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ABSTRACT
We present a method of calibrating the properties of photometric redshift bins as part of a larger
nested sampling analysis for the inference of cosmological parameters. The redshift bins are
characterized by their mean and variance, which are varied as free parameters and marginalized
over when obtaining the cosmological parameters. We demonstrate that the likelihood function
for cross-correlations in an angular power spectrum framework tightly constrains the properties
of bins such that they may be well determined, reducing their influence on cosmological
parameters and avoiding the bias from poorly estimated redshift distributions. We demonstrate
that even with only three photometric and three spectroscopic bins, we can recover accurate
estimates of the mean redshift of a bin to within �μ ≈ 3–4 × 10−3 and the width of the bin
to �σ ≈ 1 × 10−3 for galaxies near z = 1. This indicates that we may be able to bring down
the photometric redshift errors to a level which is in line with the requirements for the next
generation of cosmological experiments.

Key words: surveys – galaxies: photometry – cosmological parameters – large-scale structure
of Universe.

1 IN T RO D U C T I O N

Galaxy surveys have become in recent years an important source of
data for cosmology, particularly for late-time effects such as dark
energy. Calculations of predicted statistical properties for a given
cosmological model require the redshift distribution of observed
galaxies to be known accurately. Spectroscopy has long been used
to calculate accurate redshifts for objects, but this is a time in-
tensive process requiring both detailed observation across the ob-
ject’s spectrum and careful analysis. In order to collect data for the
vast numbers of galaxies required, current and future surveys are
necessarily dependent on photometric redshifts for the majority of
objects.

When photometry is used, approximate redshifts are calculated
from a small number of intensities measured in (typically around
five) broad-bands. Standard methods of inferring redshifts from
photometric data are to use machine learning methods, such as arti-
ficial neural networks, or to fit template functions (see e.g. Zheng &
Zhang 2012 for a review). These require that we have large training
sets of galaxies for which we have spectroscopic redshifts. Ad-
ditionally, the spectroscopic set must be representative of the full
photometric set (in terms of both redshift range and the nature of
the objects contained within the sample) in order to reduce both the
error and the bias in the derived relation (Abdalla et al. 2008; Sadeh,
Abdalla & Lahav 2016). Unfortunately, the spectroscopic sample
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is rarely as large as we would like, and is even less often fully rep-
resentative of the redshift range we wish to look at. Spectroscopic
samples tend to be dominated by bright objects which are easier to
study; a lack of spectroscopic objects, particularly at the extremes of
the redshift range, tends to lead to larger errors in the redshift distri-
butions reconstructed from machine learning techniques. (Often the
middle of the range is reconstructed comparatively well, while
the outer regions suffer.) Other methods may be more successful at
the lower or higher end of redshift, but few methods can be confi-
dently used across the entire range (Abdalla et al. 2008). In addition
to this, the errors associated with any such reconstructions are large,
and those who have attempted to reconstruct redshifts from photo-
metric data will be familiar with the significant scatter around the
spectroscopic redshifts (e.g. Banerji et al. 2008).

Due to the significant inherent uncertainties in such redshift es-
timates, for analysis objects may be grouped into bins of similar
redshift. In order to achieve the precisions desired for current and
future generations of cosmological experiments, we need to be able
to determine the redshift distribution of each of these bins with
greater accuracy than has been possible by simply using standard
fitting to spectroscopic data. The impact of the redshift distribu-
tions on cosmology, and the importance of knowing them to a high
degree of accuracy, has been the subject of a number of studies
such as Huterer et al. (2004) and Newman (2008). These suggest
that to achieve the desired precision and accuracy in upcoming ex-
periments such as Large Synoptic Survey Telescope (LSST), we
require that the mean and width of redshift bins to be known to
O(10−3(1 + z)). Newman et al. (2012) proposes that this may be
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achieved by calibrating the photometric redshifts using information
from cross-correlations with spectroscopic data.

Since the proposal of these ideas, there have been some studies
looking into the potential for using cross-correlations for estimating
photometric redshift distributions (e.g. Matthews & Newman 2010;
Schulz 2010; McQuinn & White 2013; Menard et al. 2013; Schmidt
et al. 2013), as well as potential problems such as contamination
as in Benjamin et al. (2010). These tend to focus on recovering the
redshift distribution from simulations by comparing the correlation
between some photometric data set and a spectroscopic sample at
known redshift, and assuming some fixed cosmology. In the case of
a practical analysis, however, we will not know the cosmological
parameters (the determination of which is, after all, the objective
of such calculations), and the calculation of theoretical correlation
functions is cosmology dependent. It is well known that the cos-
mological parameters and redshift distribution are degenerate, and
hence we cannot estimate how well the redshift distribution can
be constrained without also varying the cosmology itself, as uncer-
tainties from the cosmology may become a significant factor. This
may be particularly important where the region of overlap between
the photometric sample and the spectroscopic sample is relatively
small. Hence, in order to avoid biases or overly optimistic estimates
of our constraining power, we must determine the cosmology and
the redshift distribution together, rather than treating them as inde-
pendent problems. Previous work such as Newman et al. (2012) and
McQuinn & White (2013) also use estimators which may be prone
to finding local maxima, and do not explore the space as fully as a
nested sampling approach using a full likelihood.

A significant amount of attention in recent years has been placed
on the power of cross-correlations as a statistical tool for cosmol-
ogy (such as Kirk et al. 2013; Rhodes et al. 2013). Using cross-
correlations to calculate both redshift distributions and cosmolog-
ical parameters implies that we may include these effects into one
framework with relative ease. We demonstrate such a technique for
calibrating the photometric redshift distribution from an initial es-
timate using a joint likelihood analysis with cosmology using the
angular power spectrum C(l). We take the errors in photometric
redshift modelling into account by allowing the mean and width
of the photo-z bins to vary as free parameters, just as we do with
cosmological parameters. The redshift binning is then marginalized
over in order to obtain the probability contours for cosmological
parameters. This allows us to study the extent to which we can
constrain the photometric redshift distributions and simultaneously
explore the impact of this information on cosmological inferences,
in a manner which automatically treats the errors in the distributions
in a Bayesian way.

