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Abstract

In a thermal tomography measurement setup, a physical body is sequentially heated at different source locations
and temperature evolutions are measured at several measurement locations on the surface of the body. Based on
these transient measurements, the thermal conductivity, the volumetric heat capacity and the surface heat transfer
coefficient of the body are estimated as spatially distributed parameters, typically by minimizing a modified data misfit
functional between the measured data and the data computed with the estimated thermal parameters. In thermal
tomography, heat transfer is modeled with the time-dependent heat diffusion equation for which direct time domain
solving is computationally expensive. In this paper, the computations of thermal tomography are sped up by utilizing a
truncated Fourier series approximation approach. In this approach, a frequency domain equivalent of the time domain
heat diffusion equation is solved at multiple frequencies and the solutions are used to obtain a truncated Fourier series
approximation for the solution and the Jacobian of the time domain heat transfer problem. The feasibility of the
approximation is tested with simulated and experimental measurement data. When compared to a previously used time
domain approach, it is shown to lead to a significant reduction of computation time in image reconstruction with no
significant loss of reconstruction accuracy.

Keywords: Thermal tomography, Truncated Fourier series approximation, Inverse problem, Thermal conductivity,
Volumetric heat capacity, Surface heat transfer coefficient, Non-destructive testing

1. Introduction

Thermal tomography is an emerging non-destructive
imaging technique which aims at recovery of three-dimen-
sional images of the thermal conductivity and heat capac-
ity of a physical body from non-invasive temperature mea-
surements made on the surface of the body [1–11]. In the
measurement process, the body is heated at a source loca-
tion and temperature evolutions are measured at multiple
measurement locations on the surface. The same process is
then repeated for a number of source locations. Finally the
measured temperature evolutions are used to estimate the
unknown thermal conductivity and heat capacity as spa-
tially distributed parameters which can be visualized as
three-dimensional images. Potential applications of ther-
mal tomography include characterization of thermal prop-
erties and non-destructive testing, such as detecting and
locating air bubbles, cracks, porosity and other defects
that alter thermal properties of materials.

∗Corresponding author. Tel.: +358 40 355 2272; E-mail address:
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The heatings and the temperature measurements can
be chosen to be contact or non-contact based depending
on the application. When physical contact with the body
is practical, it is possible to use contact heaters, such as
heating resistors, and contact temperature sensors, such as
thermocouples or thermistors. Alternatively, if no contact
is desired, inductive or laser heatings as well as thermog-
raphy (IR-camera) measurements can be used.

Solving the thermal conductivity and the heat capacity
of the body as spatially distributed parameters given the
boundary measurements of heat transfer is a non-linear
and ill-posed inverse boundary value problem which is un-
stable with respect to measurement and modeling errors.
In this paper, this inverse problem is considered in the
framework of Bayesian inversion [12, 13].

Thermal tomography has been studied with simula-
tions in [1–10]. The spatially distributed thermal conduc-
tivity of a two-dimensional (2D) body was estimated us-
ing simulated steady state measurements in [1] and that
of three-dimensional (3D) bodies with known heat capaci-
ties using simulated transient state measurements in [2, 3].
The estimation of either the spatially distributed thermal
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conductivity or the spatially distributed heat capacity of
a 2D body while the other parameter was assumed known
was studied in [4]. In [5], defects in 2D bodies were located
using discrete variable thermal tomography, an approach
where each pixel of the resulting image is allowed one of
two possible sets of thermal properties, that is, the a pri-

ori known values of the intact or the defect area. Further-
more, 2D spatially distributed and time dependent ther-
mal conductivity was estimated in [6] while the heat capac-
ity was assumed known. The thermal conductivity and the
shape of an inclusion were estimated in [7] using simulated
steady state measurements with the thermal properties of
the body otherwise known. More complexity was added
in [8, 9] when both the thermal conductivity and the heat
capacity of 2D bodies were treated as unknowns and were
estimated from transient boundary measurements.

In [9], it was demonstrated using simulated data from
a 2D body that simultaneous estimation of spatially dis-
tributed thermal conductivity and volumetric heat capac-
ity from transient boundary data is feasible when the bound-
ary heat flux between the body and the surrounding medi-
um is known. However, in practice such a measurement
setup would not always be feasible as it requires the body
to be insulated from the surrounding medium. In [10],
the computational methods of [9] were extended towards
a more practical setup of imaging bodies where the bound-
ary heat flux between the body and the surrounding medium
is not known (i.e. the body is not insulated). This was im-
plemented by treating the surface heat transfer coefficient
as a spatially distributed parameter at the surface, and
estimating it simultaneously with the spatially distributed
thermal conductivity and volumetric heat capacity.

