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Abstract: Background  

The European Friedreich's Ataxia Consortium for Translational Studies 

(EFACTS) is a prospective international registry investigating the 

natural history of Friedreich ataxia (FRDA). We report one- and two-year 

longitudinal data to delineate potential outcomes for clinical trials.  

 

Methods  

We enrolled genetically confirmed FRDA patients from eleven European 

study sites. Patients were seen on an annual basis at three visits. Our 

primary endpoint was the Scale for the Assessment and Rating of Ataxia 

(SARA). Secondary outcomes were the Inventory of Non-Ataxia Signs (INAS), 

the Spinocerebellar Ataxia Functional Index (SCAFI), phonemic verbal 

fluency (PVF) and the quality of life measures activities of daily living 

(ADL) and EQ-5D-3L index. Disease progression was analyzed with linear 

mixed effect models. This study is registered with ClinicalTrials.gov, 

number NCT02069509. 

 

Findings  

605 FRDA patients were enrolled between 15-Sep-2010 and 21-Nov-2013. 546 

patients (90%) contributed data with at least one follow-up visit. Annual 

progression rate for SARA was 0·77 points (SE 0·06). Deterioration in 

SARA was associated with a lower age of onset (by -0·02 [0·01] points per 

year) and a lower SARA baseline score (-0·07 [0·01] per baseline-point). 

Patients with more than 353 GAA repeats on the shorter allele had a 

higher SARA progression rate (by 0·09 [0·02] per additional 100 repeats). 

Annual worsening for INAS was 0·10 (0·03), for SCAFI -0·04 (0·01), for 

ADL 0·93 (0·06) and for EQ-5D-3L -0·02 (0·004). PVF performance improved 

by 0·99 [0·14] words per year. 548 or 184 patients would be needed to 

detect a 50% reduction in SARA progression at 80% power in a one-year or 

two-year clinical trial, respectively.  

 

Interpretation  
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The EFACTS longitudinal analysis provides suitable outcome measures and 

sample size calculation for upcoming clinical trial designs in FRDA. 
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Summary 

 

Background The European Friedreich’s Ataxia Consortium for Translational Studies 

(EFACTS) is a prospective international registry investigating the natural history of Friedreich 

ataxia (FRDA). Based on our 1 year and 2 year data we aimed to delineate potential 

outcomes for clinical trials.  

 

Methods We enrolled patients with genetically confirmed FRDA from 11 European study 

sites. Patients were seen on an yearly basis at three visits. Our primary endpoint was the 

Scale for the Assessment and Rating of Ataxia (SARA). Secondary outcomes were the 

Inventory of Non-Ataxia Signs (INAS), the Spinocerebellar Ataxia Functional Index (SCAFI), 

phonemic verbal fluency (PVF), and the quality of life measures activities of daily living (ADL) 

and EQ-5D-3L index. Disease progression was analysed with linear mixed effect models. 

This study is registered with ClinicalTrials.gov, number NCT02069509. 

 

Findings 605 FRDA patients were enrolled between 15-Sep-2010 and 21-Nov-2013. 546 

patients (90%) contributed data with at least one follow-up visit. Annual progression rate for 

SARA was 0·77 points (SE 0·06) in the overall cohort. Deterioration in SARA was associated 

with a lower age of onset (by -0·02 [0·01] points per year) and a lower SARA baseline score 

(-0·07 [0·01] per baseline-point). Patients with more than 353 GAA repeats on the shorter 

allele had a higher SARA progression rate (by 0·09 [0·02] per additional 100 repeats). 

Annual worsening for INAS was 0·10 (0·03), for SCAFI -0·04 (0·01), for ADL 0·93 (0·06) and 

for EQ-5D-3L -0·02 (0·004). PVF performance improved by 0·99 [0·14] words per year. 548 

or 184 patients would be needed to detect a 50% reduction in SARA progression at 80% 

power in a one-year or two-year clinical trial, respectively.  

 

Interpretation The EFACTS longitudinal analysis provides suitable outcome measures and 

sample size calculation for upcoming clinical trial designs in FRDA. 

 

Funding FP7 Grant from the European Commission (HEALTH-F2-2010- 242193). 
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Introduction 

Although a rare disorder, Friedreich’s ataxia (FRDA) is the most common hereditary ataxia in 

white people, with an estimated prevalence of 2–4 per 100000 population.1 This recessive 

disease is caused in up to 98%2 of cases by homozygous guanine-adenine-adenine (GAA) 

triplet repeat expansions in the first intron of the FXN gene, encoding the mitochondrial 

protein frataxin. The remaining cases are compound heterozygotes for a GAA repeat 

expansion and a FXN point mutation or deletion.3 GAA repeat expansions suppress 

transcription of the FXN gene, leading to frataxin deficiency. The disease is characterised by 

spinocerebellar ataxia, dysarthria, pyramidal weakness, deep sensory loss, hypertrophic 

cardiomyopathy, skeletal abnormalities, and diabetes mellitus.4 Clinical onset is most 

commonly around puberty, but in a few cases symptoms develop later in adulthood. In its 

typical form, this chronic devastating disease leads to severe disability by early adulthood, 

with substantial functional loss, wheelchair dependence, and loss of quality of life. Affected 

individuals have a reduced life expectancy, with many premature deaths due to 

complications of the cardiomyopathy at about the end of the fourth decade of life.5 

Previous natural history studies in genetically confirmed cases of FRDA, including our 

analysis of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS) 

baseline data, have delineated the clinical characteristics of FRDA and provided estimates of 

progression.6-11 Although different clinical assessments were used in earlier studies, the 

conclusions drawn were that earlier onset and longer GAA repeats were associated with 

increased disease severity and more rapid progression. However, there is no prospective 

longitudinal study of the Scale for the Assessment and Rating of Ataxia (SARA), which - 

based on previous estimated progression rates - seems to be a suitable clinical measure to 

monitor disease progression and of the activities of daily living (ADL) to assess functional 

deterioration.7 

As potential disease-modifying therapies in FRDA are emerging, longitudinal studies are 

urgently needed to identify and validate robust measures of clinical progression to guide the 

design of future clinical trials. To address this necessity and to enable the translation to 

clinical practice, we have analysed prospective longitudinal data from the EFACTS database 

representing 2 years of observation. We assessed disease progression and the predictive 

value of disease-related factors on progression, and estimated sample sizes for 

interventional randomised clinical trials.  

