

the drug inside and slowing its release. The gel transition can be fast, within 

seconds once the transition temperature is reached (Lue et al. 2011). The transition 

temperature for hydrogels that collapse is called the low critical solution 

temperature (LCST). LCST is the temperature below which a polymer or hydrogel 

exists in an extended form. When the LCST is reached, the polymer conformation 
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changes as the polymer chain interactions increase to expel water (and entrapped 

drug) with the polymer collapsing to a more globular form (Figure 1:14) (Patil et al. 

2013).  

 

 

Figure 1:14 The effect of temperature on the conformation of PNIPAAm polymer in water 
solution. Below LCST the polymer chain is relaxed and extended. Above LCST the polymer 
becomes insoluble in water and collapse (the process is reversible). 

At temperatures below the LCST, the hydrogel is swollen with water with 

hydrogen bonds between the polymer chains and water. Once the temperature 

increases above the LCST, the hydrophobic interactions between the polymer 

chains begins to predominate over the hydrophilic non-covalent interactions the 

polymer chains have with water. This causes the polymer to collapse becoming 

insoluble in water. The term volume phase transition temperature (VPTT) is also 

used to describe the temperature at which the hydrogel undergoes a transition from 

a completely swollen form to a solid form (deswelled) (Chang et al., 2015; 

Constantin, Cristea, Ascenzi, & Fundueanu, 2011). 

Natural polymers that could be used for the synthesis of thermoresponsive 

hydrogels are cellulose, chitosan and gelatin. Upon deswelling drug molecules 

could be entrapped in the hydrogel matrix and slow release of the drug could be 

achieved. The most widely investigated synthetic polymer for thermoresponsive 

hydrogel formulation is poly (N- isopropylacylamide) (PNIPAAm). It has an LCST of 

approximately 32oC (Stile et al. 1999; Lue et al. 2011; Schild 1992).   

Hydrogel synthesis  

Hydrophilic polymers tend to be used in biomedical studies because they can 

interact with water through common hydrophilic groups such as –OH, -CONH, -

CONH2, -COOH and –SO3H. Hydrogels prepared from hydrophilic polymers are 

soft and often lack mechanical strength. Hydrophobic polymers cannot be used 

alone for hydrogels that are destined to be used in an aqueous application. 

Hydrophobic polymers are either copolymerised with hydrophilic ones or a 

Water 

Polymer chain 
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hydrophilic group applied onto the polymer structure to modify the polymer  

properties and improve their interaction with water (Volkmer et al. 2013). 

Several chemical and physical cross-linking methods are used for hydrogel 

synthesis depending on the properties of the cross-linking bonds required (such as 

covalent or ionic bonds) but the most widely used method is free radical 

polymerisation (Hennink & Nostrum, 2002; Brazel & Peppas, 1995). In this process 

a mixture of monomers, cross-linker and initiator is used. Decomposition of the 

initiator causes the polymerisation by free radical addition to occur. Variation in the 

amount of monomers, cross-linker, initiator and polymerisation conditions will result 

in the formation of different hydrogels (Gelfi & Righetti 1981). Chung et al reported 

the synthesis of dextran-hydroxyethyl methacrylate microspheres and 

macrohydrogels with different mechanical properties was obtained when the 

preparation conditions modified. When the initiator concentration increased the 

gelation time reduced and the mechanical strength of the spheres increased 

(Chung et al. 2005).  

There are several types of polymers that could be used for non-biodegradable 

hydrogel synthesis in ophthalmic applications. Among the groups of polymers that 

are of interest, widely investigated and used for ophthalmic applications are HEMA 

and MPC.  

2-hydroxyethyl methacrylate (HEMA) 

Since their first discovery in 1960 by Wichterle and Lim, HEMA hydrogels have 

become the corner stone for hydrogel development. Hydrogels made from HEMA 

have been investigated for many years for different biomedical and pharmaceutical 

applications such as contact lenses, drug delivery and implantation (Tomar, Tomar, 

Gulati, & Nagaich, 2012; Stirbu et al., 2011). HEMA is from the family of acrylate 

polymers in which several other polymers are also available and used such as poly 

(methyl methacrylate) (PMMA), which is used for IOL synthesis (Figure 1:15). 

 

Figure 1:15 Chemical structure of poly (hydroxyethyl methacrylate) (PHEMA) and poly 
(methyl methacrylate) (PMMA).  
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Monomers used in hydrogel synthesis are generally toxic while the resulting 

polymers are not toxic. As a polymer, HEMA, being a polyester is not soluble in 

water in nature but when cross-linked into a hydrogel the gel matrix swells in water 

or biological fluids. The swelling behaviour is related to the hydrophilic hydroxylethyl 

pendant groups available along the polyHEMA main chain that are capable of 

forming hydrogen bonds with water. HEMA hydrogels are known to be 

biocompatible. This is due to the reduction of protein adsorption onto polyHEMA 

surfaces and improved biocompatibility with blood cells. HEMA has been used for 

the synthesis of soft contact lenses, ophthalmic implants such as Esnoper-V2000® 

and Esnoper clip®. These implants are investigated to improve the outcome of deep 

scleretomy surgery for glaucoma patients. HEMA has also been modified by 

copolymerisation with other polymers for hydrogel synthesis to improve their water 

uptake, mechanical properties and modify their drug releasing properties when 

used for drug delivery (dos Santos et al. 2008; Goda & Ishihara 2006).  

2-methacryloyloxyethyl phosphoryl choline (MPC) 

Zwitterionic polymers are biocompatible materials that are used as coating material 

or for the synthesis of biocompatible implants (L. Zhang et al. 2013). Zwitterionic 

means the overall charge of the surface of the molecule is zero. Hydrogels 

prepared from zwitterionic polymers are considered more biocompatible than other 

types of hydrogels. One of the most widely investigated zwitterionic polymers is 

phosphorylcholine polymers (PC). PC polymers have zwitterionic pendant groups 

that are similar in structure to head group of PC lipids in the cell membrane bilayer 

(Figure 1:16) (Bretscher & Raff 1975).   

 

Figure 1:16 The resemblances of 2-methacryloyloxyethyl phosphoryl choline (MPC) to the 
phospholipid bilayer comprising the cell membrane.  
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The zwitterionic charge is thought to be a key property which renders PC 

polymers to be biocompatible with body tissues and results in decreased protein 

adsorption and foreign body response (Lewis et al. 2002; Schlenoff 2014). The 

neutral charge on the PC group helps to reduce the electrostatic charge on the 

surface of the polymer chains which will reduce interactions between proteins and 

the polymer. The highly polar nature of the PC polymer head results in strong 

hydration of the PC group. A layer of water molecules will surround the PC polymer 

surfaces making it difficult for proteins and cells to bind irreversibly to a PC surface 

(Jiang & Cao 2010). It is this antifouling nature that PC can impart on biomaterials 

to improve biocompatibility of the materials. They also have excellent blood 

biocompatibility (Ishihara, Aragaki, Ueda, Watenabe, & Nakabayashi, 1990; Andrew 

L. Lewis, 2000).  

Several PC based polymers are clinically available and widely used in many 

applications including coating of heart stents, blood filtration and processing 

devices and contact lenses. Vertellus Biomaterials specialises in the synthesis of 

PC based polymers (http://www.pcbiomaterials.com/). The nomenclatures of the PC 

polymers that are commonly used clinically are PC-1059, PC-1036 and PC-1015. 

Each product number represents a copolymer derived from a different formulation 

in which 2-methacryloyloxyethyl phosphoryl choline (MPC) is always included 

(Lewis 2006). For example PC-1036 is a cross-linked co polymer of MPC, 

laurylmethacrylate, 2-hydroxypropyl methacrylate and trimethoxysilyl propyl 

methacrylate and used for coating of BiodivYsioTM heart stent (Goreish et al. 2004; 

Iwasaki & Ishihara 2005).  

Ophthalmic implants made of HEMA alone and devices coated with PC 

polymers are available in the clinic. Ophthalmic implants made of HEMA such as 

Esnoper-V2000® which is used in deep sclerotomy surgery of the eye (Stirbu et al. 

2011). In the year 2000 FDA has approved the use of BiodivYsio
TM

 AS PC coated 

heart stent. This device is a small stainless steel wire mesh stent coated with 

phosphorylcholine (PC). This implant is to be implanted permanently in the blocked 

coronary arteries to improve blood flow. PC was used as a coating to improve the 

biocompatibility of the metal stent (Butany et al. 2005). Combining both HEMA and 

MPC in an implant will have the potential of higher biocompatibility and less foreign 

body response compared to using each alone.     

N-isopropylacrylamide (NIPAAm) 

The most widely used and investigated synthetic polymer for thermoresponsive 

hydrogel formulation is poly (N- isopropylacylamide) (PNIPAAm). It is a water 
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soluble polymer with an LCST of approximately 32oC (Stile et al. 1999; Lue et al. 

2011; Schild 1992). PNIPAAm has gain popularity due to its ability to copolymerise 

with other monomers. Copolymerisation strategies provide a means to engineer a 

hydrogel with varying VPTT and properties (e.g. hydrophilicity). When 

copolymerised with hydrophilic polymers, the VPTT of PNIPAAm often increases 

(Villa et al. 2014; Alexander et al. 2014; Lee & Lu 2013). This is an advantage in 

formulating thermoresponsive hydrogels for pharmaceutical applications as the 

transition temperature can be closer to physiological body temperature. Also when 

polymerised with pH sensitive polymers a hydrogel with dual activity can be 

prepared (Zhang et al. 2007; Gao et al. 2013). When NIPAAm and chitosan were 

polymerised and used for the synthesis of a thermosensitive in situ hydrogel for the 

delivery of timolol maleate as eye drops, there was a two-fold increase in the 

maximum concentration of timolol maleate when compared with conventional eye 

drops in the rabbit eye. The control of IOP was also improved by using the in situ 

hydrogel (Cao et al. 2007).   

The characteristics and physical properties of NIPAAm hydrogels are often 

affected by the co-monomer and cross-linker used to fabricate the hydrogel. The 

thermal responsiveness of NIPAAm hydrogels is controlled by a balance between 

hydrophilic and hydrophobic interactions between the polymer chains and the 

surrounding medium (Stewart et al. 2011; Gan et al. 2016). This balance is affected 

by the type and percentage of cross-linker used. Lee and Lin reported that the 

swelling behaviour of NIPAAm-co-(ethylene glycol) methylether acrylate (NIPAAM-

co-PEGMEA) hydrogels was affected by the cross-linker that was used. When 

tetraethylene glycol diacrylate (TEGDA) was used as the cross-linker, the swelling 

ratio (SR) was 23 compared to 7 for N,N-methylene bisacrylamide (NMBA) and 6 

for ethylene glycol dimethacrylate (EGDMA) when they were used as cross-linkers 

in the same molar ratio. Lee and Lin also reported that the SR of NIPAAm 

hydrogels decreased with increasing the molar ratio of TEGDA as cross-linker. The 

reported SR was 23, 20 and 11 for 5 mol%, 10 mol% and 15 mol% respectively 

(Lee & Lin 2006). 

In case of proteins, the use of a hydrophilic cross-linker could create a 

hydrophilic environment around the loaded protein that helps to preserve its stability 

and activity during formulation and use.     
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Hydrogels in ophthalmic applications  

Hydrogel have been examined in applications such as tissue engineering, artificial 

replacement of organs, coating of implantable devices, drug delivery, gene delivery, 

scaffolding and wound dressings (Du et al. 2012; Vashist et al. 2014; Hoffman 

2012). One of the major successes for the use of hydrogels is as wound dressings. 

Hydrogel wound dressings can absorb exudates from wounds are useful to treat 

necrotic wounds. Examples of the available hydrogel wound dressings in the clinic 

are Intrasite®, Neoheal®, Purilon® and AquafloTM (Calo & Khutoryanskiy 2015).  

Hydrogels are also used as sealants during surgery. Duraseal® is used as a 

Spine Sealant System in spinal surgery. This product consists of two solutions 

(polyethylene glycol (PEG) ester and trilysine amine) that undergo reaction during 

injection to form a hydrogel (Annabi et al. 2015). Spaceoar® is another hydrogel and 

is used to reduce rectal injury in men receiving prostate cancer radiation therapy 

(RT) by acting as a spacer pushing the rectum away from the prostate. Spaceoar® 

consists primarily of water and PEG. Upon injection of the liquid precursors the 

hydrogel solidifies without producing measurable heat. The hydrogel maintains 

space during radiation therapy and then gradually liquefies, and is cleared from the 

body (Pinkawa et al. 2011). These hydrogels are non-medicated hydrogels.  

Medicated hydrogels are also available in the clinic. For example, Supprelin® 

LA is a subcutaneous implant for the treatment of children with central precocious 

puberty. This product consists of 2-hydroxyethyl methacrylate, 2-hydroxypropyl 

methacrylate, trimethylolpropane trimethacrylate, benzoin methyl ether, perkadox-

16, triton X-100 hydrogel incorporating 50 mg of histrelin acetate, which is delivered 

over 12 months (du Toit et al. 2016). Another hydrogel product is Atridox® which is 

a subgingival controlled-release formulation of doxycycline for infection. This 

system consists of two solutions; Atrigel® polymeric formulation of poly(DL-lactide) 

dissolved in N-methyl-2-pyrrolidone and contains doxycycline hyclate. Upon contact 

with the crevicular fluid, the liquid product solidifies into a gel and then allows for 

controlled release of drug for a period of 7 days (Gad et al. 2008). In ophthalmic 

applications hydrogels are widely used as contact lenses and implants. They are 

also investigated as drug delivery systems and vitreous substitute (Figure 1:17). 
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Figure 1:17 Different forms of hydrogels and the possible application sites of the hydrogels 
in the eye for ophthalmic drug delivery (Kirchhof et al. 2015). 

In ophthalmic applications the most successful area for hydrogel products is 

soft contact lenses (SCL). Contact lenses are widely used for vision correction and 

cosmetic purposes. Some contact lenses are used for medical purposes such as 

bandage contact lenses and intraocular lenses (IOL) (Lai 2013). The first SCL was 

synthesised from poly (2-hydroxyethyl methacrylate) (pHEMA) hydrogel. Since then 

several polymers have been developed and used for contact lens including 

methacrylic acid and N-vinylpyrrolidone (Nicolson & Vogt 2001).  

An important development was the introduction of silicone hydrogel contact 

lenses. The silicone in the contact lens structure offers the advantage of higher 

oxygen permeability compared to SCL which allowed extended wear overnight and 

for several days (González-Méijome et al. 2006). Bandage contact lenses are used 

to protect the cornea after injury or surgery and allow it to heal properly (Fraunfelder 

& Cabezas 2011). Contact lenses have been thoroughly investigated as ocular 

delivery systems (Christie, 1999; Gupta & Aqil, 2012; Maulvi, Soni, & Shah, 2016). 

Kim et al reported the potential extended release of timolol and dexamethasone for 

more than 4 weeks from silicone hydrogel contact lens depending on the monomer 

mixture used for the synthesis of the lenses and the loading method used (Kim et 

al. 2008).  

SCLs have also been examined as a platform for the delivery of other 

dosage forms such as liposomes, micro and nanoparticles. Gulsen et al reported 

the dispersion of a lidocaine loaded dimyristoyl phosphatidylcholine liposomes into 

a HEMA contact lens. The release of the drug was sustained to up to 7 days with 

65% of the loaded drug being released during this period (Gulsen et al. 2005).       

Ophthalmic hydrogel implants have also been used for several clinical 

applications. IOLs are used in cataract surgery. Cataract is the opacification of the 
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natural eye lens and can be treated by surgery. The surgery involves the removal of 

the natural lens and replacing it with an IOL (Hollick et al. 1999). IOLs generally are 

made from acrylic polymers such as polymethylmethacrylate (PMMA) and pHEMA. 

The AcrySof® IOL is made of copolymer of phenylethyl acrylate and phenylethyl 

methacrylate.  

The flexibility of the hydrogel materials allowed the synthesis of foldable 

IOLs that can be implanted with minimum incision (Bozukova et al. 2010). 

Hydrogels are also used as sealant of corneal incisions when IOL implanted after 

cataract surgery. Resure® sealant (which has similar composition with Duraseal) is 

currently available in the clinic (Masket et al. 2014). In addition to contact lenses, 

HEMA was used for the synthesis of ophthalmic implants. Esnoper® (HEMA 

Implant) is used as a spacer in deep sclerotomy which is an operation used for the 

treatment of glaucoma patients (Stirbu et al. 2011). Hydrogels are also investigated 

as a biomaterial for vitreous substitution in the posterior segment. Giannetti et al 

demonstrated the possibility of using hydrogels synthesised from PVA and tri-

sodium trimetaphosphate as a substitute for the vitreous humour  (Parikh et al. 

2014). Chang et al also reported the synthesis of in situ hydrogel made from 

zwitterionic sulfobetaine methacrylamide and acryloyl cystamine monomers as 

substitute. These gels demonstrates excellent biocompatibility when in vivo studies 

were performed in rabbits (J. Chang et al. 2015).   

Hydrogels have been widely investigated as potential drug delivery systems 

for different ophthalmic applications. Hydrogels were investigated to prolong the 

corneal contact time of eye drops in efforts to improve bioavailability and patient 

compliance. An in situ hydrogel that is applied as a solution that then forms a gel 

led to the development of Timpotic XE®, which is a gel forming solution of timolol 

maleate that is used to treat glaucoma. The formulation is present in a solution form 

of timolol maleate and anionic gellan gum polymer. Once instilled into the eye, the 

aqueous gellan gum solution starts to gel by forming a complex with the cations in 

the tear film and prolong the contact time of the drug with ocular tissues. It is used 

once daily compared to the traditional timolol eye drops, which are used twice a day 

(Khare et al. 2015; Shedden et al. 2001).  

Injectable thermoresponsive hydrogels were widely investigated as IVT 

injections to sustain the release of therapeutic proteins in the posterior segment of 

the eye. Xie et al reported the sustained release of Avastin for up to 14 days in vitro 

when a poly(lactic-co-glycolic acid)-poly(ethylene glycol)-poly(lactic-co-glycolic acid) 

(PLGA-PEG-PLGA) hydrogel was injected in rats. This formulation was compared 

to Avastin injection which lasts only 3 days (Xie et al. 2015). In spite of the 
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extensive research in the area of hydrogels in ophthalmic drug delivery only 

Timpotic XE® is clinically available.  

Hydrogels and water  

Hydrogels have many advantages as implantable materials because they are 

biocompatible and the ability of hydrogels to load and release drugs. These two 

characteristics are highly affected by the amount, type and distribution of water 

inside the hydrogel (Shi et al. 2012). The relationship between water and hydrogels 

has long been the focus of researchers and has been investigated for many years 

(Lee et al. 1975; Jhon & Andrade 1973). The water inside hydrogels can be thought 

to have two main functions; (i) control the transport of materials (nutrients, cells, 

drugs) in and out of the hydrogel and (ii) to provide flexibility and an environment 

similar to body tissues.  

The water in hydrogels is often classified as free (bulk) and bound water, 

which is non-covalently associated to the polymer within the hydrogel. Bound water 

is further classified into slightly and tightly bound water (Li et al. 2005). When a dry 

hydrogel device (e.g. film) is placed in an aqueous environment the water binds 

initially to the polar, hydrophilic groups through tight hydrogen bonding leading to 

what is called (primary bound water) and the matrix starts to swell. Once the gel 

matrix swells, hydrophobic groups will be exposed to water. Extra water entering 

the gel will interact with the hydrophobic groups forming (secondary bound water); 

both are called total bound water (Hoffman 2012; Hatakeyama & Hatakeyama 

1998). The polymeric matrix continues to absorb water until it reaches equilibrium 

and complete swelling is observed. This extra water will fill the pores and spaces 

within the hydrogel, and once equilibrium is reached, this water is called free or bulk 

water (Figure 1:18) (Wang & Gunasekaran 2006). The total water in a hydrogel is 

the sum of free and bound water. Sometimes water in hydrogels is classified 

according to its ability to freeze. Non-freezable water is a term used to describe 

water molecules that are tightly bound to the polymer matrix. The bulk and loosely 

bound water is called freezable water (Tranoudis & Efron 2004). 
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Figure 1:18 Interactions of water with hydrogels. First the water binds only to hydrophilic 
groups forming the primary bound water. Extra water binds with hydrophobic groups and 
form secondary bound water. Excess water fills the voids in the hydrogel matrix and called 
bulk water. 

The amount of water at the polymer surfaces can play an important role in 

biocompatibility (platelet and protein adhesion) and drug release from hydrogels 

(He et al. 2008). Higher water content often results in a softer hydrogel that has less 

effect on the surrounding tissues (less inflammation and foreign body response) 

(Morais et al. 2010). The presence of water also reduces the interaction between 

polymer and protein, and typically reduces protein adsorption on the surface of 

hydrogel device leading to increased biocompatibility. Proteins display less 

conformational change in the presence of associated water around a hydrated 
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surface and the adsorption of a protein to the hydrogel surface can be reversible 

(Ishihara et al. 1998).  

In general when the total water content increased the biocompatibility of a 

hydrogel matrix increases as well. Researchers were in disagreement on which 

type of water responsible for biocompatibility; free, slightly bound or bound water. 

Shi et al reported that free or bulk water is largely responsible for the improvement 

in biocompatibility (Shi et al. 2012). Tanaka and Mochizuki reported that the slightly 

bound water on the polymer surface is the type of water responsible for the 

reduction in protein adsorption while He et al suggested that bound water is the key 

player (He et al. 2008; Tanaka & Mochizuki 2010).  

Limitation of hydrogels  

While hydrogel derived devices (e.g. SCL and IOLs) are available in the clinic, the 

number of hydrogel based products used for drug delivery system is limited. One 

challenge is the large amount of water that is usually associated within most 

biomedical hydrogels. Dissolved substrates tend to rapidly diffuse throughout 

hydrogel. The drug is usually loaded by two main methods; soaking (drug 

imbibition) and in situ loading (during polymerisation) (Figure 1:19) (Kim et al. 

1992). Unfortunately release of the drug is often too rapid once the drug-loaded 

hydrogel is placed in a drug free environment.   

In situ loading involves the polymerisation of the hydrogel matrix in the 

presence of the drug. This method of drug loading is limited by the requirement to 

remove leachable monomer components after polymerisation. Removal of toxic 

leachables will be accompanied by loss of the drug which is of special concern for 

small molecules especially hydrophilic drugs. In situ loading may better entrap large 

molecular weight drugs such as proteins within the hydrogel matrix. It is difficult for 

a protein to mix within a hydrogel. Large molecules do not effectively mix, which is 

nearly impossible when one of the macromolecules is a cross-linked network. 

Another disadvantage is the polymerisation conditions may result in side reactions 

with the drug. To avoid these problems soaking methods are often used. 

In the soaking method the hydrogel matrix is prepared in advance and the 

xerogel (which is the fully dried hydrogel) is allowed to hydrate in the drug solution 

allowing the drug to be absorbed within the swollen hydrogel (Figure 1:19). The 

amount of drug absorbed depends on the solubility of the drug, drug conformation, 

molecular weight, interaction with the hydrogel, concentration of the drug in the 

loading solution and the degree of swelling of the hydrogel in the loading solution 

(Maulvi et al. 2014). 
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Figure 1:19 Drug loading method for hydrogels; soaking method and in situ method. In 
soaking method a dried hydrogel is incubated in the drug solution until equilibrium is 
reached between the hydrogel and the solution (a fraction of the drug will be entrapped). In 
in situ method the monomer and/or cross-linker polymerised in the presence of the drug 
(100% entrapment of the drug).  

The large amount of water in hydrogels facilitates the loading of low molecular 

weight hydrophilic drugs, but subsequent release is often too fast and is 

accompanied by a burst effect. In most cases the burst release is problematic 

especially with narrow therapeutic index drugs and may cause toxicity to the tissues 

surrounding the hydrogel. Drugs with low water solubility can be released slowly 

from hydrogels depending on the drug solubility; however drug loading efficiency is 

low because of the limited drug solubility in water which makes it difficult to load 

therapeutic doses (Kirchhof et al. 2015). Although extensive research has been 

conducted over the years to address such problems there is limited number of drug 

releasing hydrogels in the clinic to this day (e.g. Supprelin® LA, Atridox®, Timpotic 

XE®). 

Hydrogels with higher water content also tend to lack mechanical strength 

and may be subjected to rupture during implantation (Calvert 2009). Sterilisation is 

also a problem with implantable hydrogels as they may be subjected to chemical or 

physical changes under the influence of thermal, chemical or radiation sterilisation 

(Kanjickal et al. 2008; Stoppel et al. 2014).    
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Hypothesis and aims 

Hydrogels are potentially good candidate materials for continued development in 

ophthalmic applications. Hydrogels may be exploited in ocular drug delivery and as 

ocular implants to offer possible solutions to improve the treatment of blinding eye 

diseases that affects most of the aging populations around the world (glaucoma and 

AMD). As hydrogels are used as lens materials for both contact and intraocular 

lens, the work in this thesis set out to examine the use of hydrogels in two different 

parts of the eye: (i) subconjunctiva and (ii) vitreous cavity.   

Hydrogels can be made to associate with a large amount of water, so they 

are soft and may better match tissue properties for a hydrogel based implant. 

Athough hydrogels have limitations (e.g. easy to tear), they may be more 

biocompatible (low foreign body response) than currently used implant materials 

(e.g. silicone). It was hypothesised that a GDD made using a hydrogel could be 

used within the subconjunctival space to restrict aqueous outflow to control 

pressure so that the IOP could be maintained at 10 mm Hg.   

Use of a hydrogel in a GDD could reduce complications due to 

biocompatibility that are associated with current GDDs. Since HEMA and MPC are 

used in widely used ophthalmic devices (e.g. contact lens), these materials would 

be used to fabricate hydrogel films to be examined for use as a possible GDD. The 

initial aim was that by modifying the water content of the hydrogel the permeability 

of the hydrogel could be controlled to allow the constant outflow of the aqueous 

humour at a rate of 2 µL/min. It was thought by modification of the molecular 

porosity of a hydrogel, that there would be an opportunity to develop a material that 

could control the rate of diffusion of aqueous humour and control IOP in a more 

effective way than is currently possible. 

It is also hoped that a hydrogel based GDD could be folded and used in 

such a way that only a small incision in the eye would be required for implantation. 

If this can be achieved, it is possible that a device can be developed that can be 

implanted requiring less surgical skill. It was first a necessary aim to determine the 

hydraulic conductivity and permeability of hydrogel films to determine if they could 

in fact be used to control the aqueous outflow. 

Should the HEMA-MPC hydrogels not be able to control the aqueous outflow, 

then it was hypothesised that a HEMA-MPC hydrogel film could also be used as a 

drug releasing spacer to reduce subconjunctival scarring to improve the success 

rate of GFS. The hydrogel film would act as drug delivery system of an anti-

inflammatory or anti-scarring agent and at the same time could also act as a spacer 
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that could mechanically separate the conjunctival tissue from the sclera to prevent 

adhesion due to localised scarring.  

Since the treatment of AMD utilises antibody based drugs that are administered 

by IVT injections, hydrogels were also evaluated for IVT injection into the vitreous 

cavity. It was hypothesised that it could be possible to utilise a hydrogel to slow the 

clearance of a protein-based medicine from the vitreous cavity. The challenge was 

to develop a strategy to both mix the protein within the hydrogel and to determine if 

the presence of the hydrogel delayed protein clearance. Thermoresponsive 

hydrogels made from NIPAAm using a hydrophilic cross-linker were examined to 

determine if the clearance time for proteins from the vitreous cavity could be 

increased while maintaining the activity and stability of the protein.  

The aim of this work is the fabrication of HEMA-MPC hydrogels as GDD. The 

fabricated hydrogels will be studied and compared regarding water permeability as 

a mean to control aqueous outflow. The hydrogels will also be examined regarding 

total water content, water distribution and swelling in different solvents. The 

promising formulation will be loaded with anti-inflammatory drug, dexamethasone, 

for the formulation of combination device or drug releasing subconjunctival spacer. 

The aim is also to formulate stimuli responsive NIPAAm hydrogel for protein 

delivery to the vitreous. NIPAAm thermoresponsive hydrogels with different types of 

cross-linker will be prepared. The cross-linker percentage and type will be varied 

and the effect of formulation variation will be studied regarding VPTT, swelling ratio, 

water retention percent and protein loading and release.  
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Chapter 2. Materials and methods 

Materials 

Chemicals and solvents used are listed in Table 2:1. Reagents were all used as 

received without further purification. Spectrophotometric and instruments used for 

characterisation are all described in the methods section below. 

Table 2:1 List of chemicals and solvent used.   

Material Cat no supplier 

2-hydroxyethyl methacrylate 

(HEMA) 130.14 g/mole 

Density 1.073 g/mL 

128635 
Sigma-Aldrich Chemicals 

(UK) 

Polyethylene glycol diacrylate-Mn 

700 (PEGDA) 

Density 1.12 g/mL 

455008 
Sigma-Aldrich Chemicals 

(UK) 

2,2-azobis(2-methylpropionitrile) 

(AIBN) (MW 164.21 g/mole) 
441090 

Sigma-Aldrich Chemicals 

(UK) 

2-methacryloyloxyethyl phosphoryl 

choline (MPC) (MW 295.27 g/mole) 
88J4253P Vertellus biomaterials (UK) 

Pirfenidone 

(MW 185.2 g/mole) 
13986 

Cayman chemical 

company (UK) 

Acetonitrile HPLC grade 75-05-8 
Fisher Scientific Ltd 

(UK) 

Trifluoroacetic acid T6508 
Sigma-Aldrich Chemicals 

(UK) 

Methanol HPLC grade M/4056/17 
Fisher Scientific Ltd 

(UK) 

Phosphate buffered saline tablets 

PBS 
188912014 

ThermoFisher Scientific 

Ltd 

(UK) 

Dexamethasone 

(MW 392.46 g/mole) 
D4902 

Sigma-Aldrich Chemicals 

(UK) 

Pirfenidone 13986  

Doxycycline hyclate 

(MW 512.94 g/mole) 
D9891 

Sigma-Aldrich Chemicals 

(UK) 

Beta-cyclodextrin (βCD) 

(MW 1134.98 g/mole) 
W402826 

Sigma-Aldrich Chemicals 

(UK) 

Glycidyl methacrylate (GMA) 

(MW 142.15 g/mole) 

density (1.042 g/mL) 

151238 
Sigma-Aldrich Chemicals 

(UK) 

Dimethylformamide 

MW 80.14 

Density 1.03 g/mL 

227056 
Sigma-Aldrich Chemicals 

(UK) 

Sodium chloride  7647-14-5  
Fisher Scientific Ltd 

(UK) 

Sodium hydroxide 1310-73-2 Fisher Scientific Ltd (UK) 
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Polyethylene glycole diglycidyle 

ether (Mn 500) 

Density (1.1 g/mL) 

475696 
Sigma-Aldrich Chemicals 

(UK) 

N-isopropylacrylamide 97% 

(MW 113.16 g/mole) 
415324 

Sigma-Aldrich Chemicals 

(UK) 

PC 3059 Gift from Vertellus biomaterials (UK) 

Ammonium persulfate 

(APS) 

(MW 228.2 g/mole) 

A3678 
Sigma-Aldrich Chemicals 

(UK) 

N,N,N′,N′-

Tetramethylethylenediamine 

(TEMED) ~99%  (MW 116.2 

g/mol) density (0.775 g/mL) 

T9281 
Sigma-Aldrich Chemicals 

(UK) 

Bevacizumab (Avastin® 25 

mg/mL) 

(Genentech, South San Francisco, California) 

were supplied from the left over syringes and 

purchased from Moorfields Eye Hospital 

Acrylated-HA (~50 KD)  Synthesised in our lab 

Infliximab 
Vial of 10 mg/mL for Iv infusion from 

HEALTHCARE CELLTRONTM 

 

Methods  

Fabrication of HEMA-MPC hydrogel films 

HEMA-MPC hydrogel films were fabricated according to compositions described in 

(Table 2:2) by thermally induced free radical polymerisation. MPC monomer was 

weighed and dissolved in HEMA monomer in a 14 mL glass tube with a magnetic 

stirrer to prepare the monomer mixture solution. When a clear mixture was visually 

observed, the cross-linker, poly(ethylene glycol diacrylate) (PEGDA) and the 

initiator, 2,2-azobis(2-methylpropionitrile) (AIBN) were added to the monomer 

solution and mixed until a clear mixture was observed using a magnetic stirrer. A 

suba-seal was attached to the lid of the glass tube and an outlet needle (yellow) 

was placed at the top of the tube. Argon was passed through the long needle 

directly into the reaction mixture and degassed for 5 minutes in an effort to displace 

dissolved oxygen, which can inhibit the polymerisation reaction. The reaction 

mixture was then injected into a polypropylene mould using 23G needle. Care must 

be taken during injection to avoid air bubbles inside the mould.  

After injection of the polymerisation mixture, the mould was placed flat in the 

oven at 70oC for 6 hours to polymerise. After 6 hours the polymeric xerogel was 

formed. The term xerogel is used to describe a hydrogel in a completely dried, 

unhydrated state. The xerogel was then removed from the mould and immersed in 
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(50 mL) of water for hydration and to remove leachable molecules including 

unreacted monomer and oligomeric species. The water was changed twice daily 

and the washing water was scanned with UV visible spectrophotometer over a 

range of 400-200 nm to detect any unreacted monomers. The washing of the 

hydrogel continued for several days. The hydrogels were considered clean when no 

signals were detected by UV from the water used to wash the films. Typically for a 

hydrogel film with the dimensions of 30 × 80 mm and 1 mm thickness 4 days are 

required to complete the washing process. The hydrogels were then stored in 

plastic containers in (50 mL) of water to be used later. The storage water was 

changed every week to avoid mold growth. Three different batches of films were 

prepared for each monomer-cross-linker formulation. 

Table 2:2 Compositions of different HEMA-MPC hydrogel films prepared by free radical 
polymerisation. The MPC weighed and dissolved in HEMA with PEGDA and AIBN. For the 
preparation of 100% MPC formulation the MPC was dissolved in 1 mL DW.  

Code 
HEMA (g) 

(mmole) 

MPC (g) 

(mmole) 

PEGDA (µL) 

(0.076 mmole) 

AIBN (g) 

(0.45 mmole) 

~MPC% 

(w/w) 

S1 
9.87 

(75.84) 
0 50 0.074 0 

S2 
9.45 

(72.61) 

0.42 

(1.42) 
50 0.074 5 

S3 
8.95 

(68.77) 

0.92 

(3.12) 
50 0.074 10 

S4 
8.45 

(64.93) 

1.42 

(4.81) 
50 0.074 15 

S5 
7.95 

(61.09) 

1.92 

(6.5) 
50 0.074 20 

S6 
6.95 

(53.4) 

2.92 

(9.89) 
50 0.074 30 

S7 
4.93 

(37.88) 

4.94 

(16.73) 
50 0.074 50 

S8 0 
1.0 

(3.39) 
50 0.074 100 

Abbreviation: 2-hydroxyethyl methacrylate (HEMA), polyethylene glycol dimethacrylate-
700 Da (PEGDA), 2,2-azobis(2-methylpropionitrile) (AIBN), 2-methacryloyloxyethyl 
phosphoryl choline (MPC).  
  

The polypropylene and silicone moulds were prepared and assembled as 

shown. (Figure 2:1). The dimensions were 40 × 90 mm and 30 × 80 mm for the 

polypropylene and silicone sheets respectively. The thickness of the silicone sheet 

used was 1 mm. Both polypropylene and silicone sheets were first sonicated with 

isopropanol for 10 minutes for cleaning followed by drying in the oven at 50oC for 30 

minutes. After assembling the mould the polymer mixture was injected slowly and 

carefully starting from the edges to avoid air bubbles 
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Figure 2:1 The mould used for the hydrogel fabrication before and after assembly. The 
mould consists of two polypropylene sheets and one silicone sheet sandwiched between 
them. 

Characterisation of the hydrogel films  

General appearance 

Once removed from the oven, the HEMA-MPC films were characterised regarding 

their general appearance. The thickness of the dried films (xerogel) and the 

resulting hydrated gels were measured using a caliper and the values recorded. 

The effect of MPC on the general appearance and thickness of the gels was noted 

and recorded.  

Equilibrium water content percent measurements (EWC%) 

The term equilibrium water content percent (EWC%) refers to the maximum 

percentage of water absorbed by a xerogel to reach full hydration. To calculate the 

EWC% a hydrogel discs of 1 cm in diameter were cut from fully hydrated hydrogel 

films and weighed which is considered as the weight of the disc in equilibrium with 

water (We). The discs were then fully dried by placing them in vacuum oven at 70oC 

until they reached constant weight (Wd). Equation 1 was used for the calculation of 

EWC% (Rohindra et al. 2004).  

 

                                    𝑬𝑾𝑪 (%) = (
𝑾𝒆−𝑾𝒅

𝑾𝒆
) × 𝟏𝟎𝟎                                (1) 

Polypropylene sheet 

Silicone sheet 
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Swelling ratio (SR) measurements in different solvents and solvent mixtures 

The term swelling ratio (SR) refers to the ratio between the weight of solvent 

absorbed by the hydrogel and the dry weight of the gel. It gives an indication to the 

increase in size of the dry xerogel when fully hydrated. To calculate the SR a 

hydrogel discs of 1 cm in diameter were cut from fully hydrated hydrogel film and 

weighed. The discs were then fully dried by placing them in vacuum oven at 70oC 

until they reached a constant weight (Wd). To measure the SR in different solvents 

each dry discs was placed in 5 mL of water, methanol, ethanol, water: methanol 

(1:1) or water: ethanol (1:1) at 25oC. The SR was measured in different solvent 

systems to allow loading of a wide range of drugs with different solubilities. The 

discs were left in the solvents for 48 hours to ensure complete hydration. After 48 

hours the discs removed from the solvents; the surfaces of the discs were wiped 

carefully to remove extra solvents and weighed at equilibrium (We). Equation 2 was 

used for the calculations.  

                                     𝑺𝑹 = (
𝑾𝒆−𝑾𝒅

𝑾𝒅
)                                                   (2) 

Measurement of hydraulic conductivity (L) and permeability (K) 

The permeability measurement for each sample was calculated using a dynamic 

method which involves placing the sample into a flow chamber and allowing water 

to pass from the fluid reservoir to the flow chamber. The system used was an 

established system by Dr Ali Hussain in UCL Institute of Ophthalmology for 

measuring hydraulic conductivity and permeability of bruch’s membrane of the eye. 

The flow chamber and the reservoir were connected using a three-way valve. One 

opening of the three-way valve was attached to the flow chamber and another 

opening was attached to the fluid reservoir through a tube. The third opening of the 

value remained closed and was used to remove air bubbles if any were entrapped 

in the tube. The fluid reservoir is a vertical capillary tube that was filled with water 

and which served as a manometer. The flow chamber consisted of a glass plate 

and a capping plate. The capping plate can be fixed on the glass plate with screws. 

The glass and capping plate had a small circular indentation with a radius of (3 mm) 

for sample placement. The sample places were on the circular indentation of the 

glass plate with the capping plate placed on top and screwed to seal the flow 

chamber. Two different flow chambers were used. In the first, the capping plate was 

open at top of the sample (open system) while in the other chamber, the capping 

plate had no opening (closed system) (Figure 2:2). 
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Figure 2:2 The system used for measurement of hydraulic conductivity where we can see 
the fluid reservoir and the flow chambers. The position of the sample and the three way 
valve that is used to control the flow of water to the sample is highlighted.  