In [11], the feasibility of thermal tomography was tested
using experimental measurement data with computational
methods modified from those of [10]. The data was mea-
sured from a mortar body using a prototype thermal to-
mography measurement device which uses heater resistors
for heating and thermistors for temperature measurements
at the surface of the body. The shape and location of an
air cavity were clearly visible in the estimates of thermal
conductivity and heat capacity, implying that thermal to-
mography with experimental measurement data is feasible.

We note that infrared thermography techniques [14–
23] are somewhat related to thermal tomography, the main
difference being that infrared thermography techniques are
designed to detect defects that are located relatively close
to the surface of the body, whereas thermal tomography
aims at locating defects within the whole volume of the
body and at giving quantitative solutions of the thermal
conductivity and the heat capacity as well.

The forward model of thermal tomography which is
used to model the time evolution of temperature inside
the body is the time-dependent heat diffusion equation. In
[11], the computational approach to solve the semi-discrete
finite element approximation of this model and the related
Jacobians was based on an implicit Euler scheme which
makes estimating the thermal parameters time consum-

ing. In this paper, we propose a truncated Fourier series
approximation approach to reduce the computational cost
of thermal tomography. In the proposed approach, the
time-domain forward solution and Jacobians are approx-
imated by a truncated Fourier series which is based on
a small number of solutions of the frequency domain heat
diffusion equation. The feasibility of the approach is evalu-
ated with simulated and experimental measurement data
by comparing the forward model solutions and the esti-
mates of the thermal parameters to those obtained with
the time domain approach of [11]. Previously, a similar
Fourier series approximation for the solution of a time-
dependent partial differential equation has been utilized
for the solution of the time domain radiative transfer equa-
tion in [24]. In [25], a parallelized Fourier series truncated
diffusion approximation was used to accelerate diffuse flu-
orescence tomography.

The rest of the paper is organized as follows. The mod-
eling of heat transfer is discussed in Section 2 and the nu-
merical implementation of the heat transfer modeling in
Section 3. The estimation of the thermal parameters is
discussed in Section 4. The measurement setup and pa-
rameter choices are discussed in Section 5 and the results
using simulated and experimental measurement data are
given and discussed in Section 6. Section 7 gives the con-
clusions.

2. Modeling of heat transfer

2.1. Time domain heat transfer

Let Ω ⊂ R
3 model the domain of the target, i.e. the

domain of the body under investigation, with boundary
∂Ω, let Ξk ⊂ ∂Ω (k = 1, . . . , NΞ) be the surface patches
that are covered by the heater elements and ξj ∈ ∂Ω
(j = 1, . . . , Nξ) denote the locations of the point-like tem-
perature sensors. In the measurement process, one of the
heaters is turned on at a time for a time period theat and
it produces a heat flux into the target at Ξk. This is fol-
lowed by a cooling period of tcool seconds before the next
heater is turned on. While this is repeated for all heaters,
the evolution of temperature is measured every ∆tm at
all of the measurement locations for the duration of the
measurement process tmeas = NΞ(theat + tcool).

Heat transfer is modeled with the heat diffusion equa-
tion and the boundary conditions

c(x)
∂T (x, t)

∂t
= ∇ · (κ(x)∇T (x, t)), x ∈ Ω (1)

κ(x)
∂T (x, t)

∂n̂
= q(x, t), x ∈ ∂Ω (2)

T (x, 0) = T0 (3)

where c(x) is the volumetric heat capacity, κ(x) is the
thermal conductivity, T (x, t) is the temperature, q(x, t) is
the heat flux, x is the position vector in Ω, t is time, n̂
is the outward pointing unit normal of ∂Ω and T0 is the
initial temperature of the target [26].
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The boundary condition modeling the heat flux at the
surface of the target can be split into heat flux between the
heaters and the target, and heat flux between the target
and the surrounding medium. Thus

q(x, t) =

{

b
(

TH,k(t)− T (x, t)
)

, x ∈ Ξk

h(x)
(

T∞(t)− T (x, t)
)

, x ∈ ∂ΩS
(4)

where b = κb/Lb is the thermal contact conductance coef-
ficient where κb and Lb are the thermal conductivity and
the thickness of the contact layer between the heater and
the target, TH,k(t) is the temperature of the heater at the
surface patch Ξk, h(x) is the surface heat transfer coeffi-
cient, T∞(t) is the temperature of the surrounding medium
and ∂ΩS = ∂Ω\Ξk=1,...,NΞ

is the part of the boundary that
is not covered by heater elements [11].