In this paper, we investigate extent to which photometric redshift
bins can be constrained by cross-correlations, and the impact on
cosmological parameter inference in the case of large-scale struc-
ture. We present a simplified experiment where we vary the width
and mean of Gaussian redshift bins, although we explain how the
framework may be applied to higher moments also. For compu-
tational simplicity, only three photometric and three spectroscopic
bins will be used (although this can be extended to fuller surveys
at the expense of computation time); this simple model should
suffice to demonstrate the power of the technique, as well as the
degeneracies between the parameterizations of the redshifts and
the cosmological parameters. The impact on future optical sur-
veys will be greater though, as the same technique can be used
to constrain photometric samples in weak lensing analyses, which
may be used in conjunction with galaxy number counts to infer
cosmology.

2 TH E C(L) C A L C U L AT I O N

The angular power spectrum is split up into correlations between
different bins and cosmological probes; the full object we wish
to look at is C

ij
αβ (l), where i, j vary over labels of bins and α, β

vary over cosmological probes such as galaxy number counts or
shear measurements. (Indices may be suppressed when they are not
relevant.) C

ij
αβ (l) is symmetric in i, j and α, β.

2.1 The C(l) formalism

Following the approach of Peebles (1973) – and later Blake,
Ferreira & Borrill (2004), Blake et al. (2007) and Thomas, Ab-
dalla & Lahav (2012) – for a particular probe of our cosmology
observed projected on the sky in the direction of a unit vector n,
X(n) = X̄ + �X(n), we may decompose the variation in this pa-
rameter �X into spherical harmonics as

�X(n) =
∑
l>0

l∑
m=−l

almYlm(n). (1)

We may calculate the coefficients alm by using the orthogonality of
spherical harmonics (

∫
YlmY ∗

l′m′ d� = δll′δmm′ ):

alm =
∫

�X(n)Y ∗
lm(n)d�. (2)

The C(l)s are defined from these coefficients by the relation:

C(l) = 〈alma∗
lm〉. (3)

In our case, we are interested in the galaxy distribution as a tracer
of matter; this is calculated from the data by analysing number
counts across the sky. It is important to note that this does not
require knowledge of n(z): we do not use redshift information in
calculating the angular power spectrum from the data.

For the theoretical modelling, however, we do require knowledge
of n(z), as we must calculate the full power spectrum P(k, z) which
is then projected on to the sky. This projection, as we shall later
see is strongly dependent on z. To calculate the C(l)s, we use the
following equation (Thomas et al. 2012):

C
ij
αβ (l) = 2

π

∫
Wi

α(l, k)Wj
β (l, k)k2P (k)dk. (4)

Although we will perform most calculations without this approxi-
mation, it is useful to understand the impact of the redshift distri-
butions. The redshift distributions ni(z) enter the C(l)s through the
window functions.

2.2 Window functions

Window functions allow us to project the distribution of galaxies
on to the sphere and decompose into spherical harmonics. Here, we
will discuss only the window function for galaxy clustering, since
we have not used other probes in this particular work.

2.2.1 The galaxy clustering window function

Huterer, Knox & Nichol (2001) derive a calculation for galaxy
clustering information of the following form:

Wi
g(l, k, z) =

∫
bg(k, z)ni(z)jl(kχ )D(z). (5)

Here, ni(z) is the redshift distribution in bin i, bg(k, z) is the galaxy
bias, D(z) is the growth function, and jl(kχ ) is the order l spherical
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bessel function. Note that the comoving distance to an object is a
function of redshift χ (z).

2.2.2 Including redshift space distortions

Redshift space distortions (RSD) are alterations to the redshift of
a galaxy due to its peculiar velocity. This leads to a distortion
of the galaxy distribution if we attempt to reconstruct the three-
dimensional information, with galaxies with peculiar velocity to-
wards us appearing closer (at lower redshift) and galaxies with
peculiar velocity away from us along the line of sight appearing
further (at higher redshift). Since these peculiar motions are due
to interactions with local gravitational potentials they contain cos-
mological information. RSD on linear scales can be included by
an additional term in the window function, following Kirk et al.
(2013),

Wi
RSD(l, k, z) = β

∫
φ(χ )

[
2l2 + 2l − 1

(2l + 3)(2l − 1)
jl(kχ )

− l(l − 1)

(2l − 1)(2l + 1)
jl−2(kχ )

− (l + 1)(l + 2)

(2l + 1)(2l + 3)
jl+2(kχ )

]
dχ. (6)

The complete window function to be used in our C(l) calculation is
then given by the sum of these two terms,

Wi
LSS = Wi

g(l, k) + Wi
RSD(l, k). (7)

In this paper, we will not consider the effects of galaxy bias,
although some papers have noted the potential importance of evolv-
ing galaxy bias in determining redshifts from correlation data
(Schulz 2010; Schmidt et al. 2013). In the absence of a compelling
bias model however, bias may be best handled as nuisance pa-
rameter (or parameters) which is also marginalized over. This is
demonstrated in Clerkin et al. (2014), but for simplicity we choose
a constant bias bg = 1.

We can now see how the redshift distribution enters into the
C(l) formalism. If we have an accurate redshift distribution, for
instance from a spectroscopic survey, then this is all we need to begin
calculating our theoretical correlations. Unfortunately, photometric
estimates are far from perfect, and photometric redshift errors if left
unignored may produce unforeseen effects in our computed C(l)s.
We will now seek to understand what some of these effects may be.