Once the apparatus was assembled and the sample was fixed, it was 

necessary to avoid air bubbles in the tubes and chamber. A (4 × 4 mm) sample was 

cut from each fully hydrated film because the sample size should be bigger than the 

radius of the opening in the middle of the chamber (3 mm) to allow the film to be 

fixed and ensures no water can escape from the edges of the film. Once the sample 

was fixed to the chamber, water was allowed to run through the system from the 

fluid reservoir to the flow chamber. The water moved down the column to the flow 

chamber through the tube and three way valve. The height of the fluid in the column 

decreases with time. The water levels were recorded at different time points over a 

period of 24 h. The values of the height of water verses time were plotted and the 

gradient was used for calculating the hydraulic conductivity (L) using Equation 3:  

 

                                            𝑳 = − 
𝒓𝟐

𝒂𝟐 ƿ 𝒈
  𝑮                                                      (3) 

 

Where (L) is the hydraulic conductivity, (r) is the radius of the water column, (a) is 

the radius of the sample, (ƿ) is the density of water and (g) is the gravitational 

constant (9.81 m/sec2).   

Sample 
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The hydraulic conductivity value (L) was used to calculate the permeability (K) 

using Equation 4 where (T) is the thickness of the film. An example of the 

calculation used can be seen in the appendix 

 

        𝑲 = 𝑳 × 𝑻                                                         (4) 

Preparation of 10% MPC hydrogels to contain a pouch 

Two approaches were used to attempt to create a pouch in a HEMA-MPC hydrogel 

film; ablation using a femtosecond laser and polymerisation around soluble powder 

as a positive mould. A femtosecond laser was used to try to create a pouch in 

HEMA hydrogel films with 15% MPC. The femtosecond laser that is used for 

cataract surgery in Moorfields Eye Hospital was used for the creation of a pouch in 

the hydrogel. The hydrogel was fully hydrated when the laser beam was directed to 

create a pouch. 

A phosphate buffer solution (PBS) tablet was also used to try to fabricate a 

pouch within a HEMA-MPC hydrogel film. The PBS tablet was crushed using mortar 

and pestle into large particles. The monomer mixture of 10% MPC was used to fill 

half of the mould used for the fabrication of HEMA-MPC hydrogels. The crushed 

PBS tablet was spread in the liquid monomer mixture. The mould was then filled 

with the monomer mixture. Care must be taken to make sure that all the PBS 

particles were covered in the monomer mixture. After polymerisation a film was 

formed and placed in DW for hydration and washing of unreacted monomers. 

Distribution of water inside the hydrogel, free to bound water ratio 

Differential scanning calorimetry (DSC) is a technique that can be used to measure 

the free to bound water ratio of hydrogels. The principle is that only free water and 

slightly bounded water are frozen so the endotherm obtained from DSC represents 

the amount of frozen water only. Equation 5 assumes that the heat of fusion of 

freezable water in hydrogels is the same as ice. The amount of bound water is the 

difference between the total water content and freezable water. The melting 

enthalpies achieved from DSC were used to calculate the bound to free water ratio 

as in Equation 5 ,where (Wb) is the amount of bound water, (Wf) is the amount of 

free water, (Wfb) is the amount of lightly bound water, (Qendo) is the melting 

enthalpies derived from the DSC chart and (Qf)  is the melting enthalpies of free 

water which is the same as ice 79.9 cal/g  (Rohindra et al. 2004). 
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                             𝑾𝒃(%) = 𝑬𝑾𝑪% − (𝑾𝒇 + 𝑾𝒇𝒃) × 𝟏𝟎𝟎,                       

                     𝑾𝒃(%) = 𝑬𝑾𝑪% − (𝑸𝒆𝒏𝒅𝒐/𝑸𝒇) × 𝟏𝟎𝟎,                       (5) 

 

Experiments were performed on DSC Q2000 (TA instruments, Waters, LLC) 

using a rate of 3°C/min from -40 to 20°C. Typical sample size range from 4-10 mg. 

Calibration with indium (Tm = 156.6, ∆Hf =28.71 J/g) was performed according to the 

manufacturer instructions. Nitrogen was used as a purge gas with a flow rate of 50 

mL/min for all the experiments. TA zero aluminium hermetic pans and lids were 

used. Data were analysed using TA Instruments Universal Analysis 2000.  

Swelling and deswelling kinetic studies 

The swelling and deswelling of the HEMA-MPC hydrogel films were measured by 

measuring the change in SR with time using a gravimetric method. For the swelling 

measurement, a fully dried hydrogel disc was weighed (Wd) and immersed in 5 mL 

PBS, pH 7.4 at 25oC. The disc was removed from PBS at predetermined time 

intervals (every 10 minutes for the first hour followed by every hour for 12 hours) 

and weighed (We). When removed the surface of the disc carefully wiped to 

remove any extra liquid. The SR for each time point was calculated as in Equation 

2. 

For deswelling measurements a fully dried disc was weighed (Wd) and 

allowed to swell completely in PBS, pH 7.4 for 24 h at 25oC. The fully hydrated disc 

was removed from hydration solution and weighed (We) then placed on the bench 

at ambient temperature. After removing from solution the weight of the disc was 

measured at different time intervals and the SR was calculated at each time point 

using Equation 2.   

Mechanical testing using Instron 

An Instron Universal testing Instrument based in UCL School of Pharmacy (Model 

5567, Instron Ltd, Norwood, USA) was used to measure the mechanical properties 

of the hydrogel films. Films were cut into a ‘dog bone’ shape using a dog bone 

shape punch. The films were cut in dog bone shape to avoid having a break in the 

area being gripped and they were cut from fully hydrated films. The dimensions of 

each sample were 15.5 mm length, 3.6 mm width and 1 mm thickness. The 

samples were put between the clamps of the machine and were pulled apart at a 

rate of 10 mm/min and 100 N static load (2 Kg). The sliding of the films in the 

clamps was prevented by covering the surface of the clamps with a piece of wetted 
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cloth. Samples were sprayed with water as they were mounted on the grips prior to 

testing to ensure they remain fully hydrated; they were also sprayed every 30 

seconds during testing to ensure they remained fully hydrated. The cut-off point 

was at failure when the film was completely separated into two pieces. The tensile 

modulus of elasticity (represented by Young’s modulus) for each sample was 

determined as the slope of the linear part of the stress–strain curves. The data were 

analysed using Bluehill software 2 (version 6).  

Scanning electron microscopy SEM 

Quanta TM Scanning Electron Microscopy (FEI Quanta200 FEGESEM, Eindhoven, 

The Netherlands) which is maintained at the UCL School of Pharmacy was used for 

the examination of the inner structure of the hydrogels and their pore size. The 

hydrogel samples were freeze-dried prior to SEM analysis. The fully hydrated gels 

were frozen at -40oC then dried using VIRTIS- Advantage freeze-dryer for three 

days. The dried samples were cut and adhered onto aluminium SEM stubs using 

carbon-coated double-sided tape. In order to make them electrically conductive, 

they were sputter coated with gold prior to imaging.  

Drug loading into hydrogel films  

The drug soaking method was used for the loading of 0%, 10% and 30% MPC 

hydrogels. Discs of 1 mm thickness and 1 cm in diameter were cut from fully 

hydrated films. The discs were then fully dried to remove all water at 70oC in 

vacuum for 24 hours. The fully dried discs were then soaked in drug solution for 24 

hours. After incubation the discs were removed carefully from the drug solution and 

placed in 3 mL DW for 30 seconds to remove extra drug presumably adsorbed to 

the surface of the films and dried at ambient temperature under vacuum for 24 

hours and stored to be used for release studies. The amount of drug loaded for 

each disc was calculated as the difference in UV absorbance reading between the 

starting solution and the solution left after loading. The loading efficiency was also 

calculated. The loading efficiency is a representation of the percentage of drug 

loaded from the actual amount placed in the loading solution. It can be calculated 

using Equation 6.  

 

          𝐋𝐨𝐚𝐝𝐢𝐧𝐠 𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐲 = (  
𝐚𝐦𝐨𝐮𝐧𝐭 𝐥𝐨𝐚𝐝𝐞𝐝 

𝐚𝐜𝐭𝐮𝐚𝐥 𝐚𝐦𝐨𝐮𝐧𝐭 𝐢𝐧 𝐥𝐨𝐚𝐝𝐢𝐧𝐠 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧
   ) × 𝟏𝟎𝟎                (6) 

 



67 
 

Two different solutions were used for pirfenidone loading, the first was (1 

mg/mL, 1 mL) in water and the second was (1 mg/mL, 1 mL) in water:ethanol (1:1). 

For dexamethasone (DEX), based on its solubility (DEX is poorly soluble in water), 

two different solvents were used as loading solutions which are water: ethanol (1:1) 

and methanol. When water:ethanol mixture was used as a solvent, the 

concentration of DEX in the loading solution was (1 mg/mL, 1 mL). DEX 

concentration was (15 mg/mL) when methanol was used. In the first method once 

removed from the incubation solution the discs were placed in 4 mL of ethanol for 1 

minute to remove any drug attached to the surface of the discs followed by drying 

under vacuum for 24 hours. In the second method the discs were placed after 

removal from incubation solution in 2 mL of water for 4 hours with mild agitation 

followed by drying under vacuum for 24 hours. The amount of drug lost in the 

washing was quantified using HPLC. 

For doxycycline hyclate (DOXy) loading, aqueous solutions with different 

concentrations (6 mg/mL, 15 mg/mL and 30 mg/ml, 1 mL) in PBS were used as 

incubation solutions. DOXy was also loaded from non-aqueous solutions using 

different solvents and solvent combinations which are water, ethanol, methanol, 

water: ethanol (1:1) and water: methanol (1:1) ratios at a concentration of (15 

mg/mL, 1 mL). The loaded discs were washed similar to pirfenidone loaded discs.  

Release of the drug from the hydrogel films 

The intended use of the hydrogels films is in the subconjunctival space. To 

determine the release profile a flow rig model was used. This model mimics the 

bleb formed in GFS. A similar aqueous flow rate to that in the subconjunctival space 

was maintained in the rig using a pharmaceutical dispensing pump set to dispense 

2 µL of PBS per minute. The rig had a capacity of 400 µL (Figure 2:3). A fully dried 

loaded disc was placed in each rig. The rig had both input and output tubes. The 

input tube was connected to a multi-channel dispenser (ISMATEC pump, 

Switzerland) to pump PBS buffer (pH 7.5) at a flow rate of 2 µL per minute. The 

output tube was used for collection of samples. Samples were collected at various 

time points and quantified using HPLC. The flow rigs were immersed in a preheated 

oil bath adjusted to 37°C.  
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Figure 2:3 Schematic representation of the flow rig used for the release studies of drugs 
loaded into hydrogel films with a picture of the peristaltic pump and the flow rig used.  

HPLC and UV methods for drug quantification 

Pirfenidone samples were analysed by a HPLC system Agilent 1200 series (Agilent, 

Wokingham, Berkshire, UK) equipped with Chemstation software (Agilent, 

Wokingham, Berkshire, UK). The stationary phase was a Synergi 4u Hydro- RP 80 

A (150 x 4.6 mm, 4 micron) column (Phenomenex Co., California, USA) kept at 

40oC. The mobile phase was composed of 50% (v/v) acetonitrile in water. The 

mobile phase flow rate was 1 mL/min, the injection volume was 20 μL and the 

detection wavelength 315 nm. The retention time for pirfenidone was 3.2 min. The 

correlation coefficient of the calibration curve was R2: 0.999 for a concentration 

range of (100-3.125 μg/mL), indicating acceptable linearity. The samples for the 

calibration curve were made using PBS, pH 7.4 as solvent.  

Analysis of pirfenidone by UV spectroscopy was performed using Hitachi U-

2800A spectrometer. The detection wavelength was 310 nm and the correlation 

Pump at 2 µL/min 
Sample collection 

Output 

Input 

Hydrogel film Flow chamber 

Flow rig 

Output 

Input 

Pump at 2 µL/min 
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coefficient of the calibration curve was R2: 0.999 for a concentration range of (25-

1.56 μg/mL), indicating acceptable linearity. The samples for the calibration curve 

were made using water as solvent.  

The same HPLC system and column used for pirfenidone detection was 

used for DEX and DOXy detection. For DEX the mobile phase composed of 

acetonitrile and aqueous trifluoroacetic acid solution (0.1% v/v) at 40/60 volumetric 

ratio. The mobile phase flow rate was 1 mL/min, the injection volume was 10 μL 

and the detection wavelength 240 nm. The retention time for DEX was 4.8 min. The 

correlation coefficient of the calibration curve was R2: 1 for a concentration range of 

100-3.125 μg/mL, indicating acceptable linearity. 

For the detection of DOXy HPLC gradient method was used. The mobile 

phase composed of acetonitrile and aqueous trifluoroacetic acid (TFA) solution 

(0.1% v/v) at 30/70 volumetric ratio at the start. The gradient used shown in (Table 

2:3). The mobile phase flow rate was 1 mL/min, the injection volume was 10 μL and 

the detection wavelength 347 nm. The retention time was 4.8 min. The correlation 

coefficient of the calibration curve was R2: 0.998 for a concentration range of 250-

6.25 μg/mL, indicating acceptable linearity. 

Table 2:3 Gradient method for the detection of DOXy using HPLC. 

Time minutes Acetonitrile% (0.1% TFA)% 
0 30 70 

12 80 20 
12.1 30 70 
15 30 70 

 

Analysis of DOXy in by UV spectroscopy was performed using Hitachi U-

2800A spectrometer. The detection wavelength was 350 nm and the correlation 

coefficient of the calibration curve was R2: 0.999 for a concentration range of 50-

3.125 μg/mL, indicating acceptable linearity. 

Modifications of the films to extend the half-life of water soluble drugs 

Use β-CD as affinity barrier in the 10% MPC films 

β-Cyclodextrin (β-CD) was used as affinity complexing agent to create an affinity 

barrier that may potentially slow the release of loaded drugs in 10% MPC films. 

Three different methods were used to incorporate β-CD into 10% MPC films. Before 

incorporating β-CD into the hydrogel film, the ability for β-CD to form a complex 

DOXy was examined. For the preparation of the complex equal molar weights of β-

CD and DOXy were mixed and dissolved in 5 mL of DW. After mixing, the mixture 
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was sonicated for 1 hour and placed in freeze dryer for three days. For the 

preparation of physical mixture, equal molar weights of β-CD and DOXy were 

mixed. DSC analysis was performed on the β-CD, DOXy, physical mixture and 

inclusion complex of both. The melting enthalpies from the DSC graphs were 

compared. Experiments were performed on DSC using a rate of 10°C/min from 30 

to 280°C.         

Preparation of 10% MPC films with pendant β-CD 

One of the widely used methods for pending CD into a hydrogel is the use of 

glycidyl methacrylate monomer (GMA). 10% MPC films were prepared with different 

percentages of GMA. The 10% MPC monomer mixture was prepared as described 

previously. To each 1 mL of the 10% monomer mixture different amounts of GMA 

(1%, 2.5%, 5% and 9% (w/v)) was added and allowed to mix until a clear solution 

was formed. After mixing the mixture placed in mould to polymerise at 70oC for 6 

hours. After polymerisation the films left to hydrate in water. After hydration for 24 

hours discs with 1 cm in diameter were cut and each disc was placed in (6 mL) 

activation solution to activate the GMA and conjugate β-CD to it. The activation 

solution consists of dimethylformamide DMF: 0.5 M NaCl (1:1) that contains 0.08 M 

β-CD and 0.18 g NaOH. The discs were incubated in the activation mixture at 80oC 

for 24 hr. After incubation the discs were washed for 3 days with water to remove 

any residual DMF and dried under vacuum to be used later for drug loading.  

 Another method used to incorporate β-CD is in situ polymerisation of 10% 

MPC monomer solution and 20% (w/v) β-CD solution in 0.2 M NaOH in the 

presence of GMA. The two monomer solutions were prepared separately and 

mixed in different volume ratios with different amounts of GMA (Table 2:4). The 

formulations were then the injected into the mould and placed in the oven for 

polymerisation at 80oC for 6 hours. After polymerisation the xerogels formed were 

removed and examined. 

Table 2:4 Different formulations for in situ hydrogel synthesis using 10% MPC monomer 
solution and 10% w/v β-CD solution in 0.2 M NaOH in the presence of GMA. 

Formulation No 10% MPC (mL) 20% (w/v) β-CD (mL) GMA (g)  

1 1 1  0.5 

2 1 1 0.2 

3 1 1 0.1 

4 1 0.5 0.5 

5 1 0.5 0.2 

6 1 0.5 0.1 

  Abbreviations: Glycidyl methacrylate (GMA), 2-methacryloyloxyethyl phosphoryl choline 
(MPC), Beta-cyclodextrin (β-CD).   
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Preparation and embedding of β-CD cross-linked particles in 10% MPC films  

β-CD hydrogels were synthesised by a step polymerisation reaction. β-CD powder 

(1.5 g) was dissolved in 0.2 M NaOH (10 mL) solution at a concentration of (15% 

w/v). The β-CD solution vortexed for 1 minute and poly(ethylene glycol)diglycidyl 

ether (PEGDE) was added as cross-linker in volume ratios of (1:1, 1:2, 2:1) with β-

CD solution. The mixture then vortexed for another minute and placed in glass vial 

in the incubator at 50oC for 12 hours at 150 RPM. The hydrogel was then removed 

from the incubator and allowed to cool for 1 hr then placed in 20 mL of 0.5 M 

hydrochloric acid (HCl) for 1 hr to stop the reaction followed by soaking the 

hydrogel in water for 24 hours. The resulting hydrogel in the hydrated form was 

then crushed first using a mortar and pestle then passed through a 40 mesh sieves 

(500 µm in diameter) to create uniform particles. The particles were then freeze 

dried for three days to remove any residual water and stored in a tight container 

ready to use. 

To embed the β-CD particles in 10% MPC films a 10% MPC monomer 

solution with cross-linker and initiator was prepared. The freeze dried particles were 

then suspended in the monomer solution at a concentration of 1% and 2% (w/v), 

injected into polypropylene mould and placed in the oven to polymerise at 70oC for 

6 hours. After polymerisation the xerogel was washed to remove any unreacted 

monomers. Discs with 1 cm in diameter were cut from the hydrated hydrogel, dried 

under vacuum and stored to be used for drug loading. 

Formulation of IPN of 10% MPC and cross-linked β-CD 

To formulate an interpenetrating network (IPN) of HEMA-MPC film with cross-linked 

β-CD hydrogel, the two monomer mixtures were mixed together and polymerised at 

the same time in the same pot (in situ). To ensure that each monomer system 

underwent separate, orthogonal polymerisation reactions as much as possible, the 

HEMA-MPC hydrogel formulation was prepared using PEGDE as cross-linker. The 

10% MPC monomer solution was prepared and the 50 µL of PEGDA was replaced 

with 50 µL PEGDE. The monomer mixture was injected into a mould and placed in 

the oven at 70oC for 6 hours. β-CD monomer mixture was also prepared by 

replacing 50% (v/v) of PEGDE with 50% (v/v) PEGDA in the monomer mixture. The 

monomer mixture was placed in a glass vial and incubated at 50oC for 12 hours at 

150 RPM. A monomer solution of 10% MPC with PEGDA as cross-linker was 

prepared and incubated at 50oC for 12 hours at 150 RPM.  

For the preparation of the IPN a monomer solution of 10% MPC and 89.5% 

(w/w) HEMA and a β-CD monomer solution with different percentages of β-CD in 
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0.2 M NaOH (15%, 30% and 50% w/v) were prepared. To the β-CD monomer 

solution PEGDE as cross-linker was added at a concentration of 50% (v/v). The two 

monomer mixtures (10% MPC and β-CD) were mixed in 1:1 volume ratio and 

vortexed for 1.0 minute. The mixture was injected into a mould and placed at the 

incubator at 50oC for 12 hours at 150 RPM. After polymerisation the xerogel was 

removed and washed with DW. Another two IPN formulations were also prepared. 

β-CD monomer solution made with 30% (w/v) β-CD and 50% (v/v) PEGDE was 

mixed in two different ratios with 10% MPC monomer solution (1:2, 2:1 30% (w/v) β-

CD:10% MPC). The mixtures were then injected into a polypropylene mould and 

placed in the incubator at 50oC for 12 h at 150 RPM to for a hydrogel film.  

Another method to prepare an IPN is by sequential polymerisation where 

one monomer is polymerised in the presence of the other monomer mixture 

followed by polymerisation of the second monomer mixture. First a 10% MPC 

monomer mixture was prepared by replacing AIBN with N,N,N′,N′-

tetramethylethylenediamine/ammonium persulfate (TEMED/APS) as initiator 

system. The 10% MPC and 89.5% (w/w) HEMA monomer mixture was prepared by 

replacing AIBN with 4 mg APS. β-CD monomer solution with 30% (w/v) β-CD and 

50% (v/v) PEGDE was also prepared. The two monomer mixtures were mixed in 

equal volumes (1 mL each) thoroughly. After mixing 30 µL of TEMED was added to 

the mixture to start the polymerisation process of HEMA-MPC hydrogels. The 

mixture was quickly injected into the polypropylene mould and allowed to 

polymerise for 30 minutes at the bench. After 30 minutes the mould was placed in 

the incubator at 50oC for 12 h at 150 RPM to start the polymerisation process of β-

CD. In both methods the Xerogel was washed to remove unreacted monomers. 

Discs with 1 cm in diameter were cut from the hydrogel, dried under vacuum and 

stored to be used for drug loading. 

Preparation of thermoresponsive NIPAAm hydrogels with and without protein  

Different NIPAAm hydrogels with varying amounts of PEGDA as cross-linker were 

synthesised by free radical polymerisation. For the preparation of empty hydrogel 

(i.e without protein), NIPAAm monomers (40 mg which is equivalent to 0.35 M) 

were weighed and dissolved in deionised water (1 mL) at room temperature 

(~25°C). The contents were stirred until a clear solution was visually observed. 

Different amounts of PEGDA (2, 4, 8, 12 and 15 μL which are equivalents to 3.2, 

6.4, 13, 19 and 24 mM respectively) were measured and added to the above 

solution and thoroughly mixed. To each mixture APS (initiator) was weighed (4 mg 

which is equivalent to 17.5 mM) and added to the solution. After mixing for 5 
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minutes, (20 μL which is equivalent to 0.13 M) TEMED (accelerator) was added to 

each formulation and vortexed for ~10 seconds. The monomer solution started to 

gel within one minute of the addition of TEMED and the entire system was left to 

polymerise in the fridge at 4oC for 24 hours. The hydrogels were then washed 5 

times (15 minutes each time with 4 mL of PBS) in a total volume of 20 mL (Drapala 

et al. 2011). 

For the preparation of NIPAAm hydrogel with MPC as a monomer, the 

NIPAAm monomer mixture was prepared as described previously. To 1 mL of the 

mixture two different amounts of MPC were added (1 mg and 5 mg). The MPC was 

dissolved in the monomer mixture and the hydrogel polymerised as described 

previously. 

The same method used for synthesis of PEGDA cross-linked hydrogels was 

used for the synthesis of phosphoryl choline (PC) and acrylated hyaluronic acid 

(Ac-HA) cross-linked hydrogels. Different NIPAAm hydrogels with different 

percentages of the biocompatible PC 3059 as cross-linker (9, 15, 20, 25 and 30 mg 

which represents 13%, 20%, 25%, 30% and 33.5% (w/w) respectively) were 

prepared. For the preparation of Ac-HA hydrogels PC was replaced with different 

amounts of Ac-HA (2, 4, 7 and 10 mg which represents 3.2%, 6.3%, 10.5% and 

14.4% (w/w) respectively). 

The proteins used for hydrogel loading and release were bevacizumab and 

infliximab, both have a molecular weight of 150 kDa. For the loading of 

bevacizumab using imbibing method, NIPAAm hydrogel with 8 µL cross-linker was 

prepared and freeze dried for 3 days. The dried hydrogel was incubated in 1 mL of 

bevacizumab solution (12.5 mg/mL in PBS) for 48 hr at 4oC. After incubation, the 

hydrogel was removed from the incubation solution and then rinsed gently 5 times, 

4 mL each time in PBS; each wash cycle was 15 minutes long. Each wash fraction 

was analysed by HPLC to calculate how much of the protein was lost during the 

wash. The drug loading was the difference between the starting solution and the 

amount lost during washing  

For the preparation of bevacizumab or infliximab loaded hydrogels using the 

in situ method the NIPAAm monomers were dissolved in (1 mL) of protein solution 

(25 mg/mL from vial for bevacizumab) and (9.4 mg/mL from vial for infliximab) 

prepared in the same way as the unloaded hydrogels. After polymerisation, the 

protein loaded hydrogels were rinsed gently similar to empty hydrogels washing. 

Each wash fraction was analysed by HPLC to calculate how much protein was lost 

during the wash. The work reported for Ac-HA was in collaboration with Mr Abdullah 

Abubakre.  
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Characterisation of NIPAAm hydrogels 

The characterisation was studied for both empty and protein loaded hydrogels. 

Volume phase transition temperature (VPTT) and injectability 

The VPTT was measured using differential scanning calorimeter (DSC). The fully 

swollen samples were placed in DSC and the temperature increased from 20 to 

50°C at a rate of 2°C/min. Calibration with Indium (Tm = 156.6, ∆Hf =28.71 J/g) was 

performed according to the manufacturer instructions. Nitrogen was used as the 

purge gas with a flow rate of 40 mL/min for all the experiments. The onset 

temperature of the DSC endothermic peak was considered as the VPTT. A 2 mL 

syringe with 23G needle was used to determine the injectability of the hydrogels 

prepared. Injectability was qualitatively determined based on the ease of injection of 

the prepared hydrogels.    

Swelling ratio (water content) of the hydrogels  

The same method that was used to measure the SR of MPC hydrogel films was 

used to measure the SR of NIPAAm hydrogels in water. The SR was calculated at 

three different temperatures 25oC, 37oC and 48oC.  

Percentage water retention percent (deswelling) of the hydrogels  

The percentage of water retention (WR%) was measured using a gravimetric 

method at 48oC. Hydrogel samples were freeze-dried for 3 days and weighed (Wd) 

then fully hydrated at room temperature (~25oC) in (10 mL) deionised water for 48 

hours. The fully hydrated samples were weighed at equilibrium (We) and quickly 

transferred to pre-heated water at 48oC in the incubator. The samples were 

weighed at predetermined time intervals (Wt) (1, 3, 5, 10, 20, 30, 40, 60 and 120 

minutes). Before each measure the sample was removed from incubator, quickly 

weighed and returned back to the incubator. Water retention was calculated for 

each time point using Equation 7. 

 

                                 𝐖𝐑% = 𝟏𝟎𝟎 × [
   𝐖𝐭−𝐖𝐝  

𝐖𝐞
]                                   (7) 

 

In vitro release of protein from injectable NIPAAm hydrogels 

The NIPAAm hydrogels are intended to be injected in the posterior segment (back 

of the eye) for protein delivery. To mimic the flow and conditions in the posterior 
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segment an in vitro PK-Eye model was used for release studies. This model is a 

prototype known as the pharmacokinetic eye (PK-Eye) and is a 2-compartment 

model of the eye that is fabricated from polyacrylate with an anterior cavity (200 μL) 

and a posterior (4.2 mL) cavity integrated within. A washer with a Visking 

membrane of a molecular weight cut off (MWCO) of 12-14 kDa separates the two 

segments. The inlet port was connected to the same peristaltic pump used for the 

previous release studies and the flow rate was adjusted to (2 μL/min). One outlet 

port is present in the anterior segment of the model for continuous sampling and an 

injection port is present in each segment with a diameter of 2-3 mm to allow 

administration of the desired formulation into the model (Figure 2:4) (Awwad et al. 

2015). Prior to starting each experiment, the PK-Eye model was unscrewed and the 

washer with a fresh Visking membrane was adjusted inside the model. The PK-Eye 

models were assembled together with PBS, pH 7.4. The models were immersed in 

a preheated oil bath adjusted to 37°C for 2 hours to equilibrate prior to the release 

studies. Temperature was maintained at 37oC using a probe connected to a 

hotplate heater.  

After equilibrating the models, bevacizumab solution and hydrogel were 

injected via the injection port in the posterior cavity of the PK-Eye. Samples were 

collected from the outlet port of the anterior segment and quantified by HPLC. 

Bevacizumab samples were analysed by HPLC system Agilent 1200 series 

(Agilent, Wokingham, Berkshire, UK) equipped with Chemstation software (Agilent, 

Wokingham, Berkshire, UK). The stationary phase was an Agilent Zorbax GF-250 

column kept at 25oC. The mobile phase was PBS, pH 7.4 buffer previously purged 

with argon and sonicated. The mobile phase flow rate was 1 mL/min, the injection 

volume was 100 μL and the detection wavelength 280 nm. The retention time was 

2.3 min. The correlation coefficient of the calibration curve was R2: 0.996 for a 

concentration range of (1000-0.97 μg/mL), indicating acceptable linearity. The work 

reported for release was in collaboration with Dr Sahar Awwad. 
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Figure 2:4 Schematic representation and a picture of PK-Eye release model used for 
studying the release of protein from NIPAAm hydrogels. The peristaltic pump used with eye 
flow rig is used with PK-Eye model. 

Data analysis 

All results are presented as the mean and standard deviation (± SD) of three 

samples unless stated otherwise and data were plotted using OriginPro 9.1. Half-

lives was calculated according to the best fitting model in OriginPro. First-order 

kinetic rate constants (k) were derived from the monoexponential curve and half-

lives were calculated using the equation: 0.693/k. The analysis of variance (one-

way and repeated measure ANOVA) with Tukey’s post hoc test was carried out to 

evaluate differences between the experimental data (mean values) using OriginPro 

9.1 (software, Origin lab cooperation, USA) and IBM SPSS statistics 23. Probability 

values less than 0.05 (p<0.05) were considered as indicative of statistically 

significant differences.   

Pump at 2 µl/min 

Outlet 

Sample collection 

Inlet 

Injection port 

Posterior chamber Anterior chamber 

Outlet 

Inlet 
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Chapter 3. HEMA-MPC hydrogels for the subconjunctiva 

There is an estimated 60.5 million people (2010 figures) that are suffering from 

glaucoma. The number of people suffering from this blinding disease is estimated to 

increase to 111.8 million by 2040 (Tham et al. 2014; Quigley & Broman 2006). 

Current treatments available in the clinic or under development have limitations in 

terms of properly controlling of IOP with current GDDs and lack of anti-scarring drug 

delivery dosage forms to improve success rate of GFS. 

The main problem associated with current GDDs is the limited ability to 

control pressure in an effective way for a long enough period of time and with 

consistency among patients. The current materials that are used, such as silicone 

and polypropylene, cause excessive foreign body response that may affects the 

function of the GDD in controlling flow. There is a need to develop implantable 

devices for use in the subconjunctival space that do not elicit a strong foreign body 

response. Although the use of metals can reduced foreign body response, such as 

gold and stainless steel, variability in response among patients is still a problem. 

With current GDDs, medication is also needed at least during the first few weeks 

after implantation. 

One of the new approaches investigated to improve the outcome of current 

GDDs is to coat them with biocompatible materials and in some cases loading the 

coat with anti-scarring for the fabrication of combination device (Gökce et al. 1996; 

Lee et al. 2014; Hovakimyan et al. 2015; Siewert et al. 2012). This strategy is used 

to make coronary stents that are now widely used. With better control of scarring 

there is a chance for better control of IOP. Current GDDs fail by the formation of an 

intractable, fibrous capsule that might be more thin and permeable with a more 

biocompatible material.  

Ponnusamy et al reported that a coat made of PLGA and loaded with 

mitomycin C and 5-FU has the ability to reduce sacrring after GDD implantation 

(Ponnusamy et al. 2013). Sahiner et al  reported that attaching HEMA loaded 

mitomycin C into the lower part of Ahmed GDD  will improve the outcome of the 

device (Sahiner et al. 2009). When the modified GDD was implanted in rabbit eyes 

the fibrous capsule formed was significantly thinner compared to the non-modified 

device. Even with the use of a biocompatible polymer such as SIBS for the 

synthesis of GDD there is still a need to use MMC to improve the success of the 

GDD (Pinchuk et al. 2015).  

The focus of the current research was for the development of biomaterials, 

coatings and the use of anti-scarring agent with current GDDs to improve the 
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success rate of GDDs in controlling IOP in a more effective way; however, new 

methods to modify aqueous outflow through GDDs to control IOP were less 

investigated. There is still a gap to be filled with current GDDs that are available in 

the clinic. Developing a combination device that is able to control flow with 

minimum, if no, inflammation and release medication at the same time is essential. 

Hydrogel biomaterials are usually considered to have a reduced propensity to 

cause a foreign body response (L. Zhang et al. 2013). As networks, hydrogels are 

also considered to be porous polymeric materials that are permeable at least to 

gases as in contact lens and for water transport in the context of drug delivery 

(López-Alemany et al. 2002; Gemeinhart et al. 2000). Water flow through hydrogel 

contact lenses has been reported (Monticelli et al. 2005). Pishko et al suggested 

that contact lenses have hydraulic permeability and allow water to flow through 

them under low pressure (Pishko et al. 2007). They reported that the permeability of 

HEMA-methacrylic acid contact lens with 686 µm thickness under <3 KPa was 1.80 

x 10-14 m4/N s.   

Based on favourable biocompatibility and potential water flow characteristics, 

hydrogels may be considered as materials for the development of new GDDs or 

drug eluting implants within the subconjunctival space. It might be possible to use a 

hydrogel material to control water flow from the anterior chamber through a tube 

into a hydrogel spacer in the subconjunctival space. Such a GDD would potentially 

not require surgical manipulation to adjust water flow; hence pressure control could 

be achieved in a new way that might be easier to maintain clinically.  

A hydrogel spacer would be expected to have a negligible foreign body 

response resulting in minimal scarring. Considering the current clinical use of 

biomaterials, it is possible that a drug could be incorporated into the spacer to 

mediate the healing response after implantation. A biocompatible ophthalmic 

implant with extended delivery of an anti-inflammatory or anti-fibrotic medication 

could reduce the foreign body response. A long acting form of a less toxic agent 

than mitomycin C would potentially be beneficial to modulate the wound healing 

process after surgery over extended time periods. One of the more difficult aspects 

of glaucoma surgeries is the administration of toxic medicines such as mitomycin C. 

One reason for the use of mitomycin C is that it is so toxic, thus killing the activated 

fibroblasts at the site of surgery. However, exposure to the drug is short. What is 

needed are less toxic drugs with longer local tissue exposure times. 

Hydrogels when used as biomaterial are generally fabricated from hydrophilic 

polymers. The fabrication conditions, monomer content and type, percentage and 

type of cross-linker used and initiator concentration all play important roles in 
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determining the final characteristics of the prepared hydrogels (Ahmed 2015; Bajpai 

& Singh 2006). Chavda et al reported that the characteristics of a superporous 

hydrogel were affected by the percentage of cross-linker used (Chavda & Patel 

2011). When the percentage of cross-linker increased from 7.37% to 14.36% the 

density increased from 0.63 g/cc to 0.85 g/cc and the percentage porosity was 

reduced from 79.23% to 17.87%. McElroy et al reported the formation of hydrogel 

contact lenses with different properties when the intiator percentage was increased 

(McElroy et al. 2014). When the percentage of diphenyl (2,4,6-trimethylbenzoyl)-

phosphine oxide (the initiator) was increased from 0.5% to 0.75% the percentage 

gel fraction increased from 90.35% to 93.68% and the water content percent 

reduced from 43.87% to 35.44%.  

As discussed previously two monomers of particular interests are HEMA 

and MPC. Combining both HEMA and MPC in an implant will have the potential of 

higher biocompatibility and less foreign body response compared to using HEMA 

alone. Homopolymers derived from MPC are brittle and difficult to fabricate into 

devices, however small amounts of MPC in co-polymers are sufficient to impart 

biocompatibility. Abraham et al reported that HEMA hydrogels made with 5-10 

mol% MPC have 64% less protein adsorption compared to HEMA hydrogels alone 

(Abraham et al. 2005). Contact lenses made from cross-linked HEMA and MPC are 

widely available and have higher biocompatibility and less biofilm formation in the 

eye compared to HEMA contact lenses (Selan et al. 2009; Goda & Ishihara 2006; 

Huang et al. 2007). 

When fabricating a hydrogel the relative proportion of the monomers used (in 

this case HEMA and MPC) will have an effect on the properties of the final hydrogel 

(Hiratani & Alvarez-Lorenzo 2004). Properties such as hydrogel morphology, water 

flow characteristics, swelling behaviour, water content, free to bound water ratio, 

mechanical strength, drug loading and drug release will be affected by both 

hydrogel fabrication process and composition differences (Wu et al. 2009). It is 

thought that water content can be controlled so that a hydrogel can be fabricated 

that has the ability to control aqueous flow. Refojo et al reported that the 

permeability of HEMA membranes with 53.8% water content is 1.05 × 10-17 

cm2/sec.dyne which is higher compared to the permeability of membranes with 

38.7% water content which is 8.4 × 10-18 cm2/sec.dyne (Refojo 1965).  

Medication is required with both GFS and GDDs and hydrogels are often 

investigated as drug delivery systems. If a GDD was fabricated from hydrogel, it 

could also be loaded with anti-inflammatory or anti-scarring agents to be used as 

combination device. In the clinic topical eye drops of corticosteroids are prescribed 
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after GDD implantation or GFS. DEX drops are used between 2-4 weeks after 

surgery. However, the use of eye drops has many disadvantages such as patient 

adherence to the treatment, irregular dosing and irritation to the already inflamed 

eye tissues due to the presence of preservatives. The disadvantages of eye drops 

may cause discomfort to the patient, reduce the therapeutic efficacy of the dose 

and the success rate of the surgery. If the hydrogel GDD was loaded with DEX it 

would eliminate the need to use DEX eye drops after implantation and reduce the 

side effects associated with eye drops.  

The same hydrogel material used for GDD could be used as a spacer after 

GFS to modulate wound healing process and reduce scarring for patients not able 

or who do not need to have a GDD. For example in corneal injury, it is sometimes 

necessary to inject a medicine into the subconjunctival space in an effort to control 

inflammation and angiogenesis. A drug loaded implant could be beneficial for these 

patients to ensure that a therapeutic level of drug is available while the cornea 

recovers from injury.  

Hypothesis and aims 

The flow control mechanisms used in current GDDs have limitations for controlling 

the IOP in glaucoma patients. Hydrogels are potentially good candidate materials 

for the development of new GDDs and other subconjunctival implants. Compared to 

polypropylene and silicone which is used in current GDDs, hydrogels may display 

better biocompatibility, so would elicit less foreign body response and inflammation. 

Additionally hydrogels would be expected to be permeable to water and have 

potential to extend the local residence time of a drug subconjunctival space. The 

GDD should have the following properties; i) mechanical strength to withstand 

implantation; ii) resist water flow enough through the hydrogel film to regulate the 

intraocular pressure; iii) higher free to bound water ratio to improve biocompatibility; 

iv) the ability to load and release drugs for local action in the subconjunctival space.   

 It was hypothesised that water can flow through a hydrogel matrix to control 

aqueous outflow from the eye. Aqueous flow could be controlled through the 

hydrogel by controlling the hydrogel permeability through formulation changes. By 

modifying the water content and water distribution, the permeability of a hydrogel 

could be modified to allow flow of aqueous humour through the hydrogel at a rate of 

2 µL/min (Figure 3:1).  

Controlling the flow at the rate of 2 µL/min may help in controlling the IOP in a 

more effective way. It is also hoped that the hydrogel could be developed that can 

be folded and used in such a way that only a small incision in the eye will be 
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required for implantation. If folding can be achieved, it is possible that a device can 

be developed that can be implanted requiring less surgical skill in a faster 

procedure that could be conducted in any ophthalmology clinic. Anti-inflammatory 

and anti-scarring agents could also be loaded into the hydrogel formulating a 

combination device. The hydrogel could also be used as a drug releasing spacer in 

the subconjunctival space to reduce scarring after GFS. The spacer could also 

mechanically separate the conjunctival and scleral tissues to prevent adhesion and 

local fibrosis after surgery. The suggested dimensions of both the device and 

spacer are 1 cm in diameter (the surface area will be 78.5 cm2) and 1 mm 

thickness.  