2.2. Truncated Fourier series approximation

By using the notation τ(x, t) = T (x, t) − T0 and the
Fourier transformation, the parabolic heat transfer prob-
lem (1)–(3) can be transformed into the elliptic frequency
domain heat transfer problem

ι̇ωjc(x)τ(x, ωj) = ∇ · (κ(x)∇τ(x, ωj)), x ∈ Ω (5)

with the boundary condition

κ(x)
∂τ(x, ωj)

∂n̂
=

{

b
(

τH,k(ωj)− τ(x, ωj)
)

, x ∈ Ξk

h(x)
(

τ∞(ωj)− τ(x, ωj)
)

, x ∈ ∂ΩS

(6)

where ι̇ is the imaginary unit and ωj is the angular fre-
quency. Based on the solutions τ(x, ωj) of the model (5)–
(6), the time domain solution can, in principle, be obtained
with the infinite Fourier series

T (x, t) = T0 +

∞
∑

j=−∞

τ(x, ωj) exp(ι̇ωjt) (7)

if solutions were available with all frequencies. However,
in practice, solutions can be computed using only a limited
number of frequencies and T (x, t) is approximated using
the truncated Fourier series approximation

T (x, t) ≈ T0 +

Nω
∑

j=−Nω

τ(x, ωj) exp(ι̇ωjt) (8)

where Nω is the number of Fourier frequencies ωj used in
the approximation.

Similar Fourier series approximations have been used
for diffuse optical tomography [24] and for diffuse fluores-
cent tomography [25].

3. Numerical implementations

3.1. Numerical solution of the heat transfer problem

In this paper, a finite element method (FEM) is used
for numerical approximation of the heat transfer problem

(5)–(6). The FE-approximation can be derived similarly
as for the time domain problem in [11].

The domain Ω is discretized into Ne tetrahedral el-
ements connected at Nn vertex nodes. The solution of
(5)–(6) is then approximated as

τ(x, ω) ≈
Nn
∑

j=1

aj(ω)ϕj(x) ∈ Qh (9)

where aj(ω) are the values of τ(x, ω) at the nodes of the
FE mesh, ϕj(x) are piecewise linear nodal basis functions
and the space Qh = span{ϕj}. To have reasonable accu-
racy for the FE-approximation without making the com-
putations too expensive, the computational mesh of the
temperatures is often chosen to be denser near the source
locations than elsewhere.

The unknowns κ(x), c(x) and h(x) are approximated
in a uniform mesh of Nep elements and Nnp nodes. This
gives the approximations

κ(x) ≈

Nnp
∑

p=1

κpψp(x) (10)

c(x) ≈

Nnp
∑

p=1

cpψp(x) (11)

h(x) ≈
∑

p∈∂ΩS

hpψp(x)
∣

∣

∂ΩS

(12)

where ψp(x) are piecewise linear nodal basis functions,
κp, cp, and hp are the values of thermal conductivity, vol-
umetric heat capacity and surface heat transfer coefficient
at node p. In Equation (12), p ∈ ∂ΩS are the Nhp indices
of the basis functions on ∂ΩS.

Using the approximations (9)–(12) and the Galerkin
approach leads to the linear system

(ι̇ωjM +G+ F +W )α = V +Q, (13)

where

α := α(ωj) = [a1(ωj), . . . , aNn
(ωj)]

T

and the elements of the matrices and vectors are

Mil =

∫

Ω

Nnp
∑

p=1

cpψp(x)ϕl(x)ϕi(x)dx (14)

Gil =

∫

Ω

Nnp
∑

p=1

κpψp(x)∇ϕl(x) · ∇ϕi(x)dx (15)

Fil =

∫

∂ΩS

∑

p∈∂ΩS

hpψp(x)ϕl(x)ϕi(x)dS (16)