 

Methods 

Study design and participants 

Within the framework of the EFACTS project (www.e-facts.eu), patients with a genetically 

confirmed diagnosis of FRDA were enrolled into a cohort study at 11 European centres 

http://www.e-facts.eu/
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(Aachen, Bonn, Marburg, Munich, Tübingen [Germany], Brussels [Belgium], Innsbruck 

[Austria], London [UK], Madrid [Spain], Milan [Italy], and Paris [France]). Genetic testing was 

repeated for all study participants at the Laboratoire de Neurologie Exp rimentale of the 

Université Libre de Bruxelles in Brussels.12 The first patient’s baseline visit was Sep 15, 

2010, and the last patient of this cohort was recruited Nov 29, 2013. The last 2 year follow-up 

visit of this cohort was Jan 11, 2016 and the data were closed for this 2 year data analysis on 

Jan 28, 2016. Further follow-up assessments and recruitment of new patients for EFACTS is 

still ongoing. 

All patients or their authorised surrogates provided written informed consent at enrolment 

into EFACTS. This study was approved by the local ethics committees of each participating 

centre.  

 

Procedures 

Assessments were done at all centres in accordance with the same written natural history 

study protocol. A full description of procedures and data collection can be found in our 

previous baseline data report.7  

 

Outcomes 

Briefly, we used SARA,13 a 40-point scale to quantify ataxia signs, with a higher score 

indicating more severe ataxia, as our primary outcome measure.  

 

Secondary outcome measures were the Inventory of Non-Ataxia Signs (INAS),14 which 

provides a count of non-ataxia signs such as changes in reflexes, other motor, sensory or 

ophthalmological signs; the performance-based Spinocerebellar Ataxia Functional Index 

(SCAFI);15,16 a phonemic verbal fluency (PVF) test to probe executive cognitive 

functioning;17,18 the ADL functional activity scale part of the Friedreich Ataxia Rating Scale 

(FARS);19 and the self-reported quality of life EQ-5D-3L index.20  

For primary and secondary outcomes, patients were assessed at baseline (visit 1 [V1]) and 

yearly for 2 years (visit 2 [V2], visit 3 [V3]). 

 

Statistical analysis  

Data are reported as mean (SD) or frequency, as appropriate. To enable a comparison of the 

responsiveness between outcome measures, we calculated standardised response means 

(SRM)—ie, the mean change in scores from baseline to follow-up divided by the standard 

deviation of change The yearly progression for each outcome was estimated with the linear 

mixed-effect modeling with random effects on intercept and slope (proc MIXED in SAS 

[version 9.4]) restricted-maximum-likelihood method). The time variable was calculated in 
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years—ie, days since the baseline visit divided by 365. We used unstructured covariance 

and adjusted the degrees of freedom by the between and within method. Based on previous 

reports showing differential rates of clinical decline in late-onset FRDA (symptom onset at 

≥25 years of age) compared with typical-onset FRDA (age ≤24 years),4,21 we further 

assessed the progression over time within each disease-onset group. 

In a separate analysis, we tested the effects of demographic and disease-related factors on 

progression rates across the entire cohort. Here, we modeled fixed interaction effects 

between time and sex, age in years at visit, educational level,22 age of symptoms onset, 

baseline scores of the respective outcome measure and number of FXN GAA repeats on 

each allele. Study site and baseline scores were additionally included as main effects. 

Continuous variables were mean centred to facilitate interpretation. To assess the model fit, 

we visually inspected the residual plots and excluded observations of extreme outliers based 

on the restricted likelihood distance. Because of potential bias caused by missing values, we 

reanalysed the data for our primary outcome measure SARA using an imputation method for 

missing observations. Furthermore, we were interested in cutoff values for specific factors 

that would enable selection of patients with a higher disease progression on SARA. We 

depicted the established progression for SARA through individual factors (ie, SARA baseline, 

age in years at visit, age of onset, and GAA repeat length) and tried to identify a cutoff point 

through breakpoint analysis of piece-wise linear regression models (two regression lines; 

proc NLIN in SAS. Last, based on the established progression rate for SARA, we calculated 

sample sizes that would enable the detection of a reduction in progression as assessed with 

SARA in a parallel-group interventional trial of treatments with different efficacies and 

observation periods of 1 year and 2 years.23 

Statistical analyses were done with SAS. All tests were two-sided with a p value of 0.05 set 

as the threshold for significance.  

This study is registered with ClinicalTrials.gov, number NCT02069509. 

 

Role of the funding source 

The funders of the study had no role in study design, data collection, analysis, interpretation, 

or writing of the report. The corresponding author had full access to all the data and had final 

responsibility for the decision to submit for publication. 

 

Results  

611 potentially eligible individuals were screened for inclusion in the EFACTS database. In 

six subjects the diagnosis of FRDA could not be genetically confirmed. Thus, a total of 605 

genetically confirmed FRDA patients were enrolled at baseline (Visit 1, V1). Of these, 506 

(84%) completed the one-year follow-up assessments (V2) and 474 (78%) returned to the 
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two-year follow-up assessments (figure 1). 546 patients (90%) contributed longitudinal data 

with at least one follow-up visit. 

Demographic and clinical characteristics at baseline of included FRDA patients are shown in 

table 1. 505 (83%) patients had typical-onset FRDA and 100 (17%) had late-onset FRDA. 