 

 

Figure 3:1 A suggested mechanism to control flow in GDD through hydrogels directly 
through diffusion into the hydrogel matrix. The aqueous will pass through the tube into the 
hydrogel matrix and when fully hydrated the aqueous will slowly diffuse at a slow rate 
through the hydrogel matrix to the surrounding subconjunctival space.  

Any modification in the monomer type, amount and cross-linker will have an 

impact on the properties of the fabricated hydrogel. The aim of work described in 

this chapter was to screen different formulations of biocompatible polymers (HEMA 

and MPC) to determine if a hydrogel based GDD is feasible. Water permeability 

and flow through the different formulations will be measured. Other characteristics 

of the fabricated hydrogels such as water content, water distribution, swelling 

behaviour, mechanical strength, morphology and the ability to load and release 

medication were also studied. The effect of the percentage of MPC incorporation on 

the above mentioned properties is also discussed to evaluate what might be the 

best formulation to be used to sustain the release of DEX within the subconjunctival 

space.   

Hydrogel 
GDD 

Water flow through 
the tube 

Water slowly diffuse 
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Results and discussion 

Effect of MPC content on general appearance of the prepared films 

The general properties of hydrogels are widely affected by the composition of the 

hydrogel. There is a need to understand the correlation between formulation and 

properties, in particular permeability and water content. Permeability and water 

content are important in developing GDD that control aqueous flow through the 

device. A range of hydrogel films were formulated with HEMA and increasing MPC 

stoichiometries ranging from 0% to 100% MPC. The monomers were cross-linked 

using PEGDA as cross-linker and AIBN as initiator by free radical polymerisation 

(Figure 3:2). MPC was used due to its zwitterionic nature which is responsible for its 

high biocompatibility. MPC is also a hydrophilic molecule that attracts large amount 

of water compared to HEMA which could modulate the water content and 

distribution of water within the hydrogel matrix.  

 

 

Figure 3:2 Chemical synthesis of HEMA-MPC hydrogel films by free radical polymerisation. 

The two monomers (HEMA and MPC) were mixed with cross-linker PEGDA to form clear 
solution. The initiator AIBN then added and placed in the oven at 70

o
C for 6 hours.  
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The percentage of MPC was increased in increments from 0-100% in the 

formulation to study the effect of MPC percentage on the properties of the prepared 

hydrogels. The term “Xerogel” is used to describe hydrogels in the fully dried state. 

Formulations labelled S1 to S7 (which represents 0% to 50% MPC) were hard and 

glassy in xerogel form. The hydrogel comprised of 100% MPC (S8) was jelly like in 

consistency and no hard film was formed (Figure 3:3).  

 

 

Figure 3:3 Formulations S1 to S8 (which represents 0% to 100% MPC) as xerogel and in 
fully hydrated state (hydrogel). At xerogel all the hydrogels, except 100% MPC, have the 
same dimensions. However, as hydrogels the dimensions (width, length and thickness) 
increased with increasing MPC percentage.     

Before hydration the thickness of all the xerogel films (S1 to S7) was 1.1 ± 

0.1 mm. The films were cleaned after removing the moulds and left to hydrate. 

When fully hydrated, formulations from S1 to S7 remained intact in film shape; 

however 50% MPC film (S7) were very fragile and could be easily broken (Figure 

1:2). The thickness of the hydrated hydrogel films increased with increasing MPC 

content. (Table 3:1). 

Table 3:1 Thickness of fully hydrated hydrogel films. The thickness of the hydrogel films 
increased with increasing MPC content.  

MPC% 0% 5% 10% 15% 20% 30% 50% 

Thickness 
mm 

1.13 ± 
0.01 

1.15 ± 
0.01 

1.19 ± 
0.01 

1.30 ± 
0.02 

1.35 ± 
0.01 

1.50 ± 
0.01 

1.80 ± 
0.02  
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Effect of MPC on film morphology  

Scanning electron microscopy (SEM) was used to examine the effect of MPC% on 

the morphology of the prepared films. The samples were freeze-dried prior to 

examination. Films with 0%, 10% and 30% MPC were analysed. The size and 

number of pores increased with increasing MPC% (Figure 3:4). 

 

 

Figure 3:4 The SEM images of 0%, 10% and 30% MPC films. The size and number of 
pores increased with increasing MPC percentage. The scale bar is 40 µm. 

It is thought that flow through the hydrogel could be adjusted at a desired 

rate by adjusting the porosity of the hydrogel. It was also thought that hydrogels 

with larger pores would allow more water to pass through and a higher percent of 

free water to be entrapped inside the films. Hydrogels with a larger pore size may 

allow entrapped materials (e.g. drugs) to be released quickly from the films. 

Formation of hydrogels with different pore sizes is possible by modifying MPC 

percentage.  

GDD flow design 

Aqueous humour in the eye is secreted and released at a rate of 2 µL/min. The 

balance between secretion rate and elimination rate control the pressure of the eye 

in the anterior chamber at around 15 mmHg. When the balance is disturbed by 

blocking the release, the pressure starts to build in the eye. GFS and GDD offer an 

alternative pathway for the flow of the aqueous humour to maintain the pressure 

around 12 mmHg. The main problem associated with GDDs is lack of control on 

flow and individual patient variability. As discussed previously the two mechanisms 

for control flow through current GDD with spacers are pressure controlled valve, 

and diffusion through fibrovascular capsule around the spacer. We are suggesting a 

new mechanism to control flow which is based on the permeability of hydrogels. It 

was thought that the aqueous humour could be adjusted to flow at a rate of 2 

µL/min under pressure through the hydrogel pores. 

40 µm 40 µm 40 µm 
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Measurement of hydrogel hydraulic conductivity (L) and permeability (K)  

To explore the possibility of using the hydrogel matrix for flow control, hydraulic 

conductivity (L) and permeability of the hydrogel films were studied. Hydraulic 

conductivity (L) is a term used to describe the fluid transport characteristics of a 

given membrane. It is the rate of fluid transported (m3/sec) per unit area of the 

membrane (m2) divided by the pressure (Pascal) that causes fluid flow and has 

units of m/sec/Pa. Since the rate of fluid transport is dependent on the thickness of 

the membrane, multiplying (L) by the thickness (T) gives the permeability (K) of the 

membrane. Thus permeability reflects the transport characteristics of the material 

comprising the membrane whereas the hydraulic conductivity describes the 

transport characteristics of a membrane of a given thickness.  

Hydraulic conductivities are usually measured using dynamic approach or 

fixed flow approach. In the dynamic method, a pressure head is applied to the 

membrane to instigate flow and the fall in pressure is followed as a function of time. 

Hydraulic conductivity is then determined mathematically as described in the 

appendix. This method has been used to determine the hydraulic conductivity of 

human Bruch’s membrane (Moore et al. 1995). In the fixed flow approach the flow 

of water is fixed at certain rate and the elevation in pressure is measured. Pressure 

is recorded at different time intervals and the change in pressure used to calculate 

the permeability. The permeability measurement for each sample was calculated 

using dynamic approach. The ideal permeability of a hydrogel film of 1 mm 

thickness that will allow the flow of aqueous humour at a rate of (2 µL/min) while 

maintaining the IOP at 10 mmHg was calculated to be (6 ×10-14 m2 s-1 pas-1). The 

permeability of 5%, 10%, 15% and 20% MPC films were measured (Table 3:2). 

Table 3:2 The permeability of different hydrogel samples using dynamic approach.  

Sample name 5% MPC 10% MPC 15% MPC 20% MPC 

Permeability m2 s-1 pas-1 
1.6x10-14 

 ± 0.2 

5.1×10-14 

± 0.9 

8.1x10-14 

± 0.8 

8.4x10-14  

± 1.2 

 

The results demonstrated that all the films were permeable at relatively 

similar rate which was unexpected and drew our attention to the problems 

encountered during the actual setting up of the experiment. During the experiment 

several problems arose with using the flow chamber with opening on the capping 

plate (open system). One of the problems was that these flow chambers are 

designed to measure hydraulic conductivity in human Bruch’s membrane. Bruch’s 

membrane is a few nanometres in diameter and once placed in the flow chamber 

the upper lid should fit into the chamber and seal the edges completely. The 
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hydrogel films thickness was significantly larger at 1 mm, which made it hard to 

completely seal the chamber as extra pressure may break the film around the edge 

and allow water to pass. 

 To overcome these problems and confirm that the results obtained are a 

true reflection of permeability a new chamber with a closed system was designed. 

The new chamber has a top that is completely sealable and an indentation allowing 

a better fit of the sample. Hydrogel films with 10% MPC was chosen for the 

comparison between the new and the old flow chamber. When the new chamber 

used the permeability of 10% MPC films measured reduced sharply to a value of 

(1.1×10-18 ± 0.7 m2 s-1 pas-1) which indicates that the previous measurement was 

due to evaporation from the incomplete closed edges of the open system 

chambers. The permeability measured is low and shows that the aqueous humour 

does not pass through the hydrogel films at low pressure. Therefore controlling the 

porosity of the hydrogel cannot be used as the pressure controlling mechanism in 

GDD.   

Creation of a pouch in a hydrogel film 

Permeability through the hydrogel films was very low. A suggested mechanism to 

increase the permeability is to create a pouch inside the hydrogel matrix. The pouch 

may exert extra pressure from inside the hydrogel to speed the flow rate through 

the hydrogel surfaces (Figure 3:5). The pouch will be deflated at low pressure and 

when the pressure increases, due to accumulation of aqueous inside the pouch, the 

pouch will expend (similar principle to balloons) and flow. Two approaches have 

been investigated to create a pouch; femtosecond laser and polymerising around a 

soluble matrix.  

Femtosecond lasers are used in cataract surgery. Cataracts are cloudy lens 

in the human eye and are treated by lens removal and replacement with a synthetic 

intraocular lens (IOL). In the surgery, an incision is created where the cornea and 

sclera meets to remove and insert the new IOL. Precise incisions could be 

produced by the use of femtosecond laser machines. The laser eliminates 

variability due to surgical skills and produces incisions without damage to 

surrounding tissues (Feizi 2011; Nagy 2014). Because of the precise incision 

capabilities of the laser without damaging the surroundings, it was thought that a 

pouch could be created inside a hydrogel without damaging the overall hydrogel 

matrix. The laser will be able to cut a full circle inside the hydrogel matrix without 

affecting the upper and the lower surfaces of the hydrogel films.   
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Figure 3:5 A suggested mechanism to control flow in GDD through a pouch followed by 
diffusion through the porous hydrogel matrix. The aqueous will accumulate in the pouch 
creating a pressure on the hydrogel matrix. The pressure will cause the aqueous to diffuse 
at a slow rate through the hydrogel matrix to the surrounding subconjunctival space.   

Three different designs were created for the pouch using HEMA-MPC 

hydrogel films. 15% MPC hydrogel film with 1.3 mm thickness was used to create a 

maximum pouch using different small circles to create larger inner space. Another 

15% MPC sample with the same thickness was used to create one small pouch 

(Figure 3:6). The femtosecond laser was able to create a pouch in the hydrogel 

matrix with different sizes without instant damage to the hydrogel surfaces. Before 

laser treatment hydrogels with 15% MPC could be bended several times without a 

crack. However, after laser treatment when the hydrogel film was bent around the 

large pouch area the surface starts to crack. The cracking indicates a loss of 

mechanical strength. It was thought that the larger the pouch in size, the thinner the 

surfaces will be which could cause breakage and cracking in the film.  

 

Figure 3:6 The pouch created in HEMA-MPC hydrogel films using femtosecond laser. 
Pouches created as single (A), triplet (B) and multi pouches (C).  

When only one circle or three circles were created no immediate cracking 

was observed during bending. However, after preserving the films in water for more 

than one week the films became more fragile and cracking was noticed.  

Hydrogel GDD 
with a pouch 

Water flow through 
the tube to the pouch 

Water diffuse from the 
pores into the 

surrounding media  

 

Water diffuse 
from pouch to 

edges 

A B C 
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Mechanical strength is an important criterion for an implant. It was concluded that 

the use of a femtosecond laser is not a good method for creating the pouch.  

Another approach to creating a pouch was investigated. It was thought that 

if the hydrogel solution was polymerised around a water soluble film or water 

soluble particles (such as PBS), the water soluble particles would dissolve and 

diffuse out of the hydrogel in water during the washing step creating a pouch. In an 

attempt to create a pouch in 10% MPC hydrogel film, the monomer mixture was 

used to fill half of the mould. PBS tablets were crushed into large particles, passed 

through a 40 mesh size sieve (which is equivalent to 500 µm) and placed as a solid 

sheet in the liquid monomer mixture. The mould was then filled with monomer 

mixture. Care must be taken to make sure that all the PBS particles were covered 

in the monomer mixture. After polymerisation the xerogel was hydrated in water, but 

the resulting hydrogel did not form a complete film. (Figure 3:7). To study whether 

the incomplete hydrogel film was a result of the presence of foreign particles and 

not the nature of PBS particles, the PBS particles were replaced with a thin film of 

polycaprolactone or filter paper and the hydrogel matrix was polymerised around 

the films. No complete film was also observed.  

It was thought that the presence of any foreign material (particles or films) in 

the monomer mixture, although they did not dissolve in the monomer mixture, 

affected the polymerisation process around the edges of the particles or films 

creating an irregular film surface.  

 

Figure 3:7 The polymerisation of 10% MPC around PBS particles. The hydrogel films 
formed were rough and irregular in shape.  

Another approach to create a pouch was investigated which is polymerising 

around a small metal spatula (0.5 mm thickness). The spatula was sandwiched 

between the polypropylene and silicone part of the mould and the end of the 

spatula was immersed in the monomer matrix inside the mould. It was thought that 
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after hydration of the polymerised xerogel the spatula could be easily removed 

leaving an empty space in the middle of the hydrogel film. However, when the gel 

was hydrated and the spatula removed, the hydrogel thickness was different around 

the spatula. The thickness of the surface below the spatula was thinner with a crack 

compared to the one above the spatula which was thick and intact. A possible 

explanation is that the spatula was unable to remain suspended in the middle of the 

monomer matrix and leaned towards the bottom of the monomer mixture due to 

gravitational forces. It was concluded that if a pouch was created in the hydrogel 

film the properties of the film (i.e mechanical strength and smoothness of the 

surface) will be affected.  

A new pressure control mechanism for a hydrogel GDD was suggested 

possible if hydrogel permeability to water flow could be controlled. However, when 

the permeability was measured it was very low compared to the required 

permeability at a flow rate of 2 µL/min. Although the pressure used for measuring 

the permeability was high (~30 mmHg) compared to the normal pressure of the eye 

(10-15 mmHg) the permeability was very low. The high pressure used and low 

permeability calculated suggested that the hydrogel matrix alone cannot be used to 

control flow in GDD.  

Although the HEMA-MPC hydrogel could not be used as a control 

mechanism it can still be used to fabricate a combination device. The hydrogel will 

be used as a material for a spacer synthesis that is attached to a tube and drug will 

be loaded in the spacer (Figure 3:8). The hydrogel could also be used as a spacer 

after GFS.  

   

Figure 3:8 The use of HEMA-MPC hydrogel as a material for fabrication of spacer in GDD. 

The spacer will be attached to a silicone tube and loaded with anti-inflammatory or anti-
scarring agents. Aqueous will flow through the tube only (blue arrow) and drug will be 
released by diffusion. 

After implantation 
Silicone tube 

Hydrogel 
spacer 

Drug 
molecule 
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Equilibrium water content percent (EWC%) and swelling ratio (SR) 

As mentioned previously, although HEMA-MPC hydrogels could not be used as 

pressure control mechanism they can still be utilized for drug delivery. 

Understanding water and swelling of HEMA-MPC hydrogels will help understanding 

drug loading and release from the hydrogel films. For a hydrogel to be used as drug 

delivery It was thought that the water content of the hydrogel may affect the rate of 

diffusion through the hydrogel; the more water; the better diffusion and the faster 

the release. The effect of MPC percentage on the EWC% of the formulation was 

measured. The EWC% of hydrogel formulations from S1 to S7 was calculated 

according to (Equation 1). The results are shown in (Figure 3:9A). The SR was also 

calculated for the same formulations using (Equation 2) (Figure 3:9B). 

 

 

Figure 3:9 A) The effect of MPC% on EWC% as measured using Equation 1; B) The effect 
of MPC% on SR as measured using Equation 2. As the relative proportion of MPC was 
increased, there was a significant increase (p<0.05) in both EWC% and SR.  

(A) 

(B) 
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As the relative proportion of MPC was increased, there was a significant 

increase (p<0.05) in both EWC% and SR. MPC is a hydrophilic molecule with a 

zwitterionic head group that attracts water. The water present is mostly in the free 

(bulk) form (Morisaku et al. 2008). Kazuhiko et al also noticed a dramatic increase 

in water content when MPC was copolymerised with n-butyl methacrylate to form a 

hydrogel (Kazuhiko Ishihara et al. 1990).  

When the MPC percentage was equal or exceeded the HEMA percentage, 

as in the S7 formulation (50% MPC), the water content in the formulations 

increased to the point where there was little mechanical strength in the films. The 

films were easily torn and broken. Several factors are responsible such as the 

arrangement of water molecules and polymer chains around each other, the 

solubility of the polymer chains in water and the total amount of water absorbed by 

the hydrogel. Although HEMA based polymer have the ability to absorb water, 

HEMA polymer cross-linked chains are insoluble in water, while MPC chains are, 

that is why HEMA hydrogels maintain a three dimensional shape in contrast to MPC 

hydrogels. Also MPC, compared to HEMA, has strong hydrophilic groups that 

attracts large amount of water. Water molecules tend to arrange themselves around 

the hydrophilic groups in the polymer chain and when the total amount of water 

increased and the relative polymer units remain the same they stretch the polymer 

chains and reduce the strength of the formed gels (Monti & Simonib 1992).  

Effect of MPC content on the distribution of water inside the hydrogel films 

Water in hydrogels is divided into three types; highly bound water, freely bound 

water and bulk water. It was thought that the higher water content, and larger pore 

size resulting from hydrogel formulations with higher percentages of MPC would 

have higher flow rates through the polymer matrix. It was also thought that the 

distribution of water inside the hydrogel may have an effect on the behaviour of the 

hydrogels regarding drug loading and release. To screen the different HEMA-MPC 

formulations the ratio between free and bound water was measured and calculated 

and the effect of increasing MPC percentage on the ratio was studied (Figure 3:10 

and Table 3:3).  
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Figure 3:10 Effect of MPC% on Wf and Wb. The ratio of free water compared to the bound 
water was increased when the percentage of MPC increased. The Wf is significantly 
different between the samples (p<0.05).  

Table 3:3 The ratio of bound water (Wb) to free water (Wf) in a hydrogel films based on 
MPC percentage. The ratio of free water increased with increasing MPC percentage.  

MPC% 0% 5% 10% 15% 20% 30% 50% 

Wb : Wf 1:0.3 1:1.2 1:1.8 1:2.5 1:3.2 1:4.1 1:6.8 

 

Increasing the relative percentage of MPC results in an increase in free 

water ratio compared to bound water. The MPC repeat units attract water 

molecules to form a layer of water associated around the pendant zwitterionic head 

groups. MPC units will form weak hydrogen bonds with water molecules so the 

layer of water surrounding them will remain mostly free and undisturbed (Shi et al., 

2012; Chen et al., 2010). On the other hand HEMA has the ability to form strong 

hydrogen bonds with water. As the percentage of MPC increased and HEMA is 

reduced more water molecules will be free or lightly bonded and can be frozen and 

detected by DSC.  

Effect of MPC on the mechanical strength of HEMA-MPC hydrogel films 

Hydrogels when completely swelled are semisolid materials and could be subjected 

to deformation when force applied into them. During GFS or implantation of GDD 

the surgeon will push the implant into the subconjunctival space using surgical 

instruments such as forceps and clamps. Implantable films need to have 

mechanical strength to withstand this stress during implantation. The films should 
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be able to stay intact during the surgery and be folded without break. The effect of 

MPC percentage on the mechanical strength of the prepared films was studied. The 

term mechanical strength reflects the ability of the films to stretch and to withstand 

force. Mechanical strength is required during implantation as force may rupture the 

hydrogel films.  

The term that is used for quantitative determination of mechanical strength 

(stiffness) is called young’s modulus or elastic modulus (E). A stress-strain curve is 

used for the determination of E value. Typical stress-strain curve has elastic and 

plastic regions (Figure 3:11). In the elastic region the material obeys Hooks law. 

Hooks law states that the force applied (stress) is proportional to the change in 

surface area (strain) of the material. The law states also that when no longer force 

is applied to the material, it returns to its original shape and size without 

deformation. In the stress strain curve the straight line represents Hooks behaviour 

of the material in the elastic region and the slope of the line is E. Materials which 

behave according to Hook’s Law are called elastic materials. If the material 

deformation is permanent under force it is called plastic material (Faridmehr et al. 

2014; Tranoudis & Efron 2004). An elastic behaviour is required for an implant or a 

device to withstand pressure during implantation without deforming.  

  

 

Figure 3:11 Stress strain curve demonstration the elastic and plastic regions. When the 
stress applied increase the strain increased in linear way (elastic region). The slop of the 
linear region used for the calculations of young’s modulus (Faridmehr et al. 2014). 
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The Young’s modulus (E) reflects the strength (stiffness) of films in general. 

The higher value for Young’s modulus indicates stronger films. The Young’s 

modulus of HEMA contact lenses was previously reported to be around 0.8 MPa 

and for proclear® contact lenses (which have 15% MPC) is 0.5 MPa (Young, 

Garofalo, Harmer, & Peters, 2010; Tranoudis & Efron, 2004). From (Figure 3:12) a 

decrease in Young’s modulus was observed with increasing MPC% which is 

consistent with the previously reported data by Monti. Monti has previously reported 

that when the bulk water of a hydrogel (in the form of contact lenses) increased the 

Young’s modulus reduced and becomes closer in value to Young’s modulus of 

human cornea (0.29 MPa) (Hamilton & Pye 2008; Monti & Simonib 1992). When 

the percentage of MPC increased the free water percentage also increased. Free 

water will impart softness to the films and reduce the mechanical strength. There 

was a significant difference between 0% MPC and all the other formulations 

regarding Young’s modulus (p<0.05).  

  

 

Figure 3:12 The effect of MPC% on Young’s modulus (E) values. When the MPC% 
increased the E value reduced which indicate a reduction in the mechanical strength of the 
prepared films. There was a significant difference between 0% MPC and all the other 
formulations regarding Young’s modulus (p<o.o5).  

Another approach to investigate the mechanical properties of the prepared 

hydrogels was used. An attempt to measure the softness of the hydrogel surface 

using surface contact angle was investigated. Softness of the surface is important 

due to the direct contact of the surface of the hydrogels with the tissues after 

implantation. However, there were difficulties and limitations in conducting the 

experiment. The HEMA-MPC hydrogels start drying quickly when removed from 
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water. Hydrogels need to be mounted on the device which requires time. By the 

time the experiment is ready the surface of the hydrogel starts to dry and loose its 

softness which will give the wrong estimation comparing the softness of the 

surfaces of different hydrogels. To compare the mechanical strength of the 

prepared hydrogels only young’s modulus was measured.   

Effect of MPC on hydrogel swelling ratio in different solvents  

Hydrogels have been investigated widely as drug delivery systems. Drug loading 

into a hydrogel is generally through two methods; soaking (imbibing) and in situ 

(mixing). In situ would not be a suitable method in this case, as the films require 

significant washing to remove unreacted monomers in the system and it is expected 

that a high percentage of the loaded drug will be released with the washed 

monomers. For the hydrogel formulation (HEMA-MPC), soaking is thought to be a 

better method for loading. 

 Loading of a drug into a hydrogel by soaking or imbibing depends on 

several factors such as the physicochemical properties of the drug (solubility) and 

the SR of the hydrogel in the loading solvent (Kim et al. 1992). If the drug is 

hydrophilic the loading medium will be water. However, if a hydrophobic drug needs 

to be loaded organic solvent should be used. Understanding loading from organic 

solvents requires an understanding of the behaviour of the prepared hydrogels in 

different solvents and the influence of MPC on that behaviour. Formulations with 

different percentages of MPC were studied to understand how MPC affects SR in 

solvents other than water. The SR was measured in methanol, ethanol, water: 

methanol (1:1) and water: ethanol (1:1) (Figure 3:13A). Pictures of the difference in 

SR between different solvents for 10% MPC hydrogels could be observed (Figure 

3:13B). 
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Figure 3:13 A) The effect of solvent used on SR of films with different percentages of MPC. 
When water alcohol mixture was used the SR increased with increasing MPC percentage; 
B) the SR of 10% MPC in different solvents.  

The swelling behaviour of films with different percentages of MPC in 

methanol was also studied. When the percentage of MPC increased from 0-30% in 

HEMA-MPC hydrogel films, no significant difference was observed in SR (p>0.05). 

However, at 50% the SR was significantly increased (p<0.05). When ethanol used 

as solvent, there was little change in SR even with MPC above 50%. Kiritosha et al 
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reported that poly MPC hydrogels (without HEMA) swell to a less extent and has 

low affinity to interact with methanol and ethanol, compared to water, which may 

explain why in spite of the increase in the percentage of MPC no change in SR in 

methanol and ethanol was observed (Kiritoshi & Ishihara, 2003). The results 

indicates that when alcohol was used as solvent the interactions between the 

solvent and HEMA polymer chains predominate while when water was used the 

MPC polymer interactions predominate and an increase in SR was observed with 

increasing MPC%. 

When a 1:1 mixture of methanol:water was used the SR increased with 

increasing MPC percentage. However, when a 1:1 mixture of water:ethanol was 

used this increase was only observed when MPC level increased above 20%. 

These findings can be explained by the difference in affinity of MPC to ethanol and 

methanol in which poly-MPC swells to a lesser extent in ethanol compared to 

methanol (Kiritoshi & Ishihara, 2002). 

Drug loading of HEMA-MPC hydrogel films 

After any surgery, a sequence of events takes place to heal the wound of the 

operation. The healing process is a series of complex events that starts with 

Inflammation and haemostasis and ends with tissue remodelling (scar formation) 

(Skuta & Parrish 1987). In the eye the scar formation is a problem as it may close 

the newly formed channel during GFS. Different methods and drugs, including the 

use anti-scarring agents in different dosage forms such as injections and 

implantable films, were investigated to modulate the wound healing process and 

reduce scar formation (Lockwood et al. 2013; Seibold et al. 2012). One of the 

methods explored was the use of a spacer at the incision site of the surgery (Hafez 

2015). Different materials could be used for the synthesis of the spacer including 

hydrogels.  

One of the advantages of fabricating a spacer from hydrogel, in addition to 

its biocompatibility, is the ability of hydrogels to load and release drugs. Since 

HEMA-MPC hydrogel films have low water permeability the loading and release of 

drugs will depend on drug solubility, hydrogel water content (especially the free 

water) and drug diffusion. To study the effect of free water on release of hydrophilic 

and hydrophobic drugs from HEMA-MPC films two drugs were used; pirfenidone as 

hydrophilic drug and dexamethasone (DEX) as hydrophobic drug.  

Pirfenidone was used because of its high solubility in water (~10 mg/mL), 

small MW (185.2 g/mole) and a potential anti-scarring agent in the eye. Pirfenidone 

is available in the clinic in the form of tablets for the treatment of idiopathic 
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pulmonary fibrosis which is characterised by scarring of the lung tissues (Jackson & 

Gomez-Marin 2011). Research has shown that it also has an effect in the reduction 

of scarring tissues after GFS when used (Figure 3:14) (Sun et al. 2011; Mora et al. 

2015; Gan et al. 2011). Topical corticosteroids such as DEX and prednisolone have 

been reported to effectively improve the outcomes of GFS by supressing the 

inflammation process. In the clinic topical eye drops of corticosteroids are 

prescribed after surgery.  

                     

 

Figure 3:14 The chemical structure of dexamethasone and pirfenidone. 

Drug loading into a hydrogel could be carried by two methods; in situ 

loading and soaking. For the HEMA-MPC formulations soaking was chosen as a 

method for loading. If the drug was loaded during polymerisation there is a 

possibility of losing a significant percentage of the loaded drug during washing of 

the hydrogel after polymerisation. Another problem is the effect of high temperature 

(70oC) used during polymerisation which may cause drug degradation. In addition 

to that the drug may interact with the cross-linker and the monomers and cross-

linked to the polymer matrix which may affect its release from the hydrogel. The 

soaking method was considered as the more convenient method for drug loading in 

this case. In the soaking method, the amount loaded and the loading efficiency of 

drugs in a hydrogel are affected by several factors such as EWC% of the hydrogel, 

swelling ratio, solubility of the drug, molecular weight of the drug and the 

concentration of the drug in the loading solution (Maulvi et al. 2014). 

Loading and release of a hydrophobic drug (dexamethasone)  

In drug releasing hydrogels there are several mechanisms involved in the release of 

loaded drug. These mechanisms (such as diffusion and erosion) are based on the 

type of hydrogel used, method of loading and the drug molecule itself (Colombo et 

al. 1996; Li & Mooney 2016). In conventional hydrogels diffusion of the drug from 

the loaded hydrogel is the driving force for the release (Satapathy et al. 2015). 

Pirfenidone Dexamethasone 
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Diffusion is related to the bulk water percentage in the hydrogel; the higher the bulk 

water content, the faster the release (Wu et al. 2016).  

To test that theory and screen the formulations DEX was loaded in films 

containing 0%, 10% and 30% MPC and the release from the three hydrogels was 

compared. For the loading of DEX the hydrogel dry disks were incubated in the 

loading solution for 24 hours, each 10% MPC disk is 1 mm in thickness and 1 cm in 

diameter. The dimensions of the discs used for release represents the actual 

dimensions intended for a GDD or a spacer. Once removed from the incubation 

solution the discs were washed with ethanol for 1 minute to remove the drug 

molecules attached to the surface of the discs. For a hydrophobic drug molecule 

the solubility plays an important role in loading and release. DEX has low solubility 

in water (0.1 mg/mL). If HEMA-MPC hydrogel discs were loaded from aqueous 

solution the amount loaded and loading efficiency will be low so a 1:1 ratio 

water:ethanol solvent mixture was used as the loading solution. By using organic 

solvent at this mixture the solubility of DEX in the loading solution will increase to (1 

mg/mL). DEX was loaded into a hydrogel disc (1 mm thickness, 1 cm diameter) 

from 1 mg/mL (1 mL) water:ethanol (1:1) loading solution. The loading of DEX was 

0.40 ± 0.03, 0.3 ± 0.1 and 0.19 ± 0.03 mg/disc for 0%, 10% and 30% respectively. 

The dry weight of each disc was 49.2 ± 1.3, 46.5 ± 1.2 and 22.7 ± 0.2 mg and the 

loading efficiency was 40%, 30% and 19% for 0%, 10% and 30% respectively. The 

difference in UV reading between the starting solution and the solution left after 

incubation was used to estimate the amount of drug loaded in each disc.  

To validate the method used for measuring loading samples DEX was 

extracted from hydrogel samples and the amount measured by extraction was 

compared to the amount measured by UV. 10% MPC hydrogels were used for the 

comparison. Methanol was used as extraction solvent because the discs swell to a 

higher extent in methanol compared to water or PBS. The results can be seen in 

(Table 3:4). There was no significant difference (p>0.05) between the two methods 

which indicated that UV method was a suitable method for loading estimation. 

Table 3:4 The amount loaded and loading efficiency of DEX in 10% MPC discs calculated 
using two different methods (UV and extraction). No significant difference (p>0.05) was 
observed in the amount loaded and loading efficiency between the two methods.  

Calculation method 
Amount loaded in 

mg/disc 
Loading efficiency% 

Based on UV readings 0.3 ± 0.1 30 % 

Based on extraction with methanol 0.39 ± 0.03 39 % 
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It was observed that the amount of drug loaded was decreased with 

increasing MPC percentage. Two factors affect the drug loading process; the 

affinity of the drug molecule to the polymer matrix and the amount of the drug 

soluble in the volume absorbed by the dry hydrogel matrix (the swelling of the 

hydrogel) (Kim et al. 1992). While the swelling of 30% MPC is higher than 0% MPC 

the affinity of DEX is thought to be less for 30% MPC polymer matrix. The low 

affinity could be due to the higher affinity of the PC head group to water molecule in 

favour of drug molecule. DEX has higher affinity to adsorb on hydrophobic surfaces 

(HEMA). When the level of HEMA reduced compared to MPC the DEX loading will 

be reduced. Guidi et al reported that the driving force of DEX loading into the 

hydrogel contact lenses is adsorption into the polymer matrix and DeX loading 

increased with increasing hydrophobicity of the lenses (Guidi et al. 2014). When 

HEMA was replaced with equal molar ratio of N,N-dimethylacrylamide (DMA) in the 

different formulations the amount of DEX loaded was higher in all DMA 

formulations. 

The release of DEX from the loaded hydrogels was studied using an eye 

flow chamber developed in our lab that resembles the flow in the subconjunctival 

space (2 µL/min). The discs were placed in the flow chambers and the samples 

were collected at different time intervals and analysed using HPLC. Faster release 

was observed from 30% MPC compared to 0% and 10% MPC (Figure 3:15). The 

half-life of DEX was 3.0 ± 12.6, 1.8 ± 8.9 and 1.0 ± 3.5 day for 0%, 10% and 30% 

MPC respectively. Mechanism of the drug release from HEMA-MPC hydrogels is 

diffusion which is affected by free water inside the hydrogel matrix. Since 30% MPC 

has higher free water compared to 0% and 10% MPC, the release of DEX was 

faster.   
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Figure 3:15 The cumulative release percent of DEX loaded in 0%, 10% and 30% MPC 
hydrogel films and concentration with time. The top panel is the percent of drug released 
and the bottom panel is the concentration of the drug released with time. The release from 
30% MPC film was faster than 0% and 10% MPC.  

Loading and release of a hydrophilic drug (pirfenidone)  

To compare loading and release of hydrophobic and hydrophilic drugs from 

different HEMA-MPC hydrogels, pirfenidone was loaded in hydrogel discs 

containing 0%, 10% and 30% MPC films and the release from the three hydrogels 

was compared. Using an aqueous loading solution concentration of 1 mg/mL (1 

mL), the amount loaded was 0.35 ± 0.02, 0.30 ± 0.01 and 0.25 ± 0.02 mg and the 

loading efficiency was 35%, 30% and 25% for 0%, 10% and 30% MPC respectively. 

The same pattern observed with DEX in loading (decreased loading with increasing 

MPC percentage) was observed with pirfenidone. Although pirfenidone is water 
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soluble the loading was reduced with higher water content hydrogels. The low 

loading could be due to the higher affinity of the PC head group to water molecule 

in favour of drug molecule. PC will attract the free water that will occupy the pores 

and displace the drug molecules.  

The release of pirfenidone was studied and the half-life of pirfenidone 

released was 1.2 ± 2.4, 0.7 ± 3.4 and 0.4 ± 2.1 day for 0%, 10% and 30% MPC 

respectively. More than 50% of the drug released within the first 24 h from 0% MPC 

and even higher percentage was released from 10% and 30% MPC (Figure 3:16). 

When 0.5 mg of the drug injected into the flow chamber without the hydrogel the 

drug was completely cleared within the first 24 hours and the half-life was 0.25 ± 

1.20 days. There was no difference in half-life when 30% MPC was used compared 

to free drug and a slight difference was observed when compared to 10% MPC 

hydrogels. The higher percentage of free water and the larger pore size observed 

with 30% MPC will help the drug to diffuse faster outside the hydrogel into the 

surroundings and shorter half-life will be observed with increasing MPC percentage 

(Wu et al. 2016).  

Although there was a small difference in the amount loaded into the 

hydrogel between DEX and pirfenidone, the release profile was different. The half-

life of DEX was 3.0 ± 12.6, 1.8 ± 8.9 and 1.0 ± 3.5 day for 0%, 10% and 30% 

respectively which was higher compared to pirfenidone. Because of the low 

solubility DEX in PBS (100 µg/mL) the drug will be deposited in the hydrogel and 

released slowly. The difference in release pattern indicates that the release is 

controlled by the free wtaer content of the hydrogel, hydrogel polymer matrix 

composition, the solubility of the drug in the loading solution and the affinity of the 

drug to the polymer matrix.      
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Figure 3:16 The cumulative release percent of pirfenidone loaded in 0%, 10% and 30% 
MPC hydrogel films and concentration with time. The top panel is the percent of drug 
released and the bottom panel is the concentration of the drug released with time. The 
release from 30% MPC film was faster than 0% and 10% MPC.  

Loading of a drug molecule into a hydrogel by imbibing depends on many 

factors, one of them being the swelling of the hydrogel used. It is thought that the 

higher the SR of the hydrogel in the loading solution, the higher the amount of the 

drug loaded. HEMA-MPC hydrogels swell to a large extent when a water/alcohol 

solvent mixture was used.  In order to increase the loading efficiency of pirfenidone 

water:ethanol (1:1) mixture was used as loading solvent. The SR of HEMA-MPC 

hydrogels is higher in water:ethanol mixture compared to water. It was assumed 

that the higher SR will allow more of the drug to be entrapped in the polymer matrix 



104 
 

of the hydrogel to achieve higher loading efficiency. However, the amount loaded 

was slightly lower compared to water. The amount loaded was 0.29 ± 0.02, 0.25 ± 

0.01 and 0.15 ± 0.02 for 0%, 10% and 30% respectively which was unexpected. 

The same pattern was also observed in which a reduction in loading was observed 

with increasing MPC percentage.  

For a hydrogel spacer, the balance between water content and mechanical 

strength is important. The presence of MPC will improve biocompatibility by 

increasing the free water percentage but at the same time will reduce the strength 

of the films. For 20 and 30% MPC films although the water content was high the 

mechanical strength was low. Low mechanical strength may cause problems during 

implantation such as rupture. Also any loaded drug will be released fast. Films 

made with 5% MPC have low amount of free water and low percentage of MPC 

which may not improve the biocompatibility of HEMA films (0% films). Although 

there was no significant difference in the EWC% and SR of 10 and 15 % MPC films, 

15% MPC films have significant amount of free water compared to bound water. 

The amount of free water affects the mechanical strength of 15% MPC as they 

have lower Young’s modulus compared to 10% MPC films. Based on these results 

10% MPC film was chosen as a material for development as drug releasing spacer 

for ophthalmic implantation. 

Effects of initiator and cross-linker on the water behaviour of 10% MPC films 

One parameter that is important to be considered in the synthesis of a drug 

releasing hydrogel implant is the ability to load and release drugs. That ability is 

directly affected by water distribution inside the hydrogel; the higher the free water,  

the faster the release. Hydrogels with 10% MPC were chosen as the best 

formulation for ophthalmic implantation compared to other MPC percentages. 