Wil =

NΞ
∑

k=1

∫

Ξk

bϕl(x)ϕi(x)dS (17)

Vi =

NΞ
∑

k=1

∫

Ξk

bτH,k(ωj)ϕi(x)dS (18)
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Qi =

∫

∂ΩS

∑

p∈∂ΩS

hpψp(x)τ∞(ωj)ϕi(x)dS (19)

where i, l = 1, . . . , Nn.
The computed frequency domain temperatures at mea-

surement locations are obtained with

F(ωj , κ, c, h) = M̃α(ωj) (20)

where M̃ is a measurement operator. Now the correspond-
ing time domain temperatures can be obtained with

F(t, κ, c, h) ≈ T0 +

Nω
∑

j=−Nω

F(ωj , κ, c, h) exp(ι̇ωjt) (21)

Furthermore, the connection between the measured and
computed temperatures is modeled as

y = F(t, κ, c, h) + e, e ∼ N (0,Γe) (22)

where e contains the random additive zero-mean Gaus-
sian measurement errors with covariances defined by the
covariance matrix Γe.

3.2. Numerical solving of the Jacobian

The Jacobian of F(t, κ, c, h) is required for solving the
thermal parameters as described in the next section of this
paper. In the frequency domain, the Jacobian is of the
form

J(ωj) =
[

Jκ(ωj) Jc(ωj) Jh(ωj)
]

(23)

where for β = κ, c, h the elements of the row vector Jβ(ωj)
are

Jβ(ωj)[i] =
∂F(ωj , κ, c, h)

∂βi

= M̃
∂α(ωj)

∂βi
, i = 1, . . . , Np (24)

where Np = Nnp for β = κ, c, and Np = Nhp for β =
h. The partial derivatives ∂α(ωj)/∂βi are obtained by
derivating (13) and by solving the so obtained equations

−B
∂α

∂κk
=

∂G

∂κk
α (25)

−B
∂α

∂ck
=
∂M

∂ck
iωjα (26)

−B
∂α

∂hl
=
∂F

∂hl
−
∂Q

∂hl
(27)

for k = 1, . . . , Nnp and l = 1, . . . , Nhp where

B = (ι̇ωjM +G+ F +W ) (28)

The truncated Fourier series approximation of the time
domain Jacobian is then obtained as

J(t) ≈
Nω
∑

j=−Nω

J(ωj) exp(ι̇ωjt) (29)

4. Estimation of thermal parameters

Following the Bayesian approach proposed in [11], the
maximum a posteriori (MAP) estimates of thermal con-
ductivity, volumetric heat capacity and surface heat trans-
fer coefficient are obtained by minimizing

(κ, c, h)MAP = arg min
(κ,c,h)>0

{

‖Le(y −F(t, κ, c, h))‖2 + ‖L(θ − θ∗)‖
2
}

(30)

where Le is the Cholesky decomposition of the noise pre-
cision matrix, i.e. LT

e Le = Γ−1
e . Correspondingly, L is the

Cholesky decomposition of the prior precision matrix, i.e.
LTL = Γ−1 and

Γ−1 =





Γ−1
κ 0 0
0 Γ−1

c 0
0 0 Γ−1

h



 (31)

The prior precision matrix is based on the smoothness
prior model used in [11]. The construction of the prior
was originally proposed in [27]. In (30), the vectors of
thermal parameters κ, c, h and their prior means κ∗, c∗
and h∗ are concatenated into the column vectors

θ = (κ; c; h) (32)

θ∗ = (κ∗; c∗; h∗) (33)

The minimization problem (30) can be solved using
Gauss-Newton optimization. For more details, see [11].

5. Measurement setup and parameters

5.1. Experimental measurement setup and target

The measurement device, the measurement setup and
the measurement parameters used in this work are the
same as in [11] where the prototype thermal tomography
measurement device was previously used. For heatings,
the measurement device uses eight heating resistors with
dimensions 0.55 × 1 × 0.55 cm (width×height×thickness)
which are attached to the test target with epoxy glue. For
making measurements, eight negative temperature coeffi-
cient (NTC) thermistors are attached to the test target.
The device also measures the temperature of the surround-
ing air using a NTC thermistor which can be placed away
from the test target and the heaters. The measurement
device is shown in Figure 1.