2.3 The significance of n(z)

Intuitively, one might expect that number counts on the same patch
of sky will be highly correlated when close in redshift and less cor-
related when widely separated. If we have a spectroscopic sample
and a photometric sample that overlap in redshift, then they will
contain objects in the same larger clustering structures, which we
will be able to see as boosts in their correlations. We do not expect to
see clustering over very large distances, so we expect that samples
widely separated in redshift will show very weak cross-correlations.

We can put this intuitive understanding on a more mathematical
foundation. From the definition of the window functions and the C(l)
calculation, we can see how we expect n(z) to affect our calculated
Cij(l). If, for the sake of simplicity, we assume a k-independent bias
bg(z), then the k dependence of W(l, k) comes entirely from the
spherical Bessel function jl(kχ ). The window functions oscillate as

a function of k, made of contributions with different frequencies set
by the spherical bessel functions in the integral. Hence, the redshift
range of the integral sets the range of frequencies present in the
window function. If the distribution for a particular bin ni(z) is
close to zero outside a particular range [for instance, if we model
n(z) as a top-hat or Gaussian function], then the integral over z has a
fairly small range which contributes significantly. If two bins ni(z)
and nj(z) are separated in z by significantly more than their variance,
then our two window functions Wi(l, k) and Wj(l, k) will have only
very small contributions with the same frequency. The product of
two oscillating functions with different frequencies will tend to
average to zero when integrated over, so we would expect that the
integral over these two window functions to be small. If, however,
the redshift ranges overlap in regions of significant number density,
then there will be significant contributions to both window functions
with the same frequency and forms. These, when integrated over,
will not average to zero and give a large contribution to Cij(l). Hence,
we expect the Cij(l)s to be dependent on the amount of overlap
between distribution functions in different bins, with significant
overlaps in areas with high number density giving the strongest
signals.

In addition to the overlap between bins, the spherical bessel func-
tion in equation (5) also tells us more about the redshift dependence
of Cij(l); we expect stronger signals from distributions at lower red-
shift where the amplitude of jl(kχ (z)) is higher. So whilst the overlap
between bins will determine the relative power in cross-correlations
compared to autocorrelations, moving all the bins together up or
down in redshift can shift the amplitudes of all the signals together.
The redshift distribution is of course not the only thing which will
affect our signal, and cosmological effects enter into our equations
through the growth function [D(z) in equation 5] and the power
spectrum [P(k) in equation 4]. This is the source of a very important
degeneracy between our redshift distributions and cosmological pa-
rameters, particularly those such as As or σ 8 which strongly control
the amplitude of P(k).

In order to fix the redshift distribution, we need bins which over-
lap our photometric redshifts but are strongly anchored so that any
changes in photometric bins, even moving coherently, will be cap-
tured by the C(l)s. For this, we require spectroscopic data, which
is well known enough to have rigidly fixed n(z), which overlaps
our photometric bins. Note that our only criterion here is that our
spectroscopic and photometric data overlap, and not – unlike with
template and machine learning techniques – that the spectroscopic
sample be an unbiased representation of the photometric sample.

3 MO D E L L I N G T H E R E D S H I F T
DI STRI BU TI ONS

3.1 Photometric redshifts

Due to the uncertainty in photometric redshifts, we cannot obtain
an accurate redshift for each object that we have in our sample.
We instead model a bin as a broader function which captures the
distribution of redshifts which would be binned together.

In this work, we will model photometric redshift distributions
within a bin as a Gaussian distribution defined by their mean and
variance,

n(z, μ, σ ) = G(z, μ, σ ) =
(

1

2πσ 2

)1/2

exp

[
− (z − μ)2

2σ 2

]
. (8)

In order to model the uncertainties in n(z), we need to be able
to control the shape of the function in a quantitative way, ideally
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with as few parameters as possible. Each time we add a parameter,
we are adding Nbins new dimensions to our parameter space to be
explored by the nested sampler and hence our computation becomes
exponentially more expensive. The most important parameters are
the mean and width of the distribution; other adjustments to the
shape can be abandoned without too much impact but nevertheless
the method is general and in wider, strongly non-Gaussian redshift
bins higher moments may be taken into account if necessary. When
using the mean and variance of a Gaussian distribution, we may
adjust μ and σ directly using the analytic formula for a Gaussian.
To vary a general distribution, or to change the shape in other ways,
you may refer to the appendix.

Although this is the template used for all the bins in this study,
we may also apply non-Gaussian distortions to these distributions
to model more complex effects. It is also important to note that this
method is by no means limited to Gaussian functions, and these may
be easily replaced by an arbitrary function (with some parametriza-
tion) F (z, p), where p is the parameter vector to be marginalized
over. In the simple example above p = (μ, σ ), although we may
extend this to include skew and kurtosis, and have p = (μ, σ, s, k)
or some other vector of parameters. In a typical survey such as Dark
Energy Survey (DES), photometric redshift bins have a standard
deviation of approximately 0.1–0.2 (Lahav et al. 2009); for our
purposes, we will take σ = 0.1.

3.2 Spectroscopic redshifts

In order to include spectroscopic redshifts into the same formalism,
we model spectroscopic redshifts in bins with much narrower dis-
tributions. This will take the form of a much narrower Gaussian.
(A narrow top-hat function may also be used, but smooth continu-
ous functions are often computationally more stable.) We assume
that spectroscopic information is known well enough that we do
not vary these bins in the same way as the photometry, and so
there is no parameter vector p to marginalize over. Spectroscopic
bins will be modelled with a width of σ = 0.025, which requires
spectroscopic redshifts to be estimated to within a few per cent.
Their thickness may be determined by the nature and quality of
the spectroscopic sample, or as a compromise with computational
efficiency. A small number of wider bins is less computationally
expensive than many narrow bins; the width of spectroscopic bins
makes little to no impact on the length of computation (integrations
are performed between fixed redshifts), however each additional bin
adds two new parameters, which means that we have more integra-
tions to perform (scaling as N2

bins), larger covariance matrices, and a
much larger parameter space which scales exponentially in volume
with the number of parameters. Narrow bins allow us to look at very
localized correlations at the cost of this additional computation.