Hydrogels with 10% MPC have higher free water content compared to bound water 

(1.8:1). It was assumed that modifying the water content, distribution and free to 

bound water ratio could be achieved by modifying the percentage of cross-linker 

and initiator while the HEMA and MPC percentage remain constant in the 

formulation. Each initiator molecule will form a polymer chain that can be cross-

linked via the cross-linker molecule (eg PEGDA) to form the final polymer hydrogel 

structure. The higher the initiator amount, the smaller the number of chains formed 

and smaller the pores formed. A higher percentage of cross-linker can form 

hydrogels with smaller pore size. Modification of both the initiator and cross-linker 

was previously reported to affect the water content and distribution inside the 

hydrogels (Goda, Watanabe, Takai, & Ishihara, 2006; Kiritoshi & Ishihara, 2002).  
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For a 10% MPC formulation, the level of PEGDA was reduced from 0.56 % 

in the original formulation to 0.28 % and 0.14 % (which represents half and one 

quarter of the original amount of PEGDA respectively). The EWC% and SR were 

measured (Figure 3:17). No significant difference (P>0.05) was observed when the 

level of cross-linker was reduced to 0.28% and 0.14%. It is probably related to the 

fact that the level of MPC remains constant so the total amount of water molecules 

attracted to the zwitterionic head groups are the same. The same results were 

observed when the level of initiator (AIBN) was reduced from 0.74 % in the original 

formulation to 0.37 % and 0.185 % (which represents half and quarter the original 

amount of PEGDA respectively). 

 

 

Figure 3:17 The effect of cross-linker and initiator percentages on EWC% and SR of 10% 
MPC gels. No significant difference (P>0.05) was observed when the level of cross-linker 
and initiator was reduced.  

Although the EWC% was the same we investigated the possibility of 

changing the distribution of water inside the gels. The ratio of free to bound water 

was measured when the level of cross-linker and initiator changed. No significant 

difference (p>0.05) was observed with Wf% and Wb% when the level of cross-
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linker and initiator were reduced (Figure 3:18). Based on these results the original 

10 % MPC formulation with 0.56 % PEGDA and 0.74 % AIBN was found to offer the 

best balance between water content, mechanical strength and drug loading and 

release required for implantation.  

 

Figure 3:18 The effect of cross-linker and initiator percentage on Wf % and Wb %. There 
was no significant difference (P>0.05) was observed in the free and bound water ratio with 
decreasing cross-linker and initiator percentages.  

Extended release of DEX from 10% MPC  

Previous characterisation of the different HEMA-MPC formulations showed that 

10% MPC has the potential to be used as drug releasing spacer. One of the aims of 

this chapter is to sustain anti-inflammatory drugs in the HEMA-MPC hydrogels. For 

10% MPC hydrogel discs, the amount of DEX loaded in each disc was (~0.3 

mg/disc). The amount loaded was low and around 50% of the drug released within 

the first 48 hours accompanied with a burst release. DEX low solubility in water and 

water organic solvent combinations restricts the concentration of the starting 

solution which affects the amount loaded into the discs. To overcome the problem 

of low solubility in water methanol was used as solvent because of the high 
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solubility of DEX in methanol (30 mg/mL). Although DEX has high solubility in 

ethanol as well but the discs does not swell in ethanol. A solution of DEX in 

methanol 15 mg/mL (1 mL) was used for loading DEX into the gels. Although the 

loading efficiency was low when using methanol as solvent 13.7% compared to 

30% when water:ethanol was used, the amount loaded was 7 times higher when 

methanol was used. The amount loaded was 2.1 ± 0.5 mg/disc when methanol 

used compared to 0.30 ± 0.03 mg/disc when water:ethanol was used. When the 

release of the samples was studied the half-life of DEX in the discs increased from 

1.8 ± 8.9 days with water:ethanol to 4.5 ± 0.9 days when methanol was used 

(Figure 3:19).  

 

Figure 3:19 The release profile of DEX loaded into 10% MPC films from water:ethanol and 
methanol. The top panel is the percent of drug released and the bottom panel is the 
concentration of the drug released with time. The half-life of DEX was increased from 1.8 ± 
8.9 days to 4.5 ± 0.9 days when methanol was used. A burst release was observed in both 
samples.  
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When methanol was used as loading solvent a ‘burst release’ of DEX was 

also observed and the concentration was high compared to the therapeutic doses 

of DEX used in the eye tissues (Sharma et al. 2011). In order to reduce this burst 

release and help to extract methanol from the discs, water was used as a washing 

solvent. DEX has low solubility in water and once the methanol loaded discs and 

placed in water the DEX starts to precipitate inside the disc creating a depot for the 

drug (Figure 3:20). The precipitation of DEX indicates that there is no methanol to 

solubilize DEX in the hydrogel matrix and the methanol used for loading is slowly 

removed from the hydrogel matrix by diffusion into the surrounding water during 

washing due to the miscibility of water and methanol.  

 

 

Figure 3:20 The loading of DEX from methanol. When the DEX loaded discs transferred 
from methanol into water DEX starts to precipitate and form a depot. We can notice the 
discs appearance changed from transparent to opaque once placed in water.  

The depot formed will help to sustain the release of DEX from the discs. 

When the discs removed from incubation in methanol each disc was washed with 1 

mL of water for 4 hours. The amount of DEX lost during washing was 0.2 mg which 

is equivalent of 10% of the amount loaded. When the release was studied a 

reduction in the burst release and the concentration was observed and the half-life 

increased to 9.7 ± 1.9 days (Figure 3:21). Washing with water also helps to 

eliminate the extra free DEX present inside the hydrogel matrix which causes the 

reduction in burst release. Also the depot created with DEX helps to sustain the 

release for a longer period and in a more controlled manner. The release DEX from 

unwashed hydrogels was studied for only 10 days because it was preliminary study 

to examine whether using methanol has an effect on loading and release. However, 

the release of DEX from washed hydrogel was studied for a longer period of time to 

resemble the time DEX drops used in the clinic by patients.   
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Figure 3:21 The release profile of DEX loaded into 10% MPC films using methanol before 
and after washing with water. The top panel is the percent of drug released and the bottom 
panel is the concentration of the drug released with time. The burst release and 
concentration was reduced after washing with water.  

Loading a hydrogel with hydrophobic drug in sufficient amount is a 

challenging process due to the nature of hydrogels (filled with water). A 

hydrophobic drug (DEX) was successfully loaded into 10% MPC hydrogel discs in 

sufficient amount to sustain the release of DEX for 3 weeks.  

Storage and delivery of hydrogel films 

The intended use of the 10% MPC hydrogel film is a drug releasing spacer after 

glaucoma and trachoma surgery. One of the problems associated with hydrogels is 

the delivery in the clinic and how to maintain the hydrogel and the loaded drug 

stable during storage until used by the surgeon. Two possible ways of delivery, 

either stored in a storage solution (similar to contact lenses) to be used immediately 

during surgery or as dried hydrogels to be hydrated prior to use. Understanding the 

rate of swelling and deswelling will help to choose the best method for delivery of 

the hydrogel. The fully dried 10% MPC hydrogel requires at least 6 hours to reach 
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maximum hydration and 30 minutes to reach around 50% of hydration when placed 

in PBS at 25oC (Figure 3:22).  

 

Figure 3:22 The swelling and deswelling behaviour of 10% MPC hydrogel. Rapid swelling 
and deswelling was observed in the first hour compared followed by slow progression in 
both.  

Although storing a hydrogel in a storage solution will be more convenient to 

the surgeon, the stability of loaded drugs inside the hydrogel will be a problem. 

Some of the drug loaded will diffuse from the hydrogel matrix to the storage solution 

during storage and reduce the amount loaded. The loss of loaded drug during 

storage will be more significant with hydrophilic drugs. Also the stability of the drug, 

especially drugs subjected to hydrolysis, will be a problem. The best method is to 

deliver the hydrogel spacer in a dry xerogel-like form, with instructions to rehydrate 

them in 0.5 mL sterilised water for 1 hr prior to use. The hard glassy nature of dry 

hydrogels may cause irritation and discomfort if placed in dry form and rehydrating 

them for 1 hr will ensure at least 50% of swelling is achieved without drug loss. The 

remaining 50% of swelling will be completed after implantation by the flow of the 

aqueous humour. Complete swelling after implantation will have no effect on the 

dimensions of the device or spacer because once complete hydration is achieved 

the hydrogel return to its original intended dimensions of a GDD or a spacer. 
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Summary and conclusions 

The aim of this chapter was to formulate and characterise a HEMA-MPC hydrogel 

film that could be used for the development of GDD and a subconjunctival drug 

releasing implant after GFS. Different formulations with increasing stoichiometries 

of MPC from 0% to 100% were prepared. It was noticed that the SR and water 

content increased with increasing MPC percentage. When the percentage of MPC 

increased above 30% a film was not formed after hydration. The mechanical 

strength films were reduced with increasing MPC percentage. 

The hydraulic conductivity and permeability of the hydrogel films were too 

low to restrict aqueous outflow as a means to control the IOP after GDD 

implantation. The films were also impermeable to water passing through them. The 

flow rate of (1.12×10-18 m2 s-1 pas-1) for 10% MPC hydrogel was very low compared 

to the required flow rate in an ideal device (6 ×10-14 m2 s-1 pas-1). Creating a pouch 

by the use of a femtosecond laser or by polymerising around water soluble particles 

or films was also not successful for creating a hydrogel film capable of allowing 

aqueous outflow. While the HEMA-MPC hydrogels may not have the potential to 

control aqueous outflow; they were examine for potential use as a subconjunctival 

drug releasing implant.  

To choose an appropriate formulation for drug loading and release, hydrogel 

films were characterised regarding the swelling in different solvents and the ability 

to load and release hydrophobic and hydrophilic drugs. An increase in SR was 

observed with increasing percentage of MPC in (1:1) water:alcohol mixture. When 

pure alcohol (methanol or ethanol) were used as solvents the SR was not affected 

by an increase percentage of MPC for ethanol. An increase in SR was only 

observed when the percentage of MPC was above 30% for methanol.  

Formulations with 0%, 10% and 30% MPC were used for drug loading 

studies. The hydrogels were loaded with either a hydrophilic drug (pirfenidone) or 

hydrophobic drug (DEX) drug to examine the effect of MPC content (i.e. free water 

content) on loading and release. The drug loading was low and the release of the 

loaded drug was faster for hydrogels with 30% MPC for both drugs compared to 

hydrogels with 10% and 0% MPC.  

 Based on these findings hydrogels with 10% MPC offer the balance 

between water content, mechanical strength and drug loading and release. Since 

drug loading and release are related to free water, the level of cross-linker and 

initiator were varied to modify the ratio of free and bound water. However, there 

was no significant difference in free to bound water ratio when the cross-linker and 
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initiator percentages were reduced. Based on these results 10 % MPC formulation 

with 0.56 % PEGDA and 0.74 % AIBN was chosen as the best formulation for the 

synthesis of a hydrogel drug releasing spacer. 

To increase the loading efficiency and sustain DEX release from 10% MPC 

hydrogels, methanol was used as solvent for DEX loading. DEX was successfully 

loaded into a 10% MPC hydrogel film. The amount loaded increased from 0.3 mg 

into 1.9 mg/disc and the release was extended for more than 3 weeks. 

Although HEMA-MPC hydrogels were unable to show sufficient permeability 

and hydraulic conductivity to be of any use to control aqueous outflow to regulate 

pressure in a GDD, the hydrogel films offer a platform for development of drug 

releasing combination GDD and drug releasing spacer after GFS. 
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Chapter 4. Hydrogel implants for water soluble drugs 

Fibrosis that occurs due to treatment (e.g. GFS) or due to disease shares a similar 

mechanism and is the cause for much blinding disease (Hsu et al. 2000; Tovell 

2011; Bowman 1999). In the previous chapter HEMA-MPC hydrogel films were 

fabricated and characterised as a subconjunctival drug releasing spacer for GDD 

and after GFS to modulate wound healing. The HEMA-MPC hydrogels were 

characterised with the 10% MPC (which is 10% MPC, 88.7% HEMA, 0.56 % 

PEGDA and 0.74 % (w/w) AIBN) being selected as the optimal hydrogel formulation 

because it offers the best balance between water content, mechanical strength and 

drug loading and release. In addition to the problem of scarring caused by surgeries 

to lower the IOP in glaucoma, there is a condition known as trachoma where 

subconjunctival scarring is also the cause of blindness both due to the disease and 

also its surgical treatment which is widely used for recurring forms of the infection.  

Trachoma affects large populations of patients in developing countries and 

is a major ophthalmic health problem. It is considered an endemic disease that 

affects poor communities in Africa and Asia. It also affects a large population in 

Australia. It is estimated that 229 million people live in theses endemic areas and 

21 million people live with active trachoma (Taylor et al. 2014; Mariotti et al. 2009). 

Trachoma is a bacterial infection of the eyelid, conjunctiva and cornea that is 

caused by chlamydia trachomatis. The disease is spread directly through contact 

with the discharge from infected eyes or indirectly through poor sanitation and by 

flies (Kasi et al. 2004). Trachoma has different stages. In the early stages the 

infected eye suffers from symptoms of conjunctivitis symptoms including watery eye 

discharge, itching, redness, swelling and thickness of the upper eyelid (Darougar & 

Jones 1983). If diagnosed early, trachoma can be treated with antibiotics. In the 

early stages of trachoma infection antibiotics can be used. Oral azithromycin and 

topical tetracycline ointments are the drugs of choice (Solomon et al. 2004; 

Bowman et al. 2000). Other antibiotics have been studied to treat trachoma 

including doxycycline (Li et al. 2013).Recurrent infections will cause chronic 

inflammation of the eyelids which results in thickening and scarring of the upper 

eyelid ending with trichiasis (Gambhir & Basáñez 2007).  

Recurrent trachoma inflammation causes trichiasis. Trichiasis is a term used 

to describe the abnormal position or growth of the eyelashes towards the eye ball 

due to contraction of the eyelid as a result of scarring (Figure 4:1). The abnormal 

eyelashes movement will cause corneal opacification, due to scratching and 

scarring of the cornea, and eventually blindness if untreated (Mecaskey et al. 
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2003). There are several treatments available depending on the severity of the 

condition. Epilation is sometimes used for the removal of eyelashes either using 

forceps or scissors. Another procedure is the destruction of lash follicles. Epilation 

is effective for a short period and the eyelashes grow again (Rajak et al. 2012). 

 

 

Figure 4:1 The positioning of the eyelashes in normal and trachiasis eyes (HealthFixit 2016) 

A widely used treatment is the corrective surgery of the eyelid which is often 

referred to as the tarsal rotation procedure (Figure 4:2). The aim of the surgical 

procedure is to cut through the scarred tissues that cause contraction of the lid. The 

surgery involves rotating the marginal part of the eyelid outwards to prevent 

scratching of the cornea by the eyelids. A horizontal incision through the dense 

connective tissue located at the borders of lid margin is performed to separate it 

from the underlying submuscular tissues (Rajak et al. 2012). The incision will cut 

through the scared tissues followed by suturing of the tissue with the margin of the 

eyelids (Figure 4:2). The suture will be removed after two weeks and antibiotics are 

needed throughout the two weeks period to prevent infection. The problem with 

trachoma surgery is the recurrence of infection. The use of antibiotics after the 

surgery may reduce the risk of recurrence (Rajak et al. 2010; Burton et al. 2005). 

The problem again is limited patient adherence to the use of the antibiotics after 

surgery. Currently no treatment is available after trachoma surgery except the use 

of antibiotic ointments, such as tetracycline ointments (Bowman et al. 2002). 

Another problem to the surgery is the scarring that results from the surgery itself, 

which could be minimised if treated with an antifibrotic agent. MMC which is used 

for GFS and to implant GDDs cannot be used with trachoma surgery due to MMC 

toxicity.  

  

Scarred tissues 
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Figure 4:2  Posterior lamellar tarsal rotation. A) Horizontal incision through the tarsal plate 
and scarred tissues (orange). The blue line indicates the incision site; B) Separating the 
scarred tissues from the underlying submuscular tissues (green); C) Placing the sutures; D) 
Postoperative lid eversion. Adapted from (Rajak et al. 2012). 

The 10% MPC hydrogel implants could be used as drug releasing lid spacer 

after trachoma surgery. The films could be loaded with less toxic anti-scarring agent 

than MMC and be implanted at the incision site during trachoma surgery. However, 

trachoma is different from glaucoma in terms of the type of treatment needed after 

surgery. For GFS anti-inflammatory or anti-scarring agent is required; for trachoma 

an antibiotic is also required as the site of surgery is susceptible to infection and the 

origin of trachoma is bacterial and one of the causes of scarring is repeated 

bacterial infection (Khandekar et al. 2001; Li et al. 2013). The choice of drug that is 

both antibacterial and anti-scarring at the same time is important.  

Our lab is interested in developing anti-scarring therapeutics, dosage forms 

for drug delivery and exploring the possibility of using over the counter, currently 

used medications as new anti-scarring agents. One of the drugs that have shown 

promising results as anti-scarring agent is the known antibiotic doxycycline (DOXy) 

(Figure 4:3) (Sapadin & Fleischmajer 2006). It is a broad spectrum antibiotic of 

tetracycline family that has been used for the treatment of conditions caused by 

bacterial infections such as acne, urinary tract infections, intestinal infections, eye 

Placing the sutures 
at the lash line 

Incision site 

Scarred tissues 

Separating the scarred 
tissues from the underlying 

submuscular tissues 

Postoperative lid eversion 

A B 

C D 
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infections, gonorrhea, chlamydia and periodontitis (gum infection) (Sloan & 

Scheinfeld 2008). DOXy is used in the clinic in several dosage forms including 

injection, suspension, capsules and tablets. It is also present in the form of hydrogel 

(Atridox®) for the treatment of periodontal disease (Do et al. 2014).  

 

Figure 4:3 The chemical structure of doxycycline free base.  

DOXy is present in three different forms; water soluble DOXy hydrochloride, 

water soluble DOXy hyclate and poorly water soluble DOXy monohydrate 

(Malmborg 1984; Joseph B Bogardus & Blackwood 1979). In addition to its 

antibacterial activity DOXy has also several biological activities, one of which is as 

an inhibitor of matrix metalloproteinases (MMPs) (Horwitz et al. 2014; Sapadin & 

Fleischmajer 2006; Stechmiller et al. 2010) MMPs are a group of enzymes that are 

capable of degrading the ECM components that are often present when there is 

fibrosis. MMPs depend on zinc for activation that is why they are called zinc 

dependant enzymes.  

During the wound healing process MMPs are overexpressed by the cells 

migrating to the wound. Overexpression of MMPs will result in dysregulation of the 

ECM and formation of scared tissues (Birkedal-Hansen et al. 1993). MMP inhibitors 

(MMPI) could be used to remodel the ECM and prevent excessive scarring. DOXy 

in the hyclate form was investigated as anti-scarring agent to modulate wound 

healing after GFS (Georgoulas et al. 2008). DOXy was also investigated as 

treatment before and after trachoma surgery to improve the success rate of the 

surgery (Li et al. 2013; Dawson & Schachter 1985). If 10% MPC hydrogel films 

were able to sustain DOXy hyclate for 2 weeks, such a dosage form would be a 

benefit for both glaucoma and trachoma.  

DOXy hyclate is water soluble (30 mg/mL). As described in Chapter 3, it is a 

challenge to prolong the release of a water soluble drug (pirfenidone) from a 

hydrogel. In an effort to slow the release of  DOXy hyclate and to achieve higher 

loading different methods employing cyclodextrin complexation will be evaluated 

using the 10% MPC hydrogel films to extend the release of DOXy hyclate.  
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Hypothesis and aims 

Hydrogel films with 10% MPC were fabricated as a potential material for GDDs or 

drug loaded subconjunctival spacer after GFS. It was hypothesised that a hydrogel 

implant could be used in other parts of the subconjunctiva such as the eyelid as a 

drug releasing implant after trachoma surgery. It was also hypothesised that a 

hydrophilic drug, doxycycline (DOXy), could be formulated in the hydrogel to display 

a sustained release profile. It was though possible that a diffusion barrier could be 

created through the hydrogel polymer matrix to delay doxycycline release. 

Hydrogels with 10% MPC were loaded with DOXy from different solvents 

and different concentrations to determine the best loading conditions. The films 

were also modified in an attempt to slow the diffusion of DOXy by introducing 

cyclodextrin as a DOXy complexation agent and potentially as a diffusion barrier 

within the hydrogel. The CD will be introduced using different approaches such as 

the formation of an IPN, semi-IPN network and embedding already cross-linked CD 

particles into the hydrogel matrix. The change in SR of the hydrogels after the 

addition of CD and the release of DOXy from CD modified films will be studied.  
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Results and discussion  

Loading and release of doxycycline in 10% MPC hydrogel films 

In the previous chapter hydrogels with the formulation (by weight percent) 10% 

MPC, 88.7% HEMA, 0.56 % PEGDA and 0.74 % (w/w) AIBN were found to be the 

most suitable for potential GDD and spacer development. The same formulation is 

intended as a starting point to develop a hydrogel formulation that could be 

considered for use after trachoma surgery. Delivering DOXy through 10% MPC 

hydrogels may improve the success rate after trachoma surgery. 

Water comprises a large part of the hydrogel matrix after hydration due to 

the ability of hydrogels to absorb and hold water in the hydrogel structure. 

Hydrogels can absorb up to one hundred times the dry weight during hydration 

(Vervoort et al. 1998; Kono & Fujita 2012; Appel et al. 2012). For a hydrogel it is 

thought that the loading efficiency of hydrophilic drugs will be high and accordingly 

the release of these drugs will be fast (Paradiso et al. 2014). Fast release was 

observed previously when pirfenidone was loaded into 0%, 10% and 30% MPC 

containing  hydrogel films. Pirfenidone is a hydrophilic drug, with high solubility in 

water (~10 mg/mL) and low MW (185.226 g/mol) (Richeldi et al. 2011). These 

findings are in agreement with the results reported by Hiraishi et al (Hiraishi et al. 

2008). The group reported that the release of another hydrophilic drug, 

chlorhexidine, in vitro from a methacrylated based resin with low water content was 

slower than the release from high water content resin.   

For a hydrophilic drug the amount of drug loaded and the loading efficiency 

depends on the concentration of the loading solution and the volume absorbed by 

the dry hydrogel. The amount loaded of timolol maleate was increased from 24.5 µg 

to 280 µg/lense when the loading solution concentration increased from 100 µg to 1 

mg/mL (Maulvi et al. 2014). Drug load can often depend on the degree of hydrogel 

swelling. Drug loading is usually estimated using Equation 8 where Vs is the 

absorbed volume by the dry gel, Wp is the weight of the dry gel and Co is the 

concentration of the loading solution (Kim et al. 1992)  

                          Lower amount loaded = (Vs/ Wp) X Co                                                           (8) 

To study the effect of swelling and concentration of loading solution on the 

amount of DOXy loaded into 10% MPC hydrogels, a soaking method was used. Dry 

xerogel (10% MPC) discs of 1cm diameter and 1mm thickness, and with 

approximate weights for each dry disc of 46.5 mg were used to analyse the amount 

of drug loading. One of the factors that affects loading is the concentration of the 
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loading solution. To estimate maximum loading and loading efficiency, each dried 

disc of 10% MPC hydrogel was placed in 1 mL of DOXy aqueous solutions with 

varying concentrations (6 mg/mL, 15 mg/mL and 30 mg/mL) for 24 hours. The 

amount loaded was estimated as the difference in UV absorbance between the 

loading solution before and after incubation. Each disc was removed from the 

loading solution and dried under vacuum for 24 hours.  

When the concentration of the loading solution was increased the amount of 

drug loaded was significantly increased (Table 4:1). Although the maximum amount 

loaded was 7.5 mg when loading from 30 mg/mL solution, 15 mg/mL was chosen 

as the optimum loading solution for further studies. It was reported that DOXy has 

the ability to supress cell contraction when used in a range of (100-400 µg) (H. Li et 

al., 2013). From the UV readings it was calculated that a loading solution of 15 

mg/mL will load 3.6 mg into each disc (weight of the dry disc is 48 mg) which is 

estimated to be enough for two weeks if the drug is released at a rate of 200 µg 

/day. 

Table 4:1 The amount loaded and loading efficiency of DOXy in 10% MPC discs. The 
solutions used for loading were (6 mg/ml, 15 mg/ml (3ml), 30 mg/ml; 1 ml).  

Loading solution in PBS 
Amount loaded 

mg/disc 
Loading efficiency % 

6 mg/mL (1 mL) 1.20 ± 0.08 24.10 ± 2.05 

15 mg/mL (1 mL) 3.60 ± 0.09 25.8 ± 0.8 

30 mg/mL (1 mL) 7.50 ± 0.09 25.0 ± 0.3 

 

Another factor that can affect loading is the volume absorbed by a dry 

hydrogel. According to equation 7 the higher volume absorbed will result in higher 

loading. The swelling ratio (SR) for HEMA hydrogels containing 10% MPC changes 

with different solvents. The SR of 10% MPC hydrogels in water and methanol was 

found to be 1.20 ± 0.02 and 1.20 ± 0.09 respectively. When a (1:1) water:alcohol 

mixture is used, the SR was increased to 2.80 ± 0.08 for water:methanol (1:1) and 

3.2 ± 0.1 for water:ethanol (1:1) mixture. A higher SR indicates a higher volume of 

the solvent is absorbed by the dry hydrogel matrix.  

It was assumed that by maximising the swelling of the films during the 

loading process the amount loaded would be increased. It was also assumed that 

using an alcohol:water (1:1) mixture for loading will result in a better entrapment of 

the drug. By swelling first in the alcohol:water mixture the drug will be loaded in 

higher amount compared to using water alone, and the volume absorbed by the 

hydrogel will be higher. After drying to remove the loading solvent the hydrogel will 
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re-swell again in PBS; however, it will swell to a lesser extent and less volume will 

be entrapped in the hydrogel matrix (Figure 4:4). This decrease in swelling may 

entrap the drug molecule deeper into the hydrogel matrix and will slow the release 

of the drug.  

 

 

 

 

 

Figure 4:4 The proposed mechanism for Improved loading and release from different 
solvent systems.1) The dried hydrogel disc placed in water: alcohol (1:1) mixture to achieve 
maximum swelling. The volume absorbed by the hydrogel is high which potentially load high 
amount of the drug; 2) After removal from incubation solution and drying, the drug is 
precipitated in the hydrogel matrix; 3) Less swelling will be observed when the loaded discs 
placed in the releasing buffer which may allow slow release of the loaded drug.   

Hydrogel discs with 10% MPC were loaded from different solvents and 

solvent combinations using a concentration of (15 mg/mL, 1 mL) and the release of 

DOXy from the loaded discs was studied. It was assumed that the amount loaded 

from water:alcohol mixture (1:1) will be high compared to water or methanol; 

however, there was no significant difference (p>0.05) in the amount loaded, and 

therefore the loading efficiency, when using different solvents and solvent 

combinations except where water:ethanol (1:1) was used (p<0.05). When 

water:ethanol (1:1) was used the amount loaded and loading efficiency was lower 

(Table 4:2). This may be due to the affinity of the drug for the hydrogel matrix. It is 

possible that when the loading solution is rich with alcohol, the alcohol will have a 

stronger interaction with the polymer matrix, displacing the drug and filling the 

internal volume of the hydrogel matrix, and any extra swelling and increase in size 

will be filled by alcohol not the drug.  
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Table 4:2 The amount loaded, loading efficiency and half-life of DOXy in 10% MPC discs 
from 15 mg/mL 1 mL loading solution using different solvents.  

Loading solution 
Amount 

loaded mg 
SR 

Loading 
efficiency % 

Half-life 
days 

Water 3.7 ± 0.4 1.20 ± 0.02 24.6 ± 4.1 1.20 ± 0.01 

PBS 3.60 ± 0.09 1.20 ± 0.01 24.0 ± 0.8 -  

Water: Ethanol (1:1) 2.4 ± 1.8 3.2 ± 0.1 16.0 ± 2.8 0.9 ± 0.1 

Water: Methanol(1:1) 3.8 ± 1.8 2.80 ± 0.08 25.3 ± 9.4 0.9 ± 0.1 

Methanol 3.5 ± 5.5 1.20 ± 0.09 23.3 ± 8.4 1.1 ± 0.3 

 

The release of DOXy from the loaded discs was studied and the release 

profile was compared using the in vitro eye flow chamber. The release of DOXY 

from water or methanol loading was studied first for a week. The release was 

stopped when no more DOXy was detected from the collected samples using HPLC 

(Figure 4:5). However, only ~ 70% of the estimated loaded drug was released 

during that period. A possible explanation is that the amount of the drug loaded into 

the discs was overestimated and the real amount was lower. Another explanation is 

that the drug degraded through that period and the degradation products was 

entangled in the hydrogel matrix. 

Following the study of DOXy release from water and methanol, the release 

was studied from water:ethanol or water:methanol (1:1) loading. The release was 

faster compared to water and methanol. More than 80% of the loaded drug was 

released after 4 days compared to 60% using water or methanol (Figure 4:5). The 

experiment was ended after 4 days because the fast release of DOXy render the 

loading using water:ethanol or water:methanol (1:1) solution inappropriate for 

extended release. From the release experiment we concluded that the type of 

solvent used for loading has no effect on loading and release of DOXy from 10% 

MPC hydrogels.  

Based on the above observation DOXy was loaded and released from 10% 

MPC hydrogel discs. However, it was noticed from the release profile of DOXy 

(Figure 4:5) that the half-life of DOXy is 48 hours and there was burst release of the 

drug in the first 24 hours. In an effort to extend the half-life of DOXy in the films 

several modifications to the method were evaluated using the 10% MPC films. 
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Figure 4:5 The release profile of DOXy from 10% MPC discs loaded from 15 mg/mL 1.0 mL 
loading solution using different solvents. The top panel is the percent of drug released and 
the bottom panel is the concentration of the drug released with time. The solvents used are 
water, water:ethanol 1:1, water:methanol 1:1, ethanol and methanol. 

The use of beta-cyclodextrin (β-CD) in HEMA-MPC hydrogels 

The transport of molecules from loaded hydrogels to the surrounding medium is 

through the solubilisation of the drug in the water filled regions of the hydrogel 

matrix followed by drug transport through the polymer chains into the polymer 

surfaces (Amsden 1998). When the release of a molecule from a hydrogel is 

controlled by diffusion, the release rate is affected by the following factors; path 

length (l) and molecular diffusivity (D). The duration of release can be estimated by 

l2/D (Peng et al. 2010). The release profile can be increased by either increasing 

the path length (l) or decreasing diffusivity. Creating a diffusion barrier can prolong 

the path for the molecule to diffuse out of the polymer matrix (Hsu et al. 2014). Rad 

et al reported that the release of betamethasone from silicone based contact lenses 
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was reduced when vitamin E was used as hydrophobic diffusion barrier (Rad et al. 

2016). The release time of 90% of the loaded betamethasone (3.5 hours) from 

three commercial contact lenses was increased to (264-360) hours after using 

Vitamin E as diffusion barrier in the contact lens matrix. 

Molecular diffusivity is affected by the solubility of the material in the volume 

fraction of the hydrogel, the size of the molecule, the mobility of the polymer chains, 

the pore size of the hydrogel and drug polymer affinity (Amsden 1998; Korsmeyer 

et al. 1983; Nakamura et al. 2004). DOXy hyclate rapidly diffused from 10% MPC 

hydrogel discs. To slow the diffusion of DOXy from the polymer matrix, beta-

cyclodextrin (β-CD) was introduced. By incorporating β-CD into the polymer matrix, 

the affinity of DOXy to the hydrogel matrix could be increased and the release rate 

could be decreased.   

The concept of affinity based drug delivery has been investigated in recent 

years. In affinity based systems the drug will have higher affinity to the hydrogel 

matrix compared to the surrounding medium. The high affinity between the drug 

and the hydrogel matrix will help in modulating drug loading and release from the 

hydrogel matrix to increase loading and slow diffusion (Thatiparti et al. 2010; Vulic 

& Shoichet 2014; Wang & von Recum 2011). Jeon et al described the formation of 

affinity based heparin-alginate hydrogels for growth factor delivery (Jeon et al. 

2011). Due to the high affinity of growth factors to heparin, the heparin-alginate 

hydrogel was able to sustain the release of the growth factors in PBS for 3 weeks 

compared to 5 days using alginate hydrogel alone.   

CDs are cyclic oligosaccharides that are widely used in medicine as a 

complexing agent and there are several marketed products where CDs are used as 

excipients (Sharma & Baldi 2014; Rao et al. 2001; Szejtli 2005; Loftsson & Brewster 

2010). Through the formation of inclusion complexes the physicochemical 

properties of the drug molecules will be changed such as solubility, stability, 

permeability and toxic side effects (Davis & Brewster 2004; Concheiro & Alvarez-

Lorenzo 2013; Vilanova & Solans 2015). 

Jóhannsdóttir et al reported an increase in the solubility of cyclosporine A 

from 0.008 mg/mL to 0.5 mg/mL when 5% (w/v) of α-CD was used for the 

formulation of eye drop (Jóhannsdóttir et al. 2015). Moriwaki et al reported an 

increase in the solubility of albendazole from 13.62 µmol/L to 276 µmol/L when β-

CD was used in a concentration of 16.3 mmol/L (Moriwaki et al. 2008). Abdur Rouf 

et al reported that the solubility and dissolution rate of rapamycin was improved with 

complexting with CD (Abdur Rouf et al. 2011). In the dissolution test only 25% of 

the pure rapamycin was dissolved after one hour compared to 80% of the complex 
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when an equal amount of the drug was added. Kanjickal et al reported that 

alteration in the release of cyclosporine A from PEG hydrogels after sterilization 

could be avoided by using cyclosporine A-CD complex instead of the free drug in 

the hydrogel (Kanjickal et al. 2005).  

In the area of ophthalmic drug delivery CDs are widely used in formulation 

as an excepient, particularly in eye drops and several marketed products utilise 

CDs to increase drug solubility (Sharma & Baldi 2014; Cal & Centkowska 2008). 

Several commerical eye drops such as Voltaren Ophthalmic® and Clorocil® are 

available in the clinic in which CDs were used to improve the solubility of the poorly 

soluble drugs (Loftsson & Stefánsson 2002) .  

CDs can form inclusion complexes because they have an interior 

hydrophobic cavity that can accommodate hydrophobic drugs or hydrophobic parts 

of drug molecules that can fit in the cavity to form the complex (Del Valle 2004). 

Such a drug-CD inclusion complex can be more water soluble than drug alone due 

to the solubilising OH groups on the outer surface of CDs (Figure 4:6) (Pinho et al. 

2014). Moriwaki et al reported an increase in the solubility of albendazole from 

13.62 µmol/L to 276 µmol/L when β-CD was used in a concentration of 16.3 mmol/L 

(Moriwaki et al. 2008).  

 

 

Figure 4:6 Structure and arrangement of β–CD molecule that have 7 glucose units. The 
drug molecule is complexed with the inner cavity of the CD molecule. 
(http://watcut.uwaterloo.ca/webnotes/Pharmacology/deliveryCarriers.html) 

The drug-CD complex is formed by non-covalent interactions between the 

drug and CD, therefore the reaction is reversible. Formation and dissociation of the 

CD-drug complex depends on the stability of the complex formed (Bibby et al. 

2000). When a strong complex is formed the dissociation rate of the drug from the 

complex will be low (Stella et al. 1999). Corre et al reported that the decrease in 

intestinal absorption rate of diphenhydramine in rat model from two CD molecules 

Drug molecule 
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was related to the strength of the inclusion complex formed (Corre et al. 1998). The 

absorption rate was reduced by 36% when dimethyl-β-CD was used compared to 

only 8% when hydroxypropyl-β-CD was used because of the high stability of the 

complex formed with dimethyl-β-CD compared to hydroxypropyl-β-CD. The stability 

constant was 895 M-1 for dimethyl-β-CD compared to 494 M-1 for hydroxypropyl-β-

CD. 

CDs are available in three main forms α-, β- and γ-cyclodextrin which 

contain 6, 7 and 8 molecules of glucose respectively and derivatives of the three 

types are also available such as hydroxypropy-β-CD, hydroxypropyl-γ-CD, 

dimethyl-β-CD and sulphated-β-CD (Vyas et al. 2008; Crini 2014). The molecules 

differ in the size of the inner hydrophobic cavity and solubility in water. The 

difference in the properties allowed the formation of complexes with different 

properties and complexing wide range of drugs (Otero-espinar 2010; Lezcano et al. 

2002). Rodriguez-Aller et al reported different stability of latanoprost when 

complexed with different CD molecules as eye drops (Rodriguez-Aller et al. 2015). 

Latanoprost stability was not improved compared to the commercial eye drops 

when α-and γ-CD were used as complexing agents; however the stability was 

improved when β-CD derivatives were used. Only 33.5% of the initial latanoprost 

remained after 12 months in direct sunlight from the commercial eye drop 

compared to 81.9% and 79.6% for dimethyl-β-CD and propylamino-β-CD 

respectively. Bayomi et al reported that the improvement of photostability of 

nifedipine by complexation with CD was affected by the type of CD used (Bayomi et 

al. 2002). The degradation rate constant of nifedipine was smaller when dimethyl-β-

CD  and hydroxypropy-β-CD compared to β-CD which was 0.12, 0.29 and 0.47 for 

dimethyl-β-CD,  hydroxypropy-β-CD and β-CD respectively.  

CD hydrogels have been investigated as delivery systems to slow the 

release of loaded drugs (Concheiro & Alvarez-Lorenzo 2013; MacHín et al. 2012). 

Li et al reported that a supramolecular self-assembled hydrogel made of α-

cyclodextrin and a biodegradable poly(ethylene oxide)–poly[(R)-3-

hydroxybutyrate]–poly(ethylene oxide) (PEO–PHB–PEO) triblock copolymer was 

able to sustain the release of a model drug dextran-FITC (Li et al. 2006). The 

release of dextran in vitro was sustained for a month when the supramolecular 

hydrogel was used compared to using α-CD-PEO alone in which 100% of the 

loaded dextran was released in less than 5 days.  

CD Hydrogels could be made entirely from CD cross-linked molecules or the 

CD molecules introduced into the polymer matrix of the hydrogel (Concheiro & 

Alvarez-Lorenzo 2013). Drug-CD complex formation is governed by the rates of 
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association (Ka) and dissociation (Kd) (Bibby et al. 2000). When a drug is loaded 

into CD hydrogels, the rate of drug release will depend on two mechanisms; affinity 

of the drug to CD and diffusion from the hydrogel matrix. The loaded drug has to 

associate and dissociate through several CD molecules before diffusing outside the 

hydrogel (Figure 4:7). There are several approaches used to introduce CD into a 

hydrogel polymer matrix such as co polymerisation with CD, the use of CD grafted 

polymers and the formation of IPN with CD (Li et al. 2015; Rosa dos Santos et al. 

2009; Xu et al. 2010; Ribeiro et al. 2012).  

 

 

Figure 4:7 Schematic representation of drug release from hydrogels with CD molecule and 
hydrogels without CD. The drug molecule will have to complex and de-complex several CD 
molecules before release from the hydrogel while it diffuse without obstacles in CD free 
hydrogels. 

Moya-Ortega et al reported the formation of semi-IPN of γ-CD and 

polyacrylic acid for the sustained delivery of dexamethasone (Moya-Ortega et al. 

2010). Dexamethasone release was sustained for 1 week with the semi-IPN 

hydrogel compared to 1 day when using γ-CD hydrogel only. Mennini et al  reported 
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that both the solubility and the release profile of hydrophobic drug 

dehydroepiandrosterone were improved when loaded in CD hydrogel for vaginal 

delivery (Mennini et al. 2016). The release of dehydroepiandrosterone from a 

combination hydrogel made with HP-β-CD and γ-CD was sustained for more than 8 

hours in vitro using dissolution apparatus. Kono and Teshirogi reported the 

formation of β -cyclodextrin-grafted carboxymethyl chitosan hydrogels (CD-g-

CMCs) as a controlled delivery system (Kono & Teshirogi 2015). The amount of 

acetyl salicylic acid absorbed into the (CD-g-CMCs) was 23.9 µmol/g compared to 

2.4 µmol/g for CMC hydrogels without CD. When in vitro release was studied the 

amount released from CMC hydrogels was 86% in the first 2 hours compared to 

41% using (CD-g-CMCs).  