The target used in this work was a cylinder with di-
ameter of 7.1 cm and height of 2.1 cm. It was made from
a mortar mass with 0.18 l/kg water to mortar ratio. The
mass was moist cured for 14 days in a mould containing
a smaller cylinder to create an air filled hole to the fi-
nal target. The hole had diameter of 3.1 cm and it went
through the target from the top surface to the bottom
so that the distance between the closest point of the hole
and the mantle of the target was 1.0 cm. The target can
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Figure 1: The measurement device and the test target without the
insulating discs. The voltage source of the heater resistors is located
in the top left corner, the laptop with the measurement software next
to it and the measurement electronics in the bottom right corner next
to the target in the bottom left corner. Picture from [11].

be seen in Figure 1. Figure 2 shows the locations of the
heaters and the measurement sensors on the mantle of the
target.

In the measurement setup, the target was sandwiched
between two insulating discs made of expanded polystyrene,
as shown in Figure 3. With this setup, the values of the
surface heat transfer coefficient on the top and bottom sur-
faces of the target were low in comparison to the values on
the mantle.

In the measurement process, the heaters were one at a
time turned on for theat = 180 s and the cooling period,
when no heater was active, was tcool = 720 s. Tempera-
tures were measured for tmeas = 7200 s every ∆tm = 2 s,
resulting in a measurement vector y ∈ R

mmeas where the
number of measurements mmeas = 28,000.

5.2. Simulation measurement setup and target

To verify the numerical approach of Section 3, in ad-
dition to the experimental measurement data based tests,
the approach was also tested with simulations.

The geometry of the simulation test target was chosen
to match that of the actual target described in Section
5.1. Thermal conductivity for the intact part was set to
0.6 W/(mK), volumetric heat capacity to 1.0·106 J/(m3K)

and surface heat transfer coefficient to 5 W/(m
2
K) for the

mantle and to 0 W/(m
2
K) for the top and bottom surfaces.

Figure 2: Schematic showing the locations of the measurement sen-
sors (Arabic numerals) and the heaters (Roman numerals). The
location of the cavity is shown with a dashed line. Picture from [11].

For the volume corresponding to the cavity, thermal con-
ductivity was set to 0.03 W/(m K) and volumetric heat
capacity to 1000 J/(m3 K). The simulation test target can
be seen in the leftmost column in Figure 6.

To simulate the data, the heat transfer problem (1)–(3)
was solved using the time domain approach of [11]. This
involved solving the heat transfer problem with a finite el-
ement method and solving the semidiscrete problem with
an implicit Euler iteration. A mesh of 2659 nodes and
11858 elements was used for the computing of the simu-
lated measurement data.

A noisy realization of the simulated data was obtained
by adding Gaussian zero mean random noise with stan-
dard deviation σe = 0.1 ◦C to the simulated noiseless data.
Noise with the same standard deviation was also added to
the simulated noiseless heater temperatures and the sim-
ulated noiseless temperature of the surrounding medium.

The heat flux from the heaters into the target was mod-
eled by Equation (4) with the thermal contact conductance

coefficient set to b = 1000 W/(m
2
K) [11].

5.3. Discretization and parameters

The number of elements, nodes and boundary nodes
in the finite element meshes used for the forward solution
and the parameters (κ, c, h) are listed in Table 1. Note that
the mesh that was used for computation of the simulated
measurement data was more dense than the ones used for
the solution of the inverse problem to avoid committing
an inverse crime1.

The prior means and standard deviations of the ther-
mal parameters used in the prior model were chosen as
follows. As the actual thermal property values of the mor-
tar part of the target were not known, the prior means

1Using the same mesh for data generation and estimation of the
unknown parameters can give misleadingly good results [12, 28].
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Figure 3: The target sandwiched between two insulating discs made
of expanded polystyrene. Picture from [11].

Table 1: The number of elements, nodes and boundary nodes in
the tetrahedral FE meshes for the discretization of the temperatures
(Ne, Nn and Nb) and the parameters (Nep, Nnp and Nbp).

elements nodes boundary
nodes

Ne = 6834 Nn = 1614 Nb = 892
Nep = 2009 Nnp = 502 Nbp = 306

for the thermal conductivity and the volumetric heat ca-
pacity were chosen to match the best fitting spatially con-
stant values which were obtained as in [11] by doing a
non-linear least squares fit to the measurement data. This
gave κ∗ = 0.51 W/(mK) and c∗ = 0.94 · 106 J/(m

3
K)

for the simulation case and κ∗ = 0.92 W/(mK) and c∗ =

1.49 ·106 J/(m3
K) for the experimental data case. For the

surface heat transfer coefficient the same prior means were
used in both cases, h∗ = 0 W/(m2K) for the insulated top

and bottom surfaces and h∗ = 5 W/(m
2
K) for the mantle.