The age of symptom onset was missing for one typical-onset patient. 15 (2.5%) patients (13 

typical-onset, 2 late-onset) were compound heterozygotes with an expanded GAA repeat on 

one allele and a FXN point mutation on the other allele7. Remaining patients were 

homozygous for expanded GAA repeats in the FXN gene, with the shorter repeat containing 

at least 60 GAA triplets. The genetic data set from the EFACTS laboratory was missing for 

eight typical-onset patients with previous external genetic confirmation of homozygous GAA 

repeat expansion.  

Frequencies of missing data for each outcome and visit can be found in appendix table 1. 

Available data at baseline ranged from 96% to 99% for SCAFI, ADL, INAS, and SARA, while 

less data were available for PVF (60%) and EQ-5D-3L (77%; cf. Reetz et al.4). Longitudinally, 

a high percentage of patients with at least two visits contributed data for SARA (90%), INAS 

(90%), SCAFI (88%) and ADL (89%). Again this number was lower for PVF (60%) and EQ-

5D-3L index (71%). 1 year and 2 year responsiveness of outcome measures (table 2) was 

highest for SARA (SRM: 0·33 and 0·55, respectively) and ADL (0·36 and 0·66), and lowest 

for SCAFI (0·05 and -0·05). 

Mean scores of outcome measures at each visit and estimated yearly progression are 

presented in figure 2 and table 2. For linear mixed-effect modeling observations of extreme 

outliers were excluded (ie, SARA/INAS: n=3, SCAFI: n=21; PVF: n=9; ADL: n=2; EQ5D-3L: 

n=8). However, note that additional analysis for our primary outcome SARA using an 

imputation method for missing observations yielded similar results (appendix) as reported in 

the following. For SARA, progression was 0·77 points per year (SE 0·06) across the entire 

cohort. The rate of progression was slightly higher in late-onset patients (0·86 [0·15]) than for 

typical-onset patients (0·75 [0·07]), but this difference in slopes was not significant (-0·11 

[0·17], 95%-CI: -0·44 to 0·21, p=0·49). Analysis of factors possibly affecting disease 

progression (appendix table 2), where we assessed the effect of age of onset as a 

continuous variable on SARA progression across the entire cohort showed that younger age 

of onset was associated with an annual worsening in SARA (by -0·02 [0·01] points per 

additional year). Also, a lower SARA score at baseline was related to a faster progression 

(by -0·07 [0·01] per additional SARA point). We did not find a continuous linear association 

between SARA progression and GAA repeat length. However, breakpoint analysis of linear 

regression models showed a cutoff for GAA repeat length on the shorter allele at 353 (SE 

117; 95% CI: 123 to 584, p=0·0016; appendix figure 1): Patients with more than 353 repeats 

on the shorter allele had an increasing SARA progression rate with higher repeat length (by 
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0·09 [0·02] per additional 100 repeats, 95%-CI: 0·04 to 0·14). We did not find any cutoff 

values for SARA baseline-scores, age or age of onset related to SARA progression. Finally, 

based on the SARA progression rate, we calculated sample sizes for an interventional, 

placebo-controlled trial with different treatment efficacies (figure 3). For a potential treatment 

efficacy of 50% reduction in SARA progression and 80% statistical power, the required 

sample size for a one-year trial would be 548 (274 per group). The corresponding sample 

size in a two-year observational period would be 184 (92 per group). 

Linear mixed effect modeling showed a significant yearly change for all secondary outcomes. 

Across the entire cohort, yearly progression was 0·10 (0·03) points for INAS, and -0·04 

(0·01) for SCAFI. For both measures yearly worsening was stronger in late-onset FRDA than 

in typical-onset patients (INAS: slope for typical-onset 0·06 [0·03], late-onset: 0·33 [0·07], 

difference by -0·26 [0·08] points, 95%-CI: -0·43 to -0·10, p=0·0013; SCAFI: typical-onset -

0·03 [0·01], late-onset: -0·07 [0·02], difference by 0·04 [0·02], 95%-CI: 0·002 to 0·09, 

p=0·04). ADL scores changed by 0·93 [0·06] points per year in the entire cohort; however, 

typical-onset patients showed a higher progression rate than late-onset patients (typical-

onset 0·98 [0·07], late-onset: 0·64 [0·16], difference by 0·35 [0·17], 95%-CI: 0·01 to 0·68, 

p=0·04). We further found an annual improvement in PVF performance by about one word 

per year (0·99 [0·14]), and annual worsening of the EQ-5D-3L index by -0·02 [0·004] points 

in the entire cohort. There were no significant differences between onset groups (PVF: 

typical-onset 0·90 [0·15], late-onset: 1·39 [0·30], difference by -0·49 [0·34], 95%-CI: -1·16 to 

0·18, p=0·15; EQ5D-3L: typical-onset -0·02 [0·005], late-onset: -0·01 [0·01], difference by -

0·01 [0·01], 95%-CI: -0·03 to 0·01, p=0·20). 

Younger age at disease onset and older age at baseline were related to the yearly worsening 

of INAS (by -0·01 [0·004] and 0·01 [0·003] per additional year, respectively), ADL (-0·04 

[0·01], 0·02 [0·01]) and EQ-5D-3L (0·002 [0·001], 0·002 [0·0004]) as well as less 

improvement in PVF (0·12 [0·02], -0·05 [0·01]) (appendix table 2). For each measure, less 

impairment (or better performances) at baseline were associated with a greater deterioration 

over time (by -0·21 [0·02] per additional INAS point; -0·06 [0·01] per ADL point; by -0·03 

[0·01] per SCAFI point; by -0·19 [0·02] per EQ-5D-3L point; -0·19 [0·02] per word in PVF). 

Less improvement in PVF was observed with higher GAA repeats on the longer allele (by -

0·26 [0·07] per additional 100 repeats. A higher number of GAA repeats on the shorter allele 

predicted worsening that was not significant in ADL (p=0·07) and EQ-5D-3L (p=0·08). Sex 

effects were only found for PVF with female patients showing a greater improvement over 

time (0·74 [0·27] per additional word). A lower educational level was associated with a 

decrease in SCAFI performance over time (0·02 [0·01] per ISCED unit). 
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Discussion  

The results from EFACTS provide evidence for measurable phenotypic change over 2 years 

in FRDA patients. The main results of the study are that SARA is a suitable clinical rating 

scale to detect deterioration of ataxia symptoms over time; ADL is an appropriate measure to 

monitor changes in daily self-care activities; younger age at disease onset is a major 

predictor for faster disease progression; and sample sizes for interventional trials can now be 

provided. 