Although CD has been used as complexing agent for hydrophobic drugs it 

has also been investigated as complexing agent for hydrophilic drugs to modulate 

the physicochemical properties of the complexed drugs (Ikeda et al. 2002; 

Mariangela de Burgos M de Azevedo et al. 2011). β–CD was used as complexing 

agent for DOXy monohydrate and hyclate to reduce photosensitivity and increase 

stability of DOXy (H. Zhang et al. 2013; Wang et al. 2013; He et al. 2011). Kogawa 

et al reported that DOXy hyclate has the ability to form inclusion complex with β–CD 

if they were mixed in equimolar ratios (Kogawa et al. 2014). Introducing β-CD into 

10% MPC hydrogel films may slow the diffusion and sustain the release of loaded 

DOXy.  

Formation of a complex of DOXy hyclate with β-CD was examined by 

dissolving the two molecules in equimolar amounts in 5 mL DW and sonicated for 

one hour then freeze dried to achieve the dry powder of the complex. There are 

several methods that could be used to confirm the formation of inclusion complex 

such as DSC, thermogravimetric analysis (TGA) and FTIR (Poorghorban et al. 

2015; Figueiras et al. 2015). A complex was confirmed when DSC was measured 

for the individual molecules, the physical mixture and the complex. The physical 

mixture was prepared by mixing CD and DOXy powders in equimolar ratios. The 

melting peak of DOXy at ~170oC disappeared when the complex was formed. The 

DOXy melting peak was present when physical mixture was formed (Figure 4:8). 

These results suggest that β-CD has the ability to form inclusion complex with 

DOXy. Similar DSC profile was reported by Kogawa et al when complexed DOXy 

with β-CD (Kogawa et al. 2014).   
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Figure 4:8 The DSC analyses of β-CD, DOXy and the physical mixture and complex of both 
β-CD and DOXy. In the DSC graph the melting peak of DOXy was not observed in the 
complex and was observed in the physical mixture which indicates the formation of inclusion 
complex.   

Formation of 10% MPC- 89.5% HEMA film with pendant CD 

Hydrogel films with 10% MPC-89.5% HEMA and pendant β-CD were prepared. 

Glycidyl methacrylate (GMA) was used as a monomer to conjugate CD into the 

hydrogels polymer chains. GMA was previously used as a monomer for the 

formulation of hydrogel soft contact lenses with pendant CD molecules as 

controlled drug delivery systems (Rosa dos Santos et al. 2009). GMA should be 

polymerised first with the hydrogel matrix as a co monomer followed by activation of 

the hydrogel for the conjugation of CD into GMA. GMA has an acrylate group at one 

end and epoxide at the other end. The acrylate group will help GMA to attach to the 

hydrogel network on one end and reacts with CD through the epoxy group on the 

other (Figure 4:9) (Ribeiro et al. 2012).  

Nava-Ortíz et al reported the functionalization of polyethylene and 

polypropylene films with β-CD using GMA (Nava-Ortíz et al. 2009). GMA was first 

grafted into the films. After grafting, the films were incubated for 24 hr with 

continuous stirring at 70oC in a mixture of DMF (2 mL) and 0.5 M NaCl (8 mL) with 

β-CD. 
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Figure 4:9 The chemical structure of GMA and the formation of pendant CD. GMA was 
attached through the acrylate group into the HEMA-MPC hydrogel film and conjugated to 
the CD through epoxide group through activation solution.   

Hydrogel films with 10% MPC and pendant CD were fabricated. The GMA 

was used as a co-monomer during the formulation of 10% MPC hydrogel. The CD 

was then conjugated by reaction of the epoxy group on the GMA. For the 

preparation of the hydrogels, to 1 mL of 10% MPC monomer solution mixture (that 

contains 88.7% HEMA, 10% MPC, 0.74% AIBN and 0.56% (w/w) PEGDA) different 

amounts of GMA (1%, 2.5%, 5% and 9% (w/v)) were added. The mixture was 

polymerised to synthesise hydrogels with GMA cross-linked in the polymer matrix. 

After polymerisation, the xerogels were left to hydrate in water and washed to 

remove the unreacted monomers. Hydrogels with higher percentages of GMA (5% 

and 9% (w/w)) did not hydrate when placed in water and remained in a hard and 

glassy xerogel form, due to the large percentage of GMA in the polymer mixture. 

Hydrogels with (1% and 2.5% (w/w)) was hydrated when placed in water for 

washing. To activate the epoxy group and conjugate β-CD to the polymer matrix, 

the GMA containing hydrogels need to be incubated in activation solution. The 

activation solution is composed of dimethyl formamide (DMF), sodium hydroxide 

(NaOH) and β-CD. Discs of 1 cm in diameter were cut from the hydrated films and 

placed in the activation solution at 80oC for 24 hr. In the presence of alkaline 

conditions (NaOH(aq)) and high temperatures the epoxy ring will open and form a 

covalent bond with the hydroxyl group of the β-CD (Figure 4:10).  
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Figure 4:10 The fabrication of 10% MPC hydrogel with GMA. Monomer mixture of 10% 
MPC was first polymerised with GMA. Followed the polymerisation and washing the 

hydrated hydrogel placed in activation solution at 80
o
C for 24 hours for the conjugation of β-

CD into the hydrogel. 
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β-CD molecules have several hydroxide groups (OH) and it is possible that 

more than one OH group may participate in the reaction and form a covalent bond 

with GMA, thereby two or more GMA molecules could be attached to the same β-

CD molecule. The multiple cross-linking of the same β-CD molecule may increase 

the cross-linking density of the hydrogel formed and potentially affect the properties 

of the hydrogel formed.  

When the discs were removed from the activation solution and washed with 

water for 3 days they were fragile and easy to break. The loss of mechanical 

strength is probably due to the presence of DMF which is a strong organic solvent. 

To examine the effects of DMF on the hydrogel the 10% MPC hydrated disc without 

GMA was placed in DMF for 24 h. When removed the disc was fragile and easily 

fragmented. Mechanical strength is an important parameter for a spacer or a device 

as it is intended for implantation for a long period of time. Reduction in the 

mechanical strength of the films after soaking in the activation solution, render them 

unusable for implantation. No further action was taken regarding the pendant β-CD 

using this activation method.  

In an effort to incorporate β-CD into the hydrogel without using DMF, the β-

CD solution was mixed with 10% MPC monomer solution and GMA, to create an in 

situ polymerisation method. Monomer solution of 10% MPC (1 mL) was mixed with 

1 ml β-CD solution and different amounts of GMA (0.5, 0.2 and 0.1 g). These are 

labelled formulations number 1, 2 and 3 respectively. The β-CD monomer solution 

is 20% (w/v) in 0.2 M NaOH solution (Figure 4:11). It was hoped GMA will be 

polymerised into the HEMA-MPC hydrogel matrix through the acrylate group and at 

the same time conjugated to β-CD through the epoxy group. 

 

 

Figure 4:11 The preparation of HEMA-MPC hydrogel films with pendant CD using GMA as 
conjugating agent in situ. The monomer mixture with CD placed at 80oC for 24 hours in the 
incubator.   
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Incomplete and brittle films were formed with formulations numbered 1, 2 

and 3 (Figure 4:12). A possible reason is the presence of large amount of β-CD in 

the mixture. β-CD only hydrogels are brittle and it is possible that the presence of 

high amount of β-CD in the formulations reduced the mechanical strength of the 

films. However, even when the volume of β-CD monomer solution used in the 

formulation was reduced to 0.5 mL in formulations numbered 4, 5 and 6 no proper 

film was formed (Figure 4:12). The hydrogel films formed were incomplete (filled 

with bubbles) and brittle around the edges. Since no proper film could be formed 

using in situ approach, a different approach was needed to incorporate β-CD into 

the hydrogel. 

 

 

Figure 4:12 Different formulations were prepared by varying the ratio of 10% MPC 
monomer solution with 20% β-CD monomer solution and GMA. Formulations numbered 1, 
2, 3 contain equal volumes of both monomer solutions and different amounts of GMA (0.5, 
0.2 and 0.1 g) respectively. Formulations numbered 4, 5, 6 contain (2:1) ratios of 10% MPC 
monomer solution: β-CD monomer solution  and varying amount of GMA (0.5, 0.2 and 0.1 
g) respectively. Complete films could not be formed by any of the formulations.    

Embedding CD cross-linked particles in 10% MPC-HEMA  films 

Preparation of films with pendant β-CD using GMA appeared to be unachievable in 

these MPC hydrogels. β-CD could be introduced as embedded particles in the 

hydrogel matrix. If β-CD were used as powder in the hydrogel mixture it will be 

washed with the unreacted monomers due to its solubility in water. Converting β-

CD into insoluble form would help to immobilise the particles within the hydrogel 

film. Chemically cross-linked CD particles (micro and nano) were previously 

reported and prepared to be used as sorbents and drug carriers for drugs (Trotta et 

al. 2012; Trotta 2011; Yamasaki et al. 2006; Torne et al. 2013; Trotta & Cavalli 

2009). Swaminathan et al reported the synthesis of β-CD nanosponges for the 

delivery of antitumor camptothecin (Swaminathan et al. 2010). During the release 

study in vitro only ~25% of the loaded camptothecin was released from the 

nanosponges after 24 hours.   

β–CD cross-linked hydrogel was used for the preparation of β–CD cross-

linked particles. The β–CD monomers were chemically cross-linked using 

1 2 3 4 6 5 
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poly(ethylene glycol) diglycidyl ether (PEGDE) as cross-linker for the formation of 

β–CD hydrogel (Figure 4:13). After polymerisation, the cross-linked hydrogel was 

crushed and passed through a sieve to create the microparticles. Understanding 

the properties and water behaviour of the β–CD hydrogels will help to choose the 

best formulation for the synthesis of the β–CD cross-linked particles.  

 

 

Figure 4:13 Formation of cross-linked β-CD hydrogels. The CD monomers mixed with 
polyethylene glycol diglycidyl ether (PEGDE) as cross-linker and polymerised at 50

o
C for 12 

hours at 150 RPM in 0.2 M NaOH. The epoxy group on the cross-linker interacts with the 
hydroxyl groups on the CD molecule through covalent bonding.    

To study the effect of the ratio of the cross-linker PEGDE to β–CD solution 

on the properties of the prepared hydrogels the level of cross-linker was varied (1:1, 

1:2, 2:1) with β–CD solution. β–CD was dissolved in 0.2 M NaOH at a concentration 

of 15% (w/v). The EWC% and SR of the formulations were measured (Table 4:3). 

There was only a slight difference in SR and EWC% observed between the 

hydrogels. However, when the level of PEGDE to β–CD solution was 2:1, the 

hydrogel formed was too hard to pass through the 40 mesh sieve. The softness 

could be increased by reducing the percentage of PEGDE compared to β–CD 

solution. The ratio of cross-linker chosen for the synthesis of the CD particles was 

(1:1) (Figure 4:14). This ratio will offer the advantage of a higher cross-linker 

density and the ability to pass through the 40 mesh sieve to produce the 

microparticles. The microparticles were freeze dried to be used for embedding in 

10% MPC hydrogels. 

   

50
o
C/12 hrs 

150 RPM 

β-CD 

PEGDE 

β-CD cross-linked hydrogel 
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Figure 4:14 The preparation of β–CD microparticles; A) The CD hydrogel was first formed 
the crushed and passed through 40 mesh sieve to create the particles; B) SEM image of the 
cross-linked CD particles with scale bar of 500 µm. 

 

Table 4:3 The EWC% and SR of CD hydrogels prepared with different ratios of cross-linker 
to monomer. The water content and SR was higher when the level of cross-linker was low.  

15% CD:PEGDE EWC% SR 

1:1 86.1% ± 0.7 5.9 ± 0.2 

2:1 90.6% ± 0.5 5.6 ± 0.3 

1:2 85.4% ± 0.5 9.7 ± 0.2 

 

Hydrogels with 10% MPC were polymerised around the cross-linked β-CD 

particles. Cross-linked β-CD particles are hydrogels so polymerising HEMA-MPC 

around the cross-linked β-CD particles could create a hydrogel inside a hydrogel 

and add an additional barrier to slow the release of loaded DOXy. The β-CD 

particles were added to 10% MPC monomer solution in two different concentrations 

1% and 2% (w/v). When the β-CD particles added to 10% MPC monomer solution, 

suspension was formed. A suspension made with 1% (w/v) β-CD particles was 

injectable through a 21G needle. A suspension made with 2% (w/v) was non 

injectable, even when the needle size was increased to 19G. 

β–CD hydrogel β–CD cross-linked particles 

A 

B 

500 µm 



135 
 

A hydrogel suspension of 10% MPC and 1% (w/v) was injected into the 

mould and placed in the oven for polymerisation. As a xerogel the film was opaque 

(compared to the clear 10% MPC) and after hydration the films were still opaque, 

confirming that the β-CD particles were embedded in the film and not washed out 

during the removal of unreacted monomers (Figure 4:15). Films with cross-linked β-

CD particles had similar strength to the films without β-CD particles which indicated 

that the presence of β-CD particles did not affect the mechanical properties of the 

original 10% MPC film. Qualitative determination was used to compare the strength 

of the hydrogels with and without crosslinked β-CD particles. Hydrogels made with 

10% MPC could be bended more than 20 times in one minute without breaking so 

as the 10% MPC hydrogels with crosslinked β-CD particles.    

 

Figure 4:15 10% MPC hydrogel made with embedded β-CD particles compared to standard 
10% MPC film. The film with β-CD is opaque compared to standard 10% MPC films.  

The EWC% and SR in different solvent systems were measured for 10% 

MPC hydrogels embedded with 1% (w/v) β-CD particles to study the effect of the 

presence of β-CD particles on 10% MPC behaviour. The EWC% of hydrogels with 

embedded β-CD particles was higher (65.4 ± 0.1) compared to 10% MPC hydrogels 

(55.1 ± 0.3). The increase in water content could be attributed to the hydroxyl 

groups present in the β-CD. When the ratio of free to bound water was measured 

for 10% MPC with embedded β-CD particles, the majority of water was free. The 

ratio of free to bound water was (2:1) for the 10% MPC with embedded β-CD 

particles compared to (1.8:1) in 10% MPC hydrogels. β-CD hydrogels have higher 

free water compared to bound water when examined. The ratio of free to bound 

water was (3.1:1). The SR in water was also increased in the presence of CD 

particles; however, there was no difference in SR in solvents other than water 

(Table 4:4). 

 

10% MPC  
hydrogel 

10% MPC hydrogel 
with embedded CD 
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Table 4:4 The effect of embedding CD particles on the SR of 10% MPC hydrogels in 
different solvents.  

 

Solvent used 

SR 

10% MPC 10% MPC with CD particles 

Water 1.20 ± 0.02 1.80 ± 0.09 

Methanol 1.20 ± 0.09 1.2 ± 0.2 

Water:Methanol (1:1) 2.80 ± 0.08 2.6 ± 0.3 

Water:Ethanol (1:1) 3.2 ± 0.1 3.7 ± 0.3 

Ethanol 0.20 ± 0.03 0.20 ± 0.01 

 

For the loading process a hydrogel disc of 1 cm diameter and 1 mm 

thickness was used. The loading of DOXy in each disc was increased from 3.7 ± 

0.4 mg in the 10% MPC films to 6.6 ± 0.4 mg when the hydrogel films were 

embedded with β-CD particles. Unfortunately, there was no significant difference in 

the release profile of DOXy from the β-CD embedded hydrogels compared to 10% 

MPC hydrogels (Figure 4:16). A possible explanation is that the affinity of DOXy for 

β-CD is low. The low affinity may have caused faster rate of dissociation compared 

to association between β-CD and DOXy. It is also possible that because of the high 

water solubility of DOXy the drug would prefer to be in solution form rather than the 

inner cavity of the β-CD molecule.  
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Figure 4:16 The release of DOXy from 10% MPC and 10% MPC hydrogels embedded with 
β-CD cross-linked particles. The top panel is the percent of drug released and the bottom 
panel is the concentration of the drug released with time. No difference in the release profile 
was observed.  

Formulation of an IPN derived from 10% MPC-HEMA and β-CD 

As described previously IPN and semi-IPN are terms used to describe hydrogels 

made by the polymerisation of two orthogonal monomer systems at the same time 

(IPN) or polymerisation of a monomer mixture around a polymer (semi-IPN). Each 

monomer system undergoes separate polymerisation with polymer chain addition 

(or growth) occurring simultaneously for each polymer. In principle, an IPN can 

result in an entangled mixture of two or more polymers that would be difficult to 

achieve by mixing alone. IPN and semi-IPN technique are usually used to impart 

strength to hydrogels or manipulate the physical and chemical properties such as 

swelling and mechanical strength (Lohani et al. 2014; Aminabhavi et al. 2015; 

Samanta & Ray 2014).  
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Full-IPN of cross-linked β-CD and 10% MPC was prepared using in situ 

approach. The two monomer mixture will be mixed in equal volume ratios. (Figure 

4:17). To ensure that each monomer system undergoes separate polymerisation, 

HEMA-MPC monomers were polymerised in the presence of PEGDE as a 

replacement of PEGDA and β-CD monomer mixture was polymerised in the 

presence of PEGDA as a replacement for PEGDE separately. Both mixtures 

remained liquid and did not polymerise to a hydrogel which indicates that the two 

systems can undergo separate polymerisation at the same time.  

 

 

Figure 4:17 The in situ polymerisation of IPN of β-CD and 10% MPC monomer solution. 

The two monomer mixtures are mixed together and polymerised at the same time. 

β-CD hydrogels are polymerised under different conditions than 10% MPC 

hydrogels (50oC/12 hours at 150 RPM). To ensure that 10% MPC could be 

polymerised in conditions similar to β-CD the monomer solution of 10% MPC was 

placed for polymerisation at (50oC/12 hours at 150 RPM). A xerogel was formed 

and there was no difference in appearance between hydrogels prepared at 70oC for 

12 hours and hydrogels prepared at (50oC/12 hours at 150 RPM).  

Three different formulations were prepared in which the β-CD monomer 

solution and 10% MPC monomer solution were mixed in equal volume ratios (1:1). 

The difference between the three formulations is the composition of β-CD monomer 
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contains β-CD in 
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solution used. Three different β-CD monomer solutions were prepared with varying 

percentages of β-CD (15%, 30%, 50% (w/v)) in 0.2 M NaOH. The amount of 

PEGDE as cross-linker in each β-CD solution was 50% (v/v). The percentage of β-

CD in the mixture was varied to identify the maximum amount of β-CD that could be 

applied into the monomer mixture and still maintain a film. The mixture then placed 

in the incubator at 50oC for 12 h at 150 RPM. Before incubation all the mixtures 

were white in colour. No complete film was formed and all the three films were 

broken and difficult to handle (Figure 4:18). 

 

 

Figure 4:18 IPN hydrogel films made by in situ polymerisation of two monomer solutions. β-
CD monomer solution and 10% MPC monomer solution were mixed in equal ratios (1:1). 
Three different β-CD monomer solutions were prepared with varying percentages of β-CD 
(15%, 30%, 50% (w/v)) in 0.2 M NaOH. The amount of PEGDE as cross-linker in each β-CD 
solution was 50% (v/v). For all the formulations prepared no proper film was formed. 

The closest film to the 10% MPC films superficially were the films made with 

30% β-CD monomer solution. To explore whether changing the ratio of β-CD 

monomer solution to 10% MPC monomer solution will have an impact of the 

formulation, different formulations with different ratios of 30% β-CD to 10% MPC 

monomers were prepared. The ratios in which the two monomer solutions were 

mixed were (1:1, 1:2, 2:1 30% β-CD:10% MPC). Varying the ratio between the two 

monomer solutions did not affect the properties of the films regarding the texture, 

the films prepared were brittle (Figure 4:19).  
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Figure 4:19 Hydrogel films with different ratios between 10% MPC-89.5% HEMA monomer 
solution : 30% CD monomer solution (1:1, 2:1, 1:2) were prepared. Formulation with 1:2 
ratio was not in the form of film and very brittle. The other two films were weak and the CD 
was not distributed uniformly through the film 

Since the formation of an IPN was not possible using an in situ approach, a 

sequential approach was investigated for the preparation of IPN of 10% MPC and 

β-CD. Sequential polymerisation is basically two steps polymerisation. The first step 

is to polymerise the first monomer mixture in the presence of the other mixture 

followed by polymerisation of the second monomer mixture (Figure 4:20). 

 

 

 

 

Figure 4:20 Sequential approach used for IPN synthesis. Polymerisation of the first 
monomer mixture in the presence of the second monomer mixture followed by 
polymerisation of the second monomer mixture to have an IPN hydrogel.  

The polymerisation of the 10% MPC monomer mixture first took place 

followed by the polymerisation of 30% β-CD monomer mixture. To avoid using the 

higher temperature required by AIBN (70°C), the initiator was replaced with 

TEMED/APS system. The TEMED/APS system is capable of starting the 

polymerisation process at room temperature eliminating the need of higher 

temperature. After 15 minutes of the addition of TEMED to start the polymerisation 

process, the mould was transferred to an incubator to start the polymerisation of β-

CD monomer solution. The films prepared were smooth similar to 10% MPC; 

however they were opaque which is a possible indication of the formation of an IPN 

(Figure 4:21). 

(1:1) (2:1) (1:2) 

First polymerisation 
for the synthesis of the 
first polymer network 

Second polymerisation 
for the synthesis IPN 
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Figure 4:21 IPN hydrogel film fabricated from sequential polymerisation of 10% MPC 
monomer solution and β-CD monomer solution. First TEMED/APS system was used for the 
polymerisation of 10% MPC followed by polymerisation of β-CD by placing the hydrogel in 
the incubator at 50

o
C for 12 hours at 150 RPM. A hydrogel film was formed. 

No difference was observed in SR when water, ethanol and methanol were 

used. There was an increase in SR when alcohol mixture was used in IPN 

formulations compared to standard 10% MPC films (Table 4:5). The loading of the 

IPN hydrogel was 5.9 ± 0.9 which was also significantly higher than the loading of 

the hydrogel without β-CD. Unfortunately, similar to using embedded β-CD particles 

no difference in DOXy release profile was observed between 10% MPC hydrogels 

and the IPN hydrogel discs (Figure 4:22). 

Table 4:5 The SR of IPN of β-CD and 10% MPC compared to 10% MPC hydrogels, no 
difference was observed in SR when water, ethanol and methanol were used. There was an 
increase in SR when alcohol mixture was used in IPN formulations compared to standard 
10% MPC.  

SR Water Ethanol Methanol 
Water:Ethanol 

(1:1) 
Water:Mthanol 

(1:1) 

IPN 
1.60  

± 0.04 
0.10 

 ± 0.03 
1.100 

 ± 0.004 
4.0  

± 0.1 
3.10 

 ± 0.09 

10% MPC 
1.20  

± 0.02 
0.20 

 ± 0.03 
1.20 

 ± 0.09 
3.2 

 ± 0.1 
2.80 

 ± 0.08 
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Figure 4:22 DOXy percent of drug release and concnetration from 10% MPC and IPN of 
10% MPC with CD. The drug follows similar profile in release from both hydrogels.  

 Different approaches were used for the incorporation of β-CD into 10% MPC 

polymer matrix. The β-CD was successfully incorporated into the hydrogel by using 

β-CD cross-linked particles or sequential IPN. However, there was no difference in 

release profile of DOXy in the presence of β-CD compared to standard 10% MPC. 

Another approach was considered for investigation which is the introduction 

of vitamin E (VE) as a diffusion barrier to slow the diffusion of DOXy from the 

hydrogel. VE is a large antioxidant hydrophobic molecule that is soluble in organic 

solvents and precipitate in the presence of aqueous environment. VE as diffusion 

barrier was studied to slow the release of water soluble drugs from hydrogel contact 

lenses (Peng et al. 2010). To create diffusion barrier inside a contact lens VE was 

loaded in the soluble form using organic solvent (typically ethanol). After loading the 

organic solvent was extracted with water which causes the VE molecules to 

aggregate and precipitate inside the lens creating the barrier. Longer time will be 

required for the drug molecules to diffuse from the lens and the release will be 

slowed (Figure 4:23).  
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Figure 4:23 VE as diffusion barrier with its chemical structure. VE was loaded using organic 
solvent then precipitated using water to create a barrier that prolong the diffusion pathway of 
the loaded drugs.  

Methanol was used to load 10% MPC hydrogel discs with VE. VE could 

possibly be loaded by three methods; first by loading the discs first with VE followed 

by DOXy, second by loading both VE and DOXy from the same solution and third 

by loading DOXy first followed by VE. Unfortunately each approach has its own 

limitation. For the first approach VE was successfully loaded into 10% MPC 

hydrogel discs. The dried discs were placed in methanol solution of VE (0.1 g/mL, 1 

mL) for 24 hours. After loading the discs were removed from the loading solution 

and placed in 2 mL DW for another 24 hours. The discs were clear after methanol 

loading and were opaque after soaking in water. This indicates that VE was 

precipitated in the hydrogel. However, soaking of VE loaded discs in DOXy solution 

for 24 hours (similar to 10% MPC hydrogel) for loading of DOXy was insufficient to 

load therapeutic dose of DOXy. Longer soaking times (e.g. weeks) will be required. 

DOXy is unstable molecule in aqueous solution and hydrolysed quickly which made 

the approach unsuitable for DOXy loading. 

Loading from the same solution was also considered by soaking dried discs 

of 10% MPC in DOXy and VE methanol solution. The limitation of this approach is 

the inability to calculate the loading of DOXy accurately into the discs. Both UV and 

HPLC cannot be used to estimate loading because the HPLC method for DOXy 

required aqueous buffer which will precipitate the VE inside the HPLC column and 

damage it. UV cannot be used because it cannot separate the readings of both 

VE molecule 

VE loaded in soluble form 
using organic solvent 

VE precipitated with water 
creating diffusion barrier  

Fast pathway for the 
release of loaded drugs  
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molecules. There is also the possibility that VE will occupy the whole space in the 

hydrogel reducing the amount loaded below the required therapeutic level.  

Theoretically loading of DOXy could be performed first followed by loading 

of VE. However, the limitation is that significant amount of the loaded DOXy could 

be lost during loading of VE from methanol solution by diffusing through the 

hydrogel or by the washing step to remove methanol. Due to the limitation of VE 

and the experimental conditions VE was not used as diffusion barrier.          

The aim of DOXy loaded hydrogel was to be used after trachoma surgery. 

The aim was to sustain the release of DOXy for 2 weeks and based on our current 

results the release was sustained for one week using the flow rate of ~2 µL/min, 

which is the aqueous flow in the subconjunctival space. However, the flow in the 

eyelid area is much slower than the subconjunctival space. When implanted in the 

eye lid the low flow will possibly cause slower diffusion of DOXy and slower release. 

It was difficult to measure the release at very low flow rates because of the flow 

chamber design. The space of the flow chamber is 400 µL designed to mimic the 

bleb after GFS and going to flow rate slower than 2 µL /min is going to slowly fill the 

inner space of the flow chamber. The slow filling of the chamber will allow most of 

the loaded drug to be released and gives the wrong estimation on burst effect and 

release profile of the drug. Up to our knowledge there is currently no treatment after 

trachoma surgery in the clinic or in development and the DOXy loaded film could be 

the proper solution to improve success rate after trachoma surgery. 

Summary and conclusions 

The aim of the work described in this chapter was to explore the possibility of using 

10% MPC-HEMA hydrogel films as drug releasing implant in the eyelid for potential 

use after trachoma surgery. DOXy hyclate has been identified as an excellent drug 

candidate to treat patients after trachoma surgery. It was anticipated that DOXy 

loading into the hydrogel would be challenging, but there is a great need to try to 

formulate DOXy for sustained local delivery to the eyelid. Different loading solutions 

and different loading solvents were used to load DOXy into a 1 cm hydrogel disc. 

Loading from DOXy (15 mg/mL) in 1 mL from PBS was found to be a satisfactory 

loading method compared to other concentrations and solvents. The amount loaded 

was 3.6 mg for each disc. Although the loading was high, the release was only 

maintained for less than a week at flow rate of 2 µL/min, which is better than would 

be expected by an injection. 

 β-CD was introduced as affinity barrier to slow the diffusion of DOXy from 

the hydrogel matrix. No compliant film could be formed using an in situ IPN of β-CD 
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and 10% MPC-89.5% HEMA was prepared, incomplete films were produced. 

Although a semi-IPN network could be fabricated using β-CD polymer, the apparent 

high average molecular weight of the polymer could cause batch-to-batch variability 

during synthesis. A hydrogel film with cross-linked β-CD particles embedded in the 

hydrogel matrix was also fabricated. The presence of β-CD particles did not affect 

the SR of the standard 10% MPC films. However, there was no difference in the 

release profile of DOXy with and without β-CD particles. This result implied the β-

CD particles were too densely cross-linked and were insoluble to allow for DOXy 

solubilisation. 

 A new approach was investigated for the synthesis of IPN of β-CD and 10% 

MPC by sequential polymerisation. A hydrogel film was formed and the cross-linked 

β-CD network did not affect the SR of the standard 10% MPC films. However, it 

was also observed that the presence of an IPN did not affect the release profile of 

DOXy from the hydrogel.  

 Currently there is no available treatment after trachoma surgery in the clinic. 

Although the hydrogel film sustained the release of DOXy for one week, the films 

could still be beneficial after trachoma surgery. Since the presence of β-CD did not 

affect the release of DOXy, hydrogel films with 10% MPC are a protential candidate 

for future development as a drug releasing spacer after trachoma surgery. The use 

of both DOXy hyclate for early release in combination with DOXy hydrate within the 

10% MPC-HEMA film may be warranted because the poorly soluble DOXy would 

be released over a sustained period after the acute phase which would be treated 

by the more fast release of the DOXy hyclate.    
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Chapter 5. Hydrogel formulation for the vitreous body 

The possibility of using a hydrogel as a drug implant to help control subconjunctival 

scarring on the eye after surgery was investigated in the work that is described in 

previous chapters. Most blinding eye conditions occur intraocularly at the back of 

the eye (posterior segment) (Bunce & Wormald, 2006; Jonas et al., 2014). Drug 

delivery to the posterior segment is challenging due to the physiological and 

anatomical barriers of the eye (Kang-Mieler et al. 2014). In an aging population, wet 

AMD is one of the main causes of visual impairment for the elderly population. The 

most common treatments available for AMD are anti-vascular endothelial growth 

factor (anti-VEGF) antibody based therapeutics. IVT injections of anti-VEGF 

medicines are often required every 4-8 weeks to slow the progression of wet AMD, 

and these injections may be required for many years or even decades (Ambati & 

Fowler 2012; Abedi et al. 2014; Peden et al. 2015). Multiple IVT injections are 

associated with complications such as inflammation, vitreous haemorrhage and 

retinal detachment. There is significant and real patient discomfort with undergoing 

IVT injections; including a financial burden placed on patients and healthcare 

systems (Falavarjani & Nguyen 2013). New formulations that can prolong the 

duration of action of an injected medicine that results in reduced dosing frequency 

are sought by patients, healthcare professionals and providers.  

Several approaches have been investigated to improve the duration of 

action of IVT injected proteins to better achieve sustained ophthalmic therapy that 

would decrease the number of injections required by patients. Strategies include 

protein PEGylation, and the use of particulates (micro and nanoparticles), gels and 

liposomes were used to increase the duration of action and reduce the frequency of 

dosing (Yu et al. 2014; Fletcher et al. 2016; Xie et al. 2015; Li et al. 2012; Pan et al. 

2011; Pisal et al. 2011). 

Rauck et al were able to sustain the delivery of bevacizumab after IVT 

injection into New Zealand white rabbit eyes using poly(ethylene glycol)-poly-

(serinol hexamethylene urethane) thermoresponsive gels over 9 weeks compared 

to bevacizumab bolus injection. Clinical examination of the rabbit eyes injected with 

the gel for inflammatory response showed no signs of inflammation and the 

intraocular pressure was maintained at baseline during the period of the study. 

Histological examination of the retinal tissues of the rabbit eyes after 10 weeks 

shows no distinguishable morphological differences between the gel injected eyes 

and the control (Rauck et al. 2013). 
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Abrishami et al reported the formation of liposome encapsulated 

bevacizumab for IVT injection. According to their results the concentration of 

bevacizumab on the rabbit eyes after liposome injection was three times higher 

than the therapeutic amount after 42 days and the clearance of the drug from the 

vitreous was slower compared to bevacizumab injection (Abrishami et al. 2009). 

Liposomes have long been studied in a range of applications, but there remain no 

protein based formulations that have been approved.  

Varshochian et al reported the synthesis of albumin-PLGA nanoparticles in 

an effort to extend the residence time of bevacizumab in the vitreous cavity. When 

the nanoparticles were injected into the vitreous of New Zealand albino rabbits the 

calculated half-life of bevacizumab from the nanoparticle was 8.4 days compared to 

5.2 days in the control rabbits that had received injected bevacizumab (Varshochian 

et al. 2015).  

Lovett et al reported that bevacizumab release was sustained for 3 months 

when injected in the vitreous of Dutch belted rabbits in the form of silk fibroin 

hydrogels. During the period of the study no obvious inflammatory or 

biocompatibility problem was observed in the animals. The level of bevacizumab in 

the vitreous after 3 months of gel injection was equivalent to the level detected after 

1 month of bevacizumab only injection which indicates sustained behaviour of the 

gel (Lovett et al. 2015). 

 Although the above discussed examples show promise as sustained 

formulations for protein delivery, there is a limitation regarding the methods used for 

release studies. The release was either studied using animal model (preferably 

rabbits) or in vitro release using test tubes. Animal eyes are anatomically and 

physiologically different from the human eye which may possibly give wrong 

estimation of the release of the protein. Using in vitro test tubes does not represent 

the actual volume of the vitreous or the actual fluid flow in the back of the eye.   

Extensive research has been described to develop methods for the 

sustained delivery of proteins; however no dosage form has been approved in the 

clinic for ocular delivery. One key limitation is the nature of the protein molecule (Fu 

et al. 2000). Proteins are challenging molecules to be formulated into extended 

release dosage forms because proteins must maintain their tertiary folded structure 

to be biologically active. Protein based medicines can also be immunogenic and 

display other toxicities, for example, increased susceptibility to infection as seen 

with anti-TNF antibodies (Ali 2013).  

Protein instability, during and after formulation, is a defining challenge. 

Protein therapeutics display relative long half-life when directly injected into the eye. 
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For example, the half-life of IVT ranibizumab (~40 kDa, 0.5 mg) and bevacizumab 

(~150 kDa, 1.25 mg) is approximately 6.7-10.0 days and 7-11 days in humans 

respectively (Krohne et al. 2008; Meyer et al. 2011; Zhu et al. 2008; Beer et al. 

2006; Krohne et al. 2012).   

Unfortunately IVT injection is still required every 4-6 weeks. Aflibercept 

(molecular weight 110 kDa) is a Fc fusion protein that is also targeted to VEGF. 

This medicine is given in a 2 mg dose which is approximately a 1.8 molar 

equivalent compared to the ranibizumab dose.  The increased amount of aflibercept 

in a 50 µL IVT injection allows this medicine to be given every 6-8 weeks whereas 

ranibizumab must be given monthly. Aflibercept is by far the most preferred IVT 

anti-VEGF because it can be dosed less frequently than ranibizumab. If a 

formulation for an anti-VEGF medicine could be developed that would allow dose 

once every 3 or 4 months, there would be much interest.  

Manufacturing processes are also important to preserve the activity of the 

proteins. Proteins are liable to unfolding and deactivation when subjected to organic 

solvents or harsh preparation conditions, which is often necessary when 

considering the formulation of proteins with some clinically used polymers, such as 

poly(lactic co glycolic) acid (PLGA) (Mohammadi-Samani & Taghipour 2014). Even 

successful loading of PLGA particles with proteins could be followed by phase 

separation due to the difference in solubility of PLGA (water insoluble) and the 

protein (water soluble). It is preferred to prepare protein dosage forms in aqueous 

environment to preserve the activity of the protein.  

Hydrogels have developed as an interesting field for the possible sustained 

delivery of proteins. Hydrogels are capable of imbibing a amount of high water 

content and are reported to be biocompatible. Many hydrogel systems that have 

been described do not require organic solvents during preparation (Shi et al. 2013; 

Stile et al. 1999; Vermonden et al. 2012). Proteins are also subjected to 

degradation by proteases and the entrapment of proteins inside a hydrogel network 

would be expected to protect the therapeutic protein from proteolytic degradation 

and while prolong its duration of action (van de Weert et al. 2005). It is also possible 

to consider hydrogels with a low cross-link density to allow formulation in the form 

of injectable solutions. If the composition of the hydrogel includes a stimuli 

responsive polymer that can collapse, it is possible to have an injectable solution 

that upon a stimulus would solidify to become an implant. Thermoresponsive 

hydrogels potentially offer the advantage of injectable implant to extend the release 

of a loaded protein (Klouda 2015).  
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Thermoresponsive hydrogels change their conformation with temperature, 

often collapsing from an open solubilised, water associated structure to a more 

dense, collapsed and insoluble form. The so called sol-to-gel transition changes the 

swelling and pore size of the hydrogel. In the soluble form, the hydrogel is soft, fully 

swollen with water and can pass freely through a small needle. At a temperature 

known as the volume phase transition temperature (VPTT), the polymer can 

deswell and collapse forming a viscoelastic implant (Huynh et al. 2011). The 

thermal responsiveness in these hydrogels is regulated by the balance between 

hydrophilic and hydrophobic interactions between the polymer chains and their 

surroundings (Stewart et al. 2011). 

One of the most widely investigated thermoresponsive polymers is poly(N-

isopropylacylamide) (NIPAAm) which can be made in the presence of a cross-linker 

to give a hydrogel. NIPAAm hydrogels are swollen in water below a VPTT of ~33oC. 

As the temperature rises about ~33oC many NIPAAm hydrogels then collapse and 

deswell pushing the water out of the hydrogel network (Stile et al. 1999; Lue et al. 

2011; Schild 1992). The preparation of NIPAAm hydrogels can be conducted in 

aqueous solution avoiding organic solvents, which is advantageous for protein 

delivery. The swollen hydrogel has a relatively large pore sizes which allow the drug 

to be released quickly at room temperature. Once injected and collapsed inside the 

human body the drug molecules will be entrapped inside the hydrogel structure 

potentially creating a depot and the pore size between polymer chains will be 

reduced which will slow protein diffusion from the hydrogel (Drapala et al. 2011). As 

previously discussed in Chapter 1 the characteristics and physical properties of 

NIPAAm hydrogels (e.g. VPTT) can be influenced by co-monomer, cross-linker type 

and the synthetic process (e.g. initiator and cross-linker stoichiometry) (Obeso-Vera 

et al. 2013; Yildiz et al. 2006). In the case of proteins, the use of a hydrophilic 

cross-linker could create a hydrophilic environment around the loaded protein that 

helps to preserve its stability and activity during formulation and use.  

Developing and comparing new formulations for IVT protein injections 

require a proper in vitro model that mimics the eye in terms of aqueous flow. One of 

the problems facing the preclinical development of ophthalmic IVT protein 

formulation is the lack of proper in vitro ocular flow model. The main route for 

elimination of a protein from the vitreous after injection is through aqueous outflow 

into the anterior chamber (Krohne et al. 2008; El Sanharawi et al. 2010). Proteins 

are large, charged molecules, so do not readily permeate through the retina as do 

low molecular weigh molecules such as steroids. In vitro models to study 

elimination of proteins through the anterior route are very limited and do not allow 
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proper examination of the clearance of proteins in a similar way to the human eye. 