4 TH E L I K E L I H O O D F U N C T I O N A N D
S A M P L I N G M E T H O D S

4.1 The likelihood function for C(l)s

The likelihood is calculated from C(l) for each model (i.e. each pa-
rameter set) compared to the C(l) calculated from the fiducial model.
Let the fiducial model be known as model A, and the model we wish
to investigate model B; we calculate a log-likelihood of seeing some
fluctuations alm in the model B compared to the model A, and then
take an expectation value assuming the fiducial model A in the ab-
sence of any data, as described in Bucher, Moodley & Turok (2002).
Since alm are stochastically generated, any given cosmology may

generate a wide variety of alm, and each set of alm can therefore give
a different likelihood when compared against a model. Hence, with
no reason to generate one particular set over another, one calculates
the expectation value of these possible likelihoods, on the assump-
tion that our alm were generated by the cosmology represented by
A. This quantity is dependent only on the C(l)s calculated in each
model, and the properties of the survey such as sky coverage and
noise which remain constant throughout.

For measured alm, using the fact that the expectation value is zero,
we have for a given cosmology X the relation

Var(alm) = 〈|alm|2〉X = CX(l) + N (l), (9)

where noise is assumed to be isotropic and uncorrelated (shot noise)
and taken into account by the noise function N(l). Assuming Gaus-
sian distributions, we then have

P (alm|X) =
(

1

2π(CX(l) + N (l))

)1/2

exp

[
− |alm|2

2(CX(l) + N (l))

]
.

(10)

We wish to calculate the (expected) likelihood function

〈L〉 =
〈

log

[
P (alm|B)

P (alm|A)

]〉
A

. (11)

Given equation (10), we can write

P (alm|B)

P (alm|A)
=

[
CA(l) + N (l)

CB (l) + N (l)

]1/2

× exp

[ |alm|2
2(CA(l) + N (l))

− |alm|2
2(CB (l) + N (l))

]
. (12)

Taking logs we obtain

log

(
PA

PB

)
= 1

2
log

(
CA(l) + N (l)

CB (l) + N (l)

)

+ |alm|2
2(CA(l) + N (l))

− |alm|2
2(CB (l) + N (l))

. (13)

We then take the expectation value assuming A using equation (9)

L = 1

2

[
1 − CA(l) + N (l)

CB (l) + N (l)
+ log

(
CA(l) + N (l)

CB (l) + N (l)

)]
. (14)

We must then take into account all of the alm, bearing in mind this
expression is not dependent on m, so we have 2l + 1 identical
terms for each l, and taking into account the fraction of the sky fs

observed,

L = fs

2

lmax∑
l=2

(2l + 1)

[
1 − CA(l) + N (l)

CB (l) + N (l)
+ log

(
CA(l) + N (l)

CB (l) + N (l)

)]
.

(15)

This is the likelihood we will use for cosmic microwave background
(CMB) temperature information (CTT(l)) or when we calculate the
autocorrelation of a bin. When we have multiple bins or cosmo-
logical probes where cross-correlations must be taken into account,
then we will have more than one C(l) function for each cosmology.
We then multivariate a Gaussian distribution instead of simply the
product of independent Gaussians. The covariance matrices are[
MX,l

]
i,j

= C
ij
(X)(l) + δijNi(l), (16)

where X may be either A or B (with the relevent C(l)s calculated
in the left-hand side) and where N(l) is the noise associated with
the experiment. Noise is only added on the diagonal as shot noise
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between bins should not be correlated and hence not contribute to
the covariance. This gives a probability distribution

P (alm|X) = 1(
(2π)k|MX,l |

)1/2 exp

[
−1

2
aT

lmM−1
X,l alm

]
(17)

for a k × k covariance matrix (i.e. cross-correlating k bins). Repeat-
ing the above analysis, and using the following relations (where l, m
subscripts have been suppressed for clarity, and we use summation
convention over i, j)〈

aT M−1
X a

〉
A

= 〈
aiM

−1
X,ij aj

〉
A

= MA,ijM
−1
X,ij

= MA,jiM
−1
X,ij = [

MAM−1
X

]
jj

= Tr
[
MAM−1

X

]
, (18)

we arrive at the analogous log-likelihood to equation (15) for mul-
tiple C(l)s

L = fs

2

∑
l

(2l + 1)
[
Tr

(
I − MA,lM

−1
B,l

) + ln
(
det

(
MA,lM

−1
B,l

))]
.

(19)

It is easy to see that this is zero for A = B.

4.2 Noise parameters and survey assumptions

4.2.1 Galaxy number counts

We limit our model to shot noise, which is described by the noise
function

Ni(l) = (σ i(l))2 = 1

n̄i
= 4πfs

f i
g Ng

, (20)

where fs is the fraction of the sky observed by the survey, f i
g is

the fraction of the total number of galaxies observed which lie
within that redshift bin ni(z), and Ng is the total number of galaxies
observed over the entire survey. For a DES like survey, we assume
that Ng = 3 × 108, fs = 0.12 (from A = 5000 deg2), and a redshift
range 0 < z ≤ 2 (Lahav et al. 2009).

4.2.2 CMB TT information

Here, we have a slightly more complex function which must take
into account more survey information. We base our parameters on
a Planck-like survey, based on the parameters described in Abdalla
& Rawlings (2008). Our noise function is

N2
l =

∑
chan

1

(σcθb)2
exp

(
− l(l + 1)θb

8 ln 2

)
(21)

σc = TNEθsky√
ndettθb

, (22)

where θb is the beam width, TNE is the noise effective temperature,
ndet is the number of detectors, and t is the integration time assumed
to be 1 yr. We assume information is collected in four bands with
parameters detailed in Table 1. For CMB information, we assume
fsky = 0.65.