In construction of the prior precision matrices, the spatial
correlation of the parameters was set by dictating that at a
distance of 1.8 cm (1/4 of the diameter of the target) the
covariance of two values of the same thermal parameter
has decayed to a value matching 1 % of the variance. The
variances were chosen to be 0.035f∗ where f∗ = κ∗, c∗, h∗
(for h∗, the prior mean of the mantle was used). For more
details on construction of the precision matrices, see [11].

Measurement errors were assumed to be independent
and identically distributed with standard deviation σe =
0.1 ◦C, giving the precision matrix Γ−1

e = σ−2
e I where

the identity matrix I ∈ R
mmeas×mmeas where mmeas is the

number of measurements.
The frequencies used in the truncated Fourier series ap-

proximation were chosen as follows. Data was computed
for multiple targets using different equally spaced sets of
frequencies. That frequency domain measurement data
was transformed to time domain and compared to mea-
surements computed with the time domain approach by
computing L2-norms of the differences. To get suitably
small differences, the frequencies used in the truncated
Fourier series approximation were chosen to be

ωk =
Fs

2

k

2549
2π, k = 0, . . . ,mf − 1 (34)

where Fs = 1/∆t is the sampling frequency, ∆t = 2 s and
mf is the number of frequencies used in the approximation
and in the tests of this paper ranges from 10 to 400.

6. Results and discussion

6.1. Comparison of computed temperatures

In this section, computed temperatures F(t, κ, c, h) com-
puted with the proposed truncated Fourier series approxi-
mation approach are compared to temperatures computed
with the time domain approach of [11]. This reference
approach uses an implicit Euler method with a computa-
tional time step of 1 s. Using a longer time step would
cause significant errors to the computed temperatures.

The computation time of solving the temperatures us-
ing the proposed approach and speedups gained in com-
parison to doing the computations in the time domain are
shown at the top of Figure 4. The computation times for
different numbers of frequencies are shown with a dashed
line and the speedups gained with a solid line. The compu-
tation time for the time domain solution, which was 26.8 s,
is shown with a dashed black line.

The differences of the solutions computed with the
two approaches are shown in the bottom of Figure 4 as
root mean square deviations (RMSD), i.e. as sample stan-
dard deviations of the differences between the solving ap-
proaches, for different numbers of frequencies.

RMSD =

√

∑mmeas

i=1

(

yωi − yREF
i

)2

mmeas
(35)

where yω is data computed with the proposed approach
and yREF is data computed with the time domain ap-
proach. For reference, the figure shows with dashed lines
three different noise levels; black: σe = 0.1◦C is the noise
level used in [11], gray: σe = 0.05◦C, and light gray:
σe = 0.01◦C.

Examining Figure 4 shows that using as few as 50 fre-
quencies is enough to obtain a RMSD that is significantly
smaller than the assumed standard deviation of the mea-
surement errors (black dashed line). With 50 frequencies,
the measurements are obtained 11.5 times faster than with
the time domain approach.

The computation times of one Jacobian matrix and
speedups gained when using the proposed approach in-
stead of the time domain approach are shown in Figure 5.
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Figure 4: Comparison of single forward solutions. Top: Compu-
tation times of the proposed approach (dashed line with dots) and
speedups gained by using the proposed approach (solid line with
dots) instead of the reference time domain approach (computation
time shown with dashed black line). Bottom: Differences between
the temperatures computed with the proposed approach and temper-
atures computed with the time domain approach shown as the root
mean square deviation. Also shown are some standard deviations of
the measurement errors: σe = 0.1, 0.05 and 0.01◦C (dashed lines).

For example with 50, 100 and 200 frequencies, the com-
putations are 39.7, 21.3 and 10.9 times faster than in the
time domain. The time domain computation of the Jaco-
bian matrix took 1017 s and it is the main computational
bottleneck of thermal tomography when employing the full
time domain forward solver. This is especially true when
using even denser computational meshes. With the pro-
posed approach, the Jacobian computations are drastically
faster and it is possible to choose a balance between accu-
racy and computational speed.