Most research in preclinical development is conducted either through animal 

studies or other in vitro dissolution models. Animal studies are expensive.  Animal 

eyes are anatomically different from human eyes (in terms of volume of the vitreous 

and aqueous flow rates) and carry the risk of developing antidrug antibodies 

(ADAs). ADAs accelerate the clearance of the protein resulting in inaccurate 

estimations of clearance and half-life values in the vitreous (Shankar et al. 2006; 

Chirmule et al. 2012).  

Different in vitro techniques were described to evaluate IVT ophthalmic 

preparations including the use of computational modelling of the eye, permeation 

models and USP dissolution apparatus (Westebbe et al. 2013; Missel 2002; 

Durairaj et al. 2009). These models are rough and do not reflect the human eyes in 

terms of volume, scale and rate and direction of the aqueous flow. For example the 

USP dissolution apparatus used had a flow rate of 1.5 mL/min in a chamber of 8-19 

mL which is different from the flow rate of 2.0 µL/min and the vitreous volume which 

is 3.5-9 mL (Fotaki 2011). Another example is the use of single compartment non-

flow model to evaluate distribution in the vitreous by mimicking saccades eye 

movement (Repetto et al. 2005).     

To address these issues and to accelerate preclinical studies, our group has 

recently developed a 2-compartment, aqueous flow model called the PK-Eye to be 

used for ocular drug development. The model has been shown to estimate the 

human clearance times of proteins from the vitreous body (Awwad et al. 2015). The 

PK-Eye was used to study the release profile and half-life of injectable 

bevacizumab and injectable NIPAAm hydrogels loaded with bevacizumab and 

infliximab for comparison. 

Hypothesis and aims 

An ideal sustained delivery system for proteins in the vitreous should be (i) 

injectable, (ii) biocompatible, (iii) maintain both physical and chemical stability of the 

encapsulated protein during formulation and its stability over the period of the 

release, and (iv) maintain the level of the protein within the therapeutic 

concentration. Thermoresponsive injectable hydrogels could be used as a potential 

delivery system for proteins due to the properties related to biocompatibility, 

injectability and mild preparation conditions.  

It is hypothesised that the properties of a thermoresponsive NIPAAm 

hydrogel can be mediated by varying cross-linker stoichiometry and structure. The 

aim of this chapter was to examine formulations that could be the basis to develop 
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an injectable extended release thermoresponsive NIPAAm hydrogel for 

bevacizumab delivery. Three different hydrophilic, macromolecular cross-linkers of 

varying molecular weight (PEGDA, PC 3059 and acrylated HA) were examined. 

The use of macromolecular cross-linker may allow the formation of aqueous 

environment around the protein that may help in the mixing process and help with 

maintaining protein stability. Another possible advantage of using macromolecular 

cross-linker is creating an extra diffusion barrier to the protein encapsulated inside 

the hydrogel.   

The hydrogels were synthesised and then characterised in respect to VPTT, 

swelling ratio (SR), percentage water retention (WR%) and structure. The 

characterisation of the hydrogels formed the basis of a screening process to identify 

a possible formulation that will potentially extend the release of the protein in the 

vitreous. The release of bevacizumab was then studied using a specialised PK-Eye 

model that mimics protein clearance from the posterior segment.   
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Results and discussion  

Preparation of NIPAAm hydrogels using PEGDA-700 

NIPAAm hydrogels were prepared with different amounts of polyethylene glycol 

diacrylate PEGDA (Mn 700) by free radical polymerisation. Since these hydrogels 

are intended for protein delivery, it was important to create an aqueous environment 

surrounding the protein during synthesis and delivery. PEGDA was chosen as 

cross-linker because of its hydrophilic nature that attracts large amount of water 

molecules around the polymer chains creating an aqueous environment and human 

biocompatibility when cross-linked into hydrogels (Li et al. 2014). NIPAAm 

hydrogels made with PEGDA (Mn 575) was reported to have minimal effect on 

retinal function when administered as IVT injection in rats (Turturro et al. 2011).  

The high amount of water in the hydrogel matrix improves biocompatibility 

but also associated with burst release effect. Burst release can be of an advantage 

as initial loading dose; however the duration of release could be compromised and 

the possibility of dose related side effects could be increased. Optimisation of the 

formulation to have sufficient amount of water for biocompatibility and at the same 

time controlling release is important and could be achieved by controlling 

formulations parameters; in particular cross-linking density.   

Four different NIPAAM hydrogels were prepared with increasing PEGDA 

stoichiometries i.e. 2, 4, 8, 12 and 15 µL. The prepared hydrogels were screened to 

observe the effect of cross-linker on the physicochemical properties of the prepared 

hydrogels in order to identify the best formulation for protein delivery. Different 

mixtures of monomers were prepared by dissolving equal amounts of NIPAAm (40 

mg) monomers and ammonium persulfate (APS) (4 mg) with different amounts of 

PEGDA in 1 mL DW prior to polymerisation. Before the addition of TEMED (20 µL) 

the reaction mixture was in liquid form. Polymerisation was initiated by the addition 

of TEMED. Hydrogel formation was observed approximately after one minute. The 

mixture became viscous and no free movement was observed indicating the 

formation of the hydrogel (Figure 5:1). All or large percentage of the liquid monomer 

mixture was thought to be converted into a hydrogel since there was no free flowing 

liquid remained in the glass vial. The reaction mixture was allowed to polymerise at 

4oC for 24 hours. PEGDA amount below 4 µL displayed a free-flowing liquid even 

after the addition of TEMED. Therefore, 4 µL was the minimum amount of cross-

linker required for the formation of a hydrogel.  
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Figure 5:1 The chemical structure of the starting materials for NIPAAm hydrogel formulation 
and the hydrogels formed. NIPAAm hydrogels were prepared with different percentages of 
PEGDA as cross-linker by free radical polymerisation at 4

o
C for 24 hours. In the above 

picture the free flowing monomer mixture of PEGDA-700, NIPAAm and APS was converted 
into a viscous hydrogel by the addition of TEMED at room temperature.   

Hydrogels that were prepared with 4 and 8 µL of PEGDA were transparent 

in colour, whereas hydrogels with 12 and 15 µL were opaque. Increased cross-

linking density due to the addition of increasing PEGDA resulted in less soluble 

hydrogels, which was indicated by the reduction in transparency of the formed 

hydrogels (Figure 5:2A). SEM results displayed a more compact hydrogel structure 

with increased cross-linker percentage, which is consistent with the formation of 

denser hydrogels (Figure 5:2B). The cross-linker acts as junction point (cross-

linking point) that brings the polymer chains together and reduces the mobility of the 

polymer chains.  
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Figure 5:2 A) Picture of the prepared NIPAAm hydrogels showing a decrease in 
transparency with increasing cross-linker amounts. Hydrogels made with 12 and 15 µL 
PEGDA were opaque compared to transparent hydrogels made with 4 and 8 µL; B) SEM 
images of NIPAAm hydrogels prepared with different amounts of PEGDA cross-linker. More 
compact structure was observed with increasing cross-linker amount. The scale bar is 100 
µm. 

An important criterion to consider for IVT injections is the ability of a 

hydrogel to pass easily through a small needle without undue back pressure. The 

injectability of each hydrogel was qualitatively evaluated by passing the contents 

through a 23G needle (Table 5:1). The hydrogel was loaded into a 2.5 mL syringe 

by first removing the plunger of the syringe and placing the hydrogel inside the 

syringe with a spatula. After loading of the hydrogel into the syringe body the 

plunger returned into the syringe. Hydrogels made with 4 µL and 8 µL of the 

PEGDA cross-linker were easily injectable. Hydrogels with 12 µL of the cross-linker 

could be injected only with extra pressure while 15 µL hydrogels were not 

injectable. Passing the hydrogel through a small needle did not break the hydrogel 

and the hydrogel remain intact after injection. Hydrogels with 4 and 8 µL PEGDA 

allowed higher mobility of the polymer chains, which are similar to fluids and 

allowed them to be freely injected through small needle. 

 

 

(B) 

(A) 

100 µm 100 µm 100 µm 

4 µL 8 µL 12 µL 15 µL 



155 
 

Table 5:1 The qualitative determination of injectability of NIPAAm hydrogels formulated with 
different amounts of PEGDA using 23G needle.   

PEGDA amount Injectability 

4 µL Easy 

8 µL Easy 

12 µL Difficult 

15 µL Non-injectable 

 

Measuring the viscosity of the prepared hydrogels was considered to relate 

the viscosity and injectability of the hydrogels. However, there were difficulties to do 

the experiment in the facilities available at UCL School of Pharmacy. In order for 

the hydrogel to be examined by the rheometer available, the hydrogel needs to be 

completely soluble in water. NIPAAm hydrogels cannot be dissolved in water so the 

hydrogels cannot be tested using the available rheometer.       

Hydrogel characterisation 

There was a need to determine the effect of cross-link density on the 

thermoresponsiveness of the hydrogels. Drapala et al reported an increase in VPTT 

and SR at 25oC of NIPAAm hydrogels with increased amounts of PEGDA (Mn 575) 

(Drapala et al. 2011). The VPTT, SR and WR% were determined for the 4 prepared 

hydrogels to better understand the effects of the different cross-link densities. Three 

batches (n=3) for each type of cross-linker were prepared for the characterisation of 

the hydrogels.  

Effects of different percent incorporation of cross-linker on VPTT 

An important factor for biomedical thermoresponsive hydrogels is that the VPTT is 

often desired to be lower than the physiological body temperature (~37oC). The 

VPTT was determined by DSC to correlate changes with cross-link density. 

Hydrophilic interactions predominate at temperatures below the VPTT due to the 

formation of more strong non-covalent interactions such as hydrogen bonds 

between water and the hydrogel polymer matrix. The collective interactions of 

polymer and water are greater than polymer-polymer interactions, so the polymer 

remains in solution. When the temperature is increased above the VPTT, non-

covalent hydrophobic interactions dominate between polymer chains. Water-

polymer interactions, in particular hydrogen bonds, become less dominant so the 

polymer becomes less soluble. At the VPTT, the hydrophobic interactions of the 

isopropyl pendant groups of NIPAAm cross-linked chains become stronger than the 

hydrogen bonds between the amide pendant groups and the surrounding water 
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molecules (Zhang et al. 2003). The internal volume of the polymer decreases as the 

polymer begins to collapse onto itself. Polymer-polymer chain interactions will 

continue to increase until the polymer precipitates and the hydrogel is transitioned 

from a swollen to deswollen (collapsed) form resulting in a reduced internal volume 

(Yıldız et al. 2002; Sato Matsuo & Tanaka 1988).  

It was previously reported that the VPTT of NIPAAm hydrogels is ~33oC 

(Schild 1992). The onset temperature of the DSC endothermic peak was 

considered as the VPTT. The endothermic peak increased to a slightly higher 

temperature with an increasing amount of cross-linker (Figure 5:3). The VPTTs 

were 34.3 ± 0.1, 35.5 ± 0.1, 35.6 ± 0.4, and 36.2 ± 0.2oC as the PEGDA cross-linker 

was increased from 4 to 15 µL respectively. The sharpness of the endothermic 

peak was reduced with increasing amounts of cross-linker indicating a reduction in 

the thermal responsiveness of the hydrogel. 

 

Figure 5:3 DSC graph representing volume phase transition temperature (VPTT) of 
NIPAAm hydrogels with varying PEGDA concentrations. The onset temperature of the DSC 
endothermic peak was considered as the VPTT. It was observed that there was a shift in 
endothermic peak to a higher value with increasing amount of cross-linker. The VPTT were 
34.3 ± 0.1, 35.5 ± 0.1, 35.6 ± 0.4, and 36.2 ± 0.2

o
C for 4, 8, 12 and 15 µL respectively.  
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The mechanism of VPTT can also be explained thermodynamically by 

Gibbs energy of the system in which ΔG represents the change in free energy, ΔH 

represents the change in enthalpy, ΔS represents the change in entropy at T 

temperature. 

ΔG=ΔH−TΔS 
 

At temperatures below VPTT there is large number of hydrogen bonds that 

helps in keeping the polymer matrix in the dissolved (swelled) form favouring the 

enthalpy of dissolution. When the temperature increases the enthalpy of the system 

will be reduced and the entropy will be increased. The hydrogen bonds becomes 

weak and phase separation occur which is characterised by the collapsing of the 

hydrogel (Alarcón et al. 2005). Alteration of the number of hydrogen bonds in the 

polymer matrix can shift the VPTT (Lutz, J. F. 2008). PEGDA is a moderately large 

molecular weight cross-linker that is hydrophilic. PEGDA has an oxygen molecule in 

each repeat unit, so PEGDA can form hydrogen bonds with water molecules. 

Higher energy will be required to thermodynamically disturb the system when 

higher level of PEGDA present in the formulation which explains the increase in 

VPTT when the PEGDA level increased. 

Cross-linker effects on hydrogel swelling ratio (SR) and water content  

The SR is used to describe the swelling capacity of a hydrogel when at equilibrium 

within the surrounding media. An increase in weight of the hydrogel is observed due 

to water imbibing into the dry hydrogel matrix. It can also be used to estimate the 

water content in a fully swollen (room temperature) and deswollen 

thermoresponsive hydrogel (body temperature) (Park & Hoffman 1994). The SRs of 

the NIPAAm-PEGDA cross-linked hydrogels prepared were measured at 25, 37 

and 48oC (Table 5:2). There was a significant decrease (p<0.05) in the SR for all 

the hydrogels when the temperature was increased from 25 to 37oC. 

Table 5:2 The SR of NIPAAm hydrogels prepared with different percentages of PEGDA as 
cross-linker at three different temperatures (25, 37 and 48

o
C).  

 

Temperature 

SR 

4 µL 8 µL 12 µL 15 µL 

25oC 47.8 ± 11.6 34 ± 2 24.8 ± 0.1 14.9 ± 1.1 

37oC 1.4 ± 0.5 3.2 ± 0.8 7.5 ± 0.7 9.6 ± 1.6 

48oC 0.8 ± 0.3 1.1 ± 0.3 1.9 ± 0.2 3.7 ± 0.4 

 

When the SR is measured at a temperature below the VPTT (25°C), the 

hydrogel is more soluble with more internal water due to the hydrogen bonds 
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between the hydrophilic groups on the polymer chains and water. A hydration shell 

is formed around the hydrophobic groups further leading to more water uptake. All 

of the NIPAAM hydrogels retain a larger amount of water at 25oC compared to 

37oC. At 25oC, the SR was the highest with 4 µL cross-linker and dropped with 

increased amounts of PEGDA. With higher cross-link density, the mobility of the 

polymer chains forming the hydrogel matrix will be reduced and hydrogels with 

small pore size and compact structure will be formed. Increased cross-link density 

causes a reduction in hydrogel swelling with increased cross-linker percentage. 

PEGDA amount of 4 µL was not significantly different from 8 µL (p>0.05); however 

it was significantly different (p<0.05) from 12 and 15 µL hydrogels (Figure 5:4A). 

When the temperature increased above the VPTT (37oC), all the collapsed polymer 

hydrogels displayed a much lower SR (Table 5:2). When a hydrogel collapsed, 

large amount of the water inside the hydrogel was pushed out and small amount of 

water remained entrapped inside the hydrogel.    

Drapala et al reported that the SR of different NIPAAm hydrogels with 

different amounts of PEGDA (Mn 575) at 37oC was independant on the cross-linker 

amount (Drapala et al. 2011). Based on that it was thought that the SR at 37 and 

48oC would not be affected by the increase in the amount of cross-linker used and 

all the hydrogels will behave in the same manner above the VPTT of the hydrogel; 

however when the temperature was increased above VPTT, the SR increased with 

increasing cross-linker amount (Figure 5:4A). Although all the hydrogels prepared 

were able to collapse and deswell when the temperature increased from 25oC to 

37oC the degree of collapse was different and dependant on the cross-linker 

amount. At 37oC and 48oC there was no significant difference (p>0.05) in SR 

between 4 and 8 µL, but there was a significant difference between 4, 12 and 15 µL 

(p<0.05). In contrast to what Drapala et al reported it was found that in our system 

PEGDA when present in a higher amount (12 and 15 µL) would reduce the 

thermoresponsiveness and the ability of the hydrogel to collapse. The incomplete 

collapse of the hydrogels will allow more water to be entrapped compared to 

hydrogels made with 4 and 8 µL, which may influence the release of the entrapped 

protein. The visual difference in swelling of the hydrogels at 25 and 37oC is 

presented in (Figure 5:4B).where the hydrogels appeared transparent at 25oC and 

opaque at 37oC.   
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Figure 5:4 A) A graph representing the SR of NIPAAm hydrogels prepared with different 
percentages of PEGDA as cross-linker at three different temperatures (25, 37 and 48

o
C). At 

25
o
C the SR of 4 µL hydrogel was not significantly different from 8 µL (p>0.05); however it 

was significantly different (p<0.05) from 12 and 15 µL. At 37
o
C and 48

o
C there was no 

significant difference (p>0.05) in SR between 4 and 8 µL, but there was a significant 
difference between 4, 12 and 15 µL (p<0.05); B) Pictures of the hydrogels showing the 
visual difference in swelling of the hydrogels at 25 and 37

o
C. Hydrogels at 25

o
C were 

transparent but turned opaque when the temperature increased to 37
o
C.  

 

 

(A) 
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Effect of percentage cross-linker on water retention percent (WR%)  

WR is the weight of water retained inside a hydrogel above the VPTT versus the 

weight of the initially absorbed water before hydrogel collapse. The WR% gives an 

indication of how much water will be entrapped inside the hydrogel after collapse. 

Water retention characterises the change in volume and the time required to 

achieve that change when the temperature increases above the VPTT of the 

hydrogel. Hydrogels that take a longer time to collapse will allow some of the 

encapsulated drug to diffused into the surroundings and reduce the amount of drug 

entrapped during collapse. Also the degree of collapse of a hydrogel is important. 

Hydrogels that completely collapse and retain small amount of water in the 

collapsed inner structure risk losing large amount of the entrapped drug. The drug 

will be expelled with the expelled water resulting in a low entrapment and high initial 

burst release, which will affect the release profile of the encapsulated drug.  

The effect of increasing the amount of cross-linker on WR% was measured 

(Figure 5:5). The thermal responsiveness of the lowest cross-linked NIPAAM 

hydrogels (4 µL PEGDA) was faster compared to more highly cross-linked 

hydrogels (8-15 µL PEGDA). With increased amounts of PEGDA, the NIPAAM 

hydrogels became less responsive to temperature changes while encapsulating a 

higher amount of water in after collapse. A significant difference in WR% was seen 

between the lowest cross-linked hydrogel (4 µL PEGDA) compared to the higher 

two cross-linked hydrogels (12 and 15 µL PEGDA). There was no significant 

difference in WR% (p>0.05) between the two lower cross-linked dense hydrogels (4 

and 8 µL PEGDA). The difference in WR% between the hydrogels suggests that 

hydrogels with lower percentage of cross-linker may control the diffusion of the drug 

from the collapsed hydrogel in a more controlled manner compared to hydrogels 

with higher percentages of cross-linker.  
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Figure 5:5 A graph representing the water retention percent (WR%) of NIPAAm hydrogels 
prepared with various percentages of PEGDA as cross-linker. There was no significant 
difference in WR% (p>0.05) between 4 and 8 µL hydrogels; however here was a significant 
difference (p<0.05) when 4 µL was compared to 12 and 15 µL hydrogels.  

In thermoresponsive hydrogels drug diffusion is a two stage process; initial 

burst release followed by a slow extended release of encapsulated drugs. During a 

collapse of a thermoresponsive hydrogel, large amounts of water will be expelled 

causing the initial burst release and reducing the inner volume of the hydrogel. The 

initial burst release results in a proportion of entrapped drug into the collapsed 

hydrogel matrix creating a depot surrounded by a skin like layer at the interface 

between the hydrogel surfaces. The surrounding media that acts as a controlling 

mechanism for the release of the remained drug (Schild 1992). The entrapped drug 

will diffuse slowly through the interface. Several factors will control the diffusion of 

encapsulated drug in a thermoresponsive hydrogels; volume of water entrapped, 

the solubility of the drug in water and the MW of the drug (Varshosaz & Hajian 

2004). Proteins are soluble in water so it was suggested that when high amount of 

water entrapped in the hydrogel matrix after collapse, the fraction of protein soluble 

will increase and faster release will be observed.  
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In vitro release of antibody from NIPAAm hydrogels using the PK-Eye  

Protein loading into a hydrogel could be achieved through several methods such as 

soaking (imbibing), cross-linking, two phase partitioning and in situ polymerisation,  

(Bromberg & Ron 1998; Kim et al. 1992). Proteins, such as bevacizumab with a 

molecular weight of 150 KDa, are large molecules and simple imbibing of the dry 

hydrogel into the protein solution for loading may result in low loading effeciency 

(He et al. 2016). When the loading of ovalbumin into dextran hydrogel by imbibng 

was studied, only 9% (w/w) of the protein from the loading solution was loaded into 

the hydrogel (Gehrke et al. 1998). Theortically, the problem of low loading 

effeciency could be avoided by repeated cycles of swelling and drying of the 

hydrogel in the loading solution; however the approach is difficult with proteins 

because of the possibility of protein denaturation and aggregation by repeated 

drying (Frokjaer & Otzen 2005).   

Cross-linking of a polymer in the presence of the protein could also be used 

for protein loading. The protein need to be thouroughly mixed with the polymer 

before cross-linking; however it is difficult to achieve homogenous mixing with 

macromolecules and there is a possibility that the cross-linker used could interact 

with the protein itself instead of the polymer (Bromberg & Ron 1998). 

Two phase partitioning involves the partitioning of the protein from polymer 

solution into the hydrogel. The protein should have low solubility in the polymer 

solution compared to the hydrogel matrix (Bromberg & Ron 1998). High loading of 

dextran gels with BSA was achieved by partitioning of BSA from PEG polymer 

solution (low affinity with BSA) into the dextran gel phase (High affinity with BSA)   

(Gehrke et al. 1991). 

In situ polymerisation is preferred for efficient protein loading compared to 

other methods. Polymerising the protein in the presence of monomers and cross-

linker allows the entrapment of the protein within the hydrogel matrix and could 

result in higher protein encapsulation. The polymerisation proces can result in 

better entanglement of the protein within the polymer matrix due to proper mixing of 

the protein with the small monomers (Leach & Schmidt 2005). When using in situ 

polymerisation it is important to consider polymerisation processes that would not 

be detrimental to the stability of protein. For our work, it is hypothesised that the 

combination of NIPAAm polymerisation in aqueous enviroment and at 4oC will 

maintain the stability of protein.  

 

 



163 
 

Both methods of imbibing and polymerising in the presence of bevacizumab 

were used and compared for NIPAAm hydrogel loading. In the imbibing method, 8 

µL PEGDA hydrogel was formulated. After the polymerisation, the hydrogel was 

freeze-dried for 3 days. The freeze-dried NIPAAm hydrogel was soaked in 1 mL of 

bevacizumab solution (12.5 mg/mL in PBS). The hydrogel was incubated for 48 hr 

at 4oC (Figure 5:6). After incubation, the hydrogels were removed from the 

incubation solution and then rinsed gently 5 times, 4 mL each time in PBS; each 

wash was 15 minutes long. Each wash fraction was analysed by HPLC to calculate 

how much of the protein was lost during the wash; it was calculated to be ~28% 

(~3.5 mg). The drug loading was the difference between the starting solution and 

the amount lost during washing. Bevacizumab final loading was 72.3 ± 6.6% (~9 

mg). In the in situ method, the polymerisation reaction of the hydrogel was 

performed in 1 mL protein solution (25 mg/mL) instead of 1 mL DW. The 

encapsulation was 100%. A hydrogel was formed similar to the one made without 

the protein with no signs of heterogeneity or precipitation.  

 

 

 

 

 

 

Figure 5:6 Schematic representation of the preparation of bevacizumab loaded NIPAAm 
hydrogels through imbibing and mixing methods. Through imbibing a portion of the protein is 
loaded into the hydrogel matrix while using mixing all the protein in the mixture entrapped in 
the hydrogel.  

The release of bevacizumab from the hydrogels was compared to its 

injection form: (i) 100 µL of NIPAAM hydrogel prepared by mixing, (ii) 250 µL of 

NIPAAm hydrogels prepared by imbibing and (iii) 100 µL injection (all equivalent to 

2.5 mg bevacizumab). All the formulations were injected into the posterior part of 

the PK-Eye model at 37oC (Figure 5:7). The release profile of bevacizumab from 

the NIPAAm hydrogel prepared by imbibing was similar to its injection form; there 

was no significant difference (p>0.05) in the half-life which was 1.9 ± 0.3 days and 

2.3 ± 0.8 for the hydrogel and the injection respectively. However, the hydrogel 

Mixing Imbibing 

Bevacizumab PEGDA 
NIPAAm 
monomer 

NIPAAm 
Hydrogel 
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prepared by in situ polymerising showed an extended release profile. The half-life of 

bevacizumab was 3.7 ± 1.2 days. The large size of the protein allowed better 

entanglement during polymerisation compared to the imbibing method.  

The in situ method was used to prepare hydrogels with different PEGDA 

stochiometries i.e. 4, 8 and 12 µL. The clinical dose of bevacizumab is (1.25 mg, 50 

µL). In previous work with the PK-Eye model, the in vitro half-life of bevacizumab 

(1.25 mg, 50 µL) was reported to be 1.2 ± 0.1 days and the half-life of 2.5 mg of 

bevacizumab in PBS was 2.3 ± 0.8 days (Awwad et al. 2015). The PK-Eye was 

used to study the release of the four prepared samples of bevacizumab loaded 

hydrogels. The injection of bevacizumab solution (2.5 mg, 100 µL) and 

bevacizumab loaded hydrogels (4 µL. 8 µL and 12 µL) (2.5 mg, 100 µL) were 

investigated after injection in the posterior cavity of the model. After polymerisation, 

no effort was made to remove the unreacted monomer by washing as it was 

important to first determine if there was an extended release profile compared to 

bevacizumab alone.  

 

 

Figure 5:7 A graph representing the release of bevacizumab after injecting 100 µL of 
NIPAAM hydrogel prepared by mixing, 250 µL of NIPAAm hydrogels prepared by imbibing 
and 100 µL injection (all equivalent to 2.5 mg bevacizumab) into the PK-Eye. There was no 
significant difference (p>0.05) in the half-life of bevacizumab from the injection and imbibing 
method, the half-life was 1.9 ± 0.3 days.  
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A half-life of 2.0 ± 0.01, 3.7 ± 1.2 and 2.60 ± 0.03 days was observed with 4, 

8 and 12 µL PEGDA respectively with a protein release of ~74%, ~87% and 95% 

respectively after a month (Table 5:3). The release of bevacizumab was studied for 

one month to compare it with the monthly injection administered in the clinic. After 

10 days ~61.9 ± 3.6%, 63.2 ± 8.3% and 75.0 ± 1.9% of bevacizumab was released 

from 4, 8 and 12 μL PEGDA respectively and this is in contrast with the injection of 

the free antibody which was nearly cleared within 10 days with about 95.1% ± 3.1 of 

the injected dose having been released. There was no significant difference in 

release (p>0.05) between 4 and 8 µL PEGDA but there was a significant difference 

when compared to 12 µL PEGDA (p<0.05). Bevacizumab was released faster from 

12 µL PEGDA hydrogels. 

Table 5:3 Summary of in vitro bevacizumab release from the PK-Eye. Bevacizumab (2.5 
mg, 100 µL) injection and NIPAAm hydrogels of bevacizumab (2.5 mg, 100 µL) made with 
PEGDA (4 µL. 8 µL and 12 µL) were injected via the injection port of PK-Eye model.  

Bevacizumab 
Rate constant 

(d1) 
Half-life 

(days) 

Drug released (%) 
after one month 

(2.5 mg, 100 µL) injection 0.32 ± 0.09 2.3 ± 0.8 95.1 ± 3.1 

(2.5 mg, 100 µL) 4 µL 0.350 ± 0.002 2.0 ± 0.01 74.2 ± 0.3 

(2.5 mg, 100 µL) 8 µL 0.20 ± 0.06 3.7 ± 1.2 87.6 ± 6.4 

(2.5 mg, 100 µL) 12 µL 0.270 ± 0.003 2.60 ± 0.03 95.8 ± 2.2 

     Abbreviations: k: rate constant. 

 

The release of bevacizumab followed a bimodal display profile from the 

NIPAAM hydrogels (Figure 5:8A), whereas the free antibody followed a first order 

kinetic profile. All three hydrogels showed a burst release after a week followed by 

a decrease in protein concentration with time. The burst release is thought to be a 

result of the immediate collapse of the hydrogel at 37oC. After a week, the profile 

was close to zero-order kinetics, which is characterised by a constant release with 

time (Figure 5:8B).  
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Figure 5:8 The release profile of Bevacizumab (2.5 mg) injection and NIPAAm hydrogels 

made with different amounts of PEGDA (4, 8 and 12 µL) in PBS, pH 7.4 with half-life values 

of 2.01 ± 0.01 days, 3.66 ± 1.21 days and 2.55 ± 0.03 days respectively for (4, 8 and 12 µL) 

respectively.   

Protein release rate is controlled by (i) the initial burst release during 

collapsing of the hydrogel above VPTT, (ii) the pore size of the hydrogel formed 

after collapse and (iii) the amount of water retained in the hydrogel structure after 

collapse. Antibody release which occurs upon hydrogel collapse will cause a burst 

release. Once the hydrogel collapses, the pore size within the hydrogel would be 

expected to be less than when the hydrogel is swollen with water. The remaining 

protein would then be expected to be entrapped within the collapsed hydrogel 

resulting in a more sustained release profile. There will also be less entrapped 

water with a higher relative amount of bound water which could further slow the 

diffusion of the protein through the hydrogel. Increased cross-link density appeared 

to give a higher burst with little difference in the rate of release for the entrapped 

fraction (Figure 5.8). Burst release is expected with thermoresponsive hydrogels 

due to the expulsion of water during collapsing at VPTT. Derwent and Mieler 

reported an immediate burst release of BSA and IgG from NIPAAm hydrogels made 

with different amounts of PEGDA-575 as cross-linker. The different amounts of 

cross-linker used had no effect on the burst release (Kang Derwent & Mieler 2008).  

(A) 

(B) 
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NIPAAm hydrogels made with 4 and 8 μL PEGDA showed similar 

characteristics, behaviour and sustained the release of protein to the same extent in 

vitro. At 25oC the SR of 4 µL is higher than 8 µL, which may cause the loss of 

higher percentage of the protein during washing. Washing is required to remove the 

unreacted monomers from the hydrogel before injection. Also hydrogels made with 

4 µL is very soft and difficult to handle. Based on these observations 8 µL PEGDA 

was chosen as the best formulation to sustain the release of bevacizumab in the 

posterior segment.  

Effect of protein on the physical properties of the loaded hydrogels 

Encapsulating or entangling a large molecule during the polymerisation process 

when formulating a hydrogel may affect the physical properties of the prepared 

hydrogels. A more macroporous and hetrogenous network structure of cross-linked 

NIPAAm hydrogel is expected when the hydrogel is prepared in the presence of a 

large molecule to be entrapped. Zhang et al reported that a macroporous NIPAAm 

hydrogel was prepared when polymerised in the presence of PEG. SEM images 

demonstrated larger pores in the hydrogel matrix when the MW of PEG increased 

from 300 to 2000 and the SR at 25oC was also increased (Zhang et al. 2001).  

The physical properties of the 8 µL PEGDA cross-linked NIPAAm hydrogels 

polymerised in the presence of bevacizumab were evaluated. The protein loaded 

hydrogels were characterised regarding VPTT, SR and WR%. VPTT shifted from 

35.5 ± 0.1oC for the empty hydrogel to a lower value of 34.2 ± 0.5oC for the 

bevacizumab loaded hydrogels, which was still well below the physiological 

temperature (Figure 5:9). Proteins will compete with water molecules to occupy the 

internal volume of a hydrogel and less water will be entrapped resulting in reduced 

formation of hydrophilic bonds. Less energy (which indicates lower VPTT) will be 

required for the hydrophobic interactions to predominate over the hydrophilic ones. 
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Figure 5:9 DSC graph on the effect of the protein on VPTT of 8 µL NIPAAm hydrogel. The 
VPTT shifted from 35.5 ± 0.1

o
C for the unloaded hydrogel to 34.2 ± 0.5

o
C when 

bevacizumab was loaded.  

The SR of bevacizumab loaded hydrogels were 34.13 ± 2.05, 3.2 ± 0.8 and 

1.1 ± 0.3 at 25, 37 and 48oC respectively. There was a significant difference in SR 

at 25oC (p<0.05) between the bevacizumab loaded and unloaded hydrogel. 

However, there was no significant difference in the SR at 37 and 48oC (p>0.05) 

(Figure 5:10A). Hydrogels polymerised in the presence of bevacizumab at 25oC 

were denser and opaque compared to empty hydrogels; however, when they 

collapsed at 37oC they were both opaque and white in colour.  

The difference in swelling at 25oC could be related to the MW of 

bevacizumab. Bevacizumab is a large molecule and when incorporated inside the 

hydrogel during the polymerisation process will be entangled into the polymer 

matrix. The entangled protein will restrict the movement of the polymer chains and 

occupy the space that is usually occupied by the free water. This will restrict the 

swelling of the hydrogel at 25oC. At 37oC even the presence of a large molecule did 

not have an impact on SR and did not alter the behaviour of the hydrogel.  

Since proteins are hydrophilic in nature they will not have an impact on 

hydrophobic bonds formation. Therefore, the deswelling of NIPAAM hydrogels will 

not be affected by the presence of protein. This was also confirmed by the results of 

WR%, which showed no significant difference for both loaded and unloaded 

hydrogels because (p>0.05) (Figure 5:10B). The SEM images showed a relatively 

denser and more compact structure with the protein loaded hydrogels as compared 

to unloaded hydrogels at 25oC (Figure 5:10C). 

Onset temperature 

35.5oC 

34.2oC 
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Figure 5:10 A) A graph demonstrating the effect of loaded bevacizumab on SR of 8 µL 
NIPAAm hydrogel. A significant difference in SR at 25

o
C (p<0.05) was observed between 

bevacizumab loaded and unloaded hydrogel, no significant difference was observed at 37 
and 48

o
C (p>0.05); B) A graph demonstrating the WR% of loaded and unloaded hydrogels. 

There was no significant difference observed in WR% (p>0.05) in hydrogels with and 
without the protein; C) Scanning electron microscopy (SEM) images of NIPAAm hydrogels 
with and without protein made with 8 µL PEGDA. The structure of the loaded hydrogels was 
relatively denser and more compact compared to unloaded hydrogels at 25oC. The scale 
bar is 40 µm.  

(A) 

(B) 

(C) 

40 µm 40 µm 
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Washing the hydrogel by some process would be an important step to 

remove unreacted monomers, which can be toxic if tested in vivo. Contact lenses 

are washed after fabrication to remove monomeric and oligomeric material. In the 

case of an antibody-loaded hydrogel, it was expected that some of the antibody 

would be lost during the wash step.  

To study the effects of washing the hydrogels on the release profile and 

percentage of protein lost during washing, bevacizumab NIPAAm hydrogels were 

prepared using 8 μL PEGDA. After polymerisation, the hydrogels were rinsed gently 

5 times, 4.0 mL each time in PBS. Each wash was 15 minutes long. Each wash 

fraction was analysed by HPLC to calculate how much of the antibody was lost 

during the wash. It was calculated to be ~28% (~18.4 mg remaining). In a 100 μL 

volume, the final concentration of bevacizumab after washing was ~1.84 mg/100 

μL. To compare washed and unwashed hydrogels, approximately 125 μL of the 

washed gel (equivalent to ~2.3 mg of bevacizumab) was injected into the posterior 

cavity of the model with PBS. A half-life of 3.1 ± 1.3 days in PBS was observed with 

the washed hydrogel, which was not significantly different (p>0.05) from the 

unwashed hydrogel i.e. 3.7 ± 1.2 days (Figure 5:11).  

 

 

Figure 5:11 The release profile of unwashed and washed bevacizumab 8 µL NIPAAm 
hydrogels in PBS, pH 7.4. The half-life of unwashed and washed hydrogels was 3.7 ± 1.2 
and 3.13 ± 1.3 days respectively. No significant difference (p>0.05) was observed in the 
half-life between washed and unwashed hydrogels.  
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The release profiles of bevacizumab from washed and unwashed hydrogels 

were similar. However, the concentration of bevacizumab measured during the first 

3 days was lower in washed hydrogels compared to the unwashed ones. During 

polymerisation some of the protein will be entrapped close to the surface and they 

will be washed when the monomers were washed. Removal of the protein close to 

the surface will reduce the initial burst release associated with the hydrogel (Figure 

5:11).  

Incorporation of phosphorylcholine PC into NIPAAm hydrogels  

One of the advantages of using PEGDA as the cross-linker to make the NIPAAm 

hydrogels is the biocompatibility of the PEG structure. The biocompatibility of the 

NIPAAM hydrogel as currently made is important because these hydrogels would 

be expected to be nondegradable in the body remaining in contact with tissues for a 

long period. As discussed in chapter 1, phosphorylcholine (PC) containing 

hydrogels have the advantage of increased biocompatibility due to the presence of 

zwitterionic pendant chain that resembles cell membranes.  

Chang et al reported that NIPAAm hydrogels made by copolymerisation of 

NIPAAm and zwitterionic sulfobetaine methacrylate (SBMA) shows improved 

biocompatibility over standard NIPAAm hydrogels. When the absorption of three 

major plasma proteins (γ-globulin, fibrinogen, and human serum albumin) was 

compared between NIPAAm hydrogels and NIPAAm-co-SBMA hydrogels, the 

relative protein adsorption on the surface was reduced below 12% for the 

copolymer hydrogel. Also blood platelet activated and adhered on the NIPAAm 

hydrogel surface was considerably reduced in the presence of zwitterionic groups 

compared to NIPAAm hydrogels with no zwitterionic groups (Chang et al. 2010).  

MPC (similar to sulfobetaine) belongs to the family of zwitterionic monomers. 

To explore the possibility of copolymerisation of MPC with NIPAAm for the 

synthesis of MPC-co-NIPAAm thermoresponsive hydrogel, NIPAAm formulation 

was prepared with 8 µL PEGDA and 5 mg of MPC was added to the formulation 

mixture before polymerisation. After polymerisation a transparent hydrogel was 

formed; however when the VPTT was measured no thermoresponsiveness was 

observed. When the amount of MPC was reduced to 1 mg there was a slight 

response to temperature changes (Figure 5:12). Although there was a thermal 

responsiveness when 1 mg MPC was used, it was very weak and the VPTT was 

36.3 ± 0.3 oC, which was very close to body temperature. It was concluded that this 

formulation was not thermally responsive. A possible explanation is that a 

combination of PEGDA and MPC form strong hydrogen bonds with water. The 
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increased number of hydrophilic interactions on the polymer chains will require 

higher temperatures to disturb the hydrophilic lipophilic balance causing the 

hydrogel to collapse.   

 

Figure 5:12 DSC graph representing the VPTT of 8 µL hydrogels prepared with 5 mg or 1 
mg MPC compared to NIPAAm without MPC. There was no thermal responsiveness when 5 
mg MPC was added and the VPTT was 36.3 ± 0.3 when 1 mg MPC was added compared 
to 35.5 ± 0.09; however the VPTT was close to body temperature and the onset of 
temperature changes was not sharp.  

In order to add PC zwitterionic group into the NIPAAm hydrogels and 

maintain the thermal responsiveness, PEGDA was replaced with PC bearing cross-

linker. PC cross-linker is described in the literature and used to improve the 

properties of hydrogels (Kiritoshi & Ishihara 2004). US patent application number by 

Michael Driver also describes the synthesis of different acrylated PC molecules for 

various applications (Driver 2013).  