Table 1. Parameters for a Planck like CMB survey.

Band frequency 70 100 143 217

Beam width θb/arcsec 14.0 9.5 7.1 5.0
Noise effective temperature / μK

√
s 212 56 56 84

Detector number ndet 12 8 12 12

4.3 Computational details: UCLCL and PLINY codes

C(l) calculations are performed using the UCLCL code developed
at UCL, and the CLASS Boltzmann code (Blas, Lesgourgues &
Tram 2011) for the generation of the primordial power spectrum
and transfer function. Within UCLCL most functions, including n(z),
are represented using splines. The spline representation is advanta-
geous for this work because it allows us to easily manipulate and
deform n(z) in non-linear ways without having to define an analytic
function with some parametrization. (This means we could take an
arbitrary form from, for instance, data and still manipulate it in the
way described in this paper.) We can vary the mean and variance for
an arbitrary distribution in a precise way. For the higher moments
such as skew and kurtosis, we must vary these more heuristically for
a general distribution, and these transformations may affect other
moments. These may all be varied by applying transformations to
the z variable of the n(z) spline, as discussed in the appendix.

The nested sampling analysis is performed using PLINY, a nested
sampler designed for parallel computation. It calculates a chain of
points in the parameter space, with likelihoods and prior weights,
and also outputs an evidence calculation. In order to calculate the
posterior weight for each point in the chain, we need to use Bayes’
Theorem:

Posterior = Likelihood × Prior

Evidence
. (23)

For all parameters in this analysis, we assume flat priors with hard
edges well away from the peak of the distribution. The evidence
is not strictly necessary in this analysis as it is just a constant
factor. The evidence is only required if we wish to perform a model
comparison for models with different parameterizations.

4.4 The fiducial model

In this work, we use a fiducial � cold dark matter model. For
the sake of computational efficiency, we take work only with
flat cosmologies (�k = 0). We also restrict ourselves to varying
seven cosmological parameters – {As, ��, �b, h, ns, τr, w0}. Our
fiducial cosmology will be

As = 25 × 10−10,

�� = 0.7,

�b = 0.06,

h = 0.7,

ns = 0.95,

τr = 0.09,

w0 = −0.9. (24)

To speed computation, we limit ourselves to flat cosmologies, and
hence we will use �cdm = 1 − �� − �b, which gives a fiducial
�cdm = 0.24. We use three photometric bins with mean

(μ1, μ2, μ3) = (0.8, 1.0, 1.2)

and standard deviation

σ1 = σ2 = σ3 = 0.1.

For analyses with spectroscopy, we use three spectroscopic bins
with mean

(μ1, μ2, μ3) = (0.7, 1.0, 1.3)
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and standard deviation

σ1 = σ2 = σ3 = 0.025.

Spectroscopic bins are assumed to be well known enough not to
need variation in the nested sampling analysis, so this leaves us
with an 13-dimensional parameter space (seven cosmological and
six photometric binning parameters).

For our noise function, in this particular analysis, we have chosen
DES like parameters (described in Section 4.2) with fs = 0.12,
f i

g = 0.2 for all photometric bins, and Ng = 3 × 108 (giving 6
× 107 galaxies in each photometric bin). For spectroscopic bins,
we assume that we have 5 × 104 galaxies in each bin, roughly in
keeping with the density in surveys such as BOSS or eBOSS (SDSS
Collaboration 2008, www.sdss.org).

For the sake of reasonably rapid calculations, we use a limited
number of redshift bins in this demonstration, although most full
surveys will use 5–10 photometric redshift bins. This will diminish
our power to constrain the cosmological parameters somewhat due
to a lack of information and coverage over much of the redshift
range, but will be enough to demonstrate the power of the technique
applied to the calibration of photometric redshifts.

5 R ESULTS

In this section, we will present the results of our sampling anal-
ysis. We will first demonstrate the bias in cosmological parame-
ters that is caused by having poorly estimated photo-z bins. We
will then show what can be achieved using autocorrelations of
photometric bins, where bins are allowed to vary freely; this will
demonstrate where the degeneracies between photometric redshifts
and cosmological parameters lie. Finally, we will show results us-
ing cross-correlations between both photometric and spectroscopic
bins, which give dramatically improved precision on the photomet-
ric bins, and we demonstrate the effect of this on the marginalized
distributions for the cosmological parameters.

5.1 Cosmological parameter bias from n(z)

From equations (4) and (5), our theoretical prediction of Cij(l) is
dependent on the redshift distributions ni(z) and nj(z). If we esti-
mate properties of our redshift bins (in this case μ, σ ) by fitting
objects with known spectroscopic redshifts, then we will derive
redshifts with some scatter around their ‘true’ value. These redshift
errors have a knock-on effect on our inference of cosmological pa-
rameters. For example, if our estimated redshifts are too low, then
theoretical power that we calculate will be too high; in order to
match the observations, As may be lowered to match the power,
and other parameters adjusted to get the best fit to shape. In this
section, we will demonstrate such biases, and later we shall see how
marginalizing over redshift distributions can avoid them. Methods
in estimating photometric redshifts often have an error in z of O(0.1),
which is large compared to what we would require to obtain precise
results from a photometric survey. If we take the parametrization
obtained from this fitting on face value, then we will reconstruct a
slightly distorted n(z). This means that when we fit our cosmologi-
cal model, our cosmological parameters will inevitably be changed
in order to counter the effect of the distortions in n(z). We may
analyse this case in our simple model by using the fiducial n(z) for
the ‘observed’ C(l)s as described in Section 4.4, but calculating our
model C(l)s using bins fixed to have different parameters.