6.2. Comparison of reconstructed images

In this section, images obtained using the proposed
truncated Fourier series approach are compared to those
computed with the previously used time domain approach
of [11]. Comparison is done first between simulation based
results and then between results obtained with laboratory

Figure 5: Speedups (line with dots) gained when computing one
Jacobian matrix using the proposed approach instead of the reference
time domain approach. Computation times of the proposed approach
are shown next to the corresponding speedup markers.

measurement data. The reference images obtained with
the time domain approach are denoted with REF and the
images obtained with the proposed truncated Fourier se-
ries approximation approach are denoted with APP.

Figure 6 shows a comparison of simulation based REF
images and APP images computed with different numbers
of frequencies. It can be seen that using fewer than 50 fre-
quencies causes the APP images to deviate from the REF
images. In this example case, using less than 25 frequen-
cies makes the APP images to be of questionable usability,
this is true especially for the images of volumetric heat ca-
pacity. Computing the APP images with 50 frequencies
took 344 s and the REF images took 3570 s to compute.

Using experimental measurement data with the time
domain approach and the proposed approach results in
images shown in Figure 7. Even the APP images com-
puted with only 25 frequencies indicate the location of the
air cavity with similar accuracy as the REF images, and
the computation time for the APP images was only 227 s
compared to the 4290 s of the REF images.

The images computed with 10 frequencies took slightly
longer to compute than the images with 25 frequencies
because the errors caused by such a rough approximation
made the minimization problem converge more slowly, re-
quiring more iterations than with more frequencies.

Comparing the images computed with only 10 frequen-
cies in the simulation and experimental cases (rightmost
columns of Figures 6 and 7) reveals that the errors caused
by using too few frequencies are very distinct. This sug-
gests that it would be possible to use the Bayesian approxi-
mation error approach [12, 28] to compensate for the mod-
eling errors caused by implementing a truncated Fourier
series approach with a low number of frequencies.

For further speeding up, the proposed truncated Fourier
series approximation approach can be easily parallelized as
the computations of temperatures and Jacobians for dif-

7



True REF 400 50 25 10
- 3570 s 1261 s 344 s 206 s 196 s

Figure 6: Estimates with simulated data. From left to right: true,
REF, APP with 400, 50, 25 and 10 frequencies. From top to bot-
tom: thermal conductivity, volumetric heat capacity and surface heat
transfer coefficient in perspective view, then slices from the middles
of the thermal conductivity and the volumetric heat capacity. The
numbers of frequencies used in the truncated Fourier series approxi-
mation approach and the computation times for both approaches are
shown above the images.

ferent frequencies are not dependent of each other.

7. Conclusions

A truncated Fourier series approximation approach was
used to speed up the computations of thermal tomography.
The time domain heat transfer problem was transformed
into frequency domain and the solution of the time do-
main problem was approximated with a truncated Fourier
series approximation using a number of frequency domain
solutions. In addition to computing the measurement data
without a significant loss of accuracy and faster than the
implicit Euler based time domain approach of [11], also
the Jacobian matrix computations were significantly sped
up by doing the computations in the frequency domain.
Estimates of thermal parameters with both simulated and
experimental data were comparable to those computed us-
ing the computationally slower time domain approach.

Acknowledgments

This work was supported by the Academy of Finland
(Projects 136220, 272803, 286247, 250215 Finnish Centre
of Excellence in Inverse Problems Research), the Magnus
Ehrnrooth Foundation and the Finnish Cultural Founda-
tion. We would like to thank Asko Hänninen for helping in
building the prototype measurement device and for writing
the measurement software.

REF 400 50 25 10
4290 s 1576 s 269 s 227 s 254 s

Figure 7: Estimates with experimental data. From left to right:
REF, APP with 400, 50, 25 and 10 frequencies. From top to bot-
tom: thermal conductivity, volumetric heat capacity and surface heat
transfer coefficient in perspective view, then slices from the middle
of the thermal conductivity and the volumetric heat capacity. The
numbers of frequencies used in the truncated Fourier series approxi-
mation approach and the computation times for both approaches are
shown above the images.
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