A proprietary PC cross-linker (PC 3059) was supplied by Vertellus 

biomaterial (UK) for use in this work. 8 µL PEGDA as cross-linker in NIPAAm 

hydrogels was replaced with equivalent weight of PC as cross-linker. When PEGDA 

was replaced with equivalent weight of PC (9 mg which is equivalent to 13% (w/w)) 

no hydrogel was formed. The mixture solution remained as free flowing liquid after 

the addition of TEMED. The reaction mixture remained liquid even when the 

amount of PC increased to 15 mg (equivalent to 20% (w/w)). A hydrogel was only 

formed when the amount of PC added was 20 mg (equivalent to 25% (w/w)).   

Onset temperature 

35.5o

36.3o

C 
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Effect of cross-linker change on the behaviour of NIPAAm hydrogel 

It is expected that many important properties of NIPAAm hydrogel would be 

affected by the dramatic change of cross-linker from PEGDA to a PC derived 

macromolecular cross-linker. To study whether replacing PEGDA with a PC derived 

cross-linker would have an impact; hydrogels made with 8 µL PEGDA and 20 mg 

PC (equivalent to 25% (w/w)) were prepared and compared in respect to VPTT, 

SR, WR% and in vitro release. To eliminate the effect of any other factors, except 

the cross-linker type, on the behaviour of the hydrogels prepared the two hydrogels 

were prepared in the exact same conditions. A 1 mL bevacizumab solution (25 

mg/mL) was used to prepare bevacizumab loaded PC hydrogels, which is 

equivalent to the loading for bevacizumab loaded PEGDA hydrogels.  

Both monomer mixtures for the hydrogels polymerised after 1 minute of 

TEMED addition. In both cases, the hydrogels were transparent and easily 

injectable through a 23G needle. With PC, the VPTT shifted to a slightly lower value 

(33.8 ± 0.1oC) compared to PEGDA-NIPAAm hydrogels (35.5 ± 0.1oC) (Table 5:4). 

The PC cross-linker was expected to attract more water than PEGDA. The 

presence of the zwitterionic pendant chain in the PC repeat unit in its structure can 

either be free or lightly bound water, which requires less energy to break and lower 

the VPTT. This could be a contributing factor to the sharp decrease in WR% after 5 

minutes when PC was used as compared to PEGDA (Figure 5:13). However, the 

overall behaviour is the same and they both respond by deswelling with an increase 

in temperature. There was no significant difference (p>0.05) in SR between PEGDA 

and PC hydrogels in all the temperatures tested (25, 37, 48oC). 

Table 5:4 Volume phase transition temperature (VPTT) and swelling ratio (SR) at 25, 37 
and 48

o
C of NIPAAm hydrogels made either with 8 µL PEGDA or 20 mg PC 3059. With PC, 

the VPTT shifted to a slightly lower value (33.8 ± 0.1
o
C) compared to PEGDA-NIPAAm 

hydrogels (35.5 ± 0.09
o
C) There was no significant difference (p>0.05) in SR between 

PEGDA and PC hydrogels in all the temperatures tested.  

Cross-linker type SR VPTT Injectability 

 25oC 37oC 48oC   

8 µL PEGDA 34 ± 2 3.2 ± 0.8 1.1 ± 0.3 35.5 ± 0.1 Easy 

20 mg PC 3059 37.6 ± 3.2 3.8 ± 1.9 1.4 ± 0.3 33.8 ± 0.1 Easy 
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Figure 5:13 The water retention (WR%) of hydrogels synthesised with 12 µL PEGDA and 

20 mg PC. A sharp decrease in WR% after 5 minutes when PC was used as compared to 
PEGDA; however, the overall behaviour is the same (no difference was observed in WR%).  

No significant difference (p>0.05) was observed in the release of 

bevacizumab from both hydrogels (Figure 5:14). The release of hydrogel loaded 

protein is thought to be affected by the amount of water entrapped in the hydrogel 

structure after collapsing. Both hydrogels swell to the same extent and entrap 

similar amounts of water at 37oC, which provides the basis for a similar release 

profile of bevacizumab to occur. 
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Figure 5:14 The release of bevacizumab from NIPAAm hydrogels made with 20 mg PC 
cross-linker compared with 8 µL PEGDA cross-linker. No significant difference (p>0.05) was 
observed in percent of drug released and concentration between the two hydrogels. 

Effect of bevacizumab on the physical properties of the PC cross-linked 
hydrogel 

From previous experiments it was noted that the presence of the antibody during 

the polymerisation process had no effect on the physical characteristics of the 

PEGDA cross-linked NIPAAm hydrogels. The same was observed with PC cross-

linked hydrogels.  A VPTT of 33.8 ± 0.1oC and 33.3 ± 0.3oC was observed for the 

empty and bevacizumab loaded hydrogels respectively, which were not significantly 

difference (p>0.05) (Figure 5:15A). The SR of bevacizumab loaded hydrogels was 

25.4 ± 1.4, 3.1 ± 1.3 and 1.0 ± 0.2 at 25, 37 and 48oC respectively. There was a 

significant difference is SR at 25oC (p<0.05) between bevacizumab loaded and 

unloaded PC cross-linked hydrogel but no significant difference (p>0.05) was 

observed at 37 and 48oC (Figure 5:15B). A more compact structure was observed 

in SEM when the PC cross-linked hydrogel was loaded with bevacizumab (Figure 

5:15C). 
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Figure 5:15 The effect of the protein on the physical characterisation of 20 mg PC NIPAAm 
hydrogel; A) VPTT shifted from 33.8 ± 0.1

o
C for the unloaded hydrogel to 33.3 ± 0.3

o
C for 

the bevacizumab loaded hydrogels; B) A significant difference in SR at 25
o
C (p<0.05) was 

observed between loaded and unloaded hydrogel, no significant difference was observed at 
37 and 48

o
C (p>0.05); C) A more compact structure was observed with loaded hydrogels 

compared to empty ones. The scale bar is 100 µm.  

(A) 

(B) 

(C) 

Onset 
temperature 

33.8o

C 

33.3oC 

100 µm 100 µm 
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Effect of increased PC cross-linker on NIPAAm hydrogels 

NIPAAm hydrogels formulated with 8 µL PEGDA and 20 mg PC displayed similar 

behaviour and release characteristics of bevacizumab. When increasing the 

stoichiometry of PEGDA from 4 to 12 µL the resulting NIPAAm hydrogels became 

non-injectable. In analogous fashion, the amount of PC cross-linker was increased 

from 20 mg to 30 mg (equivalent to 33.5% (w/w)). For the preparation of the 

hydrogels, NIPAAm monomers and APS were dissolved in 1 mL of DW with 

increasing stoichiometries of PC i.e 20, 25 and 30 mg (equivalent to 25%, 30%, 

33.5% (w/w) respectively). The mixture was free flowing liquid in the vial. All the 

hydrogels transparent and converted to a gel after the addition of TEMED (Figure 

5:16A). SEM showed a more compact structure with increased amounts of PC 

(Figure 5:16B).  

 
 

 

 

 

Figure 5:16 A) Picture of the prepared NIPAAm hydrogels using PC 3059 as cross-linker. 
Gels made with 20, 25 and 30 mg cross-linker are all transparent; B) SEM images of 
NIPAAm hydrogels shows no difference in structure when the cross-linker percentage 
increased. The scale bar is 40 µm. 

The injectability of each PC hydrogel was also determined qualitatively with 

a 23G needle (Table 5:5). The hydrogel was injectable with a PC amount up to 30% 

(w/w), however the gel was difficult to inject above 33.5% (w/w). 

(A) 

(B) 

40 um 40 um 40 um 
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Table 5:5 The qualitative determination of injectability of NIPAAm hydrogels synthesised 
different amounts of PC 3059 using 23G needle.  

PC 3059  Injectability 

20 mg Easy 

25 mg Easy 

30 mg Difficult 

 

A successful thermoresponsive hydrogel should have a VPTT below the 

physiological pH. The VPTT for the PC cross-linked hydrogels was ~34˚C and there 

was no significant difference (p>0.05) in the VPTT between the hydrogels made 

with the different amounts of PC (Figure 5:17). The endothermic peak remained 

sharp when the percentage of PC increased which indicates that a higher 

percentage of PC as cross-linker didn’t reduce the thermal responsiveness of the 

prepared gels.    

 

Figure 5:17 Volume phase transition temperature (VPTT) of NIPAAM hydrogels with 
varying PC 3059 concentrations determined by DSC. The VPTT was 33.8 ± 0.1, 34.3 ± 0.05 
and 34.4 ± 0.1 for 20, 25 and 30 mg PC respectively.  

The swelling ratio of NIPAAm hydrogels prepared was measured at 25, 37 

and 48oC. Similar to PEGDA, there was a significant decrease (p<0.05) in SR for all 

hydrogels when the temperature increased from 25 to 37oC (Table 5:6).   

 

 

 

 

Onset 
temperature 

33.8oC 

34.3oC 

34.4oC 
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Table 5:6 The SR of NIPAAm hydrogels prepared with different amounts of PC 3059 as 
cross-linker at three different temperatures (25, 37 and 48

o
C).  

 

Temperature 

SR 

20 mg 25 mg 30 mg 

25oC 37.6 ± 3.2 26.5 ± 4.7 23.0 ± 2.0 

37oC 3.8 ± 1.9 5.2 ± 1.8 5.1 ± 0.5 

48oC 1.4 ± 0.3 2.4 ± 1.3 2.8 ± 1.3 

 

At 25oC there was a significant difference (p<0.05) in the SR between the 20 

mg, and 25 and 30 mg PC cross-linked hydrogels. No significant difference was 

observed (p>0.05) between 25 and 30 mg PC hydrogels. This is consistent with the 

results observed when PEGDA. Higher cross-linking density is associated with less 

swelling in the surrounding medium. At 37 and 48oC, no significant difference was 

observed in any of the hydrogels (p>0.05) (Figure 5:18A). The behaviour of the PC 

cross-linked hydrogels is different compared to PEGDA cross-linked hydrogels at 

37oC. This is probably related to the nature of the cross-linkers and the interaction 

between the cross-linker and water. While it is known that PEGDA can form 

hydrogen bonds with water, PC groups attract free water around the PC polymer 

chains. The visual difference in swelling of the hydrogels at 25 and 37oC is 

presented in (Figure 5:18B).  

The effect of PC on WR% was also measured. Higher amounts of PC 

results in higher water entrapment inside the hydrogel (Figure 5:18C) due to the 

presence of PC head group. The same pattern was also noticed with PEGDA. This 

indicates that hydrogels made with a hydrophilic cross-linker behave the same way 

regarding water content and swelling.    
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Figure 5:18 A) The swelling ratio SR of NIPAAm hydrogels prepared with various amounts 
of PC 0598 as cross-linker. The SR was measured at three different temperatures (25, 37 
and 48

o
C); B) Pictures of the hydrogels at 25 and 37

o
C; C) The WR% of PNIPAAm 

hydrogels prepared with various amounts of PC 3059 as cross-linker.  

(A) 

(B) 

(C) 
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NIPAAm hydrogels made with 20, 25 and 30 mg (equivalent to 25, 30 and 

33.5% (w/w) respectively) PC were screened regarding physical properties of the 

formulated hydrogels and the effect of PC cross-linker on the general behaviour of 

NIPAAm hydrogels. Although the NIPAAm hydrogel made with 33.5% (w/w) PC 

was thermoresponsive, it was difficult to inject this hydrogel. Hydrogels made with 

25% and 30% (w/w) PC showed similar characteristics and thermal behaviour when 

compared to PEGDA.  

Acrylated hyaluronic acid (Ac-HA) cross-linker in NIPAAm hydrogel synthesis 

Most of the non-biodegradable delivery systems for posterior segment require 

removal after the drug is fully released. There are some exceptions where there is 

no need to remove the delivery system when the drug is fully released, for example 

Iluvien®. Iluvien® is a small, non-biodegradable, injectable polymer drug matrix that 

release fluocinolone acetonide in the vitreous up to 3 years for the treatment of 

diabetic macular edema (Kane et al. 2008).  

 NIPAAm hydrogels made with PEGDA-700 or PC 3059 displayed a 

sustained release of bevacizumab for more than a month; however they are non-

biodegradable. Turturro et al reported that only a small transient effect was 

observed in the retinal functions during the first few days after injection of NIPAAm 

hydrogel and the data returned to normal base line after one week of injection 

(Turturro et al. 2011). Surgery may be required to remove the empty hydrogels 

when several injections are used and the empty hydrogels starts to accumulate in 

the vitreous and affect the ocular tissues. To avoid surgery in these cases, the use 

of biodegradable cross-linker for NIPAAm hydrogel synthesis could be an option. 

Biodegradable NIPAAm hydrogels were reported to be synthesised by incorporating 

a biodegradable monomer unit into the polymer backbone structure or cross-linker 

(Fujimoto et al. 2009; Zheng et al. 2015; Huang & Lowe 2005). Lee and Cheng 

reported the synthesis of biodegradable NIPAAm hydrogels using biodegradable 

polycaprolactone diacrylate as cross-linker (Wang & Li 2011). To study the 

possibility of using a biodegradable cross-linker and its effect on the physical and 

chemical properties of the hydrogel, NIPAAm hydrogel with hyaluronic acid (HA) as 

cross-linker was prepared and analysed.   

Hyaluronic acid (HA) is natural polysaccharide polymer with repeating units 

of D-glucuronic acid and N-acetyl-D-glucosamine disaccharide. It is a common 

component in many parts of the human body such as extracellular matrix, synovial 

fluid and the vitreous humour. It has the ability to absorb thousand times its dry 

weight of water (Kogan et al. 2007; Mero & Campisi 2014). It is a widely 
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investigated and used component for drug delivery due to its biodegradability and 

biocompatibility (Figure 5:19A). The commercially available form of HA is called 

sodium hyaluronate and it is used for the synthesis of eye drops, eye gels and 

injections (Pavelka & Uebelhart 2011; Widjaja et al. 2014; Mayol et al. 2008).  

 In our lab an acrylated HA (Ac-HA 50 kDa) molecule was synthesised to be 

used as biodegradable hydrophilic cross-linker for NIPAAm hydrogel synthesis. The 

same method and percentages of monomers used for the preparation of PEGDA 

and PC NIPAAm hydrogels was used for the synthesis of Ac-HA NIPAAm 

hydrogels. Different amounts of Ac-HA were used for the hydrogel synthesis (2, 4, 7 

and 10 mg which represents 3.2%, 6.3%, 10.5% and 14.4% (w/w) respectively). 

The monomer mixtures start to gel approximately one minute after the addition of 

TEMED (Figure 5:19B).  

 

 

 

 

 

Figure 5:19 A) The chemical structure of hyaluronic acid (HA), B) the starting materials for 
NIPAAm hydrogel formulation and the hydrogels formed. NIPAAm hydrogels were prepared 
with different percentages of Ac-HA as cross-linker by free radical polymerisation.  
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The injectability of the hydrogels was determined using a 23G needle. 

Hydrogels with 7 and 10 mg Ac-HA were very hard to inject and displayed VPTT 

values very close to body temperature with no significant difference in SR (from 

25oC to 37oC). Similar trend to PEGDA and PC3059 in SR at 25oC was observed; 

when the cross-linker amount increased the SR reduced which can be observed by 

the SEM images of the freeze dried hydrogels (Figure 5:20A). Hydrogels with 2 and 

4 mg showed thermal responsiveness and both were injectable (Figure 5:20B and 

Table 5:7).  

 

 

 

 

Figure 5:20 A) SEM images of NIPAAm hydrogels made with different amounts of Ac-HA. 
Denser hydrogels were prepared with increasing Ac-HA amount. Scale bar is 100; B) 
Pictures of the hydrogels at 25 and 37

o
C. The hydrogels at 25 are transparent and became 

opaque at 37
o
C. 

(A) 

(B) 

100 µm 

100 µm 100 µm 
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Table 5:7 Different physical properties of NIPAAm hydrogels made with different amounts of 
Ac-HA. All data presented was done in triplicate (n=3) and presented as mean and standard 
deviation (± STD) except for VPTT (one experiment). 

Ac-HA mg VPTT oC 
SR 

25oC              37oC 
Injectability 

2 33.7 165.4 ± 2.9 102 ± 8 Easy 
4 34.5 105.1 ± 8.4 94.1 ± 5.9 Easy 
7 36.4 79.8 ± 2.9 78.2 ± 3.4 Difficult 
10 36.9 62.5 ± 4.8 60.2 ± 0.7 Non-injectable 

         

NIPAAm hydrogels made with 2 and 4 mg Ac-HA were loaded with 

infliximab to study the release of the protein. Infliximab was used instead of 

bevacizumab because of the lack of resources for bevacizumab (Infliximab and 

bevacizumab have the same MW 150 kDa). The aim was to prepare Ac-HA 

NIPAAm hydrogel with 10 mg infliximab by dissolving AC-HA, NIPAAm and APS in 

1 mL of protein solution (9.4 mg/mL); however the AC-HA was hard to dissolve and 

properly mixed with the protein solution. The reduction in solubility of HA could be 

attributed to the addition of acrylate groups in the HA structure. OH groups were 

replaced with acrylate which possibly affected the solubility by reducing the groups 

available for hydrogen bond formation. Proper mixing between the monomers and 

the protein is important to achieve uniform distribution and proper entangling of the 

protein. To help in the mixing process Ac-HA, NIPAAm and APS were first 

dissolved in 200 µL of PBS. When a clear solution was formed 1 mL of protein 

solution was added taking the total volume into 1.2 mL. A hydrogel was formed 

after addition of TEMED with a concentration of protein 7.8 mg/mL. The same 

washing process used for PEGDA NIPAAm hydrogel was used for washing Ac-HA 

NIPAAm hydrogels.    

 During washing the amount of drug lost was quantified. After washing, 

hydrogels with 2 and 4 mg lost 2.5 mg ± 0.2 (~26.7%) and 1.8 mg ± 0.2 (~19.5%) of 

the loaded protein respectively. The final concentration of protein in the hydrogels 

was 5.8 mg/mL and 6.3 mg/mL for 2 mg and 4 mg AC-HA NIPAAm hydrogels 

respectively. The amount of protein lost during washing of 4 mg hydrogels was 

significantly lower than the amount lost during washing 2 mg hydrogels. This was 

expected because the SR of hydrogels made with 2 mg was significantly higher 

than the SR of 4 mg hydrogels. Based on these findings hydrogel with 4 mg cross-

linker was further characterised for release studies. 

The release of 4 mg AC-HA NIPAAm hydrogels from the PK-Eye model was 

studied and compared with bevacizumab. The amount of infliximab injected was 1.1 

mg (170 µL) of the hydrogel and after 10 days only ~25% of the drug was released 
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compared to ~60% from 8 µL PEGDA and PC NIPAAm hydrogels (Figure 5:21). 

The large MW of the HA provided a proper entangling to the protein and created 

another barrier for the diffusion of the protein from the collapsed hydrogel. 

 

Figure 5:21 A graph comparing the release of bevacizumab and infliximab from NIPAAm 

hydrogels made with different cross-linkers. After 10 days only ~25% of the drug was 
released from NIPAAm hydrogels made with Ac-HA compared to ~60% from 8 µL PEGDA 
and PC NIPAAm hydrogels.   

In hydrogels made with PC and PEGDA the presence of protein did not 

have a major effect on the overall physicochemical properties of the hydrogels 

except for swelling at 25oC, it was significantly lower in the presence of protein. 

With AC-HA as cross-linker the hydrogel was still injectable after loading with the 

protein and the VPTT was 35.5oC compared to 34.5oC for the empty hydrogel. 

However, with Ac-HA there was a significant difference is SR not only at 25oC but 

also at 37oC (Table 5:8). HA is a viscous material that is used to increase viscosity 

of solutions. When used as cross-linker the viscosity of the hydrogel will increase 

reducing the SR significantly at 25oC. At 37oC the higher viscosity of HA may also 

prevent complete collapse of the hydrogel.      

Table 5:8 Different physical properties of NIPAAm hydrogels with and without infliximab.  

Ac-HA NIPAAm hydrogel VPTT oC 
SR 

25oC              37oC 
Injectability 

Empty hydrogel 34.5 105.1 ± 8.4 94.1 ± 5.9 Easy 
Infliximab loaded hydrogel 35.5 33 ± 6 20.3 ± 3 Easy 
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When comparing SR of hydrogels made with PEGDA or PC 3059 vs 

hydrogels made with Ac-HA at 25oC and 37oC, a significant difference was 

observed (Table 5:9). The structure of HA molecule is dominated by the presence 

of OH groups that are capable of forming hydrogel bonds with water. The combined 

effect of large MW of Ac-HA (50 kDa) and the abundance of OH group will attract 

large amount of water and increase the swelling of the hydrogel compared with 

PEGDA and PC (PEGDA Mn is 700 Da).  

Table 5:9 The SR of NIPAAm hydrogels prepared with different hydrophilic cross-linkers.  

Cross-linker type 
SR 

       25oC                    37oC 

8 µL PEGDA 34 ± 2 3.2 ± 0.8 

20 mg PC 3059 37.6 ± 3.2 3.8 ± 1.9 

4 mg Ac-HA 105.1 ± 8.4 94.1 ± 5.9 

 
 

NIPAAm hydrogels made with 2, 4, 7 and 10 mg Ac-HA were screened 

regarding physical properties of the prepared hydrogels and the effect of cross-

linker amount on the general behaviour of NIPAAm hydrogels. Hydrogels made with 

7 and 10 mg Ac-HA were non injectable and non thermoresponsive. Although 

hydrogel made with 2 and 4 mg Ac-HA were injectable and thermoresponsive, only 

4 mg hydrogels were used for release studies. Higher percentage of the loaded 

protein lost during the washing of unreacted monomers from 2 mg hydrogels 

compared to 4 mg. Only ~25% of the loaded protein was released after 10 days. 

NIPAAm hydrogels made with 4 mg Ac-HA are good candidates for developing 

sustained formulation for protein delivery. 

Summary and conclusions 

NIPAAm thermoresponsive hydrogels were prepared by free radical polymerisation 

using different macromolecular hydrophilic cross-linkers i.e. PEGDA, PC 3059 and 

Ac-HA. The in vitro release of an antibody was studied in the PK-Eye model. This in 

vitro model that mimics the aqueous flow of the human eye provides a good 

estimate of antibody clearance from the vitreous body. NIPAAm hydrogels (derived 

from 40 mg of NIPAAm monomer) containing 4, 8, 12 and 15 µL PEGDA were 

prepared and characterised regarding their physical properties. With larger amounts 

of PEGDA, the hydrogels were less thermoresponsive and retained larger amounts 

of water in at 37oC. In addition, the injectability of these hydrogels also reduced. No 

significant difference was observed between 4 and 8 µL cross-linker regarding SR, 

VPTT and WR%.  
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In vitro studies in the PK-Eye showed a bimodal release profile 

characterised by an initial burst followed by a zero-order release after a week for 

one month. No significant difference was observed with the different cross-linker 

stochiometries. The presence of protein during polymerisation did not appear to 

affect the physical properties of the prepared hydrogels (i.e. VPTT, injectability and 

SR at 37oC).  

To prepare hydrogels with potentially improved biocompatibility and to 

examine the effect of changing the cross-linker type on the properties of the 

hydrogel, 4 µL PEGDA was replaced with 20 mg of a preparatory molecule (PC 

3059) as a cross-linker with 40 mg NIPAAm. Changing the cross-linker had no 

significant difference in the behaviour of the prepared hydrogels regarding their 

properties such as VPTT, SR, WR% and the release of loaded bevacizumab. Three 

different amounts of PC 3059 was investigated i.e. 20, 25 and 30 mg. No significant 

difference in VPTT and SR were observed with increased amounts of cross-linker. 

The presence of protein during the polymerisation process again, surprisingly, did 

not alter the physical properties of the prepared hydrogels. Hydrogels made with 20 

mg PC2059 retained less water in their structure and were further investigated for 

their release properties. Both hydrogels are potential candidates for further study to 

be the basis for an extended release formulation for intravitreal protein delivery.   

Another hydrophilic cross-linker was examined for the synthesis of NIPAAm 

hydrogels. Different NIPAAm hydrogels with increasing stoichiometries of Ac-HA 

(50 kDa) were prepared (2, 4, 7 and 10 mg). When the amount of Ac-HA ws 

increased, the thermal responsiveness was reduced and the SR was alsoreduced 

at 25oC. This hydrogel behaves in similar way to PEGDA-NIPAAm cross-linked 

hydrogels. Preliminary release studies of Ac-HA loaded hydrogels demonstrated 

better control of the loaded protein compared to PEGDA and PC NIPAAm 

hydrogels with the release of 25% only of the encapsulated protein from Ac-HA 

hydrogels compared to 60% from PEGDA and PC hydrogels in 10 days. 

NIPAAm hydrogels with different properties were prepared by using different 

types of hydrophilic macromolecular cross-linkers. The type and percentage of 

cross-linker in the formulation significantly affects the characteristics of the hydrogel 

to sustain the release of the encapsulated antibody.    
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Chapter 6. General discussion and conclusion 

Blinding eye diseases are considered a major economic and social problem in 

developed and developing countries, generally affecting aging populations. Most 

blindness and severe visual impairment are caused by conditions that cause 

damage in the back of the eye; such as glaucoma and AMD (Bunce & Wormald 

2006). 

People suffering from glaucoma is estimated to be 60.5 million in 2010 and 

the number is estimated to increase to 111.8 million in 2040 (Tham et al. 2014; 

Quigley & Broman 2006). The only proven treatment for glaucoma is to lower the 

intraocular pressure (IOP) in the eyeball. Current treatments have a variable long-

term success rate (Manickavasagam & Oyewumi 2013). Eye drops require lifelong 

use, are costly and are associated with local side effects. Compliance remains a 

major problem with eye drops with no solution to compliance emerging (Tsai 2009; 

Sleath et al. 2006). Laser treatment to open the drainage meshwork can lower 

pressure, but local fibrosis can occur (Wise 1987). Both the use of eye drops and 

laser treatments often fail to achieve long term reduction in IOP required to slow 

disease progression.  

The lowest IOP can be achieved by creating a new drainage channel that 

allows aqueous to flow out of the eye into the subconjunctival tissues. Aqueous 

drainage can be achieved be trabeculectomy (or glaucoma filtering surgery-GFS)  

or by surgically implanting a glaucoma drainage device (GDD) (Schwartz et al. 

2006; Chiselita 2001). There are many GDDs that have been developed, but 

limitations remain. Successful surgery is associated with a better clinical outcome 

and quality of life with lower healthcare costs compared to standard long term 

medical therapy. Unfortunately surgery has not become the primary treatment 

option because of its complexity and the post-surgical treatments that are often 

needed due to localised fibrosis (Skuta & Parrish 1987). Complications such as 

accurately control aqueous outflow due to blockage caused by local fibrosis results 

surgical failure with a return to higher IOP and disease progression.  

GDDs are increasingly being used as first line treatment when surgery is 

called for. There are two key problems with current GDDs; (i) lack of control on 

aqueous outflow in the first few weeks before the fibrous capsule formation which 

may cause hypotony, (ii) lack of long term and consistent control of IOP among 

wide range of patients, (iii) formation of a thick fibrous capsule around the implant 

due to excessive scarring and foreign body response which may cause blockage of 

the tube and elevated IOP. The material used for the fabrication of implantable 
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devices, including GDDs plays an important role in the long-term success of the 

device. If the material used is highly biocompatible, less foreign body response is 

expected and a thin, less dense fibrous capsule may be formed around the implant. 

GDDs with spacer plates typically control aqueous outflow through a pressure 

controlled valve or use of a suture through the drainage tube with diffusion through 

the fibrous capsule formed around the implant. Consideration of new mechanisms 

for flow control based on different principles may help to developing new GDDs with 

higher success rate compared to the current GDDs.  

An ideal GDD should; (i) have minimal foreign body response, (ii) be able to 

control the IOP to 10-12 mmHg over a wide range of patients for a prolonged period 

of time, (iii) be easily implanted and (iv) be affordable for patients around the world. 

It is thought that a GDD made from a hydrogel may offer a solution to the problems 

associated with the current devices available in the clinic.    

Hydrogels are widely used in biomedical research because they are known 

to be biocompatible materials due to their tissue like properties (flexibility, softness 

and high water content). Hydrogels are polymer networks that allow the transport of 

gases, liquids and dissolved substrates (Hoare & Kohane 2008; Devi & Nautiyal 

2014; Buwalda et al. 2014). Example applications where hydrogels are widely used 

and investigated include tissue engineering, 3D cell culture, wound dressing, 

medical adhesives and drug delivery systems (Yang et al. 2011; Huynh et al. 2011; 

Appel et al. 2012). 

Initially it was hypothesised that a biocompatible hydrogel material could be 

used as a flow restrictor in a GDD. It was thought that the flow through a hydrogel 

material could be adjusted based on the characteristics of the hydrogel to allow 

aqueous flow. It was hoped that cross-link density and polymer properties could be 

found that allowed the flow of water at approximately 2 µL/min with a pressure 

resistance of 10 mmHg. It was hypothesised that hydrogel properties would allow 

aqueous flow to be impeded by resistance through the hydrogel network that would 

result in pressure control for a GDD.   

It was further hoped that with an appropriate hydrogel material could be 

used to moderate the lower foreign body response to reduce the chance of a 

fibrous capsule forming around the device. Avoiding capsule formation is important 

to ensure unmanageable IOP increases do not occur over time. Long-term 

implantable devices into the subconjunctiva (including GDDs) currently require the 

administration of an anti-inflammatory and/or anti-fibrotic agent to reduce the 

foreign body response to the device after the trauma of surgery and implantation. 

Anti-inflammatory or anti-scarring agents could be loaded to the hydrogel to 
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formulate a combination device that would further reduce the foreign body 

response.   

HEMA and MPC based co-polymers were selected as hydrogel components 

to control aqueous outflow as a means to regulate pressure because of these 

polymers are widely used in the eye (contact and intraocular lens). Much is known 

about the use of hydrogel materials in the manufacture of and coating of lens. It 

was not clear at the outset of this research what was the permeability and the 

capacity of water to actually flow through a hydrogel, it was necessary to evaluate 

gels derived comprised of different relative amounts of MPC to HEMA. A small 

library of hydrogel films ranging from 0 to 100 % (w/w) MPC were prepared and 

characterised in respect to appearance, water permeability and water content. From 

the outset it appeared that as the relative amount of MPC increased within the 

hydrogel films, the total water content and network pore size increased.  

The critical properties needed for aqueous flow to control pressure were 

water permeability and the hydraulic conductivity of the hydrogel. These properties 

are not usually measured for hydrogels used in drug delivery but sometimes 

measured in ophthalmic lens development. In the case of contact lens, oxygen 

permeability is the key parameter that must be optimised. Water permeability and 

hydraulic conductivity of 10% MPC-HEMA hydrogels was measured under pressure 

by dynamic approach. Hydrogels fabricated with 10% MPC was chosen as a 

representation of the HEMA-MPC formulation. It was thought that if sufficient water 

flow through the 10% MPC hydrogel matrix, the formulation could be manipulated. 

Unfortunately, the fabricated hydrogel film displayed low permeability. The 

permeability and water flow was low at high pressure (~30 mmHg) which indicates 

that the films cannot be used as flow control mechanism for GDD.  

Low water permeability was unexpected. One thought was that the low 

permeability was related to how water was distributed inside the hydrogel network 

where the ratio of bound water could be high compared to free water due to the 

presence of hydrophilic monomers such as MPC and HEMA. However, when the 

bound water ratio was measured the ratio of free water was high compared to 

bound water. The results suggest that for this particular HEMA-MPC formulation the 

water type has no effect on permeability.   

Another rationale for the low permeability to water flow may be due to gel 

blocking. Water flow and water transport may be two different processes. Clearly 

when hydrated films were placed on a bench, the water quickly evaporated, much 

as what happens in a contact lens.  Likewise the xerogel becomes hydrated. These 

observations indicate there is water transport. However this transfer of water 
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appears to differ from transfer due to flow.  In this case it is possible that under the 

pressure of flow, hydrogel chain conformations change resulting in polymer chains 

actually blocking flow (Höhne & Tauer 2014; Wack & Ulbricht 2007; Berg et al. 

1994). 

To avoid aqueous flow through an entire hydrogel film, the incorporation of a 

chamber or pouch was considered. The pouch may exert extra pressure from inside 

the hydrogel to speed the flow rate through the hydrogel surfaces. The pouch will 

be deflated at low pressure and when the pressure increases, due to accumulation 

of aqueous inside the pouch, the pouch will expand (similar principle to balloons) 

and the aqueous will flow. Two approaches were examined to create a pouch; (i) 

femtosecond laser and (ii) gel film fabrication around a water soluble positive 

mould. A femtosecond laser was used to create a pouch in a fully hydrated 

hydrogel. Unfortunately, after the laser treatment the film surface became fragile 

and cracked. This preliminary experiment suggested that ablation of the internal 

volume of the hydrogel would be difficult to achieve. One reason for this may be 

due to the chaotic nature of the hydrogel, or because upon vaporisation by the laser 

there was a high localised increase in pressure/heat that caused the cracking. 

Since the femtosecond laser was not useful to create an internal cavity 

within the hydrogel pouch, A PBS tablet was crashed and placed in the mould 

before conducting the polymerisation to fabricate the hydrogel. It was thought that 

by polymerising around a soluble material, the material could be dissolved during 

the washing process of the hydrogel to leave an empty pouch. No candidate 

hydrogel films worthy of further study were fabricated when polymerising around 

particles. The presence of the particles affected the polymerisation process in the 

surrounding area producing an irregular thickness to the film around the particles. 

 To further confirm that the polymerisation process is affected by the 

presence of foreign material during the polymerisation and not the nature of the 

PBS tablet itself, the polymerisation of 10% MPC monomer mixture was conducted 

in the presence of a metal spatula, filter paper and polycaprolactone film. No proper 

film was formed with each of the materials used. A pouch or a continuous internal 

volume could not be created. After much experimentation, it was determined that 

HEMA-MPC hydrogel films could not be used to restrict flow as a means to control 

pressure. The concept of using flow through hydrogels as a mean to control flow 

through GDD could still be investigated in future work by using different polymers 

and monomers for the GDD fabrication. A different concept for the hydrogel could 

also be investigated such as the synthesis of macroporous hydrogels.       

Although we were unable to use a hydrogel as a flow-restricting barrier to 
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control outflow pressure, it was still possible to consider a hydrogel-derived spacer 

that could be used in a conventional GDD. The hydrogel material would be 

expected to have a lower propensity for causing a severe foreign body response.  

Additionally since GDDs do need co-administration of an anti-fibrotic agent, a 

hydrogel GDD spacer could be used also to release an appropriate drug within the 

subconjunctival space after GFS.  

Hydrogel formulations were examined in terms of mechanical strength, drug 

loading and drug release. Young’s modulus (E) of the fabricated films was 

measured as an indication of mechanical strength. As the strength of films 

increases, the modulus also tends to increase. The modulus inversely varied with 

the amount of MPC.  

The drugs DEX (hydrophobic) and pirfenidone (hydrophilic) were loaded into 

MPC discs to study the effect of water content on drug release. The discs were 1 

cm in diameter and 1 mm thickness in fully hydrated state. Fully dried discs were 

used for loading. The MPC was varied from 0-30% in the discs that were evaluated. 

For pirfenidone, the amount loaded was 0.35 ± 0.02, 0.30 ± 0.01 and 0.25 ± 0.02 

mg/disc for 0%, 10% and 30% MPC respectively. For dexamethasone, the amount 

loaded was 0.40 ± 0.03, 0.3 ± 0.1 and 0.19 ± 0.03 mg/disc for 0%, 10% and 30% 

respectively. Initially it was thought that the loading would be increased with 

increasing MPC percentage because the swelling of the hydrogel increased with 

increasing MPC percentage. It came as a surprise that the loading decreased with 

the increasing MPC percentage for both drugs. The affinity between the drug 

molecule and the polymer matrix could explain the results. DEX has higher affinity 

to adsorb on hydrophobic polymer chain surfaces (HEMA). When the level of 

HEMA was reduced compared to MPC (highly hydrophilic), DEX loading was 

reduced. 

The release of both drugs was studied using an eye flow chamber that 

mimics the aqueous flow in the subconjunctival space at a rate of 2 µL/min. Both 

drugs were released faster from the 30% MPC compared to 0% and 10% MPC 

hydrogels. The half-life of DEX was 3 ± 12, 1.8 ± 8.9 and 1 ± 3 day and the half-life 

of pirfenidone was 1.2 ± 2.4, 0.7 ± 3.4 and 0.4 ± 2.1 day for 0%, 10% and 30% 

MPC respectively. In non-stimuli responsive non-biodegradable hydrogels diffusion 

of the drug from the loaded hydrogel is the driving force for the release (Satapathy 

et al. 2015). Diffusion is also related to the percentage of free water in the hydrogel, 

where it is thought that the higher the bulk water content the faster the release (Wu 

et al. 2016). Since 30% MPC hydrogels have higher free water compared to 0% 

and 10% MPC hydrogel, the diffusion was faster from 30% MPC.  
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A GDD spacer must have sufficient mechanical strength to be implanted 

and sufficient water content to ensure biocompatibility. The presence of MPC will 

increase the water content, which potentially may improve biocompatibility but at 

the same time will reduce the strength of the films and cause faster release of the 

loaded drug. Hydrogels with 20% and 30% MPC have low mechanical strength with 

high free water. The half-life of both DEX and pirfenidone was short when released 

from 30% MPC compared to 0% and 10% MPC. Hydrogels with 5% MPC have 

higher relative mechanical strength and less free water but they have low 

percentage of MPC compared to the other formulations which could impact 

biocompatibility long-term. Hydrogels with 10% and 15% MPC showed similar 

characteristics regarding water content; however, hydrogels with 10% MPC are 

mechanically stronger and have larger fraction of free water compared to 15% 

MPC. Hydrogels made with 10% MPC were chosen as the best formulation for the 

fabrication of a drug releasing subconjunctival spacer after GFS. The 10% MPC 

hydrogels offer the best balance between water content, mechanical strength, drug 

loading and drug release. 

Both drugs (DEX and pirfenidone) still did not have an optimal release 

profile from 10% MPC hydrogel discs. As discussed previously, the high ratio of 

free water facilitates the diffusion of loaded drugs in hydrogels. It was thought that 

by modifying the ratio of cross-linker and initiator in the 10% MPC formulation, the 

free to bound water ratio could be modified. It was previously reported that 

modification of both initiator and cross-linker have an effect on water content and 

distribution inside the hydrogels (Goda, Watanabe, Takai, & Ishihara, 2006; 

Kiritoshi & Ishihara, 2002). It was thought that by increasing the ratio of bound to 

free water in the formulation, the loaded drugs would more slowly diffuse to prolong 

its release.  

To modify the water amount and distribution the percentage of cross-linker 

(PEGDA) was reduced from 0.56% to 0.28% and 0.14% while keeping the 10% 

MPC formulation mixture constant (88.7% HEMA, 10% MPC, 0.74% (w/w) AIBN). 

The initiator was also modified. The percentage of AIBN was reduced from 0.74% 

to 0.37% and 0.18% while keeping the 10% MPC formulation mixture constant 

(88.7% HEMA, 10% MPC, 0.56% (w/w) PEGDA). There was no significant 

difference in the free to bound water ratio when either the cross-linker or initiator 

was decreased. Based on the experiments that were conducted, the 10 % MPC 

formulation with 88.7% HEMA, 0.56 % PEGDA and 0.74 % (w/w) AIBN was chosen 

as the best formulation to fabricate a hydrogel derived drug releasing GDD spacer. 
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When a GDD implanted or a patient undergoes GFS, medication is required 

for a period of 4-8 weeks after surgery with non-steroidal anti-inflammatory drops 

often being prescribed. DEX eye drops are often used to reduce local ocular 

inflammation. Loading the hydrogel spacer with DEX to sustain its local could 

eliminate the side effects associated with using eye drops such as low efficacy, low 

patient adherence to treatment and increased sensitivity of an already inflamed eye 

tissue due to the presence of preservatives (Ghate & Edelhauser 2008; Noecker 

2001).  