The cosmology used is the same as stated in Section 4.4, but
we shall only use two redshift bins at μ1 = 0.8 and μ2 = 0.9

Figure 1. Probability contours obtained from the true redshift distribution
(shown in blue) and from a biased redshift distribution (shown in red). A five
parameter cosmology is derived from two photometric bins, where the fidu-
cial cosmology and the blue contours use μ1 = 0.8 and μ2 = 0.9, whereas
the red contours are derived on the incorrect assumption that μ1 = 0.75
and μ2 = 0.85, i.e. photometric redshifts are systematically underestimated.
The blue contours are, by construction, centred on the fiducial parameters,
whereas the red contours end up far from the fiducial parameters in or-
der to compensate for effects in the C(l) signal introduced by photometric
systematics.

to generate the fiducial C(l)s. When we attempt to recover the
cosmological parameters with an sampling analysis, we use a fixed
redshift distribution, biased with μ1 = 0.75 and μ2 = 0.85. The
results are shown in Fig. 1.

The bias is strongest in cases such as this where there is a sys-
tematic error causing the mean or standard deviation of bins to be
consistently overestimated or underestimated. In order to avoid this,
we must reduce our reliance on fixed redshift distributions with large
errors. In lieu of a method for sufficiently accurate redshifts from
photometry, we must rely on marginalizing in a Bayesian frame-
work, the results of which are described in the following sections.

5.2 Autocorrelations with photometric redshift bins

The simplest analysis that we can do is to use only our photomet-
ric redshift bins, and to only take into account autocorrelations.
We will see that this means ignoring a great deal of information,
and our bounds on cosmological and binning parameters are wide.
Although in this case we are not taking into account the full infor-
mation available to us, it is worth looking into since it is much less
computationally expensive, and previous studies have been focused
on autocorrelations. We promote the mean and standard deviation of
our redshift bins to fully independent parameters for our sampling
analysis, allowing them to vary freely so that they can be marginal-
ized over. Here, we use the three photometric bins described in
Section 4.4. This information is combined with CMB TT informa-
tion in order to help constrain As, which is a problematic parameter
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Figure 2. Probability contour obtained when varying only As and σ (the
width of one photometric redshift bin), with μ = 1.0 and all other param-
eters at their fiducial values, demonstrating the high degeneracy between
photometric bin width and the As parameter.

in this analysis since it is extremely strongly degenerate with the
standard deviation of a bin (see Fig. 2).

Despite the fact that we are not using any cross-correlations
between bins, we can see the parameters for different bins are
degenerate. This is because of the effect that μ and σ have on
the C(l). For example, when all the bins are moved in the same
direction, the effect is largely to raise or lower the power in each
autocorrelation; this can be compensated for by adjusting As and
other cosmological parameters appropriately. If however some bins
are moved up in redshift, and some down, then the cosmological
parameters struggle to compensate for the competing effects. The
same is true for σ . This means that these parameters are constrained
to move together to some extent.

We note that the degeneracy between σ and As is being prevented
from exercising its full effect because As has been constrained sig-
nificantly by the CMB information. Nevertheless, As is strongly
degenerate with τ r (the optical depth at reionization) and we note
that τ r is not well constrained in this instance. Although its effects
have been mitigated by its constraint, it is still clear that there is
a degeneracy between σ of each bin and all of the cosmological
parameters except ns. Likewise, μ is strongly degenerate with �b,
��, h, and w0, and is not constrained up to the hard limits of the
prior. This means that errors in estimates for binning parameters
can propagate into cosmological parameters in a significant way.

We can understand the degeneracy between the cosmological
parameters by considering their effects upon the C(l)s. The effect
of σ is primarily to change the height of the C(l)s, which creates
its degeneracy with As. Likewise, we know that moving μ to low
redshift boosts power; since �� and h suppress structure formation,
these need to be lowered and �b raised to get the C(l)s to match the
fiducial model.

5.3 Cross-correlating with spectroscopic redshifts

In this section, we demonstrate the improvement attainable by cross-
correlating with spectroscopic redshift data. Because of the overlap
with spectroscopic data, we can show that the properties of the
photometric redshift bins are now tightly constrained, and the de-
generacies between bins are less pronounced. In most cases, the
binning parameters cannot vary widely enough to have a noticeable
impact on the cosmological parameters compared to the uncertainty
already present.

We can see that there is increased precision in the cosmological
parameters (except for ns, which is almost entirely determined by
CMB information here), with most bounds improving by a factor of
2 or more (Table 2). The slight widening in the posterior distribution
for ns which can be seen in Fig. 3 is most likely due to the additional
noise introduced to the galaxy clustering likelihood by looking at
larger numbers of bins. Since galaxy number counts do little to
constrain ns at this level, and bins which are widely separated in
redshift may produce correlation functions that are largely noise-
dominated (since they should be close to zero), this small additional
of noise to the likelihood causes some spreading of this parameter.
This could be tackled by ignoring widely separated bins if necessary
(this would also speed the likelihood calculation by reducing the
number of integrations). Binning parameters (μi, σ i) have been
particularly tightly constrained, allowing us to know their values to
per cent level or better(Table 3). Further constraint can be imposed
upon them by having more spectroscopic bins to cover a greater
fraction of the photometric redshift range, at the cost of computation
time.

5.4 Constraining higher moments

As a benchmark, we also present constraints on the shapes of a
single photometric bin from cross-correlations with three spectro-
scopic bins (see Fig. 4). Here, we have a fixed cosmology to sim-
plify the calculations and provide benchmark results for the shape
parameters. With cross-correlations between more photometric and
spectroscopic bins, we expect these results to be improved.