The main objective of EFACTS has been to define potential outcome measures for disease-

modifying trials in FRDA. Our primary clinical outcome measure SARA showed good 

responsiveness, in particular over 2 years (0·55), and a significant annual progression rate 

(0·77 points/year) across the entire FRDA cohort. Although the progression rate was slightly 

higher in late-onset FRDA (0·86 points/year) than in the typical-onset group (0·75 

points/year), late-onset patients also showed higher variability of SARA change over time 

and the difference between onset-groups was not significant. Lower SARA baseline-scores 

in late-onset patients (table 2) might further account for the marginally increased progression 

rate, as we could show that less impairment at baseline predicts faster deterioration in ataxia 

symptoms over time. Further analysis confirmed that earlier age of disease onset is 

associated with a stronger worsening in SARA, which is in agreement with our baseline 

report and other previous studies.6-8,10,24,25 Our analysis showed a differential predictive value 

of the GAA repeat length of the shorter allele for SARA progression, as it was evident only in 

patients having an expansion of more than 353 repeats. This corresponds to previous work 

showing that GAA repeats interfere with in vitro transcription in a length-dependent manner,26 

and might explain to some extent findings of a previous longitudinal study,27 in which the link 

between SARA progression and GAA repeat expansion could not be substantiated. 

Generally, the length of the shorter allele is acknowledged to be more predictive for earlier 

disease onset and severity of disease5 than the length of the larger allele.21,28 

Several different ataxia-rating scales have been used in previous studies. In previous natural 

history studies in FRDA, the International Cooperative Ataxia Rating Scale (ICARS)5,6,10,11, 

FARS8,9,11,29, or SARA,5,7,27,30 have been used. ICARS and particularly FARS have been 

shown to be appropriate markers for the assessment of disease progression in FRDA in 

longitudinal studies of 1 year11, 2 years8,9, or even up to 7 years10. However, the compact 

nature of SARA and its ability to capture disease progression in FRDA favours its clinical 

use. 

A major achievement for future trials, the EFACTS data will now enable the calculation of 

sample sizes for interventional trials. For example, for a placebo-controlled interventional 

trial, 548 FRDA patients would be needed to detect a 50% reduction in SARA progression at 

80% power over 1 year. The required sample size for a clinical trial can be reduced to 184 
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patients in a 2-year trial. Our calculated sample size corresponds well compared with recent 

published sample-sizes from the American/Australian cohort31, although our 2-year data 

differ, which might be due to different methodological statistics, design, and lower retention 

rates of the American/Australian cohort. Our findings show that 2 years of observation are 

needed for a feasible clinical trial. A prespecified selection, e.g. lower baseline score, 

younger age of onset, and genetic aspects, might further decrease the number of patients 

needed. 

Using INAS to assess non-ataxic signs in FRDA, we found that the number of non-ataxic 

features of the disease marginally increases over time, though effects were larger in late-

onset patients. This supports the notion that phenotypical changes in late-onset FRDA may 

evolve differentially and emphasises the consideration of non-ataxia signs particularly in this 

population. Again, both lower INAS baseline-scores and younger age of disease onset had 

an effect on INAS deterioration, suggesting a more progressive appearance of symptoms 

with an earlier disease course. The functional composite index SCAFI showed a small 

responsiveness over time, but deterioration was significantly higher in late-onset FRDA. As 

shown for each outcome, a better performance (or less impairment) at baseline was related 

to stronger worsening over time, which is reasonable given the potential range of further 

progression in less impaired patients. Floor effects in SCAFI performances, however, are 

more likely4, occurring particularly in patients with typical-onset, who are unable to perform all 

SCAFI tasks because of physical limitations (e.g. 8 m-walk). The neurocognitive measure 

PVF showed a somewhat surprising annual improvement about one word per year in all 

groups. This improvement might have resulted from an increased familiarity with the task in 

follow-up measurements, for which we also had a higher number of missing data 

compromising interpretation of results. Currently, SCAFI and INAS are appropriate for use as 

secondary outcome measures to detect changes in functional performances and to provide 

valuable information on non-ataxia signs particularly in late-onset FRDA. 

An important goal of our study was to quantify how FRDA progressively interferes with daily 

activities and impacts patients’ quality of life7. The ADL measure of functional status 

demonstrated high responsiveness (SRM 0·66 after 2 years) and yearly progression (0·93) 

across the entire FRDA cohort, more marked in the typical-onset group (SRM 0·72 and 

yearly progression 0·98), but also apparent in late-onset FRDA (SRM 0·39 and yearly 

progression 0·64). By contrast, the self-rated quality of life measure EQ-5D-3L showed a 

rather small decline, likely reflecting the good cognitive and emotional status of FRDA 

patients18 compared to other neurodegenerative diseases such as Huntington’s disease. In 

particular the strong responsiveness of ADL – even superior than for SARA – indicate the 

necessity of functional status and quality of life assessments in addition to motor function in 

clinical trials.  
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The 2-year follow-up of the EFACTS cohort provided clinically relevant data, but this is a 

short time for a slowly progressive disease like FRDA. Additionally, although we tried to 

handle missing data with statistical procedures, dropout rates increased over time and varied 

substantially among measures. Fewer data were missing for SARA and ADL than for the 

other outcome measures, whereas more data were missing for other measures like PVF and 

might have weakened conclusions we could draw. Another limitation is that our study did not 

include quantitative neurophysiological or neuroimaging data. 

In conclusion, our results of the 2 year analysis of the EFACTS cohort allowed substantiation 

of the suitability of the SARA and ADL as robust outcome measures for future therapeutic 

trials, which should be designed with an observational period of at least 2 years. 
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Panel: Research in context 
 

Evidence before this study 

We searched PubMed for articles on Friedreich ataxia published between Jan 1, 1996 

(identification of the genetic cause), and April 15, 2016, using the search terms “Friedreich 

ataxia AND progression”, and “Friedreich ataxia AND natural history” resulting in the 

identification of 11 peer-reviewed studies in English. Three studies were retrospective 

surveys, one of these focusing only on late-onset Friedreich ataxia patients. Three were of 

prospective, cross-sectional nature, including our baseline analysis. Three of the five 

longitudinal studies followed patients for 1 year or 2 years, or both. The two remaining were 

long-term follow-up studies, one following patients for up to 7 years using the International 

Cooperative Ataxia Rating Scale, the other one concentrating on cardiac outcome measures 

for up to 22 years. Overall, these studies show the impact of earlier disease onset and its 

association with a faster disease progression. However, usage of clinical rating scales is 

heterogeneous. To date, there is no prospective study with a comparable large cohort in 

FRDA showing changes in ataxia and non-ataxia symptoms as well as functional measures 

over 2 years. 

Added value of this study 

This European, multicentre, longitudinal study of Friedreich ataxia provides data for yearly 

change in clinical measures based on observations at three timepoints over 2 years in the 

worldwide largest cohort of 605 genetically confirmed Friedreich ataxia patients enrolled 

across 11 sites. We corroborate our baseline cross-sectional data, emphasizing the 

advantages of the Scale for the Assessment and Rating of Ataxia, assessing major clinical 

deterioration, and of the activities of daily living to measure functional decline in Friedreich 

ataxia with age of onset being a strong predictor for faster disease progression. Power 

calculations show that a 2 years of observation are needed for a feasible clinical trial.  

  

Implications of all the available evidence 

Our data have important implications for future research and in particular the design of 

upcoming clinical trials in FRDA patients as they provide suitable clinical measures and 

power calculations. Overall, the available evidence now delivers the long hampering pieces, 

large-scale studies of progression and sample size requirements. 
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Legends 
Figure 1 –  Flow-chart of FRDA patients 

The flow-chart presents the number of patients at baseline (V1), at one-year follow-up (V2) 

and two-year follow-up (V3) with drop-out rates including the respective reasons.  

 

Figure 2 –  Progression of primary and secondary outcome measures for the total 

cohort and by onset group 

Data are mean with 95% confidence interval at baseline (V1), visits V2 and V3. Dashed line 

indicates significant annual progression over time at p<0·05 estimated based on linear mixed 

effect modeling (please see Table 2). 

 

Figure 3 –  Sample size estimates 

Required sample sizes to detect differences in SARA progression at p<0·05 as a function of 

treatment effectiveness for an observational period of one and two years, statistical power of 

(A) 80% and (B) 90%. 

 



Table 1: FRDA cohort characteristics at baseline (V1) 

 Total cohort 

(n=605; 100%) 

Typical-onset FRDA 
(n=505; 83%) 

Late-onset FRDA 
(n=100; 17%) 

Female (%) 325 (54%) 266 (53%) 59 (59%) 

Age at study entry in years  37·9 (13·9) 30·2 (11·8) 51·2 (9·7) 

Age at onset in years * 15·5 (10·4) 11·7 (5·1) 34·8 (8·7) 

Disease duration  in years* 18·2 (10·3) 18·5 (10·6) 16·4 (8·1) 

Disability stage
+
 4·8 (1·5) 4·9 (1·4) 3·9 (1·3) 

Wheelchair-bound (%) 292 (48%) 280 (55%) 12 (12%) 

Education (ISCED)
†
 3·3 (1·3) 3·3 (1·3) 3·3 (1·3) 

Number of FXN GAA repeats
¶
:    

Shorter allele 1 590 (270) 654 (239) 273 (177) 

Longer allele 2 903 (211) 934 (179) 753 (282) 

Inter-visit time (years): V1 to V2 1·1 (0·2) 1·1 (0·2) 1·1 (0·1) 

 V1 to V3 2·1 (0·2) 2·1 (0·2) 2·1 (0·2) 

Date are mean (standard deviation) or n (%); ISCED, International Standard Classification of Education (1997). *Data 

are missing for one typical-onset patient; 
†
data missing for three typical-onset patients; 

¶
data missing for eight typical-

onset patients. 
+
Disability stage was recorded on a range from 1 (no functional handicap but signs at examination) to 6 

(wheelchairbound) and 7 (confined to bed). 
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Table 2: Outcome measures at each visit and annual progression rates  

 Baseline  

(V1) 

One-year follow-up  

(V2) 

Two-year follow-up  

(V3) 
Annual progression rate*  

 N Mean (SD) N Mean (SD) SRM N Mean (SD) SRM Estimate (SE) 95% CI p value 

SARA total score 600 21·9 (9·6) 502 22·5 (9·5) 0·33 471 23·2 (9·1) 0·55 0·77 (0·06) 0·65 to 0·89 <0·0001 

Typical-Onset FRDA 500 23·3 (9·4)  414 24·1 (9·2) 0·33 393 24·6 (8·9) 0·53 0·75 (0·07) 0·62 to 0·88 <0·0001 

Late-onset FRDA 100 14·7 (7·4) 88 14·9 (7·2) 0·29 78 16·2 (6·8) 0·69 0·86 (0·15) 0·57 to 1·16 <0·0001 

INAS count 603 5·0 (1·9) 500 5·1 (1·9) 0·08 468 5·2 (1·8) 0·17 0·10 (0·03) 0·04 to 0·16 0·0007 

Typical-Onset FRDA 503 5·2 (1·9) 412 5·3 (1·8) 0·04 390 5·3 (1·7) 0·10 0·06 (0·03) -0·004 to 0·13 0·0676 

Late-onset FRDA
#
 100 3·9 (1·6) 88 4·3 (1·9) 0·27 78 4·6 (1·9) 0·50 0·33 (0·07) 0·18 to 0·47 <0·0001 

SCAFI z-score 579 -0·43 (1·7) 492 -0·40 (1·7) 0·05 452 -0·48 (1·6) -0·05 -0·04 (0·01) -0·05 to -0·02 <0·0001 

Typical-Onset FRDA 485 -0·57 (1·8) 407 -0·54 (1·7) 0·07 377 -0·59 (1·7) -0·02 -0·03 (0·01) -0·05 to -0·01 0·0004 

Late-onset FRDA
#
 94 0·33 (0·7) 85 0·25 (1·0) -0·13 75 0·08 (1·0) -0·29 -0·07 (0·02) -0·11 to -0·04 <0·0001 

PVF, no of words 359 13·9 (6·7) 359 15·0 (6·7) 0·19 345 15·8 (6·8) 0·43 0·99 (0·14) 0·72 to 1·26 <0·0001 

Typical-Onset FRDA 288 13·0 (6·2) 287 14·1 (6·3) 0·18 279 15·1 (6·5) 0·36 0·90 (0·15) 0·60 to 1·20 <0·0001 

Late-onset FRDA 71 17·8 (7·3) 72 18·8 (6·8) 0·20 66 19·0 (7·4) 0·69 1·39 (0·30) 0·79 to 1·98 <0·0001 

ADL total score 597 14·6 (7·8) 502 15·6 (7·8) 0·36 472 16·5 (7·9) 0·66 0·93 (0·06) 0·80 to 1·05 <0·0001 

Typical-Onset FRDA 498 15·5 (7·9) 414 16·7 (7·9) 0·39 394 17·5 (7·9) 0·72 0·98 (0·07) 0·85 to 1·12 <0·0001 

Late-onset FRDA
# 

99 10·2 (5·3) 88 10·6 (4·9) 0·25 78 11·4 (5·4) 0·39 0·64 (0·16) 0·33 to 0·94 <0·0001 

EQ-5D-3L index 466 0·59 (0·2) 405 0·57 (0·2) -0·06 381 0·56 (0·2) -0·22 -0·02 (0·004) -0·03 to -0·01 <0·0001 

Typical-Onset FRDA 374 0·57 (0·2) 322 0·55 (0·2) -0·07 309 0·53 (0·2) -0·24 -0·02 (0·004) -0·03 to -0·01 <0·0001 

Late-onset FRDA 92 0·67 (0·2) 83 0·68 (0·1) 0·002 72 0·66 (0·1) -0·16 -0·01 (0·009) -0·02 to 0·01 0·4914 

*Slope of time effect using linear mixed effects modeling (see methods for further details); 
#
significant differences in slopes between onset groups at p<0.05; SD, 

standard deviation; SRM, standardized response mean (i.e., mean change compared to baseline divided by the standard deviation of the mean change); SE, standard 
error; CI, confidence interval; SARA, Scale for the Assessment and Rating of Ataxia; INAS, Inventory of Non-Ataxia Symptoms; SCAFI, Spinocerebellar Ataxia 
Functional Index; PVF, phonemic verbal fluency; no, number; ADL, activities of daily living. Note, that higher values for SARA, INAS and ADL indicate stronger 
impairment (vice versa for SCAFI, PVF, and EQ-5D-3L index). 

 



 19 

Figure 1 –  Flow-chart of enrolled FRDA patients in EFACTS  

 

Abbr.: N=number, V=visit 

Missed Visit (V2) 

N = 99 

 
Termination N = 22 (3.6% of V1) 

Deceased: N = 3 

Withdrawal of consent: N = 1 
Logistical reasons: N = 9 

Loss of contact: N = 9 

 

Baseline (V1) 

N = 605  

One year follow-up (V2) 

N = 506 (84% of V1) 

 

Two year follow-up (V3) 

N = 474 (78% of V1) 

Return to V3 
N = 40 

N = 506 

N = 434 

N = 99 

Missed Visit (V3) 

N = 72 

 
Termination N = 10 (1.7% of V1) 

Deceased: N = 2 

Unwilling to come: N = 4 
Too affected to come: N = 1 

Logistical reasons: N = 3 

 

N = 72 
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Figure 2 – Progression of primary and secondary outcome measures for the total 

cohort and by onset group  
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Figure 3 – Sample size estimates for SARA 
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Appendix 

Appendix Table 1: Missing data and longitudinal data contribution 

 Baseline  

(V1, N=605: 

505 typical, 100 late FRDA) 

One-year follow-up  

(V2, N=506:  

418 typical, 88 late FRDA) 

Two-year follow-up  

(V3, N=474:  

396 typical, 78 late FRDA) 

Total number of patients with 
recorded data 

 N Missing  (%) N Missing (%) N Missing (%) at 3 visits (%) 2 visits (%) 

SARA 600 5 (0.8) 502 4 (0.8) 471 3 (0.6) 425 (70.2) 544 (89.9) 

Typical-onset FRDA 500 5 (1.0) 414 4 (1.0) 393 3 (0.8) 349 (69.1) 454 (89.9) 

Late-onset FRDA 100 0 (0.0) 88 0 (0.0) 78 0 (0.0) 76 (76.0) 90 (90.0) 

INAS 603 2 (0.3) 500 6 (1.2) 468 6 (1.3) 424 (70.1) 544 (89.9) 

Typical-onset FRDA 503 2 (0.4) 412 6 (1.4) 390 6 (1.5) 348 (68.9) 454 (89.9) 

Late-onset FRDA 100 0 (0.0) 88 0 (0.0) 78 0 (0.0) 76 (76.0) 90 (90.0) 

SCAFI 579 26 (4.3) 492 14 (2.8) 452 22 (4.6) 387 (64.0) 534 (88.3) 

Typical-onset FRDA 485 20 (4.0) 407 11 (2.6) 377 19 (4.8) 320 (63.4) 446 (88.3) 

Late-onset FRDA 94 6 (6.0) 85 3 (3.4) 75 3 (3.8) 67 (67.0) 88 (88.0) 

Verbal fluency 359 246 (40.7) 359 147 (29.1) 345 129 (27.2) 201 (33.2) 363 (60.0) 

Typical-onset FRDA 288 217 (43.0) 287 131 (31.3) 279 117 (29.5) 154 (30.5) 291 (57.6) 

Late-onset FRDA 71 29 (29.0) 72 16 (18.2) 66 12 (15.4) 47 (47.0) 72 (72.0) 

ADL 597 8 (1.3) 502 4 (0.8) 472 2 (0.4) 426 (70.4) 541 (89.4) 

Typical-onset FRDA 498 7 (1.4) 414 4 (1.0) 394 2 (0.5) 351 (69.5) 451 (89.3) 

Late-onset FRDA 99 1 (1.0) 88 0 (0.0) 78 0 (0.0) 75 (75.0) 90 (90.0) 

EQ-5D-3L index 466 139 (23.0) 405 101 (20.0) 381 93 (19.6) 296 (48.9) 428 (70.7) 

Typical-onset FRDA 374 131 (25.9) 322 96 (23.0) 309 87 (22.0) 231 (45.7) 343 (67.9) 

Late-onset FRDA 92 8 (8.0) 83 5 (5.7) 72 6 (7.7) 65 (65.0) 85 (85.0) 

Missing data evaluated as a percentage of the patients who contributed data at the respective visit. SARA, Scale for the Assessment and Rating of Ataxia; INAS, 
Inventory of Non-Ataxia Symptoms; SCAFI, Spinocerebellar Ataxia Functional Index; ADL, activities of daily living. 
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Appendix Table 2: Linear mixed effect modeling results   

 Estimate SE t-value p-value 
     

SARA     

Site: Aachen -0.1437 0.2699 -0.53 0.5947 

Bonn 0.2352 0.3125 0.75 0.4521 

Brussels -0.1034 0.2588 -0.40 0.6896 

Innsbruck -0.1061 0.2468 -0.43 0.6675 

London 0.04660 0.2121 0.22 0.8261 

Madrid 0.07261 0.2260 0.32 0.7481 

Marburg 0.6219 0.4853 1.28 0.2006 

Milano -0.00925 0.2116 -0.04 0.9651 

Munich -0.1221 0.2504 -0.49 0.6261 

Paris -0.00999 0.2403 -0.04 0.9669 

Time  0.7889 0.1771 4.45 <.0001 

SARA baseline 1.0001 0.004401 227.26 <.0001 

Time*SARA baseline -0.07235 0.009603 -7.53 <.0001 

Time*Sex -0.1329 0.1194 -1.11 0.2659 

Time*Age 0.009578 0.008224 1.16 0.2445 

Time*Education 0.009629 0.04691 0.21 0.8374 

Time*Age of onset -0.02271 0.01096 -2.07 0.0386 

Time*GAA repeats (allele 1) 0.000532 0.000327 1.63 0.1037 

Time*GAA repeats (allele 2) 0.000213 0.000340 0.63 0.5315 

INAS     

Site: Aachen 0.1310 0.1529 0.86 0.3917 

Bonn -0.05071 0.1740 -0.29 0.7708 

Brussels 0.1316 0.1450 0.91 0.3644 

Innsbruck 0.09730 0.1376 0.71 0.4799 

London 0.01765 0.1190 0.15 0.8822 

Madrid 0.1219 0.1272 0.96 0.3380 

Marburg 0.02883 0.2332 0.12 0.9017 

Milano 0.2177 0.1204 1.81 0.0712 

Munich -0.00848 0.1382 -0.06 0.9511 

Paris 0.2192 0.1355 1.62 0.1063 

Time  0.1835 0.08374 2.19 0.0287 

INAS baseline 0.9706 0.01333 72.81 <.0001 

Time*INAS baseline -0.2149 0.01924 -11.17 <.0001 

Time*Sex 0.02261 0.05553 0.41 0.6840 

Time*Age 0.01226 0.003195 3.84 0.0001 

Time*Education -0.03055 0.02198 -1.39 0.1649 

Time*Age of onset -0.00942 0.004475 -2.10 0.0356 

Time*GAA repeats (allele 1) 0.000165 0.000145 1.14 0.2561 

Time*GAA repeats (allele 2) 0.000172 0.000159 1.08 0.2788 

SCAFI  

Site: Aachen 0.005187 0.03435 0.15 0.8800 

Bonn 0.03406 0.03920 0.87 0.3853 

Brussels 0.006505 0.03280 0.20 0.8429 

Innsbruck 0.02561 0.03133 0.82 0.4141 

London 0.02254 0.02711 0.83 0.4061 

Madrid 0.02089 0.02877 0.73 0.4682 

Marburg -0.01681 0.05186 -0.32 0.7459 

Milano -0.00876 0.02750 -0.32 0.7501 
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Munich 0.02623 0.03146 0.83 0.4048 

Paris 0.03965 0.03120 1.27 0.2043 

Time  -0.09254 0.02649 -3.49 0.0005 

SCAFI baseline 0.9983 0.003603 277.12 <.0001 

Time*SCAFI baseline -0.02763 0.007201 -3.84 0.0001 

Time*Sex -0.01023 0.01782 -0.57 0.5662 

Time*Age 0.000874 0.000982 0.89 0.3738 

Time*Education 0.01990 0.006934 2.87 0.0042 

Time*Age of onset -0.00107 0.001415 -0.75 0.4509 

Time*GAA repeats (allele 1) 0.000050 0.000047 1.06 0.2873 

Time*GAA repeats (allele 2) -0.00003 0.000051 -0.67 0.5031 

PVF  

Site: Aachen 0.1222 0.5639 0.22 0.8286 

Bonn -0.9578 0.6448 -1.49 0.1384 

Brussels 0.02582 0.5243 0.05 0.9608 

Innsbruck -0.1674 0.5163 -0.32 0.7459 

London -0.09892 0.5223 -0.19 0.8499 

Madrid 0.3050 0.4544 0.67 0.5026 

Marburg 0.3244 0.8077 0.40 0.6882 

Milano 0.5232 0.4484 1.17 0.2441 

Munich -0.04181 0.4954 -0.08 0.9328 

Paris 0.4254 0.4926 0.86 0.3885 

Time  0.07540 0.4250 0.18 0.8593 

PhVF baseline 0.9651 0.01652 58.44 <.0001 

Time* PhVF baseline -0.1901 0.02343 -8.12 <.0001 

Time*Sex 0.7375 0.2651 2.78 0.0056 

Time*Age -0.04733 0.01498 -3.16 0.0017 

Time*Education 0.1167 0.1114 1.05 0.2954 

Time*Age of onset 0.1188 0.02312 5.14 <.0001 

Time*GAA repeats (allele 1) 0.001246 0.000737 1.69 0.0915 

Time*GAA repeats (allele 2) -0.00255 0.000745 -3.42 0.0007 

ADL     

Site: Aachen 0.005906 0.2763 0.02 0.9830 

Bonn 0.1933 0.3247 0.60 0.5519 

Brussels -0.09212 0.2651 -0.35 0.7284 

Innsbruck -0.1408 0.2521 -0.56 0.5768 

London -0.07548 0.2176 -0.35 0.7288 

Madrid -0.00917 0.2326 -0.04 0.9686 

Marburg 0.1591 0.4245 0.37 0.7080 

Milano -0.1973 0.2171 -0.91 0.3636 

Munich -0.2344 0.2531 -0.93 0.3548 

Paris 0.04660 0.2477 0.19 0.8508 

Time  0.8241 0.1945 4.24 <.0001 

ADL baseline 0.9944 0.005602 177.52 <.0001 

Time*ADL baseline -0.05703 0.01266 -4.50 <.0001 

Time*Sex 0.06162 0.1309 0.47 0.6379 

Time*Age 0.01848 0.008954 2.06 0.0393 

Time*Education 0.01122 0.05133 0.22 0.8270 

Time*Age of onset -0.03540 0.01191 -2.97 0.0030 

Time*GAA repeats (allele 1) 0.000623 0.000346 1.80 0.0719 

Time*GAA repeats (allele 2) 0.000265 0.000373 0.71 0.4774 

EQ-5D-3L index 
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Site: Aachen -0.00127 0.01966 -0.06 0.9483 

Bonn -0.00008 0.01927 -0.00 0.9968 

Brussels -0.01696 0.01761 -0.96 0.3360 

Innsbruck -0.01258 0.01529 -0.82 0.4110 

London -0.01119 0.01360 -0.82 0.4109 

Madrid -0.00826 0.01491 -0.55 0.5801 

Marburg -0.00597 0.02712 -0.22 0.8257 

Milano -0.00998 0.01314 -0.76 0.4478 

Munich 0.000896 0.01525 0.06 0.9532 

Paris -0.01727 0.01551 -1.11 0.2662 

Time  -0.02122 0.01202 -1.77 0.0779 

EQ5D baseline 0.9671 0.01528 63.31 <.0001 

Time*EQ5D baseline -0.1921 0.02382 -8.07 <.0001 

Time*Sex 0.004516 0.007352 0.61 0.5392 

Time*Age -0.00196 0.000460 -4.26 <.0001 

Time*Education 0.001506 0.003126 0.48 0.6302 

Time*Age of onset 0.002390 0.000587 4.08 <.0001 

Time*GAA repeats (allele 1) -0.00003 0.000019 -1.74 0.0827 

Time*GAA repeats (allele 2) -0.00003 0.000021 -1.47 0.1419 
     

Reference site: Tuebingen; Time, Age and Age of onset in years. * indicates interaction term; SE, 
standard error. SARA, Scale for the Assessment and Rating of Ataxia; INAS, Inventory of Non-Ataxia 
Symptoms; SCAFI, Spinocerebellar Ataxia Functional Index; PVF, phonetic verbal fluency; ADL, 
activities of daily living. 
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Appendix Table 3: Estimates of the fixed effects from multiple imputation 

analysis for SARA 

 Estimate SE t-value p-value 
     

Time  0.840887 0.183204 4.59 0.0001 

SARA baseline 1.000202 0.004773 209.57 <.0001 

Time*SARA baseline -0.069850 0.010000 -6.99 <.0001 

Time*Sex -0.124561 0.123513 -1.01 0.3226 

Time*Age 0.006411 0.008480 0.76 0.4566 

Time*Education -0.006862 0.048094 -0.14 0.8877 

Time*Age of onset -0.020539 0.011365 -1.81 0.0825 

Time*GAA repeats (allele 1) 0.000509 0.000359 1.42 0.1732 

Time*GAA repeats (allele 2) 0.000248 0.000372 0.67 0.5132 

SE, standard error. To address potential bias caused by missing values we reanalyzed the model for our 
primary outcome SARA using an imputation method for missing observations. We used the potential 
predictive variables of our initial model for the imputation model (mcmc). After imputation of observations, 
we applied our mixed model to the imputed datasets and combined the estimates according to Rubin’s 
rule. The results were very similar to the results reported in appendix table 2 without an imputation for 
missing observations. 
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Appendix Figure 1 –  SARA progression rate as a function of GAA repeat length on the shorter allele 

 

Breakpoint analysis of piece-wise linear regression models (NLIN procedure in SAS). Significant cut-off value for SARA progression was identified for 

GAA repeat length on the shorter allele at 353 (SE 117; 95%-CI: 123 to 584, p=0·0016): In patients with more than 353 repeats on the shorter allele, 

SARA progression rate increased by 0·09 [0·02] per additional 100 repeats (95%-CI: 0·04 to 0·14), while in patients with less than 353 repeats a 

negative, but none-significant association between GAA repeat length and SARA progression was found (-0·08 [0·09] per additional 100 repeats, 95%-

CI: -0·27 to 0·10). 
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