DEX loading was 0.3 mg/disc and the half-life for release was 1.8 ± 8.9 days 

when water:ethanol (1:1) was used as the loading solvent for 10% MPC. 

Water:ethanol (1:1) was replaced with methanol as solvent for loading in an effort to 

maximise hydrogel loading by mediating gel swelling and increasing drug 

concentration in the soluble phase during loading. The maximum solubility of DEX 

in water alcohol mixture is limited. However, if ethanol or methanol were used alone 

a solution of 15 mg/mL of DEX could be prepared. Ethanol could not be used 

because 10% MPC hydrogels have low SR in ethanol (0.20 ± 0.03). On the other 

hand, the SR of the hydrogel is similar between water and methanol (1.20 ± 0.02 

and 1.20 ± 0.09 for methanol and water respectively). The toxicity of methanol was 

a factor to be considered. To extract methanol from the loaded hydrogel and to 

create a depot of DEX inside the hydrogel matrix, the loaded discs were washed 

with 2 mL of water for 4 hours followed by vacuum drying for 24 hours. The loading 

increased from 0.3 mg to 1.9 mg/disc and the half-life increased from 1.9 days to 

9.7 days.  

For future work release could be studied using hydrogel discs with different 

dimensions and study the effect of thickness, surface area and shape on the 

release of loaded drugs. There is a wide range of drugs that could be used as anti-

inflammatory or anti-scarring after GFS (such as ilomastat) and the loading and 

release of different drugs from HEMA-MPC hydrogel could be further investigated. 

There is also the potential for loading more than one drug on the same hydrogel to 

have synergistic effect. Two or more drugs could be loaded either from the same 

solution or loading one drug first followed by drying of the hydrogel and loading the 

other drug molecule.     

Currently there are no GDDs in the clinic that possess a drug eluting spacer. 

In the case of GFS, there are also no clinically approved drug eluting spacers that 

could be used after trabeculectomy. A drug eluting spacer could offer a solution to 

the major problem of foreign body response that is associated with GDDs. Large-

scale production, efficacy, ensuring sterility and minimising costs are important 
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parameters to be considered. The same techniques used for contact lens 

fabrication and sterilisation could be modified for the fabrication of a GDD and drug 

eluting spacer.  

As discussed previously scarring of the subconjunctival tissues is a common 

complication after GDD implantation and GFS. An effort was made to load anti-

scarring drug into the 10% MPC hydrogel discs fabricated. One of the drugs that 

show promising results as anti-scarring agent is the known antibiotic doxycycline 

(DOXy) (Li et al. 2013; Dawson & Schachter 1985). Another advantage of 

fabricating a DOXy releasing hydrogel spacer is the possibility of utilising the spacer 

for other subconjunctival scarring conditions (e.g.  trachoma).     

Trachoma is the number one cause of blindness caused by an infection, 

often occurring in resource limited regions of the world. The cause of blindness is 

due to subconjunctival scarring in the eyelid resulting in lid contracting and turning 

inwards so when the eye blinks, the eye lashes scratch the cornea causing 

blindness. Trachoma surgery often fails because the eyelid contracts due to 

scarring resulting in blindness. Ideally topical antibiotics (e.g. tetracyclines) should 

be used for two weeks after surgery; however, patient adherence in many resource 

limited regions to topical treatments is very low and currently there is no available 

treatment after trachoma surgery. The 10% MPC hydrogel films could be used as a 

solution to the problem of trachoma surgery. The hydrogel film could be loaded with 

an anti-scarring agent and implanted at the incision site during the surgery. 

DOXy, in the hycale form, is highly soluble in water (~30 mg/mL). When a 

hydrophilic drug (pirfenidone) was previously loaded into 10% MPC hydrogel disc 

and the release was studied using eye flow chamber, the half-life was less than one 

day (0.7 days). For a hydrophilic drug the amount of drug loaded and the loading 

efficiency depends on the concentration of the loading solution and the volume 

absorbed by the dry hydrogel (Kim et al. 1992). Both parameters (drug loading 

concentration and volume absorbed by the hydrogel) were examined regarding the 

effect on amount loaded and release profile.   

DOXy loading solutions with varying concentrations (6 mg/mL, 15 mg/mL 

and 30 mg/mL) were used. The amount loaded was 1.20 ± 0.08, 3.60 ± 0.09 and 

7.50 ± 0.09 mg/disc for 6 mg/mL, 15 mg/mL and 30 mg/mL respectively. The 

loading increased with increasing concentration. Although the maximum amount 

loaded was 7.5 mg when loading from 30 mg/mL solution, 15 mg/mL was chosen 

as the optimum loading solution for further studies. It was reported that DOXy has 

the ability to supress cell contraction when used in a range of (100-400 µg) (H. Li et 

al., 2013). If loading solution concentration used was 15 mg/mL, the amount loaded 
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in each disc will be 3.6 mg which is estimated to be enough for two weeks if the 

drug is released at a rate of 200 µg /day. 

 The 10% MPC hydrogel swell to a different extent in different solvents. The 

amount of solvent absorbed into the dry hydrogel may affect the loading and 

release profile of DOXy. Different solvents and solvent combinations were 

evaluated to optimise DOXy release. The loading efficiency of DOXy into a 10% 

MPC hydrogel disc was 24.6 ± 4.1, 24 ± 0.8, 16 ± 2.8, 25.3 ± 9.4 and 24.3 ± 8.4% 

for water, PBS, water:ethanol (1:1), water:methanol (1:1) and methanol 

respectively. Although high loading efficiency was achieved, the release of the 

DOXy was fast with 50% of the loaded drug released within 24 hours. The half-life 

of DOXy was 1.2 ± 0.01, 0.9 ± 0.1, 0.9 ± 0.1 and 1.1 ± 0.3 for water, water:ethanol 

(1:1), water:methanol (1:1) and methanol respectively. 

The release of DOXy was studied in the eye flow rig that mimic the 

subconjunctival flow. Usually the flow rate of 2 µL/min is only in the subconjunctival 

space at the GFS site while the flow rate in the subconjunctival space in the eyelid 

is much smaller. Keeping that in mind, the release of DOXy from 10% MPC films is 

expected to be slower in the eyelid and the half-life is expected to be longer. Ideally 

the release of DOXy should have been studied at flow rate lower than 2 µL/min; 

however the flow rate from the peristaltic pump can go down only to 1 µL/min. Even 

if the flow rate was reduced, the inside volume of the flow rigs will cause a problem 

in estimation of half-life. The volume of the flow chamber is 400 µL (similar to the 

bleb created by the GFS) which will allow longer contact time of the fluid with the 

hydrogel and faster release (as seen in our results). For a future work a design of 

new flow chamber with low internal volume (100 µL instead of 400 µL of the current 

version) will be required. The new flow chamber with a flow rate of 0.2 µL /min 

instead of 2 µL /min will result in a more accurate estimation to the flow in the 

trachomatous eye lid.  

While DOXy loaded hydrogels have the potential to be used after trachoma 

surgery, slower release is required if they are to be used after GFS. In an attempt to 

slow the diffusion of DOXy from 10% MPC hydrogels, a diffusion barrier was 

created inside the hydrogel. β-cyclodextrin (β-CD) was incorporated into the 

hydrogel matrix to create an affinity drug releasing system. By incorporating β-CD 

into the polymer matrix, the affinity of DOXy to the hydrogel matrix could potentially 

be increased and the release rate could be decreased. DOXy has the ability to form 

inclusion complex with β-CD and the multiple association and dissociation between 

β-CD and DOXy in the hydrogel matrix may slow the release of DOXy. Different 

approaches were investigated to conjugate β-CD including formation of a film with 
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pendant β-CD, embedding of cross-linked β-CD particles into the polymer matrix 

and formation of IPN of 10% MPC and β-CD. 

For the preparation of 10% MPC hydrogel with glycidyl methacrylate (GMA) 

in the polymer matrix, GMA was mixed with 10% MPC monomer solution before 

polymerisation. The ratio of GMA used in the formulation was (1%, 2.5%, 5% and 

9% (w/w). After polymerisation and washing to remove leachables, the films were 

incubated for 24 hr with continuous stirring at 70oC in a mixture of DMF and 0.5 M 

NaCl with β-CD. The activation solution will activate the epoxy group in GMA to 

start the conjugation reaction with β-CD. However, this approach was infeasible. 

Films fabricated with 5% and 9% (w/w) GMA were unable to hydrate and remained 

glassy even after incubation in water for more than a week. Although films 

fabricated with 1% and 2.5% (w/w) GMA were hydrated in water, the films started to 

break apart after incubation in the activation solution.  

In an effort to incorporate β-CD into the hydrogel without using an activation 

solution, the β-CD solution was mixed with 10% MPC monomer solution and GMA 

to be polymerised at the same time (in situ polymerisation). A monomer solution of 

10% MPC was mixed in equal volumes with β-CD solution and increasing amounts 

of GMA (0.5, 0.2 and 0.1 g/mL). It was hoped GMA could be polymerised into the 

HEMA-MPC hydrogel matrix through the acrylate group and at the same time 

conjugated to β-CD through the epoxy group. Unfortunately no compliant film was 

formed after polymerisation. Even when the volume of 10% MPC monomer solution 

used was double the volume of β-CD solution, no proper film was formed. β-CD 

molecules have several hydroxide groups (OH) and it is possible that more than 

one OH group may participate in the reaction to form a covalent bond with GMA, 

and two or more GMA molecules could be attached to the same β-CD molecule. 

The multiple cross-linking of the same β-CD molecule may increase the cross-

linking density of the hydrogel formed and potentially affect the properties of the 

hydrogel formed. 

Preparation of films with pendant β-CD using GMA appeared to be 

unachievable in these MPC hydrogels. β-CD could be introduced as embedded 

particles in the hydrogel matrix. If β-CD were used as embedded particulate in the 

hydrogel mixture it could be washed with the unreacted monomers due to its 

solubility in water. Converting β-CD into insoluble form would help to immobilise the 

particles within the hydrogel film.  

For the preparation of 10% MPC hydrogels with embedded β-CD cross-

linked particles, β-CD hydrogel was first prepared. The β-CD hydrogel was then 

passed through a 40 mesh sieve to create microparticles and the particles were 
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freeze dried to be used in the 10% MPC film. Different β-CD cross-linked 

microparticles were prepared with different ratios of cross-linker (PEGDE) to β–CD 

solution (1:1, 1:2, 2:1). When the level of PEGDE to β–CD solution was 2:1, the 

hydrogel formed was very hard to pass through the 40 mesh sieve. The softness 

increased by reducing the percentage of PEGDE compared to β–CD solution. The 

ratio of cross-linker to β–CD solution chosen for the synthesis of the cross-linked 

CD particles was 1:1. The ratio offered the advantage of higher cross-linker density 

and the ability to pass through the 40 mesh sieve to produce the microparticles. 

A monomer solution of 10% MPC was prepared and β-CD cross-linked 

particles were added into the monomer solution in two different concentrations (1% 

and 2% (w/v)). The combination used for polymerisation was 10% MPC with 10% 

(w/v) β-CD particles. Formulation with 20% (w/v) of β-CD cross-linked particles in 

10% MPC monomer solution was non-injectable into the mould through 21G 

needle. Even when the needle size changed to 19G, suspension made with 2% 

(w/v) was still non injectable. The ability to inject the formulation into the mould is 

important to avoid air bubbles and to ensure uniform distribution of the formulation 

mixture through the mould.  

After polymerisation of the monomer mixture with 1% (w/v) β-CD cross-

linked particles a film was formed. The presence of the particles slightly increased 

the SR, free water ratio and water content in the hydrogel films. The EWC% was 

(65.4 ± 0.1) and (55 ± 0.3), the free to bound water ratio was (2:1) and (1.8:1) and 

the SR was 1.8 ± 0.1 and 1.2 ± 0.1 for 10% MPC with and without embedded β-CD 

particles respectively. The increase in water content could be attributed to the 

hydroxyl groups present in the β-CD structure that attracts water molecules. It is 

worth mentioning that when the ratio of free water to bound water was measured for 

cross-linked CD particles, the ratio of free to bound water was high (3.1:1). The 

hydrogel discs were then used for drug loading and release studies using eye flow 

rig. 

Although the amount of DOXy loaded increased from 3.7 ± 0.1 mg/disc for 

non β-CD embedded hydrogels to 6.6 ± 0.1 mg/disc for β-CD embedded hydrogels, 

the release profile was the same. A possible explanation is that the affinity of DOXy 

for cross-linked β-CD is low. The low affinity may have caused faster rate of 

dissociation compared to association between β-CD and DOXy. It is also possible 

that because of the high water solubility of DOXy the drug would preferentially 

partitioned too much into solution rather than the inner cavity of the β-CD molecule. 

A new approach was investigated for the incorporation of β-CD into the 

polymer matrix. An IPN of 10% MPC and β-CD hydrogels was prepared by in situ 
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polymerisation. It was thought that by using an IPN the hydrogel would have 

different properties compared to 10% MPC hydrogel alone or cross-linked β-CD 

hydrogels alone. Hydrogel formulations were prepared in which the β-CD monomer 

solution and 10% MPC monomer solution were mixed in equal volume ratios (1:1) 

and polymerised into a hydrogel. Various percentages of β-CD (15%, 30%, 50% 

(w/v)) were used for the formulations. The percentage of β-CD in the mixture was 

varied to identify the maximum amount of β-CD that could be applied into the 

monomer mixture and still maintain a film. After polymerisation the films were brittle.  

Since formation of IPN was not possible using in situ approach, sequential 

approach was investigated. In the sequential approach the 10% MPC monomer 

solution was polymerised first, in the presence of 30% (w/v) β-CD monomer 

solution, followed by polymerisation of the β-CD monomer solution. Equal volumes 

of both monomer solutions were used for the IPN preparation. When the 

polymerisation process completed, a hydrogel film was formed. Unfortunately, no 

difference in release profile was observed with DOXy. 

Further work with DOXy is still possible since this active drug substance is 

widely used and is known to have anti-bacterial, inflammatory and anti-fibrotic 

effects. The concept of utilizing a complexing agent in the hydrogel matrix as 

complexation or diffusion barrier could still be investigated in future work. One 

possible aspect is formation of polyelectrolyte complex with DOXy. DOXy is a weak 

base and if a weak acid polymer or monomer (such as acrylic acid) incorporated in 

the hydrogel matrix a complex could be formed. The complex may slow the release 

of the loaded DOXy. The possibility of using the concept of microparticulates for 

DOXy delivery could also be investigated. For example PLGA coated microparticles 

could be embedded in the hydrogel matrix to slow the release of DOXy.      

Another possible approach to increase the duration of action of DOXY is the 

use  of DOXy monohydrate rather than DOXy hyclate. DOXy monohydrate is less 

soluble than the hyclate form and work conducted with an MSc student at the end 

of this PhD project has shown potential to utilise CD as an affinity agent within a 

hydrogel for DOXy when the monohydrate form was used. Much work remains 

however to better understand DOXy affinity and rebinding effects to CD. 

Maintaining DOXy stability also remains an issue.   

As discussed previously, much blindness and visual impairment worldwide 

are related to glaucoma and AMD. While hydrogels could be considered to 

overcome some of the current treatment problems associated with current GDDs 

and GFS for glaucoma, it was also thought that hydrogels could be investigated to 
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overcome problems with current AMD treatments. There are many other conditions 

that require direct administration of medicines to the vitreous cavity.  

IVT injections of antibody based medicines are the first line treatment for 

AMD. IVT injections can have complications such as inflammation, vitreous 

haemorrhage, retinal detachment, patient discomfort and place a financial burden 

on patients and healthcare systems when IVT injections are required repeatedly 

over a long period (Falavarjani & Nguyen 2013). Sustained release protein 

formulations designed for the back of the eye have the potential to reduce the 

frequency of IVT injections. Solid implants for sustained drug delivery to the 

vitreous are available in the clinic; however implants are only used for the delivery 

of low molecular weight, poorly soluble drugs such as steroids. Proteins are hard to 

formulate as solid implants because it is difficult to maintain tertiary structure of 

proteins. Protein stability is difficult to maintain because proteins are susceptible to 

unfolding and aggregation. Protein therapeutics such as antibodies are currently not 

formulated as implants or even as formulations that can be incorporated into a 

pump, such as some insulin formulations. Formulations that can reduce the 

frequency of administration and can maintain the stability of the protein during 

storage and release are desperately needed in the clinic.     

Hydrogels with 10% MPC that were considered for use in the 

subconjunctival space could not be considered for use in the vitreous cavity 

because of the need for implantation. From the outset, use of a hydrogel for the 

back of the eye would require that the hydrogel formulation be injectable. 

Implantation of a hydrogel device would require a surgical procedure which long 

term would be expensive and limit patient access. Also it would be expected that 

the polymerisation conditions used for the HEMA-MPC hydrogels, e.g. relatively 

high temperature or UV initiation conditions would be difficult to achieve while 

maintaining protein stability. It was clear that an in situ approach is necessary to 

consider a hydrogel strategy using a protein as the active drug substance since.  

Mixing a large molecule such as a protein into a pre-formed hydrogel was 

considered not to be feasible.  

Another type of hydrogel was investigated as a potential injectable 

formulation for therapeutic proteins destined for the vitreous cavity. 

Thermoresponsive injectable hydrogels were considered as a potential formulation 

strategy for the intraocular use of therapeutic proteins. Biocompatibility, injectability 

and mild preparation conditions render thermoresponsive hydrogels as possible 

candidates for development of depot protein formulations. Thermoresponsive 

hydrogels that are in principle designed to be swollen and able to flow at room 
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temperature could then collapse into a semisolid implant once the surrounding 

temperature increased above hydrogel VPTT. Clearly issues related to the potential 

burst release of protein upon gel collapse and the need to consider the ultimate fate 

of the hydrogel are important, non-trivial issues that require effort to solve. However 

it was felt that first it was important to determine what could be achieved to prolong 

the duration of action for a protein from an injectable thermoresponsive hydrogel.   

NIPAAm derived thermoresponsive polymers are widely examined for 

biomedical applications, including as the basis of extended release formulations. 

NIPAAm thermoresponsive hydrogels are frequently made with small molecular 

weight cross-linkers to allow the complete collapse of the hydrogel at physiological 

temperature. It was thought that if a large molecular weight hydrophilic cross-linker 

was used, a thermoresponsive hydrogel could still be formed. The hydrophilic 

cross-linker was considered to be able to provide a more favourable to maintain the 

stability of the protein within the hydrogel during formulation, collapse and release. 

The type and relative incorporation of the cross-linker was expected to affect the 

properties of the hydrogel formed. PEGDA with a Mn of 700 was chosen as cross-

linker because of its hydrophilic nature and its reported biocompatibility in the 

human body (Li et al. 2014; Turturro et al. 2011). 

NIPAAm hydrogels with increasing relative amounts of PEGDA (4, 8, 12 and 

15 µL) were prepared both in the presence and absence of protein (bevacizumab or 

infliximab). These hydrogels were prepared in water with a mild initiating system 

that have the ability to start the polymerisation reaction at ambient temperatures 

and continue the polymerisation reaction at 4oC (TEMAD/APS system) in an effort 

to avoid loss of protein stability. The antibody loaded NIPAAm hydrogels were 

characterised and compared regarding physicochemical properties in particular 

thermal responsiveness, injectability and antibody release. Increasing the relative 

percentage of PEGDA in the formulation was accompanied by reduction in thermal 

responsiveness and injectability. The VPTTs were 34.3 ± 0.1, 35.50 ± 0.09, 35.6 ± 

0.4, and 36.2 ± 0.2oC as the PEGDA cross-linker was increased from 4 to 15 µL 

respectively. The degree of collapse was also reduced with increasing PEGDA 

percentage. The degree of collapse could be estimated based on the SR of the 

hydrogel at 37oC; the higher the SR the lower is the degree of collapse. The SR 

was 1.4 ± 0.5, 3.2 ± 0.8, 7.5 ± 0.7 and 9.6 ± 1.6 for 4, 8, 12 and 15 µL PEGDA 

respectively.  

Two methods for protein loading were screened to choose the method that 

offers maximum loading and prolonged release of the loaded protein; in situ 

polymerisation and imbibing methods. The release was studied using the PK-Eye 
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model that mimics the aqueous outflow in the eye and was developed to estimate 

human protein clearance times from the vitreous cavity. Both simulated vitreous 

and phosphate buffer solutions are used in the PK-Eye.  Phosphate buffer solution 

was used to evaluate the majority of the NIPAAm hydrogel formulations because 

release experiments can be conducted more quickly and still compare different 

formulations. Although bevacizumab loading was surprisingly similar from the two 

methods (~72% after washing) the release profile was significantly different 

(p<0.05) which indicated there was a difference in the mixing method. The half-life 

of bevacizumab when mixed by imbibing was 2.3 ± 0.8 compared to 3.7 ± 1.2 when 

the antibody was incorporated during polymerisation. The large size of 

bevacizumab (150 kDa) allowed better entanglement when mixed during NIPAAm 

polymerisation compared to imbibing method.  

NIPAAM derived hydrogels from polymerisation of 40 mg of NIPAAm with 4, 

8 and 12 µL PEGDA were loaded with bevacizumab (2.5 mg) using in situ 

polymerisation. The NIPAAm monomer was dissolved in 1 mL of bevacizumab drug 

solution (25 mg/mL) followed by addition of PEGDA and polymerisation. 

Bevacizumab release was compared. A half-life of 2 ± 0.01, 3.7 ± 1.2 and 2.60 ± 

0.03 days was observed with 4, 8 and 12 µL PEGDA respectively with a protein 

release of ~74%, ~87% and 95% respectively after a month. Although the 

calculated half-life was relatively similar between the prepared hydrogels and 

bevacizumab injection (2.3 ± 0.8 day for the injection), the release profiles were 

different. Nearly all of the bevacizumab was cleared after 10 days when injection 

was used (~95.1% ± 3.1) compared to ~61.9 ± 3.6%, 63.2 ± 8.3% and 75.0 ± 1.9% 

for 4, 8 and 12 µL PEGDA respectively. The release of bevacizumab followed a 

bimodal display profile from the NIPAAM hydrogels with the first phase following a 

first order profile for the first week and then a more sustained pesedo-zero order 

behavior for the remaining three weeks of the release study.  

Entangling a large molecule during the polymerisation process when 

formulating a hydrogel may affects the physical properties and mixing of a protein 

within the hydrogel. The effect of encapsulating bevacizumab during NIPAAm 

polymerisation on the properties of the prepared hydrogels were studied. A slight 

reduction in VPTT from 35.5 ± 0.09oC for unloaded hydrogel to 34.2 ± 0.5oC for 

loaded hydrogel. Although the SR was significantly different between loaded and 

unloaded hydrogels (p<0.05) at 25oC, there was no significant difference in SR at 

37oC. The SR of bevacizumab loaded hydrogels were 34.1 ± 2.1 and 3.1 ± 0.8 at 25 

and 37oC respectively. The entanglement of the protein in the hydrogel network 

restricts the movement of the hydrogel polymer chains resulting in reduced SR at 
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25oC. It appeared that the presence of the antibody had little impact on hydrogel 

collapse at 37oC. Overall, protein encapsulation during polymerisation had no effect 

on the general properties of the prepared hydrogels, which could imply that mixing 

was not as good as could be achieved. It is possible that polymer formation 

occurred where the majority of the forming polymer did not entangle and interact 

with the antibody.  Hence the observed macroscopic properties are indicative of 

hydrogel rich region of the samples that were evaluated. Release profiles did 

suggest that some mixing had occurred, but the release profiles were not to the 

extent that might have been hoped for.   

NIPAAm hydrogels fabricated with 15 µL PEGDA were non-injectable and 

hydrogels fabricated with 12 µL PEGDA were difficult to inject. The release of 

bevacizumab was also significantly faster (p<0.05) when compared to hydrogels 

made with 4 and 8 µL PEGDA. NIPAAm hydrogels made with 4 and 8 μL PEGDA 

showed similar characteristics, behaviour and sustained the release of protein to 

the same extent in vitro. At 25oC the SR of 4 μL is higher than 8 μL, which may 

cause the loss of higher percentage of the protein during washing. Washing is 

required to remove the unreacted monomers and other leachable oligomeric 

substrates from the hydrogel before injection. Also hydrogels made with 4 μL were 

very soft and difficult to handle. Based on these observations 8 μL PEGDA was 

chosen as the best formulation that would considered for further work to sustain the 

release of bevacizumab in the posterior segment.  

After the hydrogel polymerisation process, removal of unreacted monomers 

is essential as they are toxic in nature. Bevacizumab loaded hydrogels with 12 μL 

as cross-linker was washed and the release of the protein was compared between 

the washed and the unwashed hydrogels. Although ~28% of the loaded protein was 

lost during washing, there was no significant difference (p>0.05) in half-life and 

release profile between washed and unwashed hydrogels; the half-life was 3.1 ± 

1.3 and 3.7 ± 1.2 days for washed and unwashed hydrogels respectively.  

NIPAAm hydrogels are non-biodegradable and will be in direct contact with 

eye tissues for a long period of time. In an effort to improve biocompatabilty it was 

thought to incoprporate MPC in the formulation. MPC-co-NIPAAm 

thermoresponsive hydrogel with 8 μL PEGDA was prepared. Although a hydrogel 

was formed when MPC was incorporated in the formulation, the thermal 

responsiveness was reduced. Even when the percentage of MPC in the formulation 

was reduced to ~0.6% (w/w), weak thermal responsiveness was observed. 

In order to add PC zwitterionic group into the NIPAAm hydrogels and 

maintain the thermal responsiveness, PEGDA was replaced with PC bearing cross-
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linker. The same method used for the formulation of PEGDA cross-linked NIPAAm 

hydrogels (in situ polymerisation) was used for the synthesis of PC cross-linked 

NIPAAm hydrogels. When 8 µL PEGDA was replaced with PC 3059 as cross-linker 

no difference in behaviour was observed (25% (w/w)). PC 3059 is a 

macromolecular cross-linker provided to us from Vertellus. The cross-linker 

structure is complex and the molecular weight characteristics are not known. 

However, approximately 1% MPC is incorporated in PC3059. The VPTT of the 

PC3059 cross-linked NIPAAm hydrogels was significantly lower (p<0.05) (33.8 ± 

0.1oC) with PC compared to PEGDA (35.5 ± 0.09oC) cross-linker. There was no 

significant difference (p>0.05) in SR between PEGDA and PC NIPAAm hydrogels 

at 25 and 37oC. There also was no significant difference (p>0.05) in the release 

profile of bevacizumab from both hydrogels. Also similar to PEGDA, bevacizumab 

loading had no effect on the general properties of the prepared PC cross-linked 

hydrogels. PC 3059 is promising alternative of PEGDA as cross-linker with a 

potential of higher biocompatibility. These observations were surprising and were 

consistent with less than optimal mixing of the antibody within the hydrogel.   

From the previous work with PEGDA it was noticed that when the 

percentage of cross-linker increased in the formulation, hydrogels with different 

properties are formed. To examine whether the characteristics of all of the 

hydrophilic macromolecular cross-linkers are similar, hydrogels with increasing 

percentage of PC cross-linker (25% to 33.5% (w/w)) were prepared and compared 

regarding the physical properties of the hydrogels that were formed. Similar to 

PEGDA, the hydrogels fabricated using higher percentages of PC were difficult to 

inject and the VPTT was slightly increased with higher cross-linker percentage. The 

difference in behaviour between PEGDA and PC cross-linked hydrogels was 

observed in the collapse of the hydrogel at 37oC. The SR was not significantly 

increased (p>0.05) when PC percentage increased (as observed with PEGDA). 

The SR was 3.8 ± 1.9, 5.2 ± 1.8 and 5.1 ± 0.5 for 25%, 30% and 33.5% (w/w) 

respectively. A possible explanation is the hydrophilicity of the cross-linker used. 

While it is known that PEGDA can form hydrogen bonds with water, PC groups 

attract free water around their polymer chains that could be easily expelled during 

the collapse of the hydrogel. The results indicate that the interaction of the molecule 

with water is also important and should be considered.  

Both PEGDA and PC are non-biodegradable molecules. It was interesting to 

examine whether a biodegradable macromolecular hydrophilic cross-linker will 

behave in a similar way to non-biodegradable ones. It is also of an advantage if the 

NIPAAm hydrogel could be formulated as biodegradable hydrogel. Ac-HA 
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synthesised in our lab was used as biodegradable hydrophilic cross-linker. HA is a 

common component in many parts of the human body such as extracellular matrix, 

synovial fluid and the vitreous humour  and widely investigated component for drug 

delivery due to its biodegradability and biocompatibility (Widjaja et al. 2014; Mayol 

et al. 2008; Kogan et al. 2007). 

Different amounts of Ac-HA were used for the hydrogel synthesis (2, 4, 7 

and 10 mg) in the presence of NIPAAm (40 mg). The injectability was reduced and 

thermal responsiveness was reduced with increasing amounts of Ac-HA when used 

as a cross-linker. The hydrogels became non thermoresponsive when 7 and 10 mg 

Ac-HA were used. No significant difference in SR (p>0.05) at 25 and 37oC was 

observed with 7 and 10 mg Ac-HA hydrogels. NIPAAm hydrogels made with 2 and 

4 mg Ac-HA were loaded with infliximab (9.4 mg/mL). Infliximab and bevacizumab 

displayed similar MW (150 kDa). When both protein loaded hydrogels were washed 

to remove unreacted monomers, ~26.7% of infliximab was lost from hydrogels 

made with 2 mg Ac-HA compared to ~19.5%. The SR of hydrogels made with 2 mg 

was significantly higher (p<0.05) than the SR of 4 mg hydrogels. The higher SR 

indicated high water content which allows faster diffusion of the protein to the 

surrounding washing medium. Since protein loss was significantly evident with 

hydrogels made with 2 mg Ac-HA, it was decided that hydrogels fabricated with 4 

mg should be used for preliminary protein release studies. 

The initial studies on infliximab release from 4 mg Ac-HA cross-linked 

hydrogels revealed a difference in release profile when compared to 8 µL PEGDA 

and 25% (w/w) PC cross-linked hydrogels. Only ~25% of the loaded protein was 

released after 10 days from Ac-HA cross-linked hydrogels compared to ~60% from 

8 µL PEGDA and 25% (w/w) PC cross-linked hydrogels. The difference could be 

attributed to the molecular nature of HA. HA is used as viscosity agent in 

pharmaceutical formulations and the slow release of infliximab from Ac-HA cross-

linked hydrogels is a combined effect of thermal responsiveness of the NIPAAm 

hydrogel and viscosity enhancing effect of HA.  

The aim of our work was to screen different macromolecular hydrophilic 

cross-linkers for the formulation of sustained release protein thermoresponsive 

hydrogel as IVT injection. The three investigated molecules PEGDA, PC 3059 and 

Ac-HA demonstrated promising results in the ability to form a dosage form that is 

injectable, thermoresponsive and sustain the loaded protein for more than one 

month. The formulations also allow the formation of hydrogels with different 

concentrations of the protein by manipulation of the concentration of the starting 

protein solution during the polymerisation process.  
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A possible future work is the study of the potential proper NIPAAm hydrogel 

formulations with proteins of different molecular weights and study whether the 

molecular weight will have an impact on the properties of the hydrogel. Optimisation 

of the loading of the protein after washing of the hydrogel could also be 

investigated. The protein lost during washing could be compensated by rehydrating 

of the protein loaded dry hydrogel in protein solution. Biocompatibility and animal 

studies should be considered following optimisation of the formulation.     

The work described in this thesis set out to examine the use of hydrogels in 

two different parts of the eye: (i) subconjunctiva and (ii) vitreous cavity. The use of 

hydrogels in the form of implants was investigated in the subconjunctival space to 

improve current treatments available for glaucoma. Although HEMA-MPC hydrogels 

were unable to show sufficient permeability and hydraulic conductivity to be of any 

use to control aqueous outflow to regulate pressure in a GDD, the hydrogel films 

offer a platform for development of drug releasing combination GDD and drug 

releasing spacer after GFS. 

 Different hydrogel based formulations for the sustained delivery of protein in 

the vitreous using thermoresponsive hydrogels was investigated.using 

macromolecular hydrophilic cross-linkers. Modification in the type and percentage 

of cross-linker used allowed the preliminary screening and development of 

formulations that sustained the protein for more than one month.    
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Appendix 

Dynamic approach for flow measurements 

The equations for determining hydraulic conductivity were derived from first 

principles. A schematic representation (Figure 7:1) of the apparatus is shown in the 

below figure to develop the analysis. The analysis is based on D’Arcy’s law. 

D’Arcy’s law states that flow is proportional to the applied pressure. Thus for a 

membrane disc of radius a (m), flow per unit area is designated by: 

𝑭

𝝅 𝒂𝟐
= 𝑳  𝑷, 

Where L is the hydraulic conductivity of the membrane (m/s/Pa) and P is the 

applied pressure (Pa). 

 

Figure 7:1 A schematic representation of the apparatus used for permeability and hydraulic 
conductivity measurements. 
 

Since       

                                       𝑭 =
𝒅𝑽

𝒅𝒕  
,                                                        (7.1) 

 

                                
 𝒅𝑽

𝒅𝒕
=  𝝅 𝒂𝟐  𝑳  𝑷,                                                 (7.2) 

Pressure due to the column of fluid is given by   P = ƿ 𝑔 h 

Where  ƿ is the density of water (1000 Kg/m3), g is the gravitational constant 9.81 

m/s2 and h is the height of column in meters. Hence: 

                                          
𝒅𝑽

𝒅𝑻
= 𝝅 𝒂𝟐 𝑳 ƿ 𝒈 𝒉,                                    (7.3) 

After a time dt, change in volume is dV = -  r2 dh, where r is the radius of the 

capillary column, i.e., column height falls. Therefore: 

h (m)

-dh

radius a

radius r

tissue
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                              − 
𝝅 𝒓𝟐 𝒅𝒉

𝒅𝒕
= 𝝅 𝒂𝟐 𝑳 ƿ 𝒈 𝒉,                                       (7.4) 

Rearranging: 

                                         
𝒅𝒉

𝒉
= − 

𝒂𝟐  𝑳 ƿ 𝒈   

𝒓𝟐
 𝒅𝒕,                                    (7.5) 

Integrating: 

                            ∫
𝒅𝒉

𝒉
=  − 

𝒂𝟐 𝑳 ƿ 𝒈

𝒓𝟐
 ∫ 𝒅𝒕,                                             (7.6) 

Thus               

                                     𝐥𝐧 𝒉 =  − 
𝒂𝟐 𝑳 ƿ 𝒈

𝒓𝟐
 𝒕 + 𝒄,                                   (7.7) 

Where c is the constant of integration. 

Boundary conditions are: t= 0, h = ho and hence c = ln ho 

Hence: 

                           𝐥𝐧 𝒉 =  − 
𝒂𝟐 𝑳 ƿ 𝒈  𝒕

𝒓𝟐
  + 𝐥𝐧 𝒉𝟎 ,                                     (7.8) 

                            𝐥𝐧 𝒉 − 𝐥𝐧 𝒉𝟎 =   
𝒂𝟐 𝑳 ƿ 𝒈  𝒕

𝒓𝟐
   ,                                            (7.9)  

                           𝒍𝒏 (
𝒉

𝒉𝟎
) =  −  

𝒂𝟐 𝑳 ƿ 𝒈  𝒕

𝒓𝟐
 ,                                                   (7.10) 

From log b a = c,    b
c

 = a 

                                    
𝒉

 𝒉𝟎
=  𝒆

−  
𝒂𝟐 𝑳 ƿ 𝒈  𝒕

𝒓𝟐 ,                                                       (7.11) 

Or 

                                     𝒉 = 𝒉𝟎 𝒆
−  

𝒂𝟐 𝑳 ƿ 𝒈  𝒕

𝒓𝟐 ,                                           (7.12) 

 

From equation (7.10) a plot of (ln h/h0) against t should yield a straight line of 

gradient G. 

𝑮 = −  
𝒂𝟐 𝑳 ƿ 𝒈  

𝒓𝟐
 

This gradient can be obtained by linear regression of the above plot. If the gradient 

is designated G, then the hydraulic conductivity L is given by: 

 

                                         𝑳 = − 
𝒓𝟐

𝒂𝟐 ƿ 𝒈
  𝑮,                                       (7.13) 

Then permeability is calculated using L  
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                                            𝑲 = 𝑳 × 𝑻,                                              (7.14)  

Where T is the thickness in (m). 

Calculations of permeability 

As an example of the calculations used to measure permeability, the calculation for 

hydrogel made with 10% MPC is shown below. The values of water height (h) were 

taken at different time intervals and the results are listed (Table 7:1). These 

measured values were plotted (Figure 7:2). From the figure we measure the 

gradient to calculate the hydraulic conductivity using equation (7.13). The hydraulic 

conductivity was then used to calculate the permeability of the sample using 

equation (7.14). The permeability of all the received films was calculated in the 

same way as 10% MPC.  

 

Table 7:1 The values of height (h) of water column taken at different time intervals in 
seconds. 

Time 

seconds 
ln h/h0 h/h0 h m Time h cm 

0 0 1 0.27 12:25 pm 27 

8700 -11.061×10-3 0.989 0.267 2:50 pm 26.7 

13260 -18.775×10-3 0.9814 0265 4:06 pm 26.5 

15720 -22.45×10-3 0.9778 0.264 4:47 pm 26.4 

75480 -126.153×10-3 0.88148 0.238 9:23 am 23.8 

79860 -130.109×10-3 0.878 0.237 10:36 am 23.7 

83580 -134.675×10-3 0.874 0.236 11:38 am 23.6 

89040 -147.456×10-3 0.8629 0.233 1:09 pm 23.3 

 

 

 

Figure 7:2 The time verses ln h/h0 will yield a gradient which is -0.0017 for sample number 
(7/28). This gradient used to calculate the permeability of the sample tested.    

 

y = -0.0017x + 2.5092 
R² = 0.9992 
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The time verses ln h/h0 will yield a gradient which is -0.0017 for 10% MPC 

film. The gradient used to calculate the permeability of the sample tested.    

𝐿 = − 
𝑟2  

𝑎2   𝜌  𝑔
  𝐺 

𝐿 =  
(1.75 × 10−3)2  

(3 × 10−3)2  ×   1000  ×  9.81
 0.0017 × 10−3 

L = 5.897 × 10-11  m s-1 pas-1 

K= L × T 

K= 5.897 × 10-11  × 1× 10-3  

K= 5.897 × 10-14   m2 s-1 pas-1 

The estimated permeability required to flow through a devise with the 

following dimensions (1 mm thickness, 2 cm2 surface area) and with estimated flow 

rate of (2 µl/m) to lead to a pressure of (10 mmHg) was calculated using equations 

(7:14).  

Q = 2 µl/min = 1.6 × 10−11 m3/s      

T = 1 mm = 1 × 10−3 m    

A = 2 cm2 =  2 × 10−4m2            

P = 10 mmHg = 1333.2 pascal 

K ==
𝑄  𝑇

𝛥𝑃  𝐴
                                         

K  = =
1.6×10−11 𝑚3/𝑠     1×10−3 𝑚  

1333.2 𝑝𝑎𝑠𝑐𝑎𝑙   2×10−4𝑚2 
                                           

K = 6 ×10-14 m2 s-1 pas-1     
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