We find that the odd moments are strongly correlated, but we
also have less information to constrain the higher moments from
the correlation statistics. This may not be a problem unless the
higher moments significantly affect the cosmological parameter
estimation, although the lack of constraining power of the C(l)s

Table 2. 68 per cent confidence ranges for inferred cosmological parameters using only autocorrelations, and using cross-correlations with spectroscopy.

As × 1010 �b �w w0 h τ r ns

Fiducial 25 0.06 0.7 −0.9 0.7 0.09 0.95
Photometric 25.1 ± 1.5 0.060 ± 0.007 0.693 ± 0.033 −0.89 ± 0.05 0.697 ± 0.019 0.091 ± 0.029 0.950 ± 0.004
Photo × Spec 25.0 ± 0.4 0.060 ± 0.002 0.700 ± 0.008 −0.90 ± 0.02 0.700 ± 0.006 0.091 ± 0.009 0.950 ± 0.004
Fixed redshift 25.0 ± 0.3 0.060 ± 0.002 0.700 ± 0.008 −0.90 ± 0.02 0.700 ± 0.005 0.090 ± 0.008 0.950 ± 0.004
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Figure 3. Probability contours obtained for cosmological and photometric binning parameters. Results from using autocorrelations of photometric bins only
are shown in grey, and results from using photometric bins cross-correlated with each other and spectroscopic bins are shown in red. For comparison, results
using redshift bins fixed at the fiducial values are shown in blue. Results show clear improvements on all the binning parameters, as well as most cosmological
parameters (with the exception of ns), and contours using cross-correlations between photometric and spectroscopic samples yield results very close to those
with no redshift error.

Table 3. 68 per cent confidence ranges for inferred photometric redshift bin parameters, using only autocorrelations and using
cross-correlations with spectroscopy.

μ1 μ2 μ3 σ 1 σ 2 σ 3

Fiducial 0.8 1.0 1.2 0.1 0.1 0.1
Photo+Auto 0.794 ± 0.036 0.992 ± 0.045 1.191 ± 0.054 0.101 ± 0.005 0.101 ± 0.005 0.101 ± 0.005
Spec+Cross 0.800 ± 0.003 1.000 ± 0.003 1.200 ± 0.003 0.100 ± 0.001 0.100 ± 0.001 0.100 ± 0.001
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Figure 4. Constraints on the mean, width, and shapes of bins as character-
ized by (μ, σ , s, k) for a single photometric bin, cross-correlated with three
spectroscopic bins, with fixed cosmology.

suggests that these are not strongly affected by the finer details of the
shape of the distributions. The most significant potential problem is
the degeneracy between s and μ. This could lead to a spreading of the
distribution over mu which may affect the cosmological parameter
estimation. In order to combat this, one would need to have relatively
dense spectroscopic samples throughout the range. In principle, the
degeneracy between μ and s needs not be a problem. Since they are
strongly degenerate, it is largely the case of the one compensating
for the effect of the other. In this case, the cosmological calculation
may not be strongly affected even if the uncertainty in μ increases
significantly. We should also bear in mind that the application of the
skew transformation alters the mean of the distribution even though
the peak is kept in the same place. This needs to be compensated
for by the μ parameter, and thus the true mean may remain roughly
unchanged and be very strongly constrained. We do not expect
higher moments to have a very strong impact on cosmological
results.

6 C O N C L U S I O N S

From the results presented in Section 5, we can see that different as-
pects of the analysis provide distinct benefits. The variation of n(z),
and its subsequent marginalization, is essential for the removal of
the bias from cosmological inferences. In order to utilize the full
power of the C(l) formalism, we must include cross-correlations as
well as the well-studied autocorrelations; these not only provide us
with much more information (improving our constraining power)
but also help us to pin down the relationships between different
photometric redshift bins more accurately. Since the photometric
redshift parameters display degeneracy with almost all of the cos-
mological parameters, it is crucial to have these distributions known
as well as possible.

By using a full theoretical likelihood and nested sampling ap-
proach, this study is less idealized than most previous works; nev-

ertheless, the assumptions of Gaussian bins, and the small number
of redshift bins, are simplifications that should be addressed in
the future work. As the analysis is extended with more bins, the
computational complexity will increase significantly; the number
of cross-correlations to calculate will increase as O(n2

bins) and the
dimensionality of the parameter space as O(nbins). It is possible to
simplify in such cases by only considering cross-correlations be-
tween bins which are sufficiently close together (leading to a band
diagonal Cij(l) matrix), since cross-correlations between widely sep-
arated bins will contain comparatively little information. Despite the
computations intensity, as long as numerical errors remain tamed,
we expect that increasing the number of bins and the density of
the spectroscopic sample to improve the results. A survey such as
Euclid should have a great deal of power to jointly constrain the
redshift distribution and the cosmology with minimal disturbance
to the confidence intervals for cosmological parameters.

Errors on redshift binning parameters are now O(10−3), even with
such sparse spectroscopic data as we have simulated. Errors on the
means of photometric bins are at ±0.003 and errors on the width
of bins is at ±0.001 (see Table 3). This is extremely promising for
future experiments, providing the possibility to extract reliable and
precise cosmological parameters. As we look towards future exper-
iments such as Euclid and LSST, and even with data currently being
released from DES, a major focus in cosmology will be the nature
of dark energy. The ability to distinguish among a cosmological
constant, scalar field theory, modified gravity, or more exotic forms
will still, be dependent on having well-known redshift distributions,
as can be seen by the strong degeneracy between the mean of red-
shift bins and the parameters �� and w0. A bias from improperly
calibrated photometric data could easily generate a spurious result.
Using this method will help to ensure robust analyses for current
and future experiments.

This method can be applied to any C(l) signal using photomet-
ric redshift bins (such as weak lensing or galaxy clusters) to cali-
brate their photometric redshift distributions. This means that when
applied to future optical surveys, it will be able to benefit much
more powerful analyses than the one outlined in this paper, in-
cluding a larger number of redshift bins, and a combination of
signals from different cosmological probes. If the same photome-
try is used for both number counts and lensing, then both of these
cross-correlations will contribute to constraining the photometric
parameters, as well as constraining the cosmology itself. It will
be necessary for future observational work to extend this to non-
Gaussian distributions, including higher order moments or more
generic spline models of n(z), in order to model our observed pho-
tometric redshifts as best we can. When combined with lensing
information, this technique can be applied to achieve improved re-
sults in modified gravity or dark energy studies, where biases can
lead to spurious detections and high precision is needed.
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A P P E N D I X A : D E TA I L S O F n( z)
T R A N S F O R M ATI O N S

In this appendix, we will describe in detail the transformations made
to the n(z) functions, and the motivations for the heuristic shape
manipulation. It is not important that the higher moments are not
exactly represented in the same way that the mean and variance of
the Gaussian are – these are after all only parameters controlling the
shape which will be marginalized over. The important thing is that it
can explore a variety of shapes with a small number of parameters.
More precise handling of the distributions can be achieved at the
cost of increasing the parameter space, which may rapidly make the
computation unmanageable without abundant computing resources.

A1 Mean and variance

Due to the spline representation used in our computation (see
Section 4.3), it is simplest to perform a transformation the z-axis
to a new variable z′ = f(z) for a general (non-Gaussian) distribu-
tion. By creating the function n′(z′) = n(z) = n(f−1(z)), we obtain a
distorted distribution in our new variable, which we take to be the
new redshift. (This distribution, like all distributions, is normalized
before any further calculations are carried out.)

To vary the mean (μ → μ + �μ), we apply the transformation

z′ = z + �μ. (A1)

This varies the mean of an arbitrary distribution without affect-
ing any of the higher moments. We can also change the standard
deviation (σ → σ + �σ ) without affecting the mean or higher
moments. (The fourth moment m4 is changed, but not kurtosis
κ = m4

σ 4 .)

z′ =
(

1 + �σ

σ

)
(z − μ) + μ. (A2)

One is free to change the mean and standard deviation of distri-
butions in whichever order desired as these transformations are

Figure A1. Results of applying positive and negative skew transformations
to a Gaussian photometric bin.

commutative. Higher order transforms may also be applied which
break symmetries, so care must be taken there as the operations will
not be commutative.

A2 Skewness

To adjust the apparent skewness, we need to stretch the distribu-
tion on one side of the mean, and squeeze the distribution on the
other. For the sake of simplicity, we write a heuristic skew function
controlled by a single parameter s. (This is to distinguish it from
the skewness calculated from the third moment, γ .) The parameter
range is defined at −1 < s < 1. We map from the original redshift
coordinate z to a new coordinate z′ representing the new redshift
after the distortion has been taken into account. If the two are iden-
tical, then we have dz′

dz
= 1 everywhere. If we wish to stretch a

region, then dz′
dz

> 1 and to squeeze it we have dz′
dz

< 1. To achieve
skewness, we need to smoothly vary from stretched regions on the
one side of the mean to squeezed regions on the other side, with
dz′
dz

|z=μ = 1.
We may choose a simple linear function:

dz′

dz
= 1 + (z − μ)s

L
. (A3)

Figure A2. Results of applying positive and negative kurtosis transforma-
tions to a Gaussian photometric bin.
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This fulfils the criteria discussed in the range μ − L < z
< μ + L. After these points, we fix dz′

dz
|z<μ−L = dz′

dz
|z=μ−L and

dz′
dz

|z>μ+L = dz′
dz

|z=μ+L. This is because otherwise we rapidly end
up with very extreme stretching or squeezing of the distribution.
Here, we have an extra free parameter, L (the length-scale of the
skewness function). To avoid overburdening, the routine with extra
parameters we generically set this to L = 3

4 σ . The resulting func-
tion is found by integrating these expressions with the condition
that μ′ = μ. (This means that skewness does not interfere with
the peak of the distribution, but will change the mean; it may also
interfere with standard deviation. Standard deviation and mean can
separately be readjusted to remove this degeneracy if desired.)

z′ =

⎧⎪⎪⎨
⎪⎪⎩

s
L

(
1
2 (z + μ)2 − μ

) + z, |z − μ| ≤ L

(μ + L)′ + (1 + s)(z − (μ + L)), z − μ > L

(μ − L)′ + (1 − s)(z − (μ − L)), z − μ < −L

. (A4)

A3 Kurtosis

Kurtosis is handled in a similar way to skewness, by a heuristic
function controlled by a single parameter k (different to the exact
kurtosis, traditionally κ) which varies −1 < k < 1. This case is
symmetric, and we wish to stretch the distribution close to the
mean, and squeeze it further away from the mean (or vice versa).

In this case, we again need to choose length-scales. We choose to
have the transition from stretched to squeezed regions (i.e. dz′

dz
= 1)

at (z −μ) =σ , and then fix the transformations (as with the skewness
above) at (z − μ) = 2σ . This requires in the below expression L = σ .

For simplicity, we again choose linear relations,

dz′

dz
= (1 + k) − |z − μ|

L
k. (A5)

We then integrate as before, choosing μ′ = μ. Once again, the
standard deviation can be separately adjusted for if desired,

z′ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z + k(z − μ) − k (z−μ)2

2σ
, μ ≤ z ≤ μ + 2σ

z + k(z − μ) + k (z−μ)2

2σ
, μ − 2σ ≤ z ≤ μ

μ + σ + (1 − k)(z − μ − 2σ ), z ≥ μ + 2σ

μ − σ + (1 − k)(z − μ + 2σ ), z ≤ μ − 2σ

. (A6